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Abstract

An analytical study of a technique for achieving high

Reynolds number similarity in a wind tunnel was conducted.

"- The technique under consideration required that the momen-

tum boundary layer be immersed in a layer of cryogenically

cooled gas so that boundary layer development would be

determined by the low temperature fluid properties. The

experimental technique was shown to be theoretically feas-

ible, with effective Reynolds number increased by as much

as a factor of seven or eight, provided that sufficiently

high mass rates of flow of cool gas could be provided.
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AN ANALYTICAL STUDY OF A

LOCALLY COOLED HIGH REYNOLDS NUMBER

SIMULATION TECHNIQUE

I. Introduction

Aerodynamic structures are often tested in wind tunnels

to predict their free flight performance. The aerodynamic

forces on a structure strongly depend on the Reynolds number,

so it is important that the free flight value of this para-

meter be matched as closely as possible by tunnel test con-

ditions. Due to the limited scale size of models that are

used in wind tunnel testing, however, this requirement can-

not always be properly met. Many free flight conditions of

interest have not been adequately simulated using current

techniques.

There is a desire to develop new procedures which

might remove some of the existing constraints on wind tun-

nel Reynolds numbers. The study of this paper is concerned

specifically with a proposal to simulate high Reynolds

number flight conditions by locally immersing the model

being tested in an envelope of cold fluid. Because the

Reynolds number increases significantly as temperature

decreases, it is hoped that such a technique could increase

the effective wind tunnel Reynolds number by as much as

an order of magnitude.

'9
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Background

Wind tunnel testing is baseu on the premise that

the fluid flow around a scale model of a structure will be

similar in some sense to a fluid flow around the full scale

structure itself. In the case where the fluid flow is

inviscid and incompressible, this premise would allow the

results of a tunnel test to be extended to an arbitrary

situation as a function of the scale of the model and of

the free stream velocity of the fluid.

Unfortunately, real fluids are neither inviscid nor

incompressible. This is a significant comnlication, since

compressibility and viscosity are dependent on the partic-

ular conditions for which they are being measured. Con-

sequently, it is not immediately apparent how results based

on the effects of viscosity and comppressibility in a wind

tunnel can be used to make predictions about the behavior

of a structure in the general case.

In order to gain insight into the question of how

wind tunnel test results can be extended to other situa-

tions, it is convenient to non-dimensionalize the equations

which describe the behavior of real fluids. When this is

done, two parameters appear to be of major significance

when the fluid flows around two geometrically similar

structures are to be compared.

The first of these parameters is the Reynolds number.

Denoted by Re, and determined from the relationship Re =

2

-
.
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'V, the Reynolds number is a measure of the ratio between

" the inertia force of the flow and the force which results

from viscous effects.

The second parameter is the Mach number, which is

determined from the relationship M = -. Commonly known

as the ratio of local velocity to local speed of sound, the

Mach number is a measure of the way in which a disturbance

in the flow field (an airfoil, for instance) may effect the

fluid flow upstream from the disturbance.

When the aerodynamic forces on a structure are non-

4dimensionalized with respect to dynamic pressure (q = JpV 2 )

and to some characteristic area, theoretical and empirical

results suggest that these non-dimensionalized forces are

functions primarily of the Reynolds and Mach numbers. There-

fore, the aerodynamic forces on a structure can be used to

predict the aerodynamic forces on a geometrically similar

structure if the Mach and Reynolds numbers for the two flow

situations are the same.

In principle, the behavior of an aerodynamic struc-

ture in free flight can be predicted from wind tunnel tests

on a scale model if the tunnel Mach number and Reynolds

number can be set equal to the free stream values of those

parameters.

This principle cannot often be applied in practice.

Wind tunnels are limited in the range of Mach and Reynolds

numbers over which tests can be conducted, and it is rarely

possible to simulate the free stream values of these two
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parameters simultaneously.

There are some flow situations of practical interest

where the dependence of aerodynamic forces on the Mach

number is negligible (when M = 0.3-0.5 or less, see ref 1).

In these cases, wind tunnel test results can be used to give

good predictions of free flight behavior if Reynolds number

similarity can be obtained in the wind tunnel.

Even in this case where Mach similarity is insignif-

icant there are substantial constraints on wind tunnel

testing.

In an attempt to simulate high Reynolds number con-

ditions, the wind tunnel experimentalist may try to adjust

the free stream tunnel velocity (V), the characteristic

length of the model (W), or the kinematic viscosity of

the fluid (v v/P).

The tunnel velocity is limited by the ability of the

tunnel to accelerate the flow. There is an upper limit

to the velocity that can be achieved in the test section of

a wind tunnel. Furthermore, high tunnel velocities result

in high test Mach numbers, so that compressibility effects

have a significant impact on the test results in spite of

the fact that compressibility may not be important in the

free fligh situation to be simulated.

The characteristic length of the model is obviously

limited by the size of the tunnel test section. Although

% large tunnels could be built, tremendous amounts of power

would be required to drive such a tunnel.

4



The kinematic viscosity has a rather strong dependence

on pressure and temperature. Kinematic viscosity decreases

with increased pressure or decreased temperature, so high

pressures or low temperatures can be used to obtain high

Reynolds number simulation in a wind tunnel.

The National Transonic Facility (NTF), currently being

constructed for NASA at Langley, Virginia, will combine

increased pressure and cryogenic temperatures in order to

simulate high Reynolds number flow (ref 2).

There are other techniques which can be used to sim-

ulate high Reynolds number flow. Since such flows are

generally characterized by turbulent boundary layers, tur-

bulence can be induced over the structure to be tested

(through use of roughness or "trip wires," for example; see

ref 3), thereby simulating high Reynolds number flow in an

otherwise low Reynolds number situation. Another tech-

nique involves testing several different size models with

similar geometries and attempting to extrapolate the

S.. results from these tests to appropriately sized structures.

Each of the techniques described above has drawbacks,

typically with respect to added expense of the test proced-
-.

.4, ure, added complexity of the scale model to be tested, or

theoretical difficulty in extending test results to the

free flight situation of interest. Therefore, a relatively

simple, low cost means of providing high Reynolds numberI simulation is clearly desirable.

On possibility for such a technique has been sug-

5
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* gested by W. Luchuk of the Air Force Arnold Engineering

Development Center (ref 4). Mr. Luchuk has proposed that

high Reynolds number simulation could be obtained locally by

injecting a cryogenic fluid to envelop the momentum boundary

layer.

Purpose

The purpose of this study is to analyze the potential

of a high Reynolds number simulation technique which accom-

plishes boundary layer cooling through the introduction of

a cool gas over the structure to be tested.

U ~In this paper, the major considerations that must go

into the development of a locally high Reynolds number

simulation technique are outlined and discussed. These

considerations are then applied to establish the important

physical parameters for such a technique and to make con-

clusions regarding the feasibility of the technique.

The flow situation of interest is illustrated in

fig 1. In particular, the case for flow over a flat

plate will be studied in detail.

The results of the analysis described above are

discussed at the end of this paper, and recommendations

for additional study are also included there.

* .'

.
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,< Figure 1. Development of' the Momentum Boundary Layer

ali Within a Layer of Cool Fluid
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., - II. Theory

The mathematical model which is used to describe the

behavior of a fluid is typically developed from an Eulerian,

or "Control Volume," point of view. From this point of view,

the laws of physics which require conservation of mass, momen-

tum, and energy of a fixed mass system are adapted to predict

behavior in and around a fixed region in space.

The Eulerian analogs to the fixed mass concepts of

conservation of mass, Newton's Second Law, and conservation

of energy are, respectively, the Continuity Equation, the

Momentum Equation, and the Energy Equation.

These equations are presented below in two forms.

In the first case, they are presented in tensorial form

so that they may be applied to any flow situation describ-

able in terms of an orthogonal coordinate system. The

principles which are applied to the case of a flat plate

can then be extended to apply to arbitrary shapes when

an appropriate coordinate system has been defined.

In the second case, the equations are presented in the

well known form for rectangular (Cartesian) coordinate

systems.

Appendix A to this report gives a detailed mathematical

derivation of the governing equations from a tensor analysis

point of view.

8
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The Continuity Equation

* The amount of mass contained within a control volume

.'may change with time. This change can be the result of a

change in the density of the mass contained within the

volume due to an influx of mass to the control volume. This

is expressed as

P-2 + p(V.V) = 0 (1)- Dt

In terms of Cartesian coordinates, with V = ul + v' + wR,

this is written

30 + u + v2 + + P (.x + Lv + 0)  =  o (2)
r+ ax 9y x a y az=

In the case where density can be assumed to be

constant, these equations reduce to

(v.V) = 0 (3)

au + v+ aw 0 (4)
ax ay az

The Momentum Equation

4! The momentum within a control volume can change with

time due to changes in properties in the control volume

V: caused by the transfer of momentum into the control volume



or due to the action of forces on the mass inside the volume.

In the case where the shear stresses acting on the

boundary of the control volume are linearly dependent on the

rate of deformation of the mass contained within the volume,

the momentum equation is given by

Dv = -Vp + V(XV.V) + Vo(Vv + grad V) + f (5)

Equation (5) is really a system of three scalar

equations, the Navier-Stokes equations, which are written

in Cartesian coordinates as

x-direction:
'V u 3u 3u 3u

P( + ur + v + wau) z x x

+ -L (23u - 2/ ( v + w))

ax 3u av, az 3 z

+ _r(TL + I,} + {L (w + 2u

y-direction:

(v + uav + va + waL) = y -
at 3.x +3y 3z 3

+ -y{(2.L - 2/3 3u +v +w (6)+7Y y ax +Dy z

+ -v w+ -L) + 3u + 11)}

z-direction:
V.: w w aw _

Q( + U + v~y + w) = z- z
at Dx ay +w 3 z az

+ ~-{u j(2'w 2/3 ( v + 2-+)w
a w au 9x 3y 3z

{ -LW + L)} + 3w (-Ly + 3z
S}

* '.° 10
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-' In the case where body forces can be neglected and

properties can be assumed constant, these equations become

Dv

p-t -Vp + viV 2V (7)

x-direction: au u(u a -u a2u 2u(U + u + vu - + -2U

at ax p a +'32 +~- +~ +

y-direction:

av + a av av) + 3a,2v 32 v 92v)
+ - + v-L v+-- + --

at. ax aw w~ 9w -z 7 7 777w w

z-direction: 
(8)

(-w + uw + Vw + -a-) + a 2 w + 32W + a2W

4.

The Energy Equation

The energy contained within a fixed region of space

may change with time due to the addition of mass or heat

to the control volume and due to work done on the control

volume. When this statement is expressed mathematically,

the resulting equation can be combined with the momentum

equation to yield the thermal energy equation

De -pV-v V-q + D (9)

For a perfect gas, and when viscous dissipation is

negligible, equation (9) reduces to the form

- . 11

24
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i DT D - (10)P T - Vt

Application of Fourier's Law and the assumption of

constant properties gives the familiar form

D ctV2 T (11)
'.

which is written in terms of Cartesian coordinates as

a- + u-T + + w K = ot(3x + 92T + -z (12)

S

21

'4

• %

".N

4,'.,12

" " , :4 -, ,' " -' ' '. . . . . . . . . . . . . . . . . . . . . . ..12.



III. Reynolds Similarity and Wind Tunnel Testing

From the presentation above it is clear that the

momentum equation is coupled to the energy equation since

the fluid properties are dependent on the thermodynamic

state of the fluid. In terms of its effect on wind tunnel

testing, it is this coupling which results in the require-

ment that tunnel values of Re and M should be simultaneously

set equal to their free flight values.

In many practical applications it is reasonable to

treat the fluid properties as essentially constant. In

this case the momentum equation is uncoupled from the

energy equation and the velocity profile of the fluid can

be obtained from the momentum equation alone. Since

aerodynamic forces on a structure are dependent on the

velocity profile of the fluid surrounding it, the aero-

dynamic forces will be independent of the properties of

the energy equation and will depend on the properties of

the momentum equation alone when fluid properties are

constant.

In order to study the properties of the momentum

equation it is convenient to express it in non-dimensional

* terms. To this end, reference values for each of the quan-

-' tities of interest are defined and non-dimensional expres-

sions for those quantities are defined by referring each

-' to its reference value.

13
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These non-dimesional terms are denoted with a super-

script cross (+) and are defined as

+ + l

t= t/(1/V p = (P-P.)/p V" x =x

v =7/v = V// 1 k =/ (13)

/ V+

Substituting for the dimensional quantities in

equation (5), the result is

o,. 2 DnV+  12x v L v.
0 + 00 + + 00 +  + +  JV++  +

S = - -V p + V( V.) + - V (+def+V + )

Dt + t2 Z 2

(1)

where def V +  V v + grad V +

Combining terms and simplifying gives the result

+Dv _++ (+ +++ + + +_+-V p + (/Re )V (X V v) + (1/Re)V •(w def )

(15)

where Re - z and Re = .

The quantity Re is the Reynolds number.
+ +

In the case of constant properties, p , , and

are all equal to unity, so the non-dimensional momentum

equation takes the form

DV+  +)+
+ (1/Re )V+(V+. + ) + (1/ReO)V+-(def+v) -V+

Dt (1()

If two flows have the same geometry (so that the

. ..-
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pressure gradient and boundary conditions are the same for

both) and if the assumption of constant properties a-plies

equally to the two, they will have the same solution to

equation (16) if they have the same value of Reynolds number.

*When a fluid in motion encounters a solid surface, the

fluid and the surface will exert forces on each other. The

magnitude of these forces is related to the development of

the boundary layer (the region in which the solid object

has a significant effect on the flow field). It is clear

from equation (16) that the development of the boundary

layer is dependent on the Reynolds number, so the shear

forces are dependent on Re as well. In particular, when

the shear stress, T, is non-dimensionalized in terms of

a friction coefficient, cf T/( p V), this coefficient is

a function of the Reynolds number (ref 1).

*- If two flows are geometrically similar and if they

* have the same Reynolds number, they will have the same

value of cf.

Wind tunnel testing is based on this concept of sim-

ilarity. A scale model of a structure can be placed in

a wind tunnel and values of cf as a function of Re can

be determined. These values of c f can then be applied to

predict the behavior of the full scale structure.

Unfortunately, the concept of Reynolds similarity

breaks down for high values of Re and simulation of hitch

' Reynolds numbers typically is not achieved. Chapter I

of thi., reporot has detailed some of the reasons for the
I,%.
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failure of this similarity concept and has suggested the

desirability of designing techniques to permit high Rey-

nolds number simulation.

To obtain high Reynolds numbers on sub-scale models,

attention has been focused on the possibility of varying

the quantity v (v= w/p) which appears in the definition

of Re. Since the value of v decreases with a decrease in

temperature for a gas, cooling techniques can be used to

provide high Reynolds number simulation.

The remainder of this paper is concerned with one

possible technique for the use of cooling.

If a cool gas can be introduced into the tunnel free

stream so that the structure being tested is enveloped

entirely by the cool fluid, the Reynolds number in the

vicinity of the structure will be significantly greater

than the Reynolds number based on properties of the tunnel

free stream fluid.

Results to be presented elsewhere in this paper

will suggest that the use of sufficiently cooled fluids

could increase the effective Reynolds number by a factor

of seven or eight.

The feasibility of using this technique of locally

high Reynolds number simulation will be discussed and

analyzed in the paragraphs that follow.

16
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IV. Development of a High Reynolds Number Simulation Technique

The high Reynolds number simulation technique which is

the subject of this study requires the immersion of the

structure being tested in an envelope of cool fluid. If

the momentum boundary layer develops entirely within the

cool fluid layer, the Reynolds number which determines the

non-dimensional force coefficient will depend on the prop-

erties of the cool fluid.

In particular, the ratio of Reynolds number based on

cool fluid properties to Reynolds number based on tunnel

fluid properties can be estimated by Re /Re. -v/v .c s s c

For cryogenic temperatures, the ratio vs/V c may be as

high as seven or eight (see Appendix D).

In order to take advantage of the potential for such

an increase in effective Reynolds number it is necessary to

study the ways in which the tunnel fluid may interact with

the cool fluid.

Three major fluid interactions most significantly

impact the development of a Reynolds number simulation tech-

nique involving the injection of a cooled gas. These

are momentum mixing, thermal mixing, and condensation/icing.

Momentum mixing will occur when fluids moving paral-

lel to each other have different velocities (see fig 2).

The shear stress created at the velocity discontinuity will

act to smooth the discontinuity and will result in the

development of a momentum mixing region.

17
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Thermal mixing occurs when a fluid in motion is

at separated into regions held at different temperatures (see

fig 3). The temperature discontinuity will create a thermal

S.' gradient and the consequent development of a thermal mixing

*region.

In the case where a cool fluid comes into contact with

atmospheric air, water vapor in the air may condense or

solidify. This is the problem of condensation/icing.

Each of these considerations is discussed in detail in

the paragraphs which follow.
-.

'4 Momentum Mixing

To determine the effect of a velocity discontinuity

between the cool fluid and the tunnel fluid it is con-

venient to study the flow situation of fig 2. Two fluids,

both of which have infinite extent in the y-direction,

meet at a point where their velocities are different. The

shear stress created at this discontinuity will act to

smooth the discontinuity and a momentum mixing region will

develop.

This flow situation is discussed in detail by

Schlichting (ref 1) and by Yih (ref 5). From ref 1,

the velocity profile in the mixing region is given by

u(y,t) x (U + [1) + f(U - U) (1/?b

(17)
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The quantity b which appears in equation 17 is

a measure of the size of the momentum mixing region, and

Schlichting gives

b = 3/ 2 (U1  _ U 2 )t (18)

where a is an empirical constant which depends on the

(molecular) mixing length and must be determined from

experiment.

The important conclusion to be drawn from equation

18 is the fact that the mixing region will grow with time.

The flow situation for which high Reynolds number

simulation is to be attempted is somewhat different from

the situation depicted in fig 2. This is because the

structure over which the cool fluid is to flow limits the

extent of the momentum mixing region.

Equation 18 suggests that if the cool fluid velocity

differs from the tunnel free stream velocity, momentum

mixing will eventually force the two velocities to be

equal in the case where the cool fluid is in the vicinity

of a solid boundary.

This equality of velocities is a steady-state

condition. The time required to reach steady-state is

not easily determined analytically, since such a determ-

ination would require advance knowledge of the values for

S, U1 , and U 2. Some or all of these values can only be

determined experimentally.

20



Nonetheless, it seems reasonable to expect that the

time to reach steady-state will be short. This is because

the height of the cool fluid layer above the solid boundary

will be very small (on the order of magnitude of the momen-

tum boundary layer height) so that it will be readily influ-

enced by the tunnel free stream.

The steady-state assumption should be confirmed exper-

imentally, but it will be made here in order to proceed with

the analysis of the proposed high Reynolds number sim-

ulation technique.

As a result of the discussion above, the following

result is indicated:

"In determining the parameters required for
successful high Reynolds number simulation,
the free stream velocity of the cool fluid
may be taken as equal to the free stream
velocity of the wind tunnel."

Thermal Mixing

The success of the high Reynolds number simulation

technique under consideration depends on the fact that

the kinematic viscosity of a gas decreases with decreasing

temperature. It is therefore important to insure that

the cool fluid stays cool and is not significantly heated

by the much warmer tunnel fluid.

The flow situation of interest is depicted in fig 3.

21
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Appendix B to this report contains a detailed analysis

of this situation and develops the solution for the temp-

erature distribution in the thermal mixing region.

-. Since the energy conducted at the boundary of the

K'.: thermal mixing region can be balanced by the convection

of fluid into the thermal mixing region, a steady-state

condition will occur in which the width of the mixing

region will not grow with time.

Under the assumptions of 1) steady-state; 2) the

4: temperature mixing region does not effect the velocity

field; and 3) gradients in the y-direction are much larger

than gradients in the x-direction, the temperature profile

in the thermal mixing region is given by

O(x,y) = terfc(y//4ax7V) (y > 0) (19)

O(x,y) = 1 - ±erfc(1y1/V'4&xiV) (y < 0) (20)

*, where 0 is a non-dimensional temperature difference defined
'F:-

t. - by e = (T - T)/(T - T.)

Of the assumptions used in developing these expressions,

the first is certainly reasonable, based on the argument

given above. The third assumption is just a restatement of

the "boundary layer assumption," and it seems almost self-

evident that the thermal mixing region will have a boundary

layer characterisitic to it.

The second assumption, however, is not quite so self-

evident. It should be noted that Yih (ref 5 ) makes a

22
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similar assumption in dealing with the temperature dis-

tribution created by a pre-heated jet.

If the temperature distribution in the thermal mixing

region were to disturb the velocity field, it would create

a situation where momentum mixing would occur in the free

stream. This mixing would eventually effect the develop-

ment of the momentum boundary layer and the validity of the

Reynolds number simulation technique would be question-

able.

Fortunately, results presented below suggest that the

size of the thermal mixing region is very small - on the

order of magnitude of the momentum boundary layer. It

seems reasonable to assume that such a small region will

not have a significant effect on the velocity field.

For the sake of establishing the width of the thermal

mixing region it is necessary to determine the distance

between the isotherms e = 1 and 0 = 0. However, as is

characteristic in boundary layer work, the solution for

e indicates that the thermal mixing region extends to

infinity in both directions. Therefore, we adopt the con-

vention that the width of the thermal mixing region, 2bt,

is given by the distance between the isotherms 0 = 0.99

and e = 0.01. If y = 0 is taken as the line of symmetry

between these isotherms, then bt is the distance from y = 0

to 0 = 0.99.

For the purpose of establishing a Reynolds number

simulation technique, the extent of the Thermal mixing

23
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region into the cool fluid must be studied. In terms of

the flow situation depicted in fig 3 this is the region

y < 0, so equation 20 yields

8(x,y) = 1 - Ierfc(ly//V7) = 0.99 (21)

From this, erfc(jyI//4axiV) = 0.02, which yields the

result y//4 x/V = -1.65. Since bt is given by the distance

from the curve y = 0 to the curve 0 = 0.99, it is clear that

Yt = -3.3/a-V (22)

Equation 22 does not apply exactly to flow over a

solid boundary. The fluid streamlines will be deflected

away from the boundary due to the action of viscous forces,

so the isotherm e = 0.99 will be deflected away from the

boundary as well. Therefore, equation 22 can be take- as

a conservative estimate for the extent of the thermal mixing

region into the cool fluid layer.

If the thermal mixing region extends into the mom-

entum boundary layer it will effect the boundary layer

development. A condition for accurate Reynolds simulation

is therefore

"Flow properties must be established to
guarantee that the thermal mixing region
does not extend into the momentum boundary
layer."

". 24



Condensation and Icin_

From the discussion of the preceding paragraphs it

is apparent that it is possible to create a flow situation

in which the fluid is kept separated into cool and warm

regions. If the warmer fluid contains water vapor (as

would be the case for an atmospheric wind tunnel) the

water vapor contained within the thermal mixing region can

be expected to cendense and/or solidify.

This presents a difficulty in attempting to simulate

high Aeynolds number through injection of a cool gas, since

the water and ice particles will be significantly more dense

than the surrounding fluid. The motion of these particles

will therefore be influenced by gravitational acceleration;

this possibility must be accounted for.

Water and ice must be prevented from entering the

boundary layer if accurate Reynolds number simulation is

to be obtained. Appendix C to this report presents a

method for determining the trajectory of a spherical

particle of liquid or ice. In the case where the free

stream fluid velocity is perpendicular to the gravita-

tional field the equation of motion for the sphere is

given by

u=V

v .g* + C D(3/8r>3v ifD* C(3/8r>)v 2

* = 0, otherwise (23)
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subject to the initial condition v(0) = 0. The component

velocities of the particle tangential and normal to the

free stream are denoted by u(t) and v(t), respectively;

p is the ratio of the free stream fluid density to the

density of the particle ( = p/pp ); and g" is the effective

acceleration of gravity, taking into account buoyant

forces. C is the coefficient of drag for a sphere, taken
D

to be

CD = 24/Re (O<Re<0.25)

= 0.102 2 - 0.894/ + 1.42 (0.25<Re<2000) (24)

CD = 0.405 (2000<Re<200,000)

where C = log 1 0 CD ,  = loglo Re, and Re is based on the

velocity component v.

With these relationships, equation 23 can be integ-

rated numerically to determine particle trajectory as a

function of free stream velocity and sphere diameter.

Table 1 gives the distance that a sphere with a diameter

of approximately l/ inch can be expected to fall as a

function of time. Larger particles will drop more quickly,

smaller ones will not fall as fast.

Since the mass fraction of water vapor in the atmosphere

is very small, any condensation which occurs in the tunnel

can be expected to take the form of a mist. Therefore,

large particles of water and ice (on the order of '/8 inch,

'or instance) will not form in the tunnel. Since the

S:,. 26
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TABLE 1

--- Distance Fallen by a Spherical Particle of Diameter = 0.01 ft

Time (sec) Distance (ft)

0.005 0.0004

0.01 O.0016

0.015 0.0036

0.02 0.0064

0.025 0.010

0.03 0.014

0.035 0.020

0.04 0.026

0.045 0.032

0.05 0.040

0.06 0.058

0.07 0.078

0.08 0.10

'- 0.09 0.13

0.1 0.16
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results presented in Table 1 and in Appendix C indicate

that even relatively large particles will not effect the

momentum boundary layer for reasonable values of the free

stream tunnel velocity, it is clear that any water vapor

mist will be insignificant, as well.

Of course, it is also possible to align a model to

be tested in a wind tunnel in such a way as to prevent ice

and water from falling towards the boundary layer (i.e.,

the model could be mounted sideways). In some cases for

which the flow geometry is not as simple as the one dis-

cussed above, this may be the only way to prevent water

and ice from effecting the Reynolds simulation technique.

The conclusion of this discussion on condensation and

icing is therefore

"Condensation and icing must be prevented
from effecting the momentum boundary layer
development either by guaranteeing that
fluid free stream velocity is large enough
to sweep moisture away from the region of
concern, or by choosing an appropriate
orientation for the model."

Other Considerations

It 1,s clear that a primary consideration in the

.-7ev elopment of n succesful 'ynolds number simul'ation

technique is the nee,,.;,tv to prevei _ ix n<- betw ,n tm-
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which will effect mixing most significantly.

Three additional considerations may impact mixin:,,

as well. If the cool fluid is not the same as the warm

fluid, diffusion will occur between the two fluids. There-

fore, it is necessary to select fluids which are "similar

enough" (air and n.itrogen, for example) to minimize the

effect of this diffusion.

The static pressure of the two fluids must be the

same in the region of interest. This is not expected to

be a significant problem for the technique under consid-

eration, since the cool fluid will be injected through

some type of nozzle. When the flow through the nozzle is

subsonic, the fluid leaving the nozzle will have a static

pressure ejual to the static pressure of the tunnel fluid.

The last consideration is the development of density

gradients. Gravity will pull a more dense fluid down

into a less dense fluid, and, in general, the cool fluid

will be more dense than the boundary layer. In the case

of an attempt to simulate boundary layer development on

the top surface of some object, the density gradient

should not be a significant concern since the cool fluid

will be below the warm fluid. Across the bottom surface,

the density gradient will be significant unless the inertia

. of the fluid is sufficient to overwhelm the effect of the

gravitational force (i.e., when Gr/pe 2 << 1). ln most

other cases the model to be examined will have to be

" "" 29
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V. High Reynolds Number Simulation: the Flat Plate

This section considers in detail Reynolds number

simulation through injection of a cool gas for the case

of a flat plate.

The flow situation of interest is illustrated in fig

4. A fluid with uniform velocity, but separated into

layers of cool and warm temperature, approaches the leading

edge of a flat plate located at position x = 0. The

x-axis is aligned with the interface between the two tem-

perature regions and is located at a height h above the

flat plate. The momentum boundary layer thickness at a

point x is denoted by 6, and 2bt gives the width of the

thermal mixing region. Yt and Ym are respectively the

y-coordinate of the lower boundary of the thermal mixing

region (the curve 6 = 0.99) and the ordinate of the momen-

tum boundary layer thickness. Both of Yt and Ym are func-

tions of x.

The point at which Yt = ym has been denoted by

Xcrit, it is at this location that the thermal mixing

region will begin to effect the development of the momen-

tum boundary layer.

T is the temperature of the flat plate, and forW

the purpose of this study it is assumed that .o heat trans-

fer is taking place at the plate. Therefore, T isw

assumed equal to T (or to the adiabatic wall temperature

for the case of high speed flow).
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It has been established in previous chapters that

a necessary condition for successful Reynolds number sim-

ulation prohibits the thermal mixing region from entering

the momentum boundary layer.

For a flat plate of length t, this condition requires

that x > t.crit

For laminar flow, Schlichting (ref 1 ) gives the

boundary layer height, 6, as

6 = (25)

In the coordinate reference frame defined by fig 4, this

results in the relationship Ym = -h + 6. It has already

been established that Yt = -3.3-xTV . The abscissa for

which Yt y m is Xcrit, so

-3.3/ TV-/i = -h + 5.0 /V-Xcrit (26)0crit00ci

where the values of a and v are determined at T

Solving equation 26 for Xcrit yields the result

Xcrit = (h/L1) 2  (27)

where L is defined by L1 = 5.04TN + 3.3/ 7-v. The

condition x > Z then forces the resultcrit

(h/Le) > (28)

d%'
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! mn

"-'.'-'which, as a constraint on h, is written as

h > LlVT (29)

~A similar condition can be derived for the case of

turbulent flow by defining the parameter Lt" For turbulent
L flow over a flat plate, Holman (ref 6) gives

4A

o .37 v -V x - (30)

-A.,

.This value for 6 is substituted into the expression Ym

-h + 6 and y m is equated to yt as above. As before, this

ubueyields the result

Xcrit = (h/Lt)2 
(31)

3/ 0where L t is defined by L t = 3.3V-/7 + 0.37 V-xcrit.
Applying the constraint xcrit > t and defining Lt in
terms of the length Z (rather than x yields the

Xit -h/L~)2c(31

pplcondition

',.: ,h VT,/ (32 )

-p..

40. t

~Equations 29 and 32 are the mathematical expressions

trms of the requirement that the thermal mixing region may not

..... extend into the momentum boundary layer. There are, how-
ever, additional constraints on the value of h.

-34
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One apparent constraint on h is the requirement that

h > 6, to guarantee that the momentum boundary layer is

contained within the cool fluid. This condition is auto-

matically satisfied if h > LVT, since LVZ > 6 in all cases.

Another constraint on h is related to the mass rate of

flow of the cool fluid, rh. The mass rate of flow is

directly proportional to the cross-sectional area across

which the fluid moves. For the case of the flat plate,

this cross sectional area is given by hxw, where w is

the width of the plate. Therefore,

W PcV h (33)

where p c is the density of the cool fluid.

Since it has been established above that h > LIe,

equation 33 can be cast as a constraint on

* > P V L/T (34)W C

Therefore, given the value of p c it is possible to

determine the required minimum value of .

If the cool fluid can be treated as an ideal gas,

then c can be determined from T and pc. It has

already been shown that pc must equal the static pressure

(ps) of the warm fluid. Therefore, it is assumed that pc =

Ps, and then p5 can be determined from the properties of

as s
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the warm fluid.

If the flow of the warm fluid can be assumed to be

isentropic, the following algorithm can be used to determine
. - "

1) Given V., Tt, and pt guess p.

2) Determine q flupVd 2 .

o-3) Let p5 =t q

)IForm the ratio (p he and apply the

isentropic relationships to determine

the ratio (T /T )st
a) Guess a value for y.

b) Solve Ts = Tt(p /pt)(Yl)/Y

c) Determine Y' = y(T
d) If y' = y then stop, otherwise y y'.

Repeat steps b through d.

5) Determine ps = Ps/(RT).

6) If ps' = Py then stop. Otherwise,

l.e.t = Ps and iterate steps 2

through 6.

In many cases, the assumption that ps = Pt will

be reasonably accurate (see Appendix D), so it may not

be necessary to employ the algorithm defined above in

order to obtain quick estimates for fluid properties.

Once p5 has been determined, the value of pc can

be found from the ideal gas law. Since V is assumed

equal to the free stream tunnel velocity, it is possible

to calculate the required mass rate of flow of the cool

36
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fluid from equation 34.

A final constraint on the value of h involves the

concern over possible condensation and icing. In the worst

case (assuming, again, that there is no momentum mixing

occurring) ice or water may form beginning at the point

where the two layers of fluid are allowed to exchange energy.

In the notation given in fig 4 this is the point (x,y) = (0,0).

A spherical particle formed at location (0,0) and

moving with velocity V. in the x-direction will traverse

the length of the plate in a period of time Z/V. The

equations of motion established in Appendix C to this report

can be used to determine the distance that a particle of

given diameter will fall in the time period Z/Vm. The

height of the cool fluid layer can then be selected to

insure that the particle will not fall into the boundary

layer.

In practice, it is probably easiest to select h and

ib based on the criteria given in equations 29 or 32 and

34 and then to check and see if this height is sufficient

-S to prevent water and ice from falling into the boundary

.. layer. If not, h and fii may be adjusted accordingly.

The results presented above may be simplified some-

what if cruder estimates for the values of the important

parameters are acceptable.

From the definition of L., it is apparent that L VT

~ 26o since a v for most gases. Therefore, the con-

37
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straint on h can be expressed approximately as

h > 26 (35)

and the constraint on the mass rate of flow becomes

> 2p V 5 (36)

Ice or water should not effect the boundary layer

development if the condensation does not enter the boun-

dary layer. Since h - 26, this requires that the distance

a solid or liquid particle may fall, yp, should be less

than h/2. If viscous forces on the particle are neglec-

ted, its equation of motion can be approximated by

yp 2gt
2  (37)

The time t is given by t/V., and g 32 ft/sec 2 .

.4 In this case, equation 37 becomes

-(38..)

The constraint on yp is given by yp < h/2, so

16(Z/v) 2 < -L VT, or

32(t/V )2 < LZ4-T (39)

4.
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which can be written in terms of 6 as

16(//v )2 < 6 (40)

For turbulent flows, the momentum boundary layer

thickness is generally much greater than the depth of the

thermal mixing region, so Lt / - 6. In this case, the

constraints on h and r can be approximated by

h > 6 (41)

- > P V j (42)W C c

Direct application of equations 41 and 42 would

result in the constraint yp < 0, which is clearly unaccept-

able. It would be convenient to develop a relationship

similar to equation 39 for the case of turbulent flows.

It can be argued that the high energy characteristic of

turbulent flows will tend to overwhelm the effects of

condensation in the boundary layer, so some penetration

of the momentum boundary layer by water or ice may be

tolerated. Guided by the form of equation 39, the con-

straint on y is again chosen to be y < h/2 to yield

32 32(t/V") 2 < L VT (43)

In summary, the constraints which determine the

necessary parametric values for successful Reynolds number

39
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simulation are:

1 . h > /

2. >

3. 32 (./V. )2 < Lf

-~ Some results regarding the parameter L which appears

in each of these expressions are developed in Appendix-

to this report.

J, 0



VI. A Proposed Experimental Design

For the purpose of verifying some aspects of the
theoretical development presented in this study, th

experimental apparatus depicted in fig 5 has been desined

and built with the assistance of the AFIT shon.

Thc apparatus is basically a thick flat plate made

of aluminum. An ellipsoidal nose of pleximlas is desicned

to fit on the leading edge of the plate, the cool fluid

is to be injected through this nose and across the plate.

The plate is one inch thick and is constructed from

two one-half inch thick sheets of aluminum which are

bolted together. Three small channels lead from a mani-

fold located near the leading edge of the plate to open-

ings at the trailing edge so that coolant may be fed to

the inside of the plate.

The necessity of these cooling channels is demon-

strated by a lumped-capacity analysis of the plate. In

a lumped-capacity analysis, the temperature of the alum-

inum is assumed to be uniform and its dependence on time

is given by

T - TVpV.

To- T = exp{-(hs/qc V)t} (44)

where To is the initial temperature of the plate and

T is the temperature of the free stream fluid around the

41
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plate, V is the volume of the plate and S is its surfac, -

area, h is the convective heat transfer coefficient, and

q and c are the density and specific heat, respectively,
p

of the plate.

Equation 44 is a good approximation for T(t) when
hV.

the Biot number, Bi -- is much less than one. For a

flat plate with thickness a, the Biot number is <iven by

Bi =ha2k"

The thermal conductivity of aluminum can be taken

to be 240 W/m-K and the value of the heat transfer coef-

ficient can be obtained from the empirical relationship

N Nu 0.0296 Re4 / P'/3 for turbwi"ent flow (ref 6).
k x

a
For the plate under consideration, t = 2 ft, and

ka, the thermal conductivity of air, can be taken to be

0.03 W/m-K.

With these values, and for h evaluated at x = C,

the value of Bi can be obtained as a function of fret

stream fluid velocity. In the present cse, 0.0015 < ?d

< 0.0168 for 15 m/sec < V < 305 m/sec, so a lu!ipoed cai-

acity analysis is justified.

Denoting by t the quantity (pc V/hf) found in

equation 44, the time to reach steady-state t rnve .ro-iture

can be chosen (by convention) to be ft . on lB>' lee-

ity range noted above, this yields ((0 see > ' .

These values indicate an unacceptAby ,m- ,', , "

or thr establishment of steady-s tate at> . . '

this reason (and because it has been ns;''i .1

'3
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is no heat transfer at the plate) it is necessary to

provide a means of cooling the plate.

The width of the plate is one foot so ' be

tested in the AFIT 14-inch wind tunnel. Ten static pres-

sure taps are located 4.5 in from one side of the plate and

are evenly spaced down its length. Five copper-constantan

thermocouples are situated 4.5 in from the other side of

*the plate.

The plexiglas nose is designed to have a uniformly

varying radius of curvature so that the fluid moving over

it will not experience an abrupt change in radius of

curvature as it reaches the leading edge of the plate. The

equation for the nose is given by (Z)) + () = 1 with

a = 1.25 in, b = 0.5 in, and n = 2.5. The nose is 13 in wide

and has a 0.5 in hole drilled through it. Cold nitrogen

can be fed to this channel as either a liquid or as a gas.

A slot of 0.03 in is cut at the top of the channel

at the shoulder point of the ellipsoid (see fig5 ). The

top of the nose is cut smoothly to meet the slot, and is

designed to help turn the nitrogen so that it will flow

across the plate and parallel to the tunnel free stream.

The nose is designed with a slot that fits a groove

on the leading edge of the aluminum plate. This allows

the possibility of testing a variety of different nozzle

designs by simply interchanging plexiglas nooes.

Cryogenic nitrogen is chosen for use as the cool

fluid due to its similarity to atmospheric air (i.e.,

44
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atmospheric air is approximately 78% nitrogen). As

noted before, the nitrogen can be introduced into the

nose as either a liquid or a gas; the choice of phase is

dependent on the desired values for T and ih.C

Use of gaseous nitrogen allows control over the

pressure inside the nozzle, and therefore if can be easily

controlled. A disadvantage to the use of gaseous nit-

rogen, however, is the difficulty in controlling and mon-

itoring its temperature.

The use of liquid nitrogen is constrained by a limited

ability to control !n - the mass rate of flow will be prim-

arily dependent on the rate of evaporation of the nitrogen

within the nozzle. This rate can be controlled to a lim-

ited degree by providing a means of heating the plexiglas

nose.

Liquid nitrogen could also be boiled externally, and

then fed to the nose as a gas. This external boiling

would all-w greater control over 1, and Tc could be con-

trolled by providing sufficient insulation for the fluid.

For the purpose of studying the theoretical pred-

ictions of this paper there is an additional advantage to

the use of liquid nitrogen. Since the temperature inside

the nozzle will be the boiling temperature of nitrogen

(~ 140 R) and since the expansion through the nozzle will

be isenthalpic (a Joule-Thomson expansion), the temverature

of the gas leaving the nozzle will be known.

Measurement of the flow properties present2 a hail-
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lenge because of the very low temperatures involved.

Dynamic pressure and temperature must be measured simul-

taneously in order to determine the velocity profile in

the boundary layer. The dynamic pressure, q, is equal to

2 
, and the temperature is required to evaluate p. Tem-

perature readings are also required in order to compare

the predicted extent of the thermal mixing region with

,easured data.

For accurate measurements with reasonable response

time, hot wire or hot film anemometers may be used. It

should be noted that hot wire (film) probes are calibrated

for a particular temperature; if they are not calibrated

at T a correction must be made for this. This is dis-
c

cussed in some detail in ref 7, and ref 8 gives a method

for usinF hot wire anemometers to measure both temperature

and dynamic pressure under very controlled conditions.

For a quick check on the predicitions made in this

paper it may suffice to measure q with a pitot probe and

to take total temperature readings with a thermocouple.

If the flow speed is not too high, the total temperature

will be an adequate approximation to the static temperature

of the fluid.

Care must be taken at the beginning of the test run

to insure that the surface of the plate does not ice -

the nitrogen must be swept quickly across the plate to

displace the air before water vapor in the air can con-

dense.
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This difficulty can be eliminated altogether if warm

nitrogen is used to sweep the atmospheric air from the

surface of the plate before the cool nitrogen is introduced.

U The analyses contained in Appendices D and E to this

report indicate that very high mass rates of flow for cool

nitrogen are required for high Reynolds number simulation.

- The experimental apparatus described above will not be able

to handle those requirements, due primarily to the small

size of the nozzle through which the nitrogen is being

injected.

Nonetheless, this apparatus can be used to provide

preliminary verification of certain aspects of the theor-

etical development given in this paper. In particular,

experimental data is required to more accurately determine

the extent of the thermal mixing region, the effect of any

momentum mixing which may occur, and the impact (if any)

of condensation or icing on momentum boundary layer

development.

%7
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VII. Conclusions and Recommendations

This paper has analyzed the potential for high Rey-

nolds number simulation in a wind tunnel through use of a

cool gas to envelop the momentum boundary layer. If this

technique can be used, effective Reynolds number simu-

lation can theoretically be increased by a factor of seven

or eight.

To be successful, the flow of the warm tunnel air

must not irterfere with the locally cool fluid flow. For

the case of a flat plate, it has been shown that this

condition will be met when:

1. h > L/VT

2. ffi/w > p CoVL

3. 32(//V.)2 < LVT

The conditions defined above are based in part on

certain assumptions - in particular, that the cool fluid

free stream velocity is equal to the tunnel free stream

velocity, and that condensation and icing are not sig-

nificant concerns if the condensation does not penetrate

too far into the boundary layer.

Under these circumstances, high Reynolds number sim-

ulation can theoretically be achieved if the cons~rain+

1 - 3 noted above are satisfied.

In practice, the required value of C for hih he'-
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nolds numer simulation will be very large (on the order of

0.5 to 1.0 lb m/sec for the example discussed in this paper).

Therefore, it may not be a simple matter to apply the theor-

etical constraints to a situation of interest.

Recommendations for Further Study

Further study in the following areas will add signif-

icantly to the development of a successful high Reynolds

number simulation technique:

1. The experimental apparatus discussed in Chapter

VI should be used to verify the assumptions noted above.

2. The development which has been presented for the

case of a flat plate should be extended to structures of

arbitrary shape.

3. Various means of injecting the cool fluid in

order to provide the mass rates of flow required for

successful high Reynolds number simulation should be

investigated.
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Appendix A. The Governing Equations for Viscous Fluid Flow

The purpose of this appendix is to develop in detail

the equations presented in Chapter II which model the behav-

ior of viscous fluids.

.- .~The Continuity Equation

4 ., --

The mass contained in a control volume, Q, at any

time, t, is equal to the volume of the region Q multiplied

by the average density, (t), of the mass contained within

Q at that time. In general, mass may be transported across

the boundary of the control volume, 9Q. The excess of

- the mass entering the region over the mass leaving the region

must remain stored within Q.

The rate of mass transfer at some point on 3Q is

given by (pV n)* x (As), where As is an element of surface

area on 32, Vn is the component of the fluid velocity per-

pendicular to the element As, and (V"" is the average
Jn

value of taken over As. For convention, QV is taken

as positive going into Q, and negative otherwise.

If no mass is created within Q, the mass contained

within the region at time t+At must be equal to the mass

stored at time t plus the net influx of mass into the

region over the time At. Mathematically, this can be

expressed as

52
.,N

=<',. "~ .,""



(t+At) x Vol(Q) = (t) x Vol(P) + (pVn)* x Area(aQ) × At

(A.1)

Dividing through by At, rearranging, and taking the limit as

4 At 0, this becomes

x Vol(Q) z (PVn)* x Area(aQ) (A.2)
atn

As Vol(Q) + dVol so Area(3Q) + ds, and average properties

taken over the volume Q approach the average values taken

over aQ. Furthermore, pV can be rewritten as -(pv-n), where
n

f is taken to be the outward pointing normal associated with

ds. A fundamentil result from the calculus of vectors and

tensors yields p.fi ds = V.pV dVol (ref 9). Applying these

results to equation A.2 gives

- - (V.pV) (A-3)at

This is the Continuity Equation, and it is more

frequently written as

- + (V.pV) = 0, or equivalently asat

Dp + Q(V.V) = 0 (A 4)
Dt

In many applications, it is reasonable to take q

as essentially constant, in which case i is identically

zero and the Continuity Equation reduces to

53
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(v.v) = 0 (A.5

The Momentum Equation

The momentum contained within a fixed region in space

(Q) will change with time due to the addition of mass to Q

and due to forces which act on the mass contained in the

control volume. Considering the limiting case as Voi(PQ) + 0

this can be expressed mathematically as

(pV)(t+At) dVol = pV(t) dVol + (PVV n) ds At + (7 ds) At

+ (pT dVol) At (A.6)

where f denotes the body force per unit mass actiri, on the

fluid contained within Q and a is the force due to stress

acting on the surface Q. It is clear that o depends on

the state of stress at ds as well as on the orientation of

N the elemental surface area. This dependence is expressed

as o = o.f, where is the stress tensor (ref 10 ).

Noting that ovV = - pvv-', dividing through the
n

equation above by At, and taking the limit yields

d' t ) - OvVVf ds + o.i ds + Pf dVol (A.7)

*[[['[. *At equilibrium, a)plicatIon of the law of oon ,r v-it 1

of ang]ular momen tum dmon-?stral es that, vm1:1tr" r!. C

* * .. . . .



vv is the outer product of a vector with itself, v V 1:

also symmetric, and so o-n ds V o dVol and pv v *n cc

V-(pV ) dVol. The term 7-(QvV) can be expanded a-

(V-pV)V + p(7.V7).' The continuity equation g;Iver V-,)'=

- , so the equation above reduces to

V(.'v() + p(7vv) = V.O + of
-t "

Expanding the first term on the left side of this acatlen

and simplifying yields

+ 7vv) = V.a + pT, which is equivalent to
DvD7 v.0 + pt (A.9)

Equation A.9 is Cauchy's equation of motion. The

Navier-Stokes equations are developed from equation A.9

by determining the relationship between the stress tensor

and the rate of deformation of the fluid contained within

Q. It is convenient to separate the stress tensor into

components perpendicular to aQ (pressure) and tano-ential

to aQ (shear stress). Since pressure is taken ow Iotn.

over SQ for 2 sufficiently small, we can wrl 7.. -T + T,

where T is the identity tensor.

If the fluid is assumed to bo ?>ewton' owi,,1-- ,:,eflr

4 10Note tha t V-71:1 (7v) Iw n mm unlss

(Oordi nat' system is A17>. , minera] lnt it:

V. V

|. .-
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of stress are linearly dependent on the rates of deforiation

of the fluid. It can be shown (refs I and11 ) that this

relationship is given by T = \(V.V)I + J(Vv + grad v).

Substituting this expression for T into equation A.9

and making use of the identity V-aT = Va (a is a scalar)

results in the Navier-Stokes equations:

Dv Vp + V(XV-V) + V'u(VV + grad V) + PT (.i10)PDt-

As a consequence of Stokes' Hypothesis (ref 12), the

parameters ' and A are assumed related by the equation

3X f 2 u = 0.

If the coefficient of viscosity, ii, is assumed con-

stant, and if the function v is twice continuously differ-

entiable so that the order of differentiation may be inter-

changed (resulting in the identity V-grad v = V(V.V) ),

then equation A.10 reduces to

Dt

In the case of incompressible flow, th 'nti ,av

Equation gives V-v = 0, and whon body f527; > .

1 V2 V.V / (V.V)7, ,xce't. Ia. ' "

a vsters.
Alternately, V2v ( v-) -

f.7-



ted, the Momentum Equation takes the form

Dv

Dv -Vp + 07 2 V (A.12)

The Energy Equation

The energy contained within a fixed region in space

(Q) will change with time due to addition of mass to tie

control volume, heat added to the control volume, and work

done on the control volume. Considering the limiting case

as Vol(Q) + 0, this is expressed as

pE(t+At) dVol pE(t) dVol + (7 .v)At ds + qfYvAt ds

+ qn At ds + (pVE)n At ds (A.13)

where E is the energy per unit mass and qn is the component

of heat flux perpendicular to ds and directed into Q. By

noting that F : o*, qn -q'fl, and (pvE) = -qVE'fl, this
n

becomes

oE(t+At) dVol = pE(t) dVol + (o--v)-fAt ds + qfYvAt is

- q.iAt (is - pVE-nfAt ds (A.14)

Applying the identity a.ai ds = 7-a dVol !'or any

vector a, dividing through by At, and taking the 1iit al

At + 0, the energy equation takes the form

"' 5



*7'

L(pE) V-(o-v) +fv- V-- V.pvE (A 15)

Applying the vector identity V7ca c(V-7) + a°Vc

to the last term of this equation, expanding the derivative

on the left, and noting that 9P = -(V-pqr) from continuity,3t

the energy equation takes the form

DEp---= V.(5.v) + pT.V - q-q (A.16)

This is the total energy equation. In the case

where changes in potential and cio:eI,-al ,en cr-y c-n he

neglected, E can be taken to be (e + 7.7) where e is

the internal energy per unit mass and v-v Is the kinetic

energy per unit mass.

When the momentum equation (eqn A.9) is dotted with

the velocity vector, the result is

DV-
p '-'-v =V.a-v + pfv(A.17)

When this is subtracted from the total energy equation

(making use of the identity V.(a.v) V.a-v + O:Vv),

." the result is the thermal energy equation:

D- V- (A.18)

Slubstitution of the expression for o civcn earlier

"@1



results in the following form of the thermal energy aquation:

| De
De = - pV-- V.q + (A.1 1)

D x(v7) 2  + 2uj(£ji2 + F222 + C33) + 4o( 12  + F23 + 3 2 )

where the c's are the components of the rate of strain tensor

(see ref 1 and 10). 4 represents the dissipation of energy

due to viscous effects; in many practical applications it

is assumed to be negligible.

In terms of enthalpy (h e + p/P), and when viscous

dissipation is negligible, the thermal energy equation

becomes

Ph -. (A.20)
')Pt Dt-

For a perfect gas, Dh c DT. If q is linearly depen-"- p

dent on the gradient of temperature, the thermal energy

.equation takes the form

ocDT = 2 + V.(kVT) (q -kT)

Qp D Dt \ 12

For the case of constant properties and pr,sure, this

reduces to the familiar form

.... DT2PT = V 2 T (a k/o ) (A.22)
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Appendix B. The Thermal Mixing Region

Consider the flow situation depicted in figure B.1.

A fluid is moving in the x-ccordinate direction with velocity

V . The fluid below the x-axis is initially at temper-

ature T and the fluid above the x-axis is held at T.
c O

Diffusion of enthalpy (or temperature, for the constant

property case) is prohibited until the fluid reaches the

position x = 0.

At this point, a temperature mixing region will begin

to develop and grow until the diffusion (conduction) of

4 energy is balanced by convection. This balance is the con-

.- dition for steady-state.

The extent of the temperature mixing region must be

determined. Clearly, the width of the mixing region, 2b,

can be expected to grow with increased distance from the

point where mixing begins. As a first cut approximation,

one might expect isotherms as plotted in the x-y plane to

have the form y = kx (straight lines). As the mixing

region grows in the downstream direction, however, the

heat flux at an isotherm will decrease. This suggests

that the rate of growth of the temperature mixing region

should decrease with increased distance from the initial

point of mixing. A more appropriate relationship for

isotherms might therefore be assumed as y = kx(1/n)

For the constant property case, the energy equation

is equation A.22:
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T< <Th 2b

T= Tc

Figure B.1. Development of the Thermal Mixing Region

66



26 .%V

DT = cV 2 T (B.1)
". ", Dt"

* .

* a°

which is expanded in terms of two-dimensional Cartesiar

coordinates as

3T + U2-T + VD T  
a
2 T + 2T(='.%y ug - (-T-T + T-y2 (B.2)

The following assumptions will be used in reducina

equation B.2:

a) steady-state conditions exist, so that _T = 0.

b) The momentum (velocity) field is unaffected by

the temperature mixing region, so that u = V

and v = 0.

c) Gradients in the y-direction are much larger than
-: a 82 T

gradients in the x-direction so that -x2 is neg-

'. ligible compared to 7 (the "boundary layer

5-'. assumption").

-4 Under these conditions, equation B.2 becomes

KT a32T(B 3
:-1.-: x Vo " y )(B.3)

.4..

It is generally convenient to non-dimensionalize the

variable of interest in equations such as B.3, and there-

4.' fore a non-dimensional temperature difference, 0, is

- defined as
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T -T
S= (B.4)

T- T
cC O

and equation B.3 becomes

D_ 0 O t (B .5)

The boundary conditions which apply to the steady-

state temperature field are:

for y > 0, T(O,y) = T

for y < 0, T(O,y) = Tc

as y + , T(x,y) + T (B.6)
400

as y + - , T(x,y) Tc

T(x,0 ) = T(x,O-) = T(Tc + T)

Under the transformation to the non-dimensional var-

able 0 these conditions become:

for y > 0, O(O,y) = 0

for y < 0, 6(0,y) = 1

as y + , 0(x,y) 4 0 (B.7)

as y + -0, O(x,y) - I

O 0(x,°+) O(x,O-) 2

The problem described by figure B.1 is therefore

6defined by equation B.5 and boundary conditions B.7 Two
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possible methods of solution are convenient for this prob-

lem: the use of Laplace transforms on the x-variable to

obtain an ordinary differential equation in the Laplace

domain, or the determination of a similarity transformation

(x,y) - (n) to conveyt equation B.5 to an ordinary differen-

tial equation in q. Both of these methods are examined

below.

The Laplace Transform Method

Use of the Laplace transform in this case is moti v-"V.

ated by the fact that the energy equation............

ian, 72 T. Th exister' ot' nXhus L x L.

tables of Laplace transforms and inverse Laplace tr n,.

suggests that a solution of the transformed, ordiir;

differential equation will be readily invertilIe, rf -

ting in a closed-form solution in the or-iginal (x,.)

space.

Denoting by 9 the Laplace transform of 6 (and -

forming on the variable x), then

, esx(x,y) dx (. 8)
0

Applying the transformation to equat i Pn B.5 an d

boundary conditions B.7 yelds 11 , 1 w ), ordiniry

differential equation and associated boundary ondi+ ions:

...--. 4



for y > O: =

as y -+ + 0

D(s,0 ) = 1i12s)

2D
for y < 0: sD = v-T ) + 1

00 y
as y + + 1/s

9(s,O- = 11(2s)

The solution for the case y > 0 must be established sep-

arately from the solution for the case y < 0 due to the

fact that 6(x,y) has different initial conditions on the

variable x for these two cases. However, the condition
,+

6(s, ) = O(s,O-) assures continuity of the solution for

all values of y.

For y > 0, the solution to the second order, linear

differential equation has the general form

D(sy) = Aj(s)exp(y//s V7-j) + Bj(s)exp(-y/vsVj-O) (B.10)

The condition for convergence as y + requires that

At(s) 0, and the condition on 9(s, ) requires B1 (s)

1/(2s). Therefore,

D(s,y) = {1/(2s)}exp(-y/!sV- ) (y > 0) (B.11)

For the case y < 0, the homegeneous solution is

as given in (B.10), above, and a particular solution is

P (s,y) 1/s. The general solution for this case is then
P

65

. - .. . - ,-.- 0. . " ..



q (s,y) 1/.9 + A2 (s)exp(y/v§TV7_c) + B2(s) exp( -y/ s %,i))(B. 12)

Here, the condition for con'vergence as y -- requires

B2 (s) =0. The condition on (s,0_) requires A2 (s)

-11(2s). Therefore,

q(s,y) =11s - {1/(2s)}exp(-yI/V-sWV7Ma (y < 0) (F-13)

4- The inverse Laplace transforms of these functions are

(ref 13) :

6(x,y) =1 - -2erfc( I y /4.ax/V9 (y < 0) (B.15)

where erfc(x) =1 -erf(x) and erf(x) is given by

erf(x) 7- ~fexp(-w2) dw (.6

Determination of a Similarity Transformation

Avl noted earlier, it seems reasonable to expect

isotherms to be plotted in the (x,y) plane as y = kx(n)

4. Tn such a case it is possible to reduce the partial differ-

ential equation in x and y to an ordinary differential

> equation in terms of a similarity transformration (x,y)
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T1. To determine the appropriate functional relat' ons hj.

between riand (x,y), the solution form is assumed to be

ba b

Using primes (Te m to denote differentiation with re ,opep

to rl, we have

96 e 96 9n - 6' a
5x Tr Tx x
96 _ 76 91 6y ' b -  (1.18)

y y y

2 e D ( ' T ) D = - b2 2 b2

Ty n 9 y -- r-- 6' -=-

Substituting these expressions into equation B.5 yields

_(ct/V.,)b 
2  a V)it( / -I

a13 ,ax 1 y 326? + n6'( (B.19)
x y y

Multiplying this expression by (-x) and simplifying yields

' (a-)(X(a/V ) )n e , + (x)(bX(//) /V,)

a ya yy (B.20)

Inspection of equation B.20 suggests a similarity

transformation of the form nj y 2 i(xiV), in which case

equation B.5 reduces to the ordinary differential equation

4nle" + (2 + n )R' = 0 (T) I y 2 / (1x/7 )) (.21)

'%7

9
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There is, however, a somewhat ,oro conv(,o.- , nt (and

more conventional) choice for ri. If b e c1ho-en 4qual to

unity, then the last term on the ri-ht hand s,_Id of equation

B.19 is zero. The remaining term on the right hand side of

the equation must have (ax/V,)/y' equal to nP for self-

similarity. Since b (the power of y) has already been

chosen to be one, p must equal -2.

An additional simplification occurs if r12 is chosen

to be (ay) 2 /(ax/V) (i.e. n= +(ay)/-axV , with the factor

(a) absorbed into the non-dimensional variable). By the

construction of r, a and c must be set equal to -: so that

= ±y//4/axV. In this case, equation B.20 reduces to

U-O

6" + 26l' 0 (H ±y/ 4otx v_) (B.22)

The solution to equation B.22 has the form & = A + Terf(n).

Application of the boundary conditions (B.7) again yields

equations B.14 and B.15 as the required solution to the

differential equation B.5.

.-p
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Appendix C. Condensation and I" In-
a,

The equation of motion for a particlc m:oving :itL

respect to a fluid may be obtained by dter:xln:7 }I

forces which act on the particle and apol) 1 0 eon's

Second Law.

In general, three forces will act on uco a %.rt :e

a buoyant force, equal in ianitude to the wei.ht o t,

/ displaced fluid; a rravitational force, equal i v "a rL to

to the weight of the particle; and a viscous drag force,

0 which depends on the geometry of the particle under con-

sideration and is directed to oppose the velocity of the

particle relative to the fluid.

If the vector representing the acceleration due to

gravity is assumed to be parallel to the y-axis, these

forces can be modelled by:

Buoyant force: (Qf Vol X g)^

Gravitational force: -(o Y Vol x (C.)
p

Viscous Drag: -{CD( 0v .7 )Alv
± r r r

where the subscripts f and p refer to ,roperif,,e of the

fluid and the narticle, respectiv(nv ; l "i s the vol ume

of the particle and A is its frontal area; v is th,

veloci1ty of the jaricle relativo n .h, fW -, n ^,

a oi t v c tor aligned, wit 'h V; an 1 i tie no- .
Ic

t onal coef fi cient., of dprag baloa- nr. fr:-nnl Ir' .

ac



The value of C is dependent on the g eometry of the

particle and on the Reynolds number of the particle with

respect to the fluid.

If the particle can be approximated as a sphere then

CD as a function of Re can be determined from the plot foun.

on page 17 of ref 1. For the purpose of integrating the

equation of motion for the particle it is most convenient

to establish an empirical functional relationship between

CD and Re.

Stoke's approximation gives CD = 24/Re for very low

Reynolds numbers, and C is approximately constant for the

ran e 2000 < Re < 200,000 (CD = 0.405). In the interme-

diate range, 0.25 < Re < 2000, the data suggests a poly-

nomial relationship between looi 0 CD and log10 Re.

Therefore, relationships of the form

C A 4 + BI + C[2 + D< + F

F 2< =F[ + G + H

loc- 1

10o R

are assumed, and a least-squares curve can fe C ltted to

the dart ,resented in ref 1. The r.esult.,s of these,

.2.C?1 -O14O .15T 0.88F- 4i' .'

- . 0 2 2 
- 0.894F + 1.-42

701



Table C.1 compares the values of' C fro,:, 1 ."Ar

those obtained using, the quadratic and quartie C 2 Do

approximations given above. In both cases, a~e ~

the accepted value arid the approximation is very r0

in three per cent in most cases).

For the situation under consideration here, e 1,C

be evaluated using the magnitude of v r Wit h th is r 7 aj r'_y

shiip between v r and C DP the equation of' motion for a sTrre'

can be numerically inoegrated to obtain v (t) and a--a-'ir to

determine the position vector, r(t).

Let the velocity of the particle be denoted by'j-

=u(t)^ + v(t) (note that v-(t) is not the relative zj Iu c) +

between the particle and the fluid). If the spherica-,l ,-ar-

ticle is assumed 6o have been formed instantaneously a' t

t = 0, then v(0) = V., where 7 is the vectur represet'Itin
00

the fluid velocity. For the case where the free stre~:-

* velocit,, is perpendicular to the gravitational acme] eratiDI.

vector, V0 = VO T.

A qualitative argument establishes the fact. that

* - u( t) V" under these cond' ti ins. Since thc- Ii a7 force

denr (-)-, the rel atye velocity between the ipartic'L. and

the flu Ld, t here c*dr he no viscolis dra:- oii the rt

* ~ ~ ~ .t .T crvitt~n il and buoyant f'or-es- co fo

0

7o1t s
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.4- t to show that, for V = , there can be no v--;. rcnuit

" -to the vector v~r

Furthermore, this yields the result that ^ = +3, and

- since the spherical particle is expected to fall under the

influence of gravity, vr = -j.

Therefore, for the case under consideration the

- equations of motion are given by
,"

u(t) - V
P x Vol x ' = (pf -Qp) x Vol X g

pf

+- C ]Pfv 2 A) (C.5)

v(O) = 0

The volume of a sphere is given by 4/3r 3 , and its
2

frontal area is 7r . Using these relationships in the

equation above and dividing both sides by Pp x Vol yields

the following result:

u(t) - V

= (^-1)g + 0D(3/Sr)Qv (C.6)

v(O) 0 o

where i is defined by P = Pf/p" It, is also conveni ent

to define the I rameter " to be c-* = (a-i). A -ood

approximation to thl1 s value,, ' 32.1 ft/ne 2

When the accleration Ic, ti o qlpt ,,ye 1 rvvi fr v nn

force (") io bnlanc,] Irth viccouc drag force, Ie,-

4--. v .- ..- -. -, .- .' - -. 4 ". -. .-- .-. -. .. . -. .



S.

spherical particle will fall at a constant velocity for

all time from that point on. This possibility mus t be

accounted for before attemptin, a numerIcal solution to

equation C.6. For this purpose, the condition '7 0 if

CD(3/8r)&v 2 > " is added to equation C.6.

Several types of numeric al schemes were used to

integrate equation C .6. her. these schemes were cos!cared

it was determined that u simrQe forward d'ff'erencinr tecn-

nique gave sufficient accuracy in its results. The for-

ward difference equations employed in this alg orithm are:

v(t+At) = v(t) + At(CD(3/8r) v 2  
- 32.1), if

CD(3/8r) v2 < 32.1

v(t+At) = 0, otherwise (C.7)

v(0) = 0

For the purposes of this study, the fluid properties

were taken to be those of nitrogen at -280 F and 1 atm

pressure and the value of p was chosen to be the density

of water at 32 F.

The numerical integration was performed on a Hewlett-

Packard model 9845 desktop computer using a program written

in BASIC. The results of the numerical integration for

some value; of r rnd At are presented in the ebles which

Co low.

7/,

- -
"
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Table C.2.
Results of the Numerical Integration of Equation C.7'.

At =0.1 sec

t (sec)[ Distance Travelled (ft)

2r=0.05 ft 2r=0.01 ft 2r=0.005 ft

0.1 0.16 0.16 0.16
0.2 0.64 0.64 0.64

-. 0.3 1.4 1.4 1.4
0.4 2.5 2.4 2.3
0.5 3.9 3.7 3.4
0.6 5.6 5.1 "'.5
0.7 7.6 6.6 5.7
0.8 9.7 8.2 6.9
0.9 12 9.8 8.1
1 .0 15 11 9.4

Table C-3.
Results of the N.,um erical Intcgration of Equation C.7.

At = 0.01 sec

t (see) Distance Travelled (ft)

2r=0.05 ft 2r=0.01 ft

0.01 0.0016 0.0016
0.02 0.0064 0.0064
0.03 0.014 0.014
0.04 0.026 0.026
0.05 0.040 0.040
0.06 0.058 0.058
0.07 0.079 0.078
0.08 0.10 0.10
0.09 0.13 0.13
0.10 0.16 0.16



Appendix D. Property Values and Sample Calculations

In order to determine the values for the various par-

ameters which have been shown to be important in thisi Rey-

nolds number simulation technique (e.g., Re, L), it is

necessary to obtain various property values as functions

of pressure and temperature. In many cases, these values

can be read from tables (see, for example refs 14 and 15).

For convenience, expressions which can be used to evaluate

"p many of these properties are summarized below.

Density

From the ideal gas law, the value for density can

be determined from p= _D_ where R is the gas constant forbe dterinedfro p=RT'

the particular gas.

The value of R is determined from R = R/M, where R

is the universal gas constant (1545.43 (ft-lbf/R-lbm mole))

and M is the molecular weight of the gas. For air, R

1716 ft 2/R-sec 2 and for nitrogen, R 1775 ft 2/R-sec 2.

Viscosity

The coefficient of viscosity, i, is not strongly

dependent on pressure. An empirical relationship between

76



and T is given by Sutherland's law to within ±2% when

T is within prescribed limits. The relationship is

_ = (T )3/2 To + S
1o T0  T +S .1)

For nitrogen: ioe = 3.473x10 - sluv/ft-sec, To = 491.6 R,

S = 192 R, and 180 DL < T < 2700 R.

For air: o = 3.584 x i0 - slur,/ft-sec, To = 491.6 B,

S = 199 R, and 300 R < T < 3420 R.

The value for the kinematic viscosity, v, can be

-A determined from the relationship v =;/p.

Thermal Conductivity

A Sutherland's law relationship also exists for the

coefficient of thermal conductivity, k.

I k 3 T /2 To +Q (.2? k T =  (.o ) (D.2)
k0  To T +S

• For nitrogen: ko 0.0140B/h-ft-R, To = 491.6 P,

S S 300 R, and 260 R < T < 2160 R.

For air: k0 z 0135 B/h-ft-B, To 491.6 iL,

- ".S = 350 R, and 300 R < T < 1800 R.

The. value for thermal diffusjvity, a, can be derived

from cy k/Qe
-P

77
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Sample Calculation

In order to illustrate the use of the techniques out-

lined in the paper to simulate high Reynolds number flow,

a sample calculation is carried out below:

It is desired to simulate Re = 1x10 7 on a flat plate

two feet long and one foot wide. The tunnel total temper-

ature is approximately 540 R, and total pressure (for the

tunnel air) is about 1 atm (2117 lbf/ft2).

Liquid nitrogen is used as the cool fluid, so its

properties are evaluated at T c  180 R. From ref 14,

Uc = 4.611xI0 -6 lb m/sec-ft 1.432xi0 7 slug/sec-ft

k = 5.460x10 - 8 B/h-ft-Rc

At a pressure of 1 atm, the density of nitrogen is

0.2173 lbm/ft 3 ; this value can be used to determine the

required V .

Re = p V Zj = 1x10 7  so
Sc. c (0.3)

The quantity pct/c is approximately 9.42x104, so

the required velocity is V 106 ft/sec.

Chapter V outlines the procedure for determinin, u,

from V, Tt. and pt

The density of the tunnel air, o is assumed equal

-, 1 to 2 .3 x10-3 slugs/ft 3 at T = 540 R.
s

-. ,',78



-I V 2 f
q = p V = 2(2.3x10-

3 )(106) 2  12.92 lb /ft

Ps Pt - q = 2117 - 12.92 2104 lbf/ft (D.4)

PS/pt 0.994

For air at low temperatures, y = 1.4, and the ratio

(y-1)/y 0.286. The isentropic relations give

T = 0.998 Tt = Tt = 540 R (D.5)

and -y( T  = 540) !- 7 = 1.4, so T. 540 R.J.S S

The value of p ' is found from the ideal gas law.

Ps = /s Ts 2104/(1716 x 540) 2.27x10 - slugs/ft3

s (D.6)

Since P PS PS can be taken as 2104 lbf/ft2 , and

therefore p. Ps 2104 lbf/ft2 .

It is now possible to determine the values vc and a .

C Pc / c T = 2104/(1775 x 180) = 6.58xi0 -3 slugs/ft3

v = /c = 1.432x0-7 /6.58xI0-= 2.176xI0 -
5 ft 2 ,'s, c

C (D.7)

'.te k/cp = 5.46x10-3 /(6.58x10-xO.255)

3.254 lb -ft 2 /slug-hr = 0.101 ft2 /hr

= 2.807xi0 -5 ft 2 /sec
S.,

where the value of c has been taken as 0.255 B/lb -K.
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With these values for a and v c, it is possible to

determine the value of the parameter L. Since the boundary

layer is expected to be turbulent for Re = iX10 7, the

value to be calculated is L 3.3 + 0.37 _ _

.. 7 -- /2.807xo1 7/06 5 .1 46x10- ft/2

/,o =~ 23/1o_ 1.23 f '
11/

This gives Lt = 2.262x10 2 ft 2. The constraint on

h requires h > L v, and L / 0.032 ft, so

h > 0.032 ft (D.8)

To determine the required mass rate of flow, the

applicable constraint is i /w > pcV Ltv7, so

I/w > 6.58xI0-3 x 106 x 0.032 = 2.23x10-2slugs/ft-sec

(F.9)

For the plate under consideration, w = 1 ft, so

, > 2.23xI0 2  slu,-s/sec = 0.719 lb /sec (.10

Vol;

if condensation or 1cui is exoected to be r roble.,

the vslu, £/V shouli be calculated inci then used to see

if condensation w.i11 e' Fec t 1.i boundary ], f\er.

For th h -xerciso, £/7 0.0? see. A o-,r ad ir-



'.. ticle with a diameter of 0.01 ft ( about '/8 in) will fall

approximately 0.006 ft (0.07 in) in this time. For the case

under consideration, h >> 0.006 ft, so condensation and icino

are not expected to effect the Reynolds simulation.

The value for the Reynolds num,,ber can be deterrnined 'ro-

the flow properties which have been established above.

Re = V £/v c  =(106)(2)/2.176x10 
5  

= 9.74x106 (D.11)

%c

This is very close to the desired value of he = 1x10 7

It is irntructive to calculate the value of Re, the

Reynolds number based on properties of the tunnel air. It

has already been established that ps =2.2>10-3slugs/ft'

- and vj, is found to be 3.854x0 slugs/sec-ft. Therefore,

S4

v 1.698xI0 - ft 2/sec, and

-e Vt/v (106)(2)/1 .698x10-4 1.25x106 (D.12)

V Fa thi S

V 4,ro,:o this" t,., ratio Pe /Fe can be found to be 7.8.

: The coolin: technique described in this paper has therefore

roulted in an Increase n eff-ctivo keonolds, nun; ,ber neirl,V -°

an order of ma nitlud.

-. n-
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Apnendix F. The Parameter L

The parameter L which appears in the stater:ent, of'

constraints developed in Chapter V contains all of' the inform-

ation regarding the temperature dependency of those con-

straints.

This temperature dependency can be made explicit

" by applying the Sutherland's law equations presented in

Appendix D along with the ideal gas law.

From the ideal gas law,

T po T p, (.i

Vwhere To is taken as 491.6 R, Po = 1 atm, and po po/RTo.

If vo is defined to be oo/po, then Sutherland's law

" .." g i v e s

(_4)+/2 (i) ( F)
"o To T + S p

A similar expression can be developed for the therm'al

d!ffusivity, a. If c is assumed constant, and for no
p

k o o c ' ', result is

2' _ = ((I/ ifio+ )(QL%) (a. 3)
5/2 T + S, p"

v, Th; values fr 3, 2', and -are iven n A T- dx I -.
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,-. ..- In the case where the tunnel pressure, , , r,'f'r"

. the same as atmospheric pressure, the quantity :-,' is

nearly unity. With this assumption, and r. ,

of L, the temperature dependence of L .

L T 5/0-0 +qx / cT+
7V 0 2 +01<-~~ + J

5/4 ±70 2
it To T +S''

0 cT

From equations F.4 and 1.5 it is a 1r'r." L

an increasing function of temperature, as ] " .

ins function of free stream tunnel velcit ' ' t , -

teristics are illustrated in the firur's h a

.<;

0° ,.
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