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ABSTRACT

Strategic nuclear targeting studies generally include more target
installations than there are weapons. Hence, a weapon is not assigned
to an installation, but rather, to a Desired Ground Zero (DGZ). The
objective of this study was to investigate optimal DGZs for multiple
mxlear weapons against installations in a target complex. To accomplish
this, it was necessary to develop the target Complex Expected Damage
Function (CEDF) maximization algorithm. The algorittm locates optimal
DGZs by maximizing the CEDF; the CEDF is a nonlinear fumction of 2m vari-
ablaes, the (xi"Yi) DGZ coordinates for each of the m weapons.

The algorithm uses two CEDF models. and two optimization techniques.
These models use DIA Physical Vulnerability System probability of damege
models. The CEP-Included model includes each weapon's CEP; the simpler
CEP-Excluded model assumes each weapon's CEP equals 0. An analytical
expression for the gradient of the CEP-Excluded model was calculated;
the algorithm maximizes this CEDF using a conjugate gradient with restarts
search tecinique. The algorithm maximizes the CEP-Included CEDF using a
direct search technique, Powell's method of conjugate directions.

This investigation characterized three factors that affect the
optimal DGZ locations for multiple nuclear weapons in a target complex.
The first factor wds gradient symmetry; this symmetry resulted from either
a geographically symmetric target complex or collocated weapons. The
second factor was weapon CEP, Maximization of the two CEDF models
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produced slightly different optimal DGZs; this difference depended on a
weapon's CEP and the CEDF model. The third factor was the initial DGZ
location prior to CEDF maximization. The algcrithm located different
CEDF local maximums depending on the initial DGZ condition. However,
the investigation revealed that the most successful initial DGZ condi-

tion is to use the coordinates of the highest valued installations as
the initial DGZ coordinates.
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AN INVESTIGATION OF OPTIMAL AIMPOINTS
FOR MULTIPLE NUCLEAR WEAPONS AGAINST
INSTALLATIONS IN A TARGET COMPLEX

I. Introduction

' Effective U. S. targeting of an enemy's resources is an important
part of U, S. military air power. One of the fundamental objectives of
U. S. military forces is to sustain deterrence (Ref 8: para 1-6). i
Deterrence is an enemy's state of mind brought about by the existence
of U. S. military power or the enemy's perception of U. S. resolve to
use that power. Strategic nuclear targeting, an assigmment process,
is a key alement of nuclear deterrence. The nuclear weapons planner
must assign a weapon system to a specific target. Targeting consists
of three interacting processes: the target intelligence process, the
threat estimate process, and the operational planning process (Ref 7:2-2).
This study investigates an important phase of the target intelligence
process, nuclear weaponeering, and a weaponeering problem. Lee defines
weaponeering as ''the process that determines the physical vulnerabilities
of targets, the optimum weapon type, the number of weapons, and sometimes
tha best system required to achieve a desired level of damage on a target
or a target system" (Ref 18:122).

Background

Weapons planmers allocate weapons to Desired Ground Zeros (DGZs)

to achjeve damage to installations within a target complex. A target
1
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complex is a geographical area that includes different types and numbers
of target elements or installations. Nuclear detonations within a
complex will cause insignificant damage to installations within all
adjacent complexes (Ref 20:6). A complex may contain one installation
or a few hundred installations. For example, a 50-square-mile Air Force
base may be a target complex. Similarly, the runway, the maintenance
facility, the parked aircraft, and the headquarters command post are
installations of this target complex. However, weapons planners do not
allocate weapons to each installation. Instead, they allocate weapons
to DGZs and pian to damage more than one installation with one weapon.
A DGZ is a point on the surface of the earth at or vertically below the
center of a planned weapon explosion (Ref 7:5-6). I this study, a DGZ
refers to a nuclear weapon detonation at a specific geographical
location. A DGZ may be located directly on an installation; or, if
one weapon will sufficiently damage two or more installations, then the
NGZ may be located between the installations.

Weapons analysts use the concept of a lethal aimpoint region (LAIR)
to locate DGZs within a target complex (Ref 20:10; 21:4; and 25:2-6).
The LAIR is a circular area whose center is the target installation.
It represents a geographical region within which a weapon can detonate
and achieve at least a minimum probability of damage (Pd) to a target.
Pd is the probability that a desired level of damage (severe, moderate,
light) will occur to a target (Ref 7:5-6). '‘The general definitiomns
of the three damage levels are: (1) severe damage =~ a level which
requires essent . ully complete reconstruction or replacement of one or
more critical major elements of the target, plus reconstruction, repair,

or replacement of associated structures or equipment. Severe damage
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precludes utilization of the target for any purpose, (2) moderate
damage ~- a level which requires major repairs to one or more critical
major elements of the target, plus major reconstruction, repair, or
replacement of associated structures or equipment. Moderate damage
precludes effective utilization of the target for its intended purpose,
(3) light damage -- a level which does not significantly impair the
target function, but requires some repalrs to restore the target to
complete usefulness" (Ref 19:1-7).

The radius of the LAIR depends on specific weapon system and target
parameters. The accuracy of the missile or aircraft system that delivers |
the weapon to the DGZ affects the LAIR. Also, the yield uf the nuclear :
weapon affects the LAIR. Yield is a numeric value measured in
kilotons (kt) and is a relative indicator of the explosive energy the i
weapon releases when it detonates. This explosive energy causes damage i
to installations. A nuclear weapon distributes its damage energy in !
several ways through damage mechanisms or weapon effects. For ground

targets, the most prominent mechanism is the blast effect. The primary i
elements of blast are overpressure and dynamic pressure. Overpressure i
creatas a force that crushes an installation; dynamic pressure creates ;
2 force from the resulting high wind velocity (Ref 11:80~82). But
thermal effects, cratering, and impulse are other nuclear weapon effects
that may contribute to target damage. The occurrence and intensity of
these weapon effects vary for different weapon yields.

~ The LAIR also deperds upon target characteristics, specifically,
the vulnerability of the target to blast effects. ‘The Defense Intelligence
Agency (DIA) uses a Physical Vulnerability coding system to quantify a

target's susceptibility to blast damage. Each installation is
3
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characterized hy a three-part Vulnerability Number (VN). The first
part consists of a two-digit integer reflecting the target's relative
hardness in terms of a 20-kt weapon and a specified damage level
(severe, moderate, light). The second part is a letter indicating
whether the target is predominantly sensitive to either overpressure
(L,M,N,0,P) or dymmic; pressure (Q,R,S,T,U). The third part is a

K factor. This factor adjusts the target's relative hardness for weapon

- yields other than 20-kt (Ref 6:34 and 19:1-7).

In this paper, four factors characterize a nuclear weapon -- yield,
accuracy, height of burst, and probability of arrival (Pa). Circular
error probable (CEP) is a numeric value measured in units of length
that represents a weapon's delivery accuracy. A 500-foot CEP indicates
a weapon has a 50% chance of being delivered within 500 feet of the
target. Similarly, height of burst is the weapon's distance above the
grourd when the weapon detonates. Pa is the probability that a delivery
vehicle (bomber, missile) and its weapon arrive at the target and the
weapon detonates as planned. Pa depends upon the delivery vehicle's
pre~launch survivability (PLS), weapon and weapon system reliability (WSR),
and probability to penetrate (PTP). Each of these factors is a
probability (Ref 7:5-7).

The weapons analyst plans to damage installations within a target
complex by assigning weapons to a prioritized list of DGZs. In addition
to Pd and Pa, which are multiplied together to calculate an installation's
Damsge Expectancy (DE), the value of each installation is needed to
develop the prioritized list. The value of an installation is a number

that represents the value of the installation relative to all other

4



installations. Most value cystems carcinally order targets over a
range from the most valued target (highest value number) to the least
valued target (Ref 7:6-19), The total complex expected target value
damage is the sum of each installation's value multiplied by the
installation's cumulative DE.

There is a shortfall in the nuclear weaponeering process. The
prioritized target list generally has more DGZs than there are weapons
available to assign to the DGZs. The weapons analyst must determine
not only the best weapon-DGZ combination to achieve the desired attack
objectives, but also alternative combinations (Ref 7:5-6).

The method that strategic nuclear weapon targeting models use to
address this problem depends on the specific objective of the model.
One objective is to minimize the number of weapons required to achieve
at least a minimum accaptable probability of damage to all installations
in the complex. This method determines the minimum number of weapons
when installation Pds are prespecified. A different objective is to
achieve the maximum total expected target value damage for the complex.
This method determines the Pd to each installation when the number of
weapons available is prespecified.

As an example, suppose a preliminary target analysis indicates five
DGZs are necessary to achieve a minimum acceptable Pd for each instal-
lation in A conplex. However, after allocating weapons to the entire
prioritized DGZ list (all complexes), only four weapons are actually
available to this complex. Should the four weapons be targeted sgainst
the four highest expected target value DGZs or should an attempt be
made to locate four new DGZs, perhaps unrelated to the five potential
DGZs? The former choice will achieve a minimum acceptable Pd on some,

5
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but not all, of the installations in the complex. The installations
that would have been damaged by a weapon allocation to the unassigned
DGZ probably will receive insignificant demage. Conversely, the latter
choice may increase the total expected target value damage to the
complex with either no decrease or a minimal decrease in the mininmum
acceptable Pd for each installation.

According to a 15 September 1983 literature review, AF Studies and
Analysis, Cormand and Control Technical Center (CCIC), and the Single
Integrated Operational Plan (SIOP) Simulation Branch, Joint Strategic
Target Plamning Staff (JSTPS) use different models for DGZ optimization
studies (Ref 4; 13; 20; 22; and 28). Each of these mathematical models
has a limitation. Initially, the algorithms genexate a DGZ list for a
conplex using an unlimited supply of weapons. Then the algorithms
assign weapona sither to the miuiimum number of DGZs required to achieve
an acceptable level of damage on all targets or, when the numbers of

waapons are constrained, to the DGZs that achiave the best total expected

target value damage for the preplamned DGZs. The second situation,
limited weapon supply, is more realistic. However, the development of
new DGZs in the constrained weapons case to maximize total expected
target value damage is not attempted. In some algorithms, DGZs are
relocated, but relocation is sequential. One DGZ is moved until its
contribution to the total expected target value damage is maximized,
then that DGZ is assigned, and a second DGZ is sequentially moved.

Problem Statement
Aftar a weapon allocation for all target complexes is completed,

not all complexes may be allocated enough weapons to achieve an
6




acceptable Pd for all installations.

An algorithm is needed that will optimally locate DGZs in a target
complex for a fixed number of weapons, while maximizing the total
expected target value damage to installations within the complex.

DGZ Modals

Multiweapon Optimizer for Strategic Targets (MOST), Seiler, and
NUCWAVE are mathematical models that Air Force agencies use for stra-
tegic targeting studies (Ref 20; 21; and 25). The models locate DGZs
within a target complex. Each of these models depends on the LAIR
concept and uses either partial enumeration, or linear programming
allocation, or sequential allocation to determine a set of DGZs for a
complex.

MOST determines a DGZ list in two phases. Each phase satisfies an
associated criteria. Thesa phases allow MOST to achieve its objective --
datexmining the fewast number of weapons (DGZs) required to achieve at
least a minimum acceptable Pd for each installation in a complex
(Ref 21). There are several steps in the first phase. Initially,

MOST generates a LAIR for each installation. These LAIRs satisfy the
criteria to achieve a minimum acceptable Pd on all installations. Next,
MOST compiles subsets of DGZs through a partial enumeration process;

each subset contains a list of LAIR intersections. For one subset, all
installations in the complex must be included in at least one intersection.
Then MOST salects the subsat that contains the fewest number of LAIR
intarsections; if several equivalent subsets require the fewest number

of aimpoints, then the subset with the highest total expected target

value damage is salected. As an example, consider the target complex
7
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Figure 1. LAIR Intersections

in Figure 1. The algorithm would select the DGZ subset that contains
the LAIR intersection of installations B, C, and D as one DGZ and the
LAIR intersection of installations A and E as the second DGZ of this
target complex (the shaded regions in Figure 1).

In the second phase, MOST adjusts the final DGZ locations within
the IAIR intersectinn regions using a weighted installation value system.
This process maximizes the total expected target value damage for all
DGZa. If installation D was more valuable than B and C in Figure 1,

“then tha actual DGZ would be moved proportionately closer to instal-

lation D. These adjustments to final DGZs are accomplished sequentially.
First, the DGZ associated with the greatest number of LAIR intersections
would ba maximized (the DGZ associated with the intersection of target
1AIRs B, C, aand D). Then the DGZ associated with the second greatast
number of LAIR intersections, etc. MOST was designed to find the
minimum number of DGZs for Poseidon ra-entry vehicles, irrespective

of weapon supply constraints. If there are not enough weapons te




allocate to the complex, then the least valued DGZs weuld not be
assigned weapons.

The objectives and purpose of the Seiler model are similar to
MOST. Seiler was deasigned to study the assignment of nuclear weapon
missile systems (ICBM and SLBM) to installations within many target
complexes (Ref 20). Seiler also uses two phases to assign weapons to
a prioritized list of DGZs., In the first phase, generation of aim-
points, Seiler creates DGZs using the LAIR concept and a tiered DGZ
system. The primary tier consists of the minimum number of DGZs that
are required to achieve a minimum acceptable Pd to all installations
when only the largest yield weapon is considered. For each subset of
installations contained in a primary tier DGZ, supplementary DGZs are
created for the next largest yield weapon. Supplementary DGZs are
alvays subsets of a primary tier DGZ or a higher-tiered supplementary
DGZ. Each DGZ, supplementary or primary, achieves a minimum acceptable
Pd on a subset of the installations in a target conplex and has an asso-
ciated DGZ value. This value depends on the cumulative total expected
target value damage of the associated installations.

In the second phase, Seiler uses a linear programming (LF) algo-
rithm to determine an optimal (or near optimal) assignment of weapons.
The LP objective is to maximize the total complex expected target value
damage. Seiler accomplishes this assignment using the primary and
supplementary tiered DGZs, missile delivery vehicle range capabilities,
and constraints on the number of primary and supplementary tier weapony
available, If there are not enough weapons available to allocate to
the installations in the complex, then lower value DGZs (and hence

9
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installations) remain untargeted just as in MOST.

NUCWAVE determines the number and the location of DGZs using a
different approach (Ref 25). It is a one-sided nuclear weapons allo-
cation war gaming model. The user can select one of two strategies ==
(1) allocate a iimited number of weapons to DGZs in order to maximize
the total expected targct value damage to all target complexes con-
sidered, or (2) determine the minimum number of DGZs required to achieve
a minimum acceptable Pd to installations within all target complexes.
NUCWAVE generatas DGZs using the IAIR concept, similar to MOST and
Seiler, for allocation strategy 2. Allocation strategy 1 is accomplished
using a sequential algorithm and will be discussed later.

The NUCWAVE algorithm consists of three phases, irrespective of
the allocation strategy chosen., The first phase, potential allocation,
uses an unlimited supply of weapons to maximize the damege attained by |
each weapon until a sufficient number of potential DGZs are located to
satisfy the strategy objective. In the second phase, an LP weapon
gelection program uses these potential DGZs and weapon supply con-
straints to select the number and the type of weapons to be assigned
to each complex. In the final phase, real allocation, the specific
nunber and types of weapons are '"'optimally allocated" against the instal-
lations in each complex (Ref 25:2-8)., If allocation strategy 2 has been
selected and the weapon selection program allocated fewer than the
required number of weapons to a complex, then the lower valued DGZs and
their associated installations would not be targeted. No relocation of
the DGZs is attempted with strategy 2.

When allocation strategy 1, maximize total expected target value

10




damage, is selected, NUCWAVE determines DGZs sequentially in both the
potential and real allocation phases. NUCWAVE starts by locating the
first DGZ at the highest-valued installation in the complex. The algo-
rithm then moves the DGZ te a location that maximizes the total complex
expected target value damage. The algorithm may move the DGZ closer to
several installations, thus increasing the Pd and expected target value
damage for these installations. Similarly, the algorithm may move the
DGZ farther away from other installations, thus decreasing the Pd and
expected target value damage for these installations. When the optimal
location is determined, two steps occur, First, a weapon-DGZ location,
having been determined, is stored. Next, the surviving value of all
installations is calculated by multiplying the previous value of the
installation by the Pd of the installation from the current weapon-DGZ
combination. NUCWAVE then selects the installation with highest sur-
viving value and the entira process is repeated. DGZs are sequentially
determined in this manner until the specified stopping condition is
reached. In the potential allocation phase, the stopping condition is
that a user-specified percent of the total expected target value damage
has been achieved; in the real phase, the condition is no more remaining
weapons ,

Aftar a weapon allocation is made for the entire target list, only
a finite nunber of weapons may be assigned to a target complex. Only
NUCWAVE attempts to locate new DGZs, but it uses a sequential optimi-
zation algorithm. When less than the desired number of weapons are
allocated to a target complex, a simultaneous optimal solution speci-
fying the location of the final DGZs should exist. In this study,

11
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optimal means the best lecation of DGZs su:h that the total complex
expected target value damage is maximized.

Objectives

The primary objective of this study is to investigate the optimal
DGZ locations within a target complex. In order to accomplish this,
it is necessary to develop an algorithm. This algorithm will opti-
mally locate tha DGZs for fixed numbers of weapons in a target complex
by maximizing tha expected target value damage to all installations.
The algorithm wiil not be restricted to one type of weapon; that is,
different weapons may be included in the fixed number of weapons.

Also, it will be necessary to determine the sensitivity of the
algorithm to two factors -- first, the mathematical technique used to
locate the optimal DGZs; second, the initial starting conditions (lati-
tude and longitude coordinates) for the DGZs.

The algorithm will consist of two elements. The first element is
a mathematical model of the total complex expected target value damage.
The secord element is an optimization technique to determine the maximum
total complex expected value damage and to locate the corresporxing
optimal DGZs. The following steps are an outline of the algorithm:

1. Specify target installation paramsters. These include
installation coordinates, VN numbers, and values.

2. Specify weapon parameters. These include yield, quantity,

CEP, Pa, and haight of burst.

3. Specify either the mathematical form or an acceptable approx-

imation of the probability of damage function for an installation,

4, Determine the mathematical form of the Installation Expected

12
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Damage Function (IEDF). This function represents the total
axpected target value damage to an installation from all
weapons,
S. Specify the form of the Complex Expected Damage Function (CEDF).
This function is a summation of all of the IEDFs.
6. Select a nonlinear optimization technique to maximize the CEDF
" and to locate the final coordinates of the DGZs.

Scope and Assumptions ‘

This study will develop an algorithm subject to certain restrictions “
that optimally locates DGZs in a target complex. Secondary damage will 1
be assumed within the target complex; however, secondary damage from (
weapons detonated in adjacent complexes will not ba coneidered. Also,
f the algorithm will not consider target avoidance areas.
' Only military/industrial installations that can be modeled as point
targets will be considered. Also, since blast is the primary damage
mechanism for grourd targets, other nuclear wespon effects will not be
considered. Each installation's susceptibility to overpressura and to
dynamic pressure will be specified with VN numbers. Also, the mathe-
matical model of the probability of damage function daveloped by the
Defense Intelligence Agency (DIA) will be used to specify the instal-
lation expected damage function (Ref 6).
The algorithm will consider weapon system delivery niethods and

accuracy sinca they will affect the expected target value damage.
Delivery methods will be characterized by a specified Pa for each weapon.

However, feasible delivery constraints will not be considered, for
13
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example, Multiple Independent Reentry Vehicle (MIRV) footprinting and a
weapon delivery system's range capability. A circular normal distri-
bution will be assumed for weapon system accuracy, and a CEP will be
specified for each weapon. Pa and CEP are a function of range for some
weapons, but in this study they are prespecified numbers.

Different optimization techniques and initial DGZ conditions will
be evaluated. These evaluations will characterize the properties, capa-
‘ bilities, and any limitations of the algorithm.

Overview
This paper reports the mathods and findings of a study that ioves-

tigated the location of optimal aimpoints for multiple nuclear weapons
against installations in a target complex. A CEDF maximization algorithm
was developed to optimally locate DGZs for these weapons by maximizing
the Complex Expected Damage Function (CEDF). The algorithm consists of !
two elemants -- a mathematical model of the CEDF and an optimization
technique. Chapter II presants the mathematical formulation of two

CEDF models and the gradient for one of these models. Chapter III pre-
sents an overview »f numerical search techniques; it also discusses the
two techniques that are used to maximize the two CEDF models. Chapter IV
contains the computerization of the algorithm and the verification and
validation processes. Chapter V discusses the algorithm's convergence
criteria, and specific properties of symmetric target complexes, and
symmetric CEDF gradient elements. Chapter VI is an analysis of optimal
DGZs for three, four, and seven installation target complexes. It also
discusses and summarizes the three conclusions of this study. Finally,

Chapter VII presents concluding remarks and recommendations.
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II. Mathematical Formulation of the Complex
Expected Damage Function and Gradient

The algorithm determines the optimal DGZ locations within a target
complex by maximizing the Complex Expected Damage Function (CEDF).
Initially, the CEDF is developed from prespecified weapon and instal-
lation parameters; then the CEDF is maximized with an unconstrained,
nonlinear optimization technique. One replication of the algorithm
determines the optimal DGZ locations in a finite number of iterative
gteps. Each iterative step finds improved DGZ locations and an asso-
clated larger CEDF value as compared to the previous locations and CEDF
value. The algorithm iterates until no significant increase in the CEDF
is possible. This chapter explains the mathematical formulation of the
CEDF and its gradient. Chapter III presents the unconstrained, non-
linear optimization techniques used to maximize the CEDF,

Conceptual Model
The CEDF is a function of weapon and installation parameters and

the coordinates of the DGZs, The conceptual model of the CEDF is shown
in Figure 2. The i subscript of either a variable or a parameter refers
to one of the m weapons; the j subscript refers to one of the n instal-
lations in the target complex. ALl parameters are constants (either
prespecified or calculated values) except the (X,,Y;) DGZ coordinates
for each of the m weapons. The basic element of the the CEDF is

the Pdi,j «= the probability of achieving a specified level of damage

to installation § from weapon i. Similarly, the expected damage to

installation j from weapon i is DE, j = the product of Pd, [ and
’ ’
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for each
installation j, j = 1,...,n

installation j prespecified

or calculated parameters

» ! |
- i

l mwn i’ i-l’ono,m N .
weapon i prespecified ‘
or calculated parameters
, ;
Bdy 5 |
Y
weapon i Pa
A
- %*
DE:L, j Pdi, j Pai
R |
DE; = 1 - TT (1 - DE, ,) 4
3 1]
i=1 ]
4
installation value vj ‘
|
IEDF, = * DE !
IR |
, |

Figure 2. Conceptual Model of the CEDF ‘
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the probability of arrival for weapon i, Pai. The cumulative expected
damage to installation j from all m weapons is DEJ. This formulation
for determining the cumulative damage to an installation from multiple
bursts is similar to the formulation used in SIDAC and NUCWAVE

(Ref 19:A~4 and 25:A-2). For each installation, the Installation
Expected Damage Function, IEDF, is the product of its value vj and DEj'
The CEDF is an unconstrained, nonlinear function; it is the summation
of n IEDFs. The function is nonlinear because Pdi, f is a nonlinear
function. Again, all CEDF parameters are constants except the (Xi’Yi)
DGZ coordinates for each of the m weapons.

In order to determine the CEDF, the algorithm requires scenario
dependent inputs, installation and weapon parameters. The minimum
necessary installation parameters include:

1. The number of installations in the target complex - n

2. The coordinates of each installation - (xj,y j)

3. A VNIX code for each installation, indicating the installation's

susceptibility to blast damage

4. A value from a relative installation value system - Vj
The minimum necessary weapon parameters include:

l. The number of weapons available - m

2. The height of burst for each weapon - HOB;

3. The yleld in kilotons for each weapon = Y,

4, The CEP for each weapon - CEP,

5. The probability of arrival for each weapon - Pe\i

6. The initial DGZ locations prior to optimization - (Xi’Yi)

The assigmment of specific numeric values to these parameters was

not. a critical element of the study. Consequently, several hypothetical
17

. B P S G s B S ks o S s Aoy | et s ot S - am e e o et @ i # = W e M WM A e et w s cm lewm s m . m . m oa om e m =



target complexes were nused. These complexes are described in Chapter IV.

Two mathematical forms of the CEDF are used; hence, there are two
parallel algorithms, one for each form of the CEDF. The first CEDF is
the CEP-Excluded version; the second CEDF is the CEP-Included version. ‘
These two versions are explained in the next section. The only differ-
ence betwaen the two CEDFs is their respective forms of the brobability
of damage function. The Defense Intelligence Agency (DIA) developed
these Pd models to provide analytical approximations to actual blast
damage data. The CEP-Excluded CEDF uses a closed form analytical
expression of an installation's Pd function that is independent of
weapon delivery system accuracy, that is, weapon CEP = 0, The CEP-
Included CEDF uses a more complicated analytical expression of an
installation's Pd function that includes weapon CEP.

The two CEDF forms are used for three reasons. First, a closed
form analytical expression for the gradient of the CEP-Included CEDF
expression was not available; hence, this CEDF could only be maximized
with an optimization technique that used function values. However,
since gradient optimization techniques are generally more efficient

than funciion value techniques (Ref 2:152; 5:321; and 10:286), a second !
form of the CEDF is desired. Therefore, an analytical expression for ;
the gradient of the CEP-Excluded CEDF is calculated. This CEDF is |
maximizod using gradient optimization techniques. Chapter III explains
different optimization schemes and the optimization techniques used to
maximize the two CEDFs. The second reason for using two CEDFs is
verification. The results of the algorithm are compared to insure |
that they provide the same DGZ locations and complex expected damage ‘
value. The last reason for using two CEDFs is to investigate the

18
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effect that the agsumption of CEP = 0 has on the location of the
optimal aimpoints.

Probability of Damage Models

The CEDF is an unconstrained, nonlinear function of 2m variables =

the (xi,Yi) DGZ coordinates for each of the m weapons.

et meed i oo, ] o
j=1 j=1 i=]

The basic element of the CEDF is Pdi, j-° the probability of
achieving a specified level of damage to installation j from weapon i.
Pdi, 3 is a function of two independent variables, the (xi’Yi) coordi-
nates of weapon i. Two forms of the Pdi’ j function used in this study
ara part of the DIA Physcial Vulnerability (PV) System. They are not
independent formulations. These formulations are described in
Mathematical Background and Programming Aids for the Physical Vulner-
ability System for Nuclear Weapons (Ref 6). Therefore, only a useable,
but limited, description will be presented here.

The Pdi,j depends on the known distance s between DGZ, and

i
installation j. The coordinates of installation j are (xj,y j)' The

geomatry of the installation-weapon interaction is shown in Figure 3.
The algorithm uses a flat earth approximation to calculate this distance,
that is,

1/2
)2 } 2)

s = [(Xi - xj)2 + (Y - Y
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Actual Impact
o

A

- Installation j
<k

nGZy

Figure 3. Geometry of the installation-weapon interaction (Ref 6:20).

The 0‘1"‘1) and (xj,yj) coordinates are measured in feet from a common
origin. Comparatively, the distance r is the distance between instal-
lation j and the actual weapon impact point. When CEP % 0 , the
impact point and DGzi may not be the same point, and s will not equal r.

CEP-Excluded Model. If the CEP of the weapon delivery system can
be assumed to equal O, that is, the actual weapon impact point is the
DGZi, then the distance r from installation j to the impact point is
known. The distance r can be calculated from the (xi’Yi) DGZ coordinates,
the (xj'yj) installation coordinates, and Eq (2). The distance damage
function, P d(r), is the DIA analytical approximation for the probability
of damage function when weapon CEP = 0. It is based upon actual blast
damage data. Py(r) is the complement of the cumulative log normal
distribution function. For this CEDF version, CEP-Excluded, the proba-
bility of damage function, Pdi, It is the distance damage function, P d(1:).
However, it will be referred as the distance damage function Py(r) to
parallel the DIA development. The shape of a Pd(r) function is shown

20



Figure 4, A probability of damage function Pd(r)

in Figure 4. The independent variable is the distance r between the
installation and the impact point.

The diastance damage function is a nonlinear expression in integral
form; it is specified by the location and dispersion parameters, = and?3 .

z(x) 2
Py(r) = ]717*_ Se M (3)
z(z) = -;-.ln (-:—) (4)

The parameter t is a dumy variable of integration for the normal proba-
bility distribution. '‘The parameter ot , which is the median of the log
notmal density function, is the distanca from ground zero at which there
is a 50% chance of sachieving a specified level of damege. The parameter ¢
is the standard deviation of In(r)" (Ref 6:6,7). These parameters depend
on the weapon radius (WR) and distance damage sigma (oy). If a weapon

is datonated within a uniform distribution of targets, then the WR is
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the radius of & circle centered at the weapon impact point. The circle
contains as many targets undamaged to a specified level inside the
circle as there are targets damaged to a specified level outside the
circle. "o, is a weasure of the variance of the density function. A
small o, indicates a relatively rapid fall off of the damage function;
a large g, indicates a more gradual fall off" (Ref 6:1l).

Prior to 1 September 1972, the analytical approximation of actual
blast damage data was the circular coverage function with parameters WR
and ;. However, before that date,DIA decided that the distance damage
function with parametursx and B provided a better fit to actual blast
damage data. Since previously measured and calculated target vulner-
ability data depended on WR and ¢, , DIA developed mathematical trans-
formations to determine « and p from WR and g .

A= J-ln(l -5;2)

o= WRe"t"2

With these transformations, the distance damage function could specify
the Pd for targets characterized by the Physical Vulnerability (PV)
coding system.

Consequently, the probability of damage to installation j from
weapon i, Pdi,j’ can be calculated using Eqs (3) and (4), after o ,
WR, and r have beaen determined. WR and g, are parameters that are
calculated using prespecified user values. WR depends on the weapon's
yleld and HOB and the installation's VNIK code. Hence, there is a
unique WR for each weapon i-installation j interaction -- WR

22
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Likewise, q;

there s a unique o; and § for each installation -- Uy and 8. .

and B depend only on the installation's VNIK code. Hence,

Appendix A presents the calculation of ¢; and WR. The independent
variable r is actually a function of two independent variables, the

(X{,Y;) DGZ coordinates, and two constants, the ( ) installation

"33
coordinates.

The P d(r:) cannot be expressed in closed form in terms of elementary
functions; however, it can be calculated by use of the error
function, erf(u) (Ref 6:21 and 1:298). The erf(u) specifies the proba-
bility that a standard normal random variable observation is within * u

of the mean value,

> for z(r) 30

£

Pd(r) - Pdi,j(xi’Yi) = 0,5 + 0,5 erf (

= 0,5 = 0,5 erf( Jz(_r ) for z(r) < 0 (5)
whar - ’ - -l In b
® 2(x) = 2(Xy,Yy) 8; (r(xi,yi))

el o

A polynomial function of the indeperdent variable u can approximate erf(u)
(Ref 14:185).

In sumw:ry, if the CEP of the weapon can be assumed to equal O,
then the probebility of damage Pdi’ f to installation j from weapon i
can be calculated using Eqs (5) and (6). Prespecified target and weapon
parameters are necessary to calculate WRi, It 3 T and r(Xi,Yi).
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JiP-Included Mode: £ the CEP of the weapon delivery system

cammot xe assumed to equal O, that is, the actual impact point of the
weapon is unknown, then the disisuce r from the impact point to
installation j is 'mknown. The geomerry of the installation-weapon
interaction is shown in Figure 3. The distance s from DGZ; to instal-
lation j can be calculated from the (xi,Yi) DGZ coordinates, the
(xj,yj) installation coordinates, and Eq (2). The unknown distance ©
from DGZ, to the actual impact point is a function of s and the inde-
perdent variables r and € .

The DIA model determines the probability of damage to installation j
in the following way. First, for each possible impact point, the proba-
bility of damage is multiplied by the probability that the weapon arrives
and detonates at that point (Ref 6:19). The sum of these products for
all possible impact points specifies the probability of achieving the
desired level of damage to installation j from weapon i, Pdi’ j* This

sumation is a multiple integral over the area that contains all possible

impact points. . 9
o oo Lo ‘?—2%,‘%)‘
Pdi,j - SgPd(r) E]-:(‘-:y-i e rdrdée (7)
co
where Pd(r) = digtance damage function, Eq (3)

o? = CEP/1.1774
- -1/2
Q(r,k)) -]_1:2 +8% <218 cosG'J

For this CEDF model, Pdi’ 3 and Pd(r) are not the same function. Pdi,j

2

r, 0

1 "e',QJ'Z)"

has two distinct, yet dependent, terms: Pd(r) and ey € 207 .
VAN
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(1) }.“a('::) specifies the probability of damage to an installation

from an impact point, and

2
@) —ipe 22
2nd’
the weapon arriving and detonating at the DGZ.

specifies the circular nuimal probability of

A closed form solution to Eq (7) does not exist; however, an
analytical approximation does (Ref 6:23).

b
: Pd, = N\f(r)dr
; 1,3 g (®)

a
The limits of integration, a and b, are selected such that when r < a
or r>b, f(r) =0. They are functions of s, CEP, WR, and .
Appendix B presents the development of f(r), the determination of
a and b, and the calculation of Pdi,j' The function £(r) has two dif-
ferant forms. Each form depends on the distance s betwaen DGZ:L and
installation j, the distance r, and the weapon's CEP,

This integral can be evaluated using Gauss-Lagendra quadrature,
& numerical integration technique. This technique approximates a definite
integral as 4 finite series, Each term in the series is a weighted

function value.

10

P, = BB S ) (8)
1,] 2 = k k
vhere ) = (-b—-%-f-) 2z, + (5--%'-2) (9

Gauss-Legendre quadrature differs from the more common trapezoidal

numerical integration., In Gauss-Legendre, the distances between
25
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TABLE I

Steps to Calculate Pdi, i

Given Parameters
Step or vilues Results
1 VNTK %
2 3 b
3 WNIX, Yield,, hob; WRi, ;
4 Xg0 Yy X4 ¥y r(xi’Yi)’ s(Xi,Yi)
5 @j, WRi,j’ r Pdi,j (CEP-Excluded)
5 T4 WRi,j' 8, C:E!Pi a, b
6 9_1' WR1’J, r, s, a, b, CEP, Pdi,j (CEP-Included)

the r, values along the abscissa are not equal. The values of the quadra-
ture coofficienés, ww, , and the basa points, 22),, can be determinaed from
the N*!! Legendre polynomial, Gauss- Legendre quadrature is discussed in
more detail in Apperdix C.

In sumary, if the CEP of the weapon cannot be assumed to equal O,
then tha probability of damage to installation j from weapon i, Pdi’ j?
won be calculated using Eqs (8) and (9). Specific target and weapon
yaweneters are necessary to calculate a, b, and f(x.'k).

Zach Pdi’ ] 1s an integral part of a Complex Fxpected Damage
Functiou (CFDF). FEqs (5) and (8) are used to calculate Pdi, j for the
QP~Exclud« * aud for the CEP-Included CEDF models. Table I lists a

su.mcy of rhe steps necessary to calculate Pdi j*
’
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‘The CEDF Model

The CEDF is an unconstrained, nonlinear functlon of the (xi’Yi) DGZ
coordinates for each of tﬁe m weapons.

n

-

wF . > vy [ TT(I- Ly Pey) | (1)
3o

The i subscript refers to one of the m weapons; the j subscript refers

to one of the n installations. The 2m independent variables of the CEDF are

TR TRV SURTIVR ST

The Zm elements of the DGZ coordinate vector, X, are these 2m variables
in a ravised order.

- (xlv xzp ver) xmv Ylv Yzo veey Ym)

The (xi,yi) DGZ coordinates of weapon 1 are (x Similarly, the 2n

1 %44y
paramaters specifying the (x,,y,) coordinates of the n installations are
3"

(xlo Y10 X9y Y1 veer X Yn>

The 2n elements of the installation coordinate vector, xx, ara these 2n

paramaters in a ravised order.

§§ - (xl’ xz, cey xn’ Y11 YZr seey yn)
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DEl,l = Pdl,l * Pal DE1,3 = Pdl,3 %* Pal

DE, =1- (1- DEl’l)(l - DEz,l) DE; =1 - (1 - DE1’3)(1 - DE2’3)

“\

2 ) PR -~ ’:"'
(xxq +XX, ) A\ @' g .
1°'774 \\ ) /////, IEDF3 vq ¥ DE3

’

(Xl,x3) Pal W \ﬂJ (xz,X4> P&

@ (xl ,X3 )
I
I
‘l
(xxz,xxs) A
DEy = Bdy o * Poy
- VAN
DE2,2 Pd2,2 ¥* P‘z o installation
-] (]~ - DGZ
DE, = 1 (1 DE1,2)<1 DEZ’Z)
IEDF2 -V, * DE,
y Figue 5. A rogroaentativa CEDF with three
. installations and two weapons.

The (xj,yj) coordinates of installation j are (xx, ,xxj+n)

Like the Pdi,j’ the damage expectancy for installation j from weapon i
is a function of two independent variables DEi,j(xi’xi+m)' Similarly,
like the CEDF, the cumulative damage expectancy for installation j from
all weapons is a function of 2m independent variables DEj(5).

A pictorial description of a representative CEDF is shown in
Figure 5. 'The target complex consists of three installations and two
weapons. FEach installation is characterized by a value =~ Vj’ a WIK
code, and (xxj,xxj+3) coordinates. Lach weapon is characterized
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by a yield -- Y, height of hurst -- HOBi, probability of arrival -- Pai,
and (xi,xi+2). In order to determine all of the DEi,js’ six Pdi,js are
calculated according to the steps in Table I, one for each combination
of i{=1,2 and j =1, 2, 3. For the weapon coordinates (xi,xi+2),
i=1,2

™ %
CEDF(x) = v, * DE, + v, * DE, + v4 * DE, (1)

However, if the weapon coordinates are changed to (xi',xi+2'),
i=1, 2, then DEH may change for each of the j installations. That is,
DEJ(5) may not equal DEj(gf) for all j. If this is true, then the CEDF(x')
may be either greater than, equal, or less than CEDF(x).

In orxder to maximize the CEDF, it is necessary to locate the x*

DGZ coordinates such that
CEDF(x*) > CEDF(x) for all x

One of the optimization techniques used to maximize the CEDF(x) and to
locate the optimal x* DGZ coordinates required the gradient of the CEDF(x).

Gradient of the CEP-Excluded Model
The Complex Expected Damage Function (CEDF) is a nonlinear func-

tion of 2m variables =- the (xi,xi+m) DGZ coordinates of the m weapons.

n m
CEDF(’)‘(') - jgl Vj'k[l - ;I:\]t 1- Pdi,j(xi’xi-fm) ¥ Pai) ] (1)

All parameters of the CEDF(x) are constants except the probability of
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achieving a specified level of damage to installation j from wespon i,
Pdi’ j° Each Pdi, 3 is a function of two independent variables, the

(X1 ,Xj4p) DGZ coordinates of weapon i. Therefore, to calculate the
gradient of the CEDF, the Pdi, j must be differentiable with respect to !
the two independent variables. A closed form analytical expression for
the gradient of the CEP-Included Pdi’ It Eq (7), was not available.

This was one of the reasons for formulating the second version of the
CEDF, the CEP-Excluded model. This section presents the calculation of ;
the gradient of the CEP-Excluded CEDF.

The gradient of the CEDF(x) is a vector of 2m element..

. grad(CeDr) = QCEDEQY) (QCEDE  QCEDF ic@i) (10)
a; axl r)x2 axzm

where  CEDF(x) = vl*DEl(.’f) + Vz*DEZ(.’-‘) + ...+ Vn*DEn(f’f.)

and DEj(gS) “«1l-(1- PalPdl’J.)(l - Padez’j) ess (L - Pa P4 s)

Since vj is a constant, the kth element of grad(CEDF) is of the form

DE < DE DE

aCEDF- :Ls'«'a-———.L -0-v23'¢a a + see t V¥ n 1
RN 9% Xk noox |
|
1
n N
ADE. {
eSS (11) |

=1 J o Xy
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Each of the n terms of Eq (11) is of the form

.

oE; "_1*!:8(1 - PagPdy )

vj*axk axk ooo(l - PaiPdi,j)* --e(l - Padem’j)

AL - PayPd, )

+o+ (1l - PalPdl,j)* 3T (1 - Padem,j)
(1-PaPd ;)]
+o+ (1 - PalPdl,j)*...(l - PaiPdi’j)*,,, 9 ax:n %, 37 |

However, since each Pdi’ 3 is a function of only two variables (xixi +m)’

for all i, all 2l - IELPd‘i,j) terms equal O except for k =i and 1 + m,
O X

Hence, for k=i and i + m

vj*é-x—kl .- vl - palpdl,j)*...————-——-‘-j—*axk coo(L - Pagpd o)
= vyK1 - PayPd) )¥... Pay -é-;t-xi *oou(L = Paypdy ) (12)
Now define n
factor(j) = vy ﬁ (1 - Pa;Pd, j)
| i=1 ’
| and rewrite Eq (12) as
DE factor(j) Pd, .
vj*gxki "0 —agéi;;ai’j) * Pay * %?Iijl for k=iand i +m (13)
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The gradient of the CEDF is a vector of 2m elements. Eq (11) is the form
of the Kt element, Similarly, each element is a summation of n terms.

Eq (13) is the form of each of these n terms. Analytical expressions

Pd
of%—,&‘i for k=4iand i +m are needed to completely specify the

gradient of the CEDF(x). The CEP-Excluded version of the Pcli j is
H
Pdi,j(xi’xi"'m) = 0,5+ 0.5 erf (‘H‘) forz >0 (5)
= 0.5 = 0.5 erf (Jll-) for z < 0
rf' ,
where "
() = b n bl ¥l &, ) - 1) (©)
z(r) = In - In(WR; .e - In(r 6
L7 £ B3 b
M Wi
First, Qa__xi"'l will be calculated for z » 0, that is, for r ¢ WRi,je é' .
i
lzl

let u= J—Z- and use the chain rule

apdi,j - 0.5 aerffu)(au ) (14)
3 Xy ou axi
where
du . _L 3z| 15
ox; 2 9% 13




2 271/2
Now since r = I:(xi - xxj) + (xi+m - xxj+n) J / (2)

and z(r) = z(xi,xi_m) from Eq (6), and sgain using the chain rule

olz| _ 9lz]or

16
axi ar Bxi ( )
where
9lz] . _L /-1) .. 1
or ej \ r @jr
8xi r
hence Qu | _L/(-l <xi ~ 18
dx, Iz_(ﬁjx) r ) (18)

The derivative of erf(u) from the Handbook of Mathematical Functions with

Formulas, Graphs, and Mathematical Tables (Ref 1:298,801) is

Qerf(u) . 2 il
3u iy e (19)

dx € 2 gij r
- ]F—Tuﬁr (xxj - xi) (2(/)
T
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. WR
- 1 1 i’j - {3 21
where u ﬁrejln(r)\oj (21)
A similar mathematical development was used to calculate
2
apdi,j oY
- - 22
Briy | G g ) ®
- 8;2
For 2z <0, that is ©> W, je V', then |
|
ani'I = =05 3erf$u2 aL (23> i
0% du 9%y

The only difference between this development and the previous development
for z 30 is the sign of %L‘-L . 'This partial derivative is positive
‘ r

-0y
because r>WRi,je $ and |[z] is

2
2| = —- [ln(r) - 1n(iR, je'@a ) ]

A
hance, ‘
Qz| ._1 |
oy @jr (24) |

Combining Eqs (15), (16), (17), and (24) yields

:
-
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Now Eqs (19), (23), and (25) specify

oMy . .1 2 A(l)("i‘*"j} 5
P Xy 2 Jr J-f ejr - for z < 0O i
|
e'“2
- W (xxj il Xi) (26)

Pd
Hence, comparing Eqs (20) and (26), @_5_13,1_ is the same for all z.
X
i

Pd
A similar development indicates ‘g;—i-'-l is also the same for all z.
i+m

In sumary, the gradient of the CEP-Excluded CEDF(x) is a vector
of 2m elements. The kth element of the gradient is

n

ACEDF . 5 208
d Xy 32-1 & 3%y ()

where

DE
v*a__i-_g“_ct_o.”.ﬁi)__.*pa *m for k= jandi+m (13)
b ox Q-rPap ) 1 2y
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Also, for k=i

2
al“diLJl i} ey i
e e
and for k=i +m
Q™ -
1] « &
TR
vhere uw J2l o 1|2 1n(WR1-j> 8 '
2 |2 6.1 r 3
and re= [(xi - mcj)2 + (x“m - Ky,
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ITI. Optimization of the Complex
Expected Damage Function

Two approaches are available to maximize a function of n variables--
analytical and numerical search. An analytical approach is preferred if
the roots of the n equations defining the critical points of the function
are easily determined and solved. These equations are the first partial
derivatives of the functiun set equal to 0. However, if these analytical
exprassions are not easily determined or solved, then numerical search
techniques are necessary to determine the maximum of the function.
Numerical search techniques require an organized, efficient exploration
of the solution space.

Numerical search techniques were used to maximize the Complex Expected
Damage Function (CEDF) because of the complexity of the CEDF. This chapter
presents a general methodology and overview of numerical search techniques
that are used to maximize unconstrained functions. Also, this chapter
discusses the two ralated techiniques thai were used to maximize the two
versions of the CEDF == the CEP=-Included and the CEP~Excluded models.

The primary difference between the two CEDF models is that there was a
closed form expression for the gradient of the CEP Excluded model.
Therefors, gradient search techniques could be used to maximize the CEP
Excluded model. The CEP-Included model was maxinized using Powell's
c;mjuguto directions method (Ref 23). This method maximizes a function
using only function valuas. The CEP-Excluded model wis maximized using
a conjugats gradient with restarts method (Ref 24).
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Optimization

Optimization is a process that attains the best or most effective
results for a problem, while satisfying any given conditions or con-
straints. Optimization can be either maximization or minimization. One
part of this study was to maximize the CEDF(x), a nonlinear function of
2m independent variables -- the (x;,x,, ) DGZ coordinates of each weapon.
The CEDF(x) is an unconstrained function. It can be maximized by mini-
mizging =-CEDF(x). That is, the point ;5* in 2m space, such that CEDF{x)
is & maximum, is the same point where -CEDF(z) is a minimum.

In this chapter, direct references to maximizing the CEDF are not
made. Instead, all references concerning optimization reference mini-
mizing an unconstrained, nonlinear function of n variables, f(x); x is
an n element vector in n-dimensional space, R". The gradient of f£(x)
is TV £(5); the Hessian matrix of £(x) is H(x). A base point in R"
is 51; the optimal point in R" is _5*.

There is an important difference batween a strict local minimum and
the global minimm of £(x). The following two definitions are extracted
from Avriel (Ref 3:10), A real valued function £(x) with domain D in
A" has a strict local minimum at. 35*, if there exists a number § such
that

f(gsf') < £(x) | for all x€ D (27)

such that | X - 5*| ¢ & . This definition states that 35* is a local

minimm over a region bourded by a number § . If Eq {27) holds for all
Xx € D, that is, x not contained within a bounded ragion, then 35*1.s the

global minimum. Optimization techniques locate the global minimum only
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under special conditions., That is, the function is known to be unimodal.
Generally, if a function is not known to contain a global minimum, an
accepted procedure is to search D from a number of initial, separated
base points to determine all local minimums. Beveridge and Schechter
state "the only method of determining the global optimum is the direct
comparison of the function values at various local optima" (Ref 5:357).

Numarical Search Techniquas

The numerical search for tha minimum value of an unconstrained
function £(x) with domain D in R" is a sequentiul, iterative process.
It includes the successiva calculation of new objective function values,
f('gsi), and the comparison of these values with the best value that has
bean obtained so far. It is necaessary to datermine 5* by

£(x*) > £(x3) > v > £(x1) > L > (X for all xeD

While generating the sequence of 351 y each unconstrained numerical
search technique must consider three important elements -~ the search
direction, the distance to move, and the stopping criteria. From a

base point 51

, A search tecunique must salect (1) a direction of
movenant d and (2) a distance to move t. These values spacify the

next point in kK®

~

1f f(5i+l) < f(’:si), then 5i+1 is a batter estimate of the local minimum
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than )‘gi. The stopping criteria fo. a ccarch tecunique depends upon the

' 1
values of either 5i*l,f(ggi+l), or Vf(;g“"‘). Th * is, if either
£ - gl €8 o (£ - eeh| €8y or |G €8y,

then the technique stops iterating, and gc,* - ‘xf *' is the optimal
point in R" such that £(x}*!) is a minimm. Mmerical search techniques
use different methcds to determine d and t.

There are three categories of numerical search :echniques (Ref 2:101).
Ths first category includes direct search techniques. T.ase techniques
use only functional values to locate 51"'1 from 351. The second category
includes gradient or first-order search techniques. These techniques
use f(ggi) and Vf(ggi) to determine 35‘1"'1. Generally, gradient methods
ara nore afficient and preferved to direct techniques (Ref 2:152;
5:t321; and 10:386). Howavaer, when the gradient is not easily obtained,
direct searches are more approprclate, 'The last category includes
sacorki-order techniques. These techniques use f(ggi), Vf(zcli), and
the Haysian, H(;c‘i), to locate 35‘“]'. Detalled explanations of the fol-
lowing techriques can be found in moat optimization books (Ref Z; 3;

5; and 10). Hence, only a brief explanation ie presented hare.

If an unconstrained objective function £(x) is not easily differ-
antiated, than a direct search technique is necessary to minimize £(x).
These techniques use two stages, an exploratory and a pattern, to move
from ,zsi to ,Lt,i+l. Two older techniques are the Hncke~Jeeves pattern
search and Rosenbrock's method of rotating directions. In the explor-
atory stages, Hooke-Jeeves only searches slong the axial coordinate
directions; Rosenbrock searches along a set of mutually ovthogonal
directions that are determined from ggi and ,5“1. Both of thasa techniques
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use a fixed step length when exploring aroundlgé. The exploratory

function evaluations specify the direction d of the pattern move. A
more afficient technique is Powell's method of conjugate directions
(Ref 23). In the exploratory stage , Powell's method searches along
conjugate directions that are determined from ic‘i and n -1 of the
previous n exploratory search directions, Conjugate directions are a
generalization of orthogonal directions. Also, Powell's method does
not use a fixed step length. Rather, this method conducts a one-
dimensional search in each of the conjugate directions from 51. A
more complete description of conjugate directions arx! Powell's method
of conjugate directions is prasented later in this chapter.

Gredient search techniques are separated into two categories,
either those tachniques that follow the gradient as closely as puasible
(the methods of steepest descant) or those tuchniques that use the
gradient to guida the search (the conjugate gradient methods).

Cauchy's stespast descent method uses tha gradient to find t'he direction
of greatest functional decreass from a base point. The greatest de-
craase in £(x) is in the direction of the largest negative gradient,
That is,

d=-VeGh

bt.’.l - 51 -t Vf(}})

The steepest descent mathod uses a one-dimensional minimization search

in the direction of -Vf'.'(x’*) tc determine the atep length t and to

subsequently locate £i+'l.
min £(x" - t VE))
t

4l
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Conversely, the method of conjugate gradients locates a new base point

§}+1 by searching along a mutually conjugate direction d (Ref 9 and 24),
The direction d is determined using the gradient at the current base
point and the previous search direction. Fromlg?, the method uses a
one~dimensional minimization search in this direction to determine the

step distance t.
min £(x! -
X - td)
t

This one=dimensional search establishes a new base point‘5}+l. A more
complate description of the conjugate gradient method is presented later
in this chapter.

If first and second partial derivatives of f(ﬁ) are available, then
Newton's mathod could be used to minimize tha funcﬁicn. This technique
uses the function's gradient and Hessian to specify the direction and
the distance of the maximum decrease in f(5).

51'*’1 .,.’Si - H(i‘.-i)—l Vf(}si)

Avriel states, "If there are a large number of variables, the function
and derivative evaluations and espacially the matrix inversions, are
time-consuming and expensive operations' (Ref 3:288),

These are not the only techniques available to minimize uncon-
strained, nonilinear functions. However, they are representative of
the three categories of techniques -~ direct, gradient, and second-
order. A detalled presentation and sumary of numerical search
techniques for each category is provided by Gill, Murray, and
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Wright (Ref 10). In addition to the above techniques, several vari-
ations are available to minimize unconstrained nonlinear functions.
The most powerful is the ''variable metric'" or quasi-Newton method.
This algorithm differs from Newton's method. It does not use the
Hessian matrix, Instead of calculating H(é}), the technique approx-
imates the inverse of H(é}) by using the gradient and the previous
estimate of the inverse. There are other variations of Newton's method.
Similarly, finite Jdifference techniques ars variations of gradient
mathods; they use function values to approximate §7f(5}). Generally,
it is not possible to single out a method as the one to be used in
every case.

Each form of the Complex Expected Damage Function (CEDF) was maxi-
mized using only one technique. Since an analytical expression for the
gradient of the CEP-Included model was not available, it wes maximized
using & diiect search technique ~~ Powell's method of conjugate direc-
tions. Conversely, since an analytical expression for the gradient of
the CEP-Fxcludad model was calculated, it was meximized using a gradient

search technique ~~ a conjugate gradient with restarts method.

Conjugate Directions and Quadratic Termination

Conjugate directions are a generalization of orthogonal directions.
A set of n vectors 91,‘g2, ...,Sfl in R™ are orthogonal if their inner

product is 0, that is,

didy =0 for all 1 ¥ ] (28)

A set of n vectors g} is mutually conjugate with respect to the n * n
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symmetric, positive definite matrix A if

4 A»‘\ig =0 for all i # j (29)
Thus, for every nxn symmetric,positive definite matrix there is at least
one set of n mutually conjugate directions. If the matrix A is the
identity matrix, then Eq (29) becomes Eq (28), the definition of ortho-
gonal directions.

Powell's method of conjugate directionc and conjugate gradient
methods depend upon the corcept of quadratic termination. Powell proved
the following theorem on quadratic termination (Ref 23).

Theorem: If gl, g?',..., gm, m € n are mutually conjugate
directions, then the minimum of the quadratic function £(x)
is a point in m~dimensional space, R m‘ containing xﬂ, the
initial point, and the directions &, ¢, ... d" and the
mizimum of .F(y,) may be found by searching along each of the
directions only once. The required minimum is the point
}:'; - ’60 + z ti,q,i

iml
The distances t, are determined by minimizing £(x) in each
direction gl} |

m
min £(x° + > t,dh)
t 1=1

where £(x) = gsTA;s +bx+c

and, A 1s a symmetric, positive definite Hessian matrix.
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Powell's theorem proved that the minimum of a quadratic function £(x)
with domain D in R" and a symmetric, positive definite Hessian could be
located in n steps. Each step is a search along one of the n mutually
conjugate directions gi. However, since each direction gi has n
component directions in R", each step requires n one-dimensional

searches to minimize f(;c').

CEDF Optimization Methods

Powell's theorem is the basis for the methiod of conjuzate direc-
tions and conjugate gradient methods., If f(;g) is quadratic, then the
minimum can be located in a finite (<n) number of steps. However, even
if £(x) is not quadratic, the concept of quadratic termination can still
be used to locate the minimum. When the method is applied to non-
quadratic functions, it becomes itcrative and a test of convergence is
necessary to determine the minimum of f(g‘g). This section presents a
brief explanation of these two optimization techniques. Detailed
explanacions of them are availablz in Refs 9, 23, and 24; also, most
optimizaticn books provide complete explanations of these techniques.

2owell's Method of Conjugate Directions. This section presents

an algorithm for Powell's method of conjugate directions (Ref 17 and 23).
This method assumes quadratic comvergence of f(gg); the method will not
locate the local minimum in n steps unless the £(x) is quadratic.
Instead, the method iterates from '51 to 5i+l until | 351"'1 - ,’Sil <8,

In this development, the superscript i refers to the iteration and the

subscript j refers to one of the n-dimensional component directions

of R". The starting point in R" ig 350; the initial seerch directions d%

~

are the R" coordinate directions.
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An iteration process is used to locate x* such that f(,’S*) is a

local minimum., For the ith iteration,

i

1. From x~, search each of the n directions gj' where j=l,...,n.

These one-dimensional searches use functional values to locate
a minimum in each direction. A quadratic approximation and unimodal
behavior of £(x) is assumed.

2. These searches locate three gpecific points in R? .- r%(rix’ the last
point; 5%, an expanded point; and 15:;, the point where the greatest
dacrease in f (53) occurread.,

3. The convergence test checks 5;' to determine if f(i,‘,i]) is a local

i

i i-1 .
minimum. If x passes the convergence condition | LAEE % | €5,

then 5* - 51. If not, the algorithm continues.
n

4., The modification test checks the decrease in f(gs) from ;\gi to )5:;

i+l
3

the next iteration. The same mutually conjugate directions may be

These functional changes spacify the set of directions d for

used again or a new set of mutually conjugate directions may be

determined.

A Conjugate Gradiant Method. This section presents an algorithm

for a conjugate gradient with restarts method (Ref 9 and 24). Again,
for functions which are not quadratic, the method will not locate the
local minimum in n steps. Instead, the method iterates from ’)31 to 51"'1
wtil | VEGE*h| ¢s.

i+l i i
ro=x +td
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The direction rgi is mutually conjugate to the previous i - 1 search

directions;it is determined using the previous direction 'giml and

Vf(ggi). The starting point in R” is x°; the initial search direction

~

is the negative of the gradient,-%/ f(xo).

An iterative process is used to locate X' such that £(x*) is a

local minimum. For the ith jteration,

1.
2.

3.

4

5.

6.

Calculate Vf(lgi)
From 51, use a one-dimensional minimization search in the direction gi
to dJetermine the step length t, and to subsequently locate the point

L
b gt
min f(;si + r,ig,i)
t
1
Calculate V£(x ")

1+l

The convergence test checks x™ ™ to determine if f(5i+]') is a local

minimum. If || Vf(§i+l)il £ %, then ’5* -5i+1. If not, the
algorithm continues.

2
vf( i+l
|7 £(x0) |

Determine the next mutually conjugate search direction.

gi+1 -7 f(ISi+l) "'61 £l‘i

This algorithm locates the minimum of a quadratic function with a

7

PN TN RN R T A P U R I T R e N i o




symmetric, positive definite Hessian matrix in n or less iterations.
However, for functions that are not quadratic,the mininum will gene-
rally not be determined in n steps. After the . steps, n mutually
orthogonal dirictions have been searched. '5“ may or may not have
converged rapidly towards 35*.

For functions with slow rates of convergerce, because of nearly
parallel gi and 'g“l
cedure (Ref 9). After every n + 1 -steps, the method reverts to the

, Fletcher and Reeves developed the restart pro-

direction of steepast descent, the largest negative gradient, for the
next search direction. That is, following iteration i = n + 1, which
located '5n+2’ the direction 2n+2 would not be specified as in step 6
sbove, but rather % = -7 £(x™2). "Thus the whole proedure is
restarted from the current x, discarding all previous experience that

remains quadratically convergsnt provided such restarts are not imore
frequent than every n steps' (Ref 9).

The CEDF models developed in Chapter II are maxinized with these

two techniques. Powell's method of conjugate directions maximizes the 1

|

|
1
|
|
would normally be transmitted in the calculation of gi. The process ' 1
|
|
1
!
|
|

CEP-Included CEDF model; a conjugate gradient with restarts method
maximizes the CFP-Excluded CEDF model. Thaese methods require the ‘
vector of the 2m independent variables x and the function CEDF(x);
the conjugate gradient technique also requires the gradient of ‘
CEDF(x). The computerization of the algorithm that maximizes the two 1
CEDF(x) models is presented in Chapter IV. 1
Greermood developed a similar version of the CEDF(,)\(') (Ref 12).

His algorithm uses a different, yet related approach to determine
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optimal DGZ locations. His function G(x) depends on the total expected
target value undamaged. The 2m first partial derivatives of G(x) are
set equal to 0. Then these 2m nonlinear equationy are solved itera-
tively to yield a 5* such that G(5f) is a minimum. NUCWAVE uses a
modified Greenwood technique to determine optimal DGZ locations

(Ref 25:4-3). It optimizes one weapon at a time. Hence, it iteratively
solves 2 nonlinear equations to determine (xi’Yi) -~ the coordinates of

weapon i. Then it repeats the process for the next weapon.
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IV, Computerization, Verification, and Validation

of the CEDF Maximization Algorithm

The Complex Expected Demage Function (CEDF) maximization algorithm
includes the CEDF models, CEP-Included and CEP-Excluded, and the opti-
mization techniques, Powell's method of conjugate directions and the
conjugate gradient with restarts method. The algorithm determines
optimal DGZ locations for a finite number of nuclear weapons against
installations in a target complex by maximizing the CEDF,

Evaluation of the algorithm consisted of three related stages --
construction, verification, and validation. These stages formed an
iterative process that was necessary to develop user confidence in the
capability of the algoritim. Construction is the formulation and
cmwtoriugion of a modal. The computerization of the CEDF maximi-
zgation algorithm used a modular approach. Smaller segments of the CEDF
model were developed to accomplish lower lavel procedures. These seg-
ments became subprograms in the final computer code. Vaerification of
the CEDF maximization algorithm used example problems to insure that the
results of each subprogram were corract. Validation measures the rala~
tive agreement bstween tlie model and the system modelaed (Ref 26:215).
Validation of the CEDF maximization algorithm was a comparison of the
results from the algorithm with the results from a current DGZ model.
This chapter presents the evaluation of the CEDF maximization algorithm
with respect to these three stages.

Computerization

A flow chart of the CEDF maximization algorithm is shown in Figure 6.
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Subroutine

OPIMZ calls 1. INITLZ
2. WRADS
3. ZXCGR calls GFUNCT calls PDAM calls PDR
4. PWMIN.calls FUNCT calls PDAM calls PDR
5. OUTDGZ

Figure 7. CEDF Maximization Algorithm Subroutine Hierarchy

The aymmatry of Figure 6 illustrates several characteristics of the
algorithm. The blocks above the dashed line correspond to the proce-
dures that use weapon and installation parameters to develop the CEDF(x)
and the gradient of the CEDF(x). The lower blocks correspond to the
optimization techniques that were used to maximize the respective CEDF,
The left blocks correspond to the CEP-Excluded model; alternately, the
right blocks correspond to the CEP-Included model. The upper three and
lower three blocks are common to both CEDF models. Each block is a
smallar segment of the CEDF maximization algorithun.

The computer code of the CEDF maximization algorithm was written
using FORTRAN V. Appendix D contains a listing of the code and a glos-
sary of tha FORTRAN variables. The computer code includes a driver
module, seven subroutines and two functions. The hierarchy of the algo-
rithm's subprograms is shown in Figure 7. All program variables, inclu-
ding weapon and installation parameters, that are used in more than one
subprogram, are stored in six named common blocks. Only the DGZ coor=-
dinate vector x is transferred between subprograms by the subprograms'

argumant lists.
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The driver module OPIMZ controls the CEDF maximization algorithm.
OPIMZ calls the five highest level subroutines. The primary functions
of these subroutines are: (1) INITLZ inputs user-specified weapon
and installation parameters, (2) WRADS calculates additional instal-

lation and weapon parameters, (3) ZXCGR is a conjugate gradient with

restarts subroutine that maximizes the CEP-Excluded CEDF, (4) PWMIN

is a conjugate directions subroutine that maximizes the CEP-Included
CEDF, and (5) OUIDGZ outputs the final DGZ coordinates. ZXCGR calls
GFUNCT, a subroutine that calculates the value of the CEDF(x) and the
gradient. of the CEDF(x). PWMIN calls FUNCT, a subroutine that calculates
the value of the CEDF(5). GFUNCT and FUNCT call PDAM, a function that
calculates the probability of achieving a specified level of damage to
installation j from weapon i, Pdi, It PDAM, in turm, calls PDR, a func=-
tion that calculates the distance damage function, Pd(r). More complete
descriptions of these subroutines and functions are given below. WRADS,
PDAM, and PDR are modifications of subprograms from Mathematical Back-

ground and Programming Aids. for the Physical Vulnerability System for

Nuclear Weapons (Ref 6).
INITLZ., This subroutine has four primary functions. First, it

reads user-specified weapon and installation parameters from an external
fila, INDATA. Appendix E contains samples of an input file and an output
data file. For each weapon i, the user specifies a yield, a hob, and

4 Pa; the user may specify initial DGZ coordinates. Also, for each
installation j, the user specifies coordinates, a VNIK code, and a

value. The user inputs the weapon and installation latitude and longi-
tude in degrees-minutes-seconds and the direction from either the prime

meridian or the equator. Positive coordinates are east cf the prime
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meridian and north of the equator.

Second, INITLZ assigns the initial coordinates of the m weapons,
prior to maximization., The user has three options: (1) provide
independent estimatas of the weapon coordinates; (2) let INITLZ assign
the coordinates of the m highest valued installations to be the coor-
dinates of tha m weapons in decreasing order of yield, that is, the
largest yield weapon is initially located at the highest valued instal~
lation; or (3) let INITLZ assign the coordinates of the m hardest
installations to be tha coordinates of the m weapons in decreasing order
of yield, that is, the largest yield weapon is initially located at the
installation with the largest VN number,

Third, INITLZ trensforms all weapon and installation degrees-
minutes-seconds into coordinates measured in feet and relative to a
common origin in an XY coordinate system. The CEDF maximization algon=-
rithm assumes a flat earth model to locate all coordinates, Each minute
of latitude equals 6080 feet. Howaver, one minute of longitude equals
6080 feet only at the equator. Whan the latitude is not the equator,
one minute of longitude is less than 6080 feet becausae of the merging
of the meridian lines. The scale factor is the cosina of the latitude.

lastly, INITLZ specifies accuracy requirements for ZXCGR and PWMIN,
These subroutines need prespecified values to test for the convergence
of ¥ to the maximum value of CEDF(x*).

WRADS., This subroutine calculates additional weapon and installation
parameters from the user-specified parameters. For each installation j,
it determines a distance damage sigma (oaj) amd a 6J. Also, for each
weapon i-installation j combinatlon, it calculates a weapon radius, WRi,j'

These calculations are described in Appendix A.
54

P s AR i e Sl n i ot 680 it B b ub b e $abul ot wB ol And ARt o) a LASLSA NS L LA AN S ) HVAN Bt it At A0 &1




PDR. This furction calculates the distance damage functicn Pd(r),

the probability of achiaving a specified level of damage to installation j
from weapon i when the distarce r between installation j and weapon i
is known. See Eq (5).

PDAM. This functlon calculates the probability of achievivg a
specified level of damage to installation j from weapon i, Pdi, j* For
the CEP-Excluded CEDF model, Pdi’ j is the distance damage function
from PDR. For the CEP~Included CEDF model, the distance r between
installation j and the impact point is unknown, and Pdi’ I is calculated
using Gauss-legendra quadrature and the distance dunage function.
écc Eq (8).

GFUNCT. This subroutine calculates tha CEDF(x) axi the gradient of
the CEDF(x). One function and gradient evaluation requirez m * n calls
to function PDAM., These calls specify Pdi’ j for each weapun i-instal-
lation j combination using the CEP-Excludad model. CEDF(x) is calculated
using Bq (1). Each elament of the gradient is calculated using Eq (13).

FUNCT. This subroutine also calculates the CEDF(x) using Eq (1),
ard one function evaluation requires mvm calls to function PDM, How=
aver, thase calls specify Pdi' f for each weapon i-installation j combi-
nation using the CEP=Included CEDF modal.

ZXCGR. This subroutine minimizes -CEDF(x) for the CEP-Excluded
model. It is a conjugate gradient with restarts routina from the
International Mathematical and Statistical Libraries, Inc. (Ref 16:2XCGR).
ZXCGR requires function and gradient evaluations from GFUNCT and the DGZ
coordinate vector x. It uses two control parameters -- DFPRED and
ACC. DFPRED specifies an estimate of the expected increase in the CEDF;

ACC specifies the desired accuracy of the convergence check., This check
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requires the sum of the squares of the gradient elements to be less
than ACC.

PWIN. This subroutine minimizes ~CEDF(x) for the CEP-Included
model. It is a conjugate directions routine from Optimizatiou Techi-

niques with FORIRAN (Ref 17:331-343). PWMIN requires function eval=-

- uations from FUNCT and the DGZ coordinate vector x. It also uses two

control parameters -~ ESCALE and E. ESCALE specifies the maximum step
size multiplier for a single step of any Xy E specifies the accuracy
of tha convergence check. This check requires the absolute value of
the differencaes between each element of gi and ;31"'1 to be Jess than E,
QUIDGZ. This subroutine translates the XY coordinates of the final
DGZs from feet into degrees-minutes-seconds and the direction from either
the prime meridian or the equator. Then it outputs these coordinates to
the axternal data file, TAPEG.
The CEDF maximization algorithm provides three sets of optimal
DGZ locations. The first get is from the CEP-Excluded CEDF modael and
ZXCGR maximization; the second set is from the CEP-Included CEDF model

and FWMIN maximization. The last sat of DGZ locations is from both

CEDF models and ZXOGR and PWMIN maximization -- a mixed technique.

Verification

The verification of the CEDF maximization algorithm included four
phascs. Each phase verified the subprograms of the algorithm
using example problems. For each computer program, the results of each
example problam, including the values of intermediate variables, were
calculated independently of the respective computer program. Then the

computer program solved the example problem. PRINT statements in the
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program printad values of most FORIRAN variables. These values were
c';ompared with the values calculated by pencil and paper to verify that
the computer program calculated the correct values.

The first phase verified five lower level subprograms == PDR, PDAM,
L WRADS, INITLZ, and OUTDGZ. Each of these modules was coded and debugged
/ .' as a small FORTRAN program. Mathematical Background and Programning
Alds for the Physical Vulnerability System for Nuclear Weapons includes

example problems. Fifteen of thase problems were used to check PDR,
- PDAM, and WRADS. These programs calculated the same values a&s the exam-
ple problems. The outputs of INITLZ for several example problems were
‘ WM with resuits that were calculated independently of the computer
o program. ‘These comparisoris indicated INITLZ was properly forming the
: XY coordinate systam and the installation and DGZ coordinate vectors.
Similaxly, the outputs of OUIDGZ for several test cases wers compured
| with pencil and paper calculated results. Thase compariscns indicated
' OUTDGZ was corvectly translating tha tinal DGZ coordinata vector from
fast into degrees~-minutes-secorxis and the direction from either the
; prime meridian or the equator. These five subprograms were merged into
one program and became tha foundation of the next verification phase.
The second phase verified the subroutine FUNCT. The small
programs, PDAM and POR, became FORTRAN functions; the programs WRADS,
; INITLZ, and OUIDGZ, became FORTRAN subroutines. FUNCT calculates the
value of the CEDF(x) using Eq (1). The pencil and papev calculated
results from several example problems were compared with the results
' from FUNCT. One example included two identical installations. Rach
_ installation's value and VNTK code were 15.0 and 15P2. The distance

between the two iustallations was 6000 feet. Two identical weapons
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Figura 8, The CEDF for a two weapor-two installation geometry.

were collocated halfway between the two installations. FEach weapon's

yield, height of burst, and CEP were 100-kt, 1000 feet, and 600 fect.

The independent calculation of the CEDF for this complex was 29.15; the

CEDF value from FUNCT was 29.1492.
FUNCT was properly calculating the CEDF(x).

These example problems indicated

This two wespon~two installation complex was used to investigate

the results of moving the two ccllocetad DGZs.
complex is shown in Figure 8.

collncated at point 0, ard the CEDF value was 29.15.
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decreased as the two DGZs were moved in opposite directions a distance d
from point 0. A graph of CEDF versus d for this problem is also included
in Figuce 8. This example indicated the existence of a CEDF maiimum, on
the line considered, as the distances between the DGZs and the instal-
lations varied. i

The third phase verified the gradient calculation of the CEP=-
Excluded CEDF in the subroutine GFUNCT., GFUNCT also calculates the
CEDF(x) using Eq (1). The gradient vector from GFUNCT was checked using !
two weapon-installation geometries. Appendix F includes the table and
calculations used to verify the gradient of the CEDF(x) fox these two
examples.

The first example included one weapon and two installations. The

first installation's value and VNIK code were 5000 and 11P2; the second
installation's value and VNIK code were 12000 and 15P2. The weapon's
yield and height of burst were 100-kt and 1000 feet, and the CEP was

0 feet. Forty values of the CEDF(x) were calculated for different DGZ
locations. The x direction was along the line conmecting the two
installations. These 40 values were then plotted. Figure 9 is a plot

of CEDF(x) versus x for this example. A DGZ between the two installations
was selected (x = 63500) and the gradient calculated using two methods.

In this example, the gradient had only one elament because the

y variable was constant,and only the x variable was allowed to vary.
The gradient values for the two calculation methods were compared with
the gradient from GFUNCT. The first method used a diffarence equation
4!%?22 to approximate the gradient. For the DGZ selected, the difference
equation approximation of the gradient was 3.939. The second method was

!

pencil and paper calculations of all the steps necessary to determine
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.,Figdri 9. The CEDF for a one weapon-two installation geome*ry.

the gradient. Chspter II presented these steps. For the DCZ selected,
the pencil and paper calculation of the gradient was 3.9791. The value
of the gradient fuom GFUNCT for the DGZ selected was 3.979l. These
cémpariaons indicated the subprogram GFUNCT was properly calculating
the gradient of the CFDF(x).

The secorkd example included two weapons and three installations,
The gradient of the CEDF(x) in this example has 2m or fo'rr elements.
Only one element was completely checked by pencil and paper calculations.

A location for sach DGZ within the three-installation complex was selected.




: /60000,14200) (65000,14200)  (68000,14200)

®

(65319,11184)

Installation 2
(68000,11162)

: Installation 1
! (60000,11162)

(63500,8120) (66500,8120)

Figure 10. The one weapon-two installation geometry.

i . Then a—%‘%‘l was calculated to be 0.192548; the subsequent value
from GFUNCT was 0.19255136. These comparisons indicated GFUNCT was:

| correctly forming the gradient of the CEDF(x).

S The last phase verified the CEDF maximization algorithm's ability

' to locate & local maximum of the CEDF. All subprograms, the subroutines
P - ZXCGR and PWMIN, and the driver module OPTMZ were merged into one pro-

gram ~- the CEDF maximization algorithm. The two installation-one

weapon complex described above to verify GFUNCT was also used to verify
the algorithm. Figure 10 presents this complex, several initial starting
points for the DGZ, and the mean location x* for the local maximum of
the CEDF(x). In this simple example, the local maximum is also the
global maximum., The graph of tha CEDF(x) versus x in Figure 9 indicated
: the meximum CEDF value was approximately 15000 for 65000 < x < 66000,
\"\ The CEDF maximization algorithm was run with seven different
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initial DGZ. From the initial locations 1, 2, 3, 6, and 7, the algorithm
converged to a maximum CEDF value and an optimal DGZ. The algorithm did
not move the DGZ from the initial locations 4 and 5. For these locations,
the ZXOGR and PWMIN convergence criteria were satisfied, and the CEDF
value was 4950. The algorithm did not move the DGZ from these locations
because there were no indications of a CEDF increase. Chapter VI ex-
plains this result in more detail.

The mean optimal DGZ lccation and CEDF value were calculated for
the other five initial DGZ locations. For the CEP-Excluded model using
ZXCGR, the mean location of the optimal DGZ was (65319,11184). The stan-
dard deviation for x was 8 feet; for y it was 15 feet. The mean value of
the CEDF(;) was 15019; the standard deviation was 4.3, For the CEP-
Included model using PWMIN, the mean location of the optimal DGZ was
(65300,11172). The standard deviation for x was 58 feet; for y it was
98 feet. The mean value of the CEDF(x) was 15006; the standard devi-
ation was 16.6. PWMIN is a slower optimization routine; hence, less
restrictive convergence criteria were astablished for PWMIN. This could
account for PWMIN's smaller CEDF value and larger standard deviations
for x and y.

The results from both CEDF models were compared to the values from
Figure 9. These comparisons indicated that the CEDF maximization algo-
rithm located an optimal DGZ location by maximizing the CEDF(x) for this
simple two installation-one weapon complex. More detailed complexes

are considered in the next section and the next two chapters.

Validation

Validation measures the relative agreement between the model and
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the system modeled. It is not possible to make comparisons between the
CEDF maximization algorithm and the real world. Similarly, validation
is not a yes or a no answer; it is a qualitative, relative measure.
The CEDF maximization algorithm results for two example problems were
compared with the results from NUCWAVE (Ref 29). NUCWAVE is a one-sided
nuclear weapons allocation war gaming model. It optimizes the damage
to a sat of targets using a preselected set of weapons. |
Two of the primary differences between the CEDF maximization algo- |
rithm and NUCWAVE are NUCWAVE's starting solution and optimization
technique. It optimizes sequentially by starting the largest yield
weapon at the highest valued installation. It optimizes over the (X,Y) |
coordinates of this weapon. Then it stores the final coordinates of |
this weapon, calculates the damage of all affected installations, and 1
determines the remaining values for all instellations. Then it opti-
|
\
|

mizes the next largest yield weap:n by starting it at the highest
remaining valued installation. NUCWAVE continues to iterate through
the entire weapon set until no further movement of a DGZ results in an
increase in the total expected target value damage. Chapter I includes
a description of NUCWAVE methodology. For these comparisons, the CEDF
meximization algorithm assigned the initial DGZ locations to the highest
valued installations.

The first problem included one weapon and two installations., This
complex was very similar to the complex in Figure 10. The first instal- |
lation's coordinates were 46°03'15" N - 45°10'00" E; its VNIK code and
value were 11P2 and 5000. The second installation's coordinates were |
46°03'25" N ~ 45°11'20" E; its VNIK code and value were 15P2 and 12000, |

The weapon's yield, height of burst, and CEP were 100-kt, 1000 feet, |
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and 0 feet. The coordinates of NUCWAVE's optimal DGZ were 46°03'22" N -
45°20'58" E; the total expected target value damage was 16579 or 97,52%
of the complex value., The coordinates of the CEDF maximization algo-
rithm's optimal DGZ were 46°03'21" N - 45°10'50" E; the CEDF was 16788
or 98.75% of the complex value., This represents a difference of approx-
imately 575 feet and an increase in CEDF value of approximately 1%.
Then the final DGZ coordinates from NUCWAVE were used as starting coor=-
dinates for the CEDF maximization algorithm. The CEDF value at these
coordinates was 16647. The final coordinates for this run of the algo-
rithm were also 46°03'21" N - 45°10'50" E. These results indicate that
the CEDF maximization algorithm achieves comparable results with an
existing model, NUCWAVE.

The second problem included two weapons and five installations,
The installations' VNIK codes ranged from 14P3 to 20P3; the instal-
lations' values ranged from 3000 to 12000. The total complex value
was 33000, Both weapons' yield, height of burst, and CEP were 100-kt,
1000 feat, and O feet. The coordinates of NUCWAVE's optimal DGZs were
46°01'58" N - 45°09'55" E and 46°00'48" N = 45°09'42" E; the total
expected target value damage was 28730 or 87.06% of the complex value.
The coordinates of the CEDF maximization algurithm's optimal DGZs were
46°01'58" N - 45°09'54" E and 46°00'45" N - 45°09'38" E; the CEDF
valua was 29543 or 89.52% of the complex value. This represents a
difference of approximately 70 feet in the first DGZ and 415 feet in
the second DGZ and an increase in CEDF value of approximately 3%.
Again, the final DGZ coordinates from NUCWAVE were used as starting
coordinates for the CEDF maximization algorithm. The CEDF value at

these coordinates was 29018. The final coordinates from this run
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were also 46°01'58" N - 45°09'54" E and 46°00'43" N - 45°09'38" E;
the CEDF value was also 29543,

The comparisons between the results from the CEDF maximization
algorithm and the results from NUCWAVE for the two examples indicate
than the algorithm correctly determines the same local maximum as
NUCWAVE. The results from these two examples do not validate the
algorithm, but because the DGZ locations wera consistent between NUCWAVE
and the CEDF maximization algorithm, the algorithm's results are not
invalid, These results provide the user confidence in the capability
of the CEDF maximization algorithm.
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V. CEDF Maximization Algorithm Properties

The Complex Expected Damage Function (CEDF) maximization algorithm
determines optimal DGZ coordinates for multiple nuclear weapons against

installations in a target complex by maximizing the CEDF. The previous
chapter presentcd the computerization and evaluation of the algorithm.
The flowchart in Figure 6 summarizes the algorithm's modules. It also
presents the algorithm's three CEDF maximization techniques: (1) 2ZXCGR,
a conjugate gradient with restarts optimization method that maximizes the
CEP-Excluded CEDF model; (2) PWMIN, Powell's method of conjugate direc-
tions that maximizes the CEP-Included CEDF model; and (3) a mixed tech-
nique that uses both CEDF models.

The ZXCGR and the mixed techniques each consist of two stages. The
first stage of the ZXOGR technique has a less restrictive convergence
criteria than the second stege, and its DGZ coordinates are used as ini-
tial DGZ coordinates for the second stage of the ZXCGR maximization
algorithm. These optimal DGZ coordinates from the first stage of the
ZXCGR algorithm also are used as the initial DGZ coordinates for the
secord stage of the mixed technique. Mixed maximization has an initial
ZXCGR stage and then a PWMIN stage. For brevity and completeness, the
following nomenclature will be used throughout this report. ZXCGR con-
jugate gradient maximization will be referred to as ZXM, Powell's
method of conjugate directions will be referred to as PWM. Finally,
tha mixed technique will be referred to as MXM.

This chapter contains two sections. Each section presents charac-
teristics of the algorithm's three CEDF maximization techniques. Dif-

ferances and similarities between ZXM, PWM, and MXM are discussed.
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Similarly, some capabilities and limitations are presented. The first
section discusses convergence criteria, installation value scaling, user
guidelines and user cautions. Also, it presents comparisons of CEDF
results for different convergence values. The second section presents
characteristics and optimization results for specific, geometrically
symmetric, two and four-installation target complexes. It also discusses

the effects of symmetric gradient elements on ZXM maximization.

Convergence Criteria

The optimal DGZ cnordinates and CEDF values from the CEDF maximi-
zation algorithms, ZXCGR using the CEP-Excluded model and PWMIN using
the CEP-Inclwiled model, were sensitive to the convergence control
parameters,

The ZXCGR control parameters are ACC and DFPRED. ACC specifies
the desired accuracy of the convergence check. This check requires the
norm of the gradient to be less than ACC. The norm of the gradient,
IVFl, is the sum of the squares of the gradient elements, When ZXCGR
locates a point x* in 2m space, such that the norm of the gradient is
less than the prespecified value of ACC, the optimization routine stops
iterating. DFPRED is an estimate of the expected increase in the CEDF.
ZXCGR uses it to determine the size of the initial change in each x.

The values of the installations affected the choice of values for
ACC and DFPRED, This is because the installation values directly scale
the CEDF and the magnitude of the gradient elements. Egs (1) and (11)
in Chapter II present this relationship. Most of the example problems

in this report used installation values between O and 10000 (104). If
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installation values are within this range, then the most versatile
parameter values for second stage ZXM maximization of two optimal DGZs
are ACC = 0.001L and DIPRED = 1000. If the installation values are
not within this range, then a heuristic guideline is suggested to assist
the user in estimating reasonable parameter values. For either case,
the first stage value of ACC = 0,01 determined acceptable DGZ coor-
dinates for a wide range of installation values and number of weapons.
A general guideline to determine ACC for two weapons depends on the
highest valued installation in the targat complex. The highest value
is rounded up to the largest power of the base 10. 'Then ACC equals 1077
times this adjusted value. For example, for a four-installation complex
with installation values between 2500 and 7000, the adjusted value would
be the 7000 rounded up to 10000 (10%). Then ACC would equal 1075, This
heuristic implies that a smaller ACC is needed for complexes with over-
all lower valued installations. Intuitively, this makes sense because

the scaling effect of smaller installation values decreases the CEDF and

the magnitudes of the gradient elements. When more than two weapons are
used, a larger ACC value is needed to account for the additional gradient
elemants.,

As an example, Table IIL presents the rasults of two ZXM optimiza-
tions for a two weapon-four installation target complex. Weapon and
installation parameters, except the installation values, were the same for
both optimizations. In the original problem, the most valuable instal-
lation's value was 7000, and an ACC of 0.001 was used. The CEDF maximum
value was 15436. In the 1/10 value scaled problem, thc most valuable
installation's value was reduced by a factor of 10 to 700, and a smaller

ACC of 0.0001 was used. The CEDF maximum value was 1543. Fach of the
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TABLE II

CEDF Comparison between an Original Problem
and a 1/10 Value Scaled Problem

Parameters Original Scaled
Problem Problem

Target VNIK Vaiue Value

1 16P2 3500 350

2 22P2 2500 250

3 21P4 5000 500

4 19Q3 7000 700

' ACC 0.0010 ) 0.00010

| VF|l at convergence 0,0004 0. 00002

CEDF at convergerce 15436 1543

Z2XM CEDF maximizations located essentially the same coordinates for both
DGZs. Comparing the two optimization results, tha coordinates of the
first DGZ were within one foot of each other, and the coordinates of the
second DGZ were within five feet of each other. Hence, the original
and the scaled optimization problems located the sams DGZ coordinates
without regard for the magnitude of each installation's value.

Another hauristic is suggested for eatimating the value of DFFRED,
For tha m weapons, sum the values of the m highest valued installations.
If the m weapons were assigned to these m highest valued installations,
then this sum would be an approximate value for the CEDF. Next deter-
mine tha total value of all the installations. | Then substract the value
sum of the m highest installations from the complex's total value. This

difference is the maximum possible CEDF increase. An estimate for DFPRED
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TABLE III
Comparison of ACC Convergence Criteria

1 ‘
Parameter ACC |
. IVFHat ’ 1
; convergence 0.0095 0.0006 0.0004 !
) Number of |
’ funation |
- evaluations 14 18 19 j
|
CEDF at
convergence 15433. 15434, 15437,
L DGZ 2 final
coordinates (44840,23075) (44851,23090) (44850,23089) |
|
is one-half of this difference. Again, this guidelins iiplies that for

lower instzllation values DFPRED, tha estimated increase in the CEDF, |
should be smallar. ;

. ' Gonerally, by decreasing ACC, ZXCGR can determine better estimates

| of the CEDF maximumn and its respective optimal DGZ coordinates. For the “
original two weapon-four installation complex of Table LI, ZXCGR was used ‘
to compare the CEDF maximum value and {¥ Fll for three values of ACC. ,‘
DFPRED equaled 1000 for these three examples. Table III presents the 1
results and the DGZ 2 optimal coordinates for these examples. The
results of these ZXM maximizations indicated that, by decreasing ACC,
ZXM can daetermine a better estimate of a CEDF local maximum. That is,
ZXM can achieve a larger CEDF value and a smaller | VFl . The final
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coordinates for DGZ 1 were the same for the three cases. Only DGZ 2
coordinates were different; Table IIL indicates this difference was
barely noticeable. Since the final DGZ 2 coordinates were within 17
feet of each other, a less restrictive ACC is acceptable. That is, a
value of ACC smaller than 1077 times the adjusted highest installation
value is unnecessary.

The results of a similar experiment using the same two weapon-~four
installation target complex indicated that the value of DFPRED also did
not significantly affect the CEDF maximum value or the optimal DGZ
coordinates, Five values of DFPRED, 100, 1000, 2500, 5000, and 6000,
were compared using a constant ACC of 0.001.

Occasionally, ZXCGR will not converge satisfactorily and locate an

optimal point in 2m space. The IMSL subroutine will return an IER = 129 !
error message. This message indicates that the subroutine abandoned a !

line search; this was probably because of conflicting information. The

ol —ia S,

!
gradient may indicate that a point is not optimal; that is, |V F| > ACC. !
However, each additional iteration may be on either side of the optimal |
point and the algorithm is unable to terminate satisfactorily. For most i
of the occurrences of this error message, the point located by the sub-
routine actually was a good estimate to the local CEDF maximum. Three
options are available to the user when the algorithm terminates with ?
this error message. First, select another ACC value and rerun the same
problem., Second, select another DFPRED value and rerun the problem.
Third, compare the DGZ locations and the CEDF maximum value with the ‘
results of PWM and MXM. Again, for most occurrences of this message,

the third option indicated that the point located was a good estimate of
71
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the CEDF maximum value and the respective optimal DGZ coordinates.
Just as ZXCGR maximization results depended on the values of the
wonvergence control parameters, ACC and DFPRED, PWMIN maximization re-
sults depended on the values of E and ESCALE, E specifies the desired
accuracy of the convergence check. This check requires the absolute
value of the differences betwean each element of x for iteration i ard
each element of x for iteration i - 1 to be less than E. When PWIN
locates a point x* ia 2m space, such that all element differences are
less than the prespecified value of E, the optimization routine stops
iterating. ESCALE is the maximum step size multiplier for a one-dimen-
sional search. PWMIN will not increment each x by more than ESCALE*E.
The effect of E and ESCALE on the maximm CEDF value and the opti-
mal DGZ locations was not as evident as the ZXCGR convergerice control
variables., Accordingly, an indepth sensitivity analysis of these para-
meters was not accomplished. Preliminary investigrtions indicated that
ESCALE/E values of 10000/0.1 were the most effective in meximizing the
CEF-Included CEDF model, E values of 1, 5, and 10 often resulted in
computer runs that exceeded 60 seconds of computer processing (CP)

time. These incomplete run3 generally abo.'ted after the third or fourth
PWM iteration. Also, ESCALE values of 1000 and 5000 were examined.

,,j The most promising values of ESCALE/E were 5000/0.1 and 10000/0.1.
Ea These two combinations were used for more than 143 CEDF maximization

3 algorithm evaluations using 3, 4, 5, and 7-installation target complexes.
:; Eighty of 63 runs (96%) using the ESCALE/E values of 5000/0.1 converged
3

to a solution; similarly, 54 of €0 runs (90%) using the ESCALE/E values of

Dol

£

10000/G.)1 converged to a solution. 1ue other nine runs were termi-

nated because cf excessive CF time. Twenty-cight CEDF maximjzation runs
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were identical except that 14 used the ESCALE/E values of 5000/0.1 and

14 used the values of 10000/0.1. Differences hetween the two parameter
pairs for two criteria, CEDF maximm value and CP time, were evaluated.
The results of a sign test indicated that there was no difference be-
tween the parameter pairs.

The four convergence control parameters need to be specified prior
to a CEDF maxi-ization algorithm run, The subroutine INITLZ initializes
the ACC value for the first stage of 2XM to 0.0l. The user provides the
ACC value for the second stage of ZXM through the external file, INDATA,
Similariy, the user provides the DFFRED value through INDATA. Appendix E
discusses the necessary input procedures. The subroutine INITLZ also
initializes the values of ESCALE/E to 5000/0.1l. If the user desires
different PWM convergence control parameters, then only two lines of the
code need to be changed.

The norm of the gradient, YV Fll , will be used as a relative indi-
cator of convergence for all ZXM maximizations. For a twneweapon complex
with 4 maximm installation value of 10000, |V Fl = 0,001 implies that
the mean value for each of the four gradient elements is appioximately
0.015. That is, a change of 1000 feet in any of the 4 spatial direc-
tions would change the CEDF by only 15 value poiats.

Symmetry Characteristics

Two simple target complexes were investigated to characterize the
CEDF models and their respective maximization techniques. Tnitial DGZ
locations were selected to emphasize special features of ZXM and PWM

optimization techniques. The examples included either svmmetric target
73
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| CASE L. - CASE IV. 1

1 A 3 —A 2
{ CASE II. 2
: 2

L 1A—~—'<—$@*—’————-A2
g CASE IIL. 1,2 1 A A 2
: \é'z

for each installation: for each weapon:

. valua = 5000 yield = 100 kt HOB = 1000 feet

VNTK -_15P2 S CEP =0 feet Pa = 0,99

Figura 11. A symmetric two-installation complex,

; . complexes or a CEDF with symmetric gradient elements.

A two weapon=-two installation complox was analyzed to deteirmine the
congequences of symmetric gradient elementa on the ability of ZXM to lo-
cata a CEDCF maximun value and optimal DGZ roordinates. Figure 11 pre-
sents the complex geometry, weapon ard installation parvameters, initial
DGZ locations. and the ZXM direction of DGZ movement for five cases.

Each of thede cases had either a geometrically symmetric weapon-instal-
| lation complex ¢r a CEDF with symmetric gradient elaments. Tle X1 and Xy
directions were along the line segment connecting the two installations;

the Xg arvd 9 directions were perperdicular to this line segment. For
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each of these cases, PWM converged to a maximum CEDF value of 9900.
This was each weapon's Pa times the total value of both installations.
PWM also separated collocated DGZs. The results of the tive cases pro-
vided further insight into the capability of the ZXM maximization
technique.

CASE I. The initial DGZ locations for two identical weapons were
collocated halfway between two identical targets. ZXM neither separated
nor moved the two weapons. This was because all four of the CFDF gra-
dient elements equaled 0. The x5 and X, gradient elements were O
because all y values were equal; the x; and X, elements were 0 because

weapons 1 and 2 were halfway between the installations. That is, one

installation's contributions to the x, and x, gradient elements can-
celled the other installation's contributions. ZXM made the initial DGZ
coordinates the optimal DGZ coordinates with a CEDF value of 3465.

CASE II. The collocated identical weapons in CASE I were separated.
Weapon 1 was moved one minute of longitude west (approximately 70 feet).

With this move from the complex's geometric center, the x, gradient ele-

ment was no longer O; ZXM separated the two DGZ2s and movecli weapon 1 towards
installation 1 and weapon 2 towards installation 2. ZXM converged to a
meximum CEDF value of 9900 and two optimal DGZs with a ¥V Fil = 107,

CASE III. The two identical weapons were again collocated. How-
ever, the initial DGZ location was neither halfway between the two iden-
tical installations nor along the line segment ccnnecting the instal-
lations., The gradient elements were all non-zero. The X and X, ole=
maents were equal and positive; the Xy and X, elements were equal and also
positive. In this case, ZXM did not separate the two weapons because

their respective gradient elements were the same; however, it did move
75
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the two weapons together towards installation 1. That is, ZXM kept the
two weapons collocated .with a CEDF value of 5737 and NV F|[= 7.7 x 1072,
Next, a variation of this case was examined. The same initial DGZ
Jocation was used, but the yield of weapon 2 was reduced from 100-kt to
95-kt., This yield reduction altered the gradient elements. The Xy and
Xy elements were no longer equal; similarly, the X3 and Xy, gradient
elements were no longer equal. The two different weapons separated
from the same initial DGZ location. ZXM moved weapon 1l towards instal-
lation 2 and weapon 2 towards installation 1. ZXM converged to a maxi-
mun CEDF value of 9900 and two optimal DGZs with §%¥ FY = 1.2 x 1075,
CASE IV. The two identical weapons were separated along a line
segmaent that was perpendicular to the line segment connecting the two
identical installations. Figure 1l displays this geometry. The two
weapons were each equidistant from the two ipstallations. Again, because
of the symmetry of the target complex, the identical weapons, and the
identical installations, the gradient elements were symmetric. The x

1

and x2 gradient elements were 0, That is, each installation's contri-

butions to the X; and x, gradient elements negated each other. The Xs

and X, gradient elementi were equal in magnitude, but opposite in direc~
tion; the Xy element was positive and the x 4 element was negative.
Because the X arid X, gradient elements were equal to O, this restricted
the DGZ movements to only the Xy and X, directions. With the X3 and X,
gradient elements with equal magnitude but opposite direction, ZiM
moved the DGZs directly towards each other to point P in Figure 11.

This point was along the line segment connecting the two installations
and halfway between the installations. ZXM converged to a local maximum

CEDF value of 5729 and one collocated DGZ with | ¥ F|| = 0,00028.
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CASE V. A variation of CASE IV was examined. The initial DGZ
location of weapon 1 was noved one minute of longitude east (approx-
imately 70 feet). The X gradient element was no longer O; ZXM moved
weapon 1 towards installation 2 and weapon 2 towards installation 1.
ZXM converged to a maximum CEDF value of 9895 and two optimal DGZs
with | Y F{ = 0,00085,

The algorithm located CEDF local maximums for this two weapon=-iwo |
installation complex. However, the algorithm's optimal DGZ coordinates %
were not exactly the coordinates of the two installations. For this .
complex, the optimal DGZ locations would be one weapon on each instal-
lation, since the weapons and the installations were identical. Never-
theless, these examples demonstrate two important features, an opera-

|
|
1
tional characteristic and a limitation, of the CEP~Excluded CEDF model (
using ZXM maximization., Both of these are & result of the symmetry of *

the CEDF gradient elements. These cases indicated that there are two

typas of gradient symmetry. There is symmetry from weapons at symme-
trical, initial DGZ locations (CASES I and IV) and from identical wea-

pons at the same initial DGZ location (CASE III). The first type of

symmetry is an operational characteristic; the second type, collocation

of initial DGZ locations, is a minor limitation. This limitation means

that the ZXM maximization algorithm cannot use collocated initial DGZ

locations. The PMW maximization algorithm did not have this limitation.
A unique one weapon-four installation target complex also exhibited

symmetric éradient. properties. Figure 12 presents t..e complex geometry,

weapon and installation parameters, and CEDF values for different po- l
]
tential DGZ locations. |
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The g2ometric shape of the complex was not a cquare, but rather, a

rectangle. The north-south distance between the installations was 8511
feet; the east-west distance was 8448 feet., There were four local maxi-
mums or potential DGZ locations for this target complex; ~ne at each
midpoint of the four line segments of the rectangular perimeter. The
CEDF value at each local meximum was 7776. The CEDF value for a DGZ
located at the center of the target complex was 3390, The CEDF value
for a DGZ located at one of the installations was 4990. Lastly, for a
DGZ located halfway between an installation and the complex center along
ona of the complex's two diagonals at one of the points L in Figure 12,
the CEDF value was 5660,

CASE VI. The initial DGZ was the geometric center of the target
complex. Figure 12 also presents this location and the optimal DGZ
location for PWM. At the initial DGZ location, the damage expectancy
(DE) for each installation was less than 0.17. PWM moved the DGZ in
tha +x direction and converged to a maximum CEDF value of 7776 and an
optimal DGZ location between installations 3 and 4. 'The DE for these
installations from this optimal DGZ was approximately 0.78; the DE for
installations 1 and 2 was approximately 0.001. 2ZXM did not move the DGZ;
the two gradient elements were () because tha initial DGZ was at the geo-
matric center of the complex.

Next, a variation of this example was examined. The initial DGZ
was moved one minute of longitude west and one minute of latitude north
(approximately 120 feet). PWM moved the DGZ in the +x direction as
before. However, the gradient elements were 10 longer O because the
initial DGZ was not at the geometric center of the complex. ZXM

79

T O A e b s i AL LIACKTRGAEREAE L ERE RARLAR AV ARAC Y PR CRTRCLUALA £ e NG SR RSN A )| G SRR SRR



et s e e T b AP N g I MR A AL Ly T e K K e B L LG R RGTR §id hube Baluihe §oh L BARALA LS BERREA BRSNS X LOR AT

converged to a CEDF maximum value of 7776 and an optimal DGZ location
between installations 1 and 3 with IV Fll = 0.0008. A possible expla-
nation as to why ZXM moved to this optimal DGZ is presented in the
next case.

CASE VII. Tie initial DGZ location was installation 1. Figure 12
also presents this location and the optimal DGZ locations. FWM again
moved the DGZ in the +x direction to a CEDF maximum value of 7776 and
an optimal DGZ location between installations 1 and 3. ZXM did not
move the DGZ towards the closest local maxiamum as it did in CASE VI,
Instead, ZXM moved the DGZ to'a CEDF maximum value of 7643 at an optimal
DGZ location between installations 3 and 4 with |7 Fl = 0.0017,

Investigation of the first 20 iterations of ZXM for this complex
provided a plausible explanation us to vhy ZXM couverged to this optimal
DGZ instead of the closest DG2. The geometriy of the complex was not a
square, but rather, a rectsngle. Hence at the initial DGZ, the two
gradient elaments were not axactly equal, The Xy gradient element was
0.0352. This was larger than the x, gradient element which was 0.0310.
Hence, the first iteration's search direction was above the diagonal of
the complex along the line U~U' in Figure 12. Figure 13 shows an
approximate curve of CEDF values, using seven known points, along U-U'.
%M located the point Wr, ZXM next searched along the line segment V-V'
through the point U* and the two potential local maximums V,* and VZ*.
Again, Figure 13 shows eu approximate curve of CECF values, using five
known points, along V-V'. From U%, ZXM located the optimal DGZ V,*.

In summary, ZXM does not z2lways move the initial DGZ towards the closest

local maximum,
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Figure 13. CEDF values along line segments U-U' and V-V' for the
_ symmetric four-installation complex.

; . Thase seven cases demonstrated two important ZXM maximization
characteristics, These characteristics depend on symmetry of the CEDF
U o gradient elements. This symmetry is a result of either the gecmetrical
‘ ) - symmetry of the target complex or the collocation of two or more similar
~ weapon types. This second characteristic, a minor limitation, prohibits
" . tha CEDF maximization algorithn from using collocated initial DGZs. The
. ' naxt chapter provides a description of initial DGZ locations for more

| typical, nonsymmetric target complexes.
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VI. Algorithm Results for Different Initial DGZ Locations

This chapter presents results of the CEDF maximization algorithm
using Jdifferent initial DGZ conditions. The important results are the
maximum CEDF value and the optimal DGZ coordinates. The three algorithm
maximization techniques are: ZXM, conjugate gradient optimization of i
the CEP-Excluded model; PWM, conjugate directions optimization of the
.CEP-Included model; and MXM, a mixed technique.

Four initial DGZ conditions were evaluated using three target
complexes. However, all four conditions were not matched with each of

the complexes. ‘The four initial DGZ conditions for m weapons against a

target complex were: (1) locating the weapons at the m highest valued i

(HV) installations, (2) locating the weapons at the m hardest instal- !

lations, (3) locating the wespons at the complex's centroid, and ;

(4) locating the weapons at m pseudo-rarkiom points. !
Intuitively, the most logical initial DGZ coundition was the highest ‘

valued installations, arxl the least logical condition was random loca~ ;

tions. The HV condition was a greedy condition; it started with the

maximum damage on the m most valuable installations and then searched

for other DGZs that provided an increase in the CEDF value. The random

locations condition was not completaly evalueted. Instead, for a two-

weapon complex, aix pairs of initial DGZs were evaluated, and the six

CEDF values and optimal DGZs were compared to each other. The coordinates

of one of the initial DGZs in each pair were fixed and common to all

pairs. The coordinates of the other initial DGZ were changed for each

nf the six .pairs and the respective six runs of the CEDF maximization
82
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algorithm. The results of these pseudo-random initial DGZ locations
provided additional insight concerning different initial DGZ locations.

The three target complexes incliuded three, four, and seven instal-
lations. The CEDF maximization algorithm located optimal DGZs for one,
two, or three weapons against these complexes. However, each complex
was not matched with each of these number of weapons. That is, the
three-target complex was only evaluated using one and two weapons, not
three. The highest valued installation in any of the complexes was
9000, Hence, for the convergence control parameters, the algorithm
generally used values of ACC = 0,001, DFPRED = 1000, E = 0,1, and
ESCALE = 5000.

Three conclusions were made from the results of these examples.
First, the algorithm requires some indication of a potential increase
in CEDF value in order to move a DGZ., Second, there is a difference
betwean the optimal DGZ coordinates from the CEP-Excluded model using
ZXM meximization and those from the CEP~Included CEDF model using PWM
maximization. This difference depends on a weapon's CEP and the CEDF
model and not on the optimization technique. Third, the initial DGZ
coordinates that the algorithm uses can affect the maximum CFDF value
and the optimal DGZ coordinates. Statistical evidence of these con-
clusions is not presented. Rather, specific examples are presented that

indicate the conclusions are not invalid.

A Three~Installation Complex

CEDF maximization algorithm results were analyzed for one and two

weapons against a three-installation complex using different initial DGZ

conditions. Figure 14 shows the geometry and specific parameters of the
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Ingtallation 2 Weapons:
- eet
(10'30" E,03'55" N) HOB = 1000 feet

Pa = (0,99
M DGZ 1 g (10'09" E, 03'27" N)
PWM DGZ 1 /ﬁ (10'06" E, 03'23" N)
X
Installation 1
16P2 DGz 2 A

Installation 3
18P4

4000
(11'20" E, 03'05" N)

5000
(10'00" E, 03'15" N)

Figure 14, A Three-Installation Complex.

target complex. The total available target value for the complex, reduced
by each woﬁpon's Pa, was 10890. Figure 14 also shows the optimal DGZ
coordinates for the highest valued (HV) initial DGZ condition using ZXM
and PWM maximization. DGZ 2 was installation 3. The ZXM algorithm con-
verged to a maximum CEDF value of 9812 or 90% of the complex value and to
optimal DGZ coordinates with W VF | = 0,00036. Similarly, PWM converged

to a maximum CEDF valua of 9223 or 85% of the complex value. The damage
expectancy (DE) for installations 1, 2, and 3 from ZXM maximization were
0.96, 0.53, and 0.99. The algorithm did not move DGZ 2 from installation 3
and moved DGZ 1 from installation 1 towards installation 2. However, the
two algorithms located the optimal DGZ 1 coordinates 480 feet apart.

This difference was less than the CEP of 600 feet and initially appeared
84




insignificant. However, the differences tetween ZXM and PWM maximum
CEDF values and DGZ 1 coordinates were important; these differences do
not indicate ZXM is a better algorithm. These differences depended on
the CEDF model and are discussed in more detail in the next subsection.
The CEDF maximization algorithm also converged to a local CEDF
maximum for the centroid initial DGZ condition. ZXM converged to a
CEDF valus of 6932 and to optimal DGZ coordinates with | ¥V F|| = 0.00003;
PWM converged to a CEDF value of 6910. However, these optimal DGZ
locations were not the same locations as determined using the HV ini-

tial DGZ condition. Instead, ZXM and PWM moved the DGZs towards instal-

lations 1 and 2 until the DE for each installation were greater than 0.99.

The final DE for installation 3, the second most valuable installation,
was less than 0,00l. The total available target value for installations
1 and 2,reduced by each weapon's Pa,was 6930; this was the same CEDF
value as determined by ZXM meximization. These optimal coordinates,

which were different and less valuable than the HV initial DGZ condition's

| optimal coordinates, were also identified by three pairs of the pseudo~
random initial DGZ condition.

Six pairs of the pseudo-random initial DGZ condition were also
evaluated, Figure 15 shows the initial DGZ locations and the respective
optimal DGZ locations for ZXM maximization for two cases. It also shows
the approximate weapons radius (WR) for each installation. For all six
pairs, PWM maximization, using the CEP-Incluced CEDF model, converged to
the same optimal DGZ locations as determined by the highest valued ini-
tial DGZ condition. The pictorial results in Figure 15 are for ZXM
maximization using the CEP-Excluded CEDF model.
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Figure 15. Pseudo-random initial DGZ conditions.

Cage I. For the initial CGZ locations -- 1-1', 2-2', and 6-6' --
ZXM converged to a maximum CEDF value of 9810 or 90% of the complex value
and to optimal DGZ coordinates with YV FI < 0,004, This was the seme
CEDF local maximum that the HV initial DGZ condition located.

Case II. For the initial DGZ locations == 3-3', 4-4', and 5-5' ==
ZXM converged to a maximum CEDF value of 6932 or 647 of the complex value
and to optimal UGZ coordinates with |9 F < 0,0004. This was the same
CEDF local maximum that the centrrcid initial DGZ condition located. Each
of the optimal DGZ locations are slightly different locations; however,
each of the locations are equivalent. ZXM moved from 3-3', 4-4', and
5-5' towards installations 1 and 2 until the DE for these installations

was greater than 0.99.

A possible explanation exists for the difference between the two
CEDF local maximums for the two cases. The Case I initlal DGZ locations
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each had one initial DGZ (1', 2', and 6') within the WR of one of the
two highest valued installations. The other initial DGZ (1, 2, and 6)
was outside the WR of all installations. Alternately, the Case II
initial DGZ locations had neither of the initial DGZs within the WR of
the two highest valued installations. Hence, for Case II, the algorithm
moved one initial DGZ location (3', 4', and 5') towards installation 2
and the other initial DGZ location (3, 4, and 5) towards installation 1,
the mout valuable one. Figure 4 shows that the probability of achieving
a specified level of damage to an installation at the WR is less than 0.5.
Using WR to interpret CELF local maximums is not a definitive technique.
However, the relationship between the location of an initial DGZ and an
installation's WR does provide insight and a possible explanation for
the two CEDF local maximums.

In sumary, these results point out the first of three conclusions
of this study. The CEDF maximization algorithm requires some indication
of a potential increase in the CEDF in order to move a DGZ. That is, if
there is no indication of a CEDF increase in the direction of a valued
installation and there is an indication of a CEDF increase in the direc~
tion of a lesser valued installation, then the algorithm may move the
DGZ towards the lesser valued installation. Eventually, the algorithm
will converge to a less valuable CEDF local maximum.,

Using the CEDF maximization algorithm to evaluate one weapon against
this three-installation complex produced similar results for three ini-
tial DGZ conditions. For the highest valued condition, ZXM started from
installation 1 and converged to a CEDF maximum value and an optimal DGZ

with | VPl = 0.00030. The coordinates of this DGZ coincided with the
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coordinates of one of the two-weapon HV condition DGZs. Similarly, PWM
converged to the same optimal DGZ location as one of the two-weapon HV
condition DGZs. This result indicated that the two weapons against the
three installations were not dependent but rather, unrelated DGZs. The
fact that DGZ 2 never moved from installation 3 for the two-weapon exarm-
ple also indicated that the two DGZs were independent.

A comparison between the one-weapon centreid initial DGZ condition
results and the *io-weapon HV initial DGZ condition results indicated the
sensitivity of the gradient. Both of these examples located an optimal
DGZ at 10'09" E - 03'27" N. However, when the optimal coordinates in
feet were compared, the two DGZs were approximately 30 feet apart, For
one DGZ, the |V Fll= 0.00031; for the other NGZ, only 30 feet away,

| ¥FA= 0.00760.

For the hardest initial DGZ condition, neither ZXM nor PWM moved the
one wespon initiel DGZ., The DGZ started at installation 3 and remained
there. The | VFi = 10"5 at this point. The CEDF value for ZXM was
3962 or 997 of the value of installation 3; the CEDF value for PWM was
3918 or 98% of the value of installation 3. The difference in these

CEDF values depended on the CEDF model and are discussed next.

The CEP Effect

CEDF maximization algorithm results for the three-installation
complex using differcnt initial DGZ conditions point out the second
conclusion of this study. Both a weapon's CEP and the CEDF model used
to maximize the CEDF affect the maximum CEDF value and the optimal DGZ
coordinates. Specific results from three previous three installation

examples provide evidence to support this conclusion.
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First, the results from the one weapon-three installation complex
using the hardest installation initial DGZ condition highlight this dif-
ference between the two CEDF models. The CEP-Excluded CEDF model, using
7XM maximization, converged to a CEDF value of 3962; the CEP-Included
CEDF model, using PWM maximization,converged to a CEDF value of 3918.

The optimal DGZ coordinates for these algorithms were within 1 foot of
each other. The differerce in CEDF values was attributed to the CEDF
models. The Pdi,j for the CEP-Excluded model does not include weapon
accuracy or CEP. This probability is the distance damage function value,
Py(r). The Pdi,j for the CEP-Included model does include weapon CEP.
Hence, this probability is less than Pd(r). Consequently, the PWM
damage expectancy for an installation is less than the ZXM damage ex-~
pectancy for the same installation.

The second example that supports the conclusion was the two weapon-
three installation complex using the highest valued initial DGZ condition.
Analysis of this example's results provided an explanation for the CEDF
differences between ZXM and PWM. Figure 14 shows the optimal DGZ coordi-

nates for these algorithms. Only DGZ 1 coordinates are considered;

DGZ 2 coordinates were the same for both algorithms. PWM converged to
optimal DGZ 1 coordinates approximately 480 feet closer to installation 1
than ZXM. Two additional initial DGZ conditions were necessary to fur-
ther investigate this difference. For the initial DGZ coordinates, the
first condition used the PWM optimal coordinates; the second condition
used the ZXM cptimal coordinates. Table IV presents the final coordinates
and CEDF values from these initial DGZ conditions. The coordinates are
in feet and, even though they appear different within the three optimi-
zation categories, they are not. 'The ZXM coordinates were
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TABLE IV

Comparison of ZXM, PWM, and MXM Optimal DGZs

Initial ZXM CEDF ZXM PwM CEDF P MXM CEDF MXM
DGZ Values Final Values Final Values Final
Condition | Start End 1location | Start End Location | Start End Location
Highest

Value 8985 9812 | 858,1039 || 8972 9220 | 585,642 | 9009 9223 | 664,627
PWM

Optimal 9480 9813 | 837,1055 || 9222 9222 | 643,629 | 9008 9218 | 660,593
XM

Optimal 9812 9812 | 824, 976 || 9073 9223 | 627,632 | 9009 9223 | 639,638
Mean

Values 9812 | 840,1023 9222 | 618,634 9221 | 654,619

10'09" E ~ 10'27" N and the PWM and MXM coordinates were 10'06" E - 03'23" N,
Using PWM optimal DGZ coordinates as the initial DGZ coordinates, the
algorithm produced three regults. First, the PWM optimal DGZ location was
the initial DGZ location. Secornd, the PWM optimal DGZ coordinates, the
initial coordinates, were not optimal for ZXM. At these initial DGZ coor-

dinates, the ZXM CEDF value was 9480, ZXM maximization moved the DGZ from
10'06" E - 03'23" N back to 10'09" E - 03'27" N and a maximum CEDF value
of 9813, ZXM optimal coordinates are initial DGZ coordinates for the mixed |
technique, MXM. Third, these initial MXM coordinates were not optimal
for MM. At these DGZ coordinates, the MXM CEDF was 9008. MXM maximi- ‘
zation moved the DGZ from 10'09" E - 03'27" N back to 10'06" E - 03'23" N,

the PWM optimal DGZ coordinates, and a maximum CEDF value of 9218,

The algorithm produced three similar results when it used the ZXM
%"
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optimal DGZ coordinates as the initial DGZ coordinates. First, the ZXM
maximization optimal DGZ location was the initial DGZ location. Second,
the ZXM optimal DGZ coordinates, the initial coordinates, were not opti-
mal for PWM. At these initial DGZ coordinataes, the PWM CEDF value was
9073. PWM maximization moved the DGZ from this initial DGZ back to
10'06" E - 03'23" N and a maximun CEDF value of 9223. Third, the ini-
tial coordinates, 10'09" E - 03'27" N, again were not optimal for MXM.

At these coordinates, the MXM CEDF value was 9009. MXM maximization
moved the DGZ from this initial DGZ location back to 10'06" E - 03'23" N
and a maximm CEDF value of 9223,

Finally, analysis of a third three-installation complex provided
further ingight into the capability of the CEDF models. In the previous
axample, the mixed technique moved the DGZs from the ZXM optimal DGZ
coordinates to the PWM optimal DGZ coordinates. However, this readjust-
ment did not occur in all examples., For instance, ZXM maxiinization for
the pseudo~random initial DGZ pairs, 3-3', 4-4', and 5-5', converged to
optimal coordinates that were different from the PWM optimal coordinates.
The PWM optimal coordinates were the HV coordinates; the ZXM optimal
locations were near installations 1 and 2. The mixed technique was um-
able to move the DGZs from these ZXM optimal coordinates to the PWM
optimal coordinates. The | ¥ Fll < 0,004 for each ZXM local maximum.,

These CEDF maximization algorithm results indicated that each CEDF
modal located a unique set of optimal DGZs. This occurred because of
the differerca in Pdi, j for the two models. Pdi’ j is larger for the
CEP=Excluded model than it is for the CEP-Included model.
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Installation 2
22P2
2500

Installation 1
16P2
3500

Weapons:
yield = 70 kt HV DGZ 2
CEP = 250 feet
HOB = 1000 feet Installation 4

Pa = 0.99 19Q3
7000

Figure 16. Multiple local optimal DGZs for a two weapon four installation complex.

Latger Complaxas
| For a four-installation complex using the four initial DGZ conditions,

the CEDF maximization algorithm produced results similar to the results
for the three-installation complex. Figure 16 shows the ge metry and
specific parameters of the target complex. The total available target
value for the complex, reduced by each weapon's Pa, was 17820. Figure 16
also shows the optimal DGZ locations for seveval initial DGZ conditions.
Four local CEDF maximums and their respective optimal DGZ pairs were
located for this complex: the HV (highest valued) DGZs, 1-1', 2-2',
and 3-3',

Again, ZXM and PWM located their highest valued DGZ 1 at slightly
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different coordinates. The difference between the two locations was 90
feet, ZXM converged to a CEDF maximum value of 15434 or 877 of the com-
plex value and to optimal DGZ coordinates with WV Fl = 0.00056. As
with the three-installation complex, the ZXM optimal DGZ coordinates
were not optimal for PWM., The mixed technique moved DGZ 1 from the ZXM
optimal DGZ to the PWM optimal DGZ and a CEDF maximum value of 15142 or
85% of the complex value.

The three remaining local CEDF maxima appear to be related. When
the initial DGZ condition was two weapons at the complex's centroid,

ZXM converged to a local CEDF maximum value cf 10921 and to the optimal
DGZ pair 3-3' with AV Fl = 0.0007, Similarly, when the initial DGZ
condition was the two hardest installations, PWM converged to a local
CEDF maxinum value of 10798 and to the optimal DGZ pair 2-2'. ZXM and
the same initial DGZ condition produced a third local CEDF maximum.

When the initial DGZ condition was the hardest installations, ZXM
converged to a CEDF maximum value of 11431 and to the optimal DGZ pair
1-1' with Wy Fli= 0.0027. This optimal DGZ pair had a larger CEDF
value than the pairs 2-2' and 3-3', Yet, it had a smaller CEDF value
than the pair of highest valued DGZs.

The local CEDF maximum for PWM, when the initial DGZ condition was
two weapons at the complex's centroid, was the same local maximum as
determined using the highest valued initial condition. Additionally,
this local maximum was located hy all eight of the pseudo-random initial
DGZ conditiona.

Results of the CEDF waximization algorithm using only one weapon
against this four-installation complex were examined. ZXM and PWM,

using the centroid initial DGZ condition, converged to the highest
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valued DGZ l- in Figure 16. This is one of the two op’imal DGZ loca-
tions determined by the two weapor. evaluation. ZXM converged to a CEDF
maximum value of 8547 or 78% of the value of installatioms 1, 2, and 3
and to an optimal DGZ location with | ¥ Fl| = 0.0015. PWM achieved a
CEDF maximum value of 8252, Next, the algorithms used the highest
valued initial DGZ condition for one weapon. Neither algorithm moved
the optimal DGZ from the initial DGZ, installation 4. 2ZXM and PWM
terminated with a CEDF maximumm value of 6930.

The CEDF maximization algorithm's results for the three and four-
installation complexes point out the last conclusion of this study. The
most likely to succeed initial DGZ condition is to use the coordinates
of the m highest valued installations as the initial DGZ coordinates.

~ For all examples considered, the other three initial DGZ conditions

located at least one local CEDF maximum that was less valuable than the
local CEDF maximum determined from the highest valued initial DGZ
condition., However, there is always an exception. The CEDF results of
the simple one weapon-four installation complex indicated the HV initial
DGZ is not always the best. For this reason, the CEDF maximization algo-
rithm doas not include a decision structure to determine the initial DGZ
condition to use. Sometimes, one condition may be more likely than
anvthar to succeed and to achieve the most valuable local CEDF maximum.
The rasults of a three weapon-seven installation complex were ana-
lyzed to further define the CEP effects of the two CEDF models. Only
three CEDF maximization algorithm runs were made with this complex. For
the tliree runs, all weapon and installation parameters remained constant
except each weapon's CEP, and the algorithm used the highest valued
initial DGZ condition. Using each weapon's CEP = 0 feet, the algorithm
94

A A S e e SRAE. BTL B B W WL B L Sn B B BN B WY B BL ST W UL B U W 07 W R ol



o o s N e Py T ety ULt W R -
[ ot - o SIA N Al AP ot iarh St AN A P P e VL P

converged to a CEDF maximum value and optimal DGZ coordinates for the
three weapons. Each weapon's CEP equaled 250 feet for the algorithm's
second run. For this example, the ZXM optimal DGZ coordinates remained
the same, as they should have. The PWM optimal DGZs were along line
segments between the highest valued initial DGZs and the optimal DGZs
from the first run when each CEP was O feet.. However, because each
weapon's CEP > O, each of the second run optimal DGZs were slightly
closer Lo their respective highest valued initial DGZ. Similarly, each
weapon's CEP .was 400 feet for the algorithm's final run. Again, the
PWM optimal DGZs were along the same line segments as the optimal DGZs
of examples one and two. These optimal DGZs were even closer to their
regpective highest valued initial DGZ., Thus, the effects of each wea-
pon's CEP need to be included in locating optimal DGZ coordinates in a
target complex.
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VII. Conclusions and Recommendations

The primary objective of this study was to investigate optimal DGZ
locations within a target complex. In order to accomplish this, it was
necessary to develop the Complex Expected Damage Function (CEDF) maxi-
mization algorithm. The algorithm locates optimal DGZ coordinates for
multiple nuclear weapons against installations in a target complex. It
does this by maximizing the expected target value damage for all instal-
lations. The two subobjectives of this study were to determine the sen-
sitivity of the algorithm's results, the maximum CEDF value and the opti-
mal DGZ coordinates, to two factors: first, the mathematical technique
used to locate the optimal DGZs; second, the initial DGZ locations prior
to CEDF maximization. This chapter discusses these objectives and their

" associated conclusions.

The CEDF maximization algorithm contains two related algorithms,
and both of these include two elements. The first element is the CEDF,
a mathematical model of the total complex expected target value damage.
The CEDF is an unconstrained, nonlinear function of 2m variables == the
(Xi’Yi) DGZ coordinates for each of the m weapons. There is a CEDF model
for each of the related algorithms. The basic element of each model is
Pdi, j the probability of achieving a specified level of damage to
installation j from weapon i. This study ve=2d two forms of the Pdi, 3
function; both forms depend on the DIA Physical Vulnerability system.
The major difference between the two CEDF models is their respective
Pdi, J expressions, The CEP-Excluded CEDF model assumes each weapon's
CEP is O feet. This simplifying assumption results in two conditions:

a less complicated mathematical expression for the CEDF and a closed-
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form analytical expression for the gradient of the CEP-Excluded CEDF,

The CEP-Included CEDF model includes each weapon's CEP; it is a more
complicated expression.

The second element of the algorithm is a nonlinear optimization
technique that maximizes the CEDF models and locates the corresponding
optimal DGZs. Since an analytical expression for the gradient of the
CEP-Included CEDF model was not available, the algorithm maximizes this
CEDF using a direct search technique -- Powell's method of conjugate
directions, PWM, This numerical search technique requires only func-
tion evaluations to locate a local maximum. Conversely, an analytical
expression for the gradient of the CEP-Excluded model was calculated.
The algorithm maximizes this CEDF using a gradient search technique ==
a conjugate gradient with restarts method, ZXM. The algorithm also
contains a third CEDF maximization technique. -- a mixed technique, MXM.
This technique consists of two stages, an initial ZXM stage and a PWM
stage. The optimal DGZ coordinates from the Z¥M stage hecome the initial

DGZ coordinates for the PWM stage.
The CEDF maximization algorithm was verified and validated using
two, three, and five-installation target compiexes., The CEDF maximum

value and optimal DGZ locations for two example problems were also com=-
pared with results from NUCWAVE. NUCWAVE is a one-sided nuclear weapons
allocation war gaming model. It also optimizes the damage to a set of ‘
installations using a finite number of weapons. However, NUCWAVE deter- |
mines a sequential optimal solution; it optimizes one weapon at a time

until no increase in complex damage is possible. The comparisons be-

tween the results from the CEDF maximization algorithm and from NUCWAVE

for two and five-installation target complexes indicated that the
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algorithm determines the same local maximum as NUCWAVE.

A symmetric one weapon-four installation complex was designed to
have four local maximums, CEDF results from this complex were analyzed
and pointed out two ZXM maximization features, an operational charac=-
teristic and a limitation., These features depend on the two types of
gradient symmetry. There is gradient symmetry from either geometrical
symmetry of the target complex or collocation of two or more similar
weapon types. The second type of symmetry is a limitation and prohibits
ZXM maximization from using :ollocated initial DGZs.

Further analysis of three and four-installation target complexes
indicated the presence of multiple local CEDF maximums. A two weap:n-
three installation target complex was analyzed using CEDF algorithm
results., There were two distinct local CEDF maximums and two corres-
ponding pairs of optimal DGZs, Similarly, a two weapon-four installation
complex was analyzed. There were three distinct local CEDF maxirums and
three curresponding pairs of optimal DGZ3. The CELF maximization algo-

rithm located these local maximums using different initial DGZ conditions.

For both complexes analyzed, one local maximum was definitely the highest
valued local maximum for the complex.

Conclusions

The first subobjective was to determine the sensitivity of the re-
suits of the CEDF maximization algorithm to the mathematical technique
used to locate the optimal DGI.. Two conclusions of the study empha-
size the differences in CEDF iresults for the two CEDF models and their
respective optimization techniques -- ZXM and PWM.

First, the algorithm requires some indicaticn of a potential
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increase in CEDF value in order to move a DGZ. That is, if there is no

indication of a CEDF increase in the direction of a valued installation
and there is an indication of a CEDF increase in the direction of a
lesser valued installation, then the algorithm will move the DGZ towards
the lesser valued installation. Eventually,the algorithm may converge
to a less valuable CEDF local maximum.

The second conclusion is that a weapon's CEP and the CEDF model
affect the CEDF maximum value and the respective optimal DGZ coordinates.
All three, four, five, and seven-installation target complexes analyzed,
that used weapons with CEP > 0, confirmed this conclusion. ZXM optimal
DGZ coordinates were not optimal for PWM; similarly, PWM optimal DGZ
coordinates were not optimal for ZXM. Results indicated that each CEDF
model located a unique set of optimal DGZs; however, the distance dif-
ference between a ZXM and a PWM optimal DGZ was less than the weapon's
CEP. This difference occurred because of the difference in Pdi’ j for
the two models. For a weapon i-installation j interaction, Pdi, 3 is
larger for the CEP-Excluded model than it is for the CEP-Included model.
This is because the CEP-Included Pdi, j is reduced by a factor that
depends on the weapon's CEP,

The second subobjective was to determine the sensitivity of the
results of the CEDF maximization algorithm to the initial DGZ locations
prior to optimization. Four initial DGZ conditions were evaluated using
three and four-installation target complexes. The four initial condi-
tions for an m-weapon complex were: (1) locating the weapons at the
m highest valued installations, (2) locating the weapons at the m hardest
installations, (3) 1locating the weapons at the complex's centroid, and

(4) locating the weapons at m pseudo-random points. The algorithm
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using these initial DGZ conditions located more than one local CEDF
maximum for three and four-installation complexes. Thus, the last con-
clusion of the study emphasizes that no single initial DGZ condition
always locates the most valuable local CEDF maxinum. Hence, the algo-
rithm does not include a decision structure to determine the correct
initial DGZ condition. However, this conclusion alsu indicates that the
most likely to succeed initial DGZ condition is to use the coordinates
of the m highest valued installations as the initial DGZ coordinates.

This investigation characterized three facturs that affect the
optimal DGZ locations for multiple nuclear weapons in a target complex.
The first factor was gradient symmetry; this symmetry resulted from either
a geographically symmetric target complex or collocated weapons. The
second factor was weapon CEP, Maximization of the two CEDF models pro-
duced slightly different optimal DGZs; this difference depended on a
weapon's CEP and the CEDF model. The third factor was the initial DGZ
location prior to CEDF maximization. The algorithm located different
CEDF local maximums depending on the initial DGZ condition.

Recommendations

The weapons analyst can use the algorithm to solve large targeting
problems that inclwde many complexes and different types and numbers of
weapons. The algorithm can be a valuable sensitivity analysis tool to
investigate weapon allocation tradeoffs. The analyst can evaluate the
changes in total complex expected target value damage as a result of an
increase or decrease in the number of weapons available to a target
complex. Similarly, the analyst can estimate the effects that changes

in a weapon's yield, CEP, or Pa can cause to the optimal DGZs.
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Tt.e CEDF maximization algorithm does have some limitations. How-
ever, there is a specific improvement or recommendation associated with
each limitation. The fellowing recommendations would provide a more
capable algorithm for strategic targeting studies:

1. Currently, the algorithm accomplishes only two-dimensional
location of optimal DGZs; the user provides each weapon's height of
burst. Optimization of each weapon's height of hurst could be added
to the algorithm.

2. Currently, the algorithm only allows military/industrial tar-
gets that are modeled as point targets. The algorithm could be modified
to include area targets, equivalent area targets, and target avoidance
areas.

3. In an analogous manner, the algorithm only includes blast damage
effects for these point targets. Other nuclear weapon damage effects
could be added to the model.

4. Similarly, other optimization techniques could be used to

‘ further investigate and characterize the CEDF local maximums for a
target complex.

5. User-specified constraints 'that establish a minimum acceptable
Pd for some or all installations could be included. This addition would
provide a new initial DGZ condition. That is, locate the weapons at
the installations with the largest minimum Pd.
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Appendix A: Determination of the Distance
Damage Sigma (oy) and the Weapon Radius (WR)

The parameters ¢; and WR are necessary to calculate :the probability
of achieving a specified level of damage to installation j from weapon i.
1. Distance damage sigma,s;. The value of o; depends on the T factor
of an installation's VNIK code, Table A-l lists the T factors and
their associated o; values. This table was extracted from NUCWAVE
Model Methodology Analysis (Ref 25:3-4).
2. Weapon Radius, WR = f(weapon and installation parameters), The cal-
culation of a WR depends on the concept of yield scaling. The following
information on yield scaling is based upon Glasstone and Dolan's presen-
tation in The Effects of Nuclear Weapons (Ref 11:100).

"In order to calculate the charactaristic properties of the blast
wave from an explosion of any given energy if those of another energy
are known, appropriate scaling laws are applied" (Ref 11:100). A
e 1-kiloton nuclear explosion is the reference explosion for nuclear
weapon calculations. Fressure vs range data have been tabulated and
graphed for the l-kt reference explosion. Also, the distance scaling
laws use the cube root of the weapon's yield as the scaling factor.

That is, if a pressure is experienced at a ground distance d) from a
1=kt reference explosion, then this same pressure value will be experi-

enced at a distance d, from a w-kiloton explosion.

d, = dl(w)1/3

The needed pressure vs range (dw) data for a w~kiloton explosion can
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TABLE A-1

Distance Damage Sigma and Target Type

T Factor
P Targets Q Targets ay
L R 0.1
P S 0.2
M Q 0.3
N T 0.4
0 ] 0.5

ba determined using the scaled distance dl. Therefora, to determine
either the overpressure or dynamic pressure from an explosion of w-kt,
all distances need to be transformed to the l-kt scaled reference frame.
The amount of pressure an installation experiences is the primary deter-
minant of tha installation's probability of damage.

Weapon and installation paramaters are needed to determines the WR.
The weapon parameters needed are the yield (Y) and the height of
burst (HOB). The HOB and the subsequently calculated scaled weapon
radius (SWR) are the two distances that need to be yield scaled. HOB
is scaled to start the formulation; after the SWR is calculated, it is
inversely scaled to specify the WR. The only installation parameter
necassary to calculate the WR is the VNIK code. The following presen-
tation is based upon the material in Mathematical Background and Pro-

gramming Aids fo: the Physical Vulnerability System for Nuclear Weapons
(Ref 6:57-61).

Y) 1/3

WR = SWR (A.1)

1-0;,a
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The parameter c is a constant that equals either 0,96 for overpressure
sensitive installations or 0.9l for dynamic pressure sensitive instal-

lations. The SWR is calculated from the scaled height of burst (SHOB)
and the adjusted VN number (VNadj)‘

HOB
SHOB = E-)-l/B

VNadj = VN + AVN

AVN= 5,485 In(R) for ove.pressure sensitive installations
= 2,742 In(R) for dynamic pressure sensitive installations
An iterative procedure is used to calculate the VN adjustment factor R

1/3

1.k, K 20 e
Rel-9%*10 5 R

K is the installation's K factor and the exponent e equals either 1/2 for

overpressure sensitive installations or 1/3 for dynamic pressure sensitive

installations.

SR = expf(w,mj,swoa)
The function, f(VNadj,SHOB), is a polynomial exprassion whose coefficients
are available at 100-foot increments of the SHOB between 0 and 900 feet. !
Hence, the SWR is derived by linearly interpolating between a low SWR,
that is calculated from a low SHOB, and a high SWR, that is calculated |
from a high SHOB. For example, for « SHOB of 632 feet, a SWR low is 1
calculated for a SHOB of 600 feet and . SWR high is calculated for a SHOB
of 700 feet. The nctual SWR is a linear interpolation of the high and
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low SWRs. Other algorithms use a table look-up with parameters, SHOB
ard VNadj’ to specify the SWR (Ref 19 and 25). The SWR is inversely
yield scaled using Eq (A.l) to determine the WR.
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Apperdix B: Formulation of f(r) and

Calculation of the Integration Limits

This information is based on material in Mathematical Background

and Programming Aids for the Physical Vulnerability System for Nuclear
Weapons (Ref 6:69-75).

The probability of achieving a specified level of damage to instel-
lation j from weapon i depends on weapon and installation parameters.

LT o - f—%
1 o
Pdi,j - SSPd(r) m e r dr d& (B.1)
o¢

where Py(r) = distance damege function
¢ = CEP/1.1774
V(r,G) = (r2 + 82 - 2rs coaﬁ-)l/2

A closed form solution to Eq(B.l) does not exist; however, an analytical
approximation does,

Pdi,j - Sf(r) dr (B.2)
C
_ 2“-_(;2 + g% = 2rs cos®)
where £(r) = P (r)r -;-LE Sa o< do (B.3)
LNno

0 |
Eq(B.3) can be rewritten using a zeroth order modified Bassel Function,

Io(x) (Ref 19:378).
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(2 + s?)
- = o Zo* Is
E(r) = By(r) o e IO<UZ) (3.4)

Pd, 3 is calculated using normalized distance variables and Eq (B.l).
’

That is, r, s, and WR are divided by o , the standard deviation of the
circular normal distribution.

lat ¢’ --;— = the normalized distance between the installation and the
; impact point
dr' = édr = the normalized differential element of r
s' -a'.- = the normalized distance between the installation and

. the DGZ
WR' = %R; w the normalized weapon radius

Then Eqs (B.2) ard (B.4) become

Pdi,J - Sf(r')dr' (B.5)
0

- (r.)z + (s')Z
<

where f(zr') = Pd(r')r' e Io(r's') (B.6)

A polynomial approximation of the zeroth order modified Bassel function,

Io(r'u'), specifias a value of £(r') for a given r' (Ref 1:378).
Eq (B.5) can ba rewritten as a definite integral with limits of inte-
gration, a and b, such that f£(x') =0 for r'<a or r'>hb.
b
Pdi,j - Sf(r')dr' (B.7)
a

Therefore, it is necessary to determine a, the smallest possible value
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CASE I 0<s' <4

two i:\rthest ssible
pact points
b = min(s' + 4, R')

closest possible
impact point (a = 0)

O DGZ
4 installation

ASEII  &'>4 % impact point

two farthest possible
impact points

‘ closest possible
| b = min(s' + 4, R') e

S

Figure B-1 Weapon-installation geometry tu determine a and b

of r', and b, the largest possible value of r'. These limits depend on
weapon accuracy limitations and distance damage limitations. The weapon-
installation gaometry necessary to determine the limits of integration,

a and b, is shown in Figure B-1l. 'Iwo cases are examined.

Case I. The normalized distance batwaen the installation and the
DGZ is less than 4 (0%s'w4). Tha distance hetween the closest |
pessible impact point and the installation is r' = 0, The dis- |
|
|

tance betwean the farthest possible impact point and the instal-
lation is the minimum of either r' =8' + 4 or r' =R' w
1.06"WR'exp(2.86% g4 ), The point at r' = s' + 4 corresponds to
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the maximum distance from the DGZ, ¢’ , that a weapon could be
expected to impact., The probability that a weapon would impact
farther than ¢ = 40 1is less than 0,00005. Similarly, the point
at r' = R' corresponds to the maximum distance from the instal-
lation, r', that the weapon could detonate and expect to damage
the installation. The Pd(r) for r' > R' is less than 0.0005.
R' may be eithar greater than, aqual, or less than s' + 4.

Case II. The normalized distance between the installation and the
DGZ is greater than 4 (s' > 4). The distanca between the closest
possible impact point and the installation is r' = a' « 4, The
distance betwean the farthest possible impact point and the instal-
lation is again the minimum of either r' =s' +4 or r'=R'.

Therefora, a = max (0, 8' - 4) and b =min (s' + 4, R') (Ref 6:73).
Eq (B.7) can be evaluated using Gauss-Legendre Quadrature between the
limits, a and b,

10
Pd, , = SR8 < we(r! (B.8)

whers ' __(.b__;__a_)_ 22

$a+b2
k YT

k

and f(r'k) is Eq (B.6). Gausa-Legendre, the quadrature points, 22,
and the coefficients, W, ars explained in Appendix C.

Eq (B.8) is evaluated to determine the probability of achieving a
specified level of damage to installation j from weapon i.
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Appendix C: Gauss-Legendre
Quadrature to Integrate £(r')

Gauss-lLegendre quadrature is a numerical integration technique that
approximates a definite intsgral as a finite series (Ref 27:125). Each
term is a weighted function value,

The serias to approximate a definite integral along the interval [—l,IJ
by Gauss-Legendre is

1 n
S £(y)dy = > w *E(y, ) + Ry (C.1)
1 kel

vhere ww, = quadrature coefficlents
Yo " quadrature base points
R = remainder (negligible)
n = number of quadrature points

Gauss-Legendrs integration differs from syninetric, trapezoidal numerical
integration. In Geuss-Legendre, the distancesbetween the Yi base points
along the abscissa are not equal. The points are spaced symmetrically,
yet unaqually, with respact to the midpoint of the interval [-1,1], the
origin. See Figura C-1, This method is mora efficient than equal
spacing trapezoidal methods because it requires fewer function evaluations
to achieve comparabla accuracy (Ref 15:378). The quadrature coefficients
Wi are pocitive numbers between O and 1; they are weights for the

f (yk) values.

The quadrature coefficients and weights are calculated from the nth
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and Yk < yk+1

‘_'."—"—'.-—
fly;)  + /
e
o e f(Y4) |
— - |
'100 l ;
T
) ’ y3 v, Y Ye Yq Ys Yo Y10

where'yk|-|yn_(k_l)l for k= 1,.,.,n/2

for k - 1,...,0-1

Figure C-1.

Quadrature base points

Legendre polynomial, Pn‘ The base points, Yy are the k=1,..,,10 zeros

of Pn(y). Similarly, the coefficients, ww, ; are calculated from Pn(y)
and the Yie (Ref 1:888). Table C-1 lists the base points and coefficients
for n =10 (Ref 6:74 and 27:131).

However, to calculate Pd

1,]

the interval of integration is not {-1,1],

but rather, it is [g,b]. For this interval of integration, the quadrature

base points, coefficients, and limits of integration specify the trans-
formed variables, L and r (Ref 1:887). Eq (C.l) becomes

b

Sf(y)dy - Gy

o

k=1
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TABLE C-1

Quadrature Base Points and Coefficients

n yk Wk

1, 10 | ©.9739065285 0.0666713433

2, 9 0.8650633667 0.1494513442
38 0.6794095683 0.2190863625
4, 7 0.4333953941 0.2692667193
5, 6 0.148874339 0.2955242247

where i, - (-13—;—3) W

o b-a) (a_+b)
S T7 Nt T
This finite series is used to calculate Pdi j° For each k = 1,...,10,
?
an r, and associated f(rk) is calculated.
N2 4 (q1)2
- N - AV et
f(rk) £(x') Pa(r )r' exp Io(r ')

11unaf(rk) is weighted by L and summed to form Pdi y°
’
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Appendix D: Computer Code of the
CEDF Maximization Algorithm

This appendix presents a glossary of the FORTRAN variables and lists
the FORTRAN V source code of the CEDF maximization algorithm. The algo-
rithm has the capacity to handle a target complex with up to ten weapons
and tea installations. These capacities can be increased by changing
the array dimension variables, MXM, MXN, MIM, MIN, MSQ, and Ml2. Para-
mater statemants assign values to these variables; the glossary describes
these variables.

The algorithm has several options. The user can specify one of
three initial DGZ conditions and convergence parameters for ZXCGR.
Chapters IV and V discuss user guidelines in seliécting a particular
option. Also, appendix E provides instructions in how to create an
iopuc data file,

" The subroutine INITLZ assigns values to the two PWMIN maximiza.ion
convergence control parameters, F and ESCALE, Chapter V discusses
these parameters. Minor code changes would be required to modify
either of the parameters.

A typical two weapon-four installation CEDF maximization problem
requices approximately 3.0 sesonds of execution time. The current pro-
gram requires 50,000 words of core memory on a Control Data Corporation
(CDC) 6600 Cyber computer. |

Glossary of Variables

A[WRADS] - a coefficient that is used to adjust the VN number.

A[ PDAM] - the lower limit of integration for the Gauss-Legendre
quadrature.
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BESB
and BESC
BETA())
cc(y)

CEP(1)
CEPA(1)
CEPS(1)

DFPRED
DGLN(1,3)
DGLT(4,3)
DLNC(1)

DLTC(1)
DNCD(1)
DTCD(1)
E(1)
EC

B

o0k PoBedB i N o i B kBl BEAC B S et ST WS A w2 MR LI il bl AR ASER AR LB AR ML Ak s et e e A WAL ML N

the difference between weapon i and installation j
x coordinates in feet.

the ZXCGR convergence control parameter,
the second stage ZXCGR convergence control parameter.

the upper limit of integration for the Gauss-Legendre
quadrature.

the difference between weapon i and installation j
y coordinates in feet.

glynomial approximations of the modified zeroth order
ssel function that are used to determine Pdi’ j*
the beta value for installation j.

an intermediate value that is used to calculate the
gradient of the CEDF,

the circular error probable of weapon i in feet.
the adjusted circular error probable of weapon i in feet.

intermediate storage of the circular error probable of
wespon i in feet.

an estinate of the expected increase in the CEDF.
the degree-minute-second longitude coordinate for weapon i.
the degree-minute-second latitude coordinate for weapon i.

the east/west direction from the prime meridian for
weapon 1.

the north/south direction from the equator for weapon L.
the long!tude coordinate in degrees for weapon i.

the latitude coordinate in degrees for weapon i.

the PWMIN convergence control parameter.

the value of CEDF.

the value of =-CEDF from PWMIN.

a polynomial approximation of the error function that is
used to determine a distance damage function value.
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ESCALE

(J)

F(5,2)
FACTOR(jJ)

G(2)
GR(1)
GRAD(1)

HOB(1)

ILNG(J)

ILTC())
INASG(})

INC

INCD(J)
ISHOB(1,2)

ISIN(],3)

the maximum step size multiplier for a single step of

each x.
the ted target value damage contribution to EC from
installation j.

an exponent that is used to calculate the VN reduction
factor.

the value of =CEDF from FUNCT and GFUNCT.

the ten Gauss-Legendre function evaluations. ‘
PS(J) * value(J).

the sum of the ten Gauss-Legendre function evaluations.

the value of ~CEDF from ZXCGR.

a polynomial expression that is used to determine an SWR.

the 2m gradient elements of the CEP-Excluded CEDF model.

same as GR(1).

an intermediate value that is used to determine the
appropriate Bessel Function approximation, BESB or BESC.

the height of burst for weapon i in feet,
generally, the subscript of a weapon array.
an error coda from ZXCGR.

the east/west direction from the prime meridian for
installation j.

the north/south direction from the equator for installation j.

a logical decision variable that indicates whether an
installation's coordinates have been agsigned to a DGZ.

the user-specified indicator variable that controls the
agsignment of initial DGZ locations. |

the longitude coordinate in degrees for installation j.

the low and high scaled heights of burst for weapon i
in feet.

the degrae-minutawsecond longitude coordinate for
installation j.
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ISLT(j,3)

the degree~minute=-second latitude coordinate for
installation j.

ITCD(3)
ITERS
J

the latitude coordinate in degrees for installation j.
the number of ZXCGR calls of function GFUNCT.

generally, the subscript of an installation array.

JJ - the argument of tha modified zeroth order Bessel functioms,
BESB and BESC,

K(3) - the K factors for installation j.

KK - the incremental contribution to grad(i) or grad(i+m)
from installation j.

KO thru K7 - the eight coefficients of the polynmomial G(2).

the length of one minute of longitude in feet.

the number of weapons for the target complex.

the maximum number of function evaluations ZXCGR is
authorized.

tha maximum number of iterations PWMIN is authorized.
the dimension variable for a PWMIN work array [=2m * (2m + 3)].

the dimension variable for all 2m-element weapon arrays.

the dimension variable for all 2n-element installation
arrays.

the dimension variable for all m-element weapon arrays.

the dimension variable for all n-alement installation arrays.
the dimension variable for a ZXCGR work array [= 12 % m].

LNGMN
M
MAXFN
MAXIT
MSQ
MIM
MIN
MXM
MKN
M12

N tha number of installations in the target complex.
NOM

&nb %.ntomodiata value in calculating the gradient of the

NS ~ the standard deviation scaled distance between weapon i \
and installation j. i

- the dimension variable for a PWMIN work array.
NWR - the standard deviation scaled weapon radius.
116
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N2

the dimension of the xy weapon coordinate vector x.

ONCE - a logical decision variable that controls the algorithm
| | so that ZXOGR runs a second time with a smaller ACC,
ORLN - the longitude coordinate in degrees for the origin of
the XY coordinate system.
ORLT - the latitude coordinate in degrees for the origin of

the XY coordinate system.
Pa(i) - the probability of arrival for weapon 1.

PDAM - the probability of achieving a specified level of damage
to installation j from weapon i.

POMG(i,}) =~ Pd, , = tha probability of achieving a specified level of
duh&a to installation j from weapon i.

PDR - the distance damage function value.

} PP - the distance damage function value used to calculate

PS(3) - the probability of not achieving a specified level of
damage to installation j.

R[PDAM] = tha standard deviation scaled distance batween the impact
point and the installation.

R[PDR] - a distance, either S or R, from the subroutine PDAM.

REM - a ramainder that is used to translate the final DGZ coor-
dinates from feet into degree-minute-second coordinates.

RR - the flat earth distance betwsen weapon i and installation j.

R1 - an intermediate value that is used to calculate the VN
reduction factor.

R2 - the W reduction factor.

S - the known distance between weapon i and installation j.

SHOB(1) =~ thae scaled height of burst for weapon i in feet.

SI1G - the square root of the quantity, (1 - ¢ dz)'

SIGMA(j) =~ the distance damage sigma for installation j.

SWR - the scaled weapon radius.

T(3) - the T-factor for installation j.
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TLAT - the sum of all installation latitude coordinates that is
used to determiae the number of feet per minute of longitude.

U = the argument of the error function.

uu - an intermediate exponent that is used to calculate the
gradient of the CEDF,

V[PDAM] - the dummy argument of BESB and BESC.
V[PDR] - the dumy argument of ERF,

V[WRADS] = the change in an inst.illation's VN number when it is
subjected to yields other than 20-kt.

VAL = the current value of the highest valued installation.

VALUE(j)' =~ the value of installation j.

VIND - the subscript of the current highest value/hardest
installation.

WN(3) - the integer VN number for installation j.

VNA - the adjusted VN number.

VNI - the current VN numbar of the hardest installation.

W(5)[PDAM] - the Gauss-Legendra quadrature coefficients.

=

é.'

—
| ]

the low and high SWR that are linearly :Interpolated
batwean to determine the actual SWR.

WR(1,j) =~ the weaspon radius for the weapon i~-installation j
interaction,
w(M12) - a ZXOGR work array.
| WWW(MSQ) -~ a PWMIN work array. |
i X(1) - the X coordinate of weapon i in feet. |
: X(1 +m) - the Y coordinate of weapon i in feet.
XX(3) - the X coordinate of installation j in feet.

g
Lot
+
=
~
§

the Y coordinate of installation j in feet.
same as X(1) and X(i + m).

g

X4 « the (xi’Yi) coordinates of the m weapons after ZXCGR maxi-

mization, but before PWMIN maximization. Used with the
mixed CEDF maximization algorithm.
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YIELD(1) =~ the yield of weapon i in kilotons.

Z5 - the Gauss-legendre quadrature base points.
2z - a standard normal random variable,
Source Code

The next 27 pages list the FORTRAN V code of the CEDF maximization
algorithm.
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PRIGRAN IPTMZ

Ci..ﬁ’ﬁi'wﬁ""x ! B A A EA LA NESESL IFERLEELIYFEXTIZIZEAFXE SN EFFENETRTE S
c QPTMZ 135 TH. ['RIVER MODULE FOk T4E COMPLEX EXPECTED

c DAMAGE FUNCTLUN (NEDF) MAXLMIZATION A{GORITHMe THE

c ALGORITHM DETERMINES THE OPTIMAL NG LOCATIONS FO? A

c FINITE NUMBER OF NUCLEAR WEAPONS AGAINST INSTALLATIONS

C IN A TARGET COMPLEX BY MAXIMIZING THE CCODF.

c.'.ﬁ’... (AL AL R AL ARSI E ARl ERI A RES YRS IRRSRAR AN Y L XX ]

PARAMETER(MXM=1 0 g MXN=17 ¢MTM=20 ¢ MTN=20 9 MSQA24204M12=120)

EXT ZRNAL GFUNCT

INTEGERP MoNoVUNCMXND o KUMXND) o WR (MXMoMXND oN2 ¢yMAXFNyIER oMAXIT oNU
REAL VALUECMXN) ¢yYIELOCMXM)oCEPCMXM) yHOBIMXM) yPACMUM)Y ¢ ST GVMALMEN)
REAL NOMTM) o XXCMTN) yGRCMTM) s FVeBETACMXN) pWWIML12) 4 ACC,DOFPRED
REAL ECMTM) oUMNCMSQ) o XXXCMTM) p XAaEMTM) gESCALEWEFZCEPSEMXM) pACCR
LOGICAL ONCE

CHARACTER T (MXN)

COMMON/ZINSTLN/Z NoVALUE ¢ UNoK o XX

COMMON/PQIND/ T

COMMONZWPNS/ MeYIELDyCEPyHUByPA

COMMON/PARAMS/ WRSIGBMAWBETAGITERS

COMMON/CNTRLZ N2 9ACCyACC29DFPREDWESCALEYE

WRI TECAB101)
170 FORMAT(1X 432 (%n?))
WRITE(Gew) CEQOF MAXIMIZATION ALGORITHM?
WR{ TECG410.)
ONCEz,TRUE.

CALL INITLZX)
CALL WRADS

DO 10 [=1eN2
XXXCTI=XC(I)
S CONTINUE

CONJUGATE GRADIENT CPTIMIZATION 0OF THE CEP=-EXCLUDED
CEOF MODEL

OO N

WRITEC6+10J)
WRITE(Gew) IXCGR MAXIMIZATION?
WRI TECS 91 04)
ITERS=,
MAX FN=130
0C 20 Izl M
CEPS(1)=3CEP(I)
CEPLI)=0,
CONTINUE
CONTINUE
MRITEC(See) * ACC= *,ACC
CALL ZXCBRCGFUNCT9N29ACCoMAXFNoDFPRED9XoGRyFVyWWOIER)
WRITE(CGer) " JER= ¥ ,[ER
WRLITEC6s*) ¥ FUNCTI CN= 9 y=Fy
WRITECGy») ¥ FUNCTION EVALUATIONSS "9ITERS

o
im -
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D0 30 I=leN2
WRITEC(B ) @ XCTPpTo®)= #,%( )
HRATITZE(S592) ® GRADC"9I %)= *4GRUI)
3 CONTINUE
CALL 0QUTDGZ(X)

CONJUBATE GPADIENT OPTIMIZATION OF THE CEP«EXCLUDED
CEDF MOODEL USING A REDUCED CONVERGENCE CRITERIA

o0O0non

IFCONCE) THEN
D0 38 I=1eN2
Xa(I)=2X(D)
33 CONTINUE
WRITE(6,100)
WRITE(G4w) @ ZXCGR WITH ACC REOUCED"
WRITE(6+1CY)
ONCE=,FALSE.
ACC=2ACC2
[TERS=}1
GO TO 29
ENOIF

POMELL®'S CONJUGATE OIRECTIONS OPTIMIZATION OF THE
CEP=INCLUDED CEOF MCODEL

o000

BRI TECS,10%)
WRITE(ARge) ¢ PWMIN MAXIMIZATION®
WR: TECG 105
YAXIT=25:)
D0 40 TalM
CEPCIISCEPS(T)
LI CONTINUE
HWE=N2(N2+3)
CALL PWMINCXXXIEoN2 yEFoESCALEIMAXIT o WHWoNW)
WRITE(&oe) * FUNCYION=Z ¥y=~EF
00 30 [=1l.N2
WRITEC(S ew ) O XXXCPsIog®0a oxXXAX(T)
CONTINUE
CALL QUTDGZ(XXX) |

MINED OPTIMIZATION OF THE CEDF MODEL. THE 062
COORDINATES FRQOM THE FIRST CONJUGATE GRADIENT OPTIMI- (
ZATTION BECOME THE INITIAL 0GZ COORDINATES FOR POWEZLL'S |
CONJUGATE DIRECTIONS OPTIMIZATION.

OO0 0 (3

HRT TEC(S41J0)
WRTI TE(S9n) ¢ MIXED TECHMNIQUE MAXTIMIZATION®
WRI TECa,10:)
CALL PWUMINUXNN oE oN2 9EF¢ESCALE o MAXITo WMo W)
WRITEC39e) ® FUNCTICN: ®y=(F
DO 7) T=1,MN2
MRITE(D ) ¥ Xe(®ypIg?)= v9xa(1)
T CONTINUE
CALL QUTDG? (X&)
913 CONTINUE
END
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Crraese et v st s s e taRn ad o RENEYRT TR ERNQARRIROR R RE RN behwar

SUBAQUTINE GFUNCTCNZ2 s XeFeGRAN)

le CALCULATES THE CEDF(X)e THE COMPLEX EXPECTED
OAMAGFE FUNCTIONy FOR M WEAPONS AND N INSTALLAYIONS
USING THE CEP-EXTLUDED CED# MIDEL.

2¢ CALCULATES THE 2M ELEMENTS OF THT GRADIENT OF
THE CEDF (XD,

OO0

Ctiﬂtﬁﬁiﬁ.'.'Q.QQD.O.*'*Qt"@..."\.v.'itit.t-ﬁ.'itnltt'.iit'*i

PARAME TER (MXM2Ll g MXNZLN oMTM=20 ¢ MTN223 )
INTEGER MoNyUNCMXNY o KCMXND 9 MR ChX Mg MXN D yN2
REAL VALUECMAN) o YIELOCHKMI o CEPCMXM) ¢HOBCMXM) o PA C MXM)
BEAL XCMTM) oXXCMUND oECoEVIMUND 9 PSCMXN ) s PDAMS IGMACMXAN)
REAL POMGENXM gMXN Vo HETA CMYN ) oF
REAL EACTOR (MXNDyCCCMXND gGRADEMTM) gAA g BHaRR yUU o KK 9y NOM
CHAIACTER T (MXN)

| COMMONZINSTLN/ o VALUE s VNoK o XX

\ COMMON/PAINDZ T

| COMMONZMBNS/ MoYIELDWCEPWHOBPA

| COMMON/PARAMS 7 UR ¢3IOMieBETAITERS

O

w3
L)

FURMATC® WEAPUN 0yi29" XY COCROINATESS (V9FTalo®e?gFTa. 9y0)9)
ECux e
’ ITSRSZITIARS #?
: 00 63 L3lyM
WRITECH9LIG) LoXCLpyXCL*M)
n Cuti TINUE

CALCULATES THE CEDF{Xie

OO

00 23 Jnleiv
PS IVul,:
1 DO 1, IaslyM
‘ POMC T oJ) 2P DAMCI 9 dyX)
| PSLUIFS(UInle " =PACIIAPOMGET yU) )
‘ 1 CONTINGS
IVCIHC. .. ~BS¢JI)) - VALUEC(J)
| WRI TECGew) ¥ PI(¥edy?)= ?4PS(Y)
} ECSEC+EVC )
‘ FACTARCI) 2% S¢J ¢ VALUECYS)
| CClUNT24%F 66212 NETACS)
‘ 2 CONTINUE
| WRITECGgt: ¢ EC. *,£0
| Fz-£C
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TR S e~

c CALCULATES THE GRADIENT OF THE CEDF(X).

DQ 40 I=1leM
GRADCI )= o0
GRADCI+M) =)o
DO 3 J=] oN
AASXRCJ)=X()
BBIXX (J*NI=X(T+M)
RR=SQRT(AA+«2+8B8+*2)
IF{RR oL TGl 01N RR=21C, !
UUSARSC(CLle. 7RETACUII®LOR(MRCI 9 JI/RR)I=BETA(J) )/ 4] 421335)
NCM=FACTORCJII*»PACI ) v EXP(=UU+2)
KKxNOMZC(Cle =PACI)»PDOMGLI yJ))«CCUJINRR®*2)
BRALC(I)2GRADCYI ) KK~ AA
GRADVI+M)RGRAD(Z+M)+KK+HB
3 CONTIN IE
4. CONTINUE
DI 3¢ L=1l2
GRADLL) 2 -GRADCL)
Y. CONTINUE
END
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c
c

SUBROUTINE FUNCTUINZ +XoF)

Le CALCULATES THE CEDF(X) FOR M WEAPONS AND N
INSTALLATIONS USING THE CEP=-INCLUDED MCDEL.

ChARedA 2240 YRARRAIA N IRAN PR R ERAYNOANCRGC T I RN A RN R I NN ETARROROR IO PT RS

2"

PARAMETER (MXM=1C o MXN=1U o MTM=20 ¢ MTN=23)

INTEGER MoNyUNCMXND oK C(MXND 9 WR (MXM gMXN DgN2

REAL VALUECMXN) ¢ YIELOCMXM) 9 CEPCMX M) yHOBCMXM) s PA(MXYW)
REAL XCMTM) o XXEMTND 9ECy EVIMXN) 9 PSCMXN) 9PDAMIF9BETACMXN)
REAL POMGEMXM gMXN )9 SIGMA CMXN)

CHARACTER T (MXN)

COMMON/ZINSTULN/ NoVALUE ¢ UNyK ¢ XX

CCMMON/PQINDZ T

COMMON/WPNS/ MyYIELDsCEF+HOBWPA

COMMON/PARAMS/ WR9¢SIGMAyBETAITERS

EC=043
DO 23 J=1N
PStJI=l ekl
00 1J I=1.M
POMGCIsJI=PDAMI(TI yJoX)
PSCJIIaPS(JI~(Le: =PA(TI)I«POMG(IvJ})
CONTINUE
EVtJ)I=(le=PSCJ)) - VALUE(J)
CCIEC+EVCY)
CONTINUE

Fz=EC

RETURN
4D
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139
110
120
137
1aQ
130
1a0
170
\ ien

coOoOOo00
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SUBROQUTINE INITLZ(X)

le PREADS USER=-SPECIFIED WEAPON AND INSTALLATION
PARAMETERS FROM THE EXTERNAL FILEy INDATA,

2e¢ ASSIGNS INITIAL D62 COORDINATES ACCORDING T2
THE USER OPTION VARIABLE» INC.

3, TRANSFORMS ALL WEAPON AND INSTALLATION COOIDINATES
INTO FEET PELATIVE TO A COMMON ORIGIN IN A XY
CIORDINATE SYSTEM.

% INITIALIZES ACCURACY AND CONVERGENCE CRITERIA
FOR THE COPTIMIZATION SUBROUTINESe ZXCGR AND PWMIN.

A AR R R AN RLEEE IR R NI R LS N Y N R R Y 2 A A 2 A XXX

PARAMETER CMXM=10G o MXN=1) oMTM 220 9 MTN=20)

INTEGER ODGULN(MXMy3) yOGLTCMXMyp3) g ISLNCMXN 93 Y9I SLT(MXNs3)
INTEGER VNOMXN) sKCMXN) oMyMe INCY N2 9 VIND9 UNI

REAL DHNCDAMXM) yDTCO(MXMY o INCDCMXN) o TTCD (MXM) 30RLN9ORLT
REAL YIELD(MXM) sCEPIMXM) gHOBCMXM) yPACMXME o VALUE (MXNY)

REAL XCMTM) g XX(MTN) sACCHACC2 ¢DFPRED2ESCALE 4E(MTM)Y VAL
REAL NOGLNoeNDGLYT¢NISLNeNISLT9TLAT)LNGMN

LOGICAL INASGC(MXN)

CHARACTER DLNCC(MXM) ¢DLTCCMXM) g ILNCCMXNIoILTCCMXND 9T (MXN)
CHARACTER PHeZS8

COMMONZINSTLNZ NeVALUEs VMoK o XX

COMMON/PAIND/ T

CGIMON/UPNS/ MyYIELDCEPyHOBoPA

COMMON/CNTRLZ NI ¢ACCsACCR9DFPRED ¢ESCALESE

COMMON/ORIGIN/ CRLNsORLTLNGMN

FORMAT(2XoTaoI20l20AL oaXel30120020A1 94Xy

R B 192X oF B 92XeFBe .91 XoFa,2)

FORMATU IR eI 295X eFSa 92N oFBe’ s2XeFBos e1X9Fa,2)

FORMATC2X o189 12 912 0AL o X ol30T29I20A1 904X 2¢9AL¢I192X9FBae.)
FORMAT(/y *TNITLZ2%4/)

FOIMAT(® THIS PROBLEM USES *4124* WEAPONSY4/)

FORMATC? WEAPON YIELD ceo HOB PA®)

FORMATC /9" THIS COMPLEX CONTAINS %4724" INSTALLATIONS?®,/)
FQl MATC? LANGITYUDE LATITUGE VNTK VALUZ v)
FQRUATC(/4¥ THE XY COORDINATES OF THE INSTALLATIONS IN FEETe¢,/)
FORMAT(/9® IMITIAL DOGZ LOCATIONS ARE ¢4A28/7)

WRITE(64120)
OPINCLSSFILE=YINDATA?)

REWIND 15
READ THE USER TNIYIAL DGZ COQROINATE OPTION VARIABLEGINC,
F INC = 1e THEN USER«SPECIFIED COQRDINATES
IF INC = 2¢ THEN HIGHEST VALUE INSTALLATION COORNDINATES
IF INC = 3¢ THEN HARDEST INSTALLATINM COORDINATES

READ(1S54#) IANC
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OO0

OOy

OO0

(7 ]

READ USER-SPECIFIED WEAPCON PARAMETERS.

READCLSe») M
WRITE(RHL3T) M
WRTTE(S9140)
0Q 12 I=ileM
TEADCLS 9103 ) C(DGLNCIoLd) gl =1¢3)9DLNCCI) o (DGLT(IoLPoL =1 03Dy
tDLTCLI) 2+ YIELDCI D) 9CEPCIDI 9HOB(I) yPA(T)
WRITECSe105) JoYIELODCIDGCEPCID)yHOBCID)9PA(])
CONTINUE

READ USER~SPECIFIED INSTALLATION PARAMETERS.

READ(LSy») N
WRITEC(AW1S5L) W
YRITE(S018)
DC 23 J=1N
RAEAGLLIS 113 (ISLHCIIL) oL =103 9 ILNCCU) o (TSLT L) 9L =193
wTLTCCI) o VNCUY) 9T €D s KCJI 9 VAL UE ()
WRITECSWLIDDICISLNCI oD ol =i 03D o ILNCCU) o CISLTCU9L)IeL=1+3)0
*LLTCCUY oUNCUD o T ) e KCJ D s VALUE ()
CONTINUE

SHNCO=183 o
SMTCO=180"
TLAT=D e

TRANSLATES INSTALLATION J DEGREE-MINUTE-SECCND
COORDIMATES INTO DEGREES

DY 30 J=1N
[FCILNCS{J)aERYCY) THEN
INCDCUI SREALCISLNCGUI 91 )¢ (REALCTSINCUO2YI/EYal )
»(RZALCISLNCJI93))/36°267)
£LSE
NTSLN==REALCISLNCJ91))
INCDCUJ) sNISLN=CREALCISLNC(YZ) )/ Blei )=
C(RIALCISUNCL93II I/ 36 N el)
ENDIF
IFCINCOCJIeLTASMNCD) SMNCD=INCO(J)
IFCILTCUJ)EQa N ) THEN
ITCOCUIZREALCISLT (Ul )V (REALCISLT(J9Z)II/EOD )
tCREALCISLT(J93) I/330000)
ZLSE
" NISLT==-REALCISLT(Jel D)
ITCOCUI=NISLT=C(REALCISLT(U92)N/604 )=
*(REALCISLTIJ9IDND/36 Ual})
ENDIF
TFCITCOCUILTSSMTCU) SMTCO=ITCD (I
TLAT=TLAT+ITCO(J)
CoNTINUE
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LNGMAZCOSK «017453252¢ TLAT/NI*E Bl al
ORLN=INT(SMNCD)
TFCORLNaLTe. ") ORLMIINTCSMNCD=1. ?
ORL T=INT(SMTCD)
TFCORLTalTaCe8) ORLT=INT(SMTCD~14¢)

c
c TRANSFORMS INSTALLATION J DEGREE COORDINATES INTO
c FEST RELATIVE TO A COMMCN ORISINe
WRITECE9177)
DO 40 J=1,N
XX€U)=CINCDCJD=ORLND #6D oG « LNGMN
XXCJON) 2(ITCDCYI~ORLT 10364301 of
HRITECRow) *  XXTP9uUg®)z= 2y xXCJ)y? KXCPoueNp® D)= *aXXCU*N)
¢0  CONTINUE
c
IFCCINCAEGeT)oOR e (INCeER3)) THEN
DO &5 J=1 4N
INASG{J)=.FALSE.
4% CONT INUE
ENOLF
| c
| c AS3 LGNS WEAPON I INITIAL DGZ COORDINATES ACCOROING
| c YO THE USER OPTION VARIABLE, INC.
| c
5 IFUCINCoNEe2) oANDe CINCaNE3)) THEN
| . |
c IF INC = 1, THEN TRANSLATE USER-SPECIFIED WEAPON I DGZ
i ¢ DEGREC~MINUTE=SECOND COCRDINATES INTO DEGREES
| PH=¢USER SPECIFIED v
D0 8 T2 oM
IF(DLNC(IDeEQe®EY) THEN
| DNCOCI)=REAL COGLNCI 41 ) )4 CREAL (DGLY CL92) ) /637 ) e
+CREALCOGLNCI93) /36 0l )
| ELSE ]
| HOGLN Z=REAL (CGLNCT 1)) ‘
} DNCOCTI)=NDBLA~CREALCDGLN (L1 22) /60400 =
»REALEDGLNCT 93))/36 307
| ENDIF |
| IF(DLTC(I)eS0a?NY) THEN |
DTCOCI)=REALCDGLT (191 ) )4 CREAL (OGLTAT 020 )/60 4" bo i
| <CRZALCDGLTCI+3)1/36.040) ;
| ELSE !
| NDGLT ==REALC(DGLT({o1)) - ‘
DTCLCT) =NOBLT - (REALCDGLTCI 421 )/6700 )
rCREALCDGLT(I03))/36 7 e)
ENDIF
5 CONT INUE
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7%

(g I

a0

3%

98

TRANSFORM WEAPON I DEGREE CCORDINATES INTO FEET
RELATIVE T0 A COMMON QRIGIN

DO 61 I=YeM
XCID)=CDONCOCTI ) ~0 L NIwBIs . ~LNGMN
XEI+MI=(DTCNCI)=0RLTI~3648.7 4"

CONTINUL

ELSETIFC(INC.EQe2) THEN

IF INC = 29 THEN ASCSIGM THE COORDINATES OF "HE M
HIGHESTY VALUED INSTALLATIONS AS THE INITIAL D62
COORDINATES CF THE " MEAPONS.

PH2*HIGHEST VALUED INSTALLATIONS®
20 75 I=slyM
VALz20 "
VIND=C
00 79 JaieN
IFCINASGC(Y)) GO TO 75
IF(VYALUEC(J)«LT VALY GO TN 75
VAL=VALUEC(JY)
VIND=J
CONTINUE
XCII=2XXC(VIND)
XCI+MI=XX(VIND+N)
INASGC(VINU)=eTRUE
CONTINUE

ELSE

IF INC = 3o THEN ASSIGN THE COORDINATES OF THE M
HA2 DEST INSTALLATIONS AS THE INITIAL 0GZ COORODINATES
OF THE M WEAPONS.

PH29HARDEST INSTALLAT.ONS e
DQ 87 I=1¢M
UNI=0
VINO=)
DO 8% J=1 N
IFCINASGCY)) GO TO 85
IFCUNtJ)LTLVNID) GO TO 85
UNI=VNCD)
VIND=J
CONTINUE
XCL)=XXI(VIND)
XCT+MIZXXCVIND+N)
INASGIVIND)I = TRUE o
CONTINUE
ENDIF
MPITE(69180 ) PH
DO 55 IxleM
WATTE(Gev) ¢ X(O0yle® )z 9oxX(I)y? X(9gIeMpt )= #4X(I2M)
CONTINUE
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INITIALIZE THE CONVERGENCE FARAMETZIRS
OF THE SUBROUTIMESe ZXCGR AND PWMIN.

OO0 0n

ACC=N631
READC1Syw) ACC2
READC15¢«) DFPRED
N2=2+«M
ESCALE=900L 3
DO 99 I=14N&
EC(I)=0%,.1

9" . CON TINUE
CLASE(LS)
END
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c
c
¢
c

1.0
1140
12¢

SUBRQUTINE QUTDGZ(X)

le TRANSLATES THE FINAL D6Z COORDINATES FROM FEET
INTO DEGREE~MINUTE=-SECOND LONGITUDE AND LATITUDE
CCORDINATES,.

X IR IR AR RS ARE AR AN ARSI Y R R R RN N R R RN R AR NN R RR 2RI XN ]

PARAMETER (MXM=1lC g MT M220)

REAL XCMTM)9ORLMeORLTHREMyLNGMN

REAL YIELDC(MXM) JCEPIMXM) sHOBCMXM) yPACMXM)
INTEGER DGLNCMXM93) 9DGLTI(MXMe3)

CHARACTER DLNCOIMXM) OLTC(MXM)

COMMCN/UPNSZ MyYIELDWCEP+HOBPA
COMMON/IRIGIN/Z ORLN9»ORLT sLNGMN

FORMATCSX oI 295K el@ sl 20T24A1000NeI34I29129A1)
FORMATC(/ ¢ WEAPQON LINGITUDE LATITUDE"Y)
FAORMATC /)

WRITE(S,110)
DO 10 I=1l,M
IFCORLNaGEeOel ) THEN
DGLNCIo1d=INTCO2LN)
DLNC(TI)=rEY
DGLNCI92)aINTIXCI)/LNGMN)
REM=XCI)=LNGMN® DGLN(] 42)
ELSE
OGLNCI+1)=ABSCINTC(OPLN+L<0))
DLNCLI =9 }?
DGLNCI221=EINTC6 e 0=X(I)/LNGMN)
REM=60 eI LNGMN=X{I )=LNGMNODGLNCI 92)
ENDIF
DGLNCIo93)=INTC(REM~ 604 /LNGMN)
LFCORLT «GEele ) THEN
DGLYCI 92 D)=INTCORLT)
DLTCt Iy=wNE
DELTCL2)SINTI(X(I+M) /6040 e))
REMSX (I +M)=00 A (G *DGLTCI ¢2)
ELSE
DOLTCI o1 )SABSCINTC(ORLT*L "))
OLTCC(I) =eg0
DGLTCIs2)2INTLE 20Xl eMV/6. RIel)
REM= 3644 00e. =X(ioM)=608. 4« DGLTCT ¢2)
ENDIF
DBLTCT9IISINTCREM/Z1014333333)
WRITE(S9102) TolOGLNCI L)yl =193)gDLNCCTIoCDGLTCI oL sL=143)o0LTC(D)
CONTINUE
WRI TECARy12)
RETURN
END
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SUBRQUT INE WRADS

c ie CALCULATES THE WEAPON RAOIILy WR(I4J)y FC? EACH
c WEAPON I = INSTALLATION J INTEZACTION.
c 2¢ CALCULATES THE BETA(J) FOR EACH INSTALLATION.

c-.Q...'D AL AR AT RS R A AR Rl A I X 2 I R  E T RN YT R YRR R AN AR RN

PARAMETER CMXM=LC o MXN=1J yMTM=20 ¢ MTN=2C D
REAL KKoVIELD(MXM) 9 HOBCMXM) ¢E9EX9AsSTIGMACMXN) 9SIGeR1 9R2
REAL VoVUNAySHOBUIMXM) 98C2) oW C2)9SUR9KO oK1 gK29K3 9 K& ¢KS9KE s KT
REAL VALUECMXN) oCEP (MXM) gPACMXM) ¢BETACMXN) ¢ XXCMTN)
INTEGER VN(MXN) oK CMXN) 9 ISHOBCMXM92) yWR(MXMyMUAND) 9L oJ oL o MgN
CHARACTER T(MXN)oTT 5
COMMON/INSTLN/ NoVALUE9VNeK XX
COMMON/PQIND/ T
COMMON/UPNS/ MyYIELO9CEP)HOBPA
COMMON/PARAMS/ WR ¢SIGMAGBETA9ITERS

G FOIMAT(/9 "WRADS?®y /)

WRITE(S,10)

SPECIFIES THE DISTANCE DAMAGE SIGMA AND THE BnTA S0R
EACH INSTALLATICN Je.

OO0 (2 B o

Jel
ar JaJ+l
IFCCTCU)eEQa?L?)e0R(T(JIEQ®P 7)) THEN
SIGMACY Y= o
ELSEIFC(TCUISEQ.'PT ) CR(TCUIEQL*S?Y ) THEN
STGMACJUI= o2
ELSEZIFCCTCUIEQe? MY I O0R«(TC(UIER"Q")) THEN
SIGMACY )= 63
ELSEIFC(TCU)IEQe'N?IeORA(T(UIENQ"T*)) THEN
SIGMAC)D3 e A
ELSE
SIGMA(UIZL %
ENDIF
IFCCTCU)eEQe?L?)u0Re(TCUIGEQe'P *)o0R(TCJUD)EQuIM? ), 0ORY
AlTCU)eEQe NI LOR0(T(J)eEQe®¥D?)) THEN
TT=9PTYPEY
ELSE
TT=oQTYPE
ENDIF
IF(TT«EQe 'PTYPE ") THEN
EX=20e8
3IG=" 496
4=5.489
Q12243
ELSE
EX=(Lleil/347))
SIG6=7e.91
A224742
A1z,
ENDIF
BETACOI=SART (=L CG(Le=5IGMALJII*» 2))
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3\“

OO0

(2]
o
(=]

o060

119

OO0

1=

I=I+)
W(l)=T,)
W(2)=J,0
Gl )I=),e1
G(2¥=040

CALCULATES THE VN REDUCTION FACTORs R2s AND THE
ADJUSTED VN NUMBERs VNA.

KK=REAL(KC(Y))
R2=1 o0 =tKK/30 0 D¢ (KK/1J 0D * (20" /YLELDCIDII®»(La0/3a)nR1LwnEX
TF(ABS(R2=R1l)eGEeDeiG1) THEN
R1=R2
G0 TO 10:
ENDIF
VEA*LO0G(R2)
VNAZREALCWNCJ) ) +V

CALCULATES THE SCALED HEIGHT OF BURST (SHOB).

SHIBCII=HOBC(IDV/YIELO(IN#w(lel/3a")
IFUSHOB(I)aGT 9T 34U ) THEN
WRITE(G o) 'HOB TCO BTG
SHOBCI)=90C ol
ENDIF
ISHOBCI o1 )=INTC(SHOB(I)/1N1060 )17
ISHOBCI 92 )=ISHOB(Iy1l)+l0
=(SHOB(I)=REALCISHOIB(I21)))/1%% 67

L=)
LzlL+l

DETERMINES THE POLYNOMIAL COEFFICIINTS TO CALCULATE
G(VNASISHOB). :

IFCTTLEQe PPTYPEY) GQ TO 2C2

G0 Y0 210

BLLIZKD +K1Ln UNA*K20u UNA® 22+ K3« YNAsn3eKE»YMNAR &
GO TO 140

GCLYI=K! ¢ L1a UNASK24VNAX® 2K+ UNAR 236 K42 YNANs AL
K5 UNAr »SeKSaUNAC G +KTu UNAR 0 ¥

CALCULATES THE SCALED WEAPOM RADIUS (SHWR).

WL IZEXP(GCL))
IF(EelLTe240901) 60 TO 150
IF(LeLT«2) G0 'O 117
SUR=SHC(L)I+E~ (M 2)=W(1))

INVERSE YIELD SCALES THE SWR TO OETERMINE THE WEAPON
RADTUSs WRC(IoJ)y FOR THE WEAPON I ~INSTALLATION J
INTERACTION.

HMREC I gyJIZINTC{SWFaYIELDCII W0 €l /3600 2SI0G2Clel =STGMACUDINR2)) 40, 5)
WRITE(Gen) ¢ UR(? ) g% %ot )= #4,UR(T yd)
GO TQ 178
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ncooon

WRITE(Hev) * VN TO? LARGE FOR HOB?

WRCIydJ)=y

IF{IeL7eM) 60 TO I3
IF(JeLTeN) GO TO 2V

GO0 TO 22¢
IFCTISHOBUIsL) el Teld ) THEN

COEFFICIENTS QOF G(VNA»ISHOB) FOR OVERPRESSURE (P=TYPE)
TARGETS FOR ISHOB FROM o FEET TO 9GC FEET,

TFCUNASLEL75) THEN
KN=8.206936
Kl==9,8662222E«"2
K2=2=8,2 70 S319€E«n3
K3=84,67361-0CE=03
K4=Nai

ELSE
Ki=R,263283
Kl=«142109520E="1
K2=12TA266E=04
KIs=9e2:. 65498E~.. 6
KA=e 0

ENDIF

GO TH L2

ELSEIFCISHOBCIoL)aLlTo207° ) THEN

TF(VNALGT o514°) GO TO 162

IF(VNAeLE«TuS) THEN
K0=8429123
Kl=«] o1 3293SE~11
K2231e199508E=03
K3=n,e0
K4anNel

ELSE
K7=8,2923%9
Kil==1e1:43332E=~C1
K22=d o6 494C 5BE~&
K3=565.8301E=0G6
KAz=9 (] G8N3TBE="7

EMDIF

GO0 TO0 127

ELSEIFCISHOBC(I ol )al T30 ) THEN

IF(VNALGT«41.7) GO TO 168
Ki=8.395223
Kl==1 e84 T178568E= .1
K2212+T44RSE=(3
K32=2e0 632T71E= "3
KAZ16e6TIILE=LY
KSz=QRelYIA42E=D
K6214 62371402
K7z=]e167%5C18L~"9

GC TOH 13
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CELSEIFC(ISHOBCIsLYalTad:) THEN

IF{VNALGT «34,C) GO TY 18]

Ki=3,41%584

Kl==9 ,98327816F-. 2
K22=4 413T727STE=-"3
K3=%4.45084E-0%
K4=2=3,7%83I52E=15
KS5=14470969E=L7
Ko==2 e 170989~
K724

GO0 TO 13"
EL3EIF(ISHOB(IoL)aLTaB0u) THEN

IFC(UNALGT 30D 80 TO 160

Kiz=de 459489
Klz=]o)96%211E-"1
KAZ=3 oA44ATTATE= .3
K32T72.61706€E=N%
Ka==T . 09(08E~CS
K5233.150313€E=-07
K6==3,6685,87E="13
K720

G0 TO 13u
ELSSIFCISHOBC(IoL) el Tabl ) THEN

TFCUNALGY.274:) GC TO 160

K3=8,323985%
K12=6¢312U8%2E~"2
K22=2,5622191E~.2
K3T54 ¢26447E=0»
Kén=8,926339E=14
K32J34.89304E=C5
Ké3=l ol 228646E~'6
K7T=211.0432E~09

80 TH 130
ELSEIFCISHOBCIWL)alLTeT700) THEN

IFCVNA«GTo286") GO TU 160

Kixd,98 6222
Klzwl ol J2711E=)1
K2==9S17173%€E~"3
K3=226e0 232E~04

. KOz =3 6 28224E~"1 4

KS223,025158-06
Kbz=lel 326368E~"6
K7318,815887E=0)

B0 TO 13°
CLISTFCISHOBCTI L) ol T80 ) THEN
. IFPCUNALGT 42247) GO YO 16D
© 0 KJIZ3.65%962

Kiz~l o36798E6E~.1
Ki218,282815=03
Kiswhe: $29993E=-3
K82%50 2+ 12%E=C3
KS==2a8T712239E~15
K6=83279003E=013
KT7=dsU

50 TO LY
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ELSEIFCISHOBC(IoL)elTe9L ) THEN
[F(VNA, GT «21e:) GO TQ 160
IF(VNAGLE«T7eS) THEN
K0 =8,681289%
K1l==] el 832REME=-"]
K2z==]1 o 78886 6E~"J
K3I=1335909€E=09
K&é20.0

ELSE
KO=12 451342
Klz=] ¢516344
K221T7 0699 44E=(2
K32=R 3 06IBE=-2T
KABLALNTIAE=LS

&ENDIF

30 TO 12
ELSE
IF(VNAeGT <20 ) GO TO 160
IFCYNAGLE «7eS) THEN
KUz23, 719694
Klzme}l 2 19R%26E=1]1
K2212 oL J604E=04
K3z=] ¢2REJ2S1E~"4
Kézd,e 0

ELSE
K0s13,47289
Klz=1,971983
K2x25447267TE=Q2
K32=) 4832811 %E="2
K8z28 oM JT1E~0S

ENOTIF

00 TO 120

ENOIF

CURFFICIENTS OF GCVNA9ISHOB) FOR DYNAMIC PRESSURE
(Q~- TYPED) TARBETS FNR ISHOB FROM ! FEEY TO 9310 FEET,

IFCISHOBCIsL) el Tall). ) THEN

IFCUNAG BT 3% ) 60 TO 186
K24, 315199
Kl==D (1L &0A68
K220 600 8224
Kdzef) o 11312
KA 30 2L649E=05
Kiz=1le2322TE-CH
K6210967,7E~u8
KT72=1 e TREJE=1

B0 TO0 1}
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ELSEIF(ISHOB(I yL Vel To2: ) THEN
IFCVNALGT o3%aC) G TO 160

Kl=3376382
K1==0 1042943
K2==701127108
K3==3631136E=UT
KA=1622E737€=0%
KS=«h 7 78T7EDT
K523 7725769
K72060

50 TO 13C

ELSEIFC(ISHOBCIsL)obLTo3l ') THEN
IFCUNACGT «35.5) GO TO 163

KQ28,42024
Kize=l o+ 94T73E~C1
K214 .622BRE=04%

K3==3569T792E=1 4

KA266,97002€=05

K32=3 .. 149459E-18

K6=61e86220E-09
KT==4 45 AEEIIE~] .
BN TO 13C

ELISIFCISHOBCTI oL el To&” ') THEN
[FCUMAGGBT35a.) G TO 160

KO8, A0 %315
Klz=h o8 31393
K2ze] ol " 36114
K320 L3087
Kéawl al 7267E~0S
K3x3e1UE62E~07
Koz eBE6AE=(T
WT2) e

G To 13

ELSETFCISHOBCTIol)elTa it - ) THEN
IFCVYNACGT 4310 ) GC YO 147

KIn3e375003
Klz=f g1 CJ020Y
Kdn=ll oi"68THA
K3z0e 0212382
K4dze) oo "02233
KS33.01397€~06
ox=2 o IAEB4F =0T
KT22,91298E-09
30 To 13

ELSEIFCISHOBCT oLl el Ta6Y i) THEN
YF(VNASGBT 428, ) GO TO 162

Ki=3,6435048
Kilz=1,1110%64
K2x=] oi14390%
KIZYadUo6644
KAzaT o TGBAAES, §
KAONaJuEICE~T6
KGua2q2 VCTIN =T
KT=Je s €Q6F~0Y
39 10 13
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fodls]
iy ™

230

ELSEIFCISHOBOT yL)al Ta7i ') THEN

IFLVUNALGT s26e.) GO TO 1640
22R.ER669T
Kl==)el164822
K2=Je 30 JETS
K3==0 306169
Kéz2aS7581E=0%
K3z=4 oL T2E3E-DS
K6=%466402E~7R
K720 40

30 TO 130

ELSEIFCISHOBCIoL) el TeB800) THEN

IFCUNA.GT 2% ) GO TO 1683
KOz, 70 T489
Klz=0 1173302
K220 QU 2348 Y
K3==Del 713054
Kéad 0190
K82=) o1 52C0E=NT
K224 337 T9E~07
KT72=248T08E~(T

GY T L3

ELSELFCISHCB(I oL)elTo 3. ) THEN

IFCUNAG BT 023a1i) GC TO 160
Ki=2R, T3£328
Kl3=0,11%16.58
K2324,0021175
K3ze=] 00195218
K420 0CG026%4
K82l 0956780 E~u 8
K666 180 1BE=0T7
KT2=T7,0.862E=C23

oC TO 137

ELSE

ITFCUNAGT 2247 ) G) T2 165
KO =8a 7750 42
Klz=7 4118485 9%
K223 R001871
K3z=le (L2009
Ka=(1o20023%7
KS=w2 o) 1962FE-CS
K6=6e97%20 =7
K72=8,74866E~09

6N T3 13

ENOLF
CONTINUE
EORMATC(/ /)
MRITEC(H423%)
EMD
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r c;‘.iﬁw"i I E A AR ENEIERRELIER R AS NS EERE R AR FEEANTENEEEFN T EEEY SN XN XN XY

REAL FUNCTION PDAMCT odeX)
c le CALCULAYES THE PROBABILITY OF ACHIEVING A
c SPECIFIED LEVEL OF DAMAGE TO INSTALLATION J FROM
c WEAPON I
c.

XA AT RN L AR A AN RN IR X L R I R T RN RN S R R Z 2 R R N N BN R NN

PARAMETER (MXM=1C o MXN=1C yMTM=20 s MTN=20)
PARAMETER(RGS=2( «0)

COEFFICIENTS OF THE POLYNOMIAL APPROXIMATIOIN JOF THE
MOOTFIED ZEROTH ORPDER BESSEL FUNCTION.

OO NO

PARAMETER(B1334Z156227¢8223.108954244B3=1.216T7432,
t 2R A2 0263973248520 e0 360 TEQIBES0e::J45AL39Cl="439554229,
~CLl2a01328% %240 020e.J2253299C 3= 400 15796%:0420,20316281»
tCO2) a0 203775 69CE20a " 2A3C53T9CT= i1 64T76334C3=20a0239237T7)
INTEGER WNROMXMoMUNDY o gd oK 20L2 oMo N oVNCMXND) oK CMXN)

REAL BASBIBESCoVeZC(E D oW(SDIeSeXCMTM) g XX CMTN) yR4BETACMXN) yRIS
REAL SIGMA(MXN) oCEP(MXM) yCEPAoPDMoPP oPDR ¢ NUR oNSoVALUE CMXN)
REAL AyBoaFhoHeduJoF(S592) o YIELDCMXM) ¢y HOBCMXM) s PACMXM)
COMMON/ZINSTLN/Z NoVALUE+sVN oKy XX

COMMON/Z MPNS/ My YIELOD+CEP HOByPA

COMMON/PARAMS /7 WR yS.GMAWBETALITERS

QUADRATURE BASE POINTS Z(I) AND CCEFFICIENTS w(I)

aco

DATA ZC1) 9Z2(2)92(3) 92720 9ZC¢B) oM L)W C2)oMCID pULA)oM(S)/
*) el 43874339 4048333953941 9L e3794. 956839 «B865( 633667,

*) 9373916526 090e 05520229790 4269266719391e21%3863625,

*C o1 434313492 4¢0e 566713433/

BESBCV)I=L o ¢V (Bley (B2 oyn(BI+V- (BG+Vr (BS+VeBEI))))
BESCIV)IZCL+Vo(CLl+Ve (C2=Vr(C3=Vr (CR=Vu(CHaVr(CH=VH
v(C7=VeCB)II))

SZ3ARTCCXCII=XXCUD ) n w24 (XCLoMI=XXCU+N) In s 2)
TF(SeblTelel01) S31,°
CEPA2SQRT(CEP (1) 002+ 423100 05aw2)
IFCMR(I9d)sEQe™) THEN
POM=, o9 |
Go TN 12¢
ENDIF
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OO0 0

o000 (g

o000

CEP-EXCLUDEZD CEDF MODELe THE PO(IeJd) IS THE
DISTANCE DAMAGE FUNCTION.

IFCCEPALTe"eI1) THEN
IF(SeGTe. e ) THEN
POM=PDR (REALCMR (I 9J) ) 9SyBETACJI))
ELSE
POM=1 ol
ZNDIF

ELSE

CEP-INCLUDED CEOF MODEL. OETERMINATION OF THE
IMTEGRATION LIMNITS A AND B.

NMRZ21 « 1 TTO~REALCMR(IWUI)I/CEPA
NS=1.17742S/CEPA

351 ) A*NWRYEXP(24R6*STIEMACU))
TF(BeOTA(NS*A,0)) B=NS+4,.
A=NS=%41]

TFCALT ol 07) A=C o

FN=Qe2

GAUSSI-LEGENDRE TEN POINT QUADRATURE TO
DETERMINE POCIed)a

030 113 K2=1,5%
DO 100 L2=142
RS2 {(B=A)* ZIK2 ) (=1 )oe 2+A+8)
PP=PDRINMRsRWyBETALJ))
H=NS«R
IF(HeEQaD o)) THEM
FIK29L2)ZPP +RAEXP((=Rw*2)/2.,0))
CLSEIF(HaLCe3eT7S) THEN
JUS (H/3e75)«v2
FAK29L2)=PP - RaEXP(=(NS»-242242)/2,')eBISB(JI)
ELSE
JJ=3475/H
FAK29L2)ZPPROEXP(=(NS=R)*»2/2,.  )#BESC(JJI/SQRT (H)
ENDIF '
FN=FN+H(K2)oF(K24L2)
CONTINUE
CONTINUE
PDM2) (S5e(B=A) «FN
ENDIF
POAM=INT(L.. Jol *POM+sa8)/10 . 267
END
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Camde bmaA Y20 1 AR SR R AR I FR R VAR AP P RardRn s S s R AR e R AN s o N A SRR O P W
RTAL FUNCYTON PDR(WRGRIBETA?

le CALCULATES THE DISTANCE DAMAGE FUNCTIONe~ THE
PROBABILITY OF ACHIEVING A SPECIFIED LEVEL OF
CLMAGE TO INSTALLATION J FROM MEAPON I WHEN THEY
ARE SEPARATED A KNOWN DISTANCI Re

(o] oOo0o0

I FZINIANERILAATAZRE AR RS R I RNAZIER IR RIS NIRRT AN RS AR A YRNE,

PA? AMETERCELISCa  TUS230784952204..422320123¢5327,2092705272
tE47140 13152 LA3gES= )00 2TE56T29E6=2040000437633)

REAL ERF922/BETALLUR 9ReUsSIGNyV

ERFAVIZL el =la(/lol oV¥n{Eloyr (E2oYr(LIoVr (EA+Vr(ESeY=ELDI NI Inel s

CALCULATES ZZs A STANDARD NNORMAL PANUOM VARIABLI. AND
TESTS 22 TO DETERMINE THE EXTREMES OF THE PROBABILITY
OF DAMAGE FUNCTION.

OO0

| 222(i 4" /BETA)*LOGCC(URSEXP(~BETA*#2))/R)
| IF(Z224GTa3e@7+ THEN
| POR=1.0
| RETURN
ENDIF
IF(ABS(Z2Z)eLT3E-283 THEN
PDR=C o5
REYURN
ENDIF
IF(ZZaLTe=3+8T) THLN
pPOR=C .0
RETURN
ENDIF
U=ABS(ZZ)/SGRT(240)
SIGN=14¢
[F(ZZ5LTeCa™) SIGN==1,0

CALCULATES THE DISTANCE DAMAGE FUNCTION USING &
POLYNOMIAL APPROXIMATIOW OF THE ERR0R FUNCTION.

2 X Xe Ry

PDR=2D «5+SIGN*U o S+ ERF ()
RETURN
EnND
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C#ﬁittttt*tt*htﬁ#ittt*t;'*tfitt*ttlhi*twﬁttﬁ*tatﬁ.thttkhﬁht.ttb
SUBROUTINE PUMIN(XoEoN9EFoESCALE 9 MAXIToWoNW)

c ie POUELLYS METHOD OF CONJUGATL DIRECTIONS

c DZTERMINES THE MINIMUM OF A FUNCTION USING
c ONLY FUNCTION ZVALUATIONS.
¢

I I R AR I I R R I L I TR T R TR
REAL XCND 9E (N Do WINW)

COMAG=7 s1#ESCALE
SCFr A=) 4 S /ESCALE
JUsNe (N+1)
FEVENRSY
K=N +1
NFCC=1
IND=1
INN=1
WRITE Sy )? PUMIN®
DO &4 L=leN
W{II=SESCALE
DD 4 JduleN
HIK)=,0
. LFCIeEQed) WIKIZARBSCECI))
4 KaK+1
ITERC=1
[3GRAD=2
CALL FUNCT (NgXo¥?
FKEEP=2,0vABS(F

START THE NEXT I[TERATIONe

mMOOHO

ITONE=]
DO 2793 I=1eN
WRITE(Ge4s) ¢ XC®)le0d Pex(l)
2N CONTINUE
WRITE(Gon) © EFz *,=F
FPzF
SUM=06Y
IXP=JJ
DO & I=leN
IXPzr XP+l
& W XPY=XCD)
IDI AN=N»1
ILINE=L

START THE NEXYT ONE OIMENSIONAL SEARCHe.

~NOO0n

OMAX=W(ILIND)

DAC C=DMAX +SCER
DMAG=AMINICODOMAGyL « ivDMAX)
OMA GEAMAX1C(DMAGs2Je " «DACC)
DCMAX=1. .7« DMAG

GO TO (747 971l I°ONE
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14

83

23
24

DL=3Je)
I=DMAG
FPREV=F
1823
FA=FPREV
DA=DL
D0=D-0L
OL=0

SELECT THE NEXT SEARCH DIRECTION FOR ITERATION I.

K=IDIRN
00 9 I=1N : K
XCII=X(1)+DDr WIK)
KXol
CALL FUNCTCNyXF)
NFC CaNFCC+l
80 TO (10921912013 914,996)y :S
IFCFLEQaFAY THEN
TFCABS (D) eLE«DMAX ) THEN
DrD+0 -
60 T0 8 .
ZNOIF
WRITE(G6y0 )Y MAX CHANGE DDES NOT ALTER FUNCTIONY
30 rg 2¢
FLSEIF(F.LT.FA)Y THEN
FAsF
NH=0
ELSE
FB=FA
oaszHA
FAaF
DA=zD
ENDIF

B3 TO (H3+23) ISGRAD
0z0B+0B8~0A

IS=}

60 19 4

Dx) «5*(DA*DB=(FA=FB) /C(DB=DA) )
Isss

IFC(OA=D)«tD=DB ) ¢GE D) GO TO &
1521

IF(ABSCD-DB e LE.DDMAX) GO TO B
D=DR¢SIGNC(DOMAX 4DB=DA) ) ;
1521 ‘
DOMAX=DDOMAX+DDMAX

DOMAG=DOMAG+DDMAG

IFCDODMAGLGE w1 el E+8Y) DOMAG=! (L E &Y

IFCDDOMAXJLE «DMAX) GO TO B

DOMAX=0OMAX

GO TO 38
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13
24

29

12

~ 0

=]

3

IF(F.GELFA) GO TO 23
FC=F8B

0C=D8

FB=F

DB8=D

GO0 YO 3In

IF(F.LE.FB) 60 TO 21
FAsF

DAzD

B0 Y0 32

IF(F«BEL.FB) 60 TO 1.
FAzF8 :
DA208

G0 TO 29

DL=1sC

DOMAX=3, 1

FAzFP

DAz=1,"

FBz FHOLD

DBz,

0xl.)

FCzF

DCaDN

AZ(DR=DC) *(FA~FC)

Bs¢ DC=DA)»C(FB=FC)
TRC(A+B)* (DA=DC)eGT 1) GO TO 34
FAsFB

DAzDA

FBaFC

DA=NC

60 TQ 26

D) o 3*CA* (DR+DCI+Be (DA+DC)I)I/ (A+B)
DI=0D8

Fl=zFB

IFCFB.LELFC) GO TO 44
DI=DC

FizFC

B0 TO (86¢8693%)9 [TONE
ITONE=2

O TO 4%

CHECK THE ONE DIMENSIONAL MINIMIZATION SEARCH

FOR CONVERGENCE.
IF{ABStO~DI e LESDACC) 60 TO 41

IECABS(D=DIVelEaC:e I®ABS(D))) GO TO 41

IFCCDA=DC)I« tDC=DIeGEaD o) THEN
FAZFD
0A=0D8
FB=FC
DA=0C
G0 YO 29
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41

0oONoa

49

2 QOO e

£

IFC(OB=D)*(D=DCIeGEWlec) 'GO TN 8
1523
G0 T9 8

ENDIF

Fa3fF?

0D=0I-DL

RE=(OC=DB)+ (DC=-DA)* (DA~DB)/ (A+B)

IFCRELEeNe!" ) THEN
WRITE(S 9+ )* ACCURACY LIMITED BY THE FUNCTION®
RETURN

ENOIF

DD=SQART (RE)

COMPLETES ONE OF THE N ONE DIMENSIONAL SEARCHES
FOR ITERATICN I« UPDATE X(1l)e

DO 49 T=zlN ,
XCIV=XCI)I+DaW(TDLRN)
W CIOIRN )=DD*U(IDBIRN)
IDI RN=IDIRNel
MCILINE)aM(ILINE) 7DD ‘
ILINERILINE 1

IF(ITONECEQ.2) GO TN 39
IFC(FPREVaF=3UM) LT o) GO TQ 94
SUMsFPREV~F
JILSILINE
IPCIDIRNSLESJY) B0 TO 7

ALL ONE DIMENSIONAL SEARCHES COMPLETED

GO TO (92072) 9 IND
FHO LD=F
18=6
IxP=JdJd
00 33 I=1N

IXPSI NPl
WCIXPISX(L)~WL(IXP)
D=1,

CALCULATES THE EXPANOED.POIANT,
60 TO 33

B0 TO (112+£7)y IND
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THE MODIFICATIGN TEST

=00

12 IF(FPLLELF) GO T0 37
D22 ad 2 (FP+F =20 »FHOLOD)/(FP=F)n 2
IFCCO*(FP=-FHOLD=-SUM)*22=SUM)4BGELD ) GO TO 37
ar J3JIL*Nel
IFCJ.GTJJ) B0 TO 61
00 62 I=JdsJd
K2l =N
62 HEKI=N(T)
DO 97 I=JlILN
97 W Tl =1)=u(T)

SEARCH IN DIRECTION OF THE EXPANDED POINT.

L s NeXNe]

| 1 IDIRN=IDIRN=N
| ITONE=R]S
| K=IDIRN

1 XP 204
: AAA =0 o)
| DO &7 :=14M
| I XP=IXP+1
WK ZWCIXP)
TFCAAACLT cABSCW(K)IZECID)) THEN
AAA=ABS (M(K)/ELI))
ENDIF
67 K=K *1
DDOMAB=1,4%
W(N)ZESCALE/AAA
ILINE=N
GO TO 7
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111

UPDATZ X(I) AMD USE THE PREVIOQUS SEARCH DIRECTIONS.

IXP=JJ

ARA=0D,"

F=FHOLD

DO 99 I=1l,N
IXP=IXP+l
RAII=2XCID)=WLEIXP)
IFCCAAA#ABSCECT D)) )L TLABSC(MCIXP))) THEN

AAA=ABSCUCIXPI/ZELD))

ENDIF

CONTINUE

60 TO 72

AAA=AAA= (1., +DI)

GO TO €T2+16)y IND

GG TO €109488)y IND

IFCAAALE"]l) GO TO 20

IFCF4LT.FP) 60 TO 35

WRITE(See)? ACCURACY LIMITED BY THE FUNCTION?
80 7O 2T

IND 2L

DOMAG=2" (A«SART(ABS(FP=F))

IFC(ODMAGeGE«Ll+0E+67) DDMAG=1 40E+AKD

IS3PAD=1

ITERCSITERC]
IFCITERCoLEMAXIT) GO TO 8
IFCFLE.FKEEP) GO T 20
F sFXEEP
DO 111 I=ieN

JJdJdsJddd ¢l
X(I)=uWtJud)

WRITE(Gy#)* ITERATIONS= ®,ITERC
EF=F

RET URN

IFCAAALLE s . el)Y GO TOQ 2:

INN=1

60 TO 35

END
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Appendix E: User Guidelines and a Sample Problem

This apperdix provides basic instructions for iaputting user-
specified weapon and installation parameters to the CEDF maximization
algorithm. Thegse instructions are presented using an example.

Initially, tha user must determine the values of the convergence
control parameters, ACC, DFPRED, E, and ESCALE, These values depend
on installation values and the number of weapons and installations.
User guidelines in Chapter V discuss specific considerations. The
source code initializes the PWMIN convergence paramaters to E(i) = 0.1
and ESCALE = 5000. Two minor code changes would be necessary to change
either of these values. The user must input values for the ZXCGR con-
vergence parameters, ACC and DFPRED.

Next, the user must decide on the type of initlal DGZ ccourdinates
to use. The user has three options. The user commumicates the desired
DGZ location option to the algorithm through the input variabla -~ INC,
If INC = 1, then the algorithm uses the user-specified cstimates of
the initial DGZ locations. If INC = 2, thau the slgorithm ussigns the
coordinates of the m highest valued installations to be the inltial
coordinates of the in weapuns in decreasing ordar of yield. Finally, if
INC = 3, then the algorithm agsigns the coordinates of the m hardest
installations to be the initial coordinates of the m weapons ir de-
creasing order of yield.

Then the user needs to compile the necessary input data in a FORTRAN
extornal file, INDATA. Figure E-~l1 is the input data file, INDATA, for a
two weaﬁon—four installation exampla, The first line is the decision

variable, INC, For this example, INC = 2 and the initial DGZ
147




2

2
48511 %¢ 450 323N 70 25" 4
#8138 2% A60310N T2 29 . .
LY 460 33N 16P2 I5LLe
ASL050E LY-TOF Y| 2¢P2 2550
451130 4 60 350N 21r4 S007% .
AB11%0E A60 305N 1903 7001 o

fle11

100049

Figire E-l. The CEDF muximization algorithm input file, INDATA, for
s two weapou-four installation complex.

coordinates wara the coordinates of the two highest valued installations.
* Thie secord 1ina in the file “\DATA is m, the nunber of weapons for the
]c;_cmpl.x; for this axample, m = 2, The next m lines contain the user-

.q;'eqai.fiocl weapon pavameters., The FORTRAN input format for these para-

.. mters is statameat 100 in subroutine INITLZ of the source code. The

nrdmr and units of the weapon vivameters are: thae longitude and lati-
tudn coordinates /thasc nust be initialized to some value even if
*'ING = 2 ¢ 3), the yleld in kllotons, the CEP in fest, tha HOB in feet,
aidd tha Fa, B

“The line ufter the lasc werpon's parameters is n, the number of
inﬁ‘ﬁ{lhtiom in l.ha complex; for this example, n = 4, The next n
lines contain the user-specified installation parameters. The FORTRAN
input. format statoment for these parameters is statement 110 in sub-
routine INITLZ of the source cods. Tha order of the installation
parametors is: the longitude and latitude coordinates, a VNIK code,
and a value (a real number less than 1L0000,0).

Finally, the ZXCGR convergence control parameters complete the
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external file, INDATA. The line after the last installation's para-
metars contains the value of ACC for the second stege of ZXCGR maxi-
miation. The last line of the file contains the value of DFFRED. For
this exanple, ACC = 0,001 and DFPRED = 1000,

The CEDF maximization algorithm outputs the results of a problem
to anothar external file, TAPE6. The results of four maximizations
are: (1) a ZXOGR maximization for ACC = 0,013 (2) a ZXCGR maximi-
zation for a user-specified value of ACC; (3) a PWMIN maximization;
and (4) a mixed maximization,

Tha next six pages list the results of the two weapon-four
installation problem.
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I X ETREEETIZZ I REZIFEEIEEER S A A A ERR A AN N NE N 1 LT X TN
CLOF MAXIMIZATYIOM ALGURITKM
I Y2ZIFIRISEEZEASI AT RS RN R AR R A RS FIEL AN XA LER 2N BB ES
INITLZ
THIS PRIBLEMN USET 2 NEAPCONS
WEAPON YIELD cCEP HOB PA
1 70 250 . 107Ce 99
2 Tde 250 . 10)0e #9899
THIS COMPLEX CONTAINS & INSTALLATIONS |

‘ LONGITUDE LATITUDE VNTK VALUE

4519 "E 46 33uN 16P2 353
451030€ 46 & ON 22P2 250
4511 0NE 46 33N 21 P4 5000«
4%1130E 46 3 SN 1903 705" e

THE XY COORDINATES OF THE INSTALLATIONS IN FEETY

XXCL)= 42199,35367441 XX(S)=2 21280.000N00C02
XX(2)3 44298,82133813 XX(6)= 24319,99999998
AXCI N2 454082904134 XX(T)= 2330666666666
XX€A 32 A8517.736725%59 XX(8)= 18746,66666664

INITIAL DGZ LCCATIONS ARE HIGHEST VALUED INSTALLATIONS

X(l)x #9817.796728%9  X(3)= 18746.66666664
X(2)= 46409.28%C8144 XCH)= 233064.66665666

MR AD3

WRCLlel) 3272
WR(291 )02 3272
WR (1 202 1947
WR(24223 1947
WR(13)= 2200
WR(243)= J2U0
WR €1 94 )= 2363
WR (2 44)= 2383
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TRACRBUN RN AAPAROCANRAOCC R ANDNOAR RO ARNARR ESSuadACTRA

(222 AL R XN XA N AL NI AR R Y Z 2R 2R R R R 2N X

ACC= 431

WEAPON
YEAPON
PS¢L)=
PS(2)=
PSC3)=
PSls )=

ZXCGR MAXIMIZATION

1 XY COORDINATES
2 XY COORDINATES
«376214
86833
2039999999999993
+00 2841 599995993

EC= 1229344438

MEAPON
WEAPON
PS(l)=
PS(2)=
PS(3)=
PS(d )=

1 X¢ COORDINATES:S
2 XY COORDINATES:
027228
082373
+3019999999399%998
+009851499999598

ECx 1240642345

WEAPON

HEAPON
PS(1)=
PS(2)=
PS(3)=
PS(4)a

1 XY COORDINATES?
2 XY COCRDINATES:
»91549%
«13318
«001399959999999A
00994 599999998

EC= 14192.36%8

WEAPON
HEAPON
PSCl)=
PS(2)=
PS(3)a
PSCa )=

1 XY COORDINATES?
2 XY COORDINATES:
65348
001 9999999999991
063578
«10 3930099999998

EC2 1212341943

WEAPON
WEAPON
Ph¢1 )=
PS(2)=
PSC(3)=
PS (8 )=

1 XY COORDINATES?
2 XY COORDINATES:
86239
0. 2u439
«01198
+J 19940 39596999

EC= 14799.,7872

WEAPON

WEAPON
PS(l)=
PS(2)2
P3(3I)=
PS(4)=

1 XY COORDINATESS
2 XY COORDINATES:
«83%66

0140973
«N23865C0003001
¢339 7029694995913

ECa 143%84.6229

UWEAPCN

MEAPON
pPstl)=
PS¢2)=
PS(J)=
PS(4)=

1 XY CCORDINATES
2 XY COCRDINATES
«17632
«G5297
«e63023
0319372329969%924

L
.
L d
L

EC= 13573045129

( 485180
{ 4640184

43518e 0
4623334

4831749
456574y

48517a
44158 ey

~8517‘0
45922 ley

43917«
‘512*.0

A9%16ey
441 LUas
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137474
23307

1874%7.)
233316)

1874Te)
2€3354%e)

18747.)
24337e)

187474)
23678.)

18787,)
23729.)

147474
23312.)
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PS(2)=
PS{3)=
P34€4 )=
EC= 13
MEAPON
WEAPON
PS(l)=
PS(2)=
PS(3)=
PS(4)=

«032633

e13226
«3393962399399998
2537322

1 XY COORDINATES: ¢
2 XY COORDIMATES:?
e51787

eidd2l

e19613
¢317934,599999993

”

EC= 15416.69542

VEAPON
WEAPON
PS(1)=
pPs€2)=
PS(3)=
PS8 )=
EC= 1%
NEAPON
WEAPON
p2(1 =
PSC2)=
PS(3)=
PS (s )=
EC= 13
NEAPON
WEAPON
Ps(l=
PS(21=
PS (3=
PS(4)=

1 XY CCORDINATES:?
2 XY COORDINATESS
51331

e17831

0113054
«3099475999999348
320.653%53

1 XY CGORDINATES
2 XY CNCROINATES
«33767
e167642:000000C1
e03013:000202331
e31994( 599695992
429%.)T048

L XY CONROINATES3
2 XY COORDINATES
o 72778

«02287

002584
«05995(499999999

~

(]

)

EC= 15196.,8465

WEAPON
WEAPON
PS () )=
PS(2)=
PSS (3)=
P34 )=

1 XY COORDINATES:
2 XY CONRDINATESS
e35391

o04148
e0A412307900°0C01
«00 9940599959593

”y

£C= 15433423128

TER= 3

FUNCTION= 13433.03C8
FUNCTION EVALUATIONGS

X(1 )=
GRAD (]
X(2)=
LBRAD (2
X¢(3 )=

GRAD(3 )= ~,000 1474502035656

Xtsdz
GR AD (s

18
A331664603TACT

)= L0003386697914471
44350.73876378

)= 4114870170614
L8747 419690165

2319365196727
)z 1193711576447

4351749
44329,

4851 T
4“31200

AB51 640
4413 3%,

4851609
450430e0

AB51 64
Q‘BSlo!

187474
23719.)

18747,
237 34,)

13747,)
230 6%e)

18747,)
23386.)

LHTATW S
2319%4)

WE AP ON LINGITUDE
1 451129¢
2 43517 37€

LATITUDE
46 5 3N
46 8T
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N IRV YN e W BB LA B R W N LA TA WA IR AW WA TR IR T T Fa b L Te et e 0 e s

L EZ 2R R AL AN IR AL ENALEREEALEE LA RS ASEL LR NN S,

ZXCG6R WITH ACC REDUCED

'YXXEIZIBIZEEREAZEZIRZEPRIE SRR R LI 2R A AR R AN ]
ACC= L1}
MEAPON 1 XY CCORDINATES? ( 483516e9 13747,)
WEAPON 2 XY COORDINATES: ( 4435169 233%94.)

P3(ld= ,53351

PS(2)= +N61438

PS(3)= L031230C000000012

PS8 4119940599999998

EC= 15433.3308
IER=
FUMCTION= 15433.030G¢
FUNCTION EVALWJATIONS: 2

XCL)= 48516486037407

GRAD(1 )= 2033366565791 4471

X{2)= 44351,738T76378

GRAD(2)= 1194870170614

XCID)= 18747.,19690769

GRAD(3 )= =,)00147A502)256%6

XC4)= 23053,65196T27

GRAD(4)= 7133911576447

WEAP OV LONGITUDE LATITUDE

1 451129¢€ 46 3 5N
2 451037¢E 46 347N
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I I EZENEEEIEFECESIESEZ S ARSI AARSRASARARE SR ESRRER S RN
PWUMIN MAXIMIZATION
PENEANER A AN T TR AN ARSI N IR AAWR AN R AINTR AN BAANIN NI
PUMIN
XC1)= 483517 .75672539
X{2)= 46418.28904104
X{3)= 13746.6c6E606664
XCa)= 21316+66666666
EFx 12358.3581
XC(1)= #$351T7.7567255%
X{2)= 44838,54497¢1
X(3)= 1E2746.66666664
ACa )=z 2316922996394
EF= 15137.31%8
K1)z 4851775672559
X12)= 94838.,B30T71R1L 4
Y(3)= 187T468.66666664
K€a)= 2316579903188
cF= 15141,9708
ACCURACY LIMITED BY THE FUNCTICN
ITERATIONS= &
FUNCTION= 191 41,970¢
XX ()= 4351775672559
XXM (2)= 48321,5703311L%4
XAX (3= 187486 456666564
XXX (a)= 23159.,52991793

WE AP ON LONGI TUDE LATITUDE
1 451130E 46 3 BN
2 431238E 86 348N
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PWMIN

X¢1)= 435164460374127
X(2)= 44330.73876376
XC€3)= 1874T7.1969006S
X(a)= 2303346519677

EF= 15133.0608
XK(L)= 4851643037407
X€2)= 44851.,327906583
X€3)= 18T74T741769006%
X¢ad)= 23127,.,72924026

EF= 1513640308
X(1)= 4851646037407
X€2)= 84351.,74210346
X€(3)= 1874T74196921:65
X(ad)=z 23123.46811256

EF= 15138401408
XC(L)= 483516.46037407
X€2)= 44353.,6.:958M23
XC€3)= 1874741969065
XK(e)= 23123.,468112%6

} EF= 13139.49%58
w ACCURACY LIMITED BY THE FUNCTION
ITERATIONS= 4

} FUNCT IONs=
| Xb () )=
xs(2)=
Xh(3)=
Xa(h)=

YEAPON
L
e

15132.07CC
4851646037437
4483535 ,35435102
LAT47.,19690065
23105.5184597

[ EE I XL I NN IRAZALE AR AR RIS RN R R LR LRI EREEEE RS N AN,

MIXED TECHNIQUE MAXIMIZATION

L X222 Z2 R XA ENEAI AN AIEAEEVNEEZESIIEEIILIEEEYNE R ENEREEE]

LONGITUDE LATITUDE

451129€
451C037¢E

46 3 SN
46 J48N
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Apperdix F: Verificaiion of the Gradient

of the CEP-Excluded CEDF Model’

The results of two axample problems verified that the subroutine
GFUNCT correctly calculates the gradient of the CEP~-Excluded model. The
pencil and paper results for each example were compared with the results
from GFUNCT.

The first example included one weapon and two instaliations. The
weapon and installation parameters are presented below. This verifi-
cation example used a graph of CEDF(x) versus x. For 40 equally spaced
DGZ locations, values of CEDF(x) were calculated, The x direction was
along the line connecting the two. installations. Table F-1 lists the 40
values of x and the corresponding function and gradient values. Figure 9
in Chapter 1V is a plot of this data. A DGZ between the two installa-
tions was selectad (x = 63500), and the gradient was calculated using
two methods. In this example, the gradient had only one element because
the y variable was constant; only the x variable was allowed to vary.
The gradient values for the twe calculation methods were compared with
the gradient value from GFUNCT.

T first method used a difference equation, A—%E , to approximate
the gradient. The slope of the line segment comnecting the CEDF values
for the two DGZs on either side of the selected DGZ wes an approximate
gredient vaiue. From Table F-1,

CEDF(x = 63000) = 6257
CEDF(x = 64000) = 10196
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TABLE F-l

The CEDF(x) and the Gradient of the CEDF(x) for
a One Weapon-Two Installation Complex

I ETEINEE AR RIEINRZELEAZEAL LN AERE N AR R 22 82 & 2 K

GRADIENT VERIFICATION

TIIEAZIR 2L NREI LRI AL R ART R X2 2D

X€) x(2) EC 6RAD(1) BRAD(2)
Z4300, 23000« 238 A 1.6274 Gel2CQ
54550, 25007 o 3217 16894 Je070371
84300 23093 o 398%. 1435317 De0CU U
55500 2333% o 4534, « 3335 -el000
86200, 27300 4825, e 3564 20370
56500 2007 « 4930, 22899 Je0CN
37300, 209730, 49% :a e 106 (L) VR
57%00 25301 . %5 .. eG4 CeRMOC
32500, 20330 @ 455 e e GO JeBOUT
82590, 2022310 . 4991, 18002 «000u3Y
397030 27900 o 49%% 4 0009 JeQ202
29500, rk b 49%5Je «J017 Ue02723
60100 27030 . 49%5 3, e85 Qo007
6L 500, 200737 « 49524 «.:16R8 JeQL30
610J0C. 273497 o 4374, 0513 JeONRIC
61500, 2:009C o 5021 «1493 060320
62399Ge 212 0¢ $152. e 8064 UeOoUG
62530 250 0v 5485, 1.2094 JeBuul
63000 20094 6257, 2¢211 36 Jefitnae
BI30C. 2904af 772 3. Je B 791 o001
64100 2u000 1019¢€. Se4652 Ge0QUDYG
64530, 2I03% 1251 e 445543 T LT
6%000N, 23320 14724, 1.993% Je0CCY
5858310, 23907 146316 =248 Teduir s
66:30e 2330 L8266, =1a5743 TeldUNLL
8650 (e 20601 13514, ~1e3043 AP TTRVER

67C¢00. 29090
6TS0 T, 2CG0¢
64,10 21000

12227 4 ~]e2078 NeQOCU
12497, 5735 Tel 07
12231 -s 8157 velyhd

® ® 5 & 0 o ® 6 & & & &6 & & 5 ¢ o & & 5 6 8 0 o

695%¢C 21300 120443 -ecd37 GeCo00
893910 2718 11979, -, 1325 Q60027
63500 2790 1193, -l 701 SeOGUO
Ti"3I0e 2392° 1.9 9. wai 384 el . it
705000 21094 11724, ~e 5826 el G
TiN0Ne 20087 10744, =343551 Sedllid
T1500. 2.00° 8538.. -5.7974 LaCLOG
T200 0 27350 537 .0 -548235 AP | RN
7220 2538 2E6 2 -be 69T PYAEYIVEN
T3 30 200 0 13C 7. 222145 tel1" 1
T35 1, 2Y197 837 -la.1l04 el
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The difference equation approximation of the gradient at x = 63500 was

A CEDF 10196 - 6257 . 3 939
Ax 1000

The second method was pencil and paper calculations of all the
steps necessary to determine the gradient. Chapter II presented these
staps. Only a summary of the calculations are presented here.

Given: Weapon Yield CEP HOB Pa (x,y) in feet
1 100-kt 0 feet 1000 feet 0.99 (63500, 20000)
Target VNTK Value(v) WR (xx,yy) in feet
1 11P2 5000 6194  (60000,20000)
2 15p2 12000 4066 (68000, 20000)

Note: In this exampla, y = x(2) = constant. Hence,ach = 0 and

CEDF(%) = CENF(x).
From Eq (1),

CEDF(x) = vl*Pal*Pd(l,l) + vz*Pal*Pd(l,Z)

However, vJ and Pal are constants, so

CEDF(x) = 4950%Pd(1,1) + 11880%Pd(1,2)

and d cggpgx) - 4950k SPALL) | 1 ge0w S PA(1L,2)
d Pd(1 -u?
where Ix - --L-E--(xxj-x)
{2np:
fvn
o sogpree -0 g (B0
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For overpressure (P-type) targets, ay " 0.2 and

B = J- In(1 - o) ' (F-1)
- 0.202045
Lat A = xxy = X (F=2)
BB = XXy, = Xy (F-3)
r = A + pB? (F-4)

For this verification example, BB = 0 for both targets and r = |AA[,
the ubsolute differerce between the x coordinates of the weapon and
installatima j.

For target 1: AA = 60000 = 63500 = =3500
r = 3500
u= 1.8548527

d PdCL,1)  .1.8080608%10™
ax
For target 2: AA = 68000 - 63500 = 4500
r = 4500

u = 0,49780381

d Pd(1,2)
dx

- 3.4267393%10"%

Thexefore, ' é
d ?F %) = 4950,0%(~1,8080608%10"%) + 11880.0(3.4247393+10°%)

= 3.97909
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The value of the gradient of the CEDF(x) from GFUNCT for the DGZ
selected (x = 63500) was 3.9791. The gradient results from the dif-
ference equation approximation and the pencil and paper calculations
were compared with the value from GFUNCI. These two comparisons indi-
cated the subprogram GFUNCT was properly calculating the gradient of
the CEDF(x).

The second gradient verification example included two weapons and
three installations. The gradient of the CEDF(x) had 2m or four
elements. However, only one element was completely checked by pencil
and paper calculations.

Given: Weapon Yield CEP HOB Pa (xyy) in feet
1 100 kt 0 feat 1000 feet 0.99 (61000,21500)
2 100 kt 0 feet 1000 feet 0.99 (62000,17500)
Target VNTK Value(v) WR (x,y) in feet
1 12pP2 5000 5550 (60000,19500)
2 14P2 8000 4495 (68000,20500)
3 12P2 4000 5550 (63000, 23500)
From Eq (1)
- v.¥Pa % (1 - Pa#pd(1,1))% 22321
382 1 2 2 aX2

+ v*Pa, (1 - Pa #pd(1,2))* -2Fd(2,2

+ v *Pa, (1 - PaBd(1,3)* 2Pi(2,3)

3 ax (F=5)

2
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From the subprogram FUNCT,

Pd(1,1) = 1.000
Pd(1,2) = 0,007
Pd(1,3) = 0.999

Henca, \(l'lfPa2 = 4950
V2*Pa2 = 7920
VB"\‘Pa2 n 3960

and Pa, #Pd(1,1) = 0.9%000

Pa,*Pd(1,2) = 0.00693
Fa,#Pd(1,3) = 0.98901

Eq (F=5) becomes
BRI w49, 500 2L 4 7565, 110 BEUL2)
X9 sz axz
+ 43.5204% QPd(2,3)
3X2
-uz
whera anSZ,l) - e (xx - X )
ox, -ﬁﬁrz 32

g m ek -8 + L1 (¥R(2,4)

and u J—_ér*abs[ﬁ*-pln( " )J

@, AA, BB, and r are calculated from Eqgs (I"-1) through (F-4),
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For target 1: A = 60000 - 62000 = -2000
BB = 19500 - 17500 = 2000
r = 2828.427

Pd(x,1)

= -3.633135%10°
° xz

For target 2: AA = 68000 - 62000 = 6000
BB = 20500 « 17500 = 3000
r = 6708.204

9Bd(2,2, | 5 426656%10™
O Xy
For target 3:  AA = 63000 = 62000 = 1000
| BB = 23500 = 17500 = 6000
r = 6082.763

QRd(2,3) | 4, 304255%10™
-}9)

Therefore,

.ﬁa..n’%ﬂl) = 49.50%(~3,633135%10~%)
2
+ 7865, 114do(2.426656%10™°)
+ 43.5204%(4.3046235%107)
- 0.19254823

The value of the gradient element of the CEDF(x) for X, from GFUNCT
was 0.19255136. This comparison also indicated that the routine GFUNCT
was correctly forming the gradient of the CEDF(x).
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