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'A A MIXED EXPLICIT-IMPLICIT ANTIDIFFUSIVE METHOD OF NAVIER-STOKES
EQUATIONS FOR SUPERSONIC AND HYPERSONIC SEPARATED FLOWS

/Chang Han-hsin, 4u Lin-sheng, ,Yu Tse-ch'u, /4a Chan-kuei

ABSTRACT

In this paper, a mixed explicit-implicit scheme based on an antidiffusive method is used

to solve the Navier-Stokes equations for the s' personic and hypersonic separated flows.

The computations are performed for laminar and turbulent flows over the two- and three- /67

dimensional compression corners. The obtained results are compared with the results of nu-

, merically computing NS equations". 3-Sland these results of the experiments'-. The

computations show that the numerical scheme in this paper is satisfactory.

I. Introduction

When a finite difference method is used to solve the problem of

separated flows of a viscous gas, the viscosity of the difference

scheme or the artificial viscosity introduced must be much smaller

than the actual physical viscosity term in the region where the

effect of viscosity is important. Therefore, it is preferable to

use a scheme with a high degree of accuracy. If there are shock

waves in the flow field, the difference scheme should be able to

Sautomatically capture the shock waves. Furthermore, the scheme should

have a relatively long stable time step length so that computation

time will not be very long when computations are performed for high

Reynolds number laminar or turbulent flows, despite the small size

of the mesh. The method based on a mixed explicit-implicit scheme,

. given in (11, meets the first two of the above requirements, and

has already been used to obtain very good results. However, computa-

tion time required is rather long because of the small stable time

4.. step lengths. It is the purpose of this paper to seek a difference
scheme that can simultaneously meet the above three requirements.

The scheme studied studied in this paper is a mixed explicit-

implicit scheme. The time split-finite volume scheme is employed.
Implicit expressions are used for the difference operators along the
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normal to the wall in the neighborhood of the wall, while explicit
~expressions are used for the difference operators in other regions

-.- and those along other directions. one can thus obtain very large

stable time step lengths.

In the implicit difference computations, we have used a two-

step antidiffusive method to increase the stability of the computa-

tion and the accuracy of the difference scheme. The first step is

to adopt a first-order implicit scheme containing a positive dissi-

pative term. In the second step, local explicit antidiffusion is

carried out, i.e., the positive dissipative term is subtracted

explicitly. After these two steps, the scheme retains an accuracy

of the second order. This type of two-step antidiffusive method has

also been applied to the explicit scheme. In ordet to-be able to

automatically capture the shock waves in the computations, we have,

on the basis of the first- and second-order schemes given by the

two-step method, established an automatically regulated mixed scheme.

Computations have shown that this method is very satisfactory.

This paper is divided into four parts,-including the introduc-

tion. The second part deals with the two-step antidiffusive differ-

ence method applied to a model equation. In the third part, the

explicit-implicit difference method for solving the Navier-Stokes

(abbreviated below as NS) equations is given. The results of the

computation is given in the fourth part which also contains a com-

parison and analysis of the results.

II. model e~uation

For the sake of simplicity, we consider the following model

equation%

"- - a- -. : O(2.1)

In the above equation, a is a constant. The two-step explicit 54

scheme is first established, then the two-step implicit scheme of

the antidiffusive method.
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1. Two-step explicit scheme of the antidiffusive method.

In the first step, we adopt the windward scheme, i.e.,

(a it! a>O (2.2a)

S- , a<O

- or in a unified form,

-, a, I oAlto_
"-- 1 - (go..u-,- J + 2 A (is,,-- 2u +u-) . 2.2b)

It is not hard to recognize this as the Pyca90B scheme for the

case where w = 1:

It is well known that equation (2.2) is a first-order scheme.

Its viscosity term is

Q -- , + ,) (2.3)

where
O, = . ' a ' [ 1-,a, .(2.3a)

The second step consists of an antidiffusion of the first step,

i.e., the viscosity term (2.3) is subtracted from u n+ . Hence,
Sf -, . (2.4a)

Obviously, equation (2.4a) is accurate to the second order. Making

use of equation (2.2), we can also write equation (2.4a) as

. .) >(2.4b)

Combining equations (2.2a) and (2.4b), we can readily see that this

is MacCormack's two-step explicit scheme. This shows that one can

arrive at the second-order MacCormack scheme by starting out with

the first-order windward scheme and performing antidiffusion. Simi-

larly, setting out from other first-order schemes containing positive

dissipative terms, one can also establish the corresponding second-

order schemes by means of antidiffusion.

3



*2. Two-step implicit scheme of the antidiffusive method.

In implicit computations, the Crank-Nicoson scheme is often
used: a.tr 1,? j= aw, -777= T.=', --.,tI

l ls, [- 
(2.5)

This is a second-order scheme with a growth factor of l.. To increase

its stability and to corroborate the advantage of the diagonal ele-

ments of the matrix in the matrix chasing, as a first step, we add
a positive implicit dissipative term to the right hand side of

equation (2.5). Thus, we obtain a first-order implicit scheme:
WFu - At ';7 _ 55

(2.6

Here, Q1 is the coefficient of dissipation. U. can be found from
equation (2.6). Then, in the second step, the dissipative term
Q,(s,+-1+',i) - is subtracted partially explicitly from u. and

we obtain the second-order scheme below:
.- + . (2.7a)

Or, insert equation (2.6) in equation (2.7a) to obtain

In order to. be able to automatically capture shock waves in the com-

putational process, we have constructed on the basis of equations
(2.2) and (2.4) or equations (2.6) and (2.7), the automatically

regulated mixed scheme
2 +

'a. or

Inth aov uimyr~ 1 Q2 (2.8)
In the above equation,

(2.9)

8 is the switching function in the automatic regulation. Its value
in the vicinity of the shock waves is 1. In regions where viscosity
plays an important role, its value is zero. This shows that the

... 4
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scheme has accuracy of the first order in the vicinity of shock

waves, while it has second-order accuracy in regions removed from

shock waves. For the expression for e, see [1]. Computations have

shown that the value of Q1 is best taken to be between 0.1 and 0.3.

In summary, we have obtained the automatically regulated anti-
n+1-.:.:: diffusive scheme (2.8) in which u. can be computed either explic-

*- itly or implicitly. It can be shown by means of a Fourier analysis

- that when the explicit method is used. the stability condition for

both equations (2.2) and (2.4) is =JA<., while if the implicit

method is used, equations (2.6) and (2.7) are unconditionally stable.

If the filtering function

(2.10)

is introduced, then accurate to the second order, equation (2.6)

can be written as

-'. " (2.11)

Equation (2.2) can be written as 56

SI-.i, (2.12)

where
'-". m_ - ut---;- ='-, >O

-- 4,, = < 0 (2 13

Equation (2.8) becomes

S;. = -, (2.14)

After the above operation, equation (2.14) becomes a second-order

scheme.

The above study of the model equation can be extended to the

equation

".9.43 - . (2.15)

, Here, f is a function of U. Proceeding as in equation (2.6), we can

write the first step of the antidiffusive implicit scheme as

5
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.".'' .... ' "iJ'-'" z+T (U,--1 -2U7 - +CTT ),

As

=~ - --- (U.,-U,., --- A!I AUJ ,

after inserting it in the above equation, we obtain
A t
_4LA7 A U~ + 2 + U0T 7U'!x') (2.16)

In the above equation,

' -A' .(V L-),
1 U (2.17)

Proceeding as in equation (2.7a), we obtain the second step as

" ,-2 2 ,-- . U + u ,) . (2 .18 )

On the basis of equations (2.16) and (2.18), one can establish a
mixed scheme as well as introduce a filtering function and perform

filtering computation.

S-' III. Explicit-implicit method for solving the NS equations

1I. Basic equations, boundary conditions and initial conditions.

Let us now study the diffracted flows over the two- and three-
* . dimensional compression corners shown in Figures 1 and 2. As the

three-dimensional corner possesses a plane of symmetry, only the

right half has been shown in Figure 1 (as viewed along the direction

of the oncoming stream). Assume that x', y' and z' are the coordi-

nates of the coordinate systems given in Figures 1 and 2; t' denotes

time; u' v' and w' are the x'-, y'- and z'-components, respectively,

of the velocity of the gas; p', p', T' and p' are, respectively, the

pressure, density, temperature and coefficient of viscosity of the
gas; y is the adiabatic index; e'- P, I " L' t

'-i p1 9 2; L' is the

characteristic lengt'h shown in Figures 1 and 2. The following dimen-

sionless mesh quantities are introduced: 57

6
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P=P - ./ p'. p*/P'.r .", U-.'/ .

=mv'/'.., w=w'/a'., e=e'/n". (3. 1)

"I 'S x-x-'Ilf, Y,=Y'IL', z-z,'ll.'
U,

where R is the gas constant, and the subscript " " denotes the

oncoming stream.

For the three-dimensional diffracted flow, the body surface

coordinate system E, n, is used. It is related to the Cartesian

coordinate system via the following relations:

,Gy I(3.2)
In the above, z = f0 (x,y) is the equation of the body surface given

by ( I.) L3.)

Zinfe(X') xC' x>OfLY>O
I>0bs (3.3) 58

& z~Y: -xt&+yC, x>0L-x ,&V<Y<o

(1-or; (2)'-and

Here, tg$ = tgw/tg . For the significance of w and , refer to

Figure 1. Therefore, in the E, n, coordinate system, the NS equa-

tion for the three-dimensional laminar flow if a complete gas with

constant specific heat is
aU aF aG OH

- --1 -  (3.4)

where

pas (3.5)
U-pu

Pe

7
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'4 1--main wing surface;
2--auxiliary wing surface;
3--bottom surface
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-1 I _1, -. -.I . . , , -' _. -. , p

p+ 0

pis,

F _ Pu ' -Pew
- .+ (3.6)

(.1-
ppas

\PG(e+--)

/ Pe' 0

C+) +.. (3.7)

-- wv-UP, -wp,, -6

H=H+",(3.8)

( peti n

%P)

l'''~~-H +H-P,-/P,-, ( 3.8)15

P- ,, + P- , (38 a )

*.For the simplified set of NS equations [1],
0*

u °K'u -

9

H. - .. ,.- , . . (3 .8b)

II a

For the complete NS equation,

0

-P I P.1Per 1,f?,,Iv (3. 8c) 59
Hp= ~~~P X -f rPeea y

kWPS -uPa -vPr, -6 0-. f - 88 - op., -WP.. -6.)

Furthermore,

9



f.tp.-+P._l I &a a V '.

3 77-T,< t21t -- ,A- +- -,- .-I- at -q -)p-ry2 s / -_2)(---+i au + u + f)

A a . a . au

PSI pg. _4 /aw +f aw + v

2ll r a ac a vPE-Z.P SE+P-;7,T +s- + z+- +I)

"-' (3.9)

,aT +/."

PT We, +a

V I A a-
F-I Pr Re,-

1+S'

A- (VM "T)'"
vMT+

In equations (3.6) and (3.7), e = 0, 1 denote, respectively, the

simplified and the complete NS equation. In equation (3.9), M.

denotes the free stream Mach number and, Re-'P.IL'/'A. denotes the

free stream Reynolds number. Pr is Prandtl number (0.72 for air).

In the expression for 4, S1 = 114*K. In equation (3.8a),

For the two-dimensional flow shown in Figure 2, as the problem

is independent of y, .. ...

Therefore, the simplified and complete NS equations for the two-

dimensional case can be obtained from equations (3.4)-(3.9).

Suppose that in the above set of equations, vi is replaced with

where u the coefficient of viscosity of laminar flow,

10
V".
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can be computed from the second to the last equation in (3.9), and

l the coefficient of viscosity of turbulent flow, can be computed

by means of a zero-equation, one-equation or two-equation model (see

(2]). Then, the above set of equations can also be used to compute

turbulent flow problems.

The regions shown in Figures 1 and 2 are the solution spaces.

The surface of the body is located at the lower boundary of this

space. The condition of absence of gliding flow is satisfied on the

wall surface, the temperature of which is given. For the three- '60

dimensional flow in Figure 1, as the corner affects the flow upstream

only in a very limited region upstream, further upstream the flow is

two-dimensional. Therefore, at the cross-section of the entrance,

with the flow parameters. given, the results for a two-dimensional

slab may be applied. At the boundary surface of the exit, we consi-

der two regions: on the main wing surface, the flow does not change

very much along the &-direction. Hence, for any flow parameter ,

we have Tit nV . On the auxiliary wing surface and the bottom surface,

* .the flow possesses conic characteristics and the physical quantities

of the flow are equal along the radial lines originating from point

o. On the plane of symmetry, the symmetry requirements are satisfied.
-. On the side boundaries, the flow does not change much along the n-

direction, and we have- -mo. On the upper boundary, -.- O because

it is far from the wall surface. For the two-dimensional flow in

Figure 2, the entrance boundary may be upstream or downstream the

front edge. The flow parameters are given [1]. At the exit boundary,

as it is farther removed from the corner, we take 0 ". On the

upper boundary, either !-.O. or the single wave motion condition may
be used.

The initial conditions may be taken to be those for the constant
. steady flow of a nonviscous gas around the corner, or those for a

uniform flow field.

2. Mesh spacing

. . . . ... . ... .•
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The mesh spacing is as shown in Figures 1 and 2. Equally

spaced divisions are taken along the direction of the stream.

Smaller mesh spacings are taken along the c-direction near the wall,

while larger mesh spacings are taken in regions removed from the

wall. For the three-dimensional case, to better describe the three-

dimensional effect, smaller mesh spacing is taken along the horizon-

tal direction on the auxiliary wing surface.

3. Difference scheme

According to the time-split finite volume theory, solving equa-

tion (3.4) is equivalent to solving the following three equations:
<<': aU. aF

aU aF(3.10)

aU aG (3.11)

au aH (3.12)

In regions near the wall, equation (3.12) can be further split into
KL- +aH O (3.12a)

-U aH, (3.12b)

When solving equations (3.10)-(3.12), the mixed explicit-implicit

difference method is employed. The difference equations are
: " 111* A:3, .C (At ) [r,,,

-- (3.13)

Here, is the filtering function, and is related to U. via,j,k 1,j,k

U,,., - u,-,., +-~- Q (U?, ,.. -2U?.,. +U?, 4,,,.) (3.14a)

U*. (3.14b)
... u;,,,, - ,,+ -2 Q,( u,-,.,,,k -2 U *,-,, u ,_

U** (3.14c)
.,Jh - ,,, + u ,,

12
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. Refer to [1] for the significance of Q, Q and Q. The signi- 61

ficance of A, Zv i, 4Cg,, aoC, are given below.

(1) 4 , £, are the difference operators corresponding to

equations (3.10) and (3.11), and are defined at all inner points of

the entire region of computation. c.! is the difference operator

corresponding to equation (3.12), and is defined at the inner points

of the looser mesh region on the outside. These three difference

" operators have been obtained from a generalization of the explicit

scheme for the model equation given in the previous section.

-v (2) X£c& C are the difference operators of equations (3.12a)

and (3.12b) and are defined at the inner points of the tighter mesh

region close to the wall. The implicit scheme is used here. These

operators have been obtained from a generalization of the implicit

antidiffusive scheme given in the previous section. The difference

equation for Le, can be computed by means of the method of main dia-

gonal matrix chasing. As for £-C', as equation (3.12b) is parabolic,
we may let Q 0, and the difference equation can be solved using

the method of labeled quantity chasing.

4. Stability conditions

The stable time step lengths for £Ci(UI), £,( .). £c(att

are

mi

At l (3.15)
=--. __ __ _ __ _ __ _ __ _ __ _ __ _ __ _ __ _ __ _ __

A C

;.,...10 I +Ka+(I-,) A6 -1,7+ .4 +L

13
A.. o



In the above equations

lPr
B'.B.• ."AI=AqA 2V

B1=3.W
33I. 2 1

C - . + /,-. se c - tt'

36

A 4 =.21 K'

Pr

:: +iL j' ]'"
'-'. c, = rfL, +.) (1 +f")]/

%*'.

,-., a=( = V .)

,.",. -20
3

.

In addition, il is an inner point of the solution space, and 0e is

"p.. an inner point of the external looser mesh region.

As A;&, £?.. are stable unconditionally, the stable time step

length for the entire difference operation is
A:--in(Zt , ,, ¢}.(3.16)

Obviously, this is much longer than the stable time step length of 62

the explicit scheme [11, [3]. In particular, the former may be made

I to 2 orders of magnitude greater than the latter in computations

performed for the turbulent flow.

If we let , = 0 and An in equations (3.15) and (3.16) , then

the conditions for stability for the two-dimensional flow can be

given.

. . -14



IV. Results of computation

Five examples have been computed in this paper. The first
three involve the laminar separated flow over the two-dimensional

compression corner. The fourth is the turbulent separated flow of

- the two-dimensional compression corner. The fifth is the laminar

separated flow of the three-dimensional compression corner. The

given conditions and the results obtained are given in Figures 3, 4,

5, 6 and 7. For comparison, we have included in Figures 3, 4, 5 and

6 the results of numerical solutions of the NS equations given in

('11, [3], (4] and [51, as well as some experimental results [61, (7].
It can be seen that the method presented in this paper is satisfac-

" tory. Compared with the explicit computational method, the computa-

tion time of our method is, respectively, 4, 13, 9, 20 and 5 times
shorter for these examples. Thus, the present method has the advan-

tage of saving machine time.

L.O.

r 1.0.-

e.g~ 0.6

0.4

0.2

-0.S -0.4 -0.2 0 0.2 0.4 0.5' 0.8

Figure 3(a). Distribution of surface pressure in laminar flow
over two-dimensional compression corner, with M 3.

1--solution of the complete NS equations given in this paper;
2--solution of the simplified NS equations given in this paper;
3--explicit solution of the NS equations given in [11;
4--explicit solution of the NS equations given in [3].

15
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RCL- 
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8xI0". 
W- 10". 
TL,-216.65"K. 

T. -66.jK

S le 

a 

A.

0.1 

"

* *ZXtNS)Y4*

'4. . *J.IU C I I NSTHIMS

0.Z

-0.6 -0.4 -0.2 0 0 0.4 U.6 0.8

-
4 

-0.1

Figure 3(b). Distribution of surface drag in laminar flow over
two-dimensional compression corner, with M. 3.

1--solution of the complete NS equations given in this paper;
2--solution of the simplified NS equations given in this paper;
3--explicit solution of the NS equations given in [11;
4--explicit solution of the NS equations given in [3].

1 -0 e4j Caner NSYRA

.4A 

1

-0.6 -0.4 -0.F 0 0.2 0.3 0.6 O.s 1.0

Figure 4(a). Distribution of surface pressure in laminar flow
over two-dimensional compression corner, with M~ = I.6

1--solution of the NS equations given in this paper;
2--explicit solution of the NS equations given by Carter in (14];

3--adiabatic wall

.2•
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.. X 4..' N£3.
1.2

1.0

0.8

g0.2

p -0.6

-. -0.

-0.4

Figure 4(b). Distribution of surface drag in laminar flow over
two-dimensional compression corner, with = 6.06

1--solution of the NS equations given in this paper;
2--explicit solution of the NS equations given in (41;
3--adiabatic wall

PM jV j.

0L C. 3 () MMj35X

-oil C ' 1

-0.. 0.2 V .4 o'. O.T• .,,. e.,,l.04X 10". G"18". -?.in722", T.7"'"27.22"K

Figure 5 (a). Distribution of surface pressure in laminar flow over
two-dimensional compression corner, with M. = 14.1.
1--solution of the NS equations given in this paper;
2--explicit solution of the NS equations given in (3];
3--explicit solution of the NS equations given in [1];
4--experimental result (6]

17
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* 
0.

0.2

'".

-. ,.. 0.

", - a --. l

... -l02 0.2 0. 4 0.6

VReL-?.04XIO0. W-18' T;.-72.222*K, T-297.22 K

Figure (b). Distribution of surface drag in laminar flow over
two-dimensional compression corner, with M., = 14.1.

V..

1--solution of the NS equations given in this paper;
2--explicit solution of the NS equations given in [31;

" +lex 
'

C""" I! 0 •

3--uelcit sol ution of seufato given in [fw

- V *-.0, 6J

* I .$.-. 10 ~ ,
+mr '--222", -9?2"

ovtwo-dimensional compression corner, with M = 14.1.

. 1--solution of the NS equations given in this paper;
'., 2--explicit solution of the NS equations given in [31;
++ 3--explicit solution of the NS equations given in [i] ;
' 4--experimental result [6].

81CA..-.r

-- 6

o.,

.' 0.6

0,..4 -!. . . .

'V. 4k Rc,-mI.04 X IP. D-1U. T.,--2.222"K, T-z29I.g2"K

..'./Figure 5(c). Distribution of surface heat flow in ltminar flow
-'.-'.over two-dimensional compression corner, with M® .4.1

i--solution of the MS equations given in this paper;
2--explicit solution of the MS equations given in [3];

,' 3--explicit solution of the MS equations given in [1] ;
¢ ) 4--experimental result (6] .

.+.,.18
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have been simplified using a balanced algebraic model in this paper;
.;, .4--solution of the NS equations that have been simplified using a

one-equation model in this paper; 5--adiabatic wall
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Figure 6 (b). Distribution of surface pressure in turbulent flow
.I over two-dimensional compression corner, with M = 2.96.

1--solution of the NS equations that have been simplified using a
relaxed model in this paper;

2--experimental result (7] ;
3--adiabatic wall
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Figure 6 (c). Distribution of surface drag in turbulent flow over

two-dimensional compression corner, with M= 2.96.

1--solution of the NS equations that have been simplified using a
.4 relaxed algebraic model in this paper;

2--Shang's solution of the NS equations (replaced mode] given in [51;
3--experimental result [7];
4--adiabatic wall
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Figure 6 (d). Distribution of surface drag in turbulent flow over
two-dimensional compression corner, with M. = 2.96.

1--solution of the NS equations that have been simplified using a
balanced algebraic model in this paper;

2--solution of the NS equations that have been simplified using a
one-equation model in this paper;

3--Shang's solution of the NS equations (balanced model) given in [5];
4--experimental result [71;
5--adiabatic wall
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FTGURE 7 (a). Distribution of surface pressure in 
laminar flow

over three-dimensional compression 
corner, with M- =3.

1--solution of the simplified NS equations 
given in this paper;

2--result for the two-dimensional 
case;

3--adiabatic wall
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Figure 7(b). Distribution of surface drag in laminar flow over
three-dimensional compression corner, with M. = 3.

." 1--solution of the simplified NS equations given in this paper;
2--result for the two-dimensional case;
3--adiabatic wall
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