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ABSTRACT

Strategic nuclear targeting studies generally include more target

installations than there are weapons. Hence, a weapon is not assigned

to an installation, but rather, to a Desired Ground Zero (DGZ). The

objective of this study was to investigate optimal DGZs for multiple

nuclear weapons against installations in a target complex. To accomplish

this, it was necessary to develop the target Complex Expected Damage

Function (CEDF) maximization algorithm. The algorittin locates optimal

DGZa by maximizing the CEDF; the CEDF is a nonlinear function of 2m vari-

ables, the (XiYi) DGZ coordinates for each of the m weapons.

The algorithm uses two CEDF models and two optimization techniques.

Ihes6 models use DIA Physical Vulnerability System probability of damage

models. The CEP-Included model includes each weapon's CEP; the simpler

CEP-Excluded model assumes each weapon's CEP equals 0. An analytical

expression for the gradient of the CEP-Excluded model was calculated;

the algorithm maximizes this CEDF using a conjugate gradient with restarts

search technique. The algorithm maximizes the CEP-Included CEDF using a

direct search technique, Powell's method of conjugate directions.

This investigation characterized three factors that affect the

optimal DGZ locations for multiple nuclear weapons in a target complex.

The first factor wAs gradient symmetry; this synmietry resulted from either

a geographically symmetric target complex or collocated weapons. The

secord factor was weapon CEP. Maximization of the two CEDF models

vii



produced slightly different optimal DGZs; this difference depended on a

weapon's CEP and the CEDF model. The third factor was the initial DGZ

location prior to CEDF maximization. The algorithm located different

CEDF local maximums depending on the initial DGZ condition. However,

the investigation revealed that the most successful initial DGZ condi-

tion is to use the coordinates of the highest valued installations as

the initial DGZ coordinates.
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AN INVESrIGATION OF OPTIMAL AIMPOINTS

FOR MULTIPLE NUCLAR WEAPONS AGAINST

INSTALLATIONS IN A TARGET CDMPLBX

I. Introduction

Effective U. S. targeting of an enemy's resources is an important

part of U. S. military air power. One of the fundamental objectives of

U. S. military forces is to sustain deterrence (Ref 8: para 1-6).

Deterrence is an enemy 's state of mind brought about by the existence

of U. S. military power or the enemy's perception of U. S. resolve to

use that power. Strategic nuclear targeting, an assigmnent process,

is a key element of nuclear deterrence. The nuclear weapons planner

must assign a weapon system to a specific target. Targeting consists

of three interacting processes: the target intelligence process, the

threat estimate process, and the operational planning process (Ref 7:2-2).

This study investigates an important phase of the target intelligence

process, nuclear weaponeering, and a weaponeering problem. Lee defines

weaponeering as "the process that determines the physical vulnerabilities

of targets, the optimum weapon type, the number of weapons, and sometimes

the best system required to achieve a desired level of damage on a target

or a target system" (Ref 18:122).

Backgroumd

Weapons planners allocate weapons to Desired Ground Zeros (DGZs)

to achieve damage to installations within a target complex. A target
1



complex is a geographical area that includes different types and numbers

of target elements or installations. Nuclear detonations within a

complex wil] cause insignificant damage to installations within all

adjacent complexes (Ref 20:6). A complex may contain one installation

or a few hundred installations. For example, a 50-square-mile Air Force

base may be a target complex. Similarly, the runway, the maintenance

facility, the parked aircraft, and the headquarters command post are

installations of this target complex. However, weapons planners do not

allocate weapons to each installation. Instead, they allocate weapons

to DGZs and plan to damage more than one installation with one weapon.

A DGZ is a point on the surface of the earth at or vertically below the

center of a planned weapon explosion (Ref 7:5-6). Ii; this study, a DGZ

refers to a nuclear weapon detonation at a specific geographical

location. A DGZ may be located directly on an installation; or, if

one weapon will sufficiently damage two or more installations, then the

rGZ may be located between the installations.

Weapons analysts use the concept of a lethal aimpoint region (LAIR)

to locate DGZs within a target complex (Ref 20:10; 21:4; and 25:2-6).

The LAIR is a circular area whose center is the target installation.

It represents a geographical region within which a weapon can detonate

and achieve at least a minimum probability of damage (Pd) to a target.

Pd is the probability that a desired level of damage (sev'ere, moderate,

light) will occur to a target (Ref 7:5-6). "The general definitions

of the three damage levels are: (1) severe damage -- a level which

requires essentL.slly complete reconstruction or replacement of one or

more critical major elements of the target, plus reconstruction, repair,

or replacement of associated structures or equipment. Severe damage

2



precludes utilization of the target for any purpose, (2) moderate

damage -- a level which requires major repairs to one or more critical

major elements of the target, plus major reconstruction, repair, or

replacement of associated structures or equipment. Moderate damage

precludes effective utilization of the target for its intended purpose,

(3) light damage -- a level which does not significantly impair the

target function, but requires some repairs to restore the target to

complete usefulness" (Ref 19:1-7).

The radius of the LAIR depends on specific weapon system and target

parameters. The accuracy of the missile or aircraft system that delivers

the weapon to the DGZ affects the 1AIR. Also, the yield vf the nuclear

weapon affects the LAIR. Yield is a numeric value measured in

kilotons (kt) and is a relative indicator of the explosive energy the

weapon releases when it detonates. This explosive energy causes damage

to installations. A nuclear weapon distributes its damage energy in

several ways through damage mechanisms or weapon effects. For ground

targets, the most prominent mechanism is the blast effect. The primary

elements of blast are overpressure and dynamic pressure. Overpressure

creates a force that crushes an installation; dynamic pressure creates

a force from the resulting high wind velocity (Ref 11:80-82). But

thermal effects, cratering, and impulse are other nuclear weapon effects

that may contribute to target damage. The occurrence and intensity of

these weapon effects vary for different weapon yields.

The LAIR also depends upon target characteristics, specifically,

the vulnerability of the target to blast effects. 'he Defense Intelligence

Agency (DIA) uses a Physical Vulnerability coding system to quantify a

target's susceptibility to blast damage. Each installation is

3



characterized by a three-part Vulnerability Number (VN). The first

part consists of a two-digit integer reflecting the target's relative

hardness in terms of a 20-kt weapon and a specified damage level

(severe, moderate, light). The second part is a letter indicating

whether the target is predominantly sensitive to either overpressure

(L,M,N,O,P) or dynamic pressure (Q,R,S,T,U). The third part is a

K factor. This factor adjusts the target's relative hardness for weapon

yields other than 20-kt (Ref 6:34 and 19:1-7).

In this paper, four factors characterize a nuclear weapon -- yield,

accuracy, height of burst, and probability of arrival (Pa). Circular

error probable (CEP) is a numeric value measured in units of length

that represents a weapon's delivery accuracy. A 500-foot CEP indicates

a weapon has a 50 chance of being delivered within 500 feet of the

target. Similarly, height of burst is the weapon's distance above the

ground when the weapon detonates. Pa is the probability that a delivery

vehicle (bomber, missile) and its weapon arrive at the target and the

weapon detonates as planned. Pa depends upon the delivery vehicle's

pre-launch survivability (PLS), weapon and weapon system reliability (WSR),

and probability to penetrate (PTP). Each of these factors is a

probability (Ref 7:5-7).

The weapons analyst plans to damage installations within a target

complex by assigning weapons to a prioritized list of DGZs. In addition

to Pd and Pa, which are multiplied together to calculate an installation's

Damage Expectancy (DE), the value of each installation is needed to

develop the prioritized list. The value of an installation is a number

that represents the value of the installation relative to all other

4



installations. Most value systems cardinally order targets over a

range from the most valued target (highest value number) to the least

valued target (Ref 7:6-19). The total complex expected target value

damage is the sum of each installation's value multiplied by the

installation's cumulative DE.

There is a shortfall in the nuclear weaponeering process. The

prioritized target list generally has more DGZs than there are weapons

available to assign to the DGZs. The weapons analyst must determine

not only the best weapon-DGZ combination to achieve the desireO attack

objectives, but also alternative combinations (Ref 7:5-6).

The method that strategic nuclear weapon targeting models use to

address this problem depends on the specific objective of the model.

One objective is to minimize the number of weapons required to achieve

at least a minimum acceptable probability of damage to all installations

in the complex. This method determines the rdninmu number of weapons

when installation Pds are prespecified. A different objective is to

achieve the maximum total expected target value damage for the complex.

This method determines the Pd to each installation when the nunber of

weapons available is prespecified.

As an example, suppose a preliminary target analysis indicates five

DGZs are necessary to achieve a minimum acceptable Pd for each instal-

lation in a complex. However, after allocating weapons to the entire

prioritized DGZ list (all complexes), only four (.,eapons are actually

available to this complex. Should the four weapons be targeted against

the four highest expected target value DGZs or should an attempt be

made to locate four new DGZs, perhaps unrelated to the five potential

DGZs? The former choice will achieve a minimum acceptable Pd on some,

5



but not all, of the installations in the complex. The installations

that would have been damaged by a weapon allocation to the unassigned

DGZ probably will receive insignificant damage. Conversely, the latter

choice may inrease the total expected target value damage to the

complex with either no decrease or a minimal decrease in the minimuxu

acceptable Pd for each installation.

According to a 15 September 1983 literature review, AF Studies and

Analysis, Command and Control Technical Center (CCrC), and the Single

Integrated Operational Plan (SIOP) Simulation Branch, Joint Strategic

Target Plaminng Staff (JSTPS) use different models for DGZ optimization

studies (Ref 4; 13; 20; 22; and 28). Each of these mathematical models

has a limitation. Initially, the algorithms generate a DGZ list for a

complex using an unlimited supply of weapons. Than the algorithms

assign weapons tither to the miLimum number of DGZa required to achieve

an acceptable level of damage on all targets or, when the numbers of

weapons are constrained, to the DGZs that achieve the best total expected

target value damage for the preplanned DGZs. The second situation,

limited weapon supply, is more realistic. However, the development of

new DGZs in the constrained weapons case to maximize total expected

target value damage is not attempted. In some algorithms, DGZs are

relocated, but relocation is sequential. One DGZ is moved until its

contribution to the total expected target value damage is maximized,

then that DGZ is assigned, and a second DGZ is sequentially moved.

Problem Statement

After a weapon allocation for all target complexes is completed,

not all complexes may be allocated enough weapons to achieve an

6



acceptable Pd for all installations.

An algorithm is needed that will optimally locate DGZs in a target

complex for a fixed number of weapons, while maximizing the total

expected target value damage to installations wit:hin the complex.

DGZ Models

Multiweapon Optimizer for Strategic Targets (MOST), Seiler, and

NUCWAVE are mathematical models that Air Force agencies use for stra-

tegic targeting studies (Ref 20; 21; and 25). The models locate DGZs

within a target complex. Each of these models depends on the IAIR

concept and uses either partial enumeration, or linear programming

allocation, or sequential allocation to determine a set of DGZs for a

complex.

MOST determines a DGZ list in two phases. Each phase satisfies an

associated criteria. These phases allow MOST to achieve its objective --

datmining the fewest number of weapons (DGZs) required to achieve at

least a minimum acceptable Pd for each installation in a complex

(Ref 21). There are several steps in the first phase. Initially,

MOST generates a IAIR for each installation. These LAIRs satisfy the

criteria to achieve a minimum acceptable Pd on all installations. Next,

MOST compiles subsets of DGZs through a partial enumeration process;

each subset contains a list of LAIR intersections. For one subset, all

installations in the complex must be included in at least one intersection.

Then MOST selects the subset that contains the fewest nunber of LAIR

intarsections; if several equivalent subsets require the fewest number

of aimpoints, then the subset with the highest total expected target

value damage is selected. As an example, consider the target complex

7



Figure 1. LAIR Intersections

in Figure 1. The algorithm would select the DGZ subset that contains

the LAIR intersection of installations B, C, and D as one DGZ and the

LAIR intersection of installations A and E as the second DGZ of thes

tARget complex (the shaded regions in Figure 1).

In the second phate, saeST adjusts the final DGZ locations within

the LAIR intersection regions uSing a weighted installation value system.

This process maximizes the total expectad targei value damage for all

DGZa. pof installation D was more valuable thae B and C in Figure f ,

then the actual DGZ would be moved proportionately closer to ins tal-

lathon D. These adjustments to final DGZs are accomplished sequentially.

First, the DGZ asociated with the greatest nuaber of lAIR intersections

would es maximized (the DGZ associated with the intersection of target

LAIRs B, C, aimd D). Then the DGZ associated with the second greatest

number of LAIR intersections, etc. MOST was designed to find the

mininum number of DGZs for Posetidon a a-entry vehiclest irrespective

of weapon supply constraints. If there are not enough weapons to

8
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allocate to the- complex, then the least valued DGZs would not be

assigned weapons.

The objectives and purpose of the Seiler model are similar to

MtST. Seiler was designed to study the assigtinent of nuclear weapon

missile systems (ICBM and SLBM) to installations within many target

complexes (Ref 20). Seiler also uses two phases to assign weapons to

a prioritized list of DGZs. In the first phase, generation of aim-

points, Seiler creates DGZs using the LAIR concept and a tiered DGZ

system. The primary tier consists of the minimum number of DGZs that

are required to achieve a minimum acceptable Pd to all installations

when only the largest. yield weapon is considered. For each subset of

inistallations contained in a primary tier DGZ, supplementary DGZs are

created for the next largest yield weapon. Supplementary DGZs are

always subsets of a primary tier DGZ or a higher-tiered supplementary

DGZ. Each DGZ, supplementary or primary, achieves a minimum acceptable

Pd on a subset of the installations in a target complex and has an asso-

ciated DGZ value. This value depends on the cumulative total expected

target value damage of the associated installations.

In the second phase, Seiler uses a linear programming (1,') algo-

ritmn to determine an optimal (or near optimal) assignment of weapons.

The LP objective is to maximize the total complex expected target value

damage. Sieler accomplishes this assignment using the primary and

supplementary tiered DGZ3, missile delivery vehicle range capabilities,

and constraints on the number of primary and supplementary tier weapons

available. If there are not enough weapons available to allocate to

the installations in the complex, then lower value DGZs (and hence

9



installations) remain untargeted just as in MOST.

NUCWAVE determines the number and the location of DGZs using a

different approach (Ref 25). It is a one-sided nuclear weapons allo-

cation war gaming model. The user can select one of two strategies --

(1) allocate a limited number of weapons to DGZs in order to maximize

the total expected targca value damage to all target complexes con-

sidered, or (2) determine the minimum number of DGZs required to achieve

a minimum acceptable Pd to installations within all target complexes.

NUCWAVE generates DGZs using the LAIR concept, similar to MOST and

Seiler, for allocation strategy 2. Allocation strategy 1 is accomplished

using a sequential algorithm and will be discussed later.

The NUCWAVE algorithm consists of three phases, irrespective of

the allocation strategy chosen. The first phase, potential allocation,

uses an unlimited supply of weapons to maximize the damage attained by

each weapon until a sufficient number of potential DGZs are located to

satisfy the strategy objective. In the second phase, an LP weapon

selection program uses these potential DGZs and weapon supply con-

straints to select the number and the type of weapons to be assigned

to each complex. In the final phase, real allocation, the specific

number and types of weapons are "optimally allocated" against the instal-

lations in each complex (Ref 25:2-8). If allocation strategy 2 has been

selected and the weapon selection program allocated fewer than the

required number of weapons to a comqplex, then the lower valued DGZs and

their associated installations would not be targeted. No relocation of

the DGZs is attempted with strategy 2.

When allocation strategy 1, maximize total expected target value
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damage, is selected, NUCWAVE determines DGZs sequentially in both the

potential and real allocation phases. NUCWAVE starts by locating the

first DGZ at the highest-valued installation in the complex. The algo-

rithm then moves the DGZ to a location that maximizes the total complex

expected target value damage. The algorithm may move the DGZ closer to

several installations, thus increasing the Pd and expected target value

damage for these installations. Similarly, the algorithm may move the

DGZ farther away from other installations, thus decreasing the Pd and

expected target value damage for these installations. When the optimal

location is determined, two steps occur. First, a weapon-DGZ location,

having been determined, is stored. Next, the surviving value of all

installations is calculated by multiplying the previous value of the

installation by the Pd of the installation from the current weapon-DGZ

combination. NUCWAVE then selects the installation with highest sur-

viving value and the entire process is repeated. DGZs are sequentially

determined in this manner until the specified stopping condition is

reached. In the potential allocation phase, the stopping condition is

that a user-specified percent of the total expected target value damage

has been achieved; in the real phase, the condition is no more remaining

weapons.

After a weapon allocation is made for the entire target list, only

a finite nunber of weapons may be assigned to a target complex. Only

NUCWAVE attempts to locate new DGZs, but it uses a sequential optimi-

zation algorithm. When less than the desired number of weapons are

allocated to a target complex, a simultaneous optimal solution speci-

fying the location of the final DGZs should exist. In this study,

11



optimal means the best location of DGZs sL. :h that the total complex

expected target value damage is maximized.

Objectives

The primary objective of this study is to investigate the optimal

DGZ locations within a target complex. In order to accomplish this,

it is necessary to develop an algorithm. This algorithm will opti-

mally locate the DGZs for fixed numbers of weapons in a target complex

by maximizing the expected target value damage to all installations.

The algorithm will not be restricted to one type of weapon; that is,

different weapons may be included in the fixed number of weapons.

Also, it will be necessary to determine the sensitivity of the

algorithm to two factors -- first, the mathematical technique used to

locate the optimal DGZs; second, the initial starting conditions (lati-

tude and longitude coordinates) for the DGZs.

The algorithm will consist of two elements. The first element is

a mathematical model of the total complex expected target value damage.

The second element is an optimization technique to determine the maximum

total complex expected value damage and to locate the corresponding

optimal DGZs. The following steps are an outline of the algorithm:

1. Specify target installation parameters. These include

installation coordinates, VN numbers, and values.

2. Specify weapon parameters. These include yield, quantity,

CEP, Pa, and height of burst.

3. Specify either the mathematical form or an acceptable approx-

imation of the probability of damage function for an installation.

4. Determine the mathematical. form of the Installation Expected

12



7
Damage Function (IEDF). This function represents the total

expected target value damage to an installation from all

weapons.

5. Specify the form of the Complex Expected Damage Function (CEDF).

'This function is a summation of all of the IEDFs.

6. Select a nonlinear optimization technique to maximize the CEDF

and to locate the final coordinates of the DGZs.

Scoti an As sumptions

This study will develop an algorithm subject to certain restrictions

that optimally locates DGZa in a target complex. Secondary damage will

be assumed within the target complex; however, secondary damage from

weapons detonated in adjacent complexes will not be coneidered. Also,

the algorithm will not consider target avoidance areas.

Only military/industrial installations that can be modeled as point

targets will be considered. Also, since blast is the primary damage

machanism for ground targets, other nuclear weapon effects will not be

considered. Each installation's susceptibility to overpressure and to

dynamic pressure will be specified with VN numbers. Also, the mathe-

matical model of the probability of damage function developed by the

Defense Intelligence Agency (DIA) will be used to specify the instal-

lation expected damage function (Ref 6).

The algorithm will consider weapon systam delivery methods and

accuracy since they will affect the expected target value damage.

Delivery methods will be characterized by a specified Pa for each weapon.

However, feasible delivery constraints will not be considered, for
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example, Multiple Independent Reentry Vehicle (MIRV) footprinting and a

weapon delivery system's range capability. A circular normal distri-

bution will be assumed for weapon system accuracy, and a CEP will be

specified for each weapon. Pa and CEP are a function of range for some

weapons, but in this study they are prespecified numbers.

Different optimization techniques and initial DGZ conditions will

be evaluated. These evaluations will characterize the properties, capa-

bilities, and any limitations of the algorithm.

Overview

This paper reports the methods and findings of a study that inives-

tigated the location of optimal aimpoints for multiple nuclear weapons

against installations in a target complex. A CEDF maximization algorithm

was developed to optimally locate DGZs for these weapons by maximizing

the Complax Expected Damage Function (CEDF). The algorithm consists of

two elements -- a mathematical model of the CEDF and an optimization

technique. Chapter II presents the mathematical formulation of two

CEDF models and the gradient for one of these models. Chapter III pre-

sents an overview )f numerical search techniques; it also discusses the

two techniques that are used to maximize the two CEDF models. Chapter IV

contains the computerization of the algorithm and the verification and

validation processes. Chapter V discusses the algorithm's convergence

criteria, and specific properties of symmetric target complexes, and

symmetric CL)F gradient elements. Chapter VI is an analysis of optimal

DGZs for three, four, and seven installation target complexes. It also

discusses and summarizes the three conclusions of this study. Finally,

Chapter VII presents concluding remarks and recommendations.

14



II. Mathematical Formulation of the Complex

Expected DamAge Function and Gradient

The algorithm determines the optimal DGZ locations within a target

complex by maximizing the Complex Expected Damage Function (CEDF).

Initially, the CEDF is developed from prespecified weapon and instal-

lation parameters; then the CEDF is maximized with an unconstrained,

nonlinear optimization technique. One replication of the algorithm

determines the optimal DGZ locations in a finite number of iterative

steps. Each iterative step finds improved DGZ locations and an asso-

ciated larger CEDF value as compared to the previous locations and CEDF

value. The algorithm iterates until no significant increase in the CEDF

is possible. This chapter explains the mathematical formulation of the

CEDF and its gradient. Qiapter III presents the unconstrained, non-

linear optimization techniques used to maximize the CEDF.

Conceptual Model

The CEDF is a function of weapon and installation parameters and

the coordinates of the DGZs. The conceptual model of the CEDF is shown

in Figure 2. The i subscript of either a variable or a paraineter refers

to one of the m weapons; the j subscript refers to one of the n instal-

lations in the target complex. All parameters are constants (either

prespecified or calculated values) except the (Xi,Yi) DGZ coordinates

for each of the m weapons. The basic element of the the CEDF is

the Pdij -- the probability of achieving a specified level of damage

to installation j from weapon i. Similarly, the expected damage to

installation j from weapon i is DEi~j -- the product of Pdij and
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for each
installation j, j - 1 .

installation j prespecified
or calcula ted parameters

f or each
weapon i, 1.

weapon i presped-fied
or calculated parameters

weapon i Pa

DE Pdj~ Pa,

m
DEj -1- - )E

installation value V

IEDF -v *DE.i

CEDF - IEDFj

Figure 2. Conceptual Model of the CEDE
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the probability of arrival for weapon i, Pai. The cumulative expected

damage to installation j from all m weapons is DEj. This formulation

for determining the cumulative damage to an installation from multiple

bursts is similar to the formulation used in SIDAC and NUCWAVE

(Ref 19:A-4 and 25:A-2). For each installation, the Installation

Expected Damage Function, IEDF, is the product of its value v and DE,.

The CEDF is an unconstrained, nonlinear function; it is the summation

of n IEDFs. The function is nonlinear because Pdi,d is a nonlinear

function. Again, all CEDF parameters are constants except the (Xi,Yi)

DGZ coordinates for each of the m weapons.

In order to determine the CEDF, the algorithm requires scenario

dependent inputs, installation and weapon parameters. The minimum

necessary installation parameters include:

1. The number of installations in the target complex - n

2. The coordinates of each installation - (xj jyj)

3. A VNTK code for each installatiorý indicating the installation's

susceptibility to blast damage

4. A value from a relative installation value system - vj

The minimum necessary weapon parameters include:

1. The number of weapons available - m

2. The height of burst for each weapon - HOBi

3. The yield in kilotons for each weapon - Y

4. The CEP for each weapon - CEPi

5. •The probability of arrival for each weapon - Pai

6. The initial DGZ locations prior to optimization - (Xi,Yi)

The assignment of specific numeric values to these parameters was

not a critical element of the study. Consequently, several hypothetical
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target complexes were used. These complexes are described in Chapter IV.

Two mathematical forms of the CEDF are used; hence, there are two

parallel algoritlms, one for each form of the CEDF. The first CEDF is

the CEP-Excluded version; the second CEDF is the CEP-Included version.

These two versions are explained in the next section. The only differ-

ence between the two CEDFs is their respective forms of the probability

of damage function. The Defense Intelligence Agency (DIA) developed

these Pd models to provide analytical approximations to actual blast

damage data. The CEP-Excluded CEDF uses a closed form analytical

expression of an installation's Pd function that is independent of

weapon delivery system accuracy, that is, weapon CEP - 0. The CEP-

Included CEDF uses a more complicated analytical expression of an

installation's Pd function that includes weapon CEP.

The two CEDF forms are used for three reasons. First, a closed

form analytical expression for the gradient of the CEP-Included CEDF

expression was not available; hence, this CEDF could only be maximized

with an optimization technique that used function values. However,

since gradient optimization techniques are generally more efficient

than function value techniques (Ref 2:152; 5:321; and 10:286), a second

form of the CEDF is desired. Therefore, an analytical expression for

the gradient of the CEP-Excluded CEDF is calculated. This CEDF is

maximizrei using gradient optimization techniques. Chapter III explains

different optimization schemes and the optimization techniques used to

maximize the two CEDFs. The second reason for using two CEDFs is

verification. The results of the algorithm are compared to insure

that they provide the same DGZ locations and complex expected" damage

value. The last reason for using two CEDFs is to investigate the
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effect that the assumption of CEP - 0 has on the location of the

optimal aimpoints.

Prbblt ofDma Models

The CEDF is an unconstrained, nonlinear function of 2m variables

the (Xi,Yi) DGZ coordinates for each of the m weapons.

n n r mCEDF- aE~. j 1 - T (l - Pdipj * Pai) (1)

The basic element of the CEDF is Pdi,j -- the probability of

achievng a specified level of damage to installation j from weapon i.

?dijj is a function of two independent variables, the (XiYi) coordi-

nates of weapon i. 7o forms of the Pdij function used in this study

are part of the DIA Physcial Vulnerability (PV) System. They are not

inpendt formulations. These formulations are described in

Mathematical Backaround and Proprammnin Aids for the Piysical Vulner-

ability System for Nuclear Weapons (Ref 6). Therefore, only a useable,

but limited, description will be presented here.

The 1di,• depends on the known distance s between DGZ 1 and

installation J. The coordinates of installation J are (x ,yj). The

geometry of the installation-weapon interaction is shown in Figure 3.

The algorithm uses a flat earth approximation to calculate this distance,

that is,

s (Xi xj)2 + (Yi" y )2]1/2(2
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Actual impact

Installation j

DG i 
|• 

,

Figure 3. Geometry of the installation-weapon interaction (Ref 6:20).

The (X,,Yi) and (xj,yj) coordinates are measured in feet from a common

origin. Comparatively, the distance r is the distance between instal-

lation j and the actual weapon impact point. When CEP 0 , the

impact point and DGZi may not be the same point, and s will not equal r.

CE.-Excluded Model. If the CEP of the weapon delivery system can

be ausumed to equal 0, that is, the actual weapon impact point is the

DGZi, then the distance r from installation j to the impact point is

known. The distance r can be calculated from the (Xi,Yi) DGZ coordinates,

the (xjpyj) installation coordinates, and Eq (2). The distance damage

fumction, Pd(r), is the DIA analytical approximation for the probability

of damage function when weapon CEP - 0. It is based upon actual blast

damage data. Pd(r) is the complement of the cumulative log normal

distribution function. For this CEDF version, CEP-Excluded, the probe-

bility of damage function, Pdi,j, is the distance damage function, Pd(r).

Howver, it will be referred as the distance damage function Pd(r) to

parallel the DIA development. The shape of a Pd(r) function is shown
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Pd(r)

1.0

0.5

S.. .. - . . - . -'La( WR

"•igure 4. A probability of damage function Pd(r)

in Figure 4. The independent variable is the distance r between the

installation and the impact point.

ThM distance damage function is a nonlinear expression in integral

form; it is specified by the location and dispersion parameters, , and ,.

Pd(r) a tz(r -/2t 2  ()

z(r) dn (4)

la parameter t is a du=ny variable of integration for the normal proba-

bility distribution. '"The parameter , which is the median of the log

normal density function, is the distance from ground zero at which there

is a 50% chance of achieving a specified level of damage. The parameter

Si- the standard deviation of ln(r)" (Ref 6:6,7). These parameters depend

on the weapon radius (WR) and distarce damage sigma (o4). If a weapon

is detonated within a uniform distribution of targets, then the WR is
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the radius of a circle centered at the weapon impact point. The circle

contains as many targets undamaged to a specified level inside the

circle as there are targets damaged to a specified level outside the

circla. "a, is a ieasure of the variance of the density function. A

small q, indicates a relatively rapid fall off of the damage function;

a lange ar indicates a more gradual fall off" (Ref 6:11).

Prior to 1 September 1972, the analytical approximation of actual

blast damage data was the circular coverage function with parameters WR

and r. However, before that date,DIA decided that the distance damage

function with parametars % and ý provided a better fit to actual blast

damage data. Since previously measured and calculated target vulner-

ability data depended on WR and a,, DIA developed mathematical trans-

formations to determine x and • from WR and T.

-WRGeý

With these transformations, the distance damage function could specify

the Pd for targets characterized by the Physical Vulnerability (PV)

coding system.

Consequently, the probability of damage to installation j from

weapon i, Pdij, can be calculated using Eqs (3) and (4), after a-,

WR, and r have been determined. WR and cr ae parameters that are

calculated using prespecified user values. WR depends on the weapon's

yield and HOB and the installation's VNTK code. Hence, there is a

unique WR for each weapon i-installation J interaction -- WR ij.
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Liketise, cr and P depend only on the installation's VNTK code. Hence,

there is a unique w. and P for each installation -- •d and Rj .

Appendix A presents the calculation of • and WR. The independent

variable r is actually a function of two independent variables, the

(Xi,Yi) DGZ coordinates) and two constants, the (xjiyj) installation

coordinates.

The Pd(r) cannot be expressed in closed form in terms of elementary

functions; however, it can be calculated by ure of the error

function, erf(u) (Ref 6:21 and 1:298). The erf(u) specifies the proba-

bility that a standard normal random variable observation is within ± u

of the mean value.

Pd(r)- Pd i,(iYi) -0.5 + 0.5 erf j ) for z(r) i0

-0.5- 0.5 erf (ZJ r) for z(r) <0 (5)

whare z(r) z(Xi,Yi) - 1x,

in (r;-4j Pj ()

A polynomial function of the independent variable u can approximate erf(u)

(Ref 14:185).

In sm•uwry, if the CEP of the weapon can be assumed to equal 0,

then the probability of damage Pdij to installation j from weapon i

can be calculated using Eqs (5) and (6). Prespecified target and weapon

paramterm are necessary to calculate WRi,j, j, and r(Xi,Yl).
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CUP-Included Modc. C the CEP of the weapon delivery system

cann,ý,t 3e assumed to equal 0, that is, the actual impact point of the

weapon is unknown, then the di-.suie r from the impact point to

installation j is ,mknown. The geomet.y of the installation-weapon

interaction is shown in Figure 3. The distance s from DGZi to instal-

lation j can be calculated from the (XiYi) DGZ coordinates, the

(xji,yj) installation coordinates, and Eq (2). The unknown distance

from DGZi to the actual impact point is a function of s and the inde-

pendent variables r and -.

The DIA model determines the probability of damage to installation j

in the following way. First, for each possible impact point, the proba-

bility of damage is multiplied by the probability that the weapon arrives

and detonates at that point (Ref 6:19). The sun of these products for

all possible impact points specifies the probability of achieving the

desired level of damage to installation J from weapon i, Pdi,j. This

summation is a multiple integral over the area that contains all possible

impact points.

Pdi~j Pd(r) 2e rdrd4r (7)
i ;j

00

where Pd(r) a distance damage function, Eq (3)

T -2 a CEP/l.1774

•2(re) =L2 + s2- 2 rs cos -1/2

For this CEDF model, Pd id and Pd(r) are not the same function. Pdi~ j

has two distinct, yet dependent, terms: Pd(r) and 1 2 e 2 a
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(1) P (c) specifies the probability of damage to an installation
a

f-ram an Inpai-t point, and

2

(2) e • specifies the circular ncf,=a1 probability of

the weapon arriving and detonating at the DGZ.

A closed form solution to Eq (7) does not exiat; however, an

analytical approximation does (Ref 6:23).

b

Pdi - (f(r)dr
a

The limits of integration, a and b, are selected such that when r < a

or r > b, f(r) - O. •ay are functions of a, CEP, WR, and (r.

Appendix B presents the development of f(r), the determination of

a and b, and the calculation of Pdii. The function f(r) has two dif-

ferent forms. Each form depends on the distance a between DGZi and

installation J, the distance r, and the weapon's CEP.

This integral can be evaluated using Gauss-Lagendre quadrature,

a numerical integration technique. This technique approximates a definite

integral as a finite series. Each term in the series is a weighted

function value.

Pd (b -a) 10 (8)
ip>- k * ~k)

k-1

* whoe rk (b -a) + ~*( b)()wher r k 2 zzk 4(a2(9

Gauss-Lagendre quadrature differs from the more common trapezoidal

nunerical integration. In Gauss-Legendre, the distances between
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TABLE I

Steps to Calculate Pdij

Given Parameters
Step or values Results

1 VNT1( iK

3 VNTi( Yieldi, hobi WRij

4 XL, Yi, xji Yj r(xi,Y1 ), S(Xi,Yi)

5 ýj, WRij, r Pditj (CEP-Excluded)

5 TAjO WRipj, at CE:i a, b

6 Oj, WRi 1j, r, 3, a, b, CEPi Pdij (CEP-Included)

the rk values along the abscissa are not equal. The values of the quadra-

ture coefficients, wwkp and the base points, zzk, can be determined from

the Nthk Lagendre polynomial. Gauss- Legendre quadrature is discussed in

more detail in Appendix C.

In summary, if the CEP of the weapon cannot be assumed to equal 0,

then the probability of damage to installation J from weapon i, Pdi,,

,.an be calculated using Eqs (8) and (9). Specific target and weapon

iAz,*eters are neceusaxy to calculate'a, b, and f(r k).

Each Pd it is an integral part of a Complex Fxpected Damage

Functiou (CE-)F). Eqs (5) and (8) are used to calculate Pdit for the

0-Y-Exclud-' aud for the CEP-Included CEDF models. Table I lists a

suPPr--v of Che steps necessary to calculate Pdij.
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"The CEDF Model

The CEDF is an unconstrained, nonlinear function of the (XiYi) DGZ

coordinates for each of the m weapons.

n m

CM m"Z *1 TT ( d P
i- i i-i

The i subscript refers to one of the m weapons; the j subscript refers

to one of the n installations. The 2m independent variables of the CDF are

(xl, Y1, x2, Y2, I" *$t ,M

The 2m elements of the DGZ coordinate vector, 3, are these 2m variables

in a revised order.

x m (XI, X2, sell XMP Ylp Y2' I "to Ym)

Tme (xL,Yi) DGZ coordinates of weapon i are (xjxij.). Similarly, the 2n

parameters specifying the (xj iYj) coordinates of the n installations are

(Xl' Ylf x2, Y2, '"'P xn' yn)

The 2n elements of the installation coordinate vector, xx, are these 2n

parameters in a revised order.

S= (Xl, x2 , ... , xn' Yl, Y2 ' '"I yn)
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DE1-1 -Pdl,1 * Pal DEI,3 - Pdl,3 * Pa1

D2,1 Pd2 , 1 * Pa2 2,3 - Pd2, 3 * Pa 2

DE1  -1 - (1- DE1 11 )(1 - DE2 ,) DE3 - 1 - (1 - DEp 3 )(1 - DE2 , 3 )

IMhF 1 -.v1 * DE1  . (xxxx

(',,x, .,4) IEDF3 - v3 * DE3

(X1 1 X3 ) Pal , • (X2 ,x4 ) Pa2

(x X

(= 2,xx5) A_
DE1 ,2 - Pdl, 2 * Pa1

DE2-2 " P"2,2 * Pa2 Ls installation

DE2 -1- (1 - DE1 92)(1 - DE212) . •DGZ

LIEDF2 v 2  D2V•2"2 * DE

Figure 5. A representative CEDF with three
installations and two weapons.

The (xj,yj) coordinates of installation J are (xxjxxj+n)"

Like the Pdij, the damage expectancy for installation j from weapon i

is a function of two independent variables DEi,j(xifxi.m ). Similarly,

like the CEDF, the cumulative damage expectancy for installation j from

all weapons is a function of 2m independent variables DE (W).

A pictorial description of a representative CEDF is shown in

Figure 5. The target complex consists of three installations and two

weapons. Each installation is characterized by a value -- vi, a VNTK

code, and (xxjxxj+3 ) coordinates. Each weapon is characterized
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by a yield -- Yi, height of burst -- HOB., probability of arrival -- Pai,

and (xi,xi+2 ). In order to determine all of the DEi'js, six Pd i s are

calculated according to the steps in Table I, one for each combination

of i - 1, 2 and j - 1, 2, 3. For the weapon coordinates (Xilxi+2),

i- 1, 2

CEDF(x) -v, * DE, + v2 * DE2 + v3 * DE ()

However, if the weapon coordinates are changed to (x1 ' ,Xi+2')1

i - 1, 2, then DE. may change for each of the j installations. That is,

DE (x) may not equal DE (W') for all J. If this is true, then the CEDF(x')

may be either greater than, equal, or less than CEDF(x).

In order to maximize the CEDF, it is necessary to locate the •*

DGZ coordinates such that

CEDF(x*) > CEDF(Z) for all x

One of the optimization techniques used to maximize the CEDF(x) and to

locate the optimal x* DGZ coordinates required the gradient of the CEDF(x).

Gradient of the CEP-Fxcluded Model

The Complex Expected Damage Function (CEDF) is a nonlinear func-

tion of 2m variables -- the (xi,xi+m) DGZ coordinates of the m weapons.

CEDF(x) - vju 1 -1] (i-IPd1 , Pa) (1)j- (1 - dij (xi' xi+m) *Pi

All parameters of the CEDF(x) are constants except the probability of
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achieving a specified level of damage to installation j from weapon i,

Pdi~j. Each Pdi~i is a function of two independent variables, the

(xitxi~m) DGZ coordinates of weapon i. Therefore, to calculate the

gradient of the CEDF, the Pdi,j must be differentiable with respect to

the two independent variables. A closed form analytical expression for

the gradient of the CEP-Included Pdi, Eq (7), was not available.

This was one of the reasons for formulating the second version of the

CEDF, the CEP-EF-cluded model. This section presents the calculation of

the gradient of the CEP-Excluded CEDF.

The gradient of the CEDF(x) is a vector of 2m element,.

grad(CEDF) - • J@ CMF riCED_ . CEDF (10)
O)xI x2 a X2m/

where CEDF(x) - v *DE (x) + v2 *DE2(x) + ... + V*Dn(x)

and DE (x) - - PalPdl,.)(l - Pa 2 Pd2 ,) ... (I - PamPdmj)

Since vj is a constant, the kth element of grad(CEDF) is of the form

.3DEF aEO DEn

-CEDF = v* -19 +V - + +V* --

SXk 1 xk v2 xk n xk

n

v LDE 1  (11)

j-1 Dxk
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Each of the n terms of Eq (11) is of the form

BDE .( - PajPdl. >.-4
V.j*( 1- -Pa (- PaiPdi, (1 - PamPdm,j)

1x Xk * X
l- PPaPdm

.. + (1 - PaPd ,)*...(l - PajPdi,)*..,

However, since each Pdij is a function of only two variables (xiXi.m),

for lli, all PiJ) terms equal 0 except for k - i and i + m.

aXk

Hence, for k- i and i+m

VjDa, aPd,).3(i PXk m

vi *-l - PaPdl,j3 )*.. Xk ..... (i - (am2)

... Pa - ... (1 PPdmj) (12)
fvja(l- Palrlj).. F(PaidXk • P d

Now define m
factor(J) - vj - (1 - Pai~di~j)

i-i

and rewrite Eq (12) as

vj,__ factor(j) * PatjPdiaid for k -i and i + m (13)
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The gradient of the CEDF is a vector of 2m elements. Eq (11) is the form

of the kth element. Similarly, each element is a summation of n terms.

Eq (13) is the form of each of these n terms. Analytical expressions

of di' for k - i and i + m are needed to completely specify theaXk

gradient of the CEDF(B). The CEP-Excluded version of the Pdij is

Pdj(xioxi+m) - 0.5 + 0.5 erf for z : 0 (5)Pipj (xý2~m

- 0.5- 0.5 erf (1l2 for z < 0

where
2

W1(W2
z(r) =% In lj( - ln(r) (6)

First, a will be calculated for z O 0, that is, for r 4< WRije eI
JiL

Lot u 4-2 and use the chain rule

S 0.5 (14)
xi8u ax

where

2(15)a X1  J2 axi
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Now since r [(x. xx.)2 +(x xx.+)2] 1/2 (2)

and z(r) - z(xi,xixm) from Eq (6), and &gain using the chain rule

9WL BI r_ (16)
8xi ar Cxi

where - -

Lzirr= Tj (-r jr

and r (17)
8xi r

U 1 meJ (18)

The derivative of erf(u) from the Handbook of Mathematical Functions with

Formlas, Graphs, and Mathematical Tables (Ref 1:298,801) is

(U 2- (19)
<)u wT

Hene, combining Eqs (14), (18), and (19) specifies

_ ,___ 2 -u2  fo- z)x0xi 2 xi ' • f or, z >*-0
x1  2JIT F

= (xxj x) (20)
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-rwhere u l n -\.(21)

A similar mathematical development was used to calculate

-@2_ _ _ _ _ -S ( x x j+ n - x 1.,m ) ( 2 2 )

For z <O, that is r > W,1,je ,then

,•d1.1  - -0.5 aerf(u) • (23)

aX u axi

The only difference between this development and the previous development

for z • 0 is the sign of I This partial derivative is positiveaBr

because r > WR1ie.1 and I1I is

Izi - p-[n(r) -ln(WR 1  eJ

a .Li (24)cr ýjr

Combining Eqs (15), (16), (17), and (24) yields

u X i " X I ( 2 5 )

34



Now Eqs (19), (23), and (25) specify

Pd__ 1 2 -u 2  1 i
1e

a - -"J 7"\?r/\"' for z < 0

2e-U
"- 2 (xxi- xi) (26)

Hence, comparing Eqs (20) and (26), is the same for all z.
a xi

A similar development indicates - is also the same for all z.
axi+m

In summary, the gradient of the CEP-Excluded CEDF(x) is a vector

of 2m elements. The kth element of the gradient is

n
CE ;Ž Vj* 1(1

aXk j-1 axk

Swhore

vj*DEa .actor(i) . i, for k- Saind i+m (13)

Xk - Pa Pai * x
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Also, for k- i

a S±,1 U2  (x-i)(20)

and for k i +m

(22

axk J-2 Oj

ehere UILL..L ln ( (21)

end r -[x~ - YIXj) 2 + (xi1 f Xx~)2 1/2 (2)
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III. Optimization of the Complex

§Mted D Function

Two approaches are available to maximize a function of n variables--

analytical and numerical search. An analytical approach is preferred if

the roots of the n equations defining the critical points of the function

are easily determined and solved. These equations are the first partial

derivatives of the functron set equal to 0. However, if these analytical

expressions are not eacl Uy determined or solved, then numerical search

techniques are necaesary to determine the maximum of the function.

Numerical search techniques require an organized, efficient exploration

of the solution space.

Numerical search techniques were used to maximize the Complex Expected

Damage Function (CDF) because of the complexity of the CEDF. This chapter

presents a general methodology and overview of numerical search techniques

that are used to maximize unconstrained functions. Also, this chapter

discusses the two related techniques that were used to maximize the two

versions of the CEDF -- the CEP-Included and the CEP-Excluded models.

The primary difference between the two CEDF models is that there was a

closed form expression for the gradient of the CEP Excluded model.

Therefore, gradient search terhniques could be used to maximize the CEP

Exluded modal. The CEP-Included model was maxitized using Powell's

conjugate directions method (Ref 23). Thiu method maximizes a function

using only function values. The CEP-Excluded model was maximized using

a conjugate gradient with restarts method (Ref 24).
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Optimization

Optimization is a process that attains the best or most effective

results for a problem, while satisfying any given conditions or con-

straints. Optimixation can be either maximization or minimization. One

part of this study was to maximize the CEDF(x), a nonlinear function of

2m independent variables -- the (xi,xi+01) DGZ coordinates of each weapon.

The CEDF(Z) is an unconstrained function. It can be maximized by mini-

mixing -CEDF(x). That is, the point * in 2m space, such that CEDF(x)

Is a maximum, is the same point where -CEDF(x) is a minimum.

In this chapter, direct references to maximizing the CEDF are not

made. Instead, all references concerning optimization reference mini-

miming an unconstrained, nonlinear function of n variables, f(x); , is

an n element vector in n-dimensional space, RP. The gradient of f(,5)

is V•f(a); the Hessian matrix of f(,) is H(Z). A base point in Rn
is )i; the optimal point in Rn is ,*.

There is an important difference between a strict local minimum and

the global mininun of f(X). The following two definitions are extracted

from Avriel (Ref 3:10). A real valued function f(x) with domain D in

R" has a strict local minimum at •, if there exists a number 6 such

that

f ql) < f(x) for all E D (27)

such that ix This definition states that XS is a local

minimum over a region bounded by a number & . If Eq (27) holds for all

x 6 D, that is, 6 not contained within a bounded region, then x*J.s the

global minimum. Optimization techniques locate the global min.mum only
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under special conditions. That is, the function is known to be unimodal.

Generally, if a function is not known to contain a global minimum, an

accepted procedure is to search D from a number of initial, separated

base points to determine all local minimums. Beveridge and Schechter

state "the only method of determining the global optimum is the direct

comparison of the function values at various local optima" (Ref 5:357).

Numrical Search Techniques

The numerical search for the minimum value of an unconstrained

ftuntion f(A) with domain D in Rn is a sequential, iterative process.

It includes the successive calculation of new objective function values,

f(,i), and the comparison of these values with the best value that has

been obtained so far. It is necessary to determine x* by

f(1)> f 2) > .. > f( i) > .. > f(x) fra.,4D

While generating the sequence of x,,, eawh unconstrained numerical

search technique mast consider three important elements -- the search

direction, the distance to move, and the stopping criteria. From a

base poAnt xi, A search techmique must select (1) a direction of

movseant I and (2) a distance to move t. These values specify the

next po'nt in kn

x 1+I M xi + td

If f(41"l) < f(Xi), then ,i1l is a better estimate of the local miuirum
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than xi. The stopping criteria fo,. a .1N'ar~h te:LMique depends upon the

values of either x +, f( i+), or 17f(ý:c, 1 ). Th t is, if either

* ~st~ ~~or If(xi 1) - f (xi)I ~21 or ~(x.i'1)I ~3)

then the technique stops iterating, and x* x is the optimal

point in Rn such that f(xi+l) is a minimum. Numerical search techniques

use different methods to determine d and t.

There are three categories of numerical search zechniques (Ref 2:101).

The first category includes direct search t6chniques. Tese techniques

use only functional values to locate xi'l from xi. The second cate.gory

includes gradient or first-order search tecbniques. These techniques

i+luse if(A and Vf(x to dete.ine x . Generally, gradLent methods

are more efficient and preferred to direct techniques (Ref 2:152;

50321; and 10:386). However, when the gradient is not easily obtained,

direct searches are more approprLate. The last category irncludes

iecond'-order techniques. These techniques use f(Ai), Vf(ZI), and

Qxte Hesian, H(xi), to loaAte x'+'". Detailed explanations of the fol-

lowing techriques can be found in most optimization books (Ref 2; 3;

5; and 10). Hence, on].y a brief explanation is presented here.

If an unconstrained objective function f(x) is not easily differ-

,Antiated, than a direct search technique is necessary to minimize L:(x),,

These techniques use two stages, an exploratoty and a pattern, to move

from i to 6 i+l. Two older techniques are the Hooke-Jeeves pagttern

search and Rosenbrock's method of rotating directions. In thu explor-

atory stages, Hooke-Jeeves only searches alorg the axial coordinate

directions; Rosenbrock searches along a set of mutUAD.ly orthogona.
i W+*directions that are determined from x and . Both of those. techniques
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use a fixed step length when exploring around x . The exploratory

function evaluations specify the direction d of the pattern move. A

more efficient technique is Powell's method uf conjugate directions

(Ref 23). In the exploratory stage , Powell's method searches along

conjugate directions that are determined from xi and n - 1 of the

previous n exploratory search directions. Conjugate directions are a

generalization of orthogonal directions. Also, Powell's method does

not use a fixed step length. Rather, this method conducts a one-

dlimnnional search in each of the conjugate directions from ,i. A

more complete description of conjugate directions and Powell's method

of conjugate directions is presented later in this chapter.

Gradient search techniques are separated into two categories,

either those techniques that follow the gradient as closely as punsible

(the methods of steepest descent) or those tachniques that use the

gradient to guide the search (the conjugate gradient methods).

Cauchy's stepeut descent method uses the gradient to find the direction

of greatest functional decrease from a base point. The greatest de-

crease in f(A) is in the direction of the largest negative gradient.

That im,

1.+l 6i t17( i

The steepest desc4nt method uses a one-dimensional minimization search

im the direction of -fV'(xi) to determine the step length t and to

subsequently locate i+l.
Min f (xi.tVf•

t
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Conversely, the method of conjugate gradients locates a new base point

6i~l by searching along a mutually conjugate direction d (Ref 9 and 24).

The direction d is determined using the gradient at the current base
point and the previous search direction. From xi, the method uses a

one-dimensional minimization search in this direction to determine the

step distance t.

min f(4i -

t

This one-dimensional search establishes a new base point Pi A more

complete description of the conjugate gradient method is presented later

in this chapter.

If first and second partial derivatives of f(x) are available, then

Newton's method could be used to minimize the function. This technique

uses the function's gradient and Hessian to specify the direction and

the distance of the maximum decrease in f(x).

xi+1 0xi - H( i)-l V(xi)

Avriel states, "If there are a large number of variables, the function

and derivative evaluations and especially the matrix inversions, are

tinm-consuming and expensive operations" (Ref 3:288).

These are not the only techniques available to minimize uncon-

strained, nonlinear functions. However, they are representative of

the three categories of techniques -- direct, gradient, and second-

order. A detailed presentation and sumiary of numerical search

techniques for each category is provided by Gill, Murray, and
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Wright (Ref 10). In addition to the above techniques, several vari-

ations are available to minimize unconstrained nonlinear functions.

The most powerful is the "variable metric" or quasi-Newton method.

This algorithm differs from Newton's method. It does not use the

Hessian matrix, Instead of calculating H(xi), the technique approx-

imates the inverse of H(x4 ) by using the gradient and the previous

estimate of the inverse. There are other variations of Newton's method.

Similarly, U.inite difference techniques are variations of gradient

methods; they use function values to approximate Vf(xl). Generally,

it is not possible to single out a method as the one to be used in

every case.

Each form uf the Complex Expected Damage Function (CEDF) was ,atxi-

mized using only one technique. Since an analytical expression for the

gradient of the CEP-Included model was not available, it was maximized

using a dizect search technique *-- Powell's method of conjugate direc-

tions. Conversely, since an analytical expression for the gradient of

the CEP-Excluded model was calculated, it was maximized using a gradient

search tecluilque -- a conjugate gradient w3.th restarts method.

Con!UUate Directions _ Quadratic Termination

Conjugate directions are a generalization of orthogonal directions.

so d2, ... , dn in R are orthogonal if their inner

product is 0, that is,

d - 0 for all i (28)

A set of n vectors d is mutually conjugate with respect to the n * n
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symmetric, positive definite matrix A if

dTAd. -0 for all i j (29)
,.di OV

Thus, for every nxn symmetric,positive definite matrix there is .-t least

one sot of n mutually conjugate directions. If the matrix A is the

identity matrix, then Eq (29) becomes Eq (28), the definition of ortho-

gonal directions.

Powell's method of conjugate directionf, and conjugate gradient

methods depend upon the concept of quadratic termination. Powell proved

the following theorem on quadratic termination (Ref 23).

1 2Theorem: If m , .. C, n n are rmitusally conjugate

directions, then the minimum of the quadratic function f(x)

is a point in rn-dimensional space, Rm, containing xf, the

initial point, and the directions d, 2, off d, and the

iLI•mun of E(5) may be found by searching along each of the

directions only once. The required minimum is the point

m

x* 0,o+ t di
i-ili

The distances t4 are determined by minimizing f(x) in each

direction d

m
min f(x0 + i tiei)

ti-l

where f(x) _ x T A + bx + r

And, A is a symmetric, positive definite Hessian matrix.
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Powell's theorem proved that the minimum of a quadratic function f(x)

with domain D in Rn and a symmetric, positive definite Hessian could be

located in n steps. Each step is a search along one of the n mutually

conjugate directions di. However, since each direction di has n

component directions in Rn, each step requires n one-dimensional

sea•rhes to minimize f(x).

CEDF Opimization Methods

Powell's theorem is the basis for the method of conjugate direc-

tions and conjugate gradient methods. If f(x) is quadrati'c, then the

minimum cam be located in a finite (<n) number of steps. However, even

if f(x) is not quadratic, the concept of quadratic termination can still

be used to locate the minimum. When the method is applied to non-

quadratic functions, it becomes iterative and a test of convergence is

necessary to determine the minimum of f(x). This section presents a

brief explanation of these two optimization techniques. Detailed

explanations of them are availab!a in Refs 9, 23, and 24; also, most

optimization books provide complete explanations of these techniques.

?owell's Method of ConJugate Directions. This section presents

an algorithm for Powell's method of conjugate directions (Ref 17 and 23).

This method assumes quadratic convergence of f(x); the method will not

locate the local minimum in n steps unless the f(x) is quadratic.

Instead, the method iterates from xi to i+l until 11i+l -i S.

In this development, the superscript i refers to the iteration and the

subscript j refers to one of the n-dimensional component directions

of Rn. The starting point in Rn is 4o; the initial search directions dI

are the Rn coordinate directions.,
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An iteration process is used to locate x* such that f(x*) is a

local minimum. For the ith iteration,

1. From , search each of the n directions d. where j-l,...,n.

These one-dimensional searches use functional values to locate

a minimum in each direction. A quadratic approximation and unimodal

behavior of f(x) is assumed.
i2. These searches locate three specific points in Rn -- x, the last

pitx anqxmded pon;ad the point where the greatestanecpnU pit -Ynd~
dacrease in f(•i) occurred.

3. The convergence test checks x ffXi)is a local
V to determineif fvn

minimum. If passes the convergence condition Ixni - xii-l s
own vn

then x* - xi* If not, the algorithm continues.
i i

4. The modification test checks the decrease in f(x) from xi to xi

These functional changes specify the set of directions di+l for
-'Vj

the next iteration. The same mutually conjugate directions may be

used again or a new set of mutually conjugate directions may be

determined.

A Conugate Gradent Msthodi This section presents an algorithm

for a conjugate gradient with restarts method (Ref 9 and 24), Again,

for functions which are not quadratic, the method will not locate the

local minimum in n steps. Instead, the method iterates from xi to xi+l

until iVf( i+l) S

xi~l =xi + tidi
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The direction di is mutually conjugate to the previous i - I search

directions;it is determined using the previous direction di'l and

Vr(•), The starting point in Rn is xO; the initial search direction

is the negative of the gradient,-•7f(x 0 ).

An iterative process is used to locate such that f x ) is a

local minimum. For the ith iteration,

1. Calculate Vf(Qi)

2 From Ai, use a one-dimensional minimization search in the direction di

to determine the step length ti and to subsequently locate the point
xi+l.
x

xi+l M i + tid i

tiiminf(x~ + tit
tt .

i+l3. Calculate Vf( ( )

4. The convergence test checks )i+l to determine if f( i+l) is a local

i+l i+l
minimum. If IIVf(xi, )II S, then . i. If not, the

algorithm continues.

5. Compte V f
SV f(ýi) 1 2

6. Determine the next mutually conjugate search direction.

dfi+l(- 1) f Q

This algorithm locates the minimum of a quadratic function with a
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symmetric, positive definite Hessian matrix in n or less iterations.

However, for functions that are not quadratic, the minin.mu will gene-

rally not be determined in n steps. After the , steps, n mutually

northogonal dii ctions have been searched. x may or may not have

converged rapidly towards x*.

For functions with slow rates of convergence, because of nearly

parallel i and Adi+l, Fletcher and Reeves developed the restart pro-

cadure (Ref 9). After avery n + 1 -steps, the method reverts to the

direction of steepest descent, the largest negative gradient, for the

next search direction. That is, following iteration i - n + 1, which

located n+2, the direction dn+2 would not be specified as in step 6

above, but rather d -p f( ,"+2 ). "Mhus the whole proedure is

restarted from the current a, discarding all previous experience that

would normally be transmitted in the calculation of di. The process

remains quadratically conver&gnt provided such restarts are not more

frequent than every n steps" (Ref 9).

The CMDF models developed in (hapter II are maxinized with these

two techniques. Powell's method of conjugate directions maximizes the

CEP-Included CEDF model; a conjugate gradient with restarts method

maximizes the CEP-Excluded CEDF model. These methods require the

vector of the 2m independent variables x and the function CEDF(x);

the conjugate gradient technique also requires the gradient of

CEDF(;). The computerization of the algorithm that maximizes the two

CEDF(x) models is presented in Chapter IV.

Greerwood developed a similar version of the CEDF(x) (Ref 12).

His algorithm uses a different, yet related approach to determine
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optimal DGZ locations. His function G(x) depends on the total expected

target value undamaged, The 2m first partial derivatives of G(x) are

set equal to 0. Then these 2m nonlinear equations are solved itera-

tyield a su G(X) is a minimum. NUCWAVE uses a

modified Greenwood technique to determine optimal DGZ locations

(Ref 25:4-3). It optimizes one weapon at a time. Hence, it iteratively

solves 2 nonlinear equations to determine (Xi,Yi) -- the coordinates of

weapon i. Then it repeats the process for the next weapon.
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IV. S terization, Verification, and Validation

of the CEDF Maximization Algorithm

The Complex Expected Drunage Function (CEDF) maximization algorithim

includes the CEDF models, CEP-Included and CEP-Excluded, and the opti-

misation techmique., Powell's method of conjugate directions and the

conjugate gradient with restarts method.. The algorithm dete-mines

optimal DGZ locations for a finite number of nuclear weapons against

installations in a target complex by maximizing the CEDF.

Evaluation of the algorithm consisted of three related stages --

construction, verification, and validation. These stages formed an

iterative process that wes necessary to develop user confidence in the

capability of the algorithm. Construction is the formulation and

computerization of a model. The computerization of the CEDF maximi-

sation algorithm used a modular approach. Smaller segments of the CEDF

model were developed to accomplish lower level procedures. These seg-

ments became subprograms in the final computer code. Verification of

the CEDF maximization algorithm used example problems to insure that the

results of each subprogram were correct. Validation measures the rela-

tive agreement between the model and the systemi modeled (Ref 26:215).

Validation of the CWDF maximization algorithm was a comparison of the

results from the algorithm with the results from a current DGZ model.

This chapter presents the evaluation of the CEDF maximization algorithm

with respect to these three stages.

Computerization

A flow chart of the CEDF maximization algorithm is shown in Figure 6.
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Input weapon and
installation data

INITLZ

Calculate weapon and
intallation parameters

WRADS

Distance damage
function Pd(r)

PDR

CEP -Excluded CEP-Includ.ed
Pd Pd(r) PdJ f(Pd(r))

_PDAM

[ Calculate CCF(X) I Calculate CEDF(B)
and rad (CEF7) I

GFUNC~FUNCr- - - - -S ---
CEDF MODELS

OPTIMIZATION
Conjugate gradient ________Conijigate directionis
OptimizationZEKCGR jOptimiization PWMINj

MiTxed Te.hmiaue __
XGRand NAIN

COitpit final UGZ coordinates

Optimal DGZ locations (z.k)
and maximum CEflF(r*) valu a

Figure 6. Flowchairt of the CEDF Maximization Algorithmi
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Driver

Subroutine

OPItZ calls 1. INITLZ

2. WRADS

3. ZXQGR calls GFUNCT calls PDAM calls PDR

4. PWMIN calls FUNCT calls POAM calls PDR

5. OUTDGZ

Figure 7. CEDF Maximization Algorithm Subroutine Hierarchy

The symmatry of Figure 6 illustrates several characteristics of the

algorithm. The blocks above the dashed line correspond to the proce-

dures that use weapon and installation parmters to develop the CEDF(B)

and the gradient of the CEDF(A). The lower blocks correspond to the

optimization techniques that were used to maximize the respective CEDF.

The left blocks correspond to the CEP-Excluded model; alternately, the

right blocks correspond to the CEP-Included model. The upper three and

low three blocks are common to both CEDF models. Each block is a

smaller segment of the CEDF maximization algorithm.

The computer code of the CEDF maximization algorithm was written

using RMTAN V. Appendix D contains a listing of the code and a glos-

sary of the FORTRAN variables. The computer code includes a driver

module, seven subroutines and two functions. The hierarchy of the algo-

rithm's subprograms is shown in Figure 7. All program variables, inclu-

ding weapon and installation parameters, that are used in more than one

subprogam, are stored in six named common blocks. Only the DGZ coor-

dinate vector 3 is transferred between subprograms by the subprograms'

argument lists.
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The driver module OP'MZ controls the CEDF maximization algorithim.

OPIMZ calls the five highest level subroutines. The primary functions

of these subroutines are: (1) INITLZ inputs user-specified weapon

and installation parameters, (2) WRADS calculates additional instal-

lation and weapon parameters, (3) ZXCGR is a conjugate gradient with

restarts subroutine that maximizes the CEP-Excluded CEDF, (4) PWMIN

is a conjugate directions subroutine that maximizes the CEP-Included

CEDF, and (5) OUITGZ outputs the final DGZ coordinates. ZXCGR calls

GFUNCT, a subroutine that calculates the value of the CEDF(x) and the

gradient of the CEDF(4). PWMIN calls FUNCI, a subroutine that calculates

the value of the CEDF(x). GFUNCT and FUNCT call PDAM, a function that

calculates the probability of achieving a specifiow.1 level of damage to

installation J from weapon I., Pdi,j. PDAM, in turn, calls PDR, a func-

tion that calculates the distance damage function, Pd(r). More complete

descriptions of these subroutines and functions are given below. WRADS,

PDAM, and PDR are modifications of subprograms from Mathematical Back-

ground and Programming Aids for the Physical Vulnerability System for

Nuclear Weapons (Ref 6).

INITLZ. This subroutine has four primary functions. First, it

rude user-specified weapon and installation parameters from an external

file, INDATA. Appendix E contains samples of an input file and an output

data file. For each weapon i, the user specifies a yield, a hob, and

a Pa; the user may specify initial DGZ coordinates. Also, for each

installation J, the user specifies coordinates, a VNTK code, and a

value. The user inputs the weapon and installation ]atitude and longi-

tude in degrees-minutes-seconds and the direction from either the prime

meridian or the equator. Positive coordinates are east of the prime
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meridian and north of the equator.

Second, INITLZ assigns the initial coordinates of the m weapons,

prior to maximization. The user has three options: (1) provide

independent estimates of the weapon coordinates; (2) let INIELZ assign

the coordinates of the m highest valued installations to be the coor-

dinates of the m weapons in decreasing order of yield, *at is, the

largest yield weapon is initially located at the highest valued instal-

lation; or (3) let INIfZl assign the coordinates of the m hardest

installations to be the coordinates of the m weapons in decreasing order

of yield, that is, the largest yield weapon is initially located at the

installation with the largest VN nunber.

Third, INITLZ transforms all weapon and installation degrees-

minutes-seconds into coordinates measured in feet and relative to a

comson origin in an XY coordinate system. The CEDF maximization algo-

rithm assumes a flat earth model to locate all coordinates. Each minute

of latitude equals 6080 feet. However, one minute of longitude equals

6080 feet only at the equator. When the latitude is not the equator,

one minute of longitude is less than 6080 feet because of the merging

of the meridian lines. The scale factor is the cosine of the latitude.

Lastly, INITLZ specifies accuracy requirements for ZXCGP1 and PWMIN.

These subroutines need prespecified values to test for the convergence

of ; to the maximum value of CEDF(L&).

WRADS. This subroutine calculates additional weapon and installation

parameters from the user-specified parameters. For each installation J,

it determines a distance damage sigma (O%) amd a (j. Also, for each

weapon i-installation j combination, it calculates a weapon radius, WRi,j.

These calculations are described in Appendix A.
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PDR. This function calculates the distance damage funrtion Pd(r),

-de probability of achieving a specified level of damage to installation j

from weapon i when the distance r between installation j and weapon i

is knomw. See Eq (5).

lDAM. This function calculates the probability of achievitg a

ipecified level of damage to installation j from weapon i, Pdi1 . For

the CM-Excluded CEDF model, Pdijj is the distance damage function

from PDR. For the CEP-Included CEDF model, the distance r between

installation J and the impact point is tmknown, and Pdi~ is calculated

using Gausa-Lagandte quadrature and the distance d&nai. iunction.

See E (8).

GFU•NCr_ This subroutine calculates the CEDF(x) and vhe gradient of

the CEDF(g). OnCe function and gradient evaluation require.' m * n calls

to function PDAM. These calls specify Pditj for each weapon i-instal-

lation J combination using the CEP-Excludad model. CE)F(k,) is calculated

using Eq (1). Each element of the gradient is calculated u.ing Eq (11).

FUNCE. This subroutine also calculates the CE)F(Q) using Eq (1),

and one function evaluation requires m•n calls to function PDVM. How-

ever, these calls specify Pd id for each weapon i-installation J combi-

nation using the CEP-Included CEDF model.

ZXCXR. This subroutine minimizes -CEDF(k) for the CEP-Excluded

model. It is a conjugate grudient with restarts routine from the

International Mathematical and Statistical Libraries, Inc. (Ref 16:ZXCGR).

ZX(GR.requires function and gradient evaluations from GFUNCT and the DGZ

coordinate vector 5. It uses two control parameters -- DFPRED and

ACC. DFPRED specifies an estimate of the expected increase in the CEDF;

ACC specifies the desired accuracy of the convergence check. This check
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requires the sum of the squares of the gradient elements to be less

than ACC.

FWMIN. This subroutine minimizes -CEDF(x) for the CEP-Included

model. It is a conjugate directions routine from Optimization Tech-

niaue. with FOR, M (Ref 17:331-343). PWMIN requires function eval-

uations from FNLJT and the DGZ coordinate vector 4. It also uses two

control parameters -- ESCALE and E. ESCALE specifies the maximum step

size multiplier for a single step of any xk; E specifies the accuracy

of the convergence check. This check requires the absolute value of

the differences between each element of 4 aid to be less than E.

O=XDGZ. This subroutine translates the XY coordinates of the final

DGZ from feet into dagree-minutes-seconds and the direction from either

the prime meridian or the equator. Then it outputs these coordinates to

the external data file, TAPE6.

The CEDF maximization algorithu provides three sets of optimal

DGZ location.. The first set in from the CEP-Excluded CEDF model and

ZXEGR maximization; the second set is from the CEP-Included CEDF model

and YAM maximization. The last sot of DGZ locations is from both

CEDF models and ZXCGR and PWMIN maximization -- a mixed technique.

Verification

The verification of the CEDF maximization algorithm included four

phues. Each phase verified the subprograms of the algorithm

using example problems. For each compputer program, the results of each

example problemp inmluding the values of intermediate variables, were

calculated independently of the respective computer program. Then the

computer program solved the example problem. PRINT statements in the
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program printed values of mrost FORTIAN variables. These values were

compared with the values calculated by pencil and paper to verify that

the computer program calculated the correct values.

The first phase verified five lower level subprograms -- PDR, PDAM,

WRADS, INXTLZ, and OUDGZ. Each of these modules was coded and debugged

as a small FORTRAN program. Mathematical Background and Prograwding

Aids for the Physical Vulnerability System for Nuclear Weapons includes

example problemsn. Fifteen of these problems were used to check PDR,

PDAM, and WRADS. These .programs calculated the same values as the exam-

ple problems. The outputs of INITLZ for several example problems were

compared with results that were calculated independently of the :omputer

program. These comparisons indicated INITLZ was properly forming the

KY coordinate system and the installation and DGZ coordinate vectors.

Similarly, the outputs of 0W'DGZ for several test cases were compared

with pencil and paper calculated results. These comparisons indicated

OUMTGZ was correctly translating the final DGZ coordinato vector from

feet into degrees-minutes-seconds and the direction from either the

prime meridian or the equator. Theme five subprograms were merged into

one program and became the foundation of the next verification phase.

T*e second phase verified the subroutine FUNCT. The small

programs, PrAM and PDR, became FORTRAN functions; the programs WRADS,

INITLZ, and OUTDGZ, became FORTRAN subroutines. FUNCT calculates the

value of the CEDF(5) using Eq (1). The pencil and paper calculated

results from several example problems were compared with the results

from FUNCT. One example included two identical. installations. Each

installation's value and VNTK code were 15.0 and 15P2. The distance

between the two iustallations was 6000 feet. Two identical weapons
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Figura 8. The CEDF for a two weapon-two installation geometry.

were collocated halfway between the two installations. Fiach weapon's

yield, height of burst, and CEP were l00-kt, 1000 feet, and 600 feet.

The independent rzalculation of the CEDF for this complex was 29.15; the

CEDF value from FUNCT was 29.1492. These example problems indicated

FUNCr was properly calculating the CEDF(x).

This two weapon-two installation complex was used to investigate

the results of moving the two collorztad DGZs. The geanetry of tUis

complex is shown in Figure 8. Initially, the two 100-kt weapons were

collocated at point 0, and the CEDF value was 29.15. The CEDF value
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decreased as the two DGZs were moved in opposite directions a distanc.e d

from point 0. A graph of CEDF versus d for this problem is also included

in Figure 8. This example indicated the existence of a CEDF ma;ximum, on

the line considered, as the distances between the DGZs and the instal-

lations varied.

The third phase verified the gradient calculation of the CEP-

Excluded CEDF in the subroutine GFUNCT. GFUNCr also calculates the

CEDF(•) using Eq (1). The gradient vector from GFUNCT was checked using

two weapon-installation geometries. Appendix F includes the table and

calculations used to verify the gradient of the CEDF(x) for these two

examples.

The first example included one weapon arid two installations. The

first installation's value and VNMX code were 5000 and 11P2; the second

installation's value and VNIK code were 12000 and 15P2. The weapon's

yield and height of burst were 100-kt and 1000 feet, and the CEP was

0 feet. Forty values of the CEDF(x) were calculated for different DGZ

locations. The x direction was along the line connecting the two

installations. These 40 values were then plotted. Figure 9 is a plot

of CEDF(x) versus x for this example. A DGZ between the two installations

was selected (x a 63500) and the gradient calculated using two methods.

In this example, the gradient had only one elemlent because the

y variable was constant) and only the x variable was allowed to vary.

The gradient values for the two calculation methods were compared with

the gradient from GFUNCr. The first method used a difference equation

--- to approximate the gradient. For the DGZ selected, the difference

equation approximation of the gradient was 3.939. The second method was

pencil and paper calculations of all the steps necessary to determine
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15000.

10000...

3.9791.9791

5000.

installation intallation 2

S60000 63500 70000

Figure 9. The CEDF for a one weapon-two installation geamewry.

the gradient. -Chpter. II presented these steps. For the DUZ selected,

the pencil ar-d papor calculation of the gradient was 3.9791. The value

of the gradient ftom GFUNCT for the DGZ selected was 3.9791. These

com;=riaons indicated the subprogram GFUNCT was properly calculating

the gradient of the CMIF(x).

'The second example included two weapons and three installations.

The gradient of the CEDF(x) in this example has 2m or fc-,r elements.

Only one element was comjpletely checked by pencil and paper calculations.

A loc.ation for sach DGZ wiLhin the three-installation complex was selected.
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(60000,11162) (68000,11162)
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(63500,8120) (66500,8120)

Figure 10. The one weapon-two installation geometry.

'lhan 1-9FE was calculated to be 0.192548; the subsequent valuea x2
from GFUNCT was 0.19255136. These comparisons indicated GFUNCT was.

correctly forming the gradient of the CEDF(A).

The last phase verified the CEDF maximization algorithm's ability

to locate a local maximum of the CEDF. All subprograms, the subroutines

ZXCGR and PhZtIN, and the driver module OPIMZ were merged into one pro-

&ram -- the CEDF maximization algorithm. The two installation-one

weapon complex described above to verify GFUNCr was also used to verify

the algorithm. Figure 10 presents this complex, several initial starting

points for the DGZ, mid the mean location r* for the local maximum of

the CEDF(6). In this simple example, the local maximum is also the

global maximum. The graph of the CEDF(x) versus x in Figure 9 indicated

the maximum CEDF value was approximately 15000 for 65000 < x < 66000.

The CEDF maximization algorithm. was run with seven different
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initial DGZ. From the initial locations 1, 2, 3, 6, and 7, the algorithm

converged to a maximum CEDF value and an optimal DGZ. The algorithm did

not move the DGZ from the initial locations 4 and 5. For these locations,

the ZXCOGR and PWMIN convergence criteria were satisfied, and the CEDF

value was 4950. The algorithm did not move the DGZ from these locations

because there were no indications of a CEDF increase. QCapter VI ex-

plains this result in more detail.

•eh mean optimal DGZ location and CEDF value were calculated for

the other five initial DGZ locations. For the CEP-Excluded model using

ZXCGR, the mean location of the optimal DGZ was (65319,11184). The stan-

dard deviation for x was 8 feet; for y it was 15 feet. The mean value of

the CEDF(W) was 15019; the standard deviation was 4.3. For the CEP-

Included model using PWMIN, the mean location of the optimal DGZ was

(65300,11172). The standard deviation for x was 58 feet; for y it was

98 feet. The mean value of the CEDF(k) was 15006; the standard devi-

ation was 16.6. PWMIN is a slower optimization routine; hence, less

restr'ictive convergence criteria were established for PWMIN. This could

account for PWMIN's smaller CEDF value and larger standard deviations

for x and y.

The results from both CEDF models were compared to the values from

Figure 9. These comparisons indicated that the CEDF maximization algo-

rithm located an optimal DGZ location by maximizing the CEDF(x) for this

simple two installation-one weapon complex. More detailed complexes

are considered in the next section and the next two chapters.

Validation

Validation measures the relative agreement between the model and
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the system modeled. It is not possible to make comparisons between the

CEDF maximization algorithm and the real world. Similarly, validation

is not a yes or a no answer; it is a qualitative, relative measure.

The CEDF maximization algorithm results for two example problems were

compared with the results from NUCWAVE (Ref 29). NUCWAVE is a one-sided

nuclear weapons allocation war gaming model. It optimizes the damage

to a set of targets using a preselected set of weapons.

Two of the primary differences between the CEDF maximization algo-

rithm and NUCWAVE are NUCWAVE's starting solution and optimization

technique. It optimizes sequentially by starting the largest yield

weapon at the highest valued installation. It optimizes over the (XY)

coordinates of this weapon. Then it stores the final coordinates of

this weapon, calculates the damage of all affected installations, and

determines the remaining values for all installations. Then it opti-

mlzes the next largest yield weap>n by starting it at the highest

remaining valued installation. NUCWAVE continues to iterate through

the entire weapon set until no further movement of a DGZ results in an

increase in the total expected target value damage. Chapter I includes

a description of NUCWAVE methodology. For these comparisons, the CEDF

maximization algorithm assigned the initial DGZ locations to the highest

valued installations.

The first problem included one weapon and two installations. This

complex was very similar to the complex in Figure 10. The first instal-

lation's coordinates were 46*03'159" N - 45"10'00"1 E; its VNTM code and

value were lIP2 and 5000. The second installation's coordinates were

46*03'255" N - 45l11'20" E; its VNTK code and value were 15P2 and 12000.

The weapon's yield, height of burst, and CEP were l00-kt, 1000 feet,
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and 0 feet. The coordinates of NUCWAVE's optimal DGZ were 46"03'22" N -

45010'58'' E; the total expected target value damage was 16579 or 97.52%

of the complex value. The coordinates of the CEDF maximization algo-

rithm's optimal DGZ were 46003'21'' N - 45010'5019 E; the CEDF was 16788

or 98.75% of the complex value. This represents a difference of approx-

imately 575 fwet and an increase in CEDF value of approximately 1%.

Than the final DGZ coordinates from NUCWAVE were used as starting coor-

dinates for the CEDF maximization algorithm. The CEDF value at these

coordinates was 16647. The final coordinates for this run of the algo-

rithm were also 46*03'21" N - 45010'50'' E. These results indicate that

the CEDF maximization algorithm achieves comparable results with an

existing model, NUCWAVE.

The second problem included two weapons and five installations.

The installations' VNTK codes ranged from 14P3 to 20P3; the instal-

lations' values ranged from 3000 to 12000. The total complex value

was 13000. Both weapons' yield, height of burst, and CEP were l00-kt,

1000 feet, and 0 feet. The coordinates of NUCWAVE's optimal DGZs were

46*01'58' N - 45'09'55"9 E and 46°00'48'9 N - 45'09'42"9 E; the total

expected target value damage was 28730 or 87.06% of the complex value.

The coordinates of the CEDF maximization algurithm's optimal DGZs were

46001'58'" N - 45009'54" E and 46000'45'' N - 45009'38" E; the CEDF

value was 29543 or 89.52% of the complex value. This represents a

difference of approximately 70 feet in the first DGZ and 415 feet in

the second DGZ and an increase in CEDF value of approximately 3%.

Again, the final DGZ coordinates from NUCWAVE were used as starting

coordinates for the CEDF maximization algorithm. The CEDF value at

these coordinates was 29018. The final coordinates from this run
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were also 46*01'58'' N - 45o09'54'" E and 460(O)'45'" N - 45'09'38'' E;

the CEDF value was also 29543.

The coparisons between the results from the CFOF maximization

algorithm and the results from NUC4AVE for the two exam•les indicate

that the algorithm correcrtly determines the same local maxJAuw as

NLUCAVE. The results from these two examples do not validate the

algorithm, but because the DGZ locations were consistent betweev NUCWAVE

and the CEDF maximization algorithm, the algorlithm's results are not

invalid. Miese results provide the user ronfidence in the capability

of the CEDF maximization algorithm.
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V. CEDF Maximization Algorithm Properties

Tfhe Complex Expected Damage Function (CEDF) maximization algorithm

determines optimal DGZ coordinates for multiple nuclear weapons against

installations in a target complex by maximizing the CEDF. The previous

chapter presentc4 the computerization and evaluation of the algorithm.

The flowchart in Figure 6 summarizes the algorithm's modules. It also

presents the algorithm's three CEDF maximization techniques: (1) ZXCGR,

a conjugate gradient with restarts optimization method that maximizes the

CEP-Excluded CEDF model; (2) PWMIN, Powell's method of conjugate direc-

tions that maximizes the CEP-Included CEDF model; and (3) a mixed tech-

nique that uses both CEDF models.

The ZXCGR and the mixed techniques each consist of two stages. The

first stage of the ZXCGR technique has a less restrictive convergence

criteria than the second stage, and its DGZ coordinates are used as ini-

tial DGZ coordinates for the second stage of the ZXCGR maximization

algorithm. These optimal DGZ coordinates from the first stage of the

ZXCGR algorithm also are used as the initial DGZ coordinates for the

second stage of the mixed technique. Mixed maximization has an initial

ZXCGR stage and then a PWIN stage. For brevity and completeness, the

following nomenclature will be used throughout this report. ZXCGR con-

jugate gradient maximization will be referred to as ZKN. Powell's

method of conjugate directions will be referred to as PWM. Finally,

the mixed technique will be referred to as MXM.

This chapter contains two sections. Each section presents charac-

teristIcs of the algorithm's three CEDF maximization techniques. Dif-

ferences and similarities between ZXM, PWM, and MW are discussed.
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Simil.arly, somie capabilities and limitations are presented. The first

section discpsses convergence criteria, installation value scaling, user

guidelines and user cautions. Also, it presents comparisons of CEDF

results for different convergence values. The second section presents

characteristics and optimization results for specific, geometrically

symmetric, two and four-installation target complexes. It also discusses

the effects of symmetric gradient elements on ZXM maximization.

Convergence (ri teria

The optimal DGZ coordinates and CEDF values from the CEDF maximi-

zation algorithms, ZXCGR using the CEP-Excluded model and PWMIN using

the CEP-Included model, were sensitive to the convergence control

parameters.

The ZXOGR control parameters are ACC and DFPRED. ACC specifies

the desired accuracy of the convergence check. This check requires the

norm of the gradient to be less than ACC. The norm of the gradient,

I V F i, is the sum of the squares of the gradient elements, When ZXCGR

locates a point x* in 2m space, such that the norm of the gradient is

less than the prespecified value of ACC, the optimization routine stops

iterating. DFPRED is an estimate of the expected increase in the CEDF.

ZXCGR uses it to determine the size of the initial change in each x.

The values of the installations affected the choice of values for

ACC and DFPRED. This is because the installation values directly scale

the CIDF and the magnitude of the gradient elements. Eqs (1) and (11)

in Chapter II present this relationship. Most of the example problems

in this report used installation values between 0 and 10000 (104). If
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installation values are within this range, then the most versatile

parameter values for second stage ZXM maximization of two optimal DGZs

are ACC - 0.001 and DFPRED - 1000. If the installation values are

not within this range, then a heuristic guideline is suggested to assist

the user in estimating reasonable parameter values. For either case,

the first stage value of ACC - 0.01 determined acceptable DGZ coor-

dinates for a wide range of installation values and number of weapons.

A general guideline to determine ACC for two weapons depends on the

highest valued installation in the target complex. The highest value

is rounded up to the largest power of the base 10. Then ACC equals 10-7

times this adjusted value. For example, for a four-installation complex

with installation values between 2500 and 7000, the adjusted value would

be the 7000 rounded up to 10000 (104). Then ACC would equal 10-3. This

heuristic implies that a smaller ACC is needed for complexes with over-

all lower valued installations. Intuitively, this makes sense because

the scaling effect of smaller installation values decreases the CEDF and

the magnitudes of the gradient elements. Wien more than two weapons are

used, a larger,ACC value is needed to account for the additional gradient

elements.

As an example, Table TI presents the results of two ZXM optimiza-

tions for a two weapon-four installation target complex. Weapon and

installation parameters, except the installation values, were the same for

both optimizations. In the original problem, the most valuable instal-

lation's value was 7000 , and an ACC of 0.001 was used. The CEDF faximun

value was 15436. In the 1/10 value scaled problem, the most valuable

installation's value was reduced by a factor of 10 to 700, and a smaller

ACC of 0.0001 was used. The CEDF maximum value was 1543. Each of the
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TABLE II

CEDF Comparison between an Original Problem
and a 1/10 Value Scaled Problem

Parameters Original Scaled
Problem Problem

Target VNTX Value Value

1 16P2 3500 350

2 22P2 2500 250

3 21P4 5000 500

4 19Q3 7000 700

ACC 0.0010 0.00010

7 F at convergence 0.0004 0.00002

CEDF at convergence 15436 1543

ZXN CEDF maximizations located essentially the same coordinates for both

DGZ. Comparing the two optimization results, the coordinates 6f the

first DGZ were within one foot of each other, and the coordinates of the

second DGZ were within five feet of each other. Hence, the original

and the scaled optimization problems located the same DGZ coordinates

without regard for the magnitude of each installation's value.

Another heuristic is suggested for estimating the value of DFPRED.

For the m weapons, sum the values of the m highest valued installations.

If the m weapons were assigned to these m highest valued installations,

then this sum would be an approximate value for the CEDF. Next deter-

mine the total value of all the installations. Then substract the value

sum of the m highest installations from the complex's total value. This

difference is the maximum possible CEDF increase. An estimate for DFPRED
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TABLE III

Comparison of ACC Convergence Criteria

Parameter ACC

0 0 0__0 ___ 0.0100 0.0010 0.0005

IVF I at
covaergen" 0.0095 0.0006 0.0004

Nunber of
funxtion
evaluations 14 18 19

CMF at
comvergence 15433. 15434. 13437.

DGZ 2 final
cod•rinates (44840-23075) (44851,23090) (44850,23089)

is one-half of this difference. Again, this guideline implies that for

lower installation values DFPRED, the estimated increase in the CEDF,

should be wmaller.

Generally, by decreasing ACC, ZXOGR can determine better estimates

of the CEDF maximxn and its respective optimal DGZ coordinates. For the

original two weapon-four installation complex of Table 1I, ZXCGR was used

to compare the CEDF maxinun value and IV FI1 for three values of ACC.

DFPRED equaled 1000 for these three examples. Table III presents the

results and the DGZ 2 optimal coordinates for these examples. The

results of these ZXM maximizations indicated that, by decreasing ACC,

ZM can determine a better estimate of a CEMF local maximum. That is,

ZXM can achieve a larger CEDF value and a smaller II V F II • The final
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coordinates for DGZ I were the same for the three cases. Only DGZ 2

coordinates were different; Table III indicates this difference was

barely noticeable. Since the final DGZ 2 coordinates were within 17

feet of each other, a less restrictive ACC is acceptable. That is, a

value of ACC smaller than 10-7 times the adjusted highest installation

value is unnecessary.

The results of a similar experiment using the same two weapon-four

installation target complex indicated that the value of DFPRED also did

not significantly affect the CEDF maximum value or the optimal DGZ

coordinates. Five values of DFPRED, 100, 1000, 2500, 5000, and 6000,

were compared using a constant ACC of 0.001.

Occasionally, ZXCGR will not converge satisfactorily and locate an

optimal point in 2m space. The IMSL subroutine will return an IER - 1.29

error message. This message indicates that the subroutine abandoned a

line search; this was probably because of conflicting information. The

gradient may indicate that a point is not optimal; that in, U 7 FII > ACC.

However, each additional iteration may be on either side of the optimal

point and the algorithm is unable to terminate satisfactorily. For most

of the occurrences of this error message, the point located by the sub-

routine actually was a good estimate to the local CEDF maximum. Three

options are available to the user when the algorithm tetminatos with

this error message. First, select another ACC value and rerun the same

problem. Second, select another DFPRED value and rerun the problem.

Third, compare the DGZ locations and the CFDF maximum value with the

results of PWM and MXM. Again, for most occurrences of this message,

the third option indicated that the point located was a good estmnate of
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the CEDF raximum value and the respective optimal DGZ coordinates.

Just as ZXCGR maximization results depended on the values of the

wunvergence control parameters, ACC and DFPRED, PWMIN maximization re-

suits depended on the values of E and ESCALE. E specifies the desired

accuracy of the convergence check. This check requires the absolute

value of the differences betweer' each element of x for iteration i and

each element of x for iteration i - 1 to be less than E. When PWIN

locates a point xk i 2m space, such that all element differences are

less than the prespecified value of E, tne optimization routine stops

iterating. ESCAIE is the maximum step size multiplier for a one-dimen-
sional search. AWMIN will not increntent ea-ch x by more than ESCALE*E.

The effect of E and ESCALE on the maxjm'zn CEDF value and the opti-

mal DGZ locations was not as evident as the ZXMCGR convergence control

variables. Accordingly, an indepth sensitivity analysis of these para-

meters was not accomplished. Prel.iminary investigotions indicated that

ESCALE/E values of 10000/0.1 were the most effective in mndimizing the

CEF-Included CEDF model. E values of 1, 5, and 10 often resulted in

computer runs that exceeded 60 seconds of computer processing (CP)

time. Tlhese incomplete runs generally abo.:ted after the third or fourth

PWM iteration. Also, ESCALE values of 1000 and 5000 were examined.

The most promising values of ESCALE/E were 5000/0.1 and 10000/0.1.

These two combinations were used for more than 143 CEDF maximization

algorithm evaluations using 3, 4, 5, and 7-installation target complexes.

Eighty of 83 runs (96%) using the ESCALF/E values of 5000/0.1 converged

to a solution; similarly, 54 of CO runs (90%) wing the ESCALEWE values of

"i0000/0.1 converged to a solution. Itte other nine runs were termi-I nated because of excessive CP time. 'Tenty-light CEDF maximization runs
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were identical except that 14 used the ESCALE/E values of 5000/0.1 and

14 used the values of 10000/0.1. Differences between the two parameter

pairs for two criteria, CEDF maximum value and CP time, were evaluated.

The results of a sign test indicated that there was no difference be-

tween the parameter pairs.

The four convergence control parametets need to be specified prior

to a CEDF maxý;-ization algorithm run. The subroutine INITLZ initializes

the ACC value for the first stage of ZXM to 0.01. The user provides the

ACC value for the second stage of ZXM through the external file, INDATA.

Similarly, the user provides the DFPRED value through INDATA. Appendix E

discusses the necessary input procedures. The subroutine INITLZ also

initializes the values of ESCALF/E to 5000/0.1. If the user desires

different PWM convergence control parameters, then only two lines of the

code need to be changed.

The norm of the gradient, V •FU , will be used as a relative indi-

cator of convergence for all ZXM maximizations. For a twn-weapon complex

with a maximum installation value of 10000, 11 V7 F 1 - 0.001 implies that

the mean value for each of the four gradient elements is approximately

0.015. That is, a change of 1000 feet in any of the 4 spatial direc-

tions would change the CQDF by only 15 value points.

SMMtV Characteristics

Two simple target complexes were investigated to characterize the

CEDF models and their respective maximization techniques. Initial DGZ

locations were selected to emphasize special features of ZM and PWM

optimization techniques. The examples included either symmetric target
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CASE 1. CASE IV.
1,2

CASE IL. 2

l~2

CASE V.

* ~~~CASE II. 1 1.1- ----4
1A~ - 2 2

Opr each installation: f~or each weapon:
valuei50 yield -.10 kt HOB -l1000feet
VM -K *15P2 CEP -O0feet Pa - 0.99

Figure 1.1. A symmnetric two-installation complex.

c~xnplexes or a CEDF with symmnetric gradient elemento.

A two weapon-two installation' complocx was analyzed to determine the

consequences of symmetric gradient elements on the ability of ZXM to lo-

* cats a CEDF maximum val.ue and optimal DGZ c~oordina tes. Figure 11 pre-

sents the comAplex geometry, weapon and installation parantrters, initial

JJGZ locations, and the ZXM direction of DGZ nmovsenet for five cases.

Each of these casets had either a geometrically symmxetri~c weapon-instal-

*lation complex or a CEDF with symmetric, gradient aeme~nrtt. Atie xand x

* ~directions ware along the line segment connecting the two~ installations;

* the x, ard x4 directions were perper.dicular to this 21ne segment. For
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each of these cases, PWM converged to a maximum CEDF value of 9900.

This was each weapon's Pa times the total value of both installations.

PWM also separated collocated DGZs. The results of the five cases pro-

vided further insight into the capability of the ZXM maximization

technique.

CASE I. The initial DGZ locations for two identical weapons were

collocated halfway betweim two identical targets. ZXM neither separated

nor moved the two weapons. This was because all four of the CFMF gra-

dient elements equaled 0. The x3 and x4 gradient elements were 0

because all y values were equal; the x, and x2 elements were 0 because

weapons 1 and 2 were halfway between the installations. That is, one

installation's contributions to the x, and x2 gradient elements can-

celled the other installation's contributions. ZXM made the initial DGZ

coordinates the optimal DGZ coordinates with a CEDF value of 3465.

CASE I. The. collocated identical weapons in CASE I were separated.

Weapon 1 was moved one ,inute of longitude west (approximately 70 feet).

With this move from the complex's geometric center, the x gradient ele-

ment was no longer 0; ZXM separated the two DGZs and moved weapon 1 towards

installation 1 and weapon 2 towards installation 2. ZXM converged to a

maximm CEDF value of 9900 and two optimal DGZs with a UIV F I - 10"9.

CASE III. The two identical weapons were again collocated. How-

ever, the initial DGZ location was neither halfway between the two iden-

tical installations nor along the line segment connecting the instal-.

lations. The gradient elements were all non-zero. The x1 and x2 :. 1e-

ments were equal and positive; the x3 and x4 elements were equal and also

positive. In this case, ZXM did not separate the two weapons because

their respective gradient elements were the same; however, it did move
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the two weapons together towards installation 1. That is, ZXM kept the

two weapons collocated with a CEDF value of 5737 and IIV F I 7.7 x 10-5.

Next, a variation of this case was examined. The same initial DGZ

location was used, but the yield of weapon 2 was reduced from lO0-kt to

95-kt. This yield reduction altered the gradient elements. The x and

x2 elements were no longer equal; similarly, the x3 and x4 gradient

elements were no longer equal. The two different weapons separated

from the same initial DGZ location. ZXM moved weapon 1 towards instal-

lation 2 and weapon 2 towards installation 1. ZXM converged to a maxi-

mum CEDF value of 9900 and two optimal DGZs with IIV F1 - 1.2 x 10"8 .

CASE IV. The two identical weapons were separated along a line

segment that was perpendicular to the line segment connecting the two

identical installations. Figure 11 displays this geometry. The two

weapons were each equidistant from the two installations. Again, because

of the symmetry of the target complex, the identical weapons, and the

identical installations, the gradient elements were symmetric. The x

and x2 gradient elements were 0. That is, each installation's contri-

butions to the xI and x2 gradient elements negated each other. The x3

and x4 gradient elements were equal in magnitude, but opposite in direc-

tion; the x3 element was positive and the x4 element was negative.

Because the x1 add x2 gradient elements were equal to 0, this restricted

the DGZ movements to only the x and x4 directions. With the x3 and

gradient elements with equal magnitude but opposite direction, ZIM

moved the DGZs directly towards each other to point P in Figure 11.

This point was along thq line segment connecting the two installations

and halfway between the installations. ZXM converged to a local. maxinum

CELF value of 5729 and one collocated DGZ with 11 V F 1- 0.00028.
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CASE V. A variation of CASE IV was examined. The initial DGZ

location of weapon 1 was noved one minute of longitude east (approx-

imately 70 feet). The x, gradient element was no longer 0; ZXM moved

weapon 1 towards installation 2 and weapon 2 towards installation 1.

ZXM converged to a maximu CEDF value of 9895 and two optimal DGZs

with I V F11 - 0.00085.

The algorithm located CDF local maximums for this two weapon-two

installation complex. However, the algorithm's optimal DGZ coordinates

were not exactly the coordinates of the two installations. For this

complex, the optimal DGZ locations would be one weapon on each instal-

lation, since the weapons and the installations were identical. Never-

theless, these examples demonstrate two important features, an opera-

tional characteristic and a limitation, of the CEP-Excluded CEDF model

using ZXM maximization. Both of these are a result of the symmetry of

the CEDF gradient elements. These cases indicated that there are two

types of gradient symmetry. There is symmetry from weapons at synie-

trical, initial DGZ locations (CASEF I and IV) and from identical wea-

pons at the same initial DGZ location (CASE III). The first type of

symmetry is an operational characteristic; the second type, collocation

of initial DGZ locations, is a minor limitation. This limitation means

that the ZXM maximization algorithm cannot use collocated initial DGZ

locations. The PMW maximization algorithm did not have this limitation.

A unique one weapon-four installation target complex also exhibited

symmetric gradient properties. Figure 12 presents tLe complex geometry,

weapon and installation parameters, and CEDF values for different po-

tential DGZ locations.
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installation 1 CEDF = 7776 installation 3
AN .j CEDF - 4990

L L CDF -5660

CEDF-33 CEDF - 7776

LL

installation 2., installation 4

for each installation: for each weapon:
value - 5000 yield - 200 kt HOB - 1000 feet
VRK a 15P2 CEP - 0 feet Pa - 0.99

CASE VI.

1 3

2 4

CASE VII U 

4Initial DGZ3

V,

v2

L

V

Figure 12. A symmetric four-installation complex.
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The g-oometric shape of the complex was not a square, but rather, a

rectangle. The north-south distance between the installations was 8511

feet; the east-west distance was 8448 feet. There were four local maxi-

mums or potential DGZ locations for this target complex; one at each

midpoint of the four line segments of the rectangular perimeter. The

CEDF value at each local maximum was 7776. The CEDF value for a DGZ

located at the center of the target complex was 3390. The CEDF vilue

for a DGZ locnted at one of the installations wae 4990. Lastly, for a

DGZ located halfway between an installation and the complex center along

one of the complex's two diagonals at one of the points L in Figure 12,

the CEDF value was 5660.

CASE VI. Mhe initial DGZ was the geometric center of the target

complex. Figure 12 also presents this location and the optimal DGZ

location for PWM. At the initial DGZ location, the damage expectancy

(DE) for each installation was less than 0.17. PM moved the DGZ in

the +x direction and converged to a maximum CEDF value of 7776 and an

optimal DGZ location between installations 3 and 4. The DE for these

installations from this optimal DGZ was approximately 0.78; the DE for

installations 1 and 2 was approximately 0.001. ZXM did not Move the DGZ;

the two gradient elements were 0 because the initial DGZ was at the geo-

metric center of the complex.

Next, a variation of this example was examined. The initial DGZ

was moved one minute of longitude west and one minute of latitude north

(approximately 120 feet). •MI moved the D(7, in the +x direction as

before. However, the gradient elements were -to longer 0 because the

initial DGZ was not at the geometric center of the complex. ZXM
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converged to a CEDF maximum value of 7776 and an optimal DGZ location

between installations 1 and 3 with IV FO - 0.0008. A possible expla-

nation as to why ZXM moved to this optimal DGZ is presented in the

next case.

CASE VII. Tie initial DGZ location was installation 1. Figure 12

also presents this location and the optimal DGZ locations. PWM again

moved the DGZ in the +x direction to a CEDF maximum value of 7776 and

an optimal DGZ location between installations I and 3. ZXM did not

move the DGZ towards the closest local maxinun as it did in CASE VI,

Instead, ZXM moved the DGZ to'a CEOF maximum value of 7643 at an optimal

DGZ location between installations 3 and 4 with 1 7 F1 - 0.00i7.

Investigation of the first 20 iterntions of ZXM for this complex

provided a plausible explanation as to Ohy ZXM couverged to this optimal

DGZ instead of the closest DGZ. The geometry of the complex was not a

square, but rather, a reCtangle. Hence at the initial DGZ, the two

gradient elements were not axactly equal. The x, gradient element was

0.0352. This was larger than the x2 gradient element which was 0.0310.

Hence, the first iteration's search direction was above the diagonal of

the complex along the line U-U' in Figure. 12. Figure 1.3 shows an

approximate curve of ZMfF values, using seven known points, along U-U'.

Z3cM located the point U*. ZMM next searched along the line segment V-V'

through the point U* and the two potential local maximums V1* and V2•.

Again, Figure 13 shows an appioximate curve of CEDF values, using five

known points, along V-V'. From U*, ZXM located the optimal DGZ V2*.

In summary, ZXM does not always move the initial DGZ towards the closest

local maximum.
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I~13 7776
61103390. 5660

,U L44m Vj* L U* V.
V2

Figure 13. CEDF values along line segments U-U' and V-V' for the
symmetric four-installation complex.

These seven cases demonstrated two important ZXH maximization

characteristics. These characteristics depend on symmetry of the CEOF

gradient lunsuts. This symmetry is a result of either the geometrical

.symatry of the target complex or the collocation of two or more similar

weapon types. This second characteristic, a minor limitation, prohibits

the CEDF maximization algorithn from using collocated initial DGZs. The

next chapter provides a description of initial DGZ locations for more

typical, nonsymmetric target complexes.
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VI. Algorithm Results for Different Initial DGZ Locations

This chapter presents results of the CEDF maximization algorithm

using different initial DGZ conditions. The important results are the

maxim=u CEDF value and the optimal DGZ coordinates. The three algorithm

maximization techniques are: ZXM, conjugate gradient optimization of

the CEP-Excluded model; PN, conjugate directions optimization of the

CEP-Included model; and Mp a mixed technique.

Four initial DGZ conditions were evaluated using three target

complexes. However, all four conditions were not matched with each of

the complexes. The four initial DGZ conditions for m weapons against a

target complex were: (1) locating the weapons at the m highest valued

(WV) installations, (2) locating the weapons at the m hardest instal-

lations, (3) locating the weapons at the complex's centroid, and

(4) locating the weapons at m pseudo-random points.

Intuitively, the most logical initial DGZ condition was the highest

valued installations, and the least logical condition was random loca-

tions. The HV condition was a greedy condition; it started with the

maximum damage on the m most valuable installations and then searched

for other DGZs that provided an increase in the CEDF value. The random

locations condition was not completely evaluated. Instead, for a two-

weapon complex, six pairs of initial DGZs were evaluated, and the six

CEDF values and optimal DGZs were compared to each other. The coordinates

of one of the initial DGZs in each pair were fixed and comion to all

pairs. The coordinates of the other initial DGZ were changed for each

of the six pairs and the respective six runs of the CEDF maximization
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algorithm. The results of these pseudo-random initial DGZ locations

provided additional insight concerning different initial DGZ locations.

The three target complexes included three, four, and seven instal-

lations. The CEDF maximization algorithm located optimal DGZs for one,

Stwo, or three weapons against these complexes. However, each complex

was not matched with each of these number of weapons. That is, the

three-target complex was only evaluated using one and two weapons, not

three. The highest valued installation in any of the complexes was

9000. Henceq for the convergence control parameters, the algorithm

generally used values of ACC - 0.001, DFPRED - 1000, E - 0.1, and

ESCALE - 5000.

Three conclusions were made from the results of these examples.

First, the algorithm requires some indication of a potential increase

in CEDF value in order to move a DGZ. Second, there is a difference

between the optimal DGZ coordinates from the CEP-Excluded model using

ZXM mrximization and those from the CEP-Included CEDF model using NM

maximization. This difference depends on a weapon's CEP and the CEDF

model and not on the optimization technique. Third, the initial DGZ

coordinates that the algorithm uses can affect the maximum CFDF value

and the optimal DGZ coordinates. Statistical evidence of these con-

clusions is not presented. Rather, specific examples are presented that

indicate the conclusions are not invalid.

A Three-Installation Complex

CEDF maximization algorithm results were analyzed for one and two

weapons against a three-installation complex using different initial DGZ

conditions. Figure 14 shows the geometry and specific parameters of the
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Installation 2 Weapons:
12P2 yield - 20-kt
2000 CEP - 600 feet
(10'30" E,03'55" N) HOB - 1000 feet

Pa - 0.99

ZXM DGZ 1 (10'09' E, 03'27" N)
P•W DGZ 1 (l0'06" E, 03'23" N)

Installation 1
16P2 DGZ 2 A
5000 Installation 3
(l0'00" E, 03'15" N) 18P4

4000
(11'201 E, 03'05" N)

Figure 14. A Three-Installation Complex.

target complex. The total available target value for the complex, reduced

by each weapon's Pa, was 10890. Figiure 14 also shows the optimal DGZ

coordinates for the highest valued (HV) initial DGZ condition using ZXM

and PW14 maximization. DGZ 2 was installation 3. The ZXM algorithm con-

verged to a .maximum CEDF value of 9812 or 90% of the complex value and to

optimal DGZ coordinates with •VF1 - 0.00036. Similarly, PWM converged

to a maximum CEDF value of 9223 or 85% of the complex value. The damage

expectancy (DE) for installations 1, 2, and 3 from ZXM maximization were

0.96, 0.53, and 0.99. The algorithm did not move DGZ 2 from installation 3

and moved DGZ 1 from installation 1 towards installation 2. However, the

two algorithms located the optimal DGZ 1 coordinates 480 feet apart.

This difference was less than the CEP of 600 feet and initially appeared
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insignificant. However, the differences between ZXM and PWM maximum

CEDF values and DGZ 1 coordinates were important; these differences do

not indicate ZOM is a better algorithm. These differences depended on

the CEDF model and are discussed in more detail in the next subsection.

The CEDF maximization algorithm also converged to a local CEDF

maximum for the centroid initial DGZ condition. ZXM converged to a

CEDF value of 6932 and to optimal DGZ coordinates with 11 V F1 - 0.00003;

PM converged to a CEDF value of 6910. However, these optimal DGZ

locations were not the same locations as determined using the HV ini-

tial DGZ condition. Instead, ZXM and PWM moved the DGZs towards instal-

lations 1 and 2 until the DE for each installation were greater than 0.99.

The final DE for installation 3, the second most valuable installation,

was less than 0.001. The total available target value for installations

1 and 2,reduced by each weapon's Pawas 6930; this was the same CEDF

value as determined by ZXM maximization. These optimal coordinates,

which were different and less valuable than the HV initial DGZ condition's

optimal coordinates, were also identified by three pairs of the pseudo-

random initial DGZ condition.

Six pairs of the pseudo-random initial DGZ condition were also

evaluated. Figure 15 shows the initial DGZ locations and the respective

optimal DGZ locations for ZXM maximization for two cases. It also shows

the approximate weapons radius (WR) for each installation. For all six

pairs, FM maximization, using the CEP-Incluced CEDF model converged to

the same optimal DGZ locations as determined by the highest valued ini-

tial DGZ condition. The pictorial results in Figure 15 are for ZXM

maximization using the CEP-Excluded CEDF model.
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Case I Case II

A2 A2

1,2,6 33,4pA 3

Figure 15. Pseudo-random initial DGZ conditions.

Case L For the initial DGZ locations -- 1-1', 2-2'1 ead 6-6' --

ZXM converged to a maximum CEDF value of 983.0 or 90% of the caraplex value

and to optimal DGZ coordinates with IV F11 < 0.004. This was the same

CEDF local maximum that the HV initial DGZ condition located.

Case II. For the initial DGZ locations -- 3-3', 4-4', and 5-5' --

2X converged to a maximum CEDF value of 6932 or 64% of the complex value

and to optimal DGZ coordinates with JV F 1 < 0.0004. This was the saie

CEDF local maximum that the centrrid initial DGZ condition located. EiArh

of the optimal DGZ locations are slightly different locations; however,

each of the locations are equivalent. ZXM moved from 3-3', 4-4', and

5-5' towards installations 1 and 2 until the DE for these installations

was greater than 0.99.

A possible explanation exists for the difference between the two

CEDF local maximuns for the two cases. The Case I initial DGZ locations
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each had one initial DGZ (1', 2', and 6') within the WR of one of the

two highest valued installations. The other initial DGZ (1, 2, and 6)

was outside the WR of all installations. Alternately, the Case II

initial DGZ locations had neither of the initial DGZs within the WR of

the two highest valued installations. Hence., for Case II, the algorithm

moved one initial DGZ location (3', 0', and 5') towards installation 2

and the other initial DGZ location (3, 4, and 5) towards installation 1,

the moot valuable one. Figure 4 shows that the probability of achieving

a specified level of damage to an installation at the WR is less than 0.5.

Using WR to interpret CEMF local maximums is not a definitive technique.

However, the relationship between the location of an initial DGZ and an

installation's WR does provide insight and a possible explanation for

the two CEDF local maximums.

In summary, these results point out the first of three conclusions

of this study. The CEDF maximization algorithm requires some indication

of a potential increase in the CEDF in order to move a DOZ. That is, if

there is no indication of a CEDF increase in the direction of a valued

installation and there is an indication of a CEDF increase in the direc-

tion of a lesser valued installation, then the algorithm may move the

DGZ towards the lesser valued installation. Eventually, the algorithm

will converge to a less valuable CEDF local maximum.

Using the CEDF maximization algorithm to evaluate one weapon against

this three-installation complex produced similar results for three ini-

tial DGZ conditions. For the highest valued condition, ZXM started from

installation 1 and converged to a CEDF maximum value and an optimal DGZ

with 1 V F - 0.00030, The coordinates of this DGZ coincided with the
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coordinates of one of the two-weapon HV condition DGZs. Similarly, PWM

converged to the same optimal DGZ location as one of the two-weapon HV

condition DGZs. This result indicated that the two weapons against the

three installations were not dependent but rather, unrelated DGZs. The

fact that DGZ 2 never moved from installation 3 for the two-weapon exam-

ple also indicated that the two DGZs were independent.

A comparison between the one-weapon centroid initial DGZ condition

results and the ..o-weapon IV initial DGZ condition results indicated the

sensitivity of the gradient. Both of these examples located an optimal

DGZ at i0'09" E - 03'27" N. However, when the optimal coordinates in

feet were compared, the two DGZs were approximately 30 feet apart. For

one DGZ, the IIV FII- 0.00031; for the other DGZ, only 30 feet away,

I F W - 0.00760.

For the hardest initial DGZ condition, neither ZXM nor PWM moved the

one weapon initial DGZ. The DGZ started at installation 3 and remained

there. The j V F1 - 10=5 at this point. The CEDF value for ZXM was

3962 or 99% of the value of installation 3; the CEDF value for PWM was

3918 or 98% of the value of installation 3. The difference in these

CEDF values depended on the CEDF model and are discussed next.

The CEP Effect

CO•F maximization algorithm results for the three-installation

complex using differcnt initial DGZ conditions po.int out the second

conclusion of this study. Both a weapon's CET and the CEDF model used

to maxJmize the CEDF affect the maximun CEDF value and the optimal DGZ

coordinates. Specific results from three previous three installation

examples provide evidence to support this conclusion.
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First, the results from the one weapon-three installation complex

using the hardest installation initial DGZ condition highlight this dif-

ference between the two CEDF models. The CEP-Excluded CEDF mode], using

Z7M maximization,converged to a CEDF value of 3962; the CEP-Included

CEDF model using PWM maximization, converged to a CEDF value of 3918.

The optimal DGZ coordinates for these algorithms were within I foot of

each other. The difference in CEDF values was attributed to the CEDF

models. The Pdi,j for the CEP-Excluded model does not include weapon

accuracy or CEP. This probability is the distance damage function value,

Pd(r). The Pdi,j for the CEP-Included model does include weapon CEP.

Hence, this probability is less than Pd(r). Consequently, the PWM

damage expectancy for an installation is less than the ZXM damage ex-

pectancy for the same installation.

The second example that supports the conclusion was the two weapon-

three installation complex using the highest valued initial DGZ condition.

Analysis of this example's results provided an explanation for the CEDF

differences between ZXM and PWM. Figure 14 shows the optimal DGZ coordi-

nates for these algorithms. Only DGZ 1 coordinates are considered;

DGZ 2 coordinates were the same for both algorithms. PWM converged to

optimal DGZ 1 coordinates approximately 480 feet closer to installation I

than ZXM. Two additional initial DGZ conditions were necessary to fur-

ther investigate this difference. For the initial DGZ coordinates, the

first condition used the PWM optimal coordinates; the second condition

used the ZXM optimal coordinates. Table IV presents the final coordinates

and CEDF values from these initial DGZ conditions. The coordinates are

in feet and, even though they appear different within the three optimi-

zation categories, they are not. T1he ZXM coordinates were
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TABLE IV

Comparison of ZMI, PWM, and MXM Optimal DGZs

Initial ZXM CEDF ZXM PWM CEDF PWM MXM CEDF MXM
DGZ Values Final Values Final Values Final
Condition Start End Location Start End Location Start End Location

Highest
Value 8985 9812 858,1039 8972 9220 585,642 9009 9223 664,627

PWM
Optimal 9480 9813 837,1055 9222 9222 643,629 9008 9218 660,593

ZKM
Optimal 9812 9812 824, 976 9073 9223 627,632 9009 9223 639,638

Mean
Values 9812 840,1023 9222 618,634 9221 654,619

10'09" E - 10'27" N and the PWM and MXM coordinates were 10'06" E - 03'23" N.

Using PWM optimal DGZ coordinates as the initial DGZ coordinates, the

algorithm produced three results. First, the PWM optimal DGZ location was

the initial DGZ location. Second, the PWM optimal DGZ coordinates, the

initial coordinates, were not optimal for ZXM. At these initial DGZ coor-

dinates, the ZXM CEDF value was 9480. ZX4 maximization moved the DGZ from

10'06" E - 03'23" N back to 10'09" E - 03'27" N and a maximum CEDF value

of 9813. ZXM optimal coordinates are initial DGZ coordinates for the mixed

technique, MXM. Third, these initial MXM coordinates were not optimal

for W4. At these DGZ coordinates, the MXM CEDF was 9008. MXI maximi-

zation moved the DGZ from 10'09" E - 03'27" N back to 10'06" E - 03'23" N,

the PWM optimal DGZ coordinates, and a maximum CEDF value of 9218.

The algorithm produced three similar results when it used the ZXM
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optimal DGZ coordinates as the initial DGZ coordinates. First, the ZXM

maximization optimal DGZ location was the initial DGZ location. Second,

the ZXM optimal DGZ coordinates, the initial coordinates, were not opti-

mal for FP*1. At these initial DGZ coordinates, the PWM CEDF value was

9073. M maximization moved the DGZ from this initial DGZ back to

10'06" E - 03'23" N and a maximun CEDF value of 9223. Third, the ini-

tial coordinates, 10'09" E - 03'27" N, again were not optimal for MXM.

At these coordinates, the MXI CEDF value was 9009. MXM maximization

moved the DGZ from this initial DGZ location back to 10'06" E - 03'23" N

and a maximum CDF value of 9223.

Finally, analysis of a third three-installation complex provided

further insight into the capability of the CEDF models. In the previous

example, the mixed technique moved the DGZs from the ZXM optimal DGZ

coordinates to the PM optimal DGZ coordinates. However, this readjust-

ment did not occur in all examples. For instance, ZXM maximization for

the pseudo-random initial DGZ pairs, 3-3', 4-4', and 5-5', converged to

optimal coordinates that were different from the PWM optimal coordinates.

The M17 optimal coordinates were the EW coordinates; the ZXM optimal

locations were near installations 1 and 2. The mixed technique was un-

able to move the DGZs from these ZXM optimal coo-'dinates to the PWM

optimal coordinates. The II V F1 < 0.004 for each ZXM local maxinum.

These CEDF maximization algorithn results indicated that each CFDF

model located a unique set of optimal DGZso This occurred because of

the differetmcs in Pdi,j for the two models. Pdi,j is larger for the

CEP-Excluded model than it is for the CEP-Included model.
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Installation 2
22P2
2500

3'31 Installation 3
121P4

2 15000

3

Centroid 1A
Installation 1

16P2
3500

Weapons:
yield - 70 kt DGZ 2
CEP - 250 feet
HOB - 1000 feet Installation 4
Pa - 0.99 19Q3

7000

Figure 16. Miltiple local optimal DGZs for a two weapon four installation complex.

Lariter Comlaxes

For a foix-installation complex using the four initial DGZ conditions,

the CWF maximization algorithm prodtced results similar to the results

for the three-installation complex. Figure 16 shows the ge, metry and

specific parameters of the target complex. The total available target

value for the complex, reduced by each weapon's Pa, was 17820. Figure 16

also sh(rws the optimal DGZ locations for several initial DGZ conditions.

Four local CEDF maximums and their respective optimal DGZ pairs were

located for this complex: the HV (highest valued) DGZs, 1-l', 2-2',

and 3-3'.

Again, ZXM and PM located their highest valued DGZ I at slightly
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different coordinates. The difference between the two locations was 90

feet. ZXM converged to a CEDF maximun value of 15434 or 87% of the com-

plex value and to optimal DGZ coordinates with I V FIt - 0.00056. As

with the three-installation complex, the ZXM optimal DGZ coordinates

were not optimal for PWM. The mixed technique moved DGZ 1 from the ZXM

optimal DGZ to the PWM optimal DGZ and a CEDF maximum value of 15142 or

85% of the complex value.

The three remaining local CEDF maxima appear to be related. When

the initial DGZ condition was two weapons at the complex's centroid,

ZXM converged to a local CEDF maximum vilue cf 10921 and to the optimal

DGZ pair 3-3' with t V FW - 0.0007. Similarly, when the initial DGZ

condition was the two hardest installations, PWM converged to a local

CEDF maxinum value of 10798 and to the optimal DGZ pair 2-2'. ZXM and

the same initial DGZ condition produced a third local CEDF maximum.

When the initial DGZ condition was the hardest installations, ZXM

converged to a CEDF maximum value of 11431 and to the optimal DGZ pair

1-1' with ItV FO - 0.0027. This optimal DGZ pair had a larger CEDF

value than the pairs 2-2' and 3-3'. Yet, it had a smaller CEDF value

than the pair of highest valued DGZs.

The local CEDF maximum for PWM, when the initial DGZ condition was

two weapons at the complex's centroid, was the same local maximum as

determined using the highest valued initial condition. Additionally,

this local maximum was located by all eight of the pseudo-random initial

DGZ conditions.

Results of the CEDF naxiinization algorithm using only one weapon

against this four-installation complex were examined. ZXM and PWM,

using the centroid initial DGZ condition, converged to the highest
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valued DGZ 1 in Figure 16. This is one of the two op'imal DGZ loca-

tions determined by the two weapon evaluation. ZXM converged to a CEDF

maximum value of 8547 or 78% of the value of installations 1, 2, and 3

and to an optimal DGZ location with II V F11 - 0.0015. PWM achieved a

CEDF maximnu value of 8252. Next, the algorithms used the highest

valued initial DGZ condition for one weapon. Neither algorithm moved

the optimal DGZ from the initial DGZ, installation 4. ZXM and PWM

terminated with a CEDF maximum value of 6930.

The CEDF maximization algorithm's results for the three and four-

installation complexes point out the last conclusion of this study. The

moet likely to succeed initial DGZ condition is to use the coordinates

of the m highest valued installations as the initial DGZ coordinates.

For all examples considered, the other three initial DGZ conditions

located at luest one local CEDF maximum that was less valuable than the

local CEDF maximum determined from the highest valued initial DGZ

condition. However, there is always an exception. The CEDF results of

the simple one weapon-four installation complex indicated the HV initial

DGZ is not always the best. For this reason, the CEDF maximization algo-

rithm does not include a decision structure to determine the initial DGZ

condition to use. Sometimes, one condition may be more likely than

another to succeed and to achieve the most valuable local CEDF maximum.

The results of a three weapon-seven installation complex were ana-

lyzed to further define the CEP effects of the two CEDF models. Only

three CEDF maximization algorithm runs were made with this complex. For

the three runs, all weapon and installation parameters remained constant

except each weapon's CEP, and the algorithm used the highest valued

initial DGZ condition. Using each weapon's CEP - 0 feet, the algorithm
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converged to a CEDF maximum value and optimal DGZ coordinates for the

three weapons. Each weapon's CEP equaled 250 feet for the algorithm's

second run. For this example, the ZXM optimal DGZ coordinates remained

the same, as they should hae•. The PWM optimal DGZs were along line

sepments between the highest valued initial DGZs and the optimal DGZs

from the first run when each CEP was 0 feet. However, because each

weapon's CEP > 0, each of the second run optimal DGZs were slightly

closer to their respective highest valued initial DGZ. Similarly, each

weapon's CEP .was 400 feet for the algorithm's final run. Again, the

PWM optimal DGZs were along the same line segments as the optimal DGZs

of examples one and two. These optimal DGZs were even closer to their

respective highest valued initial DGZ. Thus, the effects of each wea-

pon's CEP need to be included in locating optimal DGZ coordinates in a

target complex.
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VII. Conclusions and Recommendations

The primary objective of this study was to investigate optimal DGZ

locations within a target complex. In order to accomplish this, it was

necessary to develop the Complex Expected Damage Function (CEDF) maxi-

mization algorithm. The algorithm locates optimal DGZ coordinates for

multiple nuclear weapons against installations in a target complex. It

does this by maximizing the expected target value damage for all instal-

lations. The two subobjectives of this study were to determine the sen-

sitivity of the algorithm's results, the maximum CEDF value and the opti-

mal DGZ coordinates, to two factors: first, the mathematical technique

used to locate the optimal DGZs; second, the initial DGZ locations prior

to CEDF maximization. This chapter discusses these objectives and their

associated conclusions.

The CEDF maximization algorithm contains two related algorithms,

and both of these include two elements. The first element is the CEDF,

a mathematical model of the total complex expected target value damage.

The CEDF is an unconstrained, nonlinear function of 2m variables -- the

(Xi,Yi) DGZ coordinates for each of the m weapons. There is a CEDF model

for each of the related algorithms. The basic element of each model is

Pd -- the probability of achieving a specified level of damage to

installation j from weapon i. This study t"-d two forms of the Pdij

function; both forms depend on the DIA Physical Vulnerabi].ity system.

The major difference between the two CEDF models is their respective

Pdi expressions. The CEP-Excluded CEDF model assumes each weapon's

CEP is 0 feet. This simplifying assumption results in two conditions:

a less complicated mathematical expression for the CEDF and a closed-
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form analytical expression for the gradient of the CEP-Excluded CEDF.

The CIP-Included CEDF model includes each weapon's CEP; it is a more

complicated expression.

The second element of the algorithm is a nonlinear optimization

technique that maximizes the CEDF models and locates the corresponding

optimal DGZs. Since an analytical expression for the gradient of the

CEP-Included CEDF model was not available, the algorithm maximizes this

CEDF using a direct search technique -- Powell's method of conjugate

directions, PWM. This numerical search technique requires only func-

tion evaluations to locate a local maximum. Conversely, an analytical

expression for the gradient of the CEP-Excluded model was calculated.

The algorithm maximizes this CEDF using a gradient search technique --

a conjugate gradient with restarts method, ZXM. The algorithm also

contains a third CEDF maximization technique -- a mixed technique, Mi.

This technique consists of two stages, an initial ZXM stage and a PWM

stage. The optimal DGZ coordinates from the M. stage become the initial

DGZ coordinates for the PWM stage.

The CEDF maximization algorithm was verified and validated using

two, three, and five-installation target complexes. The CEDF maximum

value and optimal DGZ locations for two example problems were also com-

pared with results from NUCWAVE. NUCWAVE is a one-sided nuclear weapons

allocation war gaming model. It also optimizes the damage to a set of

installations using a finite number of weapons. However, NUCWAVE deter-

mines a sequential optimal solution; it optimizes one weapon at a time

until no increase in complex damage is possible. The comparisons be-

tween the results from the CEDF maximization algorithm and from NUCWAVE

for two and five-installation target complexes indicated that the
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algorithm determines the same local maximum as NUCWAVE.

A symmetric one weapoz.-four installation complex was designed to

have four local maximunss. CEDF results from this complex were analyzed

and pointed out two ZXM maximization features, an operational charac-

teristic and a limitation. These features depend on the two types of

gradient symmetry. There is gradient symmetry from either geometrical

symmetry of the target complex or collocation of two or more similar

weapon types. The second type of symmetry is a limitation and prohibits

ZXM maximization from using .-ollocated initial DGZs.

Further analysis of three and four-instAllation target complexes

indicated the presence of multiple local CEDF maximums. A two weap n-

three installation target complex was analyzed using CEDF algorithm

results. There ware two distinct local CDF maximums and two corres-

ponding pairs of optimal DGZs. Similarly, a two weapon-four installation

complex was analyzed. There were three distinct local CEDF maximums and

three curresponding pairs of optimal DGZ%. The CELF maximization algo-

rithm located these local maximums using different initial DGZ conditions.

For both complexes analyzed, one local maximum was definitely the highest

valued local maximun for the complex.

Conclusions

The first subobjective was to determine the sensitivity of the re-

sults of the CEDF maximization algorithm to the mathematical technique

used to locate the optimal DGZ.ý Two conclusions of the study empha-

size the differences in CEDF results for the two CEDF models and their

respective optimization techniques -- ZXM and PWM.

First, the algorithm requires some indication of a potential
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increase in CEDF value in order to move a DGZ. That is, if there is no

indication of a CEDF increase in the direction of a valued installation

and there is an indication of a CEDF increase in the direction of a

lesser valued installation, then the algorithm will move the DGZ towards

the lesser valued installation. Eentually, the algorithm may converge

to a less valuable CEDF local maximum.

The second conclusion is that a weapon's CEP and the CEDF model

affect the CEDF maximum value and the respective optimal DGZ coordinates.

All three, four, five, and seven-installation target complexes analyzed,

that used weapons with CEP > 0, confirmed this conclusion. ZXM optimal

DGZ coordinates were not optimal for PWM; similarly, PWM optimal DGZ

coordinates were not optimal for ZXM. Results indicated that each CEDF

model located a unique set of optimal DGZs; however, the distance dif-

ference between a ZXm and a PNN1 optimal DGZ was less than the weapon's

CEP. This difference occurred because of the difference in Pdi,j for

the two models. For a weapon i-installation j interaction, Pdj is

larger for the CEP-Excluded model than it is for the CEP-Included model.

This is because the CEP-Included Pdi,j is reduced by a factor that

depends on the weapon's CEP.

The second subobjective was to determine the sensitivity of the

results of the CEDF maximization algorithm to the initial DGZ locations

prior to optimization. Four initial DGZ conditions were evaluated using

three and four-installation target complexes. The four initial condi-

tions for an m-weapon complex were: (1) locating the weapons at the

m highest valued installations, (2) locating the weapons at the m hardest

installations, (3) locating the weapons at the coiplex's centroid, and

(4) locating the weapons at m pseudo-random points. The algorithm
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using these initial DGZ conditions located more than one local CEDF

maximum for three and four-installation complexes. Thus, the last con-

clusion of the study emphasizes that no single initial DGZ condition

always locates the most valuable local CEDF maxinu,. Hence, the algo-

rithm does not include a decision structure to determine the correct

initial DGZ condition. However, this conclusion alsu indicates that the

most likely to succeed initial DGZ condition is to use the coordinates

of the m highest valued installations as the initial DGZ coordinates.

This investigation characterized three factors that affect the

optimal DGZ locations for multiple nuclear weapons in a target complex.

The first factor was gradient symmetry; this symmetry resulted from either

a geographically symmetric target complex or collocated weapons. The

second factor was weapon CEP. Maximization of the two CEDF models pro-

duced slightly different optimal DGZs; this difference depended on a

weapon's CEP and the CEDF model. The third factor was the initial DGZ

location prior to CEDF maximization. The algorithm located different

CEDF local maximums depending on the initial DGZ condition.

Recommendations

The weapons analyst can use the algorithm to solve large targeting

problems that include many complexes and different types and numbers of

weapons. The algorithm can be a valuable sensitivity analysis tool to

investigate weapon allocation tradeoffs. The analyst can evaluate the

changes in total complex expected target value damage as a result of an

increase or decrease in the number of weapons available to a target

complex. Similarly, the analyst can estimate the effects that changes

in a weapon's yield, CEP, or Pa can cause to the optimal DGZs.
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The CEDF maximization algorithm does have some limitations. How-

ever, there is a specific improvement or recommendation associated with

each limitation. The following recommendations would provide a more

capable algorithm for strategic targeting studies:

1. Currently, the algorithm accomplishes only two-dimensional

location of optimal DGZs; the user provides each weapon's height of

burst. Optimization of each weapon's height of burst could be added

to the algorithm.

2. Currently, the algorithm only allows military/industrial tar-

gets that ere modeled as point targets. The algorithm could be modified

to include area targets, equivalent area targets, and target avoidance

areas.

3. In an analogous manner, the algorithm only includes blast damage

effects for these point targets. Other nuclear weapon damage effects

could be added to the model.

4. Similarly, other optimization techniques could be used to

further investigate and characterize the CEDF local maximums for a

target complex.

5. User-specified constraints that establish a minimum acceptable

Pd for some or all installations could be included. This addition would

provide a new initial DGZ condition. That is, locate the weapons at

the installations with the largest minimum Pd.
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Appendix A: Determination of the Distance

__a~ Sg i al d the Weapo Radius (WR

The parameters q4 and WR are necessary to calculate the probability

of achieving a specified level of damage to installation j from weapon i.

1. Distance damage sigma,•j. The value of c depends on the T factor

of an installation's V='l code. Table A-I lists the T factors and

their associated c values. This table was extracted from NUCWAVE

Moel Methodology Analysis (Ref 25:3-4).

2. Weapon Radius, WR f(weapon and installation parameters), The cal-

culation of a WR depends on the concept of yield scaling. The following

information on yield scaling is based upon Glasstone and Dolan's presen-

tation in The Effects of Nuclear WeaFons (Ref 11:100).

"In order to calculate the characteristic properties of the blast

wave from an explosion of any given energy if those of another energy

are known, appropriate scaling laws are applied" (Ref 11:100). A

1-kiloton nuclear explosion is the reference explosion for nuclear

weapon calculations. Pressure vs range data have been tabulated and

graphed for the l-kt reference explosion. Also, the distance scaling

laws use the cube root of the weapon's yield as the scaling factor.

That is, if a pressure is experienced at a ground distance dI from a

l-kt reference explosion, then this same pressure value will be experi-

enced at a distance dw from a w-kiloton explosion.

dw -dl(w) 1/3

The needed pressure vs range (dy) data for a w-kiloton explosion can
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TABLE A-I

Distance Damage Sigma and Target Type

T Factor
P Targets Q Targets Cr.

L R 0.1

P S 0.2

M Q 0.3

N T 0.4

0 U 0.5

be determined using the scaled distance d1 . Therefore, to determine

either the overpressure or dynamic pressure from an explosion of w-kt,

all distances need to be transformed to the 1-kt scaled reference frame.

The umount of pressure an installation experiences is the primary deter-

minant of the installation's probability of damage.

Weapon and installation parameters are needed to determine the WR.

The weapon parameters needed are the yield (Y) and the height of

burst (HOB). The HOB and the subsequently calculated scaled weapon

radius (SWIR) are the two distances that need to be yield scaled. HOB

is scaled to start the formulation; after the SWR is calculated, it is

inversely scaled to specify the WR. The only installation parameter

necessary to calculate the WR is the VNTK code. The following presen-

tation is based tipon the material in Mathematical Background and Pro-

r Aids fo" the Physical Vulnerability System for Nuclear Weapons

(Ref 6:57-61).

W (y)i/3  (A.1)
WR =SWR 0
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The parameter c is a constant that equals either 0.96 for overpressure

sensitive installations or 0.91 for dynamic pressure sensitive instal-

lations. The SWR is calculated from the scaled height of burst (SHOB)

and the adjusted VN number (VNadj).

SHOB -
(y)1/ 3

VNadj - VN + AVN

&VA- 5.485 ln(R) for ove.pressure sensitive installations

" 2.742 in(R) for dynamic pressure sensitive installations

An iterative procedure is used to calculate the VN adjustment factor R

R = 1 - K K 20 1/3 ReR- l---6 + - -• R
10 -

K Is the installation's K factor and the exponent e equals either 1/2 for

overpressure sensitive installations or 1/3 for dynamic pressure sensitive

installations.

SWR - expf(VNadj9SHOB)

The function, f(VN adj,SHOB), is a polynomial expression whose coefficients

are available at 100-foot increments of the SHOB between 0 and 900 feet.

Hence, the SWR is derived by linearly interpolating between a low SWR,

that is calculated from a low SHOB, and a high SWR, that is calculated

from a high SHOB. For exmq)le, for La SHOB of 632 feet, a SWR low is

~alc•ulated for a SHOB of 600 feet and i, SWR high is calculated for a SHOB

of 700 feet. The aatual SWR is n linear interpolation of the high and
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low SWRs. Other algorithms use a table look-up with parameters, SHOB

and VNadj, to specify the SWR (Ref ].9 and 25). The SWR is inversely

yield scaled using Eq (A.1) to determine the WR.
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App ix B: Formulation of fW and

Calculation of the Integration Limits

This information is based on material in Mathematical Background
and Prowr..nn Aids for the -ysical Vulnerability System for Nuclear

Weapons (Ref 6:69-75).

The probability of achieving a specified level of damage to instal-

lation j from weapon i depends on weapon and installation parameters.

Pd 5 Pd(r) 1a . r dr di (B.1)

00

where Pd(r) a distance damage function

T - CEP/1.1774

?(r,&) - (r 2 + 82 - 2rs cos_)1/2

A closed form solution to Eq(B.l) does not exist; however, an analytical

approximation does.

PdN j = f f(r) dr (B.2)

21; (r 2 + 52 - 2rs cooe&)

where f(r) - Pd(r)r Z R e" 2a dO (B.3)

0
Eq(B.3) can be rewritten using a zeroth order modified Bessel Function,

Io(X) (Ref 19:378).

0
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-(r2 + s2)

f(r) - Pd(r) e Io (B.4)

Pd is calculated using normalized distance variables and Eq (B.l).i~j
That is, r, s, and WR are divided by x , the standard deviation of the

circular normal distribution.

JAt r' -r a the normalized distance between the installation and the

impact point

dr' - I& - the normalized differential element of r0'r

a' - a the normalized distance between the installation andCr

the DGZ

WR' - - the normalized weapon radius

Then Eqs (B.2) and (B. 4) become

Pd (r')dr' (B.5)

- (r') 2 + (s')2

where f(r') w Pd(r')r' e 2 1o(r's,) (B.6)

A polynomial approximation of the zeroth order modified Bessel function,

I (r's'), specifies a value of f(r') for a given r' (Ref 1:378).
0

Eq (B.5) can be rewritten as a definite integral with limits of inte-

gration, a and b, such that f(r') - 0 for r' < a or r' > b.

b

S f(r')dr' (B.7)

a

lierefore, it is necessary to determine a, the smallest possible value
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CASE 1 0\4, s ,4

two farthest possible
impact points R closest possible

b - min(s' + 4, R') impact point (a - 0)

C3 DGZ

/A installation

CASE II s' > 4 impact point
4 --- s'

two far thest possible
impact points- closest possible

b - min(s' + 4, R') UnpactIpoin-

Figure B-1 Weapon-installation geometry to determine a and b

of r', and b, the largest possible value of r'. These limlits depend on

weapon accuracy limitations and distance damage limitations. The weapon-

instaxllation geometry necessary to determine the limits of integration,

a and b, is shown in Figure B-1. Iwo cases are examined.

Caoe I. The normalized distance between the installation and the

DGZ is less than 4 (0O s'4 4). The distance between the closest

possible impact point and the installation is r' - 0. T]lie dis-

tame betwven the farthest possible impact point and the instal-

lation is the minimum of either r' -s' + 4 or r' -R1 =

1.06*WR'exp(2.86* Id). The point at r' - s' + 4 corresponds to
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the maximum distance from the DGZ, ?'" that a weapon could be

expected to impact. The probability that a weapon would impact

farther than ? 4w r is less than 0.00005. Similarly, the point

at r' - R' corresponds to the maximum distance from the instal-

lation, r', that the weapon could detonate and expect to damage

the installation. The Pd(r) for r' > R' is less than 0.0005.

R' may be either greater than, equal, or less than s' + 4.

Caue IL. The normalized distance between the installation and the

DGZ is greater than 4 (s' > 4). The distance between the closest

possible impact point and the installation is r' - a' *- 4. The

distance between the farthest possible impact point and the instal-

lation is again the minimum of either r' - s' + 4 or r'- R'.

Therefore, a n max (0, s' - 4) and b - mitt (s' + 4, R') (Ref 6:73).

Eq (B.7) can be evaluated using Gauss-Lagendre Quadrature between the

limits, a and b,

•i," =(b- a) 10
" 2 _ wwk(rVk) 

.k-l

. a (a + b)
where r' k -__ ZZ +

k 2 k 2

and f(r'k) is Eq (B.6). Gauss-Legendre, the quadrature points, ZZk,

and the coefficients, wOk, are explained in Appendix C.

Eq (B.8) is evaluated to determine the probability of achieving a

specified level of damage to installation j from weapon i.
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A&pendix C: Gauss-Legendre

Quadrature to Integrate f(r')

Gauss-Legendre quadrature is a numerical integration technique that

approximates a definite integral as a finite series (Ref 27:125). Each

term is a weighted function value.

The series to approximate a definite integral along the interval [-1,1]

by Gauss-Legendre is

1 nS f(y)dy * wwkf(yk) + Rn (C.1)
k-i

where wwk - quadrature coefficients

Yk - quadrature base points

R - remainder (negligible)

n a number of quadrature points

Gauss-Lagendre integration differs from symmetric, trapezoidal numerical

integration. In Gauss-Legendre, the distancesbetween the y base points

along the abscissa are not equal. The points are spaced symmetrically,

yet unequally, with respect to the midpoint of the interval [-1, , the

origin. See Figure C-i. This method is more efficient than equal

spacing trapezoidal methods because it requires fewer function evaluations

to achieve comparable accuracy (Ref 15:378). The quadrature coefficients

w. are pouitive numbers between 0 and 1; they are weights for the

f(Yk values.

The quadrature coefficients and weights are calculated from the nth
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f(y)

f(y7 )

f(y
4 )

-1.0

Y Y2 Y3 Y4  y5  Y6 Y7 y8  Y9  y10

whereIykHIOIyn(k-l)I o ,,,/
and Yk < Yk+l for k - 1,....,n-i

Figure C-i. Quadrature base points

Legwndre polynomial, P%, The base points, Yk' are the k - i,... ,0 zeros

of P (y). Similarly, the coefficients, wwk, are calculated from Pn(y)

and the Yk (Ref 1:888). Table C-I lists the base points and coefficients

for n - 10 (Ref 6:74 and 27:131).

However, to calculate Pd the interval of integration is not [-1,1],
itj

but rather, it is [a,b]. For this interval of integration, the quadrature

base points, coefficients, and limits of integration specify the trans-

formed variables, wk and rk (Ref 1:887). Eq (C.1) becomes

bf(y)dy - wk*f(rk)

kll



TABLE. C-I

Quadrature Base Points and Coefficients

n Y k WWk

1, 10 0.9739065285 0.0666713433

2, 9 0.8650633667 0.1494513442

3, 8 0.6794095683 0.2190863625

/A, 7 0.4333953941 0.2692667193

5, 6 0.148874339 0.2955242247

wher Wk - )

rk (2ak)

k 2 k ~ 2

This finite series is used to calculate Pdi~ . For each k 1i ... -i0,

an rk and associated f(rk) is calculated.

(r') 2 + s')2

f(rk) k f(r') - Pd(r')r' exp 2 I(r'')

Theii f(rk) is weighted by wk and sumned to form Pdi j.

1.12



Appendix D: Computer Code of the

CEDF Maximization Algorithm

This appendix presents a glossary of the FORTRAN variables and lists

the FORTRAN V source code of the CEDF maximization algorithm. The algo-

rithm has the capacity to handle a target complex with up to ten weapons

and tfen installations. These capacities can be increased by changing

the array dimension variables, tXM, WN, MIN, MIN, MSQ, and M12. Para-

meter statments assign values to these variables; the glossary describes

these variables.

The algorithm has several options. The user can specify one of

three initial DGZ conditions and convergence pa-ameters for ZXCGR.

QCapters IV and V discuss user guidelines in salecting a particular

option. Also, appendix E provides instructions in how to create an

inpiu4 . data file.

The subroutine INITLZ assigns values to the two WMIN maximiza~ion

convergence control parameters, E and ESCALE. Chapter V discusses

these parameters. Minor code changes would be required to modify

either of the parameters.

A typical two weapon-four installation CEDF maximization problem

requires approximately 3.0 seionds of execution time. The current pro-

gram requires 50,000 words of core memory on a Control Data Corporation

(CDC) 6600 Cyber computer.

Glossa_, of Variables

A[IRADS] - a coefficient that is used to adjust the VN number.

AEPDAM] - the lower limit of integration for the Gauss-Legendre
quadrature.
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AA - the difference between weapon i and installation j

x coordinates in feet.

ACC - the ZXOGR convergence control parameter.

ACC2 - the second stage ZXKOR convergence control parameter.

B - the upper limit of integration for the Gauss-Legendre
quadrature.

BB - the difference between weapon i and installation j
y coordinates in feet.

BESB
and BESC - polynomial approximations of the modified zeroth order

8ssel function that are used to determine Pdi,.

BETA(J) - the beta value for installation J.

CC(j) - an intermediate value that is used to calculate the
gradient of the CEDF.

CEP(i) - the circular error probable of weapon i in feet.

CEPA(i) - the adjusted circular error probable of weapon i in feet.

CEPS(i) - intermediate storage of the circular error probable of
weapon i in feet.

DFED - an estimate of the expected increase in the CEDF.

DGUi(i,3) - the degree-minute-second longitude coordinate for weapon i.

DGLT(i,3) - the degree-minute-second latitude coordinate for weapon i.

DL4C(i) - the east/west direction from the prime meridian for
weapon i.

DLTC(i) - the north/south direction from the equator for weapon i.

DDCD(i) - the long:!itude coordinate in degrees for weapon i.

DTCD(i) - the latitude coordinate in degrees for weapon i.

E(i) - the PWMIN convergence control larameter.

C - the value of (IDF.

EF - the value of -CEDF from PWMIN.

ERF - a polynomial approximation of the error function that is
used to determine a distance damage function value.
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ESCALE - the maximum step size multiplier for a single step of
each x.

EV(j) - the expected target value damage contribution to EC from
installation J.

EX - an exponent that is used to calculate the VN reduction
factor.

F - the value of -CEDF from FUNCT and GFUNCr.

F(5,2) - the ten Gauss-Legendre function evaluations.

FACIQ(j) - PS(j) * value(j).

FN - the sum of the ten Gauss-Legendre function evaluations.

V - the value of -CEDF from ZXCGR.

G(2) - a polynomial expression that is used to determine an SWR.

GR(i) - the 2m gradient elements of the CEP-Excluded CEDF model.

GEAD(i) - same as GR(i).

H - an intermediate value that is used to determine the
appropriate Bessel Function approximation, BESB or BESC.

HOB(i) - the height of burst for weapon i in feet.

I - generally, the subscript of a weapon array.

I.ER - an error code from ZXCGR.

ILNC(J) - the east/west direction from the prime meridian for
installation J.

ILTC(J) - the north/south direction from the equator for installation J.

INASG(J) - a logical decision variable that indicates whether an
installation's coordinates have been assigned to a DGZ.

INC - the user-specified indicator variable that controls the
assignment of initial DGZ locations.

INCD(J) - the longitude coordinate in degrees for installation J.

ISHOB(i,2) - the low and high scaled heights of burst for weapon i
in feet.

ISJIN(j,3) - the degree-minute-second longitude coordinate for
installation J.
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ISLT(J,3) - the degree-minute-second latitude coordinate for
installation J.

ITCD(j) - the latitude coordinate in degrees for installation j.

ITERS - the number of ZXCGR calls of function GFUNCT.

J - generally, the subscript of an installation array.

JJ - the argument of the modified zeroth order Bessel functions,
BESB and BESC.

K(J) - the K factors for installation J.

KK - the incremental contribution to grad(i) or grad(i-m)
from installation J.

KO thru K7 - the eight coefficients of the polynomial G(2).

LN - the length of one minute of longitude in feet.

M - the number of weapons for the target complex.

MAXFN - the maximum number of function evaluations ZXCGR is
authorized.

MAXIT - the maximum number of iterations PWMIN is authorized.

MSQ - the dimensinn variable for a AMIN work array [-2m * (2m + 3)].

"MT4 - tha dimension variable for all 2m-element weapon arrays.

MN - the dimension variable for all 2n-elemant installation
arrays.

MKM - the dimension variable for all m-element weapon arrays.

MN - the dimension variable for all n-element installation arrays.

M12 - the dimension variable for a ZXCGR work array [- 12 * m].

N - the number of installations in the target complex.

NOM - an intermediate value in calculating the gradient of the
CEDF.

NS - the standard deviation scaled distance between weapon i
and installation J.

NW - the dimension variable for a PNIN work array.

NWR - the standard deviation scaled weapon radius.
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N2 - the dimension of the xy weapon coordinate vector x.

ONCE - a logical dscision variable that controls the algorithm
so that ZXOGR runs a second time with a smaller ACC.

ORLN - the longitude coordinate in degrees for the origin of
the XY coordinate system.

ORLT - the latitude coordinate in degrees for the origin of
the XY coordinate system.

Pa(i) - the probability of arrival for weapon i.

PDAM - the probability of achieving a specified level of damage
to installation j from weapon i.

PI1G(ij) - Pd - the probability of achieving a specified level of
da;ae to installation J from weapon i.

PDR - the distance damage function value.

PP - the distance damage function value used to calculate
Pd 1i for the CEP-Included CEDF model.

PS(J) - the probability of not achieving a specified level of
damage to installation J.

R(PDAM) - the standard deviation scaled distance between the impact
point and the installation.

R[PDR] - a distance, either S or R, from the subroutine PDAM.

REM - a remainder that is used to translate the final DGZ coor-
dinates from feet into degree-minute-second coordinates.

RR - the flat earth distance between weapon i and installation J.

Ri - an intermediate value that is used to calculate the VN
reduction factor.

R2 - the VN reduction factor.

S - the known distance between weapon i and installation J.

SHOB(i) - the scaled height of burst for weapon i in feet.

SIG - the square root of the quantity, (1 - Td2

SIGMA(J) - the distance damage sigma for installation J.

SWR - the scaled weapon radius.

T(J) - the T-factor for installation J.
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TIAT - the sum of all installation latitude coordinates that is

used to determiae the number of feet per minute of longitude.

U - the argunent of the error function.

UU - an intermediate exponent that is used to calculate the
gradient of the CEDF.

V[PDAM] - the dummy argument of BESB and BESC.

V[PDR] - the dummy argument of ERF.

V[WRADS] - the change in an instJ.lation's VN number when it is
subjected to yields other than 20-kt.

VAL - the current value of the highest valued installation.

VALUE(j) - the value of installation J.

VIND - the subscript of the current highest value/hardest
installation.

VN(j) - the integer VN number for installation J.

VNA - the adjusted VN number.

VNI - the current VN number of the hardest installation.

W(5)[PDAM] - the Gauss-Lagendre quadrature coefficients.

W(WRADSJ - the low and high SWR that are linearly interpolated
between to determine the actual SWR.

WR(i,j) - the weapon radius for the weapon i-installation j
interaction.

WW(M12) - a ZX= work array.

WWW(MSQ) - a PWMIN work array.

X(i) - the X coordinate of weapon i in feet.

X(i + m) - the Y coordinate of weapon i in feet.

XXI(j) - the X coordinate of installation J in feet.

X((J + n) - the Y coordinate of installation j in feet.

XXC - same as X(i) and X(i + m).

X4 - the (XivYi) coordinates of the m weapons after ZXCGR maxi-

mization, but before PWMIN maximization. Used with the
mixed CEDF maximization algorithm.
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YIELD(i) - the yield of weapon i in kilotons.

Z5 - the Gauss-Legendre quadrature base points.

ZZ - a standard normal random variable.

Source Code

The next 27 pages list the FORRAN V code of the CEDF maximization

algorithm.
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PROGFAA1 IPTMZ

C OPrMZ 13 Thic. U:RIVER MOOULE FOk TA~E COMPLEX EXPECTED
C DAMAGE FUNCI~ilN 0'.EOF) MAXIMIZATION ACGORITHM.s THE
C ALGIORITHM4 DETERMINES THE OPTIMAL fl"? LOCATIONS F04 A
C FINITE NUMBER OF NUCLEAR WEAPONS AGAINST INSTALLATIONS
C IN A TARGET COMPLEX BY MAXIMIZING THE CCOF.

PARAMEER(MXM:I.r01MXN:1f~,MTM=20,MTN:20,MSQ:4!'2gM12:12Q)
EXTT RNAL GFUNCT
INTEGEP ?4,NVN(MXN) ,K(MXN),WRCMXMMXN),N2,MAXFNIER ,MAXITNU
REAL VALUE(MXN) ,YIELO(MXM'eCEP(MXM~ ,HOB(MXM) ,PA(MXM),SIG'4A(MXN)
REAL X(M4TMIXX(MTN),GR(MTMIFVBETA(MXN),UU(Ml2)oACCDFPRED
REAL E(MTMa oWWMQoX(T~X(T~ECLt~CP(X)AC
L0OGICAL ONCE
CHARACTER T(IXNi)
COMP4ON/INSTLN/ N9VALUE9VNvK9XX
COMMON/PQI"ID1 T
COMMONfWPNSI MYIELDCEPHOBPA
COMMON/PARAMS/ URqSIGMA,8ETAtITjERS
COMMON/CNTRL/ N2,ACCvACC29DFPREDvESCALE9E

C
WRrTE(6910' )

1 0 FORMAT(1X,5 (I*I) )
U'RITE(69*) I CEOF MAXIMIZATION ALGOPITHM'l

ONC El TqUE.
C

CALL ZIdLTLZ(X)
CALL WRAOS

C
00 1(1 EsIN2

XXX(I I3X(I)
VZ CONTINUE
C
C CONJUGATE GRADIENT OPTIMIZATION OF THE CEP-EXCLUEOD
C CEOF MODF.L
C

WRITE(69e) Z XCGR MAXIMIZATION't
WRTTE(SoM3
ITERSz,.
MAX FN=3Ur3
00 20 IxlpM

CEPS(I ~uCEP(I)

CONJTINUE
V5 CON TI NUE

UR!TE(6,.) I ACCm 9,ACC
CALL ZXCfiR(GFUNCTN2,ACCMAXFNDFPREDXGRFVWUIER)

WRLTE(69*) I FUNCT",CN= ',-FV
WRlTEC6vw) 0 FUN.CTI)NI EVALUATIONS: 99ITERS
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00 30 I'2.,N2
wkrF-(*'- I X(',IS): *,xc:)

W~r---69 * GRAD:(lvIplý= 9,GR(13
311 CONTINUE

CALL OUTOGZ(X)
C
C CONJUGATE GPRADIENT OPTIMIZATION OF THE CEP-EXCLUDEO
C CEOF MODEL USING A REDUCED CONVEPGENCIE CRITERIA
C

IF(ONCE) THEN
00 35 Is1,N2

X4AI b:X(I)
35 CONTINUEC

WRITE6,IOO )
WRITE(6vo) It ZXCGR WITH ACC REDUCED"

O NC Es F ALSE*
A CCmACC2
I TERSa1
GO TO 25

SNUI)IF
C
C POIJELLIS CONJUGATE D3IRECTIONS OPTIMIZATION OF THE
C CEP-INCLUDED CEOF MCDEL
C

URITE('~vt) *PWMIN MAX:MZATIONS
WRr. TE (6,1o 0.
14 AX IT z5':
DO 403 :atom
.CEP(I )mCEPS (T

CONTINUE
Nh~uN2#,(N2+ý)
CALL PWMIN(XXXEN2,EFoESCALEMAXIT.WWUNW)
WRZTE(69*) 0 FUNCTION= ,tEF
00 53 t:1,N2

51 CONTINUE
CALL OUTOGZ(XXX)

C
C M4IXED OPTIMIZAT'ON OF THE CEDF MODEL. 'rHE OOZ
C CCOQAINATES FROM THE FIRST CONJUGATE GR~ADIENT OPTIMI-
C ZArioN BECOME THE INjIrIAL OGZ COORDINATES FOR POUELLIS
C CONJUGATE DIRECTION'.3 OPTIMIZATION.
C

URI TE(6 91 JC
WRITE469.) MIXED TECHNIQUE MAXTMIZATION'l
W~rTE(6o1O:
CALL PUMtN(X4,oE.N2,EFEQ^CALEMAXITWWUNIWb

WRIT~io) I FUNCTTCN- I',-EF
00 7) t1,210

WRITE(69.1) 1 X4(99199)-- 9#X'4(I)
71 CONT~INUE

CALL OUTDG?(X4)
93 CONTINUE

E .40

121



SUB:AOUTINE: GFUNCT(N2,XqF9GAA0)

C I* CALCULATES THE CED'F(X~o THE COMPLCX EXPECTED
C 0AM10r FUtNCTION9 FOP~ M WEAPONS AND N INSTALLATIONS
C USING THE CEP-EXKiLUDED CEDF" MODEL*
C 2e CALCULATES THE 2M ELEMENrS OP THE GRADIENT OF
C THE CEDFCX)a

PARA KETER (MKMX~lr' 9M:XImmý gMTM%2c0 9MTN=:.%j
EINT EGER M*N WvN MXN) *K(MXN) 9 R (NM 94MXN 9N2
REAL VALUE(MXNPTtIELD(M4XMJ.CEP(MXMP tHOB(MXM),PACMM(MR
00.AL X(MTMP ,X(UM'VNI ECEV(MXN),P$(MXNý,PDAMSIS?IA(MXN)
REAL P0HG(NXMvMXN)#H')A(MY'NPF
R FA L F~ACTOR (MN) vCC (MXN ) GRA0(M'eM) ,AA, AbRR, UU9KK9Nr)M
CHAIACTER T(MXN)
CO~MMN/INSTLN/ tit VALUE oVNI(KXX
COMMON/PltNPD/ T
COMM'ýM/W!JNS/ MYIEL0*CEPvHOBPA
COMMON/P'ARAMS/ YRSIGMM.DETA91!ERS

C
1,C FURMAT(O WE~APON 3 vo,'2ýl XY COCROINATES: (',F7.2,'.',qF?9.,'f')

00 60l L:IM

6" CU?ITINUE

C

00 po V9
p 5, 1;21 OL
DO I, I'svI4

PSCJ' lF$(J)u, CI. -PA(I)*PM(9I

WUTTEC6o*'b I P,149 jto)= 9',PS(JR
ECvEC+EV( J)
FAC'ORC.J)1ý '-J'*VALUiE(JI

i: CONTZNUL
WRi rE(69,.'~ EC- 9E,E

Fm-EC



- c4 Z,
c CALCULATES 7HE GRADIENT OF TH~E CEDF(X).

pc

GRAN( I+M) =3.0O
0 0 V* J:l 9N

AA=XX(JJ-X:,l
88eZC(~J+N)-X(I+M)
RR:SGAT(AA**2+98*a'2

UU=ABS( ((1. I3ETA(Jb )*LOO (WRCIJ)/RR ,BErA(J) ) '1.4142135)
NCIM:FACTOR(J$bPA(I )'EXP(-UU',*,n)
KK'.NOM/(Clo -PACI ).PDMG(1vJ) JwCC(J)*RR'#*2)
GRAL(I)26RAO(I )+KK.AA
8RAO'IM33GFAD(:M)*KK*BB

S3C CONTIN SE
4 COVYIUC

D0 50~ L:210IJ2
* GqRAD(L)f-GRAD(LI

CONTINUE
END
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SU3 OUTINJE FUNCT(N2 9X9F)

C Le. CALCULATES THE CElDFCXl FOR M WEAPONS AND N

C INSTALLATIONS USING THE CEP-INCLUDED MCDELe

I NrEGER f4,N VN(MXN) 9K(MXN~tWR(MXM 9MXN 19N2
REAL VALIIE(MXN),YIELO(MXM),CEP(MXM) ,HOBCMXM4),PA(MX4)~t
REAL X(T)X(T~EPVMNoP(X~PAoiEAMN
REAL PDMO(MXM,9MXN)qNSIGMA (MXN)
CHARACTER T(MXN)
COMMON/INSTLN/ NVALUEVNsKXX
CCMMON/PorN0/ T
COMMON/WPNS/ MYIEL09CEF.HO89PA
CV4MON/PARAMS/ WRSTGMABETAITE;RS

C
ECz4*1,J
00 21 JzI.9N

00 1ý 1:1gom
PDMG(IpJ)zPOAM(t ,J9X)

V CON~TINUE
EV(J):(,le.-PSCJ) ) VALUE(J)

21; C04JTINUE
C

F:- E C
REURN

VID
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SUBROUTINE TNITLZ(X)

C I* READS USER-SPEC:FIED WEAPON AND INSTALLATION
C PARAMETERS FROM THE EXTERNAL FILE9 INDATA*
C 2. ASSIGNS INITTAL DGZ COOR&DINATES ACCORDING r-7
C T4E USER OPTION VARIABLE, INC.
C 3a TRANSFORM~S ALL WEAPON AND INSTALLATION COOIDINATES
C 14TO FEET PELATIVE TO A COMMON ORIGIN IN A XY
C COORDINATE SYSTEM.
C 4* INITIALIZES ACCURACY AND CONVERGENCE CRITERIA
C FIR~ THE OPTIMIZATION SUBROUTINES, ZXCGR A40 PWMP!.

PAR AtErwER (MXM=1 ,oMX,'410 ,MTM~t209,MTN=20)
INTEGER OGLN(MXM,3) ,OGLT(MXM,3) ,ISLN(MXN,3),ISLT(MXN,31
INTEGER VN(MXN) ,K(MX.N)oMN,:N.iCk2,VINDVNI
REAL DN~COCxmPDTCO(MXM),INCDCMXNI),TTCO(MXNl),ORLN,9ORLT
REAL YIELD( MXM) ,CEPCMXM),MHOBCMXM) 9PA(MXM) 9VALUE'(MX41
qEAL XC?4TM) .XX(MTN) ,ACCACC2,DFPREDESCALEECMTM)oVAL
REAL. NDGLNPNDGLYNI',LNNISLTTLATLNGMti
LOGICAL INASG(MXN)
CHARACTER DLNCtt4XM~ ,DLTC(MXMt),XLNC(MXN),XLTCCMXN~,T(MXN)
CHARACTER PH*'28
C014?IONIINSTLN/ NVALUE9VNKXX
COMMON/PgINO/ T
CG;lMO.N/UPNS/ M*YIELD9CEPHOBPA
CO!IMON/CNTRLI N..,ACCiACC290FPREDoESCALEvE
COMMON/ORIGIN/ CRLN9ORLTLNGMN

F5. )2X F5. 2, F6. ,#tF4.2)
10'5 FOR MAT( 3X, 2,5X ,F5* '2Y 9F5-7 o2X9F6*..', 1X F4*2)
11.0 FORI4AT(2XI4,I2,Z2,A1,4XI3,t2,I2.Al,4XI2,pA1,I,2XF'6.,' I
121 F OR MAT (/ 11NI TLZ'l9/ )
13m FOR MAT(' THIS PROBLEM USES 99T290 WEAPONS'09fl
140 FORMAT(l WEAPQýN YIELD CEP NOB PAI)
13P FORMAT(/9' THIS COMPLEX CONTAIN.-:, 99!291 INSTALLATIONS99fl
160 FOiMAT(f LONG!TUOE LAITUDE VNTK VALUEV)
170 FORt4AT(I,' THE XY COORDINATES OF THE INSTALLATIOMS IN FEET0,1)
2, - FOR MAT( /9 ImIITIAL OGAZ LOCATI.ONS ARE $9A289/)
C

OPENQ 5,FlLE=4T'%NOATA@)
REWIND 15

C
cc READ THE USER INI1'4AL OGZ COORDINATE OPTrotN VARIABLEINC,
C IF lI'C =1, THEN USER-SPECIFIEED COORDINATES
C IF !NC =2, T"HEN HIGHEST VALUE INSTALLATýON COORIINATES
C IF *NC =3, WHEN HARDEST INC;TALLATI(ýN COORDINATES
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C

C REDUE-PcFE0 WEAPON PARAMETERS,

REAO(15.5*) M
WPR TE(6,913C ) M

Do 10 Izl vM

ODLTrCC I) s YIELD ( I ) PCEP (I ) 9MOB (I) , PA (I)
WRITE(0'.IC9) IYIELO(I),oCEP(I),HQBCI),P?A(I)

16 CONTINUE
C
C READ USER-~SPECIFIED INSTALLATION PARAMETERS*
C

A EA 0 (15: N,

WRITE(6916;. )
c00 2J J:1,N

.- &AD(15 .113 ) (ISLtl(JL),L=193),ILNCCJ),(tý-LTCJL)oL=1 93),
.I1..rC(J),ViN(J),T(J),KC.J),VALUE(J)

*iLTC(J),¶IN(J) 9T(J),K(J)9VALUE(J)
,21: C ONTIN UE
C

C
C TRANSLATES INSTALLATION J, DEGREE-MINUTE-SECCNO
C COORDINATES INTO DEGREES.N
C

rF(lLNIC~fJ)aEeO.Ev) THEN
INCD(J)=REAL(ISLN(J~tl)?*(PEAL(TSLN(Jo2))96!e~vi.

*(PE*AL(XlLN(Jv3))/363.0e )
ELSE
NlSLf0-REAL(ISLN~(Jq4))

INCOC J) :NiSLN-(REAL(ISLi*diJ,2a) )f6Co.K)-
s'C REALCISLNCJ,3) )/36 V0 ed)

ENOIF
IF(INCO(,J)*LT*SMNCO) SMNCD=INCD(J)

ELSE
NISLT =-PEAL (I SLT ,JP1)
ITCDCJb:NISLT-(REALCISLrCJ,^) )/60. t)-

(CRE AL( ISLr(J 93) ) /36 '0l.90,
ENDIF
lF(IrCD(J).LT.SMTCD) 5MTC0OITC0(%J)
T LAT:TL AT .iITCO(J)

3. CCk~ I NUE
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C
LNSMNzCOS(*i.17453292eTLAT/N)6-8~.Z.
ORLN= IN T( SWMCD
I F( ORLN wL To-'e .)0R L N= IN T(SM NCD)-1 I
0RLT=IN4T(SM7,C0)
TF(OR1TLTaLr.G. ORLT:INTCSMTCD-1.C)

C
C MRNSFORMS INSTALLArION J DEGREE COORDINATES INTO
C FEET RELATIVE TO A COMMCN QPIG~I'4.

WRrTEC69175 3
00 140 %I=IN

XX(Jb=(tNCD(J)-ORLN'),vOD.0*LNGMN
XXCJ.N)s(I.PTCD(J)-ORLT)*3640:,- or,

WRITE(A,p*) 'XX(IJ,*I: *,XXCjp,* XX(vJ+M98)=I: 'XX'CJ.N
t u2 CONTINUE

IFC(INCoEQ*2I.OP9.NCoEQe3)) THEIN
00 45 J=19N

INASG(J: .F AL SE
455 CONTINUE

ENL3IF

C AS31ONS WEAPON I INITIAL DGZ COOROINATES ACC-1POING
C TO THE US3ER OPTION VARIABLE, INC.
c

IF1 (1NC*NE923 AND. CINC.eNE..5) THEN
C IF INC = li THEM TRANSLATE USER-SPECIFIED WEAPON 1 O6Z
C DE'3RE'E-MINUTE-SECOND COOIRDINATE.S INTO DEGREES.
C

PH=O*USER SPECIFIED
00 13' It-,PM

IF(DLNC(II.EQ9*E') 7MEN

ELSE
=J -F~E AL (0GLN( t dl)

ONCO(I)=NDGLtA-CREAL(DGLN(I,23)/6%CJ)-

END IF
1F(DLTCCI).,E~o.'N') THEN

r(4R:-ALC(f3LT(I,93) 3/36.00 )

'DGTC -REAL(DGfT.T(t,1),LT12)/'*)

CRE AL(OGLT( 'h)/36 sJ)
EN 0.1F
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C
c TRANSFORM WE.APOt1, r OEGREE COoRD:INATES tITO FEET
C RELATIVE TO A COMMON ORIGIN*
C

0 0 6Q` I= 1 9M
X(I):CflNCO(!)-0LN3.6.)..,*LNGMN

e.: CONTINUC
C

ELSEtf(INCeLQo4) THEN
C
C IF !%4C = 29 T14EN A3,21GN THE COORDINATES OF "HE M
C HI'I4EST VALUED INSTALLATIONS AS THE INITIAL DGZ
c COORDINATES OF THE M WEAPON-S.
C

PH=IHIGMEST VALUED INSTALLATIONS9
1.O 7~1, iM

VAL=O .

00 75 J~lvN
IF(ItIASG(J)) GO TO 75
IFCVALUE(J)@LToVAL) GO TO 75
VA L:VA LUE )
vIND:J

75 CONTINUE

lNAS6(VIN0PZ*TRUEs
7*! CONTINUE
C

ELSE
C
C IF INC 39 THEN ASSIGN THE COORDINATES OF THE M
C H4ARDEST INSTALLATIONS AS THE IN4TIAL DGZ COORDINATES
C OF THE M WEAPONS*
C

Pte:'HAROEST INSTALLAT;ONS
00 81* 1219m

VNT:O
VINO:)1
DO 815 J:1,9N

lF(INASG(J)) 0O TO 85
IF(VN(J)*LT*VNI) GO TO 85
VNIxVN(J)
VINO=J

835 CONT14eUE

tNASG(VlNO)=vTRUEo
8' CaNTrNUE

END IF
WP'tTE(6918C ) PH
DO 95 1=19m

95 CONrINUE-
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C
C INITIALIZE THE CON-VFRGENCE PARAMETERS
C OF THE SUHROUTINESt ZXCGR AND PWMIN*
C

ACC~noll1
REA 0(15 ow ) ACC2
READ(159,u) DFPPED
N2:2.M
ESCALE=50O~o3
DO 9!1 Z1=1NI2
C (I Jz .2

9' CONTINUE
CLO SC(15)
E ND
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SU8ROUTINE OUTDGZ(X)

C 1. TRANSLATES THE FANAL 061 COORDINATES FROM FEET
C INTO DEGREE-MI'NUTE-SECONO LONGITUDE AND LATITUDE
C CO')RDINATESo

PARAMETER (MXMZIC 9MTMv2 a)
REAL X(MTM)qORLNORLTlRENLfJGMN
REAL YIELD( MXM$ 9CEP (TXM) HOB CMXM) 9PACMXM)
INTEGEI 0GLN(MXM943) 9DGLT(MXM93)
CHARACTER DLNC(MXM),OLTC(MXM)
COMMON/WPNS/ MYIELf.)CEPpHOBPA
COMMON/')RIGINI ORLNvORLvLNGMN

110 FOR!4AT(fog WEA00N LONGITUDE LATITUDE')
120 FORMATM/

WRITE(Sw11O )

lF(0RLN*GEe0@C ) THEN
DGLN4(1v1.)21NT(O'LN)
DLNC(f)l'Ev
DBLtJ(I,2ln1NI(X(t )iLNGMN)
REPI:X(I)-LNGMN6OGLNCI ,2)

ELSE
OGLN(Iv1 )xABS(tNT(OPLN.21.O))
OLNC(DrOWbJ
OGLi'4(Iv2)xINTC6 l.O-X() /LNGMN)
REM6GO.owLNGMN-i((I -LNGMN.POGL~1( 1,2)

ENDKF
DGLN(193):ZNT(REM'-60 .' /LN-GMN)
iF(ORLT*GE&ý, -) THEN

DGLT(I191I:INTCORLT)

OGLT(Iv2)=INT(X(t*M)/6i)g30 6 '.
REM2X(I+M)-60e'Jw6~*DGLT(I ,2)

ELSE
0GLT (X .I9zA 8SC 1NT(QP LT. l*r') )
DLTC ( 1) 0 S I
DGLT(192)21NT (6 90 -X(I M)/6:8ýio.,
REMs364i3OOe.,-X(.+Mb-60O8-.ehDCLT(t,2I

E N!DI F
DGLTCI ,3)zINT(REM4/t101333333)

1' CONTINUE

RETURN

E N'D
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SUBPOUTINE WRADS

C .. CALCULATES THE WEAPON RAOIL, UR(',Jt FDV EACH
c WEAPON I -INSTALLATION J !NTE;ACTION*
C 2* CALCULATES THE BETA(J) FOR EACH INSTALLATIONe

PARAMETER (HXMZICMXN:1.J 9MTM=2tQMTN:2C)
REAL KKtIELO(MXM~hHOB(MXM) ,EEXASIGMACMXN),SIGRlR2
REAL VVNASHOBCMXM),6(2)tW(2),SWRKOKlK2,K3,K4,)C5,K6,oK7
REAL VALUE(MXNb ,CEPCMXM),PACMXM)-,BETA(MXN),XX(MTN)
INJTEGER VN(MXNhoK(MXN),tSHOB(MXM,2) ,WR(MXMMXN),IoJLMN
CH'ARACTER T(MXN),TT*5
COMMON/INSTLN/ NvVALUEpVNpKXX
COMMONfPQIND/ t
COMMON/WPNSI MYICLOCEPHOB,9PA
COMMONIPARAMS/ WRSZGI4A98ETAITERS

C

C
C SPECIFIES THE DISTANCE DAMAGE SZrGMA AND THE Br.TA ýOR
C EACH INSTALLATION Jo
C

i s?

IF( (TCJ).Ego.L')eOR.CT(J).EQ.'R',1)R THEN
SISMA(J)N3%1

ELSEIFC(T(Jd.CQ.WP@I~CRo(T(JR.EQ.*'S6lI THEN
S 'GMA(J)*-.: 2

ELS~IlC (T(JI.EQ.'M' ).QR.(T(J).EQ.o' l)I THEN
S ZGMA(JI)x:l.3

ELSE:ZFC(T(J).CQ.'IN'P)ORo(T(J).Ego.T')) THEN
SIGMA(JIiP2.4

ESE

ENDIF

*(T( fleER. 'N').OR.(T(J'I*EgQ.O')) THEN
TT:IPTYPEl

ELSE
T1:*OQTYPE*

ENDIF
IF( TT*EQe OPTYPEI) THEN

S IG=` 0"6

Az"2. 742
R1230.1

ENOIF
8 Er A(J) S13R2T (-L.C G I I -S GMA(J)* 2)
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y I +:)

H (2. J*

G(2)~ =0 9

C
C CALCULATES THE VN REDUCTION FACTOR9 R29 ANDO THE
C ADJUSTED VN NUMF3EP, VNA*
C

KK=REAL(K(J) b

TF(ABS(R2-Pl)9GE*0*.J'1) THEN

GO TO 10:
ENDIF
V :A *LOG (R 2)
VNA=REALC 'J(J))+V

C
C CALCULATES THE SCALED HEIGHT OF BUiST (SHOR)a
C

IF($HOB(I)*GTe9V0 4W ) ) THEN
WRITE(69*) IHOB TCO 137G'
SHOBCI)z9nce*ý

ENOIF

ISHOB(I,2RzINTSHOB(Ii)f*1 *,l1*"

C

110 L=L.1
C
C DETERMINES THE POLYNOMIAL COEFFICIrNTS TO CALCULATE
C G(VNAPISHOB)o
C

IF(TT*EQ**PTYPEO) GO TO 2C.'
GO TO 210

120 &(L)zKO3,KlfVNA.K2.VNiA*.aK3*VNA,&*3.K4.*VNA**4
GO TO 1402

13a G(L )zK .,*Kli VNA.K2*VNA*.2.K3. VNA* .3.K4*VNA**4.
*K5, VNA**5.KS.VNAo.6.-K7wVNA"1'

C
C CALCULATES THE SCALED WEAPON RADIUS (SWR) 4
C
140 W(L)XEXP(G(L))

IF(EoLT*0*P!l0l) GO TO 150
IF(LeLTe2) Go tQ 11,1

150 SWR =W(l)-*E* (W(2 )-W(lJ
C
C INVERSE YIELD SCALES THE SUR TO DETERMINE THE WEAPON
C RADIUS9 WR(1,.J) FIR THE WEAPON I -INSTALLATION J
C INT ER ACTI ON.
C

WRtTE(6,*) * U(*v:,'9s9,pJ9*)= *tWRcIJl
00 TO !T,4
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16 URT TE(6,* VIN TO) LARGE FOP H060
Wp( 19 J) 3

173 IF(X.LT*M) GO TO 3)1
IP(J*LT.,4) GO TO 20
00 TO 220

2"Q IF(ISH0B(,0L)*LTe10O3 THEN
C
C COEFFICIENTS OF G(VNAPISHOB) FOR OVERPRESSURE (P-TYPE)
C TARGETS FOR~ ISHOB FROM FEET TO 9DtP FEET.,
c

tF(VNAeLE.o7o5) THEN
KO=9*2L6936
K1:-9.E'662222E- 2
K2=-##o2 D5319E-03
K3=44*67361`: GE-Q 5

ELSE
K1:8*263243

K2:12 .74266E-04
K3=.9e.2 65496E-, 6

ENI3IF
GO TO~ 12C-

ELSEIF~lSHOBCI9L)oLT.2V.. THEN
!FCVPNA*GTo51.' GO TO 16,2
lF(VNAeLE.7v5) THEN

KO=8o29123
K 1:-i .132939E---.t

ELSE
Kl=8o29?59
K 1=-I. el 433 39E-C.I
K2=-4*6 494C8 5E- .:4
K3= 65 eg30 1E-3'6
K4:-5 .168n378E-"7

END0IF
GO TO 12!'

ELSEIF(ISHO8CI,pl.)eLT93O':) THEN
I F(V.4A*GT*41.oC ) 0 TO Ml~

KO=8 v.39 5223
(1:-i o4717856E- 4l
K2=12 .74489L-03
K3X-2. or632771. - ,3
K4=1.6*67591E-C5
IC5=-6wP4342E-%',6

IC7:-1 91 675' *5L-.- 9
O C TI 131:Y
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CLS EIF( IS H08 I 9L tLT 4-*'. ) THEN
I F(VNA*GTo3A.C ) Go~ To 1621

K1m-9 e9iý27916E-, 2
K2%24*1872757E-. 3
K3=54 .49084 E-O 5
K42-3 .758352E-' 5
K5=14e'l.'969E-C 7
K6=.2*t 1709e9E-ý&8
K7mt.lo

00 TO 13"
EL3ElFttSHOB(19L)eLT*50';) THEN

I t PCJAe ST *30*0 60 TO 16C
K,)=80.499469
KI:-1 .)965211E-:1
K22-3 94445747E-* 3
K 3:72 .6170 6En
K4=-74'"9Q5E-05
K'~x33 1oiS 13E-0 7
K6:-5@66M5!7E-^3

GO TO 136
ELS U F( ISHOB(X,9L) sL16 ToG THEN
ýFCVNA*GTs27.:) 00 TO 160

90m:89525985

R22-2 o5 6221 91E-,'2
1(3:54 .26447F'O ft
K4a'm5 926339E-*1 f
(5z34*.8 5504E-06
K&:'1oC 228646E-6
Klal11 44321-09

30 To 130
ELSEI!ClSHO9(ZL)*LT*7G(. THEN

lF(VNA.GT*25.'ý) GO TO 160
K~xd506222

Ql- *91717519E-', 3
K3=2690 232E-04
K0w-3*6(ý28224E-1,4
1(5n2$*.02515[-Cfi
Kfi-1.*L- 26364E- "6
K?zl5.ftl55lE-C3

30 TO 1W~
CL$EIFC tSHOD( t L ) LTeSOC ) THEN

IF'(VfA*GT,22*:') 00 1'0 160
K: 3. 65!"962
K12-1 o3679Se6E-.I

1(3--s-4v 929993E-1ý3

KS:-2@.571223tiE-')5
Xfiz:#3.79 00 3E-c8

K *3#
SO TO 1Y
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ELSEIF(ISt4O8(I9L)*LT*9:v ) THEN
r FVPJA* Gr.21o.: ) GO TO 160
IFCVtJA.LEe7.5) T'4EN

K2m-2. .86S6fi6E-;3
K3=15o95909E-05
K4z30.

ELSE .14
KO x12 .516344

Us 17 *699 44E-02
K3z-8e4V-0f33C-)3
K4x14 o, 11736E-05

ENDIF
(1O TO 12r

E LSEC
IF(VNA@GT*20e 1 GO TO 16'.
IF(YVJA*LEe7.5) THEN

1(2z12 ob 3604E-04
K3=-1 ,.!J!325lE-,If
K433. 0

E LSEC
1(0.13o47289
K1(1*- 971963
K2*25 .47267E-a2
K32-1 *4325115E--C 2
K4z26.4o.3T1E-Q 5

ENOIF
0O TO 12U

c Ci',ý!FFXCIF-NTS OF G(VNA9ISHOB) FOR DYNAMIC PRESSUPF
C (Q-TYPE) TARGETS FOR ISHOB FROM '.FEET TO ?50 FEET@
c
2O 1 F(LSH08(IvL)*LT..[).l THEN

I F( VNAe OT *35of ) 9O TO 16"
KQ:$31 5159

K2=3o 00 5224

t(423022649E-05

00 to 13Q
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EL3EIlF(ISHOBCIL)*LT,.' ) THEN
I FVN A*ST 35 a G-) TO 160

KI=3*376kV'2
9(1:-O .1042945

K4=19 26757E-O 5
K52-4997579E-D 7
(625 7'7257E-3 9

GO TO 13C
ELSEIF( IS HC(ILb.L To 3i' THEN

T.F( VNAo ST 35o.' ) GO TO 16"'1

Kz-I or! Q473E-C 1
1(2vl4*6'2.26E-n4
K32-5.9969792E-i 4
K4=660.7002L-U $
K5=-3*.'., 149459E-) 6

EL3aUF(ISM08(IL)eL'r*4r THEN
r.F(VNAoGTo35m.', 1 -1") TO 160

K2:-J.IY5 4114

K(42 -1.&0 7267E-CD 5
1(S5.2.r3662E-0 7

0)3 TOi 13ý
Cl..~lFISH0(lo~eL~5Q) rHEN

TF(V'JA@QT*31o:. Of.' TO IC'

K 3aO0 9 1236 2

1(5:-I c Ill y 33E-

'K6i'-2 *34684F-0 I
KVu2o51 295E -3 1

30Q TO 131'
ELSEMPISHQB(t1tJLT.061 THEN

IFCVNAoGro2S'. GOn TO 16'v

9(3m) a 0t' 6644

K4,24-'7976:4RE-7

q) 10 L Y:
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t:LS .IF( IS H08( T L).Lr. 7;.) THEN.
I F(VNA*6Gr4*6*..) GO TO 160

K^.P*66697
Kl=-Qel1164822
K2=3Jo Y I'''31
K3=:D oll) 06169

K5::-4*L 7263E-.06
K6=5s 664C2E.'1 A

ELSI~IF(ZSNOB(IL)*LT.'8Oýb THEN
I F( V14AwGOT 25*1 ) GO0 TO I C

Kt) Xse r: 74419

K22dt eO.O"234F 3
K3=.O e; r 1301~4
K421 O. I' 90d 9

I(E:22 33'r79E-O7
K?c-2*44Tn41E-09

GO TO 133
ELS~l(lSH08(lsLS.LT0VA THEN

I F(VNA* OT 23*3 ) (; TO 160
C 8 73 (.328

K420,OCG 26541

0 C TO ) X
ELSEC

I F(VNA. rT .22,-' ) G) ' 16,;
K0=8m 7930 42

K220*1.'"r1A71
K3 -ý , I 1
K 4=0@ C C. ~2357
K5=-2 a,' 1 562E-t 5
K6-:6* 97 !21) ý-C 7
K7=-8. 7486i6E-C 9

GO V) 13.1

22C CONTINUE
230 FORMTAT(//l

g~tTE('ý*2Y' )
E ND
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C if tw l A v*w 0t

REAL FUNCTION PDAM(Tt#JtX)

C I* CALCULATES THE PROBABILITY OF ACHIEVING, A
C SPECIFIED LEVEL OF OAMAGE TO INSTALLATION J FROM
C WEAPON I*

C-b #Pot foi *11 0* * ft * * 010 *4** kk *4t*bo**~o~*t,* * 000 4f

PAR AMETER (MXM~liI.:MXN=1:,. MTM=20 oMTN=2O)
PARAMETER(R95zC-e03

C
C COEFFICrENTS OF THE POLYNOMIAL APPROXIMATTIN OF THE
C MODIFIED ZEROTH OPOER SESSEL. FUNCTION*
C

PARA MET ER ( 8:3. 156 223 ,822*3 *fJ899424.3, 93212 .3 674ý2,

*.Cl1.oS28!2,C~t:ýo.22253lqC3=. .CýC'157565t,C4=:*..191628l,

INTEGEl1 UR(MXMMXN)4 ,'.JK2,L2,MNVN(MXNl)tc(MXI)
REAL e~8,-SBF-SCVoZC?53,W(5),SX(MTM) ,XX(MTN),RBETA(I4KN3,R95
RrAL Si9t4A(MXN)3,CEP(MXM3,CEPAPDMPPPDRoNWR.'JSVALUECMXN)
R EA L AR, 9Ff% H 9JJF(C5,92 ) YI EL D(MXM) 9HO ( MXM) sPAC MX M)
COMMON/INSTLNI NVALUE9VNKsXX
CO'4MON/hIPNS/ MYIELOCEP#HOBpPA
CIM,4ON/PARAMS / WR S 'GMA,9BETA 9 TERS

c alUAORATURE BASE POINTS Ztvb3 ANO COE:FFICIENTS W(13)
C

DATA Z(l. ) Z(2 3,Z(3 IZ(-4 )Z(5 )#W(1 3tU(2 )vW(~3 )9(4 )W(S)f
*3 oL 1488 74339 90 m4333953941 9C. o iT94 '9566 3 9L .65ý 633 667 -

*0 9J 739-'j652F 5 9 is 955242247 9C a269 266119 3,C219)86 3625,
st 4 445l34942tGo '666713433/

C

CEPA!2SQRT(CEP(I 3*2.J.ý231e¶I)5o*e2)
lF(WR(I9J)aE~o." THEN

P om3.w. a 0
GO~ TO 12C

Z ND IF
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C
C CEP-EXCI.UDED CEOF M4'DELo THE POCIJ) IS THE
C DISTANCE DAMAGE FUNC.TIONe

IF(CEPAoLT*!.f9fll) THEN
IF(S.GT*. o' THEN
PDM:PDR (REAL(UR CI ,J) )tS~BETA(J3)

ELSE

EENOIF
C

ELSE
C
C CE'P-ZNCLUOED CEOF MODEL. DETERMINATION OF THE
C INTEGRATION LIMITS A AND Be
C

NWR:-L.1T74*REAL(WRCtJ) )/CEPA
N4S=11174*SlCEPA

A=NS-4oG

C GAUS3-LEGENDRE TEN POINT QUADRArURE TO
C DETERMINE PO(I,1J)o

00 110 K2=1 95
00 1030 L2=1,#2

PP=PDP(NbiR9R9BETA(J))
H=NS* R
I F(Ho EQ*O e J) THEN

F(K~vL2 )=PPR*ExP(CmR**2)/2*3J)
r-LSETFCHeLC93*75) THEN

JJ:(H/3*75)' '2
F(K2,L2)=PP.R*EXP(-(fýIS*24Q.*2)i'2.')haB-SE(JJ)

CLSE
JJ=3075/H
F(K2,L2)=PP*R.EXP(-(NS-R).,2/2... '-BESCCJJ)/SQRT (H)

EN )I F
FN=F?4.U(K2)*F(K2,L2)

CONTINUE
1.10 CONTINUE

ENDIF

END

1.39
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C*** f*h

REAL FUMCT!':N PORcWR9RvBETA,*

c lo CALCULATES THE DISTANCE DAMAGE FUNCTION-- THE
C PROBABILITY OF ACHIEVING A SPECIFIED LEVEL OF
C t'4MA6E TO INSTALLATION J FROM WEAPON I WHEN THEY
C A.-ý SEPARATED A KNOWN OISTANCr- Re

PA2 AM~EC1Oro20~,20. 422820123973=7*0392705272,
*E.'i~52143,PE5=ýý.O2765672,E6z.COO0ý03?'33)

REAL EqF*ZZvRETAip~kR9RU9SIGNvV

C CALrULATES ZZ, A STANIDARD NORMAL PANL)04 VAPIABLL, AND
C TESTS Z? TO DETERMINJE THE EXTRLMES OF THE PROB461LITY
C OF DAMAGE FUNCTION.
C

ZZ=(U. /BETA)*L,1G(CUR*EXP(-ItiETA*.2) )/R)
'ýFCZZ*GT*3oael, THEN

RETURN
ENDIF
IF(ABS(ZZ)oLT.S-E-'6) THE-N

PDR-Z'.@
RETUR~N

E NDI F
rFCZZ*LT*-3.a1) THEN

RETURN
ENDIF
U=ABS(ZZ) /SO!RT(2oO)
SIGN=1*1t
EFCZZ*LT*(&" ) S*GN=-1*.'

C
C CALCULATES THE DISTANCE DAMAGE FUNCTION USING 4
C POLYNOMIAL APPROXIMATION4 OF THE ERROR FUNCT!ON.
C

REtURN
END
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SUBROUTINE PWMý N(X,~,NEFESCALE,*MAXtTg~uNU)

C lo POUELLOS METHOD OF CONJUGATE DIRECTIONS
C D:TERMINES THE MIN:MIJM OF A FUNCTION USING
C ONLY FUNCTION EVALUATIONSO

REAL XC(N)9E (Nb,p ( NW)

I. - DDI4A6:1 ol*ESCAL.E

SCF:.*RO ,5.ESCALE
JJ: N. CN*1

NFC Cc1
IND:1
INN:1
URITE(69.)' PWMTN9
DO 4 Z1=1N

W(I)-ESCALE
DI 4 JzitIN

IF(IoEQ*JI J(K):Al3S(E(I))
4 K:K,1

ITERCz1
ISSIADS2
CALL FUNCT(NXFl
F EEPz2eO'A BS(F)

C
C STAR~T THE NEXT ITERATION*
C
5 ITON.EzI

DO 210 I1,1N

2,:l CONTINUE
W*T(9v EF= Ot-F

F P:F
SUMzoq!
lxpzjj
0O 60 Izl,'4

I KPzr xp'I
6 W(41XP)=KX( )

101 RN:N.+.
ILI PIE= I

C
C START THE NEXT ONE OIMENS10ONAL SEARCH*
C
T DMX:W(ILINE)

DAC C=OMAX*SCER
0MAG:AMIN.1(ODMAGC s!*1 'DMAX)
0MA G=AMA~l(DMAG923. '*OACC)
o OMAXzlt)*.'. DAG
GO TO (7-J97*,71), I-QNE
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ý=O HAG
F PRE'J=F

DA=DL
a3 DO: D'OL

C
C SELECT THE NEXT SEARCH DIRECTION FOR ITERATION Io
C

DO 9 1=1941
XCI ):XtI)+00.W(K)'

9 K *%.4 1
CALL FUNCT(NXoFJ
NFC CZNFCC.1
SO TO C10,ZI,12*13,14,096 :'S

14 IF(F.EQ&FA) THEN~
If(AdS(D)*LE*DMAX) THEN
-O;cD.D
0O TO

ENDIF
WRITEC69.)* MAX( CHANGE DOES NOT ALTER FUNCTION'
00 rO 2C

ELSEIF(F*LTsFA) THEN
F~z

C LS E
FB:FA

FAzO

£ NO IF
C

(GO TO (43'.13,23 ISSIAD
23 O:OB+S.D-OA

00 TO 1
83 Dv .5*COA*DBm(FAmFBD/CDI8mOAI

IF((DA-Dl*(0-O8)GEs0*il) 00 TO 6
25 Isal

ZF(ABS(D-DBleLE.OODlAX) GO TO 8
26 DZDR+SIGN(DOMAX*DBmOA)

DOD% AX=:OMAX+DDMAX
o DMAGDODMAG+DDMAG
IF(CDDMAG*GE.1.CE*66) OOMAG=! 'E+6Q
IF(00MAX*LE.aDtAXI GO TO 8
DOMAX:OMAX
GO TO 3
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13 !F(FoGE.aFA) GO TO 23
2ý FC=FB

29 F~vF
08=D
Do TO 3m~

12 TFCF*LE@FB) 60 TO 21

SO TO 30
11 ZP(F.BE*FB) GO TO 1J

FAzFl3

90 TO 29
* C

0DM AXuz5*0
FA:FP

PS: FNOLO

11 FCZF

3ý A a( 09-00 ) C FA-FC)
But OC-OA)'( F8-FC )

T.F R 0 -O)eG GO TO 34

D.Az 09
F~sFC

G0 TO 26
34 Du~.5*(A.(DB.OC),9.(OA.OC)/(AB)

FtmF5
I!F6.BLE@FC) GO TO 44

44 (10 TO C$6,6,835)9 ITONE
p 5 ITONE=2

G0 TO 45
C

*C CHECK( TH'- ONE nIMEN1IONAL MINIMIZATION SEAR~CH
C FOR CONVERGENCE,,

86 ZFCA8S(O-Dl).LE*DACC) GO TO 41
UC(ABSCD-oI).LE:.t:*. 3*ABS(D)?) -0 TO 41

*45 IF( (0A-00t CDC-OP.GEe0*-) THEN
FA:-F8
DA=09
FO:FC

130 TO 25
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ELS E
T S=2

1 S:3
GO TO 8

END IF
41 f!

020 I-DL
-REs (C-DB)O (DC-DAn #(OA-DB)/(A.B)
IF(R-E.vLC.oQ~) THEN

WURI'TE(6,.)' ACCURACY LIMITED BY THE FUNCTIO'4'
RETURN

EN I F
D02SORT (RE)

C
C COMPLETES ONE OF THE N ONE DIMENSIONAL SEARCHES
C FOR ITERATICN lo UPDATE X(lk.
C

D0 49 I1=,N
X(11):K(I)+D*W(I DIRN)
Wd(I~rRN )uDU*(IDI RN)

49 IDIRNUIDIRNtl
h(I(LIN!.)zW( LINE)/DO
ILI NE aILI NE. 1

IF(.ITO4E9EQo2) GO TO 39
IF((FPftEV-F-SUM).sLTU*ý) 00 TO ')4
S UMvFPR EV-F

94IF(IOIIRN9LEsJ.Jl 0O TO 7
C
C ALL ONE DIMENSIONAL SEARCHES COMPLETED
C

GO0 TO (92972)9 IND
92 FHOLDUF

IS26
IXpZJJ
00 59 Izl9N

C CALCULATES THE EXPANDED.POINTo
C

00 TO 59
96 GO0 TO (1120:7)9 IND
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C THE 40DIFICATION TEST

112 IFCFP*LE*F) GO TO 37
D:z .i*(FP.F-2.O -FHOLD)/(FP-F )* v-

IF((Dh(FP-FHOLD-SUMl)..2-SUM).GE*.3,.:) GO TO 37
87 J=JtL*q.1

IFCJoGTJ.J) G0 TO 61
00 62 litdij

K1(2-N
62 K).WI

00 97 LJlLN
97 U(1-1)xU~t)

C SEAqCH IN DIRECTION OF THE EXPANDED POINT.
C

ITO MEV~3

I XP 21IJ
A AA -- * ý
DO 67 :=1,Pl

K XPUIEP.1
U (IC U( KXP)
!F(AAA*LTeABS(W(K)/E(C))) THEN

AAAzA8S (W(K /E(I))
ENDIF

67 K:-K,1
0 DM AS: I
W(N b2ESCALE/AAA
ILl NE211
GO TO 7
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C
C UPDATEC XCD AND USE THE PREVIOUS SEARCH DIRECTrOMSo
C
37 IXPrnJJ

A AA -O0
F=FHOLD
0O 99 1=10N

I XPZIXP.1

IFC(AAA*ABS(E(!))i.LT.ABS(W(IXP))') THEN
A AA=ASS (V(IXP ItE( I)

ENDIF
99 CONTINUE

GO TO 72
3 A AA =A AA * C I DI)

GO rO (729,1r-6)9 IND
7 2 GO TO (109988)9 IND
I .'9 IF(AAAeLEvt'.I) GO TO 20
C

IF(F*LT*FP) 6O TO 35
WRITE(6,e)$ ACCURACY LIMITED BY THE FUNCTION'
90 TO 2'"

ep N1
35 DIJ'AG:%,14.SORT(A83S(FP-l)~

lFCODMAG.GEe1.OE.631 b DMAG:1.QE+6.'
I Sr;ADzI

C
ITE SCs TCRC.l
IF(ITERCeLEeMAXIT) GO TO 5
IF(F*LEoFKEEP) GO TO) 20
FWKEEP
DO III I:=.,N

III XCI )=ICJJJ)

2; WRtTEC6,a)* ITE:RATJONs: ',PITERC
SF: F
RETURN

1'.6 IF(AAAoLE*.:.1l GO TO 21
INN :1
6O TO 35

C
E ND
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Appendix E: User Guidelines and a Sample Problem

This appendix provides basic instructions for Liputting user-

specified weapon and installation parameters to the CEDF maximization

algorithm. These instructions are presented using an example.

Initially, the user must determine the values of the convergence

control parameters, ACC, DFPRED, E, and ESCALE. These values depend

on installation values and the number of weapons and installations.

User guidelines in Chapter V disr.uss specific considerations. The

source code initializes the PFMIN convergence parameters to E(i) m 0.1

and ESCALE - 5000. Two minor code changes would be necessary to change

either of these values. The user must input values for the ZXCGR con-

vergence parmeters, ACC and DFPRED.

Next, the user must decide on the type of initial DGZ coordinates

to use. The user has three options. The user cnunicates the desired

DGZ location option to the algorithm through the input variable -- INC.

If INC - 1, then the algorithm uses the user-specifled estimates of

the initial DGZ locations. If INC - 2, then the algoritiwu atssigns the

coordinates of the m highest valued installations to be the inltial

coordinates of the in weapons in decreasing order of yield. Final.ly, if

INC - 3, then the algorithm assigns the coordinat:es of the. m hau'dent

installations to be the initial coordinates of the m weapons in de-

creasing order of yield.

Then the user needs to compile the necessary input data in a kFORTRAN

extornaL file, INDATA. Figure E-.l is the input data file, INDATA, for a

two weapon-four instAllation example., Ihe first line is the decision

variable, INC. For this example, INC - 2 and the initial, DG'Z
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2

451.1 5L 460 3*5.i 70, 25-' 1P•. .-
'$ 51 ,4 :-,Zý 460 31 1'; N 70. 25.- l .',• +•

4

4 46 31~.'N 16P2 35,'.C
4 AL0S 0N '60 4CV 1N 22P2 250 .
451 OE. 4 6035M' N 21P4 500).
44 511 'S "JI E 46 3C 5N 1903 70C,•.

I. t0 00 0.1

Fi4.xe E-1. 'Me CI•F mxtimization algorithm input file, INDATA, for
a two weapon-four installation complex.

coordinates wera the coordinates of the two highest valued installations.

UA second lino in tre file ".lATA im i, the .uanber of weapons for the

complex; for this ,xample, rn - 2. The next m lines contain the user-

"":ifie•d weapon p•ameters. The FORI AN input format for these para-

"maters is stat'%vmt 100 ir mubroutine INITLZ of the source code. The

, ,'r A•nd mits of the weapon ycrameters arei the longitude and lati-

"tuds coordirates , these ot be initialized to some value even if

-X'. ' 2 or 3), the, yield in kilotons, the CE in feet, the HOB in feet,

at ,aPa.

The line oftor the la•. weuipon's parameters is n, the number of

intalations in tbh complex; for this example, n - 4. The next n

lines contain the uaer•,pecif led installation parameters. Mhe FORTWAN

input format stAttenmt for these parameters is statemnt 110 in sub-

routine INtflLZ of the source code. The order of the installation

parameters is: the longitude and latitude coordinates, a VNfl code,

and a value (a real, nunber leas than I.XX••.O).

Finally, the 21KCGR convergence control parameters complete the
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external file, INDATA. The line after the last installation's para-

meters contains the value of ACC for the second stage of ZXCGR maxi-

miation. The last line of the file contains the value of DFPRED. For

this amwple, ACC - 0.001 and DFPRMD - 1000.

The CEDF maximization algorithm outputs the results of a problem

to another external file, TAPE6. The results of four maximizations

are: (1) a ZXOCGR maximization for ACC - 0.01; (2) a ZXCGR maximi-

zation for a user-specified value of ACC; (3) a PWMIN maximization;

and (4) a mixed maximization.

The next six pages list the results of the two weapon-four

installation problem.
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CCOF MAXIP'IZA'"I'.Th ALGORITMM

INZTLZ

THIS PR;OBLEZM USEc 2 WEAPONS

WEAPON YIELD CEP HOB PA
I ??J. 250. to '7 a .99
2 70. 250. 10o.• .99

THMS COMPLEX CONTAINS 4 INSTALLATIONS

LONGITUDE LATITUDE VNTK VALUE
'511 'E 46 33uN 16P2 35,1*

4d1.030E 46 4 9N 22P2 25, .'.
4511 OE 46 35iN 21P4 50o.

110E 46 3 5N 1903 70J'.

THE XY COORDINATES OF THE INSTALLATIONS IN FEET

XX(Ll= 4219.35367441 XX(5)2 2128e.o00r•r.Q2
XX(21= 44298.82135815 XX(6) 24319.99999998
XX(3)= 46418923904114 X(7)= 23306o66666666
XX(41% 418517s75672559 XX(81= 18746o66666664

INITIAL O0Z LCCATIONS AE:" HIGHEST VALUED INSTALLATIONS

X(I)m 4d517.75672559 X(3S) 18746.66666664
X(2)2 464013.289C4184 X(4)= 23306.66666666

UP ADS

WR(1L.)n 3272
WR(2o1 $a 3272
YR.I Q 2 )= 1947

YR(292bl 1947
WR(193)x 2200
WR(293)= 22ug
WR(1,•4) 2-63
WR(2,4)= 2863
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ZXCGR MAXIMIZATION
. **.** *.,, ********S*******~******,****.*4.********.

ACC .el1
WEAPON I XY COORDINATES:( 48518ot 14747.)
WEAPON 2 XY COORDINATES: ( 46408., 23317.)

PS(1):= .09760).4
PS(2)x ,86833
P$(3)x ,50399999999999qB
PS(4)m so0 984159999)999a
•C: 12-13.443P

WEAPON I XY COORDINATES: ( 43518.t I1.747.)
WEAPON 2 XY COORDINATEZ: C 46333.t 23331.)
PS(1): .97228
PS(2)= .82,373
PS(3): .009999999999998
PS(4): *0,9851499999998
ECC 12406.2345

WEAPON I XY COORDINATES: ( 48517., 16747.)
WEAPON 2 XY COCROINATES: ( 45657.* 2.3354o)
P5(11), 991585
Ps (2)m 01)•315

": (3): .06'3999$,9999999P
PS(4)" 1009949599999996
ECC 14192,0658

WEAPON I XY COORDINATES: ( 48517., 18747e)
WEAPON 2 XY COORDINATES: C 441d8.t 24137.)
PS(1): *65345
PS(2): ,0'39999999999?'3
Pb$(3)* 964518
P'-(41= *)09990 C99999998

EC: 12125.j:943
WEAPON 1 XY COORDINATES: C 48517., 16747a.)
WEAPON 2 XY COORDIPNATES: ( 4521.,o 23678.)

PM(1)m .86239
PS (2): • 2' 8 9

PS(3): .01198
PS(4)z *0996C399995999A
EC= 1479.97872

UEAPON I XY COORDINATES: ( *a517., 18.747e)
WEAPON 2 XY COORDINATES: ( 45124o. 23T29.)
PS(I)= .83566
PS(2)2 001U99
P3(3)= s02386CCOOO*J)2UI
PS(4)= 03',997. 29999999.q
rwCz 14158o6229

UEAPON 1 XY COOPDOIATE,: ( 4•516., 13747'. )
WEAPON 2 XY COORDINATES: C 44110. 23D12,)

PS(1)= o17632
PS(2): *G 52.5 7
PSC3)= e.6302 3
PS(4)= .119 31 9g99999
EC: 13730.5129
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PS(2)z e02683
PS-'(3)= e14226
PCS(4)z *.3936I399999998
EC= 15253-7l22

WEAPON I XY COORDINATES: ( 4851?., 113747*)
WIEAPON 2 XY COORDINATES: ( 44829., 23019o)
PS(1I: .51787

PSM33 9019613

YEAPON I. XY CCORDINATES: C 48517., 18747s)
WEAPON 2 XY COORDINATES: C 44a129, 231.340)
PS(11= 051391

PS(3)!: e11306
Pstlql= a .99 0599999 998
EC= 151120e6558
WEAPON 1 XY COORDINA'rEs: ( 48516., 183747o)
WEAPON 2 XY COCRO!NATES: ( 44835., 23C69s)

P!! Q1= .5 37617
PS(2)z *0674V` C00 6,0 C1
PS(3= o~ .03`0 3: -0 0 01.
PS(41= o .1i994V599999 99-3
ECC 15429*.)TO8

WECAPON I XY COOROINArE3: C 48516., 18747o)
WEAPON 2 XY COORDINATCrj: ( 45J40*9 233-q6.)
P5(11: .72775
PS (2? )z0228?
PS(32 .0 258 d
Ps (it)z 0 ! 95 9999999 1
ECC 15196.8465
WEAPON I XY COORDINATES: C 48516., 18747o)
WEAPON 2 XY COORDINATES: ( 44851.., M239'..
MSCI)= 0553552
Ps(2)m .0 aG14 a
P!S 3 )- *08 123O0 r.000"0
P1 0 )m O.' 99 1#0599999998
EC--* 15433o.'31!

1e, ER=*
FUNiCTLIN- 1.5433.o3L6
FUNCTIV)N EVALUATIONSt*: 1F8

XCI)x 48516*460374C7
GRAO(l )z maI3386697914471
1((2): 443 5 0 a?3876378

GRA0C2 I= 019407O170614
XC33z 1.874791,9690.,6 5

GRAD (31 )= *0Of~ 147450 20 35616
X(4)z 23iJ '3*65196727

GOAD(4): .0193911576447

WEAPONd LON61TUDE LATITUDE
1 451129E 46 3 5N
2. 451,C37E 4 6 134 7'..
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ZXCGR WITH ACC REDUCED

ACC= 2:
WEAPON 1 XY CCORDINATES: ( 48516.. 18747e)
WEAPON 2 XY COORDIN~ATES: ( 44951., 23294.)
P~t1)= 4,53351

PS(31= *0t31MC000000O1
PS 0 )z .110994r599999998
ECL., 15433*13J38

IEP: 3
FUNCTIONz 15433e0308
FUKICT13N EVALUJATIONS: 2
X (I)= 4851.6*4 603740 7

GRAOCIJ:) *10.133866GS7944471
X(2)z 448353 o738763?8

GRAD(2 )z *0194870170614
X(30= 18747o19690r&5

OR AD (3~ J.' 1#475022 3 36Cr6
)((4)z 23'VS3o6519&72'?
GRADC4): *ý193911576447

WEAPO'J L13NGITUDr LATITUDE
I. 431129E 46 C2 5N
2 451.037E 46 347N
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I
PWMIN MAXIMIZATION

PW.m IN
X(1)= 4857.7T5672559
X(2)= 464,28,289,1141E~4
)X(3)= 1,746.66666664
X(4)= 233.36*6666666

EF= 12358.3581
X(1): 49517.75672559
X(21-- 44888*94497!rEI
X(3) 18746a66666664
X(4)= 23169.22996•39+

._.. CF= 15137s-"158

XIQ)z 48517075672559
X12)z 448-38s8^3071814
Y(3)z 18746e66666664
9(4)z 23165*79903rS5

r,.F= 1514.1,9708

ICTEURACY LIMITED BY T4E FUNCTION
ITERAT IONS-- .t

FUPXTI0N- .L15141 .9706-
XXC(1)= ##8517 75672559
XX)X(2)= 448el.*97031I54
XXX(3)= 18746o66666 664
XI(X(*)= 2'159.52.991'J93

WEAPON LONGITUDE LATITUDE
1 451130E 46 3 5N4
2 45Im38E 46 348N
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MIXED TECHNIQUE MAXIMIZATION

X(l)= 4a516.46037407
X(2)= 44850.73876378
X(3)= 18747.1969G465
X(4)= 230,33.65196727

[F: 15133.*.608
X(1 )z 48516.4(3037407
X(2)= 44851.32790653
X(3)z 1874T*1969QC65
X(4)= 23127.72924026

EF: 15136.,30A
X(I): 48516.46037407
X(2)= 44351.74210 346
X(3)z 1874791969•':65
X(4)= 23123,46811256

EF: 15138.o10b
X(l)= 48516.46037407
X(2)= 44RS3.61.1958r23
X(3)= 18747.19690..65
X(4)= 23123.46811256

EF: 15139*4958
ACCURACY LtM:TED BY THE FUNCTION
ITERATIONS=:

FUNCTION: 11132.0700
X4(L)= 48516.46037437
X4(2)= 44855.,35435102
X4(3)= 18747.196.006,O
X40(): 23105.5184597

VJEAPON LONGITUDE LATITUDE
L 451129E 46 3 5N
2 451037E 46 348N
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Apendiix F: Verification of the Gradient

of the CEP-Excluded CEDF Model'

The results of two example problems verified that the subroutine

GFUNCT correctly calculates t:ho gradient of the CEP-Excluded model. The

pencil and paper results for each example were compared with the results

from GFUNCT.

The first example included one weapon and two installations. The

weapon and installation parameters are presented below. This verifi-

cation example used a graph of CEDF(x) versus x. For 40 equally spaced

DGZ locations, values of CEDF(x) were calculated, The x direction was

along the line connecting the two installations. Table F-I lists the 40

values of x and the corresponding function and gradient values. Figure 9

in Chapter 1V is a plot of this data. A DGZ between the two installa-

tions was selectad (x " 63500), and the gradient was calculated using

two methods. In this example, the gradient had only one element because

the y variable was constant; only the x variable was allowed to vary.

The gradient values for the two calculation methods were compared with

the gradient value from GFUNCr.
A CEDF

•-. first method used a difference equation, S p to approximate

the gradient. The slope of the line segment connecting the CEDF values

for the two DGZs on either side of the selected DGZ was an approximate

gradient value. From Table F-l,

CEDF(x - 63000) - 6257

MEDF(x - 64000) - 10196
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TABLE F-I

The CMDF(x) and the Gradient of the CEDF(x) for
a One Weapon-Two Installation Complex

GRADIENT VEI-FICATION

01) X(2) EC GRADCI) GRkD(2)

54ý)0 0 2Q 00rU. 238'Go 1,6274 0ou .ca
545C0. 2 ý0 O' * 3218. a .6494 003
55,3000 2130'. 3985. 1,353ri 0,0 0 C.
55500. 23 010 4534. o.33a7 * 0. 6O0

56"010. 2.1000 4826. o3564 aaaCQ
56500. 2103'. 4 930o ,0895 0 ,00
570 0,0 21.10, , 495', *2106 0 0
5 79311 2Z. ý:I a 495.:.0 .Q4 Ca)'Tc
SG00.• 209 3'3 495J. .;JOOd 0,.

59Q00n 2'') 1 V. 4915,10 *'.',o 5
51350•0 2'3.1 1 4 9535 •0017 0 ,O'.) :•

6L 500a 2 00 9'. * 4962. e;168 0 oO",'"
61cj0. 2,.,3~~ 0 4974. e.0 513 301
61500. 2) 0 1 C' 5021*. -,1493 a 0013c'
62.'JO rjo 2"O'. 5152. 04064 Uga:'JO
6250Co 2'0 t.; a 5485. l.JO9•01116n
635C100, 21;"100 o 625'. ?• o2J 36 .0
63500. 2,10V a 77?3o 3o'1791 C' 0 0
645• 3, 21i00' 1Ca 104o 5-4652 1 •0',0,
64530o 2.10 0o. 129:. L 4o5543
65.000 21 . c., 14724o 1.9935-
65530. 2 "f 00. * 14931. -,P246
66-3 o. 2 1'.0 _1 266o - I426 .,13 i 5 o :.
6650 00 20G 1) * 19351. -1.3643 -1, 0't, 6
67T0 0 0.o 2 .1 1292g. -13,:078 0 .Oc(-
67SOU ti 2COO 12491.o -6735 e

6i,. Os 2 100" 12231. -. 4157

7150C, 2:3C(" 1263,. -5.24797 : . ,'
6715 0 o 2'" 10 o 51V 67.o -5 437 Q'0 c 0.0

6" .1 e 2 1 1c. 0 11979. We.1325 .0
6.9500. Q'0 1193:. M.70 T of

7C500o 2100 a; 11724o -0.'426 ; V, .1 .1, a
71"10.o 2000f. a 10744. -3.3551 a(
71500.e 2 10,1' * 8380 -4367974 GG
721c00 0c 21 537 .0 -5*63235
72,501. 2~ 8 26 39 -4e "69! 0C
73": 3,tý. 2e 1 ,1 . , 13C 17 -2,2145 .".0 1"
735U 1* 2 . ) • 537% -1., .10 4,
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The difference equation approximation of the gradient at x - 63500 was

ACEDF . 10196 - 6257 . 3.939

hx 1000

The second method was pencil and paper calculations of all the

steps necessary to determine the gradient. Chapter II presented these

steps. Only a summary of the calculations are presented here.

Given: Weapon Yield CEP HOB Pa (x,y) in feet
1 100-kt 0 feet 1000 feet 0.99 (63500,20000)

Target VLrfK Value(v) WR (xx,yy) in feet

1 lIP2 5M00 6194 (60000,20000)
2 15P2 12000 4066 (68000,20000)

• CEDF

Note: In this example, y - x(2) - constant. Hence,--' - -= 0 and

CEDF(A) w CE:DF(x).

From Eq (1),
CEDF(x) = vl*PaZ*Pd(l,l) + v2*Pa 1*Pd(l,2)

HoweVr, vj and Pal are constants, so

CLMF(x) - 4950*Pd(l,l) + 11880.Pd(1,2)

and d CEDF(x) 4950* d Pd(l.1) + 11880* d Pd(l.2)
dIx <x

wdher!1id ) . e._ (xxj -x)

and U su-abs[ + ln /W~ i)
158r
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For overpressure (P-type) targets, Crd - 0.2 and

2n(l- Wd (F-1)

= 0.202045

Let M W xxj - xi (F-2)

BB = 'i+n - x£im (F-3)

r - AA2 + BB2 (F-4)

Fc-, this verification example, BB - 0 for both targets and r - IA4l,

the abeolute difference between the x coordinates of the weapon and

inatallatiVn J.

For target 1: AA - 60000 - 63500 - -3500

r - 3500

u - 1.8548527

d Pd(,11) - -1.8080608*10-5

dx

For target 2: AA - 68000 - 63500 - 4500

r - 4500

u - 0.49780381

d Pd(1,2) - 3.4247393 "40-
dx

Maefore, d CEDF(x) - 4950.0*(-i.8080608*I0"5) + 11880.0*(3.4247393*104)

dx

* 3.97909
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The value of the gradient of the CEDF(x) from GFUNCT for the DGZ

selected (x - 63500) was 3.9791. The gradient results from the dif-

ference equation approximation and the pencil and paper calculations

were compared with the value from GFUNCT. These two comparisons indi-

cated the subprogram GFUNCr was properly calculating the gradient of

the CMF(x).

The sacond gradient verification example included two weapons and

three installations. The gradient of the CEDF(x) had 2m or four

elements. However, only one element was completely checked by pencil

and paper calculations.

Given: Weapon Yield CEP HOB Pa (x,y) in feet

1 100 kt 0 feet 1000 feet 0.99 (61000,21500)
2 100 kt 0 feet 1000 feet 0.99 (62000,17500)

Target Vhfl( Value(v) WR (x,y) in feet

1 12P2 5000 5550 (60000,19500)
2 14P2 8000 4495 (68000,20500)
3 12P2 4000 5550 (63000,23500)

From Eq (1)

"+ v2 *Pa2  (1 - Pa2Pd(,))* (2,)
;aX2 clx2

(1 - Pa 2*Pd(1,2))* 8K•d(2,2)
82

+v3*Pa 2  - Pa*Pd(,3)* (2,3

(1 vd ) ax2  (F-5)
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From the subprogram FUNCT,

Pd(1,l) - 1.000
Pd(1,2) - 0.007
Pd(L,3) - 0.999

Hemet, V*Pa2 - 4950

V2 *Pa 2 " 7920

V3*Pa2 - 3960

and Pa2*Pd(l,l) - 0.99000

Pa2*Pd(i,2) u 0.00693

Pa 2*Pd(lp3) - 0,98901

Eq (F-5) becne,

CEDF( - 49 .0 1RALL-Pd + 8514*Pd2)
Sx 2  xx2

+ 43.5204* dg(2j3)
ax2

where a Pd(2,1) = "2 ( x
ex2  (2 2~

8K " .r2 r 2

g, AA, BB, and r are calculated from Eqs (1-.l) through (F-4).
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For target I: AA = 60000 - 62000 - -2000

BB - 19500 - 1.7500 - 2000

r - 2828.427

SPd(xU) - -3.633135*10-6

ax 2

For target 2: AA - 68000 - 62000 - 6000

BB - 20500 - 17500 - 3000

r - 6708.204

d(22.2,.- 2.426656*10-5
ax 2

For target 3: AA - 63000 - 62000 - 1000

BB - 23500 - 17500 - 6000

r - 6082.763

ZPd(23) - 4.3042.,5*10-5
Sx2

Therefore,
._2 A.n 49.50*(-3.633135*106)

+ 7865. 1144*(2.426656*I0"5)

-5+ 43.5204*(4.304235*10-)

- 0.19254823

Ihe value of the gradient element of the CEDF(x) for x2 frcan GFUNCr

was 0.19255136. This comparison also indicated that the routine GFUNCT

was correctly forming the gradient of the CEDF(x).
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