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( Abstract

. \
. \
. " An analytical study of a technique for achieving high

Reynolds number similarity in a wind tunnel was conducted.

The technique under consideration required that the momen-

tum boundary layer be immersed in a layer of cryogenically
. cooled gas so that boundary layer development would be

: i determined by the low temperature fluid properties. The
%v experimental technique was shown to be theoretically feas-

ible, with effective Reynolds number increased by as much ﬁ

v

as a factor of seven or eight, provided that sufficiently

’ ;5*)\,;':‘;' S

high mass rates of flow of cool gas could be provided.
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*’2 ' AN ANALYTICAL STUDY OF A
E?? ' LOCALLY COOLED HIGH REYNOLDS NUMBER
t' ' SIMULATION TECHNIQUE
;3235
-1 I. Introduction
E? Aerodynamic structures are often tested in wind tunnels
{g to predict their free flight performance. The aerodynamic
" forces on a structure strongly depend on the Reynolds number,
é. so it is important that the free flight value of this para-
o meter be matched as closely as possible by tunnel test con-
= ditions. Due to the limited scale size of models that are
‘Ei used in wind tunnel testing, however, this requirement can-
;it not always be properly met. Many free flight conditions of
interest have not been adequately simulated using current
techniques.
There is a desire to develop new procedures which
might remove some of the existing constraints on wind tun-
nel Reynolds numbers. The study of this paper is concerned
specifically with a proposal to simulate high Reynolds
:; number flight conditions by locally immersing the model
Eés being tested in an envelope of cold fluid. Because the
%é Reynolds number increases significantly as temperature
- decreases, it is hoped that such a technique could increase
gﬁ the effective wind tunnel Reynolds number by as much as
ﬁ; an order of magnitude.
TS ORI
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o Background

<o

o

{ .

o Wind tunnel testing is baseua on the premise that

hI

-}2 the fluid flow around a scale model of a structure will be
J',.

:f similar in some sense to a fluid flow around the full scale
: structure itself. 1In the case where the fluid flow is

.

3- inviscid and incompressible, this premise would allow the
‘f results of a tunnel test to be extended to an arbitrary

X situation as a function of the scale of the model and of
;2 the free stream velocity of the fluid.

<,

52 Unfortunately, real fluids are neither inviscid nor
f; incompressible. This is a significant comnlication, since
o

wf compressibility and viscosity are dependent on the partic-
e

-\ ular conditions for which they are being measured. Con-

! . . . .

3 sequently, it is not immediately apparent how results based
3 on the effects of viscosity and comppressibility in a wind
:ﬁ tunnel can be used to make predictions about the behavior
a of a structure in the general case.

N In order to gain insight into the question of how

-~

?: wind tunnel test results can be extended to other situa-
- tions, it 1s convenient to non-dimensionalize the equations
£

3 which describe the behavior of real fluids. When this is
§: done, two parameters appear to be of major significance

‘ﬂ when the fluid flows around two geometrically similar

s

- structures are to be compared.

X

_R The first of these parameters is the Reynolds number.
_a Denoted by Re, and determined from the relationship Re =
A

2

N7 2

L

n\'
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9%£, the Reynolds number is a measure of the ratio between

the inertia force of the flow and the force which results
from viscous effects.

The second parameter is the Mach number, which is
determined from the relationship M = %. Commonly known
as the ratio of local velocity to local speed of sound, the
Mach number is a measure of the way in which a disturbance
in the flow field (an airfoil, for instance) may effect the
fluid flow upstream from the disturbance.

When the aerodynamic forces on a structure are non-
dimensionalized with respect to dynamic pressure (q = 3pV?)
and to some characteristic area, theoretical and empirical
results suggest that these non-dimensionalized fcrces are
functions primarily of the Reynolds and Mach numbers. There-~
fore, the aerodynamic forces on a structure can be used to
predict the aerodynamic forces on a geometrically similar
structure if the Mach and Reynolds numbers for the two flow
situations are the same.

In principle, the behavior of an aerodynamic struc-
ture in free flight can be predicted from wind tunnel tests
on a scale model if the tunnel Mach number and Reynolds
number can be set equal to the free stream values of those
parameters.

This principle cannot often be applied in practice.
Wind tunnels are limited in the range of Mach and Reynolds

numbers over which tests can be conducted, and it is rarely

possible to simulate the free stream values of these two
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parameters simultaneously.

There are some flow situations of practical interest
where the dependence of aerodynamic forces on the Mach
number is negligible (when M = 0.3-0.5 or less, see ref 1).
In these cases, wind tunnel test results can be used to give
good predictions of free flight behavior if Reynolds number
similarity can be obtained in the wind tunnel.

Even in this case where Mach similarity is insignif-
icant there are substantial constraints on wind tunnel
testing.

In an attempt to simulate high Reynolds number con-
ditions, the wind tunnel experimentalist may try to adjust
the free stream tunnel velocity (V), the characteristic
length of the model (£), or the kinematic viscosity of
the fluid (v = u/p).

The tunnel velocity is limited by the ability of the
tunnel to accelerate the flow. There is an upper limit
to the velocity that can be achieved in the test section of
a wind tunnel. Furthermore, high tunnel velocities result
in high test Mach numbers, so that compressibility effects
have a significant impact on the test results in spite of
the fact that compressibility may not be important in the
free fligh situation to be simulated.

The characteristic length of the model is obviously
limited by the size of the tunnel test section. Although

large tunnels could be built, tremendous amounts of power

would be required to drive such a tunnel.




The kinematic viscosity has a rather strong dependence
on pressure and temperature. Kinematic viscosity decreases
with increased pressure or decreased temperature, so high
pressures or low temperatures can be used to obtain high
Reynolds number simulation in a wind tunnel.

The National Transonic Facility (NTF), currently being
constructed for NASA at Langley, Virginia, will combine
increased pressure and cryogenic temperatures in order to
simulate high Reynolds number flow (ref 2).

There are other techniques which can be used to sim-
ulate high Reynolds number flow. Since such flows are
generally characterized by turbulent boundary layers, tur-
bulence can be induced over the structure to be tested
(through use of roughness or "trip wires," for example; see
ref 3), thereby simulating high Reynolds number flow in an
otherwise low Reynolds number situation. Another tech-
nique involves testing several different size models with
similar geometries and attempting to extrapolate the
results from these tests to appropriately sized structures.

Each of the techniques described above has drawbacks,
typically with respect to added expense of the test proced-
ure, added complexity of the scale model to be tested, or
theoretical difficulty in extending test results to the
free flight situation of interest. Therefore, a relatively
simple, low cost means of providing high Reynolds number
simulation is clearly desirable.

On possibility for such a technique has been sug-
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F@: . gested by W. Luchuk of the Air Force Arnold Engineering

1508

'si ) Development Center (ref 4). Mr. Luchuk has proposed that

\ . high Reynolds number cimulation could be obtained locally by

LA ]

”:ﬁ injecting a cryogenic fluid to envelop the momentum boundary

:ﬁﬁ 1

+2)

2
A \J
s Purpose
A\

:ﬁ: The purpose of this study is to analyze the potential ;
> |
.E: of a high Reynolds number simulation technique which accom- |

,\

) plishes boundary layer cooling through the introduction of ‘
A4 ‘
. a cocl gas over the structure to be tested. ;
vt 3
3:3 In this paper, the major considerations that must go :
<ud

into the development of a locally high Reynolds number

.:

simulation technique are outlined and discussed. These

2 A X

considerations are then applied to establish the important

.
- ‘.

physical parameters for such a technique and to make con-

by

clusions regarding the feasibility of the technique.

The flow situation of interest is illustrated in

NN 4
4%
'.1..;-’ "

fig 1. In particular, the case for flow over a flat

3

A

plate will be studied in detail.

Ry

L AR

The results of the analysis described above are

4 Sty

A

discussed at the end of this paper, and recommendations

for additional study are also included there.
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Figure 1.

Development of the Momentum Boundary Layer

Within a Layer of Cool Fluid
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IT. Theory

The mathematical model which is used to describe the
behavior of a fluid is typically developed from an Eulerian,
or "Control Volume," point of view. From this point of view,
the laws of physics which require conservation of mass, momen-
tum, and energy of a fixed mass system are adapted to predict
behavior in and around a fixed region in space.

The Eulerian analogs to the fixed mass concepts of
conservation of mass, Newton's Second Law, and conservation
of energy are, respectively, the Continuity Equation, the
Momentum Equation, and the Energy Equation.

These equations are presented below in two forms.

In the first case, they are presented in tensorial form

so that they may be applied to any flow situation describ-
able in terms of an orthogonal coordinate system. The
principles which are applied to the case of a flat plate

can then be extended to apply to arbitrary shapes when

an appropriate coordinate system has been defined.

In the second case, the eqﬁations are presented in the
well known form for rectangular (Cartesian) coordinate
systems.

Appendix A to this report gives a detailed mathematical
derivation of the governing equations from a tensor analysis

point of view.
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:d: The Continuity Equation
N
;\4 The amount of mass contained within a control volume
i
e -
»’ﬁa may change with time. This change can be the result of a
2o
NG change in the density of the mass contained within the
AR volume due to an influx of mass to the control volume. This
A
.‘, -
Y is expressed as
l\" .
.,"1_
22 4 p(v7) = 0 (1)
N
“»
N = s o
S In terms of Cartesian coordinates, with v = ui + vj + wk,
fg this is written ]
-
<o
2Ny
X 2 3 3 > 3u , 3v , 2
NN 20 20 20 4 2L QU OV, oWy _
e st tupx tVay P telgxt syt =00 (2)
v,
7.'¢!
l\ﬁ In the case where density can be assumed to be
-“.'
s constant, these equations reduce to
¥, ‘
. q
Py %1
IR (vev) =0 (3)
W du , 3v , 3 '
L Ay u v W
= x T3y T3z O (4)
A
N
& ‘
. \ I
Pl The Momentum Equation !
‘
e
dk The momentum within a control volume can change with j
122
£ time due to changes in properties in the control volume
e ) caused by the transfer of momentum into the control volume
*t‘
oS
f -
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A
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or due to the action of forces on the mass inside the volume.
In the case where the shear stresses acting on the

boundary of the control volume are linearly dependent on the

rate of deformation of the mass contained within the volume,

the momentum equation is given by
p%% = -Vp + V(AVeV) + Veu(Vv + grad v) + of (5)
Equation (5) is really a system of three scalar

equations, the Navier-Stokes equations, which are written

in Cartesian coordinates as

x-direction:
D(%% + u%% + v%% + w%% = X - %§
lul(25s - % (53 + L+ 5))
Faeu(SE  E0Y ¢ G ¢ 3)
y-direction:
O(%% + u%% + v%% + w%%) =Y - %5
e du (25 - % (53 + 35+ §9)) (6)
P ln(EE e 2y 2T B
z-direction:
O(%% + u%% + v%§ + w%%) =7 - gg
Coaglu(RE - % (B4 20 Qv
S My s B 2y
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e e
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o In the case where body forces can be neglected and
‘-.' -
(\ . properties can be assumed constant, these equations become
:_::4
o o%% = -Vp + vy (7)
) x-direction:
- du du du duy _  9p 3%2u , 3%u , 3%u
o olgg +ugy * vgy Fovgy) = g tulgE 5 t 5)
.is y-direction:
A v, Av . 8v . dvy _ 3p 82y , 3%v , 32y
iy olgg +ugy * vay Fovey) = gy tulgE t o 5
. (8)
Yol z-direction:
)
b W oW dw dwy _  3p 32w , 3%w , 3%w
3 ol5e F skt vay Y e T e T e f e e
o
5
W The Energy Equation
.:“-
I
Y The energy contained within a fixed region of space
e
” :
> may change with time due to the addition of mass or heat i
:f to the control volume and due to work done on the control }
:§ volume. When this statement is expressed mathematically, |
e
- the resulting equation can be combined with the momentum
}j equation to yield the thermal energy equation ?
" :
b p%% = _pVeV - Veg + & (9) |

For a perfect gas, and when viscous dissipation is

l‘l.l‘l. Q.
P

negligible, equation (9) reduces to the form

e

Py

X%

11

]




- 4430

-t e e e u
P AN
I~n' ’f.:'.l'.l. .

v
e

(Y]
RAPE X
L ' 3

L

L3

R
Pt

Ay

{l-— Yy

4
]

ity ey, o]
Z

pt 8 )l.

|

[
s S

N

o, ’
Xl

A
o
»,
A5

.

»e

N
"S(&f_ .

<
l!-

2

-
. r’-

r

2.
¢

.
»
o
-
»
o'

R N
e e e
»—

Pali’ P ST 2N o N (PR o o R A < - C Sk . .« v . W N e T e e
DT _ Dp .3
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Application of

constant properties

which is written in

d X

Fourier's Law and the assumption of

gives the familiar form

(11)
terms of Cartesian coordinates as
3T 3T _ 32T 92T 32T
ey towes = u(axz + 577 + a?Z) (12)
12
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I11. Reynolds Similarity and Wind Tunnel Testing

From the presentation above it is clear that the
momentum equation is coupled to the energy equation since
the fluid properties are dependent on the thermodynamic
state of the fluid. In terms of its effect on wind tunnel
testing, it is this coupling which results in the require-
ment that tunnel values of Re and M should be simultaneously
set equal to their free flight values.

In many practical applications it is reasonable to
treat the fluid properties as essentially constant. In
this case the momentum equation is uncoupled from the
energy equation and the velocity profile of the fluid can
be obtained from the momentum equation alone. Since
aerodynamic forces on a structure are dependent on the
velocity profile of the fluid surrounding it, the aero-
dynamic forces will be independent of the properties of
the energy equation and wiil depend on the properties of
the momentum equation alone when fluid properties are
constant.

In order to study the properties of the momentum
equation it is convenient to express it in non-dimensional
terms., To this end, reference values for each of the quan-
tities of interest are defined and non-dimensional expres-
sions for those quantities are defined by referring each

to its reference value.

13
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These non-dimensional terms are denoted with a super-

l. -. .
“ ‘~ l"

script cross (*) and are defined as

S + + ) +

o tT o=t/ (/v ) poo= (p-p)/eo Ve x; = x;/4

A —+  — 4 +

voo= v/V A= A A TR VAT (13)

‘N

X ot = 0/o, vh o= gy
;‘. Substituting for the dimensional quantities in

:& equation (5), the result is

)
2

v o V2 DY o V2 A

© o + + © © —
+_+ = - =V"p" 4 AT GRE AREAl W vi(u dervh)

< £ Dt 2

ﬁi where def'v' = vyt 4 grad+V+.
L Combining terms and simplifying gives the result
o
- +Dv + t PR S TSI SN
" p—5 =-Vp + (1/Re_ X)v (Mviev ) + (1/Re_)V «(u def v )

. D,t ’

(15)

1:.' Voopoo/e Voopcoz

EN where Re = and Re =
» o, A >\oo o0 Mo,

f: The quantity Re is the Reynolds number.
-{- In the case of constant properties, p+, u+, and A+
:f are all equal to unity, so the non-dimensional momentum
o equation takes the form
&
;5 pv ! +,ot —+ + $—+ + 4
Y = = (1/Re )V (V'+¥") + (1/Re,)V =(def' V') - V'p

5 Dt '

o If two flows have the same pgeometry (so that the
=

2
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pressure gradient and boundary conditions are the same for
both) and if the assumption of constant properties arplies
equally to the two, they will have the same solution to
equation (16) if they have the same value of Reynolds number.

When a fluid in motion encounters a solid surface, the
fluid and the surface will exert forces on each other. The
magnitude of these forces is related to the development of
the boundary layer (the region in which the solid object
has a significant effect on the flow field). It is clear
from equation (16) that the development of the boundary
layer 1s dependent on the Reynolds number, so the shear
forces are dependent on Re as well., 1In particular, when
the shear stress, 1, is non-dimensionalized in terms of
a friction coefficient, cp = T/(%pmVi), this coefficient is
a function of the Reynolds number (ref 1).

If two flows are geometrically similar and if they
have the same Reynolds number, they will have the same
value of Cpe

Wind tunnel testing is based on this concept of sim-
ilarity. A scale model of a structure can be placed in
a wind tunnel and values of Cp as a function of Re can
be determined. These values of cp can then be applied to
predict the behavior of the full scale structure.

Unfortunately, the concept of Reynolds similarity
breaks down for high values of Re and simulation of high

Reynolds numbers typically is not achieved. Chapter I

of this report has detailed some of the reagsons for the
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failure of this similarity concept and has suggested the
desirability of designing techniques to permit high Rey-
nolds number simulation.

To obtain high Reynolds numbers on sub-scale models,
attention has been focused on the possibility of varying
the quantity v (v= u/p) which appears in the definition
of Re. ©Since the value of v decreases with a decrease in
temperature for a gas, cooling techniques can be used to
provide high Reynolds number simulation.

The remainder of this paper i1s concerned with one
possible technique for the use of cooling.

If a cool gas can be introduced into the tunnel free
stream so that the structure being tested is enveloped
entirely by the cool fluid, the Reynolds number in the
vicinity of the structure will be significantly greater
than the Reynolds number based on properties of the tunnel
free stream fluid.

Results to be presented elsewhere in this paper
will suggest that the use of sufficiently cooled fluids
could increase the effective Reynolds number by a factor
of seven or eight.

The feasibility of using this technique of locally
high Reynolds number simulation will be discussed and

analyzed in the paragraphs that follow.
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IV. Development of a High Reynolds Number Simulation Technigue

The high Reynolds number simulation technique which is
the subject of this study requires the immersion of the
structure being tested in an envelope of cool fluid. If
the momentum boundary layer develops entirely within the
cool fluid layer, the Reynolds number which determines the
non-dimensional force coefficient will depend on the prop-
erties of the cool fluid.

In particular, the ratio of Reynolde number based on
cool fluid properties to Reynolds number based on tunnel
fluid properties can be estimated by Rec/Res ~ vs/vc.

For cryogenic temperatures, the ratio \)S/\)c may be as
high as seven or eight (see Appendix D).

In order to take advantage of the potential for such
an increase in effective Reynolds number it is necessary to
study the ways in which the tunnel fluid may interact with
the cool fluid.

Three major fluid interactions most significantly
impact the development of a Reynolds nunber simulation tech-
nique involving the injection of a cooled gas. These
are momentum mixing, thermal mixing, and condensation/icing.

Momentum mixing will occur when fluids moving paral-
lel to each other have different velocities (see fig 2).
The shear stress created at the velocity discontinuity will
act to smooth the discontinuity and will result in the

development of a momentum mixing region.

17
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Thermal mixing occurs when a fluid in motion is
separated into regions held at different temperatures (see
fig 3). The temperature discontinuity will create a thermal
gradient and the consequent development of a thermal mixing
region.

In the case where a cool fluid comes into contact with
atmospheric air, water vapor in the air may condense or
solidify. This is the problem of condensation/icing.

Fach of these considerations is discussed in detail in

the paragraphs which follow.

Momentum Mixing

To determine the effect of a velocity discontinuity
between the cool fluid and the tunnel fluid it is con-
venient to study the flow situation of fig 2. Two fluids,
both of which have infinite extent in the y-direction,
meet at a point where their velocities are different. The
shear stress created at this discontinuity will act to
smooth the discontinuity and a momentum mixing region will
develop.

This flow situation is discussed in detail by
Schlichting (ref 1) and by Yih (ref 5). From ref 1,

the velocity profile in the mixing region is given by

uly,t) = £(Uy + Uy) + &(U, - U,) x {(3/2b)y - (1/2b3)y3)
(17)
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The quantity b which appears in equation 17 is
a measure of the size of the momentum mixing region, and

Schlichting gives

b = 3% B82(U; - Uy)t (18)

where B is an empirical constant which depends on the
(molecular) mixing length and must be determined from
experiment.

The important conclusion to be drawn from equation
18 is the fact that the mixing region will grow with time.

The flow situation for which high Reynolds number
simulation is to be attempted is somewhat different from
the situation depicted in fig 2. This is because the
structure over which the cool fluid is to flow limits the
extent of the momentum mixing region.

Equation 18 suggests that if the cool fluid velocity
differs from the tunnel free stream velocity, momentum
mixing will eventually force the two velocities to be
equal in the case where the cool fluid is in the vicinity
of 2 so0lid boundary.

This equality of velocities is a steady-state
condition. The time required to reach steady-state is
not easily determined analytically, since such a determ-
ination would require advance knowledge of the values for
B, Uy, and U,. Some or all of these values can only be

determined experimentally.

20
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Nonetheless, it seems reasonable to expect that the

time to reach steady-state will be short. This is because
the height of the cool fluid layer above the solid boundary
will be very small (on the order of magnitude of the momen-
tum boundary layer height) so that it will be readily influ-
enced by the tunnel free stream.

The steady-state assumption should be confirmed exper-
imentally, but it will be made here in order to proceed with
the analysis of the proposed high Reynolds number sim-
ulation technique.

As a result of the discussion above, the following
result is indicated:

"In determining the parameters required for

successful high Reynolds number simulation,
the free stream velocity of the cool fluid

may be taken as equal to the free stream
velocity of the wind tunnel."

Thermal Mixing

A L ey L,

The success of the high Reynolds number simulation
technique under consideration depends on the fact that
the kinematic viscosity of a gas decreases with decreasing
temperature. It is therefore important to insure that
the cool fluid stays cool and is not significantly heated
by the much warmer tunnel fluid.

The flow situation of interest is depicted in fig 3.
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Appendix B to this report contains a detailed analysis
of this situation and develops the solution for the temp-
erature distribution in the thermal wixing region.

Since the energy conducted at the boundary of the
thermal mixing region can be balanced by the convection
of fluid into the thermal mixing region, a steady-state
condition will occur in which the width of the mixing
region will not grow with time.

Under the assumptions of 1) steady-state; 2) the
temperature mixing region does not effect the velocity
field; and 3) gradients in the y-direction are much larger
than gradients in the x-direction, the temperature profile

in the thermal mixing region is given by

6(x,y) = derfe(y/viax/V_) (y > 0) (19)
6(x,y) = 1 - derfe(|yl|/vViax/V_) (y < 0) (20)

where 6 1s a non-dimensional temperature difference defined
by 8 = (T - Tm)/(Tc - Tw).

Of the assumptions used in developing these expressions,
the first is certainly reasonable, based on the argument
given above. The third assumption is just a restatement of
the "boundary layer assumption,”" and it seems almost self-
evident that the thermal mixing region will have a boundary
layer characterisitic to it.

The second assumption, however, is not quite so self-

evident. It should be noted that Yih (ref 5 ) makes a

.........................
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similar assumption in dealing with the temperature dis-

tribution created by a pre-heated jet.

If the temperature distribution in the thermal mixing
region were to disturb the velocity field, it would create
a situation where momentum mixing would occur in the free
stream. This mixing would eventually effect the develop-
ment of the momentum boundary layer and the validity of the
Reynolds number simulation technique would be question-
able.

Fortunately, results presented below suggest that the
size of the thermal mixing region is very small - on the
order of magnitude of the momentum boundary layer. It
seems reasonable to assume that such a small region will
not have a significant effect on the velocity field.

For the sake of establishing the width of the thermal
mixing region it is necessary to determine the distance
between the isotherms 6 = 1 and 6 = 0., However, as is
characteristic in boundary layer work, the solution for
8 indicates that the thermal mixing regiorn extends to
infinity in both directions. Therefore, we adopt the con-
vention that the width of the thermal mixing region, 2bt’
is given by the distance between the isotherms 6 = 0.99
and 8 = 0.01. If y = 0 is taken as the line of symmetry
between these isotherms, then bt is the distance from y = 0

to 8 = 0.99.

el For the purpose of establishing a Reynolds number

L)

o simulation technique, the extent of the thermal mixing
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region into the cool fluid must be studied. In terms of

the flow situation depicted in fig 3 this is the region

y < 0, so equation 20 yields

6(x,y) =1 - %erfc(lyl/VAax7Vm) = 0.99 (21)

From this, erfc(IyI/VAux7Vw) = 0.02, which yields the
result y/viax/V_

from the curve y

I}

-1.65. Since b, is given by the distance

0 to the curve 6 = 0.99, it is clear that

Yy = -3.3Vax/V_ (22)

Equaticn 22 does not apply exactly to flow over a
solid boundary. The fluid streamlines will be deflected
away from the boundary due to the action of viscous forces,
so the isotherm 6 = 0.99 will be deflected away from the
boundary as well. Therefore, equation 22 can te taken as
a conservative estimate for the extent of the thermal mixing
region into the cool fluid layer.

If the thermal mixing region extends into the mom-
entum boundary layer it will effect the boundary layer
development. A condition for accurate Reynolds simulation

is therefore

"Flow properties must be established to
guarantee that the thermal mixing region
does not extend into the momentum boundary
layer."



‘u‘ JC R I

-~

A

]

o

A

.
)
[

LA

N

P

LY
ety
o

2L IREP AR AR

!

N

P )

-

.......
.

fr"'v“'"vrrvrrv‘c ey

.. -".,-. .r~7-l*

...............................
................

Condensation and Icing

From the discussion of the preceding paragraphs it
is apparent that it is possible to create a flow situation
in which the fluid is kept separated into cool and warm
regions. If the warmer fluid contains water vapor (as
would be the case for an atmospheric wind tunnel) the
water vapor contained within the thermal mixing region can
be expected to cendense and/or solidify.

This presents a difficulty in attempting to simulate
high .ieynolds number through injection of a cool gas, since
the water and ice particles will be significantly more dense
than the surrounding fluid. The motion of these particles
will therefore be influenced by gravitational acceleration;
this possibility must be accounted for.

Water and ice must be prevented from entering the
boundary layer if accurate Reynolds number simulation is
to be obtained. Appendix C to this report presents a
method for determining the trajectory of a spherical
particle of liquid or ice. 1In the case where the free
stream fluid velocity is perpendicular to the gravita-
tional field the equation of motion for the sphere is

given by

u = VOo

vV o= -g* 4+ Cp(3/8r)6v? if |g¥| > |C (3/8r)pv?|

v = 0, otherwise (23)
25
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subject to the initial condition v(0) = 0. The component

velocities of the particle tangential and normal to the
free stream are denoted by u(t) and v(t), respectively;
6 is the ratio of the free stream fluid density to the
density of the particle (p = pf/pD); and g% is the effective

acceleration of gravity, taking into account buoyant

forces. CD is the coefficient of drag for a sphere, taken

to be
CD = 2L/Re (0<Re<0.25)
z = 0.1028% - 0.8948 + 1.42 (0.25<Re<2000) (24)
Cpy = 0.405 (2000<Re<200,000)

where ¢ = log10 CD’ £ = log10 Re, and Re is based on the
velocity component v.

With these relationships, equation 23 can be integ-
rated numerically to determine particle trajectory as a
function of free stream velocity and sphere diameter.

Table 1 gives the distance that a sphere with a diameter
of approximately ! inch can be expected to fall as a
function of time. Larger particles will drop more quickly,
smaller ones will not fall as fast.

Since the mass fraction of water vapor in the atmosphere
is very small, any condensation which occurs in the tunnel
can be expected to take the form of a mist. Therefore,

large particles of water and ice (on the order of Y inch,

for instance) will not form in the tunnel. Since the




A R S P S R

AALALREAL S REA LA I S S At L aVCuE SN SR e gt el i A e i e e Agn b it it i b Sab bt A S AR A A A A A M A AR A M A

TABLE 1

Distance Fallen by a Spherical Particle of Diameter = 0,01 ft

Time (sec) Distance {(ft)
0.005 0.0004
0.01 0.0016
0.015 0.0036
0.02 0.0064
0.025 0.010
0.03 0.014
0.035 0.020
0.04 0.026
0.045 0.032
0.05 0.040
0.06 0.058
0.07 0.078
0.08 0.10
0.09 0.13

0.1 0.16
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results presented in Table 1 and in Appendix C indicate
that even relatively large particles will not effect the
momentum boundary layer for reasonable values of the free
stream tunnel velocity, it is clear that any water vapor
mist will be insignificant, as well.
Of course, it is also possible to align a model to
be tested in a wind tunnel in such a way as to prevent ice
and water from falling towards the boundary layer (i.e.,
the model could be mounted sideways). In some cases for
which the flow geometry is not as simple as the one dis-
cussed above, this may be the only way to prevent water
and ice from effecting the Reynolds simulation technique.
The conclusion of this discussion on condensation and
icing is therefore
"Condensation and icing must be prevented
from effecting the momentum boundary layer
development either by guaranteeing that
fluid free stream velocity is large enough
to sweep moisture away from the region of

concern, or by choosing an appropriate
orientation for the model."

Other Considerations

It is clear that a primary consideration in the

I

development of a successful “evnolds nurmber simulation

technique is the necepsity to vrevent mixines between the

warm and the cool fluida., The discuscion ahove outlines

ways of dealing with this concern for the flow phonomena
o
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o~ . ' |
ii' Three additional considerations may impact mixine,
};- as well. If the cool fluid is not the same as the warn

if; fluid, diffusion will occur between the two fluids. Therc-
- fore, it is necessary to select fluids which are "similar

enough" (air and nitrogen, for example) to minimize the
T effect of this diffusion.

The static pressure of the two fluids must be the

e same in the region of interest. This is not expected to
be a significant problem for the technigue under consid-
eration, since the cool fluid will be injected through
some type of nozzle. When the flow through the nozzle is
subsonic, the fluid leaving the nozzle will have a static
éf pressure ejual to the static pressure of the tunnel fluid.
e The lasv consideration is the development of density
gradients. Gravity will pull a more dense fluid down
into a less dense fluid, and, in general, the cool fluid

- will be more dense than the boundary layer. 1In the case

of an attempt to simulate boundary layer development on

- the top surface of some object, the density gradient

o should not be a significant concern since the cool fluid
;ﬁj will be below the warm fluid. Across the bottom surface,
';; the density gradient will be sienificant unless the inertia
oY of the fluid is sufficient to overwhelnm the effect of the
-?‘:

o gravitational force (i.e., when Gr/Pe? << 1), 1In most

l:‘.i

Zi other cases the model to be examined will have to be
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V. High Reynolds Number Simulation: the Flat Plate !

> This section considers in detail Reynolds number i
i% simulation through injection of a cool gas for the case ‘
- of a flat vlate.
:jﬁ The flow situation of interest is illustrated in fig
;ﬁ 4o A fluid with uniform velocity, but separated into
Eﬁ layers of cool and warm temperature, approaches the leading
E? edge of a flat plate located at position x = 0. The
;ig x-axis 1is aligned with the interface between the two tem-
‘:f perature regions and is located at a height h above the
;{ flat plate. The momentum boundary layer thickness at a
ES point x is denoted by §, and th gives the width of the
:5 thermal mixing region. Y and y, are respectively the
Fﬁi y-coordinate of the lower boundary of the thermal mixing
;z region (the curve 6 = 0.99) and the ordinate of the momen-
-2: tum boundary layer thickness. Both of Vi and Y, are func-
gg tions of x. |
ég The point at which Yy = ¥y has been denoted by i
_ﬁf Xopit? it is at this location that the thermal mixing :
;i region will begin to effect the development of the momen- |
-i? tum boundary layer.
- T, is the temperature of the flat plate, and for
:g the purpose of this study it is assumed thal w.v heat trans-
ig fer is taking place at the plate. Therefore, Tw is

.
za assumed equal to TC (or to the adiabatic wall temperature
:2 for the case of high speed flow).
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It has been established in previous chapters that

a necessary condition for successful Reynolds number sim-

-, ulation prohibits the thermal mixing region from entering
~a
:i the momentum boundary layer.
™,
[~
ot For a flat plate of length £, this condition requires
N that x _., > £.
- erit
3; For laminar flow, Schlichting (ref 1) gives the
W
b boundary layer height, §, as
A
A
P \:,
2% § = 5.0/vx/V_ (25)
~,
I
. In the coordinate reference frame defined by fig 4, this
I
%3 results in the relationship y = ~h + 8. It has already
"
- been established that y, = -3.3/ax/V_ . The abscissa for
i
«;1 which Vi = Yo is Xopit? 80
if -3.3/a7vm¢xcrit = -h + 5.0/v7V°°¢xcrit (26)
N
j: where the values of a and v are determined at Tc'
Y
)3 Solving equation 26 for X,pi4 Yields the result
5
N = 2
i xopip = (A/Lp) (27)
;uj where LK is defined by LE = 5.0/\)7\1oo + 3.3/a/V_. The
Y
jzj condition x__., > £ then forces the result
7 crit
-qﬂ
™~ . <h/L£)2 > £ (28)
~‘\.:
2
. ‘_\‘
:: 33
J’

O
o
i

l
i




>

2

NN
e

e

-

.47,

AN

R A
¢

/7

18

Pd

P L LA
.

[ AN

XA

.
s
-

AL
:i;..f.;...

Bl A

] .l,l,
AR N NN &
R RN A B B

'D{'

SN
CLECDREAE £

s

A.’~ E

¢

. . e
.

L

DAt B S AIPN L a6 LA NS L eV et ¢ CACNENC AR A AR A MR A AR et b iU R EACJCR LR SR

T AR il Sl SRS L RS |

<

---------------

which, as a constraint on h, is written as
h > LK/Z (29)

A similar condition can be derived for the case of
turbulent flow by defining the parameter L,. For turbulent

flow over a flat plate, Holman (ref 6) gives
u
§ = 0.379V7V vwx/5 (30)

This value for & is substituted into the expression y = =
-h + & and v, is equated to y,, as above. As before, this

yields the result

x, o = (R/Ly)? (31)

crit

3

where L, is defined by L, = 3.3/a/V_ + 0.37097V_x1

o erit”®

Applying the constraint Xopit > £ and defining Lt in
terms of the length £ (rather than xcrit) yields the

condition
h > Lt/l (32)

FEquations 29 and 32 are the mathematical expressions
of the requirement that the thermal mixing region may not
extend into the momentum boundary layer. There are, how-

ever, additional constraints on the value of h.

34
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One apparent constraint on h is the requirement that

h > &, to guarantee that the momentum boundary layer is

[d

contained within the cool fluid. This condition is auto-

<
;z matically satisfied if h > LVZ, since LVYZ > § in all cases.
K
Another constraint on h is related to the mass rate of
'i flow of the cool fluid, ®. The mass rate of flow is
S: directly proportional to the cross-sectional area across
L which the fluid moves. For the case of the flat plate,
»
7 this cross sectional area is given by hxw, where w is
ﬂi the width of the plate. Therefore,
e
-
- ho_
:': W pcvooh (33)
. where p_ is the density of the cool fluid.
'.
j- Since it has been established above that h > L/Z,
‘.
" equation 33 can be cast as a constraint on #.
7.
~ "
) w > PVLLVE (34)
N
b \'
- Therefore, given the value of 0 it is possible to
L
4 determine the required minimum value of .
\% If the cool fluid can be treated as an ideal gas,
(S
- then 0 can be determined from TC and P,» It has
b7 already been shown that p, must equal the static pressure
b (ps) of the warm fluid. Therefore, it is assumed that p =
‘.l
i Pgys and then pg can be determined from the properties of
ol
-
o3
-_\
‘.‘
‘s 35
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the warm fluid.

If the flow of the warm fluid can be assumed to be

isentropic, the following algorithm can be used to determine

Pyt

1) Given Vor Ty» and Py, guess p..
2) Determine q = 3pV_?2.

3) Let py = py - q
L) Form the ratio (ps/pt), and apply the

isentropic relationships to determine

the ratio (Ts/Tt):

a) Guess a value for Y-( y

- y=-1)/v

b) Solve T = T (p /p,)

c) Determine y' = y'(Ts)

d) If y' = y then stop, otherwise y = y'.

Repeat steps b through d.
. Vo

5) Determine oy ps/(RTS).

6) If ps' = 0g» then stop. Otherwise,

1

let Py
through 6.

os' and iterate steps 2

1

In many cases, the assumption that Pg Py will
be reasonably accurate (see Appendix D), so it may not
be necessary to employ the algorithm defined above in
order to obtain quick estimates for fluid properties.
Once Py has been determined, the value of p, can
be found from the ideal gas law. Since V_ is assumed

equal to the free stream tunnel velocity, it is possible

to calculate the required mass rate of flow of the cool

36




fluid from equation 34.

A final constraint on the value of h involves the

pr—
-

concern over possible condensation and icing. 1In the worst

. * .

-
N,
S YA
"y

i%} case {assuming, again, that there is no momentum mixing
ﬁi: occurring) ice or water may form beginning at the point
}3; where the two layers of fluid are allowed to exchange energy.
ﬁgﬁ In the notation given in fig 4 this is the point (x,y) = (0,0).
Lo A spherical particle formed at location (0,0) and
E;ﬁ moving with velocity V_ in the x-direction will traverse
;% the length of the plate in a period of time £/V_. The
& equations of motion established in Appendix C to this report
:t% can be used to determine the distance that a particle of
%ig given diameter will fall in the time period £/V_. The
“?ﬁ height of the cool fluid layer can then be selected to
‘iﬁ' insure that the particle will not fall into the boundary
f-:j layer.
73?* In practice, it is probably easiest to select h and
:Ef m based on the criteria given in equations 29 or 32 and ?
'Egi 34 and then to check and see if this height is sufficient
'#ﬁg to prevent water and ice from falling into the boundary
£§> layer. If not, h and @ may be adjusted accordingly.
S&; The results presented above may be simplified some-
. what if cruder estimates for the values of the important
5;3; parameters are acceptable,
E;ﬁ From the definition of L,, it is apparent that Lz/z
';;i ~ 28s since o ~ v for most gases. Therefore, the con-
-
NN 37
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straint on h can be expressed approximately as

h > 26 (35)

and the constraint on the mass rate of flow becomes

=

> 20,V,8 (36)

Ice or water should not effect the boundary layer
development if the condensation does not enter the boun-
dary layer. Since h ~ 2§, this requires that the distance
a solid or liquid particle may fall, yp, should be less
than h/2. If viscous forces on the particle are neglec-

ted, its equation of motion can be approximated by

~ Agt? 7
Yp = 28 (37)

The time t is given by £/V_, and g 32 ft/sec?.

In this case, equation 37 becomes
Yp * 16(L/V_)? (38)

The constraint on Yo is given by Yo < h/2, so
16(L/V_)2? < %Lﬂ/z, or

32(8/V_)2< L,/ (39)
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which can be written in terms of § as

16(L/V_)2 < 6 (40)

For turbulent flows, the momentum boundary layer
thickness is generally much greater than the depth of the
thermal mixing region, so LI/Z ~ 8. In this case, the

constraints on h and m can be approximated by

&

> 8 (41)
> p V8 (42)

Elze

Direct application of equations 41 and 42 would
result in the constraint yp < 0, which is clearly unaccept-
able. It would be convenient to develop a relationship
similar to equation 39 for the case of turbulent flows.
It can be argued that the high energy characteristic of
turbulent flows will tend to overwhelm the effects of
condensation in the boundary layer, so some penetration
of the momentum boundary layer by water or ice may be
tolerated. Guided by the form of equation 39, the con-

straint on Yo is again chosen to be Yp < h/2 to yield

32{8/V, )% < LT (43)

In summary, the constraints which determine the

necessary parametric values for successful Reynolds number

39




simulation are

h > L/T

1.

L/T

3. 32(&/vV )% < VT

> pCV

=13

2.
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Some results regarding the parameter L which appears

in each of these expressions are developed in Appendix
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V. A Proposed Experimental Design

the

For the purpose of verifying some aspects of
theoretical development presented in this study, tn:-
experimental apparatus depicted in fig 5 has been desirned
and built with the assistance of the AFIT shov.

The apparatus is basically a thick flat plate made
of aluminum. An ellipsoidal nose of plexirlas is designed
to fit on the leading edge of the plate, the cool fluid
is to be injected through this nose and across the plate,

The plate is one inch thick and is constructed from
two one-half inch thick sheets of aluminum which are
bolted together. Three small channels lead from a mani-
fold located near the leading edge of the plate to open-
ings at the trailing edge so that coolant may be fed to
the inside of the plate.

The necessity of these cooling channels is demon-
strated by a lumped-capacity analysis of the plate. 1In
a lumped-capacity analysis, the temperature of the alum-

inum is assumed to be uniform and its dependence on time

is given by

T - T
To- T_

o0

= exp{—(hS/och)t} (44)

where Ty 1s the initial temperature of the plate and

T_ is the temperature of the free stream fluld around the

41
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.;x plate, V is the volume of the plate and S is its surface
r;: are«, h is the convective heat transfer coefficient, and
t?{ p and Cp are the density and specific heat, respectively,
i
e of the plate.
;i Equation 44 is a good approximatioa for T{t) when
AN . . _ hV . ~
N the Biot number, Bi = 7gs 18 much less than one. For a
2% : . : : :
b flat plate with thickness a, the Biot nunber is siven by
."‘\
" . ha
e Bi = =.
,, P72k
. The thermal conductivity of aluminum can be taken
o to be 240 W/m-K and the value of the heat transfer coef-
.- ficient can be obtained from the empirical relationship
:’,-;‘ 4 1
ro %5 = Nu = 0.0296 Re/S Pr/3 for turbilent flow (ref 6).
‘-l~‘. -a
AR For the plate under consideration, £ = 2 ft, and
i ka’ the thermal conductivity of air, can be taken to be
" 0.03 W/m-K.
- With these values, and for h evaluated at x = £,
- the value of Bi can be obtained as a function of frec
[
:;' stream fluid velocity. In the present cose, 0.0015 < Ri
I < 0.0168 for 15 m/sec < V_ < 305 m/sec, so a lumped cayp-
D acity analysis is justified.
O Denoting Dy tc the quantity (pch/hS) found in
et
E:- equation 44, the time to reach steady-state Lenporature
s can be chosen (by convention) to be 3t For the weloe-
o N
“
e ity range noted above, this yields G40 wsee > ¢~ L0 cen,
}:: These values indicate an unacceptably lTor- porionr o0
o for the establishment of steady-shbate conditl oo o
9/
- this recason {and because it hag bheen acscureit a0 o
o
Lt 3
o
-
O S R SR T T S S T A




is no heat transfer at the plate) it is necessary to

provide a means of cooling the plate.

The width of the plate is one foot so “huat 1 nur be
tested in the AFIT l14-inch wind tunnel. Ten static pres-
sure taps are located 4.5 in from one side of the plate and
are evenly spaced down its length. Five copper-constantan
thermocouples are situated 4.5 in from the other side of
the plate.

The plexiglas nose is designed to have a uniformly
varying radius of curvature so that the fluid moving over
it will not experience an abrupt change in radius of
curvature as it reaches the leading edge of the plate. The
equation for the nose is given by (g)n + (%)n = 1 with
a = 1.25 in, b = 0.5 in, and n = 2.5. The nose is 13 in wide
and has a 0.5 in hole drilled through it. Cold nitrogen
can be fed to this channel as either a liquid or as a gas.

A slot of 0.03 in is cut at the top of the channel
at the shoulder point of the ellipsoid (see fig5 ). The
top of the nose is cut smoothly to meet the slot, and is
designed to help turn the nitrogen so that it will flow
across the plate and parallel to the tunnel free stream.

The nose is designed with a slot that fits a groove
on the leading edge of the aluminum plate. This allows
the possibility of testing a variety of different nozzle
designs by simply interchanging plexirlas nocses,

Cryogenic nitrogen 1s chosen for use as the cool

fluid due to its similarity to atmospheric air (i.e.,

bl




atmospheric air is approximately 78% nitrogen). As

noted before, the nitrogen can be introduced into the
nose as either a liquid or a gas; the choice of phase is
dependent on the desired values for TC and m.

Use of gaseous nitrogen allows control over the
pressure inside the nozzle, and therefore m can be easily
controlled. A disadvantage to the use of gaseous nit-
rogen, however, is the difficulty in controlling and mon-
itoring its temperature,

The use of liquid nitrogen is constrained by a limited
ability to control m - the mass rate of flow will be prim-
arily dependent on the rate of evaporation of the nitrogen
within the nozzle. This rate can be controlled to a 1lim-
ited degree by providing a means of heating the plexiglas
nose.

Liquid nitrogen could also be boiled externally, and
then fed to the nose as a gas. This external boiling
would alluw greater control over th, and Tc could be con-
trolled by providing sufficient insulation for the fluid.

For the purpose of studying the theoretical pred-
ictions of this paper there is an additional advantage to
the use of liquid nitrogen. Since the temperature inside
the nozzle will be the boiling temperature of nitrogen
(~ 140 R) and since the expansion through the nozzle will
be isenthalpic (a Joule-Thomson expansion), the temperature

of the gas leaving the nozzle will be known.

Measurement of the flow properties presents a chal-
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lenge because of the very low temperatures involved.

Dynamic pressure and temperature must be measured simul-
taneously in order to determine the velocity profile in
the boundary layer. The dynamic pressure, g, is equal to

1

2
3pVv

» and the temperature is required to evaluate p. Ten-
perature readings are also required in order to compare
the predicted extent of the thermal mixing region with
weasured data.

For accurate measurements with reasonable response
time, hot wire or hot film anemometers may be used. It
should be noted that hot wire (film) probes are calibrated
for a particular temperature; if they are not calibrated
at Tc a correction must be made for this. This is dis-
cussed in some detail in ref 7, and ref 8 gives a method
for using hot wire anemometers to measure both temperature
and dynamic pressure under very controlled conditions,

For a quick check on the predicitions made in this
paper it may suffice to measure g with a pitot probe and
to take total temperature readings with a thermocouple.

If the flow speed is not too high, the total temperature
will be an adequate approximation to the static temperature
of the fluid.

Care must be taken at the beginning of the test run
to insure that the surface of the plate does not ice -
the nitrogen must be swept quickly across the plate to
displace the air before water vapor in the air can con-

dense.
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This difficulty can be eliminated altogether if warm

nitrogen is used to sweep the atmospheric air from the

surface of the plate before the cool nitrogen is introduced.
The analyses contained in Appendices D and E to this

report indicate that very high mass rates of flow for cool

nitrogen are required for high Reynolds number simulation.

<% The experimental apparatus described above will not be able
‘»‘:

&3 to handle those requirements, due primarily to the small
E! size of the nozzle through which the nitrogen is being

;j injected.

- Nonetheless, this apparatus can be used to provide
{: preliminary verification of certain aspects of the theor-
2: etical development given in this paper. In particular,

4

s experimental data is required to more accurately determine
- the extent of the thermal mixing region, the effect of any
;; momentum mixing which may occur, and the impact (if any)
- of condensation or icing on momentum boundary layer

; development.
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{ ; VII. Conclusions and Recommendations

This paper has analyzed the potential for high Rey-

nolds number simulation in a wind tunnel through use of a

cool gas to envelop the momentum boundary layer. If this
technique can be used, effective Reynolds number simu-
lation can theoretically be increased by a factor of seven
or eight.

To be successful, the flow of the warm tunnel air
must not interfere with the locally cool fluid flow. For

the case of a flat plate, it has been shown that this

condition will be met when:

1. h > VT
2. mn/w > OCVmL/Z
3. 32(&/v_)? < /T

The conditions defined above are based in part on
certain assumptions - in particular, that the cool fluid
free stream velocity is equal to the tunnel free stream
velocity, and that condensation and icing are not sig-
nificant concerns if the condensation does not penetrate
too far into the boundary layer.

Under these circumstances, high Reynolds number sim-

ulation can theoretically be achieved if the constraints

A
...

.

1 - 3 noted above are satisfied.

In practice, the required value of m for hich Hey-

YN T
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- ’ nolds numer simulation will be very large (on the order of

0.5 to 1.0 1bm/sec for the example discussed in this paper).
~ Therefore, it may not be a simple matter to apply the theor-

n etical constraints to a situation of interest.

Recommendationg for Further Study

‘. Further study in the following areas will add signif-
tf icantly to the development of a successful high Reynolds
‘.l
;: number simulation technique:
.
ﬁ 1. The experimental apparatus discussed in Chapter
“ VI should be used to verify the assumptions noted above.
L
ff 2. The development which has been presented for the
:% case of a flat plate should be extended to structures of
"..
‘ arbitrary shape.
:i 3. Various means of injecting the cool fluid in
fj order to provide the mass rates of flow required for
;C successful high Reynolds number simulation should be
-
;: investigated.
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,}3{ Appendix A. The Governing FEquations for Viscous Fluid Flow
AN
f
L . o . .
o The purpose of this appendix is to develop in detail
RO
;ﬁf‘ the equations presented in Chapter II which model the behav-
Jela
DA ior of viscous fluids.

?
)

. ¥ "
Vi) N

4 s, 4 4
ey
Py v

a
L, &

The Continuity Equation

-
A The mass contained in a control volume, @, at any
-:\::
:E\. time, t, is equal to the volume of the region @ multiplied
. ~
I by the average density, p(t), of the mass contained within
\‘r-
'ﬁi: Q at that time. In general, mass may be transported across
Sﬁ;: the boundary of the control volume, 3Q. The excess of
$~.e the mass entering the region over the mass leaving the region
;ﬁi: must remain stored within Q.
1"' "/.
fﬁ? The rate of mass transfer at some point on 3Q is
ACAGE given by (an)* x (As), where As is an element of surface
R ARD
_ﬁg area on 3, Vn is the component of the fluid velocity per-
NS
AL
'ﬁSi pendicular to the element As, and (an)* is the average
'53:. value of an taken over As. For convention,(ﬂ% is taken
:Sfi as positive going into @, and negative otherwise.
}~: If no mass is created within Q, the mass contained
2 within the region at time t+At must be equal to the mass
iﬁi stored at time t plus the net influx of mass into the
Aty
Lﬁé; region over the time At. Mathematically, this can be
[ &)
s expressed as
YR
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Iy 52
™
"n “4
LAY
n'{...'-:‘

...'

- tA TR T, . e armem o e e o 4 mL v ramama  w oml oty e e e e e e e e e e
.......
......
......
v

-
.
«
&
.
.
.
Vs
.
"
’




s

S(t+at) x Vol(Q) = p(t) x Vol(9) + (an)* x Area(dQ) x At

-n
RO
. ., .l

- (A.T)
(.

tﬁ Dividing through by At, rearranging, and taking the limit as
e

&

! At > 0, this beconcs

3

20 x vol(n) = (pV )* x Area(aq) (A.2)

. As Vol{(Q) » dVol so Area(dQ) » ds, and average properties
A

fﬁ taken over the volume § approach the average values taken

e -

g{ over 3. Furthermore, an can be rewritten as -{(pvefl), where
o

5 n is taken to be the outward pointing normal associated with
p

}j ds. A fundamentil result from the calculus of vectors and

E: tensors yields pvefi ds = Vepv dVol (ref 9 ). Applying these
o results to equation A.2 gives
i
*‘\

I 5

:§ 3% = - (VepV) (A.3)
<
';: This is the Continuity Equation, and il is more

)

NN frequently written as

5
’;: %% + (Vepv) = 0, or equivalently as

2

& Doy p(vew) = 0 (4.4)
o) Dt

oY
N In many applications, it is reasonable to take p

-

? as essentially constant, in which case %% is identically

'. zero and the Continuity FEquation recduces to
;E
e

't: 53
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(vev) =0 (A.5)

The Momentum Eguation

The momentum contained within a fixed region in space
(Q) will change with time due to the addition of mass to Q
and due to forces which act on the mass contained in the
control volume. Considering the limiting case as Vol(Q) » O

this can be expressed mathematically as

(pv) (t+at) dVol = pv(t) dvol + (van) ds At + (0 ds) at

+ (pf dVol) at (A.6)

where T denotes the body force per unit mass acting on the
fluid contained within @ and o is the force due to stress
acting on the surface 3Q. It is clear that o depends on
the state of stress nat ds as well as on the orientation of
the elemental surface area. This dependence i1s expressed
as 0 = o+fi, where 0 is the stress tensor (ref 10).

Noting that oVVn = - pvved, dividing through the

equation above by At, and taking the limit yields

avo1 2Lov)

ST = - pvver ds + o+fi ds + pf dVol (8.7)
At equilibrium, auvplication of the law of conscrvation
q £8¢
of angular momentum demonstrates that o is symmetrie, Dince
54
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Vv is the outer product of a vector with itself, vv ic
also symmetric, and so gefi ds = Veog dVol and pvV Vv «f dn
Ve(pvv ) dVol. The term Ve(pvVv ) can be expanded as
(Vepv)Vv + p(VeVv).'! The continuity equation gives TVepv =

-2 so the equation above reduces to

at?’
| a_,g—gv_) - v(28) 4 p(Fe79) = V.5 + oF (1.8)

Expanding the first term on the left side of this enuation

and simplifying yields

Q(%% tvevy) = V‘g + pf, which is equivalent to
: o5t = U5 + pT (1.9)

Equation A.9 is Cauchy's equation of motion. The
Navier-G5tokes equations are developed from equation A.Q
by determining the relationship between the stress tensor
and the rate of deformation of the fluid contained within

Q2. It is convenient to separate the stress tensor into

e

components perpendicular to 39 (pressure) and tangential

D0 to 90 (shear stress). Since pressure is taken as conctant
2 _ »- 7
"l over 32 for Q sufficiently small, we can writ> ¢ = -pl + 71,
e where T is the identity tensor.

R If the fluid is assumed to be Newbtoninuw, the ~ovvonente

L YNote that veUv £ (veV)v in s~eneral. unless o Jar'oosian

o
coordinate avobtan 1 us>i. A ceneral ddentity © o
S VAT IS

(Vew) - (Fx(vx3))

i

N e N e e e S
WV A R U TR
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of stress are linearly dependent on the rates of deformation
of the fluid. It can be shown (refs 1 andl11 ) that this
relationship is given by T = AV+V)I + u(vv + grad v).

Substituting this expression for T into equation A.9
and making use of the identity Veal = Va (a is a scalar)

results in the Navier-Stokes equations:

2L = -Tp + V(AV-T) + Teu(VY + grad v) + of (4.10)

As a consequence of Stokes' Hypothesis (ref 12), the
parameters u and A are assumed related by the equation
32+ 2u = 0.

If the coefficient of viscosity, u, is assumed con-
stant, and if the function v is twice continuously differ-

entiable so that the order of differentiation may be inter-

. changed (resulting in the identity Vegrad v = V(Vev) ),

‘- then equation A.10 reduces to

8

N Dv - - —_—

b~ 05% = -Up + uv3y + Yuv(veyv) + of (A1)
In the case of incompressible flow, the Contirnulty

Fquation gives Yev = 0, and when body foress are v o0 o

1 Y2y = VeUv £ (V'V)V, excenpt, in Davt oo
systems. . B ’
Alternately, V2v = U(Tev) - (U~{ -v

- Te e M e T . PR - LT e ST - - M - - " - g - . . - . - - - -
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ted, the Momentum Equation takes the form

A T (4.12)

The Energy Eguation

The energy contained within a fixed region in space
(Q) will change with time due to addition of mass to tre
control volume, heat added to the control volume, and work
done on the control volume. Considerine the limiting case

as Vol(Q) » 0, this is expressed as

pE(t+At) dVol = pE(t) dVol + (n+v)At ds + pT+vAt ds

t g At ds 4 (pvE) ot ds (A.13)

where E is the energy per unit mass and a, is the component
of heat flux perpendicular to ds and directed into ¢. By
noting that 5 = oA, q, © -q-fi, and (pvE - -pvEsfi, this

becomes

oE(t+At) dVol = pE(t) dVol + (o+v)«AAt ds + pFevAtL ds

- q«fint ds - pvEefAt ds (A.14)

Applying the identity asfi ds = Vea dVol for any

vector a, dividing through by At, and taking the limit as

At » 0, the enersy equation takes the form

A LI 1
VG Y PR




32(pE) = V-(G+¥) + pT¥ - Veg - VepiE (1.15)

Applying the vector identity Veca = c(Vea) + a-Ve
to the last term of this equation, expanding the derivative
on the left, and noting that %% = -(Vepv) from continuity,

the energy equation takes the form

This is the total energy equation. In the case
where changes in potential and cheuical enercy can be
neglected, E can be taken to be (e + 3vev) where e is
the internal energy per unit mass and svev is the kinetic
energy per unit mass.

When the momentum equation ({egn A.9) is dotted with

the velocity vector, the result is

TV = VegeV + pfev (A.17)

When this is subtracted from the total energy equation
(making use of the identity Ve(gev) = Veoev + 0:9V),
the result is the thermal energy equation:

QT‘)& - 5:UV - Ueg (h.18)

-t

Substitution of the expression for ¢ given earlier




i e e N T e A )

AR A .R.'_- “»-‘.'_.'.“‘.ﬁ-'i".ﬁ'.ﬁ""\'_"(“"ﬂ_—.iv_-—_v—?frﬂ

- results in the following form of the thermal enersy equation:

i)

o = - pVev - Veg + 0 (A.19)

£l
o o

AMUsv)?2 + 2ulen® + e + £32) + dule? + e + ea?)

LR aw 2
0

"!?77ﬁiﬂﬁﬂ-ubh..
L e A LU
=]
®

7

where the €'s are the components of the rate of strain tensor
:; (see ref 1 and 10). ¢ represents the dissipation of energy
due to viscous effects; in many practical applications it
is assumed to be negligible.
In terms of enthalpy (h = e + p/p), and when viscous
dissipation is negligible, the thermal energy equation

becomes
— = QB - ._
0 ot Vegq (A.20)
For a perfect gas, Dh = ey DT. If g is linearly depen-
dent on the gradient of temperature, the thermal energy
equation takes the form

P—T.—.QE . q = e
pcgr =pr vV (kvT) (q = -kVT) (A.21)

For the case of constant properties and prescure, this

reduces to the familiar form

N BT . avee (@ = k/oe ) (A.22)
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Appendix B. The Thermal Mixing Region

Consider the flow situation depicted in figure B.1.

A fluid is moving in the x-ccordinate direction with velocity
V,- The fluid below the x-axis is initially at temper-

ature Tc and the fluid above the x-axis is held at T_.
Diffusion of enthalpy (or temperature, for the constant
property case) is prohibited until the fluid reaches *he
position x = O,

At this point, a temperature mixing region will begin
to develop and grow until the diffusion (conduction) of
energy is balanced by convection. This balance is the con-
dition for steady-state.

The extent of the temperature mixing region must be
determined. Clearly, the width of the mixing region, Z2b,
can be expected to grow with increased distance from the
point where mixing begins. As a first cut approximation,
one might expect isotherms as plotted in the x-y plane to
have the form y = kx (straight lines). As the mixing
region grows in the downstream direction, however, the
heat flux at an isotherm will decrease. This suggests
that the rate of growth of the temperature mixing region
should decrease with increased distance from the initial
point of mixing. A more appropriate relationship for
isotherms might therefore be assumed as y = kx(1/n).

For the constant property case, the energy eguation

is eguation A.22:

----- ...
-----------

* 8"

2 e " aVa"n " a
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Figure B.1. Development of the Thermal Mixing Region
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which is expanded in terms of two-dimensional Cartesiar

coordinates as

aT 3T aT _ 32T 32T
5t © Yax Y 3y (sz * ayZ) (B.2)

The following assumptions will be used in reducing

equation B.Z:
d

a) steady-state conditions exist, so that =t = 0.
b) The momentum (velocity) field is unaffected by
the temperature mixing region, so that u = V_

and v = 0.

c) Gradients in the y-direction are much larger than

2
gradients in the x-direction so that 9;; is neg-

a =}
2
ligible compared to %§3 (the "boundary layer

assumption").

Under these conditions, equation B.2 becomes

3T _ _a,9%T
= - Vw(W’) (B.3)

It is generally convenient to non-dimensionalize the
variable of interest in equations such as B.3, and there-
fore a non-dimensional temperature difference, 6, is

defined as
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and equation B.3 becomes

30 _ o ,02%9
ax - V_(ay7) (B.5)

The boundary conditions which apply to the steady-

state temperature field are:

for y > 0, T(0,y) = T

for y < 0, T(0,y) = T,

as y > o, T(x,y) » T, (B.6)
as y > -», T(x,y) > TC

T(x,0") = T(x,07) = $(T_ + 1)

Under the transformation to the non-dimensional var-

able 6 these conditions become:

for y > 0, 8(0,y) =0
for y < 0, 6(0,y) =1
as y > o, 8(x,y) > 0 (B.7)
as y » -o, 68(x,y) > 1

6(x,07) = 6(x,07)

"

il

The problem described by figure B.1 is therefore

defined by equation B.5 and boundary conditions B.7 Two
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possible methods of solution are convenient for this prob-

lem: the use of Laplace transforms on the x-variable to
obtain an ordinary differential equation in the Laplace
domain, or the determination of a similarity transformation
(x,y) » (n) to convert equation B.5 to an ordinary differen-
tial equation in n. Both of these methods are examined

below,

The Laplace Transform Method

Use of the Laplace transform in this case is motiv-
ated by the fact that the energy equation . i=i: - Taplac
ian, V2T. The existence of oxhaus! v RN I
tables of Laplace transforms and inverse Laplace tran: v
suggests that a solution of the transformed, ordinary
differential equation will be readily invertible, reocu’l-
ting in a closed-form solution in the original (x, )
space.

Denoting by 8 the Laplace transform of 6 {(and tranuo-

forming on the variable x), then
8(s,y) = fj e %8 (x,y) dx (R.8)

Applying the transformation to soquation R.5> and

boundary conditions B.7 yields *the Tollowine ordinary

differential equation and associated boundary conditiona:
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for y > O: s8 = VOO(W)
. as y > o, § +0
6(s,O+) = 1,1.2s)

428
for < 0: sf = X Y + 1
y (—z'dy

S i
atateta e s

as y » -», § > 1/s

- 5(s,07) = 1/(2s)

Q)
N The solution for the case y > 0 must be established sep-
A
L arately from the soluiion for the case y < 0 due to the
.Q fact that 6(x,y) has different initial conditions on the
-.:.

W variable x for these two cases. However, the condition

‘f 6(s,0+) = 8(s,0”) assures continuity of the solution for

all values of y.

' For y > 0, the solution to the second order, linear
i

N differential equation has the general form

-
’:

>,

'ﬂ
' 8(s,y) = Ar(s)exp(y/VsV_/a) + Bi(s)exp(-y/vsV_Ja) (B.10)
v

a
:j The condition for convergence as y »+ « requires that
~

= A,(s) = 0, and the condition on 5(s,0") requires B;(s) =
" 1/(2s). Therefore,

N
i ::;
! ‘-‘

‘e

‘ 8(s,y) = {1/(2s)}exp(-y/VsV_Ja) (y > 0) (B.11)
4

N

N For the case y < 0, the homegeneous solution is

; as given in (B.10), above, and a particular solution is
ﬁ: Gp(s,y) = 1/s. The general solution for this case is then
2
j: 65
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8(s,y) = 1/5 + Ay(s)exp(y/vV/sV_7a) + By(s)exp(-y/v/sV_/a)(B.12)

Here, the condition for convergence as y + -» requires
B,(s) = 0. The condition on 8(s,0”) requires A,(s) =

-1/(2s). Therefore,

8(s,y) = 1/s - {1/(2s)Yexp(-ly|/V/sV_7a) (y < 0)

The inverse Laplace transforms of these functions

(ref 13):
6(x,y) = terfely/Vhax/ V) (y > 0)
6(x,y) =1 - derfe(|yl/Viax/V_) (y < 0)
where erfc(x) = 1 - erf(x) and erf(x) is given by

erf(x)

1)

;%Lfexp(-wz) dw

Determination of a Similarity Transformation

As noted earlier, it seems reasonable to expect

isotherms to be plotted in the (x,y) plane as y = kx(1/n)

(B.13)

are

(B.14)

(B.15)

(B.16)

In such a case it is possible to reduce the partial differ-

ential equation in x and y to an ordinary differential

equation in terms of a similarity transformation (x,y) =~

66
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A0
n:;‘ .
}: n. To determine the appropriate functional relationchip
o~ between n and (x,y), the solution form is assumed to be
S n o= xPyP(E)° (B.17)
" - [oe]
T Using primes (') to denote differentiation with respect
”; to n, we have
‘o 36 _ 88 3n _ 4y an
T 9x an 9x X
b~
e 06 98 9n _ 5y DN (

== =2 - g 2 (E.18
o 5y o ay 0y )
-

976 _ 38 (4 bny 2n w b%n? b2
ST oyr T an O ) ey 20 Ty Y
N
&
ﬂ Substituting these expressions into equation B.5 yiclds
9
{
", 2 2
2 Znor - dellplbipagn 4 por(lellglbs  loligdly  (5.49)
~ Multiplying this expression by (g) and simplifying yields
x
">
5 2
N not - (B alimlygzen 4 (2 (prlela) o xlefal) .
. (B.20)
i: Inspection of equation B.20 suggests a similarity
1§
SO transformation of the form ny = y?/(ax/V_), in which case
)
? equation B.5 reduces to the ordinary differential equation
o
\.:_'
"
-1 4na®" + (2 4 ny)et = 0 (ny = y¥/(ax/V_))  (E.21)
‘.\
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9y
o There is, however, a somewhat more convenieont (and
kX
AN more conventional) choice for n. If b is chosen cqual to
L : .
. unity, then the last term on the right hand side of equation
. B.19 is zero. The remaining term on the rigsht hand side of
o

. . 8l o)

-7 the equation must have (ax/V_)/y? equal to nt for self-

1

similarity. Since b (the power of y) has already been
chosen to be one, p must equal -2.

An additional simplification occurs if n? is chosen
to be (ay)?/(ax/V_) (i.e. n= t(ay)/vax/V_, with the factor

(a) absorbed into the non-dimensional variable). By the

A AN

construction of n, a and ¢ must be set equal to -+ so that

N ‘..‘-,.-.,‘s;g-._a,f." AR

e n = ty/V/hax/V_. 1In this case, equation B.20 reduces to
pov.
e
- 8" + 2n0' = 0 (n = +y/VEax/T_) (B.22)
(
ANE
ﬁﬂ
e The solution to equation B.22 has the form 6 = A + Berf(n).
-
o Application of the boundary conditions (B.7) again yields
)
L equations B.14 and B.15 as the required solution to the
.ru differential equation B.5.
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Appendix C. Condensation and Io n:-

The equation of motion for a particle movins wi®h
respect to a fluid may be obtained by deterninins the
forces which act on the particle and applyir.s Newton's
Second Law.

In general, three forces will act on =such 2 pariie

a buoyant force, equal in magnitude to the welsht of *h

displaced fluid; a sravitational force, equal i

s

to the weight of the particle; and a viscous drag

]

roe
which depends on the geometry of the particle under con
sideration and 1s directed to oppose the velocity of th
particle relative to the fluid.

If the vector representing the acceleration due to
gravity is assumed to be parallel to the y-axis, these

forces can be modelled by:

Buoyant force: (pf x Vol x g)3

Gravitational force: -(op x Vol x ¢)j

Viscous Drag: -{C.(%p.v_+v_)A}{

: plape¥ "7 JAME,

where the subscripts f and p refer to vroperiics of the
fluid and the vparticle, respectively; Yol ia the volune
of the particle and A is its frontal areca; v 1o the
veloecity of the particle relative to *he Cluid and ¥
a unit vechtor alicned with Vo ansd oL, dis the non=aimer-
2ional confficient of drars baused on Crontal aren.,

Ty

i

e

=N
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The value of CD is dependent on the veometry of the
particle and on the Reynolds number of the particle with
respect to the fluid.

If the particle can be approximated as a sphere then
CD as a function of Re can be determined from the plot found
on page 17 of ref 1. For the purpose of integrating the
equation of motion for the particle it is most convenient
to establish an empirical functional relationship between
CD and Re.

Stoke's approximation gives CD = 24/Re for very low
Reynolds numbers, and CD is approximately constant for the
range 2000 < Re < 200,000 (CD = 0.405). 1In the interme-
diate range, 0.25 < Re < 2000, the data suggests a poly-

nomial relationship between log1o CD and log10 Re.

Therefore, relationships of the form

r = AE% + BE3 + CE% + DE + F

r = FE?2 + G& + H

(C.2)
r, = lor C
: 10 7D
£ = 1lo Re
10
are assumed, and a least-squares curve can to fiftted to
the data presented in ref 1. The reosults of these curve
Fits nre:
o= 0,003118% - 0014083 4 0.11582 - 0.8887 4+ 1,42 (7 )
= 0.10227 - 0.8945 + 1.42 (¢.4)

~
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‘o
}i Table C.1 coumpares the values of CD from ret 1T with
5; those obtained using the quadratic and quartic polynonizl
‘% .
{}j approximations given above. In both cases, arreencnt betwoen
:Ei the accepted value and the approximation is very vood (with-
%i in three per cent in most cases).
;f For the situation under consideration here, Fe 1o 1o
‘;; be evaluated using the magnitude of ;r' With this relation-
x ship between vr and GD’ the equation of motion for a svhare
S can be numerically in-wegrated to obtain ;r(t) and arain %o
o determine the position vector, T(t).
Tig Let the velocity of the particle be denoted by v(%)
'i_-’.jf = uft): + v(t)} (note that v(t) is not the relative velocity
fﬁ between the particle and the fluid). If the sphericsl par-
k; ticle is assumed 1o have been formed instantanecously at fine
e t = 0, then v(0) = Vm, where V_ is the vector representin:
E}f the fluid velocivy. VFor the case where the free strearx
;;” velocity is perpendicular to the gravitational acceleration
]
L vector, V_ = V_1.
k;“ A qualitative argument establishes the fact that
-’
f: u(t) = Vm under these conditicns. Since the drags force
4
depends on the relative velocity between the particle and
the fluid, there can be no viscous drac on the particle ot
i b= 0. The gravitational and buoyant forces do rot
@
“waet bhe x-corronent of velocity, so u{At) wmunt cqual
L. AL time 4 o= At, therefore, Vr must be pervendic-
oty free stresn veloaity with no conponent 7 bhe
L
. T™his arcumant can be extende:d So ony b
T




Equations C.3 ¢d C.4 with Measured Data
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t to show that, for V_ = V 1, there can be no z-cniran-nt
to the vector ;r'

Furthermore, this yields the result that Gr = +3, and
since the spherical particle is expected to fall under the
influence of gravity, Qr = -3,

Therefore, for the case under consideration the
equations of motion are given by

u(t) = v
o x Vol x ¥ = (pf - pp) x Vol x g
1 2
+ Cp(dppvia) (C.5)
v(0) =0

The volume of a sphere is given by “arr®, and its
frontal area is nmr?. Using these relationships in the
equation above and dividing both sides by Op x Vol yields
the following result:

u(t) = Vv
vo= (p-1)g ¢+ CD(3/8r)6v2 (C.6)
v(0) = 0
where § is defined by § = pf/pq. It is also convenient
to define the rarameter ¥ to be g% = (6-1)r. A rood

1

approximation to thia value ja g¥ 32,1 ft/sec?,
When the acceleration due to effactive rravitational

force (%) is balanced by the viscous dras forece, the

R LR o LY
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spherical particle will fall at a constant velocity for
all time from that point on. This possibility must be
accounted for before attempting a numerical golution to
equation C.6. For this purpose, the condition 7 = 0 if
CD(3/8r)6v2 > g* is added to equation C.6.
Several types of numerical schemes were used to

integrate equation C.6. her these schemes were conpared
it was determined that a simple forward differencing tecr.

nique gave sufficient nccuracy in its results, The for-

ward difference equations employed in this algorithm are:

v(it+tat) = v(t) + At(CD(B/Sr)ﬁvz - 32.1), if
CD(3/8r)6v2< 32.1

v(t+Aat) = 0, otherwise (C.7)

For the purposes of this study, the fluid properties
were taken to be those of nitrogen at -280 F and 1 atm
pressure and the value of pp was chosen to be the density
of water at 32 F.

The numerical integration was performed on a Hewlebt-
Packard model 9845 desktop computer using a program written
in BADIC., The results of the numerical integration for
some values of r and At are presented in the tables which

follow,
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%ﬂi Table C.2.

t“' Results of the Numerical Integration of Equation C.7.

p 5 : At = 0.1 sec

& t (sec) Distance Travelled (ft)

‘;} 2r=0,05 ft|2r=0.01 ft|2r=0.005 ft
e 0.1 0.16 0.16 0.16
- 0.2 0.64 0.64 0.64
e 0.3 1.4 1.4 14

o 0.4 2.5 2ol 2.3

‘:"‘-: 005 3-9 307 3-1&

.-A'.. 0.6 5.6 5.1 4eb
e 0.7 7.6 6.6 5.7

\ 0.8 9.7 8.2 6.9
e 0.9 12 9.8 8.1

R 1.0 15 11 9.4

3N

o

.-_:.:

o Table C.3.

- Results of the Numerical Integration of Equation C.7.

i" At = 0.01 sec

L t (sec) Distance Travelled (ft)

8 2r=0.05 ft 2r=0.01 ft

o 0.07 0.0016 0.0016

- 0.02 0.0064 0.0064
/ 0.03 0.014 0.014
e 0.04 0.026 0.026
~ 0.05 0.040 0.040
o 0.06 0.058 0.058
. 0.07 0.079 0.078

5% 0.08 0.10 0.10

| 0.09 0.13 0.13

20 0.10 0.16 0.16

..';

<N

o)

s

b3 75
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t? Appendix D. Property Values and Sample Calculatiocns
-

- In order to determine the values for the various par-
TJE ameters which have been shown to be important in this Hey-
"

- nolds number simulation technique (e.g., Re, L), it is

gy necessary to obtain various property values as functions
i:; of pressure and temperature. In many cases, these values
‘s

-“’

.- can be read from tables (see, for example refs 14 and 15).
i

o For convenience, expressions which can be used to evaluate
. %

&: many of these properties are summarized below.

SN

¥

%

l_§. Densit!

o

( . :

.. From the ideal gas law, the value for density can

iﬁ be determined from p-= é%, where R is the gas constant for
o the particular gas.

:, The value of R is determined from R = R/M, where R

.:\-

o is the universal gas constant (1545.43 (ft-lbf/R-lbm mole))
ii and M is the molecular weight of the gas. For air, R =

F: 1716 ft?/R-sec? and for nitrogen, R = 1775 ft2?/R-sec?.

S

i

“J

X

o

ASH Viscosity

‘-E::
55 The coefficient of viscosgity, uw, i1s not strongly

L
L dependent on pressure. An empirical relationship betwecn
o

R 76
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Re:
iz y and T is given by Sutherland's law to within #2% when
Ny T is within prescribed limits. The relationship is
L .
J'\-:; 3/
N L - (7 )2 P28 (D.1)
:/}'\:: 0 0 w2
r For nitrogen: o = 3.473x1077 slug/ft-sec, To = 491.6 R,
i S = 192 R, and 180 R < T < 2700 R.
. For air: wo = 3.584 x 1077 slug/ft-sec, Ty = 491.6 R,
|\
A S = 199 R, and 300 R < T < 3420 R.
AN
'C: The value for the kinematic viscosity, v, can be
e
:f{ determined from the relationship v = u/p.
7
-\:.t
>
%ﬁ
WA Thermal Conductivity
.
- A Sutherland's law relationship also exists for the
L coefficient of thermal conductivity, k.
-{ 3 Q
g k T / To + S
: X _ (L y2ale * o
o2 " (T, T 7S (D.2)
\.
2
For nitrogen: ko = 0.0140B/h-ft-R, To = 491.6 R,
s S = 300 R, and 260 R < T < 2160 R.
o For air: ko 0.01395B/h-Tt-R, To = 491.6 R,
@3
¥ S = 350 R, and 300 R < T < 1800 R.
$ ’
xf The value fer thermal diffusivity, a, can be derived
.
"
:f from a = k/pe

> P
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Sample Calculation

In order to illustrate the use of the techniques out-
lined in the paper to simulate high Reynolds number f{low,

a sample calculation is carried out below:

It is desired to simulate Re = 1x107 on a flat plate
two feet long and one foot wide. The tunnel total temper-
ature is approximately 540 R, and total pressure (for the
tunnel air) is about 1 atm (2117 1bf/ft2).

Liquid nitrogen is used as the cool fluid, so its

properties are evaluated at T = 180 R. From ref 14,
u, T 4.611x107° 1b_/sec-ft = 1.432x1077 slug/sec-ft
kc = 5.460x1078 B/h-ft-R

At a pressure of 1 atm, thc density of nitrogen is
0.2173 lbm/fta; this value can be used to determine the

required V_.

Re pchﬂ/uC = 1x107, so

(1x107)/(p £ /u)

(D.3)

<
I}

The quantity pcl/uc is approximately 9.42x10%, so
the required velocity is V = 106 ft/sec.

Chapter V outlines the procedure for determining v,
from V_, Tt’ and Py -

The density of the tunnel air, 0gs is asgumed cqual

to 2.3x1073 slugs/ft? at T, = 540 R,
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2 q = #p V2 = £(2.3x1077)(106)2 = 12.92 1b./rt
.\.
vy Pe= by - G = 2117 - 12.92 = 2104 1b,/ft (D.4)
l‘
< pS/Pt = 0.99)
N
\.‘
: For air at low temperatures, y = 1.4, and the ratio
o (y-1)/y = 0.286. The isentropic relations give
5 Ts = (0.998 Tt = Tt = 540 R (D.5)
A
N
F.\
. and ¥'(T_ = 540) ~ y = 1.4, so T_ = 50 R.
:i The value of ps' is found from the ideal gas law.
A
.J'
‘ﬁ QS’ = ps/RSTS = 2104/(1716 x 54,0) = 2.27x1073% slugs/ft?3
- .

=0y (D.6)
4
f: Since Py = ps', p, can be taken as 2104 1bf/ft2, and
v
' - - 2
N therefore P, Pq 2104 lbf/ft .
~ It is now possible to determine the values v, and @, -
N 0, = P /R,T, = 2104/(1775 x 180) = 6,58x1072 slugs/ft’
- = = =7 T3 -5 21
%: Vo, UC/DC 1.432x10°7/6.58%x10 2.176x10 ft /S.?D 7)
- - - -3 -3
fi a, kc/oc%>c 5.46x1073/(6.58x1073x0,255)
t = 3,25/ 1bm—ft2/slug—hr = 0.101 ft?/nr
¥ = 2.807x107° ft?/sec
s
>
18 where the value of c¢ has been taken as 0.255 B/lbm-H.
i z
:l: 79
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‘2: _ With these values for a, and Vi, it is possible to

- : determine the value of the parameter L. Since the boundary

‘

- layer is expected to be turbulent for Re = 1x107, the

.t' 3

< value to be calculated is Lt = 3.3¢ac7vm + 0.379vc7VmKA°.

g ) ¥

-2 /ozc/\[oo = V2.807x10 /106 = 5.146x107% f£t’?

S _ 1

o 7V IV, = V2.T76xXT0 77106 = 4.597x1072 r/s (D.8)
SR 3 3 3

2/10 — 2/102 »]‘23 ft/lo
i

33

) -2 Y |

0y This gives L, = 2.262x1072 f£t/2,  The constraint on
b h requires h > Lt/z, and LI/Z =~ 0,032 ft, so

.,"- |
-'.':’- |
o h > 0.032 ft (D.8)
l."
( X .

o To determine the required mass rate of flow, the

n_;::

:i applicable constraint is m/w > DchLz/z' SO
- m/w > 6.58x107° x 106 x 0.032 = 2.23%10 %2slugs/ft-sec

- (D.9)
3; For the plate under consideration, w = 1 ft, so

\

= B> 2.23x1072 slurs/sec = 0.719 1bﬁ/sec (D.10)
REN i

~ Tf condensation or icins is expected to be o problern,

;E the value £/V_ should be caleculated and then used to sen

‘\0 0
'ﬁﬁ if condensation will effect the boundary laver,

L . . , o

KON For this exercioce, K/Vm = 0,02 see, A spherical par-
ét

-

‘_‘-

'1:;‘ =0

@
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ticle with a diameter of 0.01 ft ( about ! in) will fall

approximately 0.006 £t (0.07 in) in this time. For the cacze
under consideration, h >> 0.006 ft, so condensation and icing
are not expected to effect the Reynolds simulation.

The value for the Reynolds number can be determined fron

the flow properties which have been established above.

Re, = V /v  =(106)(2)/2.176x107° = 9.74x10° (D.11)

This is very close to the desired value of Re = 1x107,

It is in~tructive to calculate the value of Res, the
Reynolds number based on properties of the tunnel air. 1%
has already been established thatp = 2.27x10 3 slugs/ft?,
and by is found to be 3.854x1077 slugs/sec-ft. Therefore,
v, o® 1.698x107"% f£t?/sec, and

P

Re = Vmﬂ/vo = (106)(2)/1.698x107* = 1.25x10° (D.12)

~
.

From this, the ratio Poo/He( can be found to be 7.8,
The coolins technique described in this parer has therefore

reulted in an increase in effective Kevnolds nunber of nearly

an order of marnitude.




Appendix k. The

The param
constraints developed in Chapter
ation egarding the temperature
straints.

This temperature dependency

by applying the Sutherland's law

From the ideal gas law,

T
2 - (B

T
0 (I (2

where Ty is taken as 491.6 R, py
If vy is defined

sives

5 m [

v TV, T + 5
2o ()2 2y (e
- Vo To T + 5 p
0
AN
s’_‘\'
L7
p - . . .
L A similar expression can be
F.: diffusivity, a. 1If e is assumad
s | t
S ko/oocj, "2 result is
o r
e
EQ 53 ( )/2 _u’}(ﬂ.o.\
G IR I
s %o + D
P:':‘:
P "o
Pf< The values for 5, 07, and T

eter L which appears in the

Appendix D along with the ideal gas law.

to be po/poe, then Sutherland's law

Parameter L i
\
\

V containg all of the inforu-

dependency of those con-

can be made cxplicit

equations presented in

(E.1)

= 1 atm, and py = po/RTy.

ol
4]
e

developed for the therumal

constant, and for w, =
(2.3)
are cilven in Appendix D,
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In the case where the tunnel pressure, v io rear

the same as atmospheric pressure, the quantity 1,/ 1o

nearly unity. With this assumption, and “rom *ie dein:

of L, the temperature dependence of L ic cxyressed an
1 m
LK _ ( T )/’4{ /ﬁ—‘—(T +V_\,_)/2 + Vo VOO(LLZ‘>’?11
. *a YA
L, = (To) {/dg7“(T +S") }
T M — To+0\Ve )4
+ (53)2{9v07vm(T1;3>'%3 10

—3

from equations E.4 and E.5 it isg appar.r ~nai L

b
>

an increasing function of temperature, as wel
ing function of free stream tunnel velocity., Tihece oy

teristics are illustrated in the figures that Toll.w,

[
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