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like to thak Capt. Bill Locken, 2Lt Mark Hoffman, 1Lt Jeffrey Simmers,
and 2Lt Scott Feldmann for their assistance and guidance,

Finally, I want to express my love and appreciation to my wife,

Ellen, for her patience and understanding during this research effort,

2Lt Brian H. Mayhew

ii

LIPS « YO
. : '. B ‘~1$(\‘ ‘\ .

’c‘\"\'.'-'-\'.".




Contents

Preface o« o« o o« ¢ o o o o s s ¢ s o o o o o @
List of FIigures « « o« « o o« ¢ o o o ¢ o o o o
List of Tables . L] L ] . L) e . L] . L] [ L] » L] *

List of SymbolS o ¢ 4 o o ¢ o ¢ o o o s o o o

Introduction « « « o« ¢ o o o o« o o o o

Ba. ground . . o« ¢ ¢ o o s o o o
Problem « ¢ o« o ¢ o o o o o o o o &
APProach o ¢ v - o o ¢ o o o o o o
Assumptions . ¢« ¢« ¢ . ¢ ¢ o s 0 . W
Presentation . ¢« ¢ ¢ ¢ ¢ ¢ ¢ o o &

UH-60A Bla0k Hawk Model . ¢« o ¢ o o o L]

Actuator Models ¢« o ¢ ¢ ¢« o ¢ o o
Trim Conditions .« ¢« ¢« ¢ ¢ ¢ o ¢ o &

III. Multivariable Control Law Theory . . . .

Overview . . ¢ ¢ ¢ ¢ ¢ o o o o
Regular Versus Irregular Design
Asymptotic Characteristics . .
Transmission Zones . . « « « .
Measurement Matrix Elements . .
Closed-Loop ROOES 4 ¢ ¢ ¢ o o o o &
MULTI Computer-Aided Design . « . .

Individual Multivariable Digital Control
Laws and Results « « ¢ ¢ ¢ ¢ ¢ o o o &

Requirements .« ¢« o o« o ¢ ¢ o o o &
Inputs and Qutputs . . + ¢« ¢« ¢ o &
Controllability and Observability .
Transmission Zeros . . « ¢« ¢« « o &

Integral Plus Proportional Compensation

A Design Procedure . . ¢« ¢« ¢ ¢« o+ &
Open Loop Stability « ¢« ¢ o ¢ ¢ « &«
Yaw Rate Command System . « « « o
Coordinated Turn Command System . .

Vertical Rate Command System . .

it

e e e e 0, L me g™

“' l.."'. R Wy

- ‘d '-'."."

RIS . . .
"_';{h’_'. Lh(_km e e

Page

ii

Xvi

xviii

xxvi

EW NN =

(%}

41

41
51
42
42
4y
46
48
51

106

LU IR G LGRS




v

------------- T

Nd LA NS ML A A eI L U R g Rt AL A AT VSIS Ay ‘_:,.,,':,_.‘_._":_v.. A Sl AR,

iy ¥
Zx

p

x*“\i
L‘tl \

g

e
oy

“

T Ve RObUSt CONtroller DESIZN « o o o o o o o o o o o o o o o o o 144
5. : ‘\iﬂw\
R T Design MethodOlOZY « « o o o o o o o o o s o o o o o o 145
< Yaw Rate Command S)'Stem ® & & e o e ®° o & 2 s & & o e 0 1“6
‘ﬁ Coordinated Turn Command SySte€m « o« o o o o o « o o o & 157
4" Vertical Rate Command System . « o ¢ o o o ¢ o ¢ o o o 170
;5 VI. Conclusions and Recommendations .« « o « ¢ o o o o o o« o o & 192
. Thesis Summary L) L] L] . L] L . . L] . . . L] . . L) * L] . L 192
‘*f: Con01usions L) . * * . . L] L] L] L] L] . L] L] - * L] L] L] L] . L] 193
:‘( Recommendations s & ® o o o 8 © & e o e 6 & 0 & & o o o 19)4
;:: Bibliography * ® L] L ] L ] * L] . - . L] L] L] . L] o L] . L] - * L[] L] L] L) L] 196

Appendix A: Nonlinear Simulation of a Symmetrical Aircraft . . . A-1

Lok _
§ Appendix B: Coordinated Turn With Computation Delay . . « « « & B-1
f % Vita L L] L] L) L] . . * L L] L] L[] L2 . * . L] L] L L] L] . L] * L] . . L] L] . 232
x *
s 4
ey

g ]
o
N
i
‘ : . Accession For
) | L—_"’_—_’M"JA ‘
- NTIS GRA&I
5 DTIC TAB .
('*‘ Unannoauend O
ﬁz JuSTﬂ'_fi\’:ﬂ‘.,lC‘.ZL____:—
: ‘ BY oo e e
Distri‘outicr/ ]
.I “.;Vﬂilubilihr (_‘odas__
\::‘ —7 7 javail sndjor
: i‘ ' al
3 Dist | Speces
Ly ‘
.“ l
N 1
: A |
. '(""-‘
5N '\;o“
.i" Lt 4
wﬁ
AN
P iv

SRV DRAAS SIS AT



List of Figures

Figure Page
1 Helicopter Lift Vectors « o o« o o ¢ o o s o o o o o o o 11
2 System Block Diagram - Continuous DesSign « « o« ¢ « o« + & 26
3 System Block Design - Discrete Design . « ¢« ¢ ¢ o« o o & 27
4a Output Responses, wgx(ft/sec) and rBrad/sec), for the

Yaw Rate Command System (VEAS = 20 Knots)s = v ¢ o o & 55

4p Output Response, p for the Yaw Rate Command System

(VEAS = 20 knotS? * * L] . * . L] ® L] . * . * 56
e Output Response, O, for the Yaw Rate Command System

(VEAS = 20 knOtS). ') L) . . . . . ] . . [ . . . . . . [ 56

4d State Responses, ¢(rad.) and qB(rad/sec) for the Yaw Rate
Command System (VEAS Z 20 KNOLS) o ¢ o o o o o o o o o 57

he State Responses, up and v, for the Yaw Rate Command
system (V/EAS = 20 knotS) L) L] . L) L] L] . . . L] L] . L] L) L] 57

4r Longitudinal Control Surface Responses, AG and AéS
for the Yaw Rate Command System (Vp,g = 20 knots? . . 58

g Lateral Control Surface Responses, ASa and Adép, for
the Yaw Rate Command System (VEAS = 20 knots). « « .« o« 58

5a Output Responses, ©(rad.) and pg(rad/sec),
for the Yaw Rate Command System With Actuators
(VEAS = uo knots) L] L] L] * L] * L] * L] L] * . L] . * . * . 63

5b Output Responses, wp(ft/sec) and rp(rad/sec),
for the Yaw Rate Eommand Systenm Eith Actuators
(VEAS=u0knOts)...... e o o o o o o e » 63

5¢ State Responses, ¢(rad.) and ag (rad/sec) for the Yaw Rate
Command System With Actuators (VEAS = 40 knots) . . . 64

5d State Responses, ug and vg, for the Yaw Rate Command
System With Actuators ?VEAS = 4O Knots) « ¢ « o o o & 64

5e Longitudinal Control Surface Responses, AGe and AGC, for
the Yaw Rate Command System (Vp,q = 40 knots) . . . . 65

5f Lateral Control Surface Responses, AS_ and AS
for the Yaw Rate Command System Witg Actuatgrs
(VEAS : uo knots) [ ] [ ] . L] * . . * - o0 L] - L] L] * L] L] L] 65

AN 7% TS TN T et . et e Ve
PN A RGLS AL RS RSN EERESG VA LR




\'%{a., 5 0 - ) A R 6 i vy ARSI e PRV . TV, . W “?."}";V‘»"T‘?'-""'“"‘W
b ;
X
.\‘J
g?f1 RN ba Qutput Response, 0O, for the Yaw Rate Command System
-t ety
e €y s ": V = 60 k t . e @ ® & © e o & & O s o s o s .
;‘.:: s ( EAS nots) 68
‘L 6b Qutput Response, pgp, for the Yaw Rate Command System
-‘ (VEAS = 60 knotS? . . . . . . . . . . . . Y . . . 68
‘ 4
[}
;f ‘ 6c Output Response, wy,, for the Yaw Rate Command System
d\-. (VEAS = 60 knotS? e o o e o o . ¢ o o o & o e . 69
. 6d Qutput Response, rp, for the Yaw Rate Command System
5:}2 (VEAS = 60 knots e @ & o & o e o o e ° & s o s & s 69 i
2 !
‘525 be State Responses, ug and vy, for the Yaw Rate Command ;
,f‘; System (Vppg = 60 knots) o v v v v 0 v 0 0 v v 0 v v 70 }
) 6f State Responses, ¢(rad.) and q (rad/sec) for
$}¢ the Yaw Rate Command System ?VEAS = 60 knots) . . . . 70
.
{Q$ 6g Longitudinal Control Surface Responses, AS_ and AS§
(* for the Yaw Rate Command System (VEAS = go knots? . e 71
i‘. 6h Lateral Control Surface Responses, AS_ and Adp, for
W the Yaw Rate Command System (V = 60 knots) . . . . 71
N EAS ©
ﬂé$ Ta OQutput Response, O, for the Yaw Rate Command System With
233 _ Actuators (Vg,g = 60 knots) & v ¢ o o v 0 o o o0 . T4
- @ Tb Output Response, Pps for the Yaw Rate Command System With
;j‘ Actuators (VEAS = 60 knots) e & @ o & 8 o 8 ¢ 8 o ° 7u
fa
X
fﬂﬁ Te Output Response, wg» for the Yaw Rate Command System With
3N Actua*ors (V = B0 KNOtS) o« o o o o o o o o o o o @ 75
‘ EAS
— 7d Output Response, rg» for the Yaw Rate Command System With
! Actuators (V = 60 KNOtS) o« o o o o o s o o o o o @ 75
Ly EAS
Y Te State Responses, ¢(rad.) and qp(rad/sec) for the Yaw Rate
XN Command System With Actuators (Vgpg = 60 knots). . . . 76
e ¢ State Responses, up and v for the Yaw Rate Command
AL System (Vpuq = 60 knots? e o s e o s o s e 76
* ﬁ 78 Longitudinal Control Surface Responses, A6e and AGC,
b}f for the Yaw Rate Command System With Actuators
-_— (VEAS = 60 knOtS) e & ® & e & o o 8 & @ & & © 3 & s o 77
jftq
o 7h Lateral Control Surface Responses, A§, and AS
i;}: for the Yaw Rate Command System Witg Actuators
f.\.; (VEAS=60knOtS)...-.............. 77
— 8a Output Response, ¢, for the Coordinated Turn Command
‘*: l}i‘, System (VEAS = 60 knOtS) e e o o & ¢ & o ® o & & o s o 82
3
N
¢
e vi
X
" ‘J \. Yy \".‘\“.‘\,‘-;\_,*._,\ ‘)\ o -.__'_\_\,\ .‘_.,._. S R g




8b

8c

8d

8e

8f

8g

9a

9b

9c¢

9d

e

9f

9g

10a

10b

10¢

10d

Output Response, 0, for the Coordinated Turn Command
System (VEAS = 60 knots) ® & o6 & o & ® 6 & 8 o e a2 e »

OQutput Responses, Vg and wyn, for the Coordinated Turn
Command System (CEAS 60 KNnotsS) v ¢ ¢ o ¢ ¢ o o o o o«

State Response, uyp, for the Coordinated Turn Command
System (VEAS = BO knOts) ¢ @ o e o o o o6 o & 8 s e o @

State Responses, Pg, 4 and r for the Coordinated
Turn Command System ?VEAS = knots) e o o s e e o »

Longitudinal Control Surface Responses Ade and Adc,
for the Coordinated Turn Command System
(VEAS = 60 kHOts) . . . . . . . . e 3 . . 3 . - . . .

Lateral Control Surface Responses, AGa and AS for the
Coordinated Turn Command System (VEAS = 60 Enots) . .

Qutput Response, ¢, for the Coordinated Turn Command
System (VEAS = 100 knOtS) e © 5 o & e & o & 5 e & o @

Output Response, O, for the Coordinated Turn Command
System (VEAS = 100 knots) * e & 6 e 6 o s o s s s o .

Output Responses, Vg and wp, for the Coordinated Turn
Command S)’Stem (VEAS = 100 kl’lots) e ® o o o & o o o o

State Response, ug, for the Coordinated Turn Command
System (VEAS = 100 KNOES) v o o o o o o o o o o s o o

State Responses, Pg, 9p» and rnp, for the Coordinated
Turn Command system ?VEAS = ?00 knOtS) e o o e o o e o

Longitudinal Control Surface Responses, AGe and AGc,
for the Coordinated Turn Command System
(VEAS s 100 kHOts) . [ . . . . 3 L] . [ [ . . [ . . [ ] L3

Lateral Control Surface Responses, AS§_ and A§_., for the
Coordinated Turn Command System (VEAS = 100 knots) . .

Output Response, ¢, for the Coordinated Turn Command
System (VEAS = 1)"0 knots) ® ¢ o & 8 o e ° o & & & & @

Output Response, O, for the Coordinated Turn Command
System (VEAS = 1’40 knOtS) e o o @ ¢ e ® o & 8 o o ® »

Qutput Responses, Vg and w for the Coordinated Turn
Command System (VEAS = 190 KnotsS) & o o o o o o o o o

State Response, up, for the Coordinated Turn Command
System (VEAS = 1“0 knOtS) » @ @ e o o ® e o o 8 o e

vii

83

83

84

84

85

85

90

91

91

92

92

93

93

96

97

97

98

.......




z%l . . ’ - - -4‘ X -. o . - - ' . ’ "N - -.‘- - et L Y ‘.~. ..-.-- .‘-.‘- <. .- . s <. - .. =, "- b -. .— “~ N ----.
{l
g,
-'._
L~
.;4 . 10e State Responses, Pg» 4 and re» for the Coordinated
N ];;f Turn Command System ?VEAS = 1&0 knots) « « « o 4 o . 98
i 10f Longitudinal Control Surface Responses AGe and Aéc,
Xz for the Coordinated Turn Command System
) -
J‘\ (VEAS-U-IOknOtS).................. 99
.5\
ﬁ 10g Lateral Control Surface Responses, AGa and Aép, for the
"y Coordinated Turn Command System (Vp,q = 140 knots) . . 99
FWA 11a Output Response, 0, for the Coordinated Turn Command
2 System With Actuators (Vg,g = 140 knots) . . « . . . . 101
N
A
it 11b Qutput Response, ¢, for the Coordinated Turn Command
" System With Actuators (VEAS = 140 knots) « ¢« ¢« ¢ ¢ o & 101
i;i 11c Qutput Responses, vy and wg, for the Coordinated Turn
4i3 Command System With Actuators (VEAS = 140 knots) . . . 102
2
AV 11d State Response, ug, and Output Response, Vg, for the
N Coordinated Turn Command System With Actuators
.. (VEAS = 1“0 knOtS) e ® © ® 6 8 6 6 e o e o & e & o ° o 102
iﬂ 11e State Response, up, for the Coordinated Turn Command
vl System With Actuators (Vpag = 140 knots) . . . . . . . 103
"
@ 11f State Responses, Pg» dp» and rg, for the Coordinated Turn
. Command System Wlth Ectuators (VEAS = 140 knots) . . . 103
D
2l 11g Longitudinal Control Surface Responses A§_ and AS _,
N e ¢
;¥ for the Coordinated Turn Command System With Actuators
\::' (VEAS:1uO knots) L] . L] * L] L] * L] L] . . * * * -* - . L] [ ] 10“
. 11h Lateral Control Surface Responses, A6a and A8, for
ﬁ; the Coordinated Turn Command System With Acguators
::: (VEAS-'.1“0knOtS).................. 101-3
*Q 12a OQutput Responses, h, and wp, and State Responses, ug and
) vg, for the Vertical Rate Command System
_ (VEAS = 20 knOtS) ® ® o ® 6 & © & & & & 6 o & ® o ® o 112
o
" 12b Output Responses, 0 and ¢(rad) and rB(rad/sec) for the
ol Vertical Rate Command System (Vp,g = 20 knots) . . . . 113
o5
fea 1 12¢ State Responses, P and qnp, for the Vertical Rate
pvd Command System (Vg g = 20 knots) + « ¢ v v o ¢ o o o o 113
.'3
‘:: 12d Longitudinal Control Surface Responses, AGe and AGC,
oy for the Vertical Rate Command System
, ¥ (VEAS = 20 knOtS) e ® & o ® & ® 6 o & e o » e o o+ e o 11“
—
DA
.". - .l.
oY
G
. viii
h ‘..‘ .l 1 'hl ; v . v<’- - -1"-' - - - -




thy)
et
Ay
CJ
22
"3 12
‘.‘ e
) ':j:
1 13a
N
X
13b
-
A
“i 13c
N
" 13d
.'f.
"::
» 13e
N
" 14a
wy
.
4 14b
i ‘i’ 14ec
oy
&
¥
t& 144
o tl4e
"'!
?'1
‘ ,3 14f
- g
-
. 14h
~
,
[% 15a
&
- 15b

™

Sep

<
<

= el
Ly N

e
394

AN PG A (N PR AN

I R N A N A L NI o I S A B ) RO NS

Lateral Control Surface Responses, AG and Asp,
for the Vertical Rate Command System
(VEAS = 20 knots) L] L d L] . . L ] L] . . . L] . L] . . L] L] .

Output Responses, hp and wg, and State Responses,uB
and vn, for the Vertical Rate Command System
(VEAS = ’40 knOtS) ¢ o & & & ¢ e e & 8 e o 6 & + e o »

OQutput Responses, O and ¢(rad) and rB(rad/sec) for the
Vertical Rate Command System (VEAS = 40 knots) . . . .

State Responses, Pg and q for the Vertical Rate
Command System (VEAS = EO KNOLS) o o o o o o o o o o &

Longitudinal Control Surface Responses, A .an! Aéc,
for the Vertical Rate Command System
(VEAS = uO knOtS) e o @ e 82 o o o o o e o o o o o o

Lateral Control Surface Responses, A6a an . for the
Vertical Rate Command System (Vp,q = 40 2S) e e e e

Qutput Response, h, for the Vertical Rate Command
System With Actuators (VEAS = 40 knots) .+ . 4 . . .

Output Response, wg, for the Vertical Rate Command
System With Actuators (VEAS = U0 knots) .« + eie o o

Qutput Responses, © and ¢, for the Vertical Rate Command
System With Actuators (vEAS = 4O Knots) ¢ o o o ¢ o o

Qutput Response, rps for the Vertical Rate Command
System With Actuators (vEAS = 40 knots) « o o ¢ o o o

State Responses, up and v, for the Vertical Rate Command
System With Actuators (VEAS = 40 knots) .+ ¢ ¢ ¢« o .

State Responses, pnp and qg. for the Vertical Rate
Command System With Actuators (VEAS = 40 knots) . . .

Longitudinal Control Surface Responses, AGe and AGC,
for the Vertical Rate Command System With Actuators
(VEAS = uo kn°ts) L] [ . . . 3 . [ ] [ . L] L] [ L) [ ] . 3

Lateral Control Surface Responses, AGa and AS_, for
the Vertical Rate Command System With Actuagors
(VEAS = l¥0 knOtS) e ¢ 3 8% e e o ® & 6 e ° 6 ° & = e o

Output Response, hp, for the Vertical Rate Commani
System (Vpag = 60 knots) . v v v v v 0 0 o v o oL

Output Response, W, for the Vertical Rate Command
System (VEAS = 60 knOtS) e & e o 8 & & o o 8 ° o & * o

ix

‘.._ -.‘;.( . .‘_.-J_'-.. .._..' ."'. . . ':. . o ;-:' -

114

17

118

118

119

119

121

121

122

122

123

123

124

124

127

127

e e

- A.‘A_AL-‘.A. ataata"a" .

.2




i .

“ﬁ

N2
:;: oA 15¢ vutput Responses, 0O and ¢, for the Vertical Rate

o kﬁv Command System (VEAS = 60 KnOtS) o o ¢ o o o o o o o 128
W ‘
{ 15d Output Response, rg, for the Vertical Rate Command

~ System (Vgag = 60 knots) v o v v v v v v v v o v o o . 128
fi 15e State Responses, p and q for the Vertical Rate

o Command System (VEAS = 20 Knots) o « o o « o o o o o o 129

15¢ State Responses, ug and v for the Vertical Rate

o Command System (VEAS = 60 KnOotsS) v v o o o o o o o o 129
ib 15¢g Longitudinal Control Surface Responses, AGe and A6 for
=N the Vertical Rate Command System (VEAS = 60 knots) .« e 130
>

N 15h Lateral Control Surface Responses, Aéa and A8 _, for

qﬁ the Vertical Rate Command System (Vp,q = 60 knots) . . 130
ol

ff 16a Output Response, hp, for the Vertical Rate Command

F R a = )

:‘ System (VEAS = 100 knots) & ¢ & o o o o o s o o o o 133
S - 160 Qutput Response, wy,, for the Vertical Rate Command

-;:: System (Vgag = 100 knots) .+ « o o v v v v v v o v o . 133
,!

2& 16¢c Qutput Responses, © and ¢, for the Vertica: Rate Command

.{: . S}’Stem (VEAS = 100 knOtS) 2 e o6 e e e o & e s 8 e s o 13“
. tia 16d Output Response, re, for the Vurtical Rate Command Systen

\‘: (VEAS = 100 knots) ® ® ® e e o & o ® o & © & & *o e s o 13“
2

':: 16e State Responses, Py and ap» for the Vertical Rate

EE Command System (Vp,g = 1u0 KNots) o o o o o o o o o o 135

16f State Responses, up and v, for the Vertical Rate Command

.f-: System (VEAS = 100 knOtS) e & e e ¢ o e e o @ o ° ¢ » 135
AR

f}: 16g Longitudinal Control Surface Responses, Aée and AG , for

:: the Vertical Rate Command System (Vg,gq = 100 knots). . 136
= 16h Lateral Control Surface Responses, Aéa and AS_, for the
AN Vertical Rate Command System (Vpag = 100 knots) . . . 136
o
‘\n

Y 17a Output Response, h., for the Vertical Rate Command
'.." System (VEAS = 150 knOtS) e & o & & & e e o & o o 2 = 139
N

- 17b Qutput Response, wp, for the Vertical Rate Command
:;: System (Vgag = 140 knots) o o v v v v 0 v 0 v 0 v o 139
:3 17c Qutput Responses, © and ¢, for the Vertical Rate Command

:ﬁ System (VEAS = THO KNOLS) v v o o o o s o o o o o o o 140
S,

!! o,

:::j Y

~

-

Y, x

@




o

il i
f 15
B

-~
Srletese

‘-.A 2
LGN g e e
PSR

e
aaass s

ARARAR 1N

s e 4 @ &%a

~{ S0

A

»
.
Catalts

:

17d

17e

17¢

178

17h

18a

18b

18¢

18d

18e

18f¢

19a

19b

19¢

19d

RCTAIL LA R Ja g i i e & 8 Shaly
AR At e e et B RTS

Output Response, ry, for the Vertical Rate Command
System (VEAS = 1E0 KNOES) v 4o ¢« & o o o o ¢ o o o o

State Responses, Pp and ap» for the Vertical Rate
Command System (VEAS = TYO KnotsS) v ¢ 4 ¢ ¢ ¢ o o o .

State Responses, ug and v, for the Vertical Rate
Command System (VEAS = T4O Knots) v ¢ v ¢ ¢ ¢ v o o

Longitudinal Control Surface Responses, AGe and Aéc, for
the Vertical Rate Command System (VEAS = 140 knots). .

Lateral Control Surface Responses, A8_ and AS§_, for the
Vertical Rate Command System (VEAS = 140 knots) . . .

Robust Controller Output Responses, O(rad) and
pB(rad/sec), for the Yaw Rate Command Systen
(‘lEAS=20knots).oooou-oooou.oooo-

Robust Controller Output Responses, wB(ft/sec) and
rB(rad/sec), for the Yaw Rate Command System
(VEAS=20knOtS)..-.......-..o....

Robust Controller State Responses, upg and VR, for the
Yaw Rate Command System (Vg,q = 20 knots) . . ¢ . . .

Robust Controller State Responses, ¢(rad) and
qB(rad/sec) for the Yaw Rate Command System
(VEAS:ZOKHOtS)..........w.......

Robust Controller Longitudinal Control Surface
Responses, A6e and A§_, for the Yaw Rate Command
SyStem (VEAS = 20 knOtS) e e ® e & 8 8 & & ° e 8 s o @

Robust Controller Lateral Control Surface Responses,
Aéa and A§, for the Yaw Rate Command System
(VEAS=£OknOtS)oon.oc.-oo-ooooo.o

Robust Controller Output Responses, O(rad) and
pB(rad/sec), for the Yaw Rate Command System
(VEAsleOknOtS)..-...............

Robust Controller Output Responses, wB(ft/sec) and
rB(rad/sec), for the Yaw Rate Command System
(VEAS=UOkHOtS).-................

Robust Controller State Responses, ¢(rad) and
qB(rad/sec), for the Yaw Rate Command System
(VEAS : llo knots) [ L] L [ ] . L] . . L] . L] . L] L] . - . L]

Robust Controller State Responses, ug and vp, for
the Yaw Rate Command System (Vp,o = 40 knots) ....

140

11

141

142

142

149

149

150

150

151

151

153

153

154

154




A DAl £ vt g S0 & 40 Al aty L SURNLANE SN el o oA e el M =i = e Ane it s, D A R PTRTITEI Y
.\’.
»
2
F
O s 19e Robust Controller Longitudinal Control Surface
N Responses, Aée and Adc, for the Yaw Rate Command
;- System pAs = 40 KNOLS) 4 v o v o o o o o o o s o o o 155
\
= 19f Robust Controller Lateral Control Surface Responses,
N Aéa and AGE' for the Yaw Rate Command System
.: (VEAS: OknOtS).................. 155
-
N 20a Robust Controller Qutput Response, ¢, for the
Coordinated Turn Command System (VEAS = 60 knots) . . 159
o
o 20b Robust Controller Qutput Response, 0O, for the
- Coordinated Turn Command System (Vp,g = 60 knots) .. 160
N 20c Robust Controller Output Responses, vg and wg,
. for the Coordinated Turn Command System
.\: (VEAS=6O knOtS) # o & ®» o @ 8 o & e o & B 0o s & o @ 160
:Z 20d Robust Controller State Response, up, for the
- Coordinated Turn Command System 8%EAS = 60 knots) .. 161
on 20e Robust Controller State ..esponses, Py, Qp, and rg,
. for the Coordinated Turn Command System
;: (VEAS=60kn0tS)aooooo-oocuoo-ococ 161
< 20f Robust Controller Longitudinal Control Surface
b G Responses, A(Se and Aéc, for the Coordinated Turn
. Command System (VEAS = 60 KNOES) o « o o ¢ o ¢ o o o 162
Y
:} 20g Robust Controller Lateral Control Surface Responses,
i Ada and AS_, for the Coordinated Turn Command System
:' (VEAS = go knots) L3 -’ . L] - L] L] L * L] . L] L] L] . . L] * 162
21a Robust Controller Output Response, ¢, for the
1- Coordinated Turn Command System (VEAS = 100 knots) . . 164
-~
<~ 21b Robust Controller Qutput Response, 0, for the
:{ Coordinated Turn Command System (VEAS = 100 knots) . . 165
21¢ Robust Controller Qutput Responses, Vg and wg,
N for the Coordinated Turn Command System
‘ (VEAS=100knOtS).......-..-o...... 165
_; 21d Robust Controller State Response, up, for the
& Coordinated Turn Command System 33EAS = 100 knots) . . 166
‘: 2le Robust Controller State Responses, Pgr Qp» and rg»
o for the Coordinated Turn Command System
:-: (VEAS=100knOtS).................. 166
; ~
i —
YRR
2
L4
"I
(4
. xii
4 ¢
~I
L A T e e € o P v e A o TN T 7o e T AT AN NG VI NN NS N L N e




........

R . Robust Controller Longitudinal Control Surface
o e Responses, A8, and AS,, for the Coordinated Turn
) -t Command System (Vpag = 100 Knots) . v o v v v o o v s 167

21g Robust Controller Lateral Control Surface Responses,
S A8, and A§,, for the Coordinated Turn Command System
:‘.ﬁ(' (VEAS = POO kHOtS) * o o & o o s ® & o & ¢ ¢ o o o . 167
398
Y 22a Robust Controller Qutput Responses, hE and wh» and
State Responses, up and vy, for the Vertical Rate
X Command System (Vp,q = 20 Knots) « v o o ¢ ¢« o o ¢ o & 172
ﬁ%; 22b Robust Controller OQutput Responses, 0 and ¢ (rad),
et and rg(rad/sec) for the Vertical Rate Command

System (VEAS = 20 knots) L] . - L . L) . L] L4 L . L . L . 173

22¢ Robust Controller State Responses, pp and qg, for the
; Vertical Rate Command System (VEAS = 20 knots) « . . . 173

. 22d Robust Controller Longitudinal Control Surface
Responses, Aée and A&c, for the Vertical Rate Command
System (VEAS = 20 knots) e @ @ o 8 o o e o o ¢ o o o o 17“

thu; 22e Robust Controller Lateral Control Surface Responses,
A A8, and AS for the Vertical Rate Command System

E 2

.ti‘&" ] (VEAS=£0kn0tS)-................. 17“
‘:’ 23a Robust Controller Cutput Responses, hE and wp» for the

R Vertical Rate Command System (Vg,q = 40 knots) . ... 175

P

”w¢¥ 23b Robust Controller Output Responses, O and ¢(rad), and

rB(rad/sec) for the Vertical Rate Command System
(VEAS=u0kn0tS)..-...-.-......... 175

23¢ Robust Controller State Responses, up and Vg for the
T Vertical Rate Command System (Vp,q = 40 knots) . ... 176
'.‘.v
L g
:: 234 Robust Controller State Responses, Pp and dp» for the

Vertical Rate Command System (VEAS = 40 knots) « . . & 176

) 23e Robust Controller Longitudinal Control Surface
.- Responses, A8, and AS§_,, for the Vertical Rate Command
System (VEAS = 40 knOtS) e ®© © s @ o & » & o o & o & & 177

23r Robust Controller Lateral Control Surface Responses,
AGa and A§_, for the Vertical Rate Command System
(VEAS=E0kn0tS)......--.......... 177

K 24a Robust Controller Output Response, hE' for the Vertical |
. Rate Command System (Vp,g = 60 knots) . ... ... 179



(W
Qi
<+
i
*..\:
_\:__; - 24b Robust Controller Output Response, wg, for the Vertical
‘\.-'\:' o Rate Command System (VEAS = 60 knots) .+ v v o o s o @ 179
SN *
. 2ic Robust Controller Output Responses, © and ¢, for
'-:::‘-f'*' the Vertical Rate Command System (Vp,g = 60 knots) . . 180
'::,:lj‘ 24d Robust Controller Output Response, rps for the Vertical
o Rate Command System (Vp,g = 60 knots) . ... oo« 180
; 2he Robust Controller State Responses, up and vy, for the
TR, Vertical Rate Command System (VEAS = 60 knots) « « « & 181
b
;Ql‘ 24fF Robust Controller State Responses, Pg and dp» for the
by zﬁ Vertical Rate Command System (Vp,q = 60 knots) + . .. 181
; '
. 24g Robust Controller Longitudinal Control Surface
L Responses, A§, and A§,, for the Vertical
\-:‘( Rate Command System (Vp,g = 60 knots) ........ 182
A
T
_-;-.;\ 24h Robust Controller Lateral Control Surface Responses
AN A6a and AS_, for the Vertical Rate
ki Command System (Vgag = 60 KnotsS) v o o o o o o o o o o 152
-'.:\':
oy 25a  Robust Controller Output Response, hg, for the
< Vertical Rate Command System (Vp,g = 100 knots) ... 184
‘.:‘.:«.
RO @ 25b Robust Controller Output Response, wp, for the Vertical
Rate Command System (VEAS = 100 KBOtS) o« o o o o 0 o« 184
i."vl'}:
2,-::; 25¢ Robust Controller Qutput Responses, © and ¢, for the
::“‘t Vertical Rate Command System (Vgpq = 100 knots) ... 185
C s
.' .I'
R 25d Robust Controller Output Response, re, for the Vertical
' Rate Command System (Vg,g = 100 knots) . . . ... .. 185
OhAY
o)
,i_: 2 25e Robust Controller State Responses, up and Vg, for the
,.:}; Vertical Rate Command System (Vgpg = 100 knots) . . . 186
"-‘-.'.‘-
’." 25f Robust Controller State Responses, pp and gqp, for the
Ty Vertical Rate Command System (Vp,g = 100 knots) . .. 186
l‘.f,:
3:& 258 Robust Controller Longitudinal Control Surface Responses,
f-‘&-j‘ AS, and AS,, for the Vertical Rate Command
::'hq System (VEAS = 100 knOtS) ® o & ¢ 2 o o o o o s e e o 187
25h Robust Controller Lateral Control Surface Responses,
20 AS, and A§_, for the Vertical Rate Command
2 - -
*211: System (VE:AS - 100 knots) L] L] . L L] L] L] . . L L] L] . . 187
s'.}';s B-1a State Responses, Pps Qp» and r,, for the Coordinated
A 7‘ TurnCommand System With Computational Delay

(VEAS=60knOtS) e 8 e @€ 8 o & o ° & o 8 & e & o 8 v » B-2

SR X xiv

o e % e %t - ot T AT M AT T et T AT v YTt et Tt
] . -"u\ ) -""‘-\ "v\\\ . \_-'i\ N .




NGO A s

LT Vi)

- \'. 4, .
_A_L.AJ__A.-'A.J._&JJ...__ st

Qutput Response, O, for the Coordinated Turn Command
System With Computational Delay (VEAS = 60 knots) . .

Qutput Response, ¢, for the Coordinated Turn Command
System With Computational Delay (VEAS=6O knots) . . .

Qutput Responses, vp and wn, for the Coordinated Turn
Command System with Computational Delay
(VEAS=6O knOtS) e ® ¢ & o o o © 6 e 8 ® ° © & °© & o »

Cyclic Roll Control Response, Aéa, for the Coordinated
Turn Command System With Computational Delay
(VEAS=60 knots) » . L] L] L] [ ] L] * . L] L] . L] L] * . L] » -

Longitudinal Control Surface Responses, A§_ and Aéc, for
the Coordinated Turn Command System With Computational
Delay (VEAS = 60 knots. e o 8 o 8 o e o o e e & s o o o

Tail Rotor Yaw Control Response, A8 _, for the Coordinated
Turn Command System With Computational Delay
(VEAS = 60 knots) . . L] . L] L) . - * L2 . . . . . - - -

Xv

et e e e e et e . e T ..".."'."'.!-"

a - -

..'.' .\
R N P T I Bt '\J-" '.r_

B-U

B-5

B-5

N

SN

A



i) aw oy - . - o BTR S L L W ] Pl g o= - Ve A Sl - AP ® ey WY WL .
2
o
;\'{.
.-g.-
2459
$:_ . List of Tables
e o _
+ W {?o"
i Table Page
\
e 1 Asymptotic Equations for Ze:r'o-g2 FOrm « « ¢ o« ¢ o « o & 32
"::.: IV-1 Yaw Rate Results for VEAS = 20 Knots ¢ &« o ¢ ¢ ¢ o o+ 59
e
o IV-2 Ya"l Rate Results fOI‘ VEAS = ’-IO kl’lOtS ® o e & e o e e o 61
':J',‘ Iv-3 Yaw Rate Response With Actuators for
»} -
::3\0 VEAS - 60 kl’lOtS e & & ¢ o & e & ° e s & o o & o o o 72
;.'.', Iv-y Yaw Rate Response for Vp,q = 60 KNnOotS o « o o o ¢ o o & 72
n‘.d
Iv-5 Expected Values of rg and ap for the
N Coordinated Turn Command SyStem . o o« o o o o o ¢ o » 80
12N
N Iv-6 Coordinated Turn Responses for
'> }S VEAS = 60 knots . L] L] L] L) * L] L] * L L] L] L] L] L4 L] . L) L) 86
‘ -7 Coordinated Turn Responses for
3 \ -
fﬁ: VEAS - 100 knots . - L] . L ] . L] * L) - L] L2 - - L] L] L] [ 88
k]
’:}_‘,‘ Iv-8 Coordinated Turn Results for
5 -
é& v VEAS - 11‘0 knots - L] L] L] . L) L] L) - * L] * . * L] - L2 L] gu
) @ Iv-9 Coordinated Turn Results With Actuators for
.:: VEAS=1’40knOtS * & ® o e e ® & & o ° e o s o e o o 105
s
- IV-10  Vertical Rate Response for Vp,q = 20 knots . . . . . . 110
"-;
£
bl 2 Iv-11 Vertical Rate Responses for Veas = BO knots « o o « o @ 115
oy, IV-12  Vertical Rate Responses With Actuators for
.i?.: VEAS = ’40 knots e & o 8 ® 6 8 8 e & ° & ° 5 & o s ° @ 125
::;': Iv-13 Vertical Rate Responses for the Vp,q = 60 knots . . . . 131
—
. IV-14 Vertical Rate Responses for the V = 100 knots . . . 137
V3 EAS
ASA
A Iv-15 Vertical Rate Responses for the VEAS = 140 knots . . . 143
‘e
Ehd V-1 Yaw Rate Results (V g = 20 knots) for
L_ theRobustControﬁer‘................ 148
.-:.. V-2 Yaw Rate Results (V g = 40 knots) for
'*3 the Robust Contro%er e s s o s s e e s 8 s o s o s 152 !
"5 |
4
<
j V=3 Yaw Rate Results for the Output Response, 6 . « +« « .+ & 152 1
" " |
- |
: - V-4 Yaw Rate Results for the Output Response, pg =« « « + & 156 f;
AN '~":-“, i
7.\. el !
>
oo \
; i‘\ ;
N xvi ‘




o
A .o V-5 Yaw Rate Results for the Output Response, Wg e e e e s 156
S ST
b V-6 Yaw Rate Results for the Output Response, rg . . . . . 156
'
VL V-7 Coordinated Turn Results (Vg,q = 60 knots)
o5 for the Robust Controller . « & & ¢ & & ¢« ¢« o o « » o 158
.
":ﬁ v-8 Coordinated Turn Results (VEAS - 100 knots)
o for the Robust CONtroller « o« o « o o o o o o o o o o 163
o V-9 Coordinated Turn Results for
'§§ the Output Response, 8 .+ ¢« ¢ ¢ o o o ¢ o« o o o o o » 168
éﬁ vV-10 Coordinated Turn Results for
£, . the Output ReSDOIlse, ¢ e & 6 o e o & & o e ® e ® e @ 168
2’1 V=11 Coordinated Turn Results for
13‘ the Output Response, VB o o o o o o s o s a0 e 169
v$ V=12 Coordinated Turn Results for
WA the Qutput Response, Wp o « « o o o ¢ o o o o o o o » 169
Ao
[ o, V=13 Vertical Rate Results (VEAS = 20 knots) for
'fz the Robust Controller a8 & © & 9 e & © & 4 e & s v e @ 171
13
-%ﬁ V-14 Vertical Rate Results (Vg,q = 40 knots) for
"‘a @ the Robust Contl"oller‘ . . . - . [ [ L) L) . . L) L) . ] . 178
A v-15 Vertical Rate Results (Vg,o = 60 knots) for
é@ the Robust Controller « « o« ¢ o o ¢ o o « o o o o o & 183
;%ﬁ V=16 Vertical Rate Results (VEAS = 100 knots) for
T the Robust Contr‘ollel" ® 6 @ & e e e 6 ¢ s s & s " v » 188
é’ v-17 Vertical Rate Results for
\ the Output Response, e ® & & e e & s & s e & s & o o 189
-
)
$4 V-18 Vertical Rate Results for
the Qutput RESPONSE, & « o o« o o s o o o o« ¢ o & o « 189
#:3 v-19 Vertical Rate Results for
%iﬂ-: the Output Response, HB . 1) . . . . . . . . . . . . - 190
-"\u
’ﬁg V=20 Vertical Rate Results for
e the Output Response, PR ¢ o v o o o o o v o o o s o 190
oy

-
PR AL

- .-
-

g
“

O
N
' ~
2
i\'
Pa X xvii
A
\n
.i,
%y A
T T L T N AL S Pl s e e tet L Ta v e ® e e e & AT mtL AT LN - IR Rt IY . LR
. FIE A AT R AT R X Seltelereme -,..._._...\._ IR N N et '-’\f\'_\'\' ..-,’-\. < ..F~. \*‘- - " - W



v AR ' A L Al . LN . PN A R R R S o, W R Al R R R L I P A A S A

o™
8
I- +
ot
‘E'
L)
P List of Symbols
».‘l -':'::
N A Continuous-time plant matrix
'a.\:
-{I a Angle of attack, perturbation angle of attack in perturbation
N equations
£
b ag Equilibrium (trim) angle of attack
-t,_§ a Ratio of proportional to integral feedback
;_:* R Aspect Ratio
R
. B Continuous-time control input matrix
roe b Wing span
2,
f" 8 Sideslip angle
s 80 Equilibrium (trim) sideslip angle
a4
::‘3 c Complex plane
é\: C Continuous-time output matrix
.y -
A \‘
- @ c Wing mean aerodynamic chord
“ CD Nondimensional coefficient of drag (along veloc.ty vector)
f“: CD Nondimensional variation of drag with angle of attack
N ¢
CD Nondimensional bias coefficient of drag at zero angle of attack
* 0
Py
- CL Nondimensional coefficient of 1ift (normal to velocity vector)
. CL Nondimensional variation of 1lift with angle of attack
a
:;.
-., c Nondimensional variation of lift with the rate of change of angle
o, L
5 a of attack
7o
Bas CL Nondimensional variation of lift with elevator (Ge) or flaperon
= 8 (8¢)
o
~ C Nondimensional bias coefficient of lift at zero angle of attack
X Lo
‘(\,‘
o
- CL Nondimensional variation of 1lift with pitch rate
] - - q
LN
N
b,
%D
o
S xviii
':
%4

O S A T T R N S P N P N R T S R R T AT NN




b
4
N
>,
:‘. . CL Nondimensional variation of 1lift with total velocity
\»: :::\::' v
n Y
N Cz Nondimensional variation of rolling moment with sideslip angle
3 8
&
Cz Nondimensional variation of rolling moment with aileron (Ga),
N s rudder (6,.), canard (§,) or differential tail (8pp)
"
Cy Nondimensional variation of rolling moment with roll rate
o P
>,
Lb Cy Nondimensional variation of rolling moment with yaw rate
L .
N r
Cm Nondimensional coefficient of pitching moment
¢
- Co Nondimensional coefficient of pitching moment with angle of attack
54) a
‘
»,
b1~ Cm Nondimensional coefficient of pitching moment with elevator [69)
5 s or flaperon (§;)
f : Cm Nondimensional bias coefficient of pitching moment at zero angle of
;\ 0 attack
;* Cm Nondimensional variation of pitching moment with pitch rate
: q
5$ Cm Nondimensional variation of pitching moment with total velocity
L2 v
:‘- cmd Command
‘
o,
:R Cn Nondimensional variation of yawing moment with sideslip angle
W 8
LN
B Cn Nondimensional variation of yawing moment with aileron (Ga), rudder
?5 § (Gr), canard (Gc), or differential tail (GDT)
‘4
:3
,}} Cn Nondimensional variation of yawing moment with roll rate
P
;\ Cn Nondimensional variation of yawing moment with yaw rate
Y r
3; cos Cosine
a ~e
.'u' .\.,\1
n: T
‘R xix
4,
52
‘4
‘ R VT A S TR D Gy i TP WO YO DR b T e e T R




R et 2 o fh ST M R\ A e Bt A R S LI e e e T T e

o
}:: .. Cy Nondimensional variation of y-force with sideslip angle
{‘5, - ]
Ny -
. Cy Nondimensional variation of y-force with aileron (Ga), canard
& ) (6,), or differential tail (8pp)
3y
"
Y,
W Cy Nondimensional variation of y-force with roll rate
X p
2 Cy Nondimensional variation of y-force with yaw rate
l.\-l r
ib’ deg Degree
Ga Aileron deflection
a
w; Gc Canard deflection
5
GDT Differential horizontal tail deflection
N R Elevator deflection
SO
q e Flap deflection
o
.z ASa Cyclie roll contron perturbation
. ‘j§ AGC Collective 1lift control perturbation
-~
'i: AGe Cyclic pitch control perturbation
oyl
\¥ Adp Tail rotor yaw control perturbation
e Configuration constant
1
§~ e Error vector
§ e(kT) Discrete error vector
L}
,: €,6€ Epsilon scalar multiplier; "element of" symbol {depends on context)
;: F Augmented continuous-time output matrix
s rt Feet
-.\
= f Sampling frequency
ﬁkj g Gravity, gain constant (depends on context)
B ¢
tuj G(s) Transfer function matrix
a - hE Perturbation -z~ earth axis velocity
> \r\}
AR A
N -
\
)
0 XX
L;
2
x:,

R R X N T R o g 3 T TN o e L Yy N g g o S A T P A,




:‘\{* h Altitude

, Texr Iy Moment of inertia about x body axis

.,-:: Iyy,Iy Moment of inertial about y body axis

'."-::E I,,,I, Moment of inertial about z body axis

‘ : Ixz Product of inertial about xz body axis

i:_ I Identity matrix

f‘:_ §_0 Proportional control law feedback matrix

::: K, Integral control law feedback matrix

:‘_:: L Number of inputs = number of outputs variable

":5: L5 Dimensional variation of pitching moment with cyclic roll
\': control (AGa), collective 1lift control (AS8.), cyclic pitch
\ control (Aée), and tail rotor yaw control ?Aép)

.‘ L Dimensional rolling moment

%: Lp Dimensional variation of rolling moment with roll rate

‘.: @ Lq Dimensional variation of rolling moment with pitch rate
:;: L. Dimensional variation of rolling moment with yaw rate

:': Lu Dimensional variation of rolling moment with x-body velocity
Ly Dimensional variation of rolling moment with y-body velocity
:,: L, Dimensional variation of rolling moment with z-body velocity
& M Measurement matrix

m Aircraft mass, number of inputs

-'f' M Dimensional pitching moment

§£ ﬂc Controllability matrix

Eo Observability matrix

.

| ﬁ Mp Dimensional variation of pitching moment with roll rate
I;-E Mq Dimensional variation of pitching moment with pitch rate
¥e M. Dimensional variation of pitching moment with yaw rate
K

X

s

Py xxi

-3

=Y
T " T e o e

YA S B S P S S A S R K A A A N A . T I P L T T B R i L ST N Sr MR RAALSIN N ar S .j
L) L 2%, in’ L&&MAJ_LA@M Ll s :.'_‘.';‘.:!-'.L:_'.rv et e e e ';1\3&:_‘ PUREUR W D AL PRI




M, Dimensional variation of pitching moment with x-body velocity
M, Dimensional variation of pitching moment with y-body velocity
M, Dimensional variation of pitching moment with z-body velocity
n Number of states

N Dimensional yawing moment

Np Dimensional variation of yawing moment with roll rate

Nq Dimensional variation of yawing moment with pitch rate

N, Dimensional variation of yawing moment with yaw rate

Nu Dimensional variation of yawing moment with x-body velocity
Nv Dimensional variation of yawing moment with y-body velocity
N, Dimensional variation of yawing moment with z-body velocity

p Number of outputs, roll rate

¢ Roll angle

$e Equilibrium (trim) roll angle

$ Perturbation roll angle

qQ Pitch rate

Qg Perturbation pitch rate in the body axis

q Dynamic pressure

Y Yaw angle

Ve Equilibrium (trim) yaw angle

R Real number plane

rad Radians

S Surface area

s Laplace operator

sec Seconds

sin Sine

xxii




e Jia 140 Y Ancirin Jen 2oy PRl Al At Tt A I e o A A e At i i iR S g i gt gL B AR S __KC'_'.'_"._‘._V_'-.‘T‘.'-'.'-T

a”l
\.::'
4
o2
}i:
5 . o Element of the (L) matrix
*.J .‘g‘. '
& e
g~ -7 g Sigma gain weighting matrix
{
": T Transformation matrix
i} T Sampling period
0 Pitch angle
N Oe Equilibrium (trim) pitch angle
-"c
;}2 0 Perturbation pitch angle
3y
L Ty Thrust along x-body axis
. B
Vo )
~ T Thrust along y-body axis
a0 y
N B
s .
Tz Thrust along z-body axis
B
::' . .
M u Velocity along the x-body axis
o
5
:y ug ,ug Equilibrium (trim) velocity along the x-body axis
r ) °
Lﬁ u Input vector
-:’
o up Perturbation velocity along the x-body axis
.

?,
<

Velocity along the y-body axis

py -

A:‘ Vg »Vg Equilibrium (trim) velocity along the y-bcdy axis
:\“n e
-::: v Command input vector
gy

. \J) Perturbation velocity along the y-body axis

o

? V,Vp Total (true) velocity

W Aircraft weight

' w velocity along the z-body axis

~
5:: W W, Equilibrium (trim) velocity along the z-body axis
:: e
'ii w Controller output vector

'-: ;‘-'P‘::'

." P

"

o

>

*y xxiii

e, o

s
'

B PO YU A SN SR vt e s [ L
R RO R A R A Tt e e e --'---‘-~---j

B PP ST S LN A P A L e e e T .
AP W NS SRR Vi PR R YR DR DU L T, S - DD I U S YA, P i "I S S S A

S A NS




ACHIIC IR S O S i i Sl Rl A g on e it

LR AT oA 4

Perturbation velocity along the z-body axis

State vector
Aerodynamic
Dimensional
Dimensional
Dimensional
Dimensional
Dimensional
Dimensional
Qutput vecto
Aerodynamic
Dimensional
Dimensional
Dimensional
Dimensional
Dimensional
Dimensional

Integral of

forces along
variation of

variation of

variation of

variation of

variation of

variation of
r

forces along
variation of
variation of
variation of
variation of
variation of
variation of

error vector

the x-body axis

X~-force with roll rate

X~force with pitch rate

x~force with yaw rate

Xx~force with x-body axis velocity

x~force with y-body axis velocity

Xx~-force with z-body axis velocity
the y-body axis

y~force with roll rate

y~force with pitch rate
y-force with yaw rate
y~force with x-body axis velocity
y-force with y-body axis velocity

y-force with z-body axis velocity

Discrete integral of error vector

Aerodynamic

Dimensional

forces along

variation of

the z-body axis

z-force with roll rate

o/ g 2 dn L e d Sufh Ol fud et
RO T T T

- Dimensional variation of z-force with pitch rate

23

ii Zn Dimensional variation of z-force with yaw rate

‘2j Zu Dimensional variation of z-force with x-body axis velocity
)

a
4 s (3 : - s . .

o zZ, Dimensional va:iation of z-force with y-body axis velocity
= Zy, Dimensional variation of z-force with z-body axis velocity

XxXiv
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;: Abstract

o \
= N

This thesis investigates the application of multivariable design

:% techniques developed by Professor Brian Porter of the University of
E% Salford, England to design digital control laws for the UH-60A Black
v Hawk helicopter. In the study, designs were developed for five

7% longitudinally and laterally, strongly coupled plants with control

E; inputs of cyclic roll control, cyclic pitch control, collective 1ift
.; control, and tail rotor yaw control. An improved computer-aided design
_; package called "MULTI" was used in refining the control laws.

ia - Separate controllers were developed to perform three flight

o

maneuvers. The maneuvers performed were a coordinated turn, a yaw rate

.:- response, and a vertical rate response. Since each maneuver is flown at
ﬁ- a different airspeed, a uniquely specified linearized plant model was
-
required.

)

2 The methods employed to obtain a design are presented along with

“n

}l
s\i the evaluations of the final control laws. After successful designs of
j9 the individual control laws for the three maneuvers were developed,

a

:4 tests were performed to find a single controller to perform each
f\

)

;? maneuver for its applicable flight conditions. Finally, the evaluation

of the robustness of the single controllers is presented.
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Background

I.

INTRODUCTION

The advent of digital fly-by-wire control systems has hastened the
need for the design of multivariable techniques to handle large complex
systems. The advantages of digital fly-by-wire control systems are
faster response times to inputs, the elements of the control laws are
Jjust numbers stored in the flight computer, and the vast reduction of
hardware due to mechanical systems which would be replaced by smaller
electrical networks. With this reduction in hardware, more weapon and
navigational systems can be stored in the aircraft.

This thesis addresses the development of digital multivariable
control laws for the UH-60A Black Hawk helicopter. The results of this
thesis are to be incorporated in a survey of multivariable control law
techniques for multiple input/multiple output (MIMO) systems in order to
develop the best optical fly-by-wire control system for the UH-60D Night
Hawk helicopter. This first chapter presents the background, problenm

statement, assumptions, and the sequence of presentation.

Classical methods, which worked well for simple single input/single
output control systems are no longer easily applied. As aircraft become
more complex, especially for aircraft which have strongly coupled
longitudinal and lateral modes, a single input may not cause just one
output., With this added complexity, the need for multivariable control
law techniques to handle MIMO systems is apparent. Professor Porter and

his associates have suggested four direct design techniques to be

implemented as digital flight control systems. These techniques provide
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for the design of fast sampling error-actuated digital controllers for
highly interactive linear multivariable systems. Professor Porter
proposed that to obtain tight tracking of commanded step inputs, an
integral plus portional controller actuated by the error between the
commanded input and the desired output must be employed. This control
technique, he suggested, would result in greater decoupling of the
outputs than other previous multivariable control law methods. Even
though other design techniques have been used successfully on other
aircraft, the subject of this thesis is applying Porter's method to the

Black Hawk helicopter.

Problem

The purpose of this thesis is to investigate the development of
tight tracking multivariable digital control laws for the UH-60A Black
Hawk helicopter. After individual control laws are developed for each
maneuver at its applicable flight conditions, the design of a robust
controller that will perform at all flight conditions for a particular
maneuver, is investigated. These controllers are developed and
simulated by the use of an existing computer aided design (C.A.D.)

software package called MULTI (Ref 13).

Approach

This thesis is limited to the design of digital multivariable
control laws using the control law techniques developed by Professor
Porter. All designs are completed using the interactive computer

program MULTI. In this thesis, five steps are taken
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SN S 1. Development of the equations of motion and actuator dynamics
AR N
( = for five separate flight conditions,
" 2. Development of the control law theory as proposed by Professor
AR Porter.
AN 3. Design of digital multivariable control laws using the
\f-: irregular design method (see Chapter III) for three maneuvers at their
y)
-}:'.-j applicable flight conditions.
4. Design of a robust controller to perform tight tracking of the
)
'.":. commanded inputs for all flight conditions of a particular maneuver.
\
::j; 5. Development of a nonlinear simulation of a symmetrical aircraft
Y ‘
- to be implemented in MULTI.
'::-j Assumptions
::::} ) Basic assumptions are established to reduce the model complexity.
s m These assumptions are listed below.
2%
‘-:1 1. The helicopter is a rigid body, and its mass is constant.
AR
)
}3 2. The rotation speed of the helicopter blades remains constant as
. designed by the manufacturer.
Sy
"
:’\." 3. The earth's surface is an inertial reference frame.
" A
N
5_ 4, The atmosphere is assumed fixed with respect to the earth.
o 5. Linearization about an operating point is acceptable for point
.
o designs.
;:: 6. Aerodynamics are fixed for each flight condition.
A 7. The initial angular velocities, Por 9g» and ry in the body-axis
e frame are equal to zero.
‘. * [}
o
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Y
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Presentation

Six chapters are included in this thesis. Chapter II presents the
helicopter's equations of motion in the required state-space
representation. The regular and irregular design approaches developed
by Professor Porter are presented in Chapter III. The development and
results of the individual digital control laws for the three maneuvers
at their applicable flight conditions are presented in Chapter IV.
Chapter V describes the development and results of the robust controller
for each maneuver at the applicable flight conditions. Finally, Chapter

VI offers conclusions from the design effort and recommendations for

further studies and improvements to MULTI.




II. UH-60A Black Hawk Model

The linear, first-order set of differential equations describing
.:"¢
. the rigid body motion of the UH-604 Black Hawk helicopter are of the

form: .
ﬁ:ﬂ)ﬁ«f& (2.1) |

where the state vector X represents the perturbations from trim of the
.}‘s body axis variables: u, v, w, p, q,.r, 6 and¢. The controL vector u
represents the deviations from the trim positions of the controls Sgr
Gc, da, and 6p. The linear representation is valid only if the initial

angular velocities Py» Qo and r, are zero.

o 4
The elements of the plant matrix A and control matrix B are of two
) types. The first type consists of inertial and gravitational terms that
Ls
}k can be obtained analytically from the equations of motion. The second
tib type consists of partial derivatives arising from aerodynamic forces and
moments.

The output equation is of the form

y==Cx (2.2)
which gives a relationship between the desired outputs and the linear
combinations of states to obtain those outputs. The elements of the g
matrix reflect the desired maneuver to be performed.

In this chapter, an attempt is made to understand the perturbation
§j state equations, the control surfaces, the actuator dynamics, and the
trim conditions for the UH-60A Black Hawk helicopter. The first step is
to take a careful look at the state equations described by Equation
(2.1).

The full linearized set of state equations can be described by the

L following matrix equations:

.......
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*: L where
IR o
z o
W
B
-
:"‘ 4
.\1‘. E = 6 (20“)
Y
el VB
>h Py
¢
L "B |
- is the state perturbation vector which can be further decomposed into
the longitudinal perturbation states X4 and the lateral perturbation
:_: : states x, as shown below.
3
?
2 g s i
Xy =| wg| and x5 = |pp (2.5)
o~ gB ¢
£ ®
o
_-': The longitudinal perturbation vector consists of four states
o L4
b G’ defined as follows:
._.:
1 _;\
o ug = velocity along the x-body axis (ft/sec)
) wp = velocity along the z-body axis (ft/sec)
. Qg = body axis pitch rate (rad/sec)
6§ = Euler angle pitch attitude (rad)
(':; :
:_‘l::-l The lateral perturbation vector consists of four states defined as
L%
N follows:
,':'::: Vg = velocity along the y-body axis (ft/sec)
2N pg = body axis roll rate (rad/sec)
. rg = body axis yaw rate (rad/sec)
> ¢ = Euler angle roll altitude (rad)
X
R
>
N
j:\
“ —
*) }N.‘..
\v \\:’n
X
A
.
.J
B e A N P et e R N e N N T T L e A LA e R A T AT AT A A T e T T T T

- T at a T at e e LG I AN D I P N N AT - T N T e Y e Vg e, T o e e S R DR
YN A RO TR T 22 0 T SR iy AR Y ‘\'.1..‘. \.\‘\‘-\._\-. S R S A P L A T S L NP ¥ {‘.c:‘j



-t e * e

L4

3 TARER
[y , B
Tats ';.'l"J ¢ ‘r-f&"-.". Bh Y

o/.c.n.ﬁ.
AN

ol 1

@
Bl KXo

a

»
-

¢
.

I

L2t ar)

The state equations for a sample flight condition, VEAS=2O knots,

is presented below:

Al OEAR SEREAIRLE WEAEO LS

MEAR A _v—"v":r_-r'.'-rkr_ .V‘\H'_h‘.‘_ .-"_*.'4 '.~,"-~, od

At A A,

\\\&t-.' o WA R
\QA iy \\\_" [ ;'\-\. A 4

Tug]  [-.0104 L0374 -.608  -32.0 1-.0223 -.188 O -195 1 fug
wg| |--6 383 35.8 -3.27 | -.0254 422 W8 ~.300 | fwp
dal 9B 00108  .00343 -.89 0 : 0111 .289 0 -.0298 ag
—{6l=1_0 ____0 __ 100 _ ____ Q____O0 _____0___0_____.03} |[®
b1yl [ o018 Tl00892” -.00138 07651 -.0582 1.6 32.0  =33.0 vg
pB ¢0218 -0166 —1-98 O :—-0375 —307u O -.0653 pB
¢ 0 0 -.00239 0 | 0 1.00 0 .102 ¢
| rg]  [-00u64 -.00295  -.845 0 | .00688 -.453 0 -.369 rg)
-1.58 .97 .0329 913
-1.0“ -7-33 .Ou61 1007
.351 L0273 -.00384  -.006u4 Aée
+ |0 _____ o 0 o _}|as (2.6)
05 0626 2953 -1.34 AGa
L0472 -.0126  1.36 -.619 A6p
0 0 0 0
{-.00692 .93 L0881 .57 |
These state equations can be partitioned into four 4 x 4 matrices as
shown by the dashed lines in Equation (2.6). A notational
|
A A B
Apg 1t A B
x :___-F_Jg X + --lu (2.7)
Bo1 ] 422 B

expression for the state equations with partitioning is shown in

Equation (2.7). Ideally, the cross matrices A;, and A,, are set equal

to 0 and the state equations are then decoupled into the longitudinal

and lateral state equations. However, a close examination of the cross

matrices reveals that the cross matrix elements are not approximately

equal to zero. 1In fact, some of them are quite large compared to

elements in the diagonal matrices. Therefore, a reduced-order
controller design is not practical as it would ignore the effects of

coupling between the longitudinal and lateral modes.
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o
"
L7
>,
AL
}',,-;( . Since decoupling of states is not practical, a more workable set of
LS P
-, .
:,-A > equations is needed. The new state vector that is used in this thesis
' 1
is i
aI
7. . l
- G
% ’
ug ‘\
. Z=1{Vp (2.8)
2 Wg
o Pp
oo ag
el
N | "B ]
._-{ This new vector, 2z has three advantages over the old vector Xe The
e
'f_-." first is that it is easy to remember in that the Euler angles, the body
s
‘. velocities, and the body axis angular rates are grouped together. The
-
:,'\' second reason is that a relatively simple method for calculating
\1
CAC)
)
a3 transmission zeros is available for B matrices in the zero-B, format.
-4 @’ The dimension of B, is equal to the number of inputs. This second
:3 reason requires that the By matrix be a zero matrix. The third reason
_::;: is that in order to pick a measurement matrix M, the method requires the ‘
S i
- feedback of rates of states that are unaffected by the control inputs. |
\-::,' Therefore the zero-B, format is desirable, or at least all the B matrix i
e ‘
-.:-: zero rows should occupy the top rows. The measurement matrix is covered 1
WA
f',\ in Chapter III. 1
:‘ The transformation matrix that transforms the x vector to the ‘
-_'.":.
‘o desired z vector is
1:}
: [0 0o o 1 o o o 0]
0 0 0 0 0 0 1 0
Y 1 0 0 0 0 0 0 0
«j-.: T={0 0 0 0 1 0 0 0 (2.9)
N 0 1 0 0 0 0 0 0
& o o o 0 o0 1 0 0
- o, 0 0 1 0 0 0 0 0
O o 0o o o o 0 0 1]
Y .
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Transformation of the

output equation is actually not needed.

(2.10)
(2.11)
(2.12)
(2.13)

(2.14)

It

gives the relationship for expressing the old states as a linearized

combination of the new states.

Since,

an output matrix has not been

specified yet, a new C that reflects the commanded maneuver is developed

when needed.

The new set of state equations for the VEAS=2O knots flight

8 [0 0 0 0 L0
6 0 0 0 0 L0
g lul [31.0 0 -.0104 -.0223 ! .0374
| 'B( = _ 20765 32.0 _ _.0181 _-.0582 I .00692
Wg -3.27 48T b6 T .05k ) -.383
PR 0 0 0218  -.0375 |, .0166
ag| . 0 0 .00108 L0111 ! 00343
[rgf L O 0 -.00464  .00688 ) -.00295
[ 0 0 0 0o
0 0 0 0
-1.58 97 .0329 913
+ _:gi-_--1@2@--§5§-,:1§5__
.04 =738 L0861 1,07
JO472 0126 1.36 -.619
.351 0273 -.00384  -.00644
| -.00692 L0593 .0881 (527

condition can be expressed by the equation below.

0

1
-.188
1.46

-3.74
.289
-.453

A
AS
AS
AS

1)

T o0

1 0237 8 7
-.00239 .102 b
-.608 -.195 ug
-.00138 -33.0 vy
35.8 - =3 Wy
~1.98 -.0655 Pr
-.89 -.0298 d3
-.845 -_-35‘) J LI‘BJ

(2.15)

Examining this set of state equations reveals that the g matrix is

~
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change two of the rows to rows of zeroes is needed. However, this
transformation would result in a new set of states, This transformation
was deemed impractical due to the altering of the states. As a result,
all the flight condition state equations are not in zero-§2 form.

The control input vector, éﬁ, shown below, consists of four control
surfaces. It is assumed that the rotational speed of the helicopter
blades is constant

AS
AS = A

AS
AS

(2.16)

T OO

as designed by the manufacturer. The longitudinal control surfaces

consist of tne cyclic pitch control, Aée, and the collective 1ift

control, AGC. The cyclic pitch control is analogous to the elevator of
(;W an aircraft, The cyclic pitch control controls the thrust of a

helicopter. By increasing the angle-of-attack of the blades as a whole,

the helicopter experiences an increase in thrust in the forward

direction. This deflection is illustrated in the figure below. If the
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Figure 1. Helicopter Lift Vectors
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For IR system (Xg, Vg, 2p) is
( . Lorp = -L12g - (2.17)
o
"’ By increasing the angle-of-attack, the new 1ift expressed in the earth-
"-" axis system 1is
Al N o . A a~ .
::.2_: LNEW{ Lisinakp - LycosaZp . (2.18)
i
' . Therefore, by increasing the angle of attack, the pilot increasces the
A
S force or thrust along the X, coordinate by L;sina. This increased
Ny force causes a forward velocity.
(RN
s The collective 1ift control, Aéc, is analogous to a power control,
j“:}.f By changing the angle of attack of each blade by the same amount, the
.-&‘-
;{::*" lift vector either increases or decreases in magnitude but not in
\1
Y .
( - -;hq direction. Again, if the helicopter is in hover, and the pilot
~
‘:i::; decreases the angle-of-attack of each blade, the new 1ift is expressed
by
& R
o
where L2<LT. This deflection of the collective lift control results in
a loss of altitude. 1If instead, the pilot increases the angle-of-attack
e
\" of each blade while at 1ift vector, L’NEW;’ the new lift vector is
:::.': L = L,si P L A (2.20)
2N LNew, = osina Xp - Lrcosa zp .
"a’ where L2>L1. The helicopter experiences an increase in 1ift, altitude,
.,\:; and forward velocity.
f:::]: The lateral control surfaces consist of the cyclic roll control,
S
",q Aéa, and the tail rotor yaw control, Aép. The cyclic roll control is
ENy A e
R '?:‘-"
A
o
I'b.
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analogous to an aileron for an aircraft and operates like the cyclic

pitch control except that a change in angle-of-attack of the blades az a
whole results in a lift vector in the (9E, ?E) plane instead of the (QE,

?E) plane. The tail rotor yaw control, AS is analogous to the rudder

p’
of an aircraft. The tail rotor yaw control maintains the orientation of
the helicopter, especially during changes in the 1ift vector, by acting
as a counter-torque to the torque produced by the rotation of the main
rotor.

The control limits for the UH-60A Black Hawk helicopter, listed
below, are for pedal deflections or stick displacements. The uni“s ¢f
the control surface deflections are in inches. Even though the contr:l
limits are

-5.00 £ Aée L 5.00
0.0 < Adc < 8.75

-5.00 < A8, K 5.00 (2.21)

=2.75 £ Aép L 2.75

listed, the actual amount of control deflection depends on the trim

condition of the helicopter.

Actuator Models

The actuator dynamics for the cyclic pitch control, cyclic roll
control, and tail rotor yaw control can be modelled as a first-order
transfer function [500/(s+500)]. The following equations are simulated
with the flight dynamics model. It should be noted that the actuator
dynamics are not incorporated into the A matrix, but they are included

in simulating the complete system.
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S §,(s) = 500 &  (s) (2.22)
N s+500  cmd

NG e

ow .

et where iz e, a, and p

::i;f §;(s) [s+500] = 500 Gicmd(s) (2.23)
,°

;' Gi(t) = ~500 Gi(t) + 500 Gicmd(t) (2.25)
]
,:. The actuator dynamics for the collective 1ift control can be

2

._ modelled by the following block diagram:

S o

v.\.‘

AL

e 8000 1 K (Q.0675+1)
:: 8 § Sa

N ~ Bl 2 125,300 [ 0.0135+1 P (£129.4s2678) (E 85w ) [

N

'-\

e Secondary Power Rotor
( ('.‘9 Actuator Actuator Dynamics

\' where K; = (2674)(234) = 625,716. For a step input, the following

o .
i~ figures of merit are obtained:

ale Rise time (t.) = 0.0481706

\

v Peak time (t,) = 0.184195

o
‘\" Settling time (ts) = 1.080484 (2.26)
L

Peak value (Mp) = 1.70024

NN Final value (FV) = 1.00000
{:_'}.

,,::ff In order to simulate the actuator dvnamies in MULTI, a second-order
‘(., transfer function is needed. The proposed second-order collective 1lift
2

'!

:: control actuator dynamics model is shown in the following block diagram:
e

',:-r, 6’,

cmd 16-06 (sa15) L 38 (2.27)
NP s + 83 + 241

:_.:- SO This transfer function can be represented in terms of phase variable

\‘:-:

CRRN

[}
)




notation. The resulting state and output equations are

0 " x+ [0 & (2.28)
[-2141 -8] - [1] Cemd

[ 241 16.06 ] x (2.29)

|
"

O
H

This model for the collective 1lift control yields the

following figures of merit for a unit step input

Rise time (t,) = 0.0470176

Peak time (tp) = 0.146900

Settling time (ts) = 1.02511 (2.30)
Peak value (Mp) = 1.68905

Final value (FV) 1.00000

Comparing the figures of merit for the original actuator dynamics model
with the approximate dynamics model reveals that the second-order

collective 1ift control actuator dynamics model is a good match.

Trim Conditions

The perturbation state equations were developed by linearizing the
nonlinear aerodynamic equations for the helicopter around an equilibrium
condition. For the UH-60A Black Hawk's mission to be completed, it must
perform different maneuvers at six different trim equilibrium flight
conditions., The flight conditions are specified by the total velocity
in the earth-axis-system (VEAS)' For the three maneuvers to be
performed: a coordinated turn, a yaw rate response, and a vertical rate
response, the flight conditions for VEAS = 20, 40, 60, 100 and 140 knots

were used. For each flight condition, a set of trim equilibrium values

15




SRS were supplied by the sponsor. The trim equilibrium values are given for
8, ¢, wg, 6e' 4. Gc, and Q) The remaining equilibrium values can be

found, if desired, by using the following equations:

True Veloecity (Vq) = Vgpo x 6080 ft/nautical mile (2.31)
3600 sec
Vo = [ ug + vg + wgl!/? (2.32)
B = sin"(vB/vT) (2.33)
a = tan'1(wB/uB) (2.34)
"\ Y = 8 - «a (2.35)
;i? From the trimmed surface deflections, the new control limits can be
) derived. For instance, if (Ga)e = -0.758, then the cyclic roll control
a& can only deflect another 4.242 inches in the negative direction and
ES; 5.758 inches in the positive direction. Therefore, the new control
a ‘jb limits for the cyclic roll control are
Y
;ﬁ; -4.242 £ 8, < 5.758 . (2.36)

For the Vieas = 20 knots flight condition (see Equation (2.15) for the

state equations), the equilibrium trim values are:

}} 0o = 5.83 deg
7 $e = =1.34 deg
:i wBe = 3.42 ft/sec
(éa)e = =0.994 inches (2.37)
- (Ge)e = -0.368 inches
n:\ )

N (85 = 5.35 inches
$E (6,) = -1.06 inches
. v - 33.5 ft/sec

k7 T T

\;'

7,

(] 7,

N9 16

...........
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For the trimmed values of the control surfaces,

limits are:

MIN.

MAX.

é

e

-4.632

5.368

(SC Ga
-5035 -)‘0006
3.40 5.994

%p

-1069

3.81

the new control surface

(2.38)

It should be noted that all simulation results are perturbations

from the equilibrium conditions.

The following pages contain the other

four flight conditions with the appropriate perturbation state equations

and trim equilibrium values.

States Equations for the Flight Condition: VEAS = 40 knots

6 0 0 0 o 'o 0 1 6] [ o
¢ 0 0 0 0 10 1 -.00133 .07 |¢
alus| [-32.1 0 -.0112 -.00985; .0429  -.0583 -1.88 =107 | ug
b —| vg|=|__.0428 32.1 _ .0026 -.0819 | .00808 2.72 __.213__ -60.3_ | |vg
@ dtlug | | 2wk S6H 225 T TI0153 12562 L955  70.2 ~HI7 ] | W
Pg 0 0 -.00963 -.0312 , .0268 -3.94 -1.76 16 || pg
ag 0 0 -.00023 .00783! .00675  .247  -1.07 -.0896| | ag
rg] L O 0 -.00623 .011 1-.0052 ~.408  -.663 -.528 rBJ
[0 0 0 0 ]
0 0 0 0
-1.5 J01 L0181 .866 | [as,
+ | 035 _ 96 98 136 | |48, (2.39)
2.03  -7.48 009 1.63 | [a8,
097 205 135 -6 |48
372 L0635 -.00M9  -.0297
| =013 L0255 .0868  .542
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True Velocity (VT)

For the trimmed values of
limits are:

Se

MIN. =4.792

G’ MAX. 5.208

States Equations for the Flight Condition: VEAS = 60 knots

- 5 . ! o
0 0 o o0 o 10 0 1 0 8
¢ 0 o o0 o 1o 1 0 0.061] |o¢
¢l us| |-32.1 0 =019 -.0027: .0481  .0155 -2.77  9.91 | |ug
vgl =[O __ 32.1__=.0082 -q04 | .0102__ 3.5 ____.H61__-99:3_| |vg
Al wgl [ 1967 0 T T-OWT5 <0205 ! <67 | B.BM 10K, -497) [ wg
Py 0 0  -0076 -.0329 1 0229 -4.05  -1.69 246 | pg
ag 0 0 .00193  .00602, .00891 201 =1.23 =113 g
g} | O 0 -.00409 .0138 !-.00977 -.333 -.563  -.644] |rg
"0 0 0 S0
0 0 0 0
-1.41 593 -.0108 872 | [asg
+ | L0208 246 .93 -1.59 88, (2.42)
327 TTRRTTUIW A | [asy
13 J97 LW Ts a8,
400 0892 L0053 -.0334
-.0261  -.0385 L0872 645 |
\.::.'
18

Equilibrium Trim Values for the Flight Condition: VEas = 40 knots

67.55 ft/sec

= 4,34 deg

= =1.01 deg

= 5.11 ft/sec (2.40)
= =0.758 inches

= =0.208 inches

= 4.58 inches

= -0.583 inches

the control surfaces, the new control surface

60 S, ép

-4.58 =4.242 -2.167 (2.471)

b.17 5.758 3.333
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Equilibrium Trim Values for the Flight Condition: VEAS = 60 knots

< True Velocity (V;) = 101.33 ft/sec
ee = 3.49 deg
) e = 0 deg
W, = 6.13 ft/sec (2.43)
(85)g = =0.237 inches
,} (8g)e = =0.425 inches
(85)e = U4.20 inches

(é p)e = -0.581 inches

For the trimmed values of the control surfaces, the new control surface

limits are:

: 8o 8, 5, 5,
Ly
": MIN. -2"0575 “M-ZO -ua763 -2.169 (2-““)
G’ MAX. 5.425 4,55 5.237 3.331
States Equations for the Flight Condition: VEAS = 100 knots
o] [ o 0 0 0 0 0 1 o s
) 0 0 0 0 1 0 1 0 0.0432| | ¢
alus -32.2 0 -0.0324  -0.000582, 0.0643 =0.113 -L.48 7.93 ug
—|{vg|=| O __32.2 -0.000714 -0.,143 ! 0.0102 4.66 _ 0.752 -167.3 ||vp
dt Wg -1.39 0 -.00879 -0.0174 1 =0.79 -5.327 173, =0.505 | | wg
Pp 0 0 -.00304 -0.0324 | 0.0191 H.00 -1.58 0.35 | | Py
ag 0 0 0.00251  0.00164 ! 0.00921 0.103 -1.61 <0.104 }|ag
r 0 0 -0.00304 0.0168 (-0.0117 -0.204 -0.513  -0.836 Lr‘
b BJ - -l BJ
[0 0 0 0
0 0 0 0
% -1.08 0.646 -0.0166 0.7 A8,
P + | 0167 _0.34 _ 0932 -1.%4 a8, (2.45)
59 6,14 -9.63 T 0.563 4.0 86,
Lo 0.138  0.228  1.3%  -.924 a8,
o 0.46 0.095 0.0283 -.0752
“ r --OUH —0-0994 .0861 0'805J
O
LAY A
2
)
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3
A
;-_'.-f Equilibrium Trim Values for the Flight Condition: Vg,g = 100 knots
'- True Velocity (Vi) =
'~
- B = 2.47 deg
S
oY ¢ = 0.0 deg
Y wg = T.27 ft/sec (2.46)
e
¥ (65)g = 0.179 inches
.‘5 {(§)g = -1.06 inches
‘:*
(84)g = U.43 inches
:',' (Gp)e = =0.260 inches
oS
v For the trimmed values of the control surfaces, the new control surface
limits are:
:,i\‘ R 8o S, Gp
xa
2 . MIN. -3.94 -4.43  -5.179 -2.49 (2.47)
T MAX.  6.06 4.32 ° 4.821  3.01
_'.: States Equations for the Flight Condition: VEAS = 140 knots
l...
° A
" ™ 1 - 7
2 9 0 0 0 0 1 0 0 1 0 6
"C- ) 0 0 0 0 0 1 0 -0.0161] |¢
b ug | [-32.2 0  -.0402 -.00206) .0726 -.336  5.55 8.81 ug
- d_lvgl=|__0___32.2 _ .00185_ _ -.1%4 1 00698 -6.03 __1.01_ =23 | |vg
2 dt | wg 0.518 0 -.00798  -.0u2h | -.871 .y b3, ~.354 Wy
Py 0 0 .000609 0.0338 ' .0152 -3.73 ~-1.44 519 | P
qB 0 O -00509 —-00707 I .009’-“3 00038 -2.02 -00252 qB
& r‘B L. 0 O -|m381 .O18u : --00653 --35 -052*1 -0992J PBJ
’ -
) [ o 0 0 0
0 0 0 0
- "08% -u89 ~e 00579 . 567 Aﬁe
< + |0 _eB .97 2.18 )[4 (2.48)
P 9.2 =111 849 5.5 A8
o 0.143 247 1,36 -1.08 88,
P~ 0.53 0.00436 .OBMT =175
C ] - | -0117  -.0785  .084O .882]
U
‘. \’_s
2
N
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Equilibrium Trim Values for the Flight Condition: Veas = 140 knots

i
O

- True Velocity (V;)
3] = =0.921deg
¢>e = 0.0 deg

W = =-3.79 ft/sec (2.49)
e

—
O
[sM]
~
4]
]

0.388 inches
(8., = =1.64 inches

(GC)e = 5.74 inches

(6.)

ple -.0260 inches

For the trimmed values of the control surfaces, the new control surface
limits are:
5e Gc Ga dp

MIN. =3.36 ~5.74 -5.388 -2.724 (2.50)

LY MAX.  6.61 3.01  4.612  2.776
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ITI. Multivariable Control Law Theory Overview

The multivariable digital control law designs in this thesis are
the result of the application of control law methods developed by
Professor Brian Porter of the University of Salford, England. The
techniques are presented in Reference 14. This chapter summarizes the
techniques used in the design of high performance tracking systems for
aircraft control, The theoretical discussions cover the continuous-time
case as well as the corresponding discrete-time case. A better insight
into the design process can be obtained by examining the s-plane root
locations and their migrations as the gains »~ than the corresponding
z-plane analysis. Finally, an understanding of the effects of
transmission zeroes, especially unstable ones, is considered.

The plant to be controlled can be described by a first-order set of
linear differential equations. These equations written in state~space

format are of the form:

X = Ax + Bu (3.1
y = Cx (3.2)
where
A = a continuous-time plant matrix (nxn)
B = a continuous-time control matrix (nxm)
C = a continuous-time output matrix (pxn)

The dimensions n, m, and p are defined as the number of states, inputs,

and outputs.

The A, B, and C matrices are partitioned to yield the following

equations:




~ LS PO ARG il W £, I LAY 4T AR A i At R A A A D A e S S S e e A

N
Q.‘
:.*.
..\

’ ' y

-7 X A1 1A B By
'ﬁ Lo o= = ===a0=-==l---1+ ---1 u (3.3) |
~ - X 521 :A22 ..52 ) -B-2 i
3] T .
- y o= oI o x (3.4)
) ———

>

%) | %)

In equations (3.3) and (3.4), 11(Rn'm, Zz‘Rm' uer™, yerP,

. (n-m)x(n-m) (n-m)Xm mx{(n-m) mxm (n-m)xm
- Ayr€R » Bqp€R » Apq€R » Bop €RTTT, ByeR '

{n

-, §2€Rmxm, 916RPX(n'p), and EzéRpxP. The matrix B, is a square matrix

. with a row and column size equal to the number of inputs in the vector u.
A —
[~ The matrix C, is also square with the number of rows and columns equal
:j to the number of outputs. The designation of "inputs" for the aircraft
N

N mcdel usually refers to the control surfaces, such as elevator or
i? ailerons for a fixed wing aircraft, or cyclic pitch control and cyclic
<

i} roll control for a helicopter. However, in designs which incorporate

N :

(8

the surface actuator states into the A matrix, the "inputs" then denote

[

; the surface actuator input commands. OQutputs are states or combinations
;S of states of the aircraft such as pitch rate, roll angle, and flight
“~
path angle.
5
7‘ A requirement of the design method is that the number of inputs
E; equal the number of outputs, thus §2, 92 and 522 have the same row and
‘;? column dimensions. The input and output dimensions, m and p, are then
S; replaced by a new dimension £, since m=p=2. Knowing these dimension
:€ requirements allows the system matrices to be easily partitioned as
~
. shown above.
j: Two design methods are applicable to the vehicle under study using

the reqular or irregular designs. The design method used is determined

BAavan

by the type of plant being considered.
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Regular Versus Irregular Design

To be considered as a "regular design", the matrix representing the
first Markov parameter, [gg], must have rank equal to the number of
outputs, i.e. rank [gg] = L. The gain matrix is formed using the
inverse of [EE]; therefore, a rank deficient [QE] will cause an
indefinite gain matrix to be formed.

Plants in which the first Markov parameter, [gg], is rank deficient
are designated as "irregular". To allow a design to be accomplished, the
output to be controlled is changed to w(t) = y(t) + Mx,(t). The new

output matrix F is formed as shown and used in place of the C matrix:

F=[F; F5] (5.5)
where

Bpo= [Cy + MAyyd (3.5)

]
»
1t

ihhg Fy [c, + Misl (3.7)
)

The elements of the M matrix are selected to obtain a matrix [EE] having
full rank and thus being invertible.

The fast-sampling error-actuated digital control law governed cn
the discrete-time set T, = {0, T, 2T,...} 1is a proportional plus

integral feedback law expressed as:

u(kT) = (1/T){K:e(kT) + K,2(kT)] (3.8)
where
1/T is the sampling frequency

K. is the proportional gain matrix for the error signal
e(kT), K €ertxt

51 is the gain matrix for the backward difference of
the error signal, which is designated z(kT),

Lx2
<. E1€R .
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The £ discrete-time vector integrators which generate the z(kT) vectors

are defined by the equation:
z{(k+1)T} = z(kT) + Te(kT) (3.9)

For the continuous case, the control law governed on the set

T = [0,t] can be expressed as

[ Kt
1]

g(Ke(t) + Ky [ elt)dt)

H

g(Koe(t) + Kyz(t)) (3.10)
where

g is the forward path gain
Kq is the proportional gain for the error signal

K1 is the gain for the integral of the error signal,

The control input vector u is required to cause the output vecilor y tr
track any constant command input vector v on T (or T4) in the sence that
the error vector e(t) = v(t) - y(t) assumes the steady-state value
lim e(t) = lim {v(t) - y(t)} = O (3.11)
trx £+ - -

for arbitrary initial conditions.
A block diagram of the system with this control 1-w is presented in

Figures 2 and 3 for both the continuous and discrete cases. The portion

in broken lines is present only for irregular designs.
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The gain factor in the figures is the sampling frequency (1/T) for
the discrete system or a gain constant (g) for the inuous system.
For the regular design the error vector e is expressed as e = Vv - y.
The dimension of e is equal to & Each command in the vector v is
summed with the negative of its corresponding output element in the y

vector and is the input for the proportional plus integral gain paths.

For the discrete case, the control law is
g(kT) = (1/T)[Ko(x(kT)—l(kT))+K1E(kT)] (3.12)

where l(kT):X = constant command vector during the simulation. For the
integral forward path there exists a bank of integrators, one for each
error signal developed, that insure that the error signals are always
driven to zero, thus resulting in the final value of the output equal to
the input for the step type commands.

In the irregular design, the e vector is defined by

e =V -w (3.13)

where

W=y + Mx (3.14)

These outputs w are developed with the measurement matrix
!tRzX(n“l) and the derivatives 31 of the system states. Again, for step
inputs, the error signal is driven to zero. Rates of the system states,
i1, g0 to zero because there is no input signal to these state equations
if the B matrix is in zero-§2 form. The one exception to the state
derivatives, i1 always going to zero is when a state derivative in 31 is

a function of a state in Xo If the state in X5 is commanded to a

28
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f{ e constant, the state derivative in i1 will also be a constant in steady

state. A simple example is if the rate of change of the roll angle

! ﬂ_..,'. )

_b (é) is a function of the roll rate (ApB) and the yaw rate (APBL

:E specifically, @ = a1ApB = azArB where ap>>a,, then if brg is commanded
L;: to a constant (k1) and the App to zero, the rate of change of roll angle
- will be equal to asky in steady-state. Therefore, to obtain zero

Sﬁ steady-state error, the measurement matrix elements must be chosen so

:J that the system does not feedback the $ state derivative,

A ]

lé& Asymptotic Characteristics

fﬁ For the design shown in Figure 2, as the gain factor g increases,

the system transfer function G(s) = E(Sl‘ﬂ)-1§ approaches the asymptotic

Zi; form

N < A
" ‘[j? I(A) =T (A) +T (N) (3. 3)
- where

& T = ¢y 1,-8)" "B, (3.16)
- . p
~:

-.'}

g _ -1 [

Ny ﬂo = ‘50 K ! g

. et B (3.18)
i A0S KKy 1Aq-41585°C

.\‘ B = 0

. =0 —_

N —emeoa (3.19)
'@ A12C

y G = (x5'Ky ;0 (3.20)
j: and

] _ Ay = -BoK G (3.21)
SRR
£
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The matrix_fkk) is the "slow"™ transfer function matrix and_ﬁ(k) is the
"fast" transfer function matrix. The poles of these transfer functions
fall into three groups designated Z1, 22, and 23. The "slow" modes Zg

of the tracking system correspond as g+« to the poles Z.,UZ off&k) where
17%2

Z; = e 50+K1| = 0} (3.22)
and

Z5

. ¢l =
{rec: lx_x_n_g-bﬁbzgz Cq| = o1, (3.23)

The poles of Z, are called the assignable finite eigenvalues while the
poles of Z2 contain all of the transmission zeroes in the system. The
"fast" modes Zf of the tracking system correspond as g +~ to the poles

of T(N where

23 = {A€C:A I, + gCsBKy| = O} (3.24)
The poles Z3 are called the fast eigenvalues of the system.
From the matrix partitions of B,y and EO' it follows that as g+«,

the "slow" transfer function matrix
Iy =0 (3.25)

Therefore, from equation (3.15), the transfer function matrix G(A) of
the continuous-time closed-1loop tracking system assumes the aymptotic
form

T(A) = (AL, +8C,BoKg) ™ 8C,B,Ky, (3.26)
in consonance with the fact that only the "fast" modes corresponding to
the poles 23 remain both controllable and observable as g+~, The "slow"
transfer function moces corresponding to the poles Z1 become

asymptotically uncontrollable as g+o in view of the block structure of

30
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SRRSO the matrices A, and By. The rank of the controllability matrix is
A \:'. : b\ ¢:‘
- 2 n< - no
e rankM, = r‘ank[gO 50505050 éO EO] = n-% (3.27)

which indicates that there are 2 uncontrollable finite assignable poles

.l
S

in 21. The number of poles in Z1 agrees with Equation (3.22). The

;:f values of the Z1 poles are equal to the ratio of integral to
Ei: proportional gain values. (This can be shown by substituting Equation

- (3.31) into Equation (3.22).)

s
,i;; The "slow modes"™ corresponding to the poles of 22 become become
EEtE asympotically unobservable as g+ in view of the block structure of the
’f;: matrices ij and E)' The rank of the observability matrix

éi% rankM zrank(cl al cT(aD?el ahn=Tcly - o (3.28)
:u: ) which indicates that there are n-f unobservable finite poles in 22' The

¢

number of poles in 22 agrees with Equation (3.23) and they are located

k)

a8
'n.l LR
. .

at the transmission zero locations. The number of Z3 infinite poles

-".
vﬁa equals the number (&) of outputs of the system. Expressions for the
] asymptotic modes are given in Table 1.
O
‘:T: As the gain factor g is increased, tracking of the system's output
t. to input commands (v) becomes increasingly "tight". Reference 14 shows
o that only moderate increases in gain factor are needed for the output to
.:;'_.:f
A resemble an extremely fast first-order response. Although the dominant
e
e finite (fast) roots can be made complex, much of the experience to date
.: has been with real roots,
e The gain K, is chosen such that
e '
"
=0 CBK. = diagonal {o,, o o, } (3.29)
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where ojeR+ (3=1,2,3,+..,4). By using Equation (3.29), the proportional

gain matrix can be found by

K, = [cB)7" I (3.30)

-

~, The elements of the g matrix, which is selected as a diagonal matrix,

:4 are chosen by the designer. These values determine respective gains or

)

;' the weighting of each error signal on the control surface or the systenm

N ) .

~ input being commanded by the control law., The integral gain matrix Ky

b

’25 is often determined by a scaler multiplication of the K, matrix.

y -

.‘ Ky = G K, (3.31)

A It follows from Equation (3.26) that the transfer function z(k) of

}j: the continuous-time tracking system assumes the diagonal asymptotic form

o

G

b I'(A) = diagonal ’ reces (3.32)

:*.: )\+go1 )\+g02 A+goy

o

o For the digital system the asymptotic transfer function has the form:

% % %

- T(X) = diagonal ' L S, (3.33)

.:. A-1+0, A=1+0, A=1+0y

&)

")

i Therefore as g+», or T+0, the transfer matrix G(X) approaches a diagonal

.-\'

SQ asymptotic form of increasingly noninterecting control. As can be seen

A Y

::’ from Equations (3.32) and (3.33), the 23 infinite roots are located on
the real axis equal to -g0; for the continuous case and at 1-04, which

:2 is near the z-plane origin for the discrete case.

>,

2: For the irregular plant, the above equations are applied by

. -~ replacing the C matrix with an F matrix., The component C, is replaced

. A -— - Il
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by F; and C, is replaced by F, as calculated in Equations (3.6) and

(3.7).
In the equations of Table 1, the gain values EO and 51 are the same
as those developed from the equations that are not in zer‘o—?_2 form.

This is because

[CB] = [C,B,] or [FB] = [F,B,] (3.34)

k)"fl

Transmission Zeros

Transmission zeros are considered as regions in either the s-plane
or the z-plane. These regions are asymptotic locations for certain
finite or slow poles of the system. Output feedback does not alter the
locations of transmission zeros (Ref 20) for regular systems. Such
locations coincide with conventional single input/single output transfer
function zeroes; or for MIMO systems, they may simply be regions that
attract finite poles ag g+~. For the basic system transmission zeros
cannot be altered by the controller design and, since infinite gain
cannot be attained, the location of roots migrating towards these zeros
do contribute to the system response.

Designing for a system with an unstable transmission zero is
possible, but it means an upper gain limit for stability must be
established. Stable operation is possible only below that limit.
Increasing gain eventually results in a pole migrating to an unstable
location. Establishing an upper control limit is a necessary but not
sufficient condition for stable operation. Another condition that must
be considered is the effect the system responses have on the control

limits. Even though the closed-loop denominator contains stable poles,
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the system responses can cause saturation of the control surfaces.
Saturation for long periods of time can cause windup. This situation is
especially prevalent when a closed-loop zero is located to the right of
the closed-loop pole located closest to the origin., Designing for a
stable system within the given control limits with two unstable
transmission zeros has not been possible since the transmission zero
regions are always in the right-half plane,.

Using the zero-§2 fo.v.i. the transmission zeros can be calculated
from Equation (3.23). Although they cannot be altered by output
feedback, transmission zeros can be changed in two ways. First, should
the location of the system be unacceptable, it is sometimes possible to
select another C matrix that is acceptable for the design and yields
different zero locations. Second, the measurement matrix modifies the
transmission zeros, and it may be possible to alter the matrix elements
to give both acceptable performance and acceptable transmission zero

locations.

Measurement Matrix Elements

Some guidelines are available for the selection of the measurement
matrix. Reference 19 presents a systematic approach to their selection
for optimum decoupling. In addition the following suggestions are
offered:

1. Make the measurement matrix as sparse as possible, adding only
enough non-zero elements to yield an F matrix and an [FB] matrix of full
rank.

2. Select values for the non-zero elements that give acceptable

transmission zeros. In most cases, the values of the measurement
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elements result in transmission zero locations that are equal to the
reciprocal of the element value.

3. Select the location of the non-zero elements to use a state
derivative that can be easily obtained and is zero for steady-state step

commands as discussed previously.

Closed-Loop Roots

The design technique does not quarantee stability of the system
unless it has stable transmission zeros and infinite gain. Even with
stable transmission zeros, the pole migrations can cross into the
unstable region as the gain increases, and then return to the stable
transmission zero. Therefore, the closed-loop system poles are
evaluated after each design parameter variation to check if the closed-
loop system has crossed into the unstable region. The equations for
computing the closed-loop poles are presented below.

Partioning of the A and B system matrices is accomplished as before

to yield 22 and 522 of order (£x%), where £ is the number of inputs.

X =|A,q 1 A x + B u
X =y Al X #1 By U
—--d-Z- —- (3.35)
Aoqt Ay B
y = [E | 92] X
or
Xy = Ay Xy v A X v By (3.36)
X2 hoy Xy v App X + B U (3.37)
3= Gy x#C2 X2 (3.38)
s = X - z (3039)
u = gkye + gK,fedt (3.40)
37
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j}; . let z = e and zfedt (3.41)
o - 2=z =
:::'.s -_.'\ .
(-' - then zZ=V-y (3.42)
R R R (3.43)
o u = ekyze gz = ek [-Cyxy
"
o ~CoXovylveKsz (3.44)
o U= -8k Cyxy-8K Coxo+8K, v+EK 42 (3.45)
!..-\ »
P _ . ~
NS Xy = (A99-8B% Cqlxy + (Aqp-EB1K,Tp) %
- +8B1K, v+8B1K 2 (3.45)
\
"& Xp = (Br1-8BoK Cp)xy + (Ayp-8BoK,Co) %o
o
ii: +g§2§OX+g§2E1E (3.47)
o~
\'ﬁ
| Writing Equations (3.42), (3.45), and (3.46) in matrix notation
"
.
‘_:- provides the description of the closed-loop system where v is the input
e
‘*:~ command vector to the control system.

o
.O -— o --1 _Ci -Z— E
')'\’ .
S X1(= [8B1Ky Aqq - 8B1Ky Gy Aqp - 8B4K Cof X1+ (8B K (v (3.48)
- Xo| [BBoKy Aoq - 8BoK Gy Anp - 8BoK Cof|Xof |8B:K,
ig
s Note that z is a vector of dimension £x1. For irregular designs replace
o el
N ¢y by Fy and G, by Fpe.
= Some caution should be exercised in using these closed-1loop
T
\l
::E equations., For the digital system, the control is piecewise continuous
~:\-:
e between samples and thus, by letting g=z1/T, these equations can be used
"s.f:
'1F to evaluate stability in general., Effects that are not considered are
T
}:e quantization and the zero-order hold when sampling and computational
::; time delays.
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MILTI Computer-Aided Design

The MULTI program was created by previous AFIT thesis research (Ref
13) and allows real-time, on-1line, computer-aided designs to be
accomplished with the control law theories presented in this chapter. A
user's guide is presented in Reference 13,

There are several differences between the MULTI program
computations and the theoretical equations presented in this chapter.
In the computation of the gain matrices, a number of flexibilities are
provided. The actual MULTI computations are shown below.

For the regular design case:

Ky = aelcB)™! ¢ (3.43)
ko= elcl 2 (3.50)

Both & and € are scalars, and o 1s used to set the ratio of
proportional to integral gain. Unfortunately, it is the inverse of the
usual method of varying the relationship. € is a scalar that can be used
to change all the gain elements by any desired amount. This design
paraneter is especially important in keeping the control surfaces from
being saturated. For the digital design case, varying € proves useful
for cases where the sampling frequency has been fixed by other design
considerations. The system response can be altered by increasing e,

resulting in the same effect as increasing 1/T.
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For the irregular design:

It should be noted that the

calculations if B is not in

Ky = GelF,8,07" & (3.51)

elF,B,171 L (3.52)

—-
|

[F?] matrix must be used for the

0 | form.
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IV, Individual Multivariable Digital Ccntrol Laws and Results

Requirements

The following requirements must be satisfied in applying the design
method:

1. The number of inputs must equal the number of outputs.

2. The system must be contreollable and observable.

3. All transmission zeros nust be stable.

4, Integral plus proportional control is applied to all forward
loop signals.
Each of these requirements is considered in detail in the following

paragraphs.

Inputs and Outputs

The "inputs"™ refer to the number of control surfaces that c¢zn be
commanded to alter the aircraft's states. These are inputs to the
aerodynamic model (plant). For the UH-60A Black Hawk helicopter, the
inputs consist of cyclic pitch control, collective 1lift control, cyclic
roll control, and tail rotor yaw control., These are designated by u in
the state equations. The "outputs re the variables contained in the y
vector and are the responses to be controlled. For this system, there
must be four controlled outputs. The outputs can be states of the plant
or linear combinations of states. The commanded maneuver determines the
output responses, I to be contrnlled. 1In this study, three output

command vectors are selected to perform three maneuvers consisting of

yaw rate response, a coordinated *turn, and a vertical rate response. An

explanation of the selection of each y vector is given in the design
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procedure section.

Controllability and Observability

Controllability and observability are properties of the state-space
representation of a system. Controllability implies that the inputs can
affect each mode of the system. For a linear, time-invariant systen,
controllability of the plant can be checked by evaluating the rank of

the matrix ﬁc (Ref.4) where
Rank M, = Rank[B AB A"-133= n (3.1)

For the augmented system containing integrators, an additional

requirement is that (Ref I2)

Observability implies that the outputs are affected by every mode.
It also implies that the effects on the outputs of one state variable can be
distinguished from the effects of the other state variables. For a
time-invariant system, this property of the plant can be determined by

evaluating the rank of the observability matrix, M (Ref 4) where

o)

Rank M_ = Rank [ cT aTcT  aT(n=1) ¢Ty .y (4.2)

Controllability and observability are evaluated for each design.
In trials where the criteria are not met, the system model is redefined

until controllability and observability are achieved.

Transmission Zeros

As discussed in Chapter III, transmission zerosof the system are

considered as regions toward which some system roots migrate with
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increasing gain. As gain approaches infinity, or the sampling time

approaches zero, for a discrete system the affected roots asymptotically
approach the transmission zero locations. Output feedback does not
alter transmission zeros. In the strictest sense, it is desired that
all such zeros be stable to insure system stability with high gain.

Such a selection does not guarantee stability for all system gain values
since the locus of system roots may journey into the unstable region
before arriving in the vicinity of the trénsmission zeros. Thus for
stable transmission zeros, stable operation is only assured for gain
values approaching infinity. A controller design for a system with
unstable transmission zeros can be developed with these techniques, but
in such cases an upper gain boundary is established to prevent system
roots from moving into the unstable region. Thus, the restriction is
not absolute; however, failing to meet it does impose additional design
considerations.

For irregular designs the CB matrix do2s not have full rank, and
additional transmission zeros are introduced by the measurement matrix
g. These transmission zeros can be altered by changing the measurement
matrix elements. If the measurement matrix is very sparse, the location
of the additional transmission zeros in the s-plane is the inverse of
the values of the elements in the measurement matrix. Thus, a 0.25
element in the measurement matrix produces a transmission zero at -4.0
in the s-~plane. This simple relationship breaks down as the number of
matrix elements increases or if the B matrix is not in zero-§2 form.
Reference 19 provides a guide to the selection of the measurement

matrix.
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Integral Plus Proportional Compensation

The fast-sampling error-actuated controller is governed by a

control law equation of the form

q

u(kT) = f{gog(kT) +'E Ejij(kT)} (4.3)

=1
where Eje R2XL(j:O,1,2, e e+, q), f=1/T is a scalar gain equal to the
sampling frequency, and the control input vector E(t) is piecewise-
constant on the intervals kT < t< (k+1)T (k=0,1,2, .. .). Since only
tight tracking of step inputs is required, higher order vector
integrators (j>2) needed to fcllow ranp, parabolic, and higher order

inputs are not used in this study. Therefore, the error-actuated

controller reduces to
u(kT) = f{ﬁog(kT) + K2 (kT)} (4.4)

which is applied on all forward loops. This error-actuated controller
contains a vector comparator, g(kT), which compares the commanded
maneuver, v, with the desired output vector X(kTL It also contains an

integral component., The vector integrator has the equation form

z2[(k+1)T] = z(kT) + Te(KkT)

where E_(Rl and k=0,1,2,3,. . . The vector integrator can be also

expressed as

J=k-1
(kT) = 2(0) + T I e(JT) (4.6)
J=0

AR
ACSRPIATIAN

where E(O) is usually equal to zero. Assuming 3(0) = 0, Equation (4.2)
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AS, J=k=1
o R . ,
YNy u(kT) = f{Kye(kT) + K4T L e(JT)} (4.7)
ol J=0
e This equation expresses the error-actuated controller entirely in terms
-'.:\:.
of the error vector, g_(kT). Substituting Equation (3.31) gives the
v ;.‘) final form of the controller expressed as
o
¢ < o Tk
o (kD) = flKpe(kT) + & Ky £ e(4)) (4.8)
\
-f,fn An inherent stability problem associated with proportional plus
11N
o
\j',: integral controllers applied to actuators which can saturate is windup.
o
o Consider a very large change in the desired setpoint (commanded maneuver
s 4
-.j'_ is initiated): the proportional channel of the proporticnal plus
.‘-.'
N
:::;. integral controller can cause saturation of the system's actuators, and
N
“a
AR @ the integratcr channel begins to integrate large errors and eventually
. "
:,q reaches a commanded control level that would cause saturation by itself.
NG
.' As the tracking error signal decreases, the proportional channel output
- s
=
. also decreases, but the already saturated integrator channel does not
\':-‘_-' "discharge" its commanded control level until after the error has
s
::}: changed sign, causing the total proportional plus integral controller
2
Yy
>a output to stay at or near a saturating value, even though the actual
|t
.-,:'_. system output, y, may be very close to the desired value. This can
NN
;_: cause very large and undesirable overshoots in the observed system
-\.\:
.’; behavior. An antiwindup compensation method might involve adding a
".-Z: limiter in series with the input to the controlled system in order to
:E::‘_ preclude the control law from commanding values outside the saturation
-.‘-. limits of the actuators. MULTI currently has an option that sets the
= =
s
FAD
e
.:_*.:
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control limits for the control surfaces. However, windup effects are
still experienced if the control limits are saturated for lengthy
periods of time. Therefore, the requirement for proportional plus
integral control is that it is applied on all forward loops and that
control surface limits are not exceeded by the control surface

responses.

i Design Procedure

A procedure for developing a design is established, based on the
efforts in this thesis, The basic steps in this procedure are outlined
below and are then discussed in detail.

1. Formulate the aircraft design model into the proper format.

2. Select the outputs to be controlled.

3. Check controllability and observability,.

4, Calculate the transmission zeros and select the measurement

matrix if it is required.

5. Check the open loop-stability of the systenm,

6. Scale gains for stable response and to keep controls within

allowable limits.

7. Vary weighting matrix elements for desired responses and to

meet control input restraints.

8. Adjust the ratio of proportional plus integral gain for timely

steady-state behavior.

Chapter II covers the formulation of an aircraft model in state
space format necessary for this design application. Time spent in
developing a controller design requires that the models for the plant,

actuators, and sensors are an adequate representation. If possible, the

L6




models should be validated before proceeding with the control law
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Selection of the outputs to be controlled is dependent on the

r
a’

maneuver to be commanded. For this study, the three maneuvers to be

performed are the yaw rate command system, the coordinated turn command

system, and the vertical rate command system. The three maneuvers are

T
8 .I . .
-'-Q: .

shown below as originally presented by the sponsor:

1. Yaw Rate Command System

P

,

rg = # 10 deg/sec, step input

R Ay
AN

= pg = 0

1

5N Qg = O

A

- 2. Coordinated Turn Command System

“~°

:ﬂ Pg=+ 10deg/sec, step input - for a period of afew seconds.
<«

~2

- yg = 0
¢ LYY

;: 3. Vertical Rate Response

» hg = + 20 ft/sec, step input

o~ 0«

: It should be noted that since there are four inputs, there must be four
- controlled outputs. The final selection of the output vectors is

discussed later in this chapter.

}j Controllability and observability are checked for both the open-
‘3 loop aircraft and the closed-1loop design model prior to performing the
A

-1% design. This is an area prone to error due to the tedium of performing
o operations on matrices with realistic elements. Automation can

?: significantly reduce the computational burden but is not employed in
o this thesis.
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The selection of measurement matrix elements and the calculation of

transmission zeros are steps that are interrelated in the design. An
initial selection of the measurement matrix elements (mij) is made with
O<miJ < 1. After measurement matrix selection, the transmission zeros
are calculated. Based on their locations, refinement of the measurement
matrix elements is made. In some cases, unstable transmission zeros
that are not created by the measurement matrix can be removed by

redefining tne output C matrix.

Open Loop Stability

The five flight conditions that are used in this study are the low
speed flight conditions, VEAS = 20 and 40 knots, and the forward flight
flight conditions, Vp,s = 60, 100, and 140 knots. A preliminary insight
into the stability of the UH-60A Black Hawk helicopter can be gained by
examining the poles of the denominator of the open-loop transfer
function. If the helicopter plant contains an unstable mode(s), greater
care must be taken in the design process to insure that the right-half
s-plane poles(s) or pole(s) outside the unit circle in the z-plane are
brought back into their respective regions of stability for the closed-
loop system. The denominator of the open-loop transfer functions for
the five flight conditions are listed below.

The denominator of the open-loop transfer function for the Vp,q =

20 knots flight condition is:

( .1000E+01) S** g (~.3595E+01) + J(0. )
( S5451E+01) S 7 (=.1950E+00) + J(-.7487E+00)
( .8000E+321) S*¥® ¢ (~.19505+00) + J( .TUBTE+00)
( .6033E+01) S** ¢§ (=.14745+01) + J(0. )
( 4B28E+01) S** 4 ( +14375400) + J( .U652E+00) (4.9)
( .1373E+01) S** 3 { .149754+00) + J(-.4652E+00)
( .9037E+00) S** 2 (-.1898E+00) + J(0. )
48
~> Nt -

LT A e S -
e et e ey KR AN

R L S R AT S T I P I L L
- T . P .\} IR A N YT A P O I



o e ( .2258E+00) S** 1 (-.1014E+00) + J(0. )
N ( .1459E-01) S** 0 DENOMINATOR GAIN = .1000E+01

It should be noted that there are two unstable open-1loop poles at
8=0.1497 + joO.4652.
The denominator of the open-loop transfer function for the VEAS =

40 knots flight condition is:

N ( .1000E+01) S** 8 (~.3902E+01) + J(0. )

ay ( .6193E+01) S** 7 (=.2371E+00) + J(-.92795+00)

I ( .1126E+02) S** 6 (~.2371E+00) + J( .9279E+00)
( .1113E402) S** 5 (-.1519E+01) + J(0. )

: ( .8566E+01) S** (=.1642E+00) + J( .3188E+00) (4.10)

) ( .2219E+01) S** 3 (-.1642E+00) + J(-.31835+00)

; ( .3890E+00) S** 2 ( .1723E+00) + J(O. )
(-.8950E-01) S** 1 (- 1412E400) + J(O. )
(-.1702E-01) S** 0 DENOMINATOR GAIN = .1000E+01

It should be noted that there is one unstable open-loop pole at

‘} s=0.1723.
8. The denominator of the open-1loop transfer function for the VEAS =
o
- 60 knots flight condition is:
L
{ .1000E+01) S** 8 (-.3833E+01) + J(0. )
( .6T17E+01) S** 7 (-.3881E400) + J(-.1370E+01)
( .1432E+02) S** ¢ (-.3881E+00) + J( .1370E+01)
( .1481E+02) S** 4 ( 1877E+00) + J( .2468E+00) (4.11)
(-.2496E+01) S%* 3 ( «1877E+00) + J(-.2468E5+00)
( .B4OSE+00) S** 2 (-.1676E+00) + J(0. )
( .3070E+00) S** (-.2195E~01) + J(O. )
- ( .6304E-02) S** 0 DENOMINATOR GAIN = .1000E+01
e
o It should be noted that there are two unstable open-1loop poles at
1'{~
8=0.1877 + j0.2468.
oY
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The denominator of the open-~loop transfer function for the VEAS =

100 knots flight condition is:

( .1000E+01) 3%* 38 (-.3910E+01) + J(0. )
( JT411E+01) S** 7 (-.4536E+00) + J(-.1807E+01)
( .1920E+02) S** § (-.4536E+00) + J( .1BOTE+01)
( .3033E+02) S** 5 (=.2712E+01) + J(0. )
( «3333E+02) S** 4 ( «1988E+00) + J( .2632E+00) (4.11)
(-.3508E+01) S** 3 ( .1988E+00) + J(-.2632E+00)
( <1194E+01) S¥* 2 (-=.2312E400) + J(0. )
( .9960E+00) S%** 1 (-.48390E-01) + J(0. )
( 4526E-01) S** DENOMINATOR GAIN = .1000E+01

It should be noted that there are two unstable open-loop poles at
5$=0.1988 + jo.2632.
The denominator of the open-loop transfer function for the VEAS =

140 knots flight condition is:

( 1000E+01) S** 3 (=.3663E+00) + J( .2169E+01)
( 7837E+01) S** 7 (-.3663E+00) + J(=-.2169Z+01)
( .2289E+02) S** ¢ (-.4018E+01) + J(0. )
( J4565E+02) S** 5 (=.2937E+01) + J(0. )
( .6390E+02) S** 4 ( .1391E+00) + J( .2929E+00) (4.13)
( .9718E+01) S** 3 { .1391E+00) + J(-.2929E+00)
( .2127E+01) S#** 2 (=.3701E+00) + J(O. )
( .2324E+01) S** (-.5768E-01) + J(0. )
( .1282E+00) S** 0 DENOMINATOR GAIN = .1000E+01

It should be noted there are two unstable open~loop poles at s=0.1391 +
j0.2929. It should also be noted that all five flight conditions
contain an unstable mode. As a result of these open-loop instabilities,
the closed-1loop poles must be checked for stability after each design
trial. Even though the desired outputs might tightly track the desired
maneuver over a specific time period, an unstable mode in a closed-loop
system for an individual digital control law is unacceptable.

For the first design attempt, the a, I, and € parameters are set to
one in MULTI. 1In most cases this results in an unstable system. This

result can be checked from the denominator of the c¢losed-loop transfer
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function and therefore a simulation run is a waste of resources. For
the unstable system, the gain is then reduced by decreasing ¢ until
stable operation is obtained. However, stable operation does not
guarantee that the control limits are not exceeded. Once stable
operation 1is reached, a simulation is run. If the control limits are
exceeded, € must be reduced until the controls no lor, r reach
saturation. The weighting matrix elements are then adjusted (ratioed
with respect to one another) to achieve acceptable responses. Then, the
proportional plus integral ratio (1/&) is adjusted so that steady-state
behavior is reached within a desired time. Again, system stability and
control limit saturation must be checked after each parameter variation.

Finally, before any design can be attempted, a selection of the
sampling frequency, f, must be made. Based on the current capabilities
of current digital computers, a sampling frequency equal to 50 Hertz is
selected for this study.

The following pages contain the results achieved for the three

commanded maneuvers at the applicable flight conditions.

Yaw Rate Command System

The purpose of the yaw rate command system is to execute a flat
turn about the z-body axis. As originally stated, the yaw rate command
system commands ) to + 10 deg/sec with qB=pB:O. The perturbation state,
wg» must also be commanded to zero to complete the output vector as well
as to express the desire to have no z-body velocity while executing a
flat turn. However, with this output vector incorporated into the C
matrix there are two transmission zeros at the origin. As mentioned in

Chapter III, a stable design with two transmission zeros at the origin
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is nearly impossible to design as the transmission zeros are approached
from the unstable region of the s-plane with increasing gain.

Therefore, instead of commanding the perturbation pitch rate, 9ps
to zero, the perturbation pitch angle, O is commanded to zero. Since
é):qB in most cases, commanding O to zero results in gqp being zero.

It is also possible to command the perturbation roll angle,¢, to zero
instead of the perturbation roll rate Pp to zero. With the appropriate
measurement matrix, stable transmission zeros can be obtained. Howecver,
a constant roll rate due to the constant yaw rate results. Examining
the pBequation for any flight condition confirms this result. The
magnitude of the constant roll rate is quite unacceptable. Commanding
both¢ and Pp is impossible as it results in singular gain matrices.
Therefore the final choice of output vector to be controlled for the yzw

rate command system is

6

X = PB ().4.111\
v
!

The selection of O requires that a measurement matrix be selected
in order that the first Markov parameter, [QEJ, have full rank. Since
the E matrix is not in zer‘o-g2 form, there is no current method for
obtaining the ﬁ matrix in order that the outputs are decoupled from each
other. Therefore, the objective of selecting the ﬂ matrix is to obtain
full rank for the [Eg] matrix. A careful examination of the A matrix

reveals that unneeded complexity results if the M matrix is not of the

forn
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- -
my4 my, 0 0
M=lmy, ms o 0 0 (4.15)
0 0 0 0
Lo 0 0o 0

For this command system, Mys = Moy = Mps = 0 and Myq = 0.25. With this
choice of M matrix, there is a transmission at the origin. One
transmission zero at the origin can be handled by the design method;
however, an upper stability limit must be established.

Successful designs have been obtained for the VEAS = 20, 40, and 60
knots flight conditions. Designs for the yaw rate command system at
Vieas = 100 and 140 knots have not been achieved. At these flight
conditions, instabilities and control limit saturation problems are
insurmountable. For the VEAS = 20 knots flight condition, the final
dencminator of the closed-loap transfer function is
J( J3787E+01)

J{(-.3787E+01)
J(Oo )

.1000E+01) S** 12 (-.3322E+01)
260BE+02) S** 11 (-.3322E4+01)
L2T12E+03) S** 10 (-.1208E+02)

L3UBTE+D4) SkE
«3291E+02) S**
« 1290E-02) S**

(-.4175E-01) + J(O.

(
(
(
(
(
(
( .5492E+05) S*#*
(
(
(
(
(
( DENOMINATOR GAIN = .10002+0

+
+
+
L1TO1E+0L) S** g (-.5012E+00) + J( .1498E+01)
«T196E+04) S** 8 (~.5012E+00) + J{-.1498E+01)
2261E+05) S** 7 (~-.4188E+01) + J(0. )
6 (-.3756E-01) + J( .3104E+01) (4.16)
.8951E+05) S** 5 (=.3756E-01) + J(=.3104E+01)
.9802E+05) S** (-.2037E+01) + J(0.
B6798E+0Q5) S¥* 3 (-.3935E-04) + J(O.
2 +
1
0

)
)
(-.1249E-01) + J(0O. )
)
1

It should be noted that the closed-loop system poles are all in the

stable region. The figures of merit are listed in Table IV-1 and the

time response plots in Figures 4a - U4g. The design data for each
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o Flight Condition:

Design Data for the Yaw Rate Command Systen

VEAS = 20 knots

T 0.02 seconds
a 0.25
0.2 0 0 0
L 0 2.0 0 0
0 0 0.1 0
0 0 0 1.0
8 005
[0.25 0 0 0
M 0 0 0 0
0 0 0 0
. O 0 0 0
FO.2881 0.00160% 0.0301351 -3.005827]
Ko -0.03929 -0.003245 ~0.001685 0.02228
-0.006159 0.170Y 0.000C6213 0.0%92
L 0.009233 -0.023%19 0.0081311 0.2163 |
[ 1.152 0.00642 0.0005406 -0.023217]
K4 ~-0.1572 -0.012938 -N.006745 0.1315
S -0.02464 0.6825 0.0002435 0.39¢€3
Q:O [ 0.03633 -0.1127 0.0007245 0.8673 |
Input ramp input: 1.0 seconds
Input command: 0 = 0.0
p = 0.0
w = 0.0
r = 0.1745 rad/sec step
NOTE: Step commands are ramped to steady state over

a snecified time. This time is designated as the
"input ramp time" given above.
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Table IV-1
Yaw Rates Results for VEAS = 20 knots

Outputs M t Mm t FvV t

P p m 3
e 0.00084723 8.9 -0.0041178 1.8 -0.000851 10
Pp 0.0040857 1.4 -0.000631 10 -0.000631 10
Wp 0.1865 2.7 -0.12063 1.4 ~-0.01753 10
rg 0.18666 1.3 0 0 0.17435 1.6

In Table IV-1, the symbols representing the figures of merit are:
Mp = the positive peak value
t, = the time to reach M
Mm = the negative peak value

tn = the time to reach M,

final value

1
<3
"

t. = the settling time

Since the similation time equals 10 seconds, it should be noted that a
settling time of 10 seconds does not indicate that the response has
reached steady-state. It should be noted for the cutput responses that
© is in radians and pg and rpg are in radians/sec. An examination of
the output time responses reveals relatively tight tracking of the
commanded maneuver. However, problems exist in the state responses, ¢

and vge The perturbation roll angle state equation is
¢ = -0.00239 g5 + pg + 0.102 rg (4.17)

For the commanded yaw rate, rB:0.1745 rad/sec and Qp*= pB:O in the
steady-state. Therefore, ¢ = 0.0178 rad/sec in the steady-state. It

should be noted that the increasing roll angle is due to the yaw rate
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and not the roll rate, A side-effect of this undesired roll angle is
- the y-body axis velocity,vB. An examination of Figure 4e. reveals a
slow, oscillatory, lightly-damped response with a magnitude comparable
to the total velocity. It can be concluded that the yaw rate response
has excited the dutch roll mode. This result is not totally
satisfactory. Another problem exists in the pitch angle perturbation

state equation described below
0 = qg+ C.0234 rp . (4.18)

As shown above, O also assumes a constant value in steady-state of O =

0.0040833 rad/sec. The output, ©, is given by

0 = 0+0.25 qg + 0.00585 rs (4.19)

which violates the condition for zero steady-state error since

e =-0.25 qp-0.001021 (4,20)
Examining Figure 4d. reveals that ag oscillates around a aegative-
valued constant not equal to zero. The conclusion that can be reached
S about the yaw rate command system at VEas = 20 knots is that there is
A relatively tight tracking for the desired outputs; however, the state
.; responses, ¢ and vp, are undesirable. The main problem with the yaw
rate command system is that only four outputs can be commanded. This

limitation prevents taking into account all the effects caused by the

helicopter executing a flat turn. Another output vector could be

selected as long as a trade-off analysis is performed.
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For the VEAS = 40 knots flight condition, the final denominator of

the closed-loop transfer function is

( .1000E+01) S** 12 (=.2179E+02) + J(0O. )

( .3944E+02) S** 11 (-.4658E+01) + J( .3753E+01)

( .5367E+03) S** 10 (-.4658E+01) + J(-.3753E+01)

( U116E+04) S*¥* g (=.2409E5+00) + J{ .3501E+01)

( .2055E+05) S** 8 (-=.2409E+00) + J(-.3501E+01)

( .7536E+05) S** 7 (-.7TUUGE+00) + J( .1712E+01)

{ .2066E+06) S** § (-.T4YUQE+00) + J(-.1T12E+01) (4.21)
( .3B2UE+06) S** 5 (-.4022E+01) + J(0. ) |
( J4T19E+06) S¥*¥* ) (-.2272E+01) + J{0. )

{( +3361E+06) S** 3 (-.1357E-02) + J(0. )

( .2100E+05) S** 2 (-.1769E-01) + J(0. )

( .2889E+03) S** 1 (-.4829E-01) + J(0. )

( .3541E+00) S** 0 DENOMINATOR GAIN = .1000E+01

It should be noted that the closed-loop system poles are all in the
stable region. For this flight condition, the simulation contains the
actuators dynamics models developed in Chapter II. The figures of merit

are listed in Table IV-2 and the time response plots in Figures 5a. -

(]f? 5. |

Table IV-2
Yaw Rate Results for V zU0 knots
EAS
Qutputs Mp tp My tm Fv tg
0 0 0 ~0.003705 1.6 -0.001085 10 |
Py 0.003456 1.4 ~0.0000607 0.1 0.0013465 10
- W 0.180373 2.3 -0.151656 1.1 0.013948 10
AN ry 0.18058 1.2 0 0 0.173435 1.5 ;
T |
i:ﬂ An examination of the time responses reveals relatively tight 5
:5? tracking of the desired output responses. Again, there are
2
oY unsatisfactory resul*s for the state responses, ¢ and vg. The

perturbation roll angle state equation is

Py
.

)
2%
~—

;; ¢ = =0.00133 gy + pg + 0.0759 ry . (



Design Data for the Yaw Rate Command System
Flight Condition: VEAS = 40 knots with actuators

T = 0.02 seconds

a = 0.25
0.2 0 0 0]
z = 0 2.5 0 0
0O 0 0.1 0
0 0 0 1
€ = 0.70
[0.25 0 0 0
M = o 0 0 o0
0 0 0o 0
L0 0o o 0]
" [ 0.3953 ~0.001604 0.0004224 0.004925]
Ky =|-0.1040 -0.006046 -0.002435 0.06556
-0.0053356 0.3024 0.0003703 0.1306
: | 0.01545 -0.04818 0.00006562 0.299
14 [ 1.581 -0.006415 0.001689 0.0197
: K, =[-0.4159 -0.02419 -0.00974 0.2622
.- -0.02134 1.210 0.001481 0.5222
1) | 0.06179 -0.1927 0.0001615 1.196
:f Input ramp input: 1.0 seconds
" Input command: 9 = 0.0
p = 0.0
w = 0.0
r = 0.1745 rad/sec step

Note: Step commands are ramped to steady state over a specified
time. This time is designated as the "input ramp time"
. given above.
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o5 - In steady-state, @ = 0.01324 rad/sec and results from the constant ry

command. The perturbation side velocity, \5: again shows even greater

3

{jﬂ effect of the dutch roll made with respect to the total velocity. The
o

A

:{Q same problem with © and the steady-state error again occur since

:‘:\

oY © = ag + 0.0176 rg. (4.23)
;; and the desired output response for 0 is

' 0 = €+0.25 qp+0.0044 rg. (4.24)

|

:;j Even though tight tracking of the desired outputs is obtained, the
; :’-_
\:} uncontrolled states, 4 and Vg exhibit unsatisfactory dutch roll mode
i effects.

;ij The final denominator of the closed-1loop transfer function fcr the
:; Vpas=60 knots flight condition is
{ o ( .1000£+01) S** 12 (-.3506E+02) + J(O. )
N - ( J5472E+02) S** 11 {(=.3275E+00) + J(-.3634E+D1)

" ( .8712E+03) S** 1Q (-.3275E+00) + J{ .3634E+01)

N ( 741 2 .04) S*x g (-.5346E+01) + J{ .3601E+01)

e ( .30 .05) s**¢ 3§ (=.53U6E+01) + J(=.3601E+01)

- { 150, E+06) S** 7 (-.8954E+00) + J( .17H7E+01)

) ( JU525E+06) S** § (-.895U4E+00) + J(-.176TE+01) (4.25)
. ( .B8888E+06) S** 5 (-.4019E+01) + J(0O. )
e ( .1140E+07) S** 4 (-.2433E+01) + J(0. )
et ( .B204E+06) S** 3 (-.1987E~02) + J( .1808E01)
oo ( .5293E+05) S** 2 (-.1987E-02) + J(-.1808EQ1)
O ( J4659E+03) S** (~.6627E~01) + J(0. )

e ( .1632E+02) S** ¢ DENCMINATOR GAIN = .1000C+01
o It should be noted that the closed-loop system poles are all in the
:{5 stable region. For this flight condition, the simulation is performed
o
x:: both with and without actuators. The figures of merit for the
AN
\r:. simulation with actuators are listed in Table IV-3 and the time response
‘--.‘1

&y
:{Q plots in Figures 6a.-6h. The figures of merit for the simulation
9
qu without actuators are listed in Table IV-4 and the time response plcts
o
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:? _ Design Data for the Yaw Rate Command System
S e Flight Condition: Vg,o = 60 knots

T = 0.02 seconds
a =z 0.25
L= 0.2 0 0 0
0 3.5 0 0
0 0 0.1 0
0 0 1
€ = 0.8
0.25 0 0 0
M = 0 0 0 0]
0 0 0 0
0 0 0 0
0.4388 -0.01382 0.0005775 0.00259 7
Kn =|-0.1703 0.008547 -0.002668 0.08984
-0.00717 0.4855 0.0002487 0.517
| 0.008557 -0.06569 -0.00016¢5 0.295
1.755 -0.0553 0.00231 0.01036
Ky = -0.6814 0.03419 -0.01067 0.3594
.- -0.02863 1.942 0.00093836 0.6063
‘p" | 0.03423 -0.2623 -0.000678 1.18
Input ramp time: 1.0 second
Input command: © = 0.0
p = 0.0
w = 0.0
r = 0.1745 rad/sec step
:{i Note: Ste - commands are ramped to steady state over a specified
e time, This time 1s designated as the "input ramp time"
L;{ given above,
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Figure 6a. Output Response, O , for the Yaw Rate Command System
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Figure 6f.

State Responses, ¢(rad.) and qg (rad/sec) for the

Command System (Vgag = 60 Knots)
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: Table IV-3

v Yaw Rate Response with Actuators for VEAS=60 knots

3
o Outputs M, tp My tn FV tg
A ) 0 0 -0.00368698 1.5  -0.001453 9.7
A wp 0.2426068 2.1 -0.1219128 1.1 1.007585 10
R rg  0.1767156 1.2 0 0 0 171732 1.4
* Table 1V-l

Yaw Rate Response for VEAS=60 knots

£y .

- Qutputs Mp tp Mp tn Fv tg
4 0 0 0 -0.0035923 1.5 -0.001395 9.1
e Pp 0.0035991 1.4 0 0 0.0016613 9.9
- vp 0.256420 2.2 -0.124232 1.2 0.0105276 9.9
-~ rg 0.1766397 1.2 0 0 0.1714144 1.4
bo]

X
'-4 N From the figures of merit and the time response plots, it can be
- @ seen that there is little difference between the simulation with
\"
n
3 ; actuators and the simulation without actuators. Again, an examination
4y
Ak
-j of the output responses reveals relatively tight tracking of the desired
o output responses. The problems with ¢ and vpg reappear as expected.
WX
Py
‘ The roll angle perturbation state equation is
Y .
In steady-state, $=0.0106u rad/sec. Even though $ in steady-state
oS
f;' improves with increasing total velocity, vg becomes much worse. The
Cd
i
:: non-zero steady-state error problem disappears since © = qg.
T From the experience gained at the lower flight conditions, possible

o,

designs at VEAS = 100 and 140 knots would not be practical due to the

$
LY
1", increasingly unsatisfactory influence of the dutch roll mode on the
: rturbation y-body velocit .
R ‘:&4 perturba y-body ¥, Vg
L) )l )
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o
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)
™
':.‘ ~, Design Data for the Yaw Rate Command System With Actuators
;'\-: e Flight Condition: Vp,q = 60 knots
. T = 0.00 seconds
;’ a = 0.25
59! 0.2 0 0 0]
X L= 0 3.5 0 0
_ 0 0 0.1 0
. + 0 0 0 1]
::}‘ € = 008
v
~ [ 0.25 0 0 07
. M= 0 0 0 0
5] 0 0 0 0
s | 0 0 0 0]
- [ 0.4388 -0.01382 0.0005775 0.00259]
; «-0.00717 0.4855 0.0002487 0.517
4 | 0.008557 -0.06569 -0.0001695 0.295
&)
5, " 1.755 -0.0553 0.00231 0.01036]
$ Ky = ~0.6814 0.03419 -0.01067 0.3594
R 6 -0.02868 1.942 0.0009946 0.6068
» Input ramp time: 1.0 second
i Input command: 0 = 0.0
.‘ p = 0.0
- W = 0-0
- r = 0.1745 rad/sec step
Z: Note: Step commands are ramped to steady state over a specified
f-: time. This time is designated as the "input ramp time"
: given above.
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Coordinated Turn Command System

The purpose of the coordinated turn command system is to execute a
coordinated turn. As originally stated, the coordinated turn command
system commanded the perturbation roll rate, pg = & 10 deg/sec with the
perturbation y-body acceleration, ¥g = 0. The yp = 0 command
indicates that there must be no sideslip (B=0) while executing the
coordinated turn. Since yp = OB, vp could be commanded to zero instead.
However, QB contains inputs from the control surfaces. In order to
command QB: 0, the output equation would require a D matrix. The
current version of MULTI contains no implementation for a D matrix.
result of this situation, vg is commanded to zero, Since the sideslip
angle, 8, is defined by

B = sin~1(vg/Vy) (4.27)
conmmanding vp=0 is equivalent to having zero sideslip.

Since there are four control surfaces, two more outputs must be
commanded. The perturbation state vectors, © and Wg, are added to
include the requirement that the helicopter not pitch or have a z-body
velocity.
