
7 AD-A141 063 COBOL AUTOMATED VERIFCATION SYSTEM IMPLEMENTATION
1/

PHASE U GENENAL RESEARCH CORP SANTA BARBARA CA
U " R A MELONEF AL DE 830 GCCR-10970RADC-TR-83284

Eu.

W- 1 2.2

8

11.J25 1. 1116

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-4

RtADC.T343.2S4

PMawl TeclsaleUpo

i°lit
'U- sinuber 1111

I COBOL AUTOMATED VERIFICATION SYSTEM,
Implementaifon Phase

General Rearh Corporation

Richard A. Melton and William R. W81hart

AOME F PUC RwA DMimD EI ND

DTIC
C:>~ EECTE

MY15 84

ROME AIR DEVELOPMENT CENTER A.
r- Air Force Systems Commend

Griffinl Air Force Sae, NY 13441

05 15 219

.,~ ~~~~~~~~~~~~~~~~~~~~....I.I.II I II ii - I - - I , ti, ,............: T_.-...

IR Of# e$
120 MW

qwk-ip N 41 - V.-- -4

A " hWIM':cAb4 t~s

tJJOIN A. RIT

Ac ~ ~ ~ ~ ~ u togTc~~c1Drco

UNCLASSIFIED
SECURITY CLASIFICATION Of THIS PAGE (Mon, Due. alted ___________________

1. RPOR NUM91t2. GVT CCESIONNO3.RPIENG' CAO~GP NUMBER

7. THOR(s)dwts $- TYORTORT RAN NPER CVEE

WiBLa R.OMTE Wi ERIFCTONSSE FinalTe0cnical Rpr

S. PRFORINGORGAIZAION AME ND DDRES S. PERORAMN ELEEN. RPRET, TUMBER

7. ATHORs) I COARACTOR URNT NUMER~s

General Research Corporation ARA37 OR2 UI8NMBR

P.O. Box 6770 25728

Santa Barbara CA 93111 25270208 _________

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

December 1983
Rome Air Development Center (COEE) 13. NUMBER OF PAGES
Griffiss AFB NY 13441 48

14. MONITORING AGENCY NAME A AOORESS(lI different fron Cotoling Office) IS. SECURITY CLASS. (of tisA report)

Same UNCLASSIFIED
ISM. OECL ASSI FICATION/ DOWNGRADING

NA HEOULE

IS. DISTRIBUTION STATEMENT (of this. Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20. It different from Report)

Same

It. SUPPLEMENTARY NOTES

RADC Project Engineer: Lawrence M. Lombardo (COEE)

IS97KEY WORDS (Continuea. revese old. It necessay aud Identeify by block Mmnber)

COBOL Automated Documentation
Software Quality Static Analysis
Software Testing Dynamic Analysis

41 Interactive
20. ABSTRACT (Coninue mu revere. sid. It necessay mud Identify by black ummber)

CAVS (for COBOL Automated Verification System) is a menu-driven,
integrated, and interactive set of tools to improve the productivity
of COBOL programmers.

DD I M. 1473 COITION or I Nov 45 Is OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION Of THIS PAGE (When Dow& Eutered)

NAOMI

CONTENTS

SECTION PAGE

1 TECHNICAL PROBLEM 1

2 GENERAL METHODOLOGY 3

3 TECHNICAL RESULTS 5

4 IMPLICATIONS FOR FURTHER RESEARCH 13

4.1 New Reports and Analyses 14

4.2 User Interface Enhancements 19
4.3 Expanded Walkthrough Capability 21

4.4 Integrate Software Life Cycle Tools in the
AVS Context 24

5 SPECIAL COMMENTS 29

.

I

-1

i I:

1 TECHNICAL PROBLEM

2As the cost of computer hardware continues to fall, more and more

ambitious software applications are conceived. The conversion of the

ambitious conceptions into complete and reliable final products, on budget and

within schedule, continues to be an elusive goal for the majority of projects.

Much emphasis is being placed on solving this problem with tools and tech-

niques that are applicable throughout the software life cycle." Following is a

partial list of the approaches currently being actively pursued. - '

1. Automated tools for program analysis and testing - this is the

approach which best describes CAVS.

2. Fourth generation languages - usually described as non-procedural

languages. The biggest impact so far has been in data base

applications (as a more productive replacement or COBOL).

3. Software management and configuration contro. tuols - a must for

large software developments.

4. Software support systems/programming environment tools - easy to

use, integrated environments. The best known examples are UNIX,

INTERLISP, SMALLTALK.

5. Tools for writing and analyzing requirements/design specifications

- the earlier an error is detected the less it costs to fix it.

6. Programming workstations - the next step after timesharing -

eliminating bottlenecks due to saturation of timesharing systems.

The falling cost and rising performance of microcomputer systems

is making it economically feasible to provide software developers

with dedicated workstations which can be networked together for

large software development projects.

7. Software engineering life cycle support systems - putting all the

pieces together in an easy to use, integrated framework for all

phases and all personnel during the entire software life cycle.

| 1

- ~ -- ~ - - -i

This project falls in the first area, automated tools for program

analysis and testing. The objective was to design and implement a tool for

analyzing and testing COBOL source programs. The tool, called CAVS, for COBOL

Automated Verification System, is a prototype of a software tool to improve

the reliability and maintainability of COBOL software systems. CAVS can be

applied during the testing, verification, validation, and error detection/

correction phases of software development.

2

2 GENERAL METHODOLOGY

This effort was accomplished in two phases. Phase I consisted of a

study of the COBOL programming language and of the latest automated

software test and verification tools, to insure that the most advanced tech-

niques and capabilities would be included in this development. The output of

Phase I was a CAVS Initial Design. A Functional Description,1 System/
2 3Subsystem Specification, and Final Report were produced during Phase I.

Phase II consisted of the detailed design, implementation, and testing

of CAVS on the VAX 11/780/VMS computer system at General Research Corporation,

Santa Barbara, California. CAVS was then installed on the VAX 11/780/VMS and

Honeywell H6180/GCOS computer systems at the Rome Air Development Center

(RADC), Griffiss AFB, N.Y. It was also installed on the UNIVAC 1100/EXEC 8

computer systems at the Defense Mapping Agency (DMA) Hydrographic/Topographic

Center (DMAHTC) in Washington, D.C., at the DMA Aerospace Center (DMAAC) in

St. Louis, Mo., and at the Navy Data Automation Facility (NAVDAF) in Newport,

Rhode Island.

After installations were completed, user training courses were conducted

at the two DMA sites. A maintenance training course was conducted at DMAHTC.

Two important documents from Phase II were the User's Manual4 and the Program

Maintenance Manual .
5

1 M. Sharp, et al., COBOL Automated Verification System Functional Descrip-

tion, General Research Corporation CR-2-970, November 1980.
2 R. Melton, et al., COBOL Automated Verification System:System/Sub-

System Specification, General Research Corporation CR-1-970, November 1980.
G. Greenberg, et al., COBOL Automated Verification System Final Report:
Study Phase, General Research Corporation CR-3-970, November 1980.~4
R. Melton, et al., COBOL Automated Verification System User's Manual,
General Research Corporation CR-4-970/R1, August 1983.

5 R. Melton, et al., COBOL Automated Verification System Program Maintenance
Manual, General Research Corporation, CR-7-970/RI, July 1983.

3

3 TECHNICAL RESULTS

A prototype AVS for COBOL was produced as a result of the project. CAVS

is an integrated set of tools that builds a database from COBOL source, and

then accesses the database for documenting, analyzing, and testing COBOL

programs. CAVS processes six dialects of COBOL: ANSI Standard 1968 and 1974,

UNIVAC FIELDATA, UNIVAC ASCII, Honeywell 60/6000, and Honeywell COBOL-74.

CAVS is currently installed on a VAX 11/780 under VMS, on a UNIVAC 1100/60

under EXEC 8, and on the Honeywell 6180 under GCOS.

The principal functions performed by CAVS are:

0 Static Analysis, in which multi-module checking is performed for

errors and dangerous coding practices not normally detected by

COBOL compilers.

0 Instrumentation, which consists of automatic insertion into a

COBOL program of calls to data collection routines that record

data about program operations and paths taken during execution.

Trace File Analysis, which combines the program information from

the CAVS database with the trace file information created by

running an instrumented program to produce performance reports

about the program's dynamic operation.

0 Documentation, which generates a number of reports from the CAVS

database about a program's structure and usage of variables.

These reports are of use to developers, testers, and maintainers.

0 Precompilation of a COBOL language extension that includes "end

verb" statements (similar to the suggested COBOL 8x syntax) into

standard COBOL.

0 Reformatting of COBOL source code with indentation of nested IF

verbs and standardized spacing of the clauses of other verbs for

improved readability.

"....a.. l "
- -

W

Features of CAVS include:

* Interactive operation with menus, help screens, menu commands,

wildcards in name selection, filename prompts, selective reports

9 Batch operation with commands for processing large amounts of

source code, and generating comprehensive reports

* Automatically updated library of COBOL source code, reports about

it, and testing history

0 Efficiency to support frequent use on medium to large COBOL

systems

* Applicable to systems of up to 250,000 lines of COBOL source

Interactive Mode

CAVS provides menus that tell the user which functions and reports are

available. For novice users, one or more help screens a.a available from each

CAVS menu. Experien-ed CAVS users can suppress the display of CAVS menus by

entering sequences of menu selections. Frequently used sequences of menu

selections can be named and saved as commands. Wildcards provide a convenient

way of selecting specific names (program-IDs, data items, literals, para-

graphs, files/records, copy members/records, and global records), as well as

finding all names available. Filename prompts provide flexibility in reading

in COBOL source elements, generating concise reports, and outputting COBOL

source elements. Viewing reports interactively before sending them to a

report file allows very selective reports to be generated.

Figure 3.1 gives a broad overview of the CAVS functions in terms of the

menus that the user interacts with to control the functions. The chart is

arranged in hierarchical order by the connectivity from one menu to another.

The WELCOME menu controls initialization, the FUNCTIONS menu controls access

to the main function menus, and the END OF CAVS controls the session wrapup.

6

Hf S

U

s-I
-4

z

U

-4

- 4.4w

'-4

III

7

.- *..-.-'-.-~

Batch Mode

Batch mode is provided for processing large source elements, or gener-

ating comprehensive reports for baseline, archival documentation. Batch

commands make it easy to direct CAVS in batch mode because they relate

directly to the CAVS output desired rather than the sequence of processing

CAVS goes through to produce the output. The CAVS batch commands are listed

below-

[PROJ[ECT LIBRARY] .1
IEXPA[ND.)
[CHAN(GE1 .1

IOPTI[ON] = option {,optionj.}

where option is one of

ABOR[T] LIST
CHECtK OUT] PREC[OMPILEI
DOCU[MENT] REAC[HING SET]
ERRO[RS] REFO[RMATI
INST [RUMENT] SUMM[ARY]
IOCO[UNTS] TIMING]

(REPO[RT] = report {,reportl.)

where report is one of:

CALL [S] SUMMARY
GLOBI[AL VARIABLES] BRANCHES
PROF[ILEJ STATEMENTS
GLOB[AL VARIABLES]/E[NHANCED] TRACE
10 TIME
PROP ERTIES]
CROS [S]
CALLtSI /T[EXT]
BAND[S/<n>.
PICT[URE]

(FOR PEROGRAM-IDS] - <namel><name2>...

(TEST[CASE] - <name>
(REACIRHING SET],PROG[RAM-ID - (<name>),

TO - <statement number>,
FROM - <statement number>,)

[I optional
{) optional an arbitrary number of times

< > integer constant or character string

8

Support for Structured Programming in COBOL

CAVS c pports structured programming in COBOL in a number of ways.

COBOL constructs (data division and procedure division) are automatically

indented on all hard copy source listings. Source listings also include a

perform range cross reference at the end of each PROGRAM-ID. CAVS also

provides the option to automatically reformat COBOL source text to make it

easier to read (including indentation of procedure division constructs).

Structured COBOL written in an extension 'o COBOL is recognized by CAVS and

can be automatically precompiled into standard COBOL. The major support for

structured programming in COBOL is the CAVS structured walkthrough. This is

an innovation in CAVS which allows you to follow the source code of very large

programs at a video terminal, using the program structure as the guide to

examining the code. Top levels of the structure are displayed first, and with

simple commands you can expand to successively lower levels, and then easily

return to where you started.

133 (M100277 E3R R-OP--~UTLNTIASE

130 (MOD)779 000-ADIY-ARRAPHT
131 (ODO)' MOVE~ 10 TOIFLAO

13)

137 (1i05276MUTI IF Y-IVI NG ANSWE

(4 lines to e Pernd)141 (MMM)2S6 ELSE

(~8 lines to 0'Pend i
149 (N0D296 ELSE
13 (7 lnes to e NO ANWd)
156 (MOD)304 EXIT-PROG
157 (MOD)25 EXIT PRORA t
158 (MOD)306 E
159 (MO0)307

158 (fl00309 GRC-LOOP ----5
*CR,-ne:t screenp*exxtL-ljbrarv auev' ,Peo'R=return,-N>..xpand stmt N:L CP'

Error/Warning Reports (Static Analysis)

CAVS provides the following static analysis functions:

9 Call checking to detect errors in the number of calling parameters

or picture mismatch between parameters.

Symbol set/use checking to detect data items which are used but

not set or set but not used.

0 Data flaw analysis to detect data items which are used before

being set on all paths, reset before being used, or set and then

not used on a particular path.

0 Structure checking to detect unreachable code and potential

infinite loops.

0 Picture checking to detect implicit picture conversions in move

statements.

Each of these checks may be turned on or off from the menu.

4 - RESET CALL CHECKING (ON OR OFF) ON
RESET GRAPH CHECKING (ON OR OFF) ON
RESET MODE CHECKING ON OR OFF) ON

Dynamic Analysis

Dynamic analysis is a three step process:

* Automatic COBOL source code instrumentation using CAVS

* Compilation/execution/trace file generation

* Trace file analysis using CAVS

10

CAVS performs abort tracing instrumentatior timing instrumentation, I/O

instrumentation, and statement/branch instrumentation. After executing the

instrumented COBOL and generating a trace file, CAVS can be used to produce

abort trace reports, timing reports, or statement/branch coverage reports.

Statement/branch coverage results can be saved on the project library and

accumulated to provide a testing history.

Documentation

CAVS provides a wide variety of documentation reports in both

batch and interactive mode. They include detailed reports about

PROGRAM-IDs, symbol properties, symbol cross references, and source text

reports. System-wide reports are provided on PROGRAM-IDs, ENTRY POINTs,

global records (in COMMONs, FILEs, or COPYs), and TESTCASES.

Automatically Updated Library

CAVS automatically updates the project library so that it is as

current as the last source code processed. A baseline library can be used for

baseline source code, reports, and testing history. Private libraries can be

created and maintained economically, saving only changes to the baseline

library on change files.

Efficiency -- What Does it Cost?

CAVS processes source code (read and create/update a project library) is

about 1.5 times compile time. The CAVS project library is comparable to

source code size (about the same size as your source code stored in 80 column

card images). CAVS reports are easy to use, and are often better than

compiler listings or text editor searches for solving specific problems.

Selective reports generated in menu mode are especially cost-effective. The

zost of CAVS dynamic analysis is highly dependent on the logic of the program.

In general it causes about 20% code expansion and 50% CPU overhead.

11

- .<

Applicable to Large Software Systems

CAVS is especially cost-effective for large software systems

consisting of many interrelated programs or subroutines. It is usually

too expensive to reanalyze a whole system in order to reanalyze one or

two modified subroutines. The CAVS project library contains inter-

relationships between all programs, subroutinea, files, and copy members.

Modified subroutines can be reanalyzed separately, and the entire library

automatically updated at the same time.

12

4 IMPLICATIONS FOR FURTHER RESEARCH

The continuing research in source code analysis systems sponsored by

RADC demonstrates that the concepts are largely independent of the language

the source code is written in. The following comments are derived from

experience with CAVS, but the implications of that experience for future

research apply to any language.

Experience has shown that the AVS features embodied in CAVS are useful,

and in particular, that interactive operation combined with user selection of

report scope leads to more efficient use of an AVS. As a result of using the

system, the following statements can be made that point the way to future

research.

* There is a wealth of information in an AVS data base, and more

could be added. Many useful reports could be generated that are

not now available from existing or new information in the data

base.

* Interactive users would benefit from more modes of viewing the

reports. Spreadsheet calculators have shown the way to concepts

of moving one or more "windows" over a large report to view or

alter the contents.

Even more sophisticated viewing techniques could be applied to

some reports as has been done in the structured walkthrough. In

structured walkthrough the user can follow complex source code,

guided by the code structure. CAVS knows the meaning of the

structure and makes it easy to walk through it. Other reports

could use content to guide the user, and there are several other

"maps" that could be used to guide the source code walkthrough.

* Demonstration of the utility of CAVS as an interactive tool leads

naturally to the idea of distributing the tool in a "workstation"

environment. One central data base would be maintained, and users

at work stations could retrieve sections of it to their own work

station for viewing. Changes could be made to the central data

base as well, but security measures would have to be introduced.

13

0 The ultimate goal of all this research should be the development

of a "life cycle" environment in which the data base starts with

the requirements definition and builds from there. Many tools

would have access to the data base, which includes all the history

of the evolution of the code.

These broad areas are expanded in the following sections.

Section Topic

4.1 New Reports and Analyses

4.2 Enhanced User Interface

4.3 Expanded Walkthrough Capability

4.4 AVS Tool Technology in a Life Cycle Environment

4.1 NEW REPORTS AND ANALYSES

4.1.1 Enhancements to Matrix Reports

The matrix report summarizes the usage of global variables (rows) across

several modules (columns). A possible enhancement would be to use the matrix

display for interactively selecting a global variable and a program-ID for

more detailed display. The user could select a row/column element, a whole

row (one variable in all modules), or a whole column (all global variables in

one module). Additional information that could be displayed includes state-

ment cross reference numbers, statement cross reference text, context report,

and a properties report. CAVS users at low-speed video terminals or hardcopy

terminals would get large matrices split across several screens as they

currently do. An interactive user at a high-speed video terminal could scroll

horizontally (across modules) or vertically (across global variables) to view

a matrix larger than one screen.

Note that this approach can be applied to a variety of matrix reports -

symbol used/symbol set, calling module/called module, testcase/module, copy

text/module, file/module. The wildcard idea could be used to build the matrix

14

according to the user's needs (row names of interest/column names of interest)

thus providing a natural way to limit the amount of information presented.

4.1.2 Dynamic Analysis Enhancements

Statement coverage and hit/not-hit reports could be done in the

same fashion as the structured walkthrough. For a coverage report, the

statement execution counts would appear on the lefthand side. For hit/not hit

reports, a yes/no indicator would appear on the lefthand side. With suitable

video terminals, statements not executed could be displayed in brighter

intensity or reverse video, or even in a different color (red for instance).

While a trace file is being read, video terminal users could be pre-

sented with a display of the dynamic calling tree, down to the perform

range/block level. This applies to both abort trace files and coverage trace

files. The source code of the program that was executed as the trace file was

created could also be displayed (see the discussion of TRACE WALKTHROUGH/

WALKBACK in Sec. 4.3.2).

A method of coverage instrumentation/analysis which reduces the size of

CAVS trace files by a factor of 20 to 100 was designed and partially imple-

mented during Phase II of the CAVS project. This implementation will have to

be completed before CAVS can be effectively used in coverage testing of large

COBOL systems.

Programs that nearly fill memory may become too large to run when the

entire program is instrumented. One approach to this problem is to add a

means of merging the trace files produced by the instrumented code. The

program could then be run (with the same data), in several versions with

different portions instrumented, and then the trace files merged. In this

way, comprehensive test reports can be obtained for any size of system. The

merge capability would be an enhancement to the current CAVS dynamic analysis

capabilities.

15

A new standard for COBOL (COBOL/80x) has been proposed and is slowly

being accepted by the COBOL community. It includes a major extension to the

structured control constructs of COBOL. CAVS can contribute to a mooth

transition to the new standard by precompiling the new structured constructs

into today's standard COBOL. New COBOL code could be written with the new

constructs, and old code could be revised to use the new constructs, before

upgraded COBOL compilers are available.

A noteworthy trend in newer programming languages is the inclusion of

executable assertions. The same thing can be accomplished for existing

languages by precompiling assertions into standard code. The CAVS COBOL

precompiler could be enhanced to support executable assertions for COBOL. A

further enhancement to CAVS would tie assertion violations to the trace file

created by an instrumented COBOL program. Dynamic testing reports would then

be able to trace the path to an assertion violation (under the kinds of

interactive user control described in Sec. 4.3.2 - TRACE WALKTHROUGH/

WALKBACK).

4.1.3 Module Documentation Enhancements

The module documentation report has proven useful in self-documenting

CAVS, FAVS, and J73AVS. CAVS now provides this as an on-line report, which is

as up-to-date as the project library from which it is generated. But it can

be more effectively used in interactive mode if it becomes the top of a set of

reports (XREF, TEXT, and CONTEXT) which the user can request as he needs to:

1. For a specified formal parameter.

2. For a specified common variable.

3. For each external called or each calling routine.

4. For a specified file in the routine.

Additional information to include in these reports is:

1. Copy texts included.

2. Block/perform range structure report.

16

I;

3. Testcases exercising this module.

4.1.4 Library Contents Enhancements

The library contents report should expand into more detailed

information at the discretion of the interactive user. For instance

the undefined entry points could be defined as stubs by an interactive user.

This report also needs to have the date and time when modules were read in;

this information could probably also go on the heading of hardcopy source

listings.

4.1.5 Automatic Restructuring

GRC's Fortran Automatic Verification System contains a function for

automatically restructuring FORTRAN programs to eliminate GOTOs. There are

several problems with the restructuring procedure as it now exists:

* Automatic restructuring without additional human input produces an

equally bad program without GOTOs.

" Restructuring a program causes documentation of the old program's

internal logic to become obsolete.

" Restructuring large programs is time-consuming and expensive.

Drawing on the experience of users at DMA and GRC, we believe that an

improved, cost-effective restructuring module can be built, to add COBOL

restructuring to CAVS. It should provide these services:

" Automatic analysis of existing program structure.

* Easy-to-read program graph reports. These would show how to break

a large program into chunks that are easily understood by people

and easily structured by computer.

* Error and diagnostic reports. Any COBOL constructs that render

the program unstructurable would be reported.

* Automatic restructuring of COBOL source programs. CAVS would be

able to restructure any COBOL dialect it could recognize.

17

* Automatic chart generation. Documentation (VTOCs and/or flow-

charts) for newly structured programs could be generated mechani-

cally. Cost of documenting these new versions of well-tested

programs would be reduced.

4.1.6 Automatic Documentation

CAVS is designed to be portable across computer models and operating

systems. Its automatic documentation modules concentrate on the portable

portions of COBOL programs. But information about nonportable language

constructs, file structures, and program interfaces can also be important.

During conversion from one computer to another or one operating system to

another, knowledge of these non-portable system characteristics is vital.

Conversions can be simplified and expedited when this information is extracted

and presented automatically.

4.1.7 Management Level Functions

The AVS can be made intelligent enough to:

* Track the progress of modules through the system.

* Report their status to users and management.

* Suggest courses of action.

* Explain what happens when a particular course is selected.

* Search and manipulate CAVS report output in ways tailored to a

specific user-defined problem.

All of these functions should be available to on-line users.

HISTORY is a proposed system-wide data logging function. It would

record:

" When modules were added to a library.

" How many versions of a module had been added.

18

If and when a module was analyzed, documented, instrumented, or

tested.

& Which users aad projects were actually using CAVS, and to what

degree.

Status displays for managers and programmers would reveal the current

state of program development for an entire project or for a single program.

How the tool was actually used could then be more accurately determined. Th

AVS should collect enough data about its own behavior to guide managers and

programmers in the most effective use of the tool.

The AVS could use its HISTORY information to SUGGEST courses of action

to on-line users. On-line users are already guided through a work cycle.

Program development also follows a predictable cycle of coding, analyzing,

testing, and documentation. The AVS could look at a module's status and

propose what actions should be done next.

SUGGEST and HISTORY would relieve experienced programmers of much of the

bookkeeping done during development and maintenance. Inexperienced pro-

grammers and new AVS users could become productive more quickly. If the

suggestions were accepted, the AVS could begin executing the function immedi-

ately or generate a job to execute the function in batch mode.

4.2 ENHANCED USER INTERFACE

Enhancements to the CAVS user interface can be categorized into

two classes:

1. Terminal-dependent enhancements - such as horizontal/vertical

scrolling, and multiple windows. These techniques are best

implemented on high-speed video terminals and could substantially

improve the usefulness of CAVS on those terminals.

2. CAVS-dependent enhancements - making all CAVS reports interactive

in P sense similar to the structured walkthrough. These tech-

niques would apply to interactive users of CAVS at any kind of

terminal.

19

Note that neither of these approaches excludes the other. They would comple-

ment each other for CAVS users at high-speed video terminals.

4.2.1 Scrolling

Interactive reports are generally limited to one screenful at a time -

80 characters by 24 lines. One way to overcome this size limitation is to

provide scrolling (horizontal and vertical) within the tool generating the

reports. The report format can still be too large to put on the screen all at

one time, but the interactive user can 'move' the screen to areas of interest.

This approach is limited to cursor-addressable video display devices operating

at a fairly high baud rate. CAVS currently does not support scrolling in any

of its reports. Instead it displays one screenful of information, and then

prompts the user to end the report, view the next screen of the report, or

display a related report (and later return to the current screen). The user

cannot back up and view the previous screen, but must end the report and start

from the beginning. Vertical scrolling (on suitable high-speed video termi-

nals) would be better. The user could simply scroll forward and backward as

desired in the current screen. Horizontal scrolling would also be useful for

a number of CAVS reports. For instance, the indentation of source code often

forces long source lines to wrap around, reducing the number of source lines

on the video screen. Note that CAVS could still generate interactive reports

without scrolling on low-speed or hard-copy terminals.

4.2.2 Multiple Windows

The next step in enhanced user interfaces consists of multiple windows

(report pages) on one video screen. User interfaces employing windows which

open, expand, contract, scroll, and disappear are fast becoming accepted.

Examples of systems which employ this concept are INTERLISP, SMALLTALK, the

Apple LISA system, VisiON, and a nuber of other new microcomputer software

products. The basic ideas seem to be:

1. Screen doesn't automatically scroll up because it never overfills.

2. One or more windows may be active at a time.

3. Windows are stacked and reappear at appropriate times.

20

4. User can move cursor around active window and point to parts of

it.

5. Part or all of the data displayed in a window may be cutout and

then pasted into something else.

6. Windows can be expanded or contracted by the user.

7. Windows can be scrolled horizontallyor vertically by the user.

8. A pointing device (mouse, light pen) replaces the need for a

keypad and greatly reduces the number of keyboard entries

required.

Scrolling and multiple windows are techniques which have been evolved

for microcomputer systems (which usually have a high-speed video terminal and

a low-speed printer). These techniques can be incorporated into CAVS for

enhancing its user interface on selected video terminals, without degrading

its user interface on other terminals.

4.2.3 Interactive CAVS Reports

In the approach currently used to provide interactive CAVS reports, the

user directs what is to be displayed next, and the natural structure of the

software is used to guide the user's choices. The structured walkthrough

function of CAVS is currently the best example, but other reports could be

handled in the same way. A significant advantage of this approach is that it

does not presume a sophisticated video terminal - the structured walkthrough

can be done from a hardcopy terminal. The availability of a video terminal

with user-controllable scrolling and windows is then a plus, making it

possible to view several interactive CAVS reports simultaneously.

4.3 EXPANDED WALKTHROUGH CAPABILITY

Use of CAVS with large project libraries has highlighted the following

problems:

1. A project library can contain a wealth of information about a

software system. Convenient access to this information, in the

order that the user interactively selects, is a serious problem.

21

* .- . .

2. The project library will usually contain information about a large

number of system-wide names. Not allowing the CAVS user to select

a specific one of these names in a specific program-ID is a

deficiency.

The following enhancements to make CAVS reports more qteractive would help to

solve these problems.

4.3.1 System Walkthrough

Calling tree reports for large systems quickly get out of hand,

even for batch reports. An interactive approach would be to allow the

user to walkthrough a calling tree, and to ask for more detailed information

about that part of the tree on the screen. Information should be made

available about the properties of formal parameters, their usage, and the text

of the statements they occur in. The same kinds of information should also be

available for global variables, and for files used in a program-ID. The

information currently included in the CAVS module documentation report should

also be available during an interactive system walkthrough. The user should

be able to 'expand' a program-ID in the system walkthrough and view its

internal perform-range structure as well as do a structured walkthrough within

it.

4.3.2 Source Text Report Enhancements

CAVS displays selected source text for the interactive user, either

during a structured walkthrough or as a specified statement in context (five

preceding and five following statements). A number of enhancements to these

(and related) modes of text display will increase the utility of CAVS for

interactive users:

1. Horizontal scrolling to overcome the line wrap problem.

2. Vertical scrolling for more continuity in displaying source.

3. 'Expanding' symbols by name to give one of several possible

reports.

22

4. String searching during the structured walkthrough for quick

access to statements of interest.

The following 'new' source text reports are based on experience in using the

current CAVS source text reports:

1. STRUCTURED WALKBACK - similar to structured walkthrough but in the

opposite direction. This report would be especially useful for

debugging and for increasing test coverage. While tracing

backwards in the source code, the report would provide access to

all information in the project library about global variables,

files, and entry points. To enhance the usefulness of the

structured walkback as a coverage assistance tool, testing history

daa for selected testcases could be displayed during the walk-

back. Note that this is an area where the ability to display

several reports on the screen in multiple windows would make an

outstanding contribution to the utility of CAVS.

2. PATH WALKTHROUGH/WALKBACK - similar to structured walkthrough/

walkback, but well suited for unstructured code. This report would

allow the interactive user to proceed through the code in a

branch-by-branch analysis. CAVS would maintain a history of the

branches taken to get to the current screen (allowing CAVS to

backtrack for the user), as well as the branches not followed.

Library-wide access to desired information and the ability to

"expand' PERFORM and CALL statements as in the structured walk-

through would be provided.

3. TRACE WALKTHROUGH/WALKBACK - similar to path walkthrough/walkback

but with branch selection controlled by reading the trace file for

a testcase. User controls for the amount of source to display

would be in the form of breakpoints, or user selection of

PROGRAM-IDs and perform ranges to display at the terminal. Note

that these are necessary to prevent a deluge of output to the

terminal and to control the speed of source text display.

23

4. SYMBOLIC WALKTHROUGH - an extension of path walkthroughs using

symbolic execution to provide the current values for symbols upon

user request at any point in the walkthrough. CAVS would essen-

tially act as the bookkeeper for all symbols encountered along the

current walkthrough. The user could then answer questions about

the current value of individual variables without having to back

up through the source text.

5. PSEUDOCODE WALKTHROUGH - pseudocode descriptions can be maintained

on the bame project library as the actual source. It could be

printed in hardcopy reports or displayed in the structured

walkthrough style. Note that this capability could also be used

as a design tool. This report would really shine as a documen-

tation and maintenance tool with a multiple window format because

the user could walkthrough the real source code in one window and

the psuedocode in another window (with other windows available for

accessing library wide information at the same time).

6. CONTEXT REPORT - this is a combination of the structured walk-

through and cross-reference report. It would consist of displaying

the context of the cross reference statements (the decision

structure which leads up to the statements in

the cross reference list). Scrolling with this display is also

needed, as well as the ability to expand statements (in the sense

of the structured walkthrough) which were left out.

4.4 INTEGRATE SOFTWARE LIFE CYCLE TOOLS IN THE AVS CONTEXT

Let's briefly forecast software life cycle technology in the AVS

environment according to the following features:

1. FUNCTIONS - the list of AVS functions can be expanded to include

editing, configuration control, management reporting, and incre-

mental change analysis.

2. USER INTERFACE - in order to prevent the AVS menu system (and

user's manual) from collapsing under its own weight, a set of

software life cycle utilities is identified. Each operates from a

24

menu, and utilizes an extension of the CAVS project library as a

central data base.

3. PERFORMANCE - emphasis is placed on maintaining current efficiency

while increasing functions performed and ease of use.

4.4.1 Editing

CAVS is a very powerful tool for reading structured source code at a

video terminal, but it does not include any way to modify the source as it is

being read. This is a significant limitation of an otherwise powerful tool.

We do not suggest incorporating an entire text-editor program into CAVS.

Source code should still be created and large changes made with the user's

favorite editor. But small changes for which it would be inconvenient to

check-out a whole source module should be possible directly in CAVS. Also,

some source-code editing functions may be found especially appropriate for

CAVS (copying large blocks of existing text might be one).

CAVS Statement Editing Functions

1. Statement insertion/deletion - note that this is not the same as

line insertion/deletion.

2. String search/replacement - the string search function would be

useful during source text reading also.

3. Cutting/prefixing/appending/pasting - similar to word processing

cut/paste buffers but more natural for working with structured

blocks of text.

4. Pending statement(s) - to note that a particular section of code

is not yet completed.

5. Cursor functions (video mode) - inserting/deleting characters at

the cursor, deleting words.

6. Cursor movement - end of statement, beginning of statement, scroll

up, scroll down, page forward/backward.

7. Copying - copying block of text from existing routines.

25

4.4.2 Configuration Control and Management Reporting

Configuration control and management is one of several directions in

which to steer CAVS evolution. Configuration control consists of:

1. Multiple version identification

2. Change control

3. Status reporting

CAVS emphasizes the importance of a project library which contains

source text, as well as interface information and testing history information,

so that meaningful interactive reports can be generated. Storing the same

source text outside CAVS is redundant and expensive, especially in large

software systems that exist in several versions. CAVS can ease the configur-

ation problem and save money for its users if it is made able to support

multiple versions. Note that this will provide not only multiple versions of

source text but also multiple versions of all displays, reports, and testing

histories.

The following is a suggested list of configuration control functions:

1. DIFFERENCES to automatically find the lines that are different in

the old and new versions of a COBOL routine. COBOL source text

differences (by section and by perform range) will be more concise

than those produced by general-purpose difference routines.

2. CHECK OUT/IN to coordinate changes to the same COBOL routine.

Allow the project manager to decide how many copies of the same

routine can be checked out at the same time. Specific job control

language may be put before and after modules as they are checked

out.

3. VERSIONS to produce complete source text listings as well as all

project library reports for ALL versions. Given an earlier and

derived version name, CAVS can produce the the differences between

the two (in terms of source line differences as well as project

library differences).

26

4. PROBLEM REPORTS for multiple versions can be maintained on the

project library.

Other management functions, to be provided by the host environment if

possible are:

0 Management reports.

0 Interfaces with other tools.

0 Limitation of read/write privileges to specific areas of a project

library.

* Support of concurrent updates to the same library.

0 Merging several new versions of the same routine.

0 Storing object(relocatables), execute(absolutes), job control

language, test data, and other user-defined data which is not

strictly source code.

Menus to Support Multiple Versions

The Functions menu in CAVS could be modified to have VERSION SELECTION

and VERSION DIFFERENCES submenus. In the following example they are items 14

and 15.

--FORTRAN FUNCTIONS -------- LIBRARY FUNCTIONS -------- OTHER FUNCTIONS--
1 - READ SOURCE 7 - STRUCTURED WALKTHROUGH 13- DEFINE REPORT FORMAT
2 - ERRORS/WARNINGS 8 - SHOW LIBRARY CONTENTS 14- VERSION SELECTION
3 - PRECOMPILE/INSTRMT 9 - SYSTEM REPORTS 15- VERSION DIFFERENCES
4 - MODULE REPORTS 10 - COVERAGE ANALYSIS 16- END OF CAVS SESSION
5 - SYMBOL REPORTS 11 - TRACE FILE REPORTS
6 - REFORMAT 12 - CHECK OUT SOURCE
--

NEW VERSION - (VAX) OLD VERSION - (BASE LINE)

The "new version" indicated at the bottom of the menu indicates the version

name to be associated with any new or modified source read in during the

current session. The submenus might appear as follows:

27

.-- VERSION SELECTION.----C URRENTLY -
0 - RETURN TO FUNCTION MENU
I - SELECT OID VERSION (WILDCARD PROMPT) BASELINE
2 - SPECIFY A NEW VERSION (NONE SPECIFIED)
3 - VERSION OVERVIEW

-VERSION DIFFERENCES ---------- CURRENTLY--L--
0 - RETURN TO FUNCTION MENU
I - SELECT VERSION A VAX

2 - SELECT VERSION B IBM
3 - TEXT DIFFERENCES
4 - CALL DIFFERENCES
5 - COMMON BLOCK DIFFERENCES
6 - COMDECK DIFFERENCES
7 - FILE DIFFERENCES
8 - TESTCASE DIFFERENCES

4.4.3 Incremental Change Analysis

Incremental change analysis means not having to reanalyze each

compilation unit that has changed, but only each modified statement.

1. Incorporate text editing features into CAVS.

2. Analyze changed lines only, rather than entire PROGRAM-IDs which

have changed.

28

5 SPECIAL COMMENTS

This section summarizes the knowledge gained during the CAYS development

(as vell as earlier AVS developments) sponsored by RADC and DMA. It is

intended to assist designers and implementers of AVS tools, as well as anyone

modifying or enhancing CAVS (or any of the other AVS tools discussed). The

table below summarizes the history and overall features of the AVS tools

developed:

OVERVIEW JAVS FAVS.0 FAVS.4 CAVS
-------------------------------------- --- ------------- -

When was the AVS completed ? 1 1975 1 1978 I 1980 1 1983 1

- -- -------------------------- ------------- -- -+ -- -
What was the approximate cost? I $200k I $120k 1 $ 70k I $500k I
- - ------------------------ --------------- --- -4
Number of initial installations? I 1 1 3 1 2 1 5 I
------------------------------- ------------------------- -+

Number of current installations? I 4 1-15 3-10 5 I
-- -- -------------------------- ------------- - ------

Language processed? JOVIAL FORTRAN I FORTRANI COBOL
I J3 I I II

----------------- - ------------- 4----
Number of dialects processed? 1 1 I 2 1 2 6 I

---------------------- 4------------4------------------------4- --------

Structured extensions processed? I none I DMATRAN I DMATRANI PSL I
-- -4 -- -------------

Data base extensions processed? Inone Inone Inone ISYS-20001II I DMS- 11001
----------------------------------- - 4

Batch/interactive/both batch I batch I batch I both

Written in JOVIAL RAN DMATRAN DMATRANI
J3 I D T I

Approximate number source lines 25k I 35k 35k 45k I

Real-world use of FAVS.0 and FAVS.4 has shown that AVS tools such as

these are valuable aids in software development. The major hindrance to more

*widespread use of these tools has been lack of coordinated and continuous

maintenance for the tools. This situation should improve for FAVS.4 and CAVS.

29

The Defense Mapping Agency (DMA) is currently maintaining FAVS.4, plans

to maintain CAVS, and plans to continue the maintenance for several years.

Maintenance directly relates to reliability, the most important feature

for these tools to have. The next most important features are what functions

they perform and how efficiently they perform them. When AVS tools are used

in large software development projects, it is essential that the tools

maintain a data base describing the total software system. This data base

will naturally be large and complex. Its contents are crucial in determining

the functions that can be performed and what it costs to perform them. The

next table briefly summarizes the data base contents of each AVS tool:

DATA BASE CONTENTS JAVS FAVS.O FAVS.4 CAVS
----------------------------- -4------------------
Detailed module tables yes I yes no no

t + ----------------- - ---- -+- -4
Source text I yes I yes I no yes

Testing history no no I no I yes I
---------------------- - ----------- - --------

Copy Text source NA no no yes
-------------------------- - ------- - -- -
Global name cross-reference no no I yes yes I

----------- -- ---- ------------

The chart above refers to the contents of the data base permanently

maintained by the tools. All of the tools construct detailed module tables

for the source code that is read in; JAVS and FAVS.O save them on the run-

to-run data base. FAVS.4 introduced the interface library concept, extracting

the global and interface information from the detailed module tables and

saving that rather than the much larger detailed information. A simple

analogy may help to illustrate this concept. Reading large amounts of source

text and extracting global and interface information is analogous to separa-

ting wheat from chaff. You end up with a big pile of chaff and a small pile

of wheat. Before the interface library concept, the AVS tools would mix the

two piles together at the end of a run. The interface library concept is

30

sot

simply to save the wheat and throw th4 chaff away. The chart below indicates

the major impact that this approach has on the cost of using the tool on large

software developments.

RESOURCE USAGE & SIZE CONSTRAINTS JAVS FAVS.0 FAVS.4 CAVS
------------- -- --- --------- ----

AVS time/compilation time 10-100 I 5-100 1 1.5-3 1 1-2 I

Library size/source size I 5 1 10 1 .3 I 1.5

Maximum modules per library I 250 1 250 Ino limitino limitl

Maximum statements per library I 5k-10k I 5k-10k I 500k 11OOk-200k

--

The tools which maintain a large and detailed data base become exponen-

tially more expensive to run on larger amounts of software. -he mean time

between failures on the host computer becomes the determining factor (as well

as the available computer budget) in how large a library can be built. By

introducing the interface library concept, FAVS.4 greatly increased its

usability in exactly those situations where it is of most value - large

software developments. CAVS extended the interface library concept to that of

the project library which contains all global and interface information as

well as the source code (but not detailed module tables) and testing history.

Retaining the source text in CAVS project libraries is essential because CAVS

operates in interactive mode. Interactive users want to see their source

code, not the statment numbers that refer to the source code.

The next most important feature of the AVS tools is their user inter-

face: how easy are they to use? The chart below summarizes the batch user

interfaces of the tools.

BATCH COMMAND PROPERTIES JAVS FAVS.0 FAVS.4 CAVS
--------------------------- 4 --------------
Report oriented/process oriented I processl report I report I report I

----- --------- ----------------
Report index generated by tool? no I yes I yes yes

-------------------- -------------

31

The essential lesson learned here is that batch users should tell the tool

what they want (in terms of reports), not the process or sequence of steps

required to produce the reports.

CAVS is the only one of the four AVS tools that supports interactive

use. CAVS provides batch commands for batch usage, and menus/help screens for

interactive use. CAVS menu coummands are also available for expert CAVS users.

The chart below summarizes the interactive interface properties.

INTERACTIVE INTERFACE PROPERTIES JAVS FAVS.O FAVS.4 CAVS

----------------------------- -+---

Menus/commands I none I none none both
-- ----
Number of menus I 0 I 0 I 0 I 35 I
------------------------~-- ------
Number of help screens I none I none none 200 I

Name selection(full name/wildcard) full I full I full both
----------------------- a---------------

The functions performed by the AVS tools are best indicated by the

reports which they produce and the analysis they support. Nine types of

reports, features, and analysis are distinguished:

REPORT/FEATURE/ANALYSIS DESCRIPTION
1. Library contents reports Reports which describe the permanent

data base

2. Source listing features Additional features of source code
listings

3. Detailed module reports Reports about individual compilation
units

4. System documentation Reports about the whole software system

5. Error/warning functions Additional static analysis features

6. Precompilation functions Source code transformations

7. Dynamic analysis functions Analysis of run-time behavior

8. Reformatting functions Readability/maintainability transfor-
mations

9. Selective report generation Reports about selected individual names

32

i

The table below summarizes the total number of reports/features/functions for

each AVS tool. The growth in the number of functions supported is evident by

comparing JAVS (the first AVS tool) to CAVS (the most current tool). JAVS had

22 total reports/features/functions, while CAVS has 75. Each of the nine

categories is elaborated in the charts which follow.

REPORTS/FEATURES/FUNCTIONS JAVS FAVS.0 FAVS.4 CAVS

Total library reports 2 2 2 8

Additional listing features I 1 2 9

Total detailed reports 4 1 6 7 1 13 I

Total system reports 4 7 8 17 I

Total error/warning features 1 0 1 4 1 4 1 7 1

Total precompilation functions 4 I1 1 6
------ --- --

Total dynamic analysis functions 4 2 2 6

Total reformatting functions 1 1 1 1

Total name selections 2 1 1 1 1 8

Total reports/features/functionsj 22 1 25 1 28 1 75 1

I3

33

• -.- ,*

LIBRARY CONTENTS REPORTS JAVS FAVS.O FAVS.4 CAVS
-- + --------------------
Modules/entry points Iyes I yes I yes I yes I

Commons/compools I no I no I no I yes I

Copy text/includes I NA I no I no I yes I

Entry points defined/not called Ino I no Ino Iyes I

Entry points called/not defined Ino no no yes

Testcases I no I no I no I yes I

Files I no I no I no I yes I

Current modules Iyes Iyes Iyes yes

Total library reportsl 2 1 2 1 2 1 8 1

SOURCE LISTING FUNCTIONS JAVS FAVS.O FAVS.4 CAVS
----------------------------------- + ------ 4------------------
Indent source I yes I Yes I yes Iyes I
- -------------------------------- I------------------------
Reconstructed/Original source Irecon Irecon I orig origII

----------------------- 4-------------------------------- ----
Internal procedure XEEF Ino Ino Ino I yes I
- -- 4-
List a range of statements I no I no I no I yes I
---------------------------- 4---4-----4----4----4----------

List a depth of statements I no Ino Ino Iyes I
- -------------------------- 4-------------------------

Expand internal procedure calls I no Ino I no I yes I
----------------------------------- -A - -------------- 4

Expand external procedure calls j no no no yes
-- ---------
Omit/expand nested code I no I no Ino Iyes I
- --- 4-

Access to other reports no no no yes
--- 4-----+-----

Additional listing featuresj 1 1 1 2 1 9 1

& 34

DETAILED DOCUMENTATION REPORTS JAVS FAVS .0 FAVS.4 CAVS
--------------------- --- ---- --- - -4

Picture report I yes no yes yes
----------------------- 4---+---4

Statement profile report I no yes I yes yes
------------------------------ --------------- --- --- 4

Reaching set report I yes yes I yes yes
+ -- ---------------- ----- -- +----4

Symbol properties report no I yes j yes yes
..---------- - ----------- - -- -

Symbol Xref report I yes I yes I yes yes
---------------------------------- i -------- ---

Symbol source report I no no I no yes
Labels Xref report I no I no I no yes

--------------------------------------- 4 -4----------- ------ 4

Labels source report I no no I no yes
--------------------- - ----- 4

Constants Xref report no no no yes
--- ---------

Constants Source report I no I no I no yes +
------------------------ ---------------------- 4-

Externals Xref report no yes yes yes I
------------------ - ------ --- 4

Externals source report I yes I yes I yes I yes
-------------- 4 - - ----------- ---

Module Documentation report no no no yes
F4-----------------------4.. ------

Total detailed reports i 4 1 6 1 7 1 13 I

35

SYSTEM DOCUMENTATION REPORTS JAVS FAVS.O FAVS.4 CAVS
-------------------------- ---------- i------- ------

Symbol Xref yes no Iyes I yes

Common/Compool Summary Ino Iyes I yes Iyes
--------------------------------- ------------------ 4

Common/Compool Matrix Ino I yes Iyes Iyes
------------------------ A------------------- ----------

Common/Compool Xref no Iyes I yes Iyes
----------------- ----------------------------- - ----

Common/Compool Source no no no yes
------------------- 4---4------------4---44 --------

Copy Text Summary NA no no yes V
------------------------ 4---------------4----4-----

Copy Text Matrix I NA Ino Ino Iyes
----------------------- ------ --------------- -------

Copy Text Xref INA no Ino Iyes
---------------------- 4----4 --------------- -------

Copy Text Source NA no no yes
-------------------------------- 4---------------- -------

File Summary Ino Ino Ino Iyes
--

File Matrix Ino Ino Ino Iyes
----------------------------- ------ q--------- --------

File Xref no no no yes
-- -------- 4

File Source no yes yes yes
-------------------------------------- 4----------
Entry Point Summary Iyes yes yes Iyes
----------------------- -------------------------- -4
Entry Point Bands Iyes Iyes Iyes Iyes
----------------------- ------------------------ - -- 4-

Entry Point Tree I yes I no I no I no
------------------------------- ------ i--------4-----4-
Entry Point Xref no Iyes Iyes Iyes
--------------------------------- ------------ - -- 4-

Entry Point Source Ino Ino Ino Iyes

--

Total system reports I 4 1 7 1 8 1 17

36

ERROR/WARNING FUNCTIONS JAVS FAVS.O FAVS.4 CAVS
- ---------------------- +----------------------------- 4----

Call Checking Ino Iyes Iyes Iyes I
----------------------- -------- --------------------

Graph Checking Ino Iyes I yes Iyes II
---------------------------- ------------------ 4----4----

Mode/Picture Checking Ino Iyes Iyes Iyes I
------------------------- 4.------------------------- --

Set/Use Checking Ino Iyes Iyes IyesI
--- 4 - ---

Data Flow Checking no Ino I no Iyes I
-- - - --- ---

Access to source of called routines no Ino I no IyesI
- ---- --------------- 4------------4-------------- 4-----4------

Access to symbol reports Ino Ino I no IyesI
------------------ i-----------------4- --------------- 4.- - ---

------------------------------------- 4- -------- i----- 4 - ---

Total error/warning featuresl 0 1 4 I 4 1 7 1
--------------------- 4-------------------------------4+

PRECOMPILATION FUNCTIONS JAVS FAVS.O FAVS.4 CAVS
------------------------------- 4 --------- +---------

Structured Dialect Precompilationi no Ino no yes
-------------------------- -------- ---- 4----4-

Control Flow Instrumentation Iyes yes Iyes I yesII
------------------------ ------------------- ---------- 4

Assertion Instrumentation I yes no Ino no I
------ --------------------- --- 4------ ------ I-----------4-----------

Trace Instrumentation yes no Ino Iyes I ?
--- ------- --

Timing Instrumentation Iyes Ino Ino Iyes I
-- --------- 4

File I/0 Instrumentation Ino Ino I no IyesI I

--- ---------

Check-out source code Ino Ino Ino Iyes I

Total precompilation functions I 4 1 1 I 1 6 1

37

DYNAMIC ANALYSIS FUNCTIONS JAVS FAVS.O FAVS.4 GAYS
--------------------------4----4----------- ------+--4

Control flow summary I yes I yes Iyes IyesI
--------------------------- 4----- 4------4---------- ------

Control flow counts I yes I yes Iyes Ino I
--------------------- --------- ---------- ------------------

Control flow source Iyes Ino no IyesI
----------------------------------- 4---------------- ----- 4-

Control flow history Ino Ino Ino IyesI
-------------------------- 4 --- 4-----------4 ------ 4--4-

Abort trace Ino no Ino IyesI
---------------------------- i-------------------------- --

Timing I yes no Ino IyesI
------------------------------ ----------------- ---- 4-

File 1/0 no Ino no Iyes I

Total dynamic analysis functionsl 4 1 2 1 2 1 6 1

REFORMATTING FUNCTIONS JAVS FAVS.O FAVS.4 GAVS
--------------------- --------------------------- ------- --- 4

Reformat source code yes no Jno Iyes
-- ----- - -- 4-
Restructure source code I no Iyes Iyes noI

------------------------------------4--------- -----4---4-

Total reformatting functions 1 1I 1 1 1 1

38

SELECTIVE REPORT GENERATION JAVS FAVS.O FAVS.4 CAVS
- 4 - -+------------ - -- -

By Module name I yes yes I yes I yes
------------------ i --------------------------------

By Entry Point name I yes no I no yes
------------------------- 4--------------------------- -------

By Symbol name no no I no yes
--------- ------------------- --------------------- --------
By Label name no no I no I yes

--- -- ----------------------------- --- 4----------------4- -------
By Constant name I no no I no yes

----- ------------------------------- ------- ---- ---------------------- 4--------

By Common/Compool name no no f no yes
------------------------ ------ --------------------- --- ---

By Copy text name no no I no I yes
--- --- ----- - ------------ 4---

By Filename I no no I no I yes
------------------------------------ --------- 4----------------------------

By Testcase name no no no yes

--

Total name selections i 2 1 1 1 1 8

39

MISSION
* Of

Rorm Air Development Center
RAV9C p-tan6 and execute,6 te~eatch, devetopment, te~t and
~zeected acquizition ptogqLan in 6uppo'r.t o6 Command, ContAot

* Communn~co.tionz and intettgence (C3!) activitie6. Technica~t
and engineeLing 6uppoxt within teas oj techniZcat competence
L6 ptoided to ESP P~og'wam O6ice,6 (PO.6) and otheL ESV
etement6. The~ p'r-ncipat technicat miZ6,Zon w~ea6 ate
cormnrninco.Lonz, etettomagnetic guidance and conttot, 6u)L-
veiilance o6 gtotnd and ae.'w6pace object6, inteL~gence d~ata
cottection and handting, in~mtoZon .6y.6tem tecknotogy,
iono.6phe'Ac yYtopagoation, h6otd .tate .6c.Zenceh, mictowave

py6c6and etect~onZc te2 La bitty, maintainabiity and
compatzbitity.

I

,..~, *.~4

