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A MIXED EXPLICIT-IMPLICIT ANTIDIFFUSIVE METHOD OF NAVIER-STOKES
EQUATIONS FOR SUPERSONIC AND HYPERSONIC SEPARATED FLOWS

/bhang Han-hsin,,&u Lin-sheng, Yu Tse—ch'u,/Ma Chan-kuei
ABSTRACT

In this paper, & mixed explicit-implicit scheme based on an antidiffusive method is used
to solve the Navier-Stokes equations for the supersomic and hypersonic sepsrated “flows,
The computations are performed for laminar and turbuleat flows over the two- and three-
dimensional compression corners, The obtained results are compared with the results of au-
merically computing NS equations!!-$and these results of the experimentsi¢’?, The
computa‘tions show that the sumerical scheme in this paper is satisfactory.

I. Introduction

When a finite difference method is used to solve the problem of
separated flows of a viscous gas, the viscosity of the difference
scheme or the artificial viscosity introduced must be much smaller
than the actual physical viscosity term in the region where the
effect of viscosity is important. Therefore, it is preferable to
use a scheme with a high degree of accuracy. If there are shock
waves in the flow field, the difference scheme should be able to
automatically capture the shock waves. Furthermore, the scheme should
have a relatively long stable time step length so that computation
time will not be very long when computations are performed for high
Reynolds number laminar or turbulent flows, despite the small size
of the mesh. The method based on a mixed explicit-implicit scheme,
given in [l1], meets the first two of the above requirements, and
has already been used to obtain very good results. However, computa-
tion time required is rather long because of the small stable time
step lengths. It is the purpose of this paper to seek a difference
scheme that can simultaneously meet the above three requirements.

The scheme studied studied in this paper is a mixed explicit-
implicit scheme. The time split-finite volume scheme is employed.

Implicit expressions are used for the difference operators along the

/67
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%5 normal_to the wall in the neighborhood of the wall, while explicit )
1 expressions are used for the difference operators in other regions
%5 and those along other directions. One can thus obtain very large
iﬁ stable time step lengths.
I~
~ In the implicit difference computations, we have used a two-
step antidiffusive method to increase the stability of the computa-
tion and the accuracy of . the difference scheme. The first step is !
to adopt a first-order implicit scheme containing a positive dissi- ‘
A pative term. 1In the second step, local explicit antidiffusion is
ig carried out, i.e., the positive dissipative term is subtracted
ﬁﬁ explicitly. After these two steps, the scheme retains an accuracy
e of the second order. This type of two-step antidiffusive method has
: also been applied to the explicit scheme. 1In ordetr to be able to I
?: automatically capture the shock waves in the computations, we have,
%ﬁ on the basis of the first- and second-order schemes given by the
ij two-step method, established an automatically regulated mixed scheme.
(q} Camputations have shown that this method is very satisfactory.
1 9]
Ej This paper is divided into four parts,- including the introduc-
‘3 tion. The second part deals with the two-step antidiffusive differ-
n ence method applied to a model equation. In the third part, the
i; explicit-implicit difference method for solving the Navier-Stokes
f} (abbreviated below as NS) equations is given. ?he results of the
e computation is given in the fourth part which also contains a com- i
;; parison and analysis of the results.
O
;; II. Model equation
L\ For the sake of simplicity, we consider the following model
ﬁ equation: ’ '35-+¢J§L=o ]
';' @* 7 ox (2.1) :
i: In the above equation, a is a constant. The two-step explicit 54:
52 scheme is first established, then the two-step implicit scheme of )
SE the antidiffusive method. 3
o 1
e 2 !
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1. Two-step explicit scheme of the antidiffusive method.

In the first step, we adopt the windward scheme, i.e.,

— adf .
8% =g — Ax‘(" 8].,) a>0 (2.2a)
Fag; -%(':ol—‘:) a<0

or in a unified form,

1 IG'A‘(,,,N—Zu +u1.) | ¢2.2b)

T s (8l =i F A

28x
It is not hard to recognize this as the Pycases scheme for the

case where w = 1:

.—p.—l‘“; zz (“10! ‘v~l) ng——'(“rvl—zu +.:-l)

It is well known that equation (2.2) is a first-order scheme.

Its viscosity term is
TQu(wi = 28] +u}-) (2.3)

where

As Af (2.3&)
Q=lslat _lelay .

The second step consists of an antidiffusion of the first step,

i.e., the viscosity term (2.3) is subtracted from u?+I. Hence,
u,"-u"'——-Q(u,.‘ W buil) (2.4a)

Obviously, equation (2.4a) is accurate to the second order. Making
use of equation (2.2), we can also write equation (2.4a) as

ar+tom g T 9

vy (W—F)} a>0]
(2.4b)

,T;"'i-%{u? +u:—°'—% RT3 } a<°J .

Combining equations (2.2a) and (2.4b), we can readily see that this
is MacCormack's two-step explicit scheme. This shows that one can
arrive at the second-order MacCormack scheme by starting out with

the first-order windward scheme and performing antidiffusion. Simi-
larly, setting out from other first-order schemes containing positive
dissipative terms, one can also establish the corresponding second-

order schemes by means of antidiffusion.
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il?j 2. Two-step implicit scheme of the antidiffusive method.

(-

2N In implicit computations, the Crank-Nicoson scheme is often

-;0

I used: _ At o

Lo Ty —2e (a1 ~ui )+ GTEL =TT |

Y _ - - (2.5)

.'; This is a second-order scheme with a growth factor of 1. To increase
N its stability and to corroborate the advantage of the diagonal ele-
fﬁf ments of the matrix in the matrix chasing, as a first step, we add
o a positive implicit dissipative term to the right hand side of

P equation (2.5). Thus, we obtain a first-order implicit scheme:

DY ' ' : 55
N =T At - T _ e

e =) = @ —e )+ @ T -0 |

R

(2.6)

) @ D
i, T
o

Here, Ql is the coefficient of dissipation. uj can be found from

d$ equation (2.6). Then, in the second step, the dissipative term
TR ‘Qz'l"(';u“zﬂ;‘l";-l)r is subtracted partially explicitly from u?+l, and
\Ja we obtain the second-order scheme below:
£ a7t maeT '%-(l,’..—zt,’+s;-.) . (2.7a)
?3 Or, insert equation (2.6) in equation (2.7a) to obtain
Aoy .
, e OAtT. . . 7T 7T
A s '-.1-’;A‘x_[(’iol-“i-l)'*’('roa-.i—:) ] )
SO (2.7b)
A —_— _ _—
0 + L [T~ ) =2 GFT—a))+ T =) ],
AN ’ :
P In order to be able to automatically capture shock waves in the com-
e putational process, we have constructed on the basis of equations
Eﬁ (2.2) and (2.4) or equations (2.6) and (2.7), the automatically
> regulated mixed scheme ,
N — Q
A VRIS (]—0)[3':"——l~(8'-“—23"+l‘- )]+9u'-71'
. ;o 2 ! ' P=1 H
)
ey it ST - g Dy . (208
vjb In the above equation,
o Qu=6Q. . (2.9)
g} 8 is the switching function in the automatic regulation. 1Its value
A
:ﬁ in the vicinity of the shock waves is 1. In regions where viscosity
)Qg plays an important role, its value is zero. This shows that the
oy
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scheme has accuracy of the first order in the vicinity of shock
waves, while it has second-order accuracy in regions removed from
shock waves. For the expression for 6, see [l]. Computations have
shown that the value of Ql is best taken to be between 0.1 and 0.3.

In summary, we have obtained the automatically regulated anti-
diffusive scheme (2.8) in which u?+l can be computed either explic-
itly or implicitly. It can be shown by means of a Fourier analysis
that when the explicit method is used. the stability condition for
both equations (2.2) and (2.4) is J%E?«gh , while if the implicit

method is used, equations (2.6) and (2.7) are unconditionally stable.

If the filtering function

R D

(2.10)
;;—u: +%(l?.."?-': +s].) _
is introduced, then accurate to the second order, equation (2.6)
can be written as

-l

- p— pp—t
e =R @ -+ @ET -0

QAT L (2.11)
+5 (8530 -2 Feic .
Equation (2.2) can be written as
';ox"-:__%_;‘i A:'T" (2.12)
where -
A aj=yl— y!i_, a>0
o~ } (2.13)
A.uj= u;,, —u; a<0 :
Equation (2.8) becomes
p— o~
uj i —%(-7"-2";4-“:-‘) . (2.14)

After the above operation, equation (2.14) becomes a second-order
scheme.

The above study of the model equation can be extended to the

equation
au
ot
Here, £ is a function of U. Proceeding as in equation (2.6), we can

af
+-—-a-x—-0 (2.15)

write the first step of the antidiffusive implicit scheme as

Y
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‘\“:
" o= . O . t
1 . ) i ‘= U3 -m(uion-ui-l)‘-rg_x“A;ﬂAUlu [
B
. after inserting it in the above equation, we obtain
RN
. A . o
oAU +%(U,’:: =20 + T30 ). (2.16)
\ﬁ. - In the above equation,
4.:":' af \*
« g A"(*—)
Y ! U
A7, ! (2.17)
35 AU=T=UT ) o
»gj; Proceeding as in equation (2.7&), we obtain the second step as
\J“' .
A Us=U —%(U:»..—zU:+U7-n) . (2.18)
B .
)
e On the basis of equations (2.16) and (2.18), one can establish a
‘%. mixed scheme as well as introduce a filtering function and perform
f\-'_
Yot filtering computation.
o :
A
E
oo III. Explicit-implicit method for solving the NS equations
o
,:Q l. Basic equations, boundary conditions and initial conditions.
A R
"La Let us now study the diffracted flows . over the two- and three-
::? dimensional compression corners shown in Figures 1 and 2. As the
ff: three-dimensional corner possesses a plane of symmetry, only the
-~ ),
}:i right half has been shown in Figure 1 (as viewed along the direction
2o of the oncoming stream). Assume that x', y' and z' are the coordi-
S nates of the coordinate systems given in Figures 1 and 2; t' denotes
e time; u' v' and w' are the x'-, y'- and z'-components, respectively,
bt
{;f of the velocity of the gas; p', o', T' and u' are, respectively, the
;; pressure, density, temperature and coefficient of viscosity of the
. . L s 1 Ly .
2 gas; Y is the adiabatic index; e'=—— §~:+—2—(u_’+v"+w")' ; L' is the
%ﬁ characteristic length shown in Figures 1 and 2. The following dimen-
\
f;a sionless mesh quantities are introduced: 57
i
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P=p'/p a0y P=p[p" Wi v=u[u, )
v=v'/e o, w=wlu ., e=,.el/u1: : (3.1 .-
Ts—f,TT', TE T

x=x//L/, y=y’/L', z=2z//L’

t=t'u’_ /L’

Q‘.
<.

where R is the gas constant, and the subscript "=" denotes the
oncoming stream. '

Ly For the three-dimensional diffracted flow, the body surface
A}
A coordinate system &, n, £ is used. It is related to the Cartesian
};_.‘_ coordinate system via the following relations: ‘
. E-x - - #
=y | 5.2
x': {mz—f.(x, y)=f(x, ys 2) "o
l'_g In the above, 2z = fo(x,y) is the equation of the body surface given
¢ by €r3 (3 '
A . 0, x<0§x>of-’.y< —xig@
_,3':' zmf (x,y)= {xtgra. x>0§.y>0 (3.3) 58
: { /d&y: xtgw+yigy, x>0B ~x tge<y<<0 o

o,

(1}-or; (2}-and

Here, tg¢ = tgw/tg . For the significance of w and ¢, refer to
Figure 1. Therefore, in the £, n, Z coordinate syétem, the NS equa-
tion for the three-dimensional laminar flow if a complete gas with

constant specific heat is -
aU , aF [ G , aH

- HERARE

= : st T tan ta =0 (3.4)
‘ where
I o |
&= u pe (3.5)
':'; = Py
% pe
{ |
j:q
s
X
2
o~
& 7
r:" i
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l,, J“\t"’
i =g —.,, x
P — . |
l £ S
&{;-n«:c . a-o =<0
{mz~x182 |awa x>0
¢
4
K
Ke ! T H
LT
K=
¢ Sorka 9 v=0 €
Figure 1. External features Figure 2. External features
of the three-dimensional of the two-dimensional
corner and its solution space corner and its solution space
and mesh. and mesh.

l--main wing surface;
2--auxiliary wing surface;
3--bottom surface
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X pu
’ 0 .
i ) / pu3+p -5
. _ . Fa / puy s
N = { puw +e — P (3.6)
--_.- , _p‘- .
e 2 _
~ ) p‘(e+P ) 2 ' =uPra—UPry—WPee— s
o . pu 0
4 / puy —-p
S pv*+p il
::‘: G= ( ovw - }1 +e —Pys (3.7)
-~ ) — Dys
B g p
) —— \ -
N pv( et P) i _77"??""“918"‘"’?!“'91 /
;:{ H=H\+H, : . (3.8)
-1 P8 '
o | puTi+pf,
e, o+
: Jym "”~+‘;f' (3.8a)
e Y.
T (e+g)
o
- For the simplified set of NS equations [1l],
o 0 -
y - —_ 1 K‘“ on
'_\.:". ' ]:el ac
L 0 :
> Hym | - ' (3.8Db)
-‘:.~. . l K’f u——aﬂ
"L Re, 9
~ 1 K? 3 )4 1 ’
XY ~ Re. 3¢ [(""?)*( =1 ).
1 :
,';Ej For the complete NS egquation,
:‘: - ; T ’ 0 o T ‘ \
. \’ ' / . ==PDex _ftir: "'fvPv- \
S -
‘:.:.: .’ ."‘P:"‘frp-r'-flpll ‘t (3 .8C) 59
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Brampast p=2 3 Ri {( EY; +/, ac ) ( 3?} +f'—g%+'%?_>]
e )~ (355 )]

3
(5 +- o )]

Pn=putr=y ReL[2< a7 /3

- 2 _u [, ow
? P8l+p=3 Pe, ac

- 4 [ dv v | Ju 3u
Pu‘ Prr'_"ReL £ +/f- ac T 31 +/, 3C )

(
Dsas ‘-Pu—'k#—( k13 +fe 3? T daz )

H /6w
Py =Py = +f.
' Rel o it (3.9)

——

b4 1
y—1 Pr

H (38
ReL\

14 1 u/aT
Y—1 Pr Re.\

Y 1 [ aT
y=1 Pr KRe, 3

0=

<)
s+f, )
o)

0'= +fl

Gr=

2
T
VM:T+———3‘
T2 y
K=(+fi4fi)

p= (yM 1T )3

In equations (3.6) and (3.7), € = 0, 1 denote, respectively, the
simplified and the complete NS equation. In equation (3.9), M
denotes the free stream Mach number and, Re =p.s:l’/Ki Jenotes the
. is Prandtl number (0.72 for air).
114°K.

free stream Reynolds number. P
In the expression for u, S; = In equation (3.8a),

ﬁ=w+ﬂfx+ rf'.

For the two-dimensional flow shown in Figure 2, as the problem
is independent of y, ./f¢=fi () =xtgo, v=per=pur == —:—ﬂ--o, :
Therefore, the simplified and complete NS equations for the two-

dimensional case can be obtained from equations (3.4)-(3.9).

Suppose that in the above set of equations, u is replaced with
, where My s the coefficient of viscosity of laminar flow,

Bt




can be computed from the second to the last equation in (3.9), and

% Heo the coefficient of viscosity of turbulent flow, can be computed
by means of a zero-equation, one-equation or two-equation model (see
{2]) . Then, the above set of equations can also be used to compute
turbulent flow problems.

The regions shown in Figures 1 and 2 are the solution spaces.
The surface of the body is located at the lower boundary of this
space. The condition of absence of gliding flow is satisfied on the
wall surface, the temperature of which is given. For the three- ‘60
. dimensional flow in Figure 1, as the corner affects the flow upstream
only in a very limited region upstream, further upstream the flow is
two-dimensional. Therefore, at the cross-section of the entrance,
with the flow parameters given, the results for a two-dimensional
slab may be applied. At the boundary surface of the exit, we consi-
Ei‘ der two regions: on the main wing surface, the flow does not change
_’4 very much along the £-direction. Hence, for any flow parameter ¢,
i we have 35 =0° . On the auxiliary wing surface and the bottom surface,
E the flow possesses conic characteristics and the physical quantities
. of the flow are equal along the radial lines originating from point
o0. On the plane of symmetry, the symmetry requirements are satisfied.
On the side boundarles, the flow does not change much along the n-

o

Jé direction, and we have -5 m7 =g, On the upper boundary,-ar=0 because -
:i; it is far from the wall surface. For the two-dimensional flow in

g Figure 2, the entrance boundary may be upstream or downstream the

;f front edge. The flow parameters are given [l]. At the exit boundary,
If: as it is farther removed from the corner, we take 7g—=0 On the

;&5 upper boundary, either %§—=070r the single wave motion condition may
iﬁ be used.

ST

:& The initial conditions may be taken to be those for the constant
‘;f steady flow of a nonviscous gas around the corner, or those for a

i; uniform flow field.

5

&; 2. Mesh spacing
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The mesh spacing is as shown in Figures 1 and 2. Equally
spaced divisions are taken along the direction of the stream.
Smaller mesh spacings are taken along the r-direction near the wall,

while larger mesh spacings are taken in regions removed from the
wall. For the three-dimensional case, to better describe the three-

dimensional effect, smaller mesh spacing is taken along the horizon-

tal direction on the auxiliary wing surface.
3. Difference scheme
According to the time-split finite volume theory, solving equa~

tion (3.4) is equivalent to solving the following three equations:
aUu , oF

ol = 3G (3.11)
o Ton =0
W oM (3.12)

——at +~—ac =0 o

In regions near the wall, equation (3.12) can be further split into

U . 3H»
%—:""3;“’” (3.12a)
U | 9H, (3.12b)

o Tae =0 .

When solving equations (3.10)-(3.12), the mixed explicit-implicit
difference method is employed. The difference equations are
Uit v=L@an T7,, ‘

' (3.13)
- _A.:_ _AL L:(A2) _
() (G g 1€ (B0 (B2,

Here, ﬁ? 3,k is the filtering function, and is related to U?
’ ’

vi
K a

U‘.'Jy' -U‘.vly. +-%-Q€ (U"!!|.’l _ZU‘.',,, +U"1Jv.“ ) (3 .l4a)

! (3.14Db)
Ul v=UM, +—2- Qu(UPSeip =20 2 +UMY0)

(3.14¢)

URS, = Ul ys +5Qu (Ul 0 =207, + UL, 0)
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Refer to [l] for the significance of QE' Q

n and QC' The signi- 61
ficance of Li L1 Liv L L are given below. '

(1) ‘c“_éﬁ. are the difference operators corresponding to
equations (3.10) and (3.11), and are defined at all inner points of
the entire region of computation. :«¢ is the difference operator
corresponding to equation (3.12), and is defined at the inner points
of the looser mesh region on the outside. These three difference
operators have been obtained from a generalization of the explicit
scheme for the model equation given in the previous section.

(2) &Lws Lo are the difference operators of equations (3.12a)
and (3.12b) and are defined at the inner points of the tighter mesh
region close to the wall. The implicit scheme is used here. These
operators have been obtained from a generalization of the implicit
antidiffusive scheme given in the previous section. The difference
equation for L. can be computed by means of the method of main dia-
gonal matrix chasing. As for £+, as equation (3.12b) is parabolic,
we may let Q, =0, and the difference equation can be solved using
the method of labeled quantity chasing.

4. Stability conditions

The stable time step lengths for Li(38), Lo(Ate), Le(Ate)

are
. min Aé
A“- 0 7 -] )
| H# Ao 74 Co
,“|+a+€Tp ’y ( v + Aﬂ
. An . (3.15)
Afo ’m(;n - Z:
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In the above equations
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C.—-max(-——‘pr ¥, 35&0, \Top tgy +V 3 séc” & 35 = 'P‘/
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In addition, Q is an inner point of the solution space, and Qe is
an inner point of the external looser mesh region.

As L. L:». are stable unconditionally, the stable time step
length for the entire difference operation is
At=min(241;, 24t 8%), (3.16)
Obviously, this is muchAlonger than the stable time step length of
the explicit scheme ([1l], [3]. In particular, the former may be made
1 to 2 orders of magnitude greater than the latter in computations
performed for the turbulent flow.

\

If we let ¥ = 0 and An + @ in equations (3.15) and (3.16), then
the conditions for stability for the two-dimensional flow can be
given. '
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Py IV. Results of computation

Five examples have been computed in this paper. The first
fi three involve the laminar separated flow over the two-dimensional
) compression corner. The fourth is the turbulent separated flow of
the two-dimensional compression corner. The fifth is the laminar
separated flow of the three-dimensional compression corner. The
given conditions and the results obtained are given in Figures 3, 4,
5, 6 and 7. For comparison, we have included in Figures 3, 4, 5 and
6 the results of numerical solutions of the NS equations given in
;j (11, [3], [4) and [5], as well as some experimental results [61, [7].
E{ It can be seen that the method presented in this paper is satisfac-
}’ tory. Compared with the explicit computational method, the computa-
tion time of our method is, respectively, 4, 13, 9, 20 and 5 times

o
j: . shorter for these examples. Thus, the present method has the advan-
-% (3
- tage of saving machine time.
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;?j Figure 3(a). Distribution of surface pressure in laminar flow
o over two-dimensional compression corner, with M_ = 3.
o l--solution of the complete NS equations glven in this paper;
>, 2--solution of the simplified NS equations glven in this paper:;
.. 3-~explicit solution of the NS equations g:.ven in ([1];
<u 4--explicit solution of the NS equations given in ([3].
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Figure 3(b). Distribution of surface drag in laminar flow over
two-dimensional compression corner, with M_ = 3.

l--solution of the complete NS equations given in this paper:
2--solution of the simplified NS equations given in this paper;
3--explicit solution of the NS equations given in (l];
4--explicit solution of the NS equations given in [3].
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Figure 4(a). Distribution of surface pressure in laminar flow
over two-dimensional compression corner, with M_ = 6.06.

l--solution of the NS equations given in this paper;
2--explicit solution of the NS equations given by Carter in (14];

3=-~adiabatic wall
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Figure 4(b). Distribution of surface drag in laminar flow over
two-dimensional compression corner, with M_ = 6.06

l--solution of the NS equations given in this paper;
2--explicit solution of the NS equations given in [4];
3--adiabatic wall
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Figure 5(a). Distribution of surface pressure in laminar flow over
two-dimensional compression corner, with M_ = 14.1.

l--solution of the NS equations given in this paper:;
2--explicit solution of the NS equations given in [3];
3~-explicit solution of the NS equations given in [1];
4--experimental result (6]
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. Figure 5(b). Distribution of surface drag in laminar flow over
s two-dimensional compression corner, with M_ = 14.1.
‘~_::_, l--golution of “he NS equations given in this paper;
Rt 2-<-explicit solution of the NS equations given in [37];

Y 3--explicit solution of the NS equations given in [1];

o 4~-experimental result (6] .
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Yol s
e Figure S(c). Distribution of surface heat flow in laminar flow
e over two-dimensional compression corner, with M_ = 14.1.
f! l--solution of the NS equations given in this paper;
- 2--explicit solution of the NS equations given in [31];
AN 3--explicit solution of the NS equations given in [1l];
::.‘: 4--experimental result (6].
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Figure 6(a). Distribution of surface pressure in turbulent flow
over two-dimensional compression corner, with M_ = 2.96.

l--experimental result [7); 2--Shang's solution of the NS equations
(balanced model) given in {S]; 3--solution of the NS equations that
have been simplified using a balanced algebraic model in this paper:;
4-~solution of the NS equations that have been simplified using a
one-equation model in this paper; S5-~adiabatic wall
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Figure 6(b). Distribution of surface pressure in turbulent flow
over two-dimensional compression corner, with M_ = 2.9%6.

l1-~solution of the NS equations that have been simplified using a
relaxed model in this paper;

2--experimental result [7];

3--adiabatic wall
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3’ Figure 6(c). Distribution of surface drag in turbulent flow over

= two-dimensional compression corner, with M_ = 2.96.

? l--solution of the NS equaéions that have been simplified using a

. relaxed algebraic model in this paper;

N 2--Shang's solution of the NS equations (replaced model given in [5];

' 3--experimental result [7];
e 4--adiabatic wall
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" Figure 6(d). Distribution of surface drag in turbulent flow over

ﬂ two-dimensional compression corner, with M_ = 2.96.
¢ l--solution of the NS equations that have been simplified using a
b2 balanced algebraic model in this paper;

‘ 2--solution of the NS equations that have been simplified using a

! one-equation model in this paper;
o 3--Shang's solution of the NS equations (balanced model) given in [5];
. 4--experimental result [7];
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S-~adiabatic wall
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FIGURE 7(a). Distribution of surface pressure in laminar flow
over three-dimensional compression corner, with Mo =3.

]--solution of the simplified NS equations given in this paper:;

7--result for the two~dimensional case;
3--adiabatic wall
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Figure 7(b). Distribution of surface drag in laminar flow over
three-dimensional compression corner, with M_ = 3.

l--solution of the simplified NS equations given in this paper;
2--result for the two-dimensional case;
3--adiabatic wall
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