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Introduction

Of the various complications that might affect the clinical

course of patients suffering from various types of heart disease,

anemia is one of the most serious. This is because the most prominent

manifestations of anemia involve cardiorespiratory function. Thus,

the relation between the two must be understood to adequately treat

these patients.

When the cardiac patient requires surgery, especially an operation

involving the heart itself, almost always with the use of heart-lung

devices, an enormous stress is placed on the heart even though global

cardiac function may be normal or almost so. We will discuss in this

chapter the indications for red cell transfusions in anemic patients

with heart disease both in the presence and absence of congestive failure.

In particular, we will discuss the effects of the quality of the trans-

fused red blood cells in the treatment of the cardiac patient, and the

indications for specific blood products, i.e., the use of red blood cells,

platelets, and plasma, in treating patients during extracorporeal bypass

at normothermic and hypothermic temperatures.
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Indications for blood transfusions and recipient's state of health

The recipient's state of health determines which blood products

are indicated. Patients who are undergoing cardiopulmonary bypass

surgery for coronary artery disease but are in otherwise good health

will not require the same transfusion therapy as patients with valvular

heart disease who have congestive heart failure and hepatosplenomegaly.

In these latter patients, the severity of the heart disease, and the

presence of pulmonary congestion, hepatosplenomegaly, bone marrow

abnormalities, or renal disease, must be considered in the use of

transfusion therapy.

In the anemic patient with heart disease, assessment of blood

volume is of primary importance. Chronic congestive heart failure is

known to cause increases in blood volume in general,l but the determination

P must be made at the time that the patient presents with anemia whether

he has hypovolemia, normovolemia or hypervolemia associated with the

red cell volume deficit. An accurate assessment of a deficit in red

cell volume cannot always be made from the patient's hematocrit value.

Plasma volume usually is increased in congestive heart failure. More-

over, certain drugs may reduce plasma volume and raise the hematocrit

level, and splenomegaly will further reduce the peripheral venous

hematocrit value. An increase in plasma volume may be secondary to

retention of salt and water by the kidneys.

The clinical assessment that transfusion therapy is necessary is

based on the finding of a reduced hematocrit or hemoglobin level in the

-S " " " . % - W " ."- -"" ""% . ." "•".'- ' "'. . . - - -. •."'." ' -"-'."'. ' ".
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peripheral venous blood. The peripheral venous hematocrit reflects

the red cell volume, the plasma volume, and the size of the spleen.
2-8

In the presence of splenomegaly, there is an increase in plasma volume

and a reduction in red cell volume due to sequestration of red cells

in the spleen. Transfusion therapy should not be initiated merely to

correct a low hematocrit level or hemoglobin concentration; rather,

an evaluation should first be made of the patient's clinical status

and laboratory data. Hypovolemia in general can be diagnosed

clinically by postural changes in blood pressure and pulse rate.

Chronic Anemia

Chronic anemia may develop 1) after a large hemorrhage without

adequate blood replacement, 2) after repeated undetected small losses

of blood, perhaps accompanied by nutritional iron deficiency, 3) as

a result of bone marrow depression, or 4) any combination of

these.

Compensatory mechanisms in anemia

The cardiorespiratory compensations in chronic anemia are well

known and include increased respiratory volume, increased cardiac out-

put, decreased oxygen affinity of red cells, and changes in blood

volume. The first detected change is an increase in respiratory minute

*4
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volume out of proportion to the body's metabolic requirements, which

results in an increase in the alveolar air oxygen tension available

for saturating the hemoglobin in the pulmonary capillaries, and

compensates to some extent for the fall in blood oxygen-combining power

induced by anemia. This causes a slight degree of respiratory alkalosis,

and may result in a reduction in cerebral blood flow although the

increase in cardiac output that occurs in anemia usually compensates

for this reduction.

The cardiac output begins to increase when the blood hemoglobin

concentration falls to between 8 and 10 grams per 100 ml (Fig 1).9 -12 FIG 1

At hemoglobin levels of 5 gm/dl, the increase in cardiac output is

substantial. Since the body's total oxygen consumption remains normal

or close to it, the systemic arterio-venous oxygen difference is

smaller than expected. The mechanism that underlies the rise in

cardiac output is not completely understood, although widespread

vasodilation occurs as shown by a marked decrease in total peripheral

resistance. The vasodilation is not the same throughout the body and

indeed may be absent in skin and kidneys.

A third compensatory mechanism that increases the oxygen delivery

to tissues is a change in the oxygen dissociation curve.12 ,13 Red blood

cells with a low affinity for oxygen produce an accelerated unloading of

oxygen to the tissues. This change in the curve results from an increase

in red blood cell 2,3 DPG, owing to a change in erythrocyte carbohydrate

metabolism.
14-18

Yet another compensatory mechanism in chronic anemia is an increase

.6
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in plasma volume such that the total blood volume may be normal or even

increased despite a low red blood cell mass. The increased plasma volume

may be due to retention of salt by anemic patients,19 but the phenomenon

as a whole is not understood. At any rate, the increase in blood volume

found in chronic anemia prevents the development of oligemic anemia such

as occurs in trauma, 20 a disorder in which the plasma volume remains so

low that the hematocrit percentage is normal despite the decreased red

blood cell mass.

Aggravation of symptoms by anemia in cardiac patients

Anemia is known to aggravate cardiac disorders in a variety of ways.

Anemia induces an increase in cardiac work, and attacks of angina pectoris

due to coronary atherosclerosis are made worse and more frequent by the

development of anemia. The occurrence of pain may be due to an increase

in cardiac muscle work without a corresponding increase in coronary blood

flow in regions with rigid, narrowed arteries or with inadequate

circulation due to blockage. (This is to be distinguished from the myo-

cardial infarction that may occur when massive hemorrhage produces shock.)

In chronic conqestive heart failure there is myocardial insufficiency.

The heart muscle is inefficient, with a low ratio of work done-to-energy

consumed. Digitalis, which increases muscle work in the failing heart,

also increases cardiac muscle efficiency. Anemia, pregnancy, fever,

hyperthyroidism, and drugs such as epinephrine and aminophylline, as well

as some other factors, increase the work of the cardiac muscle without

increasing its efficiency. This in time will aggravate myocardial

qi
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6.

insufficiency. Whether the symptoms of cardiac failure are due to

cardiac strain or produced by excessive salt retention, the symptoms

improve when the anemia is cured.

Treatment of chronic anemia in cardiac patients

There may be differences in the mode of treatment among various

patients with heart disease aggravated by chronic anemia. In some

cases it might be appropriate simply to stop any bleeding and to

treat the anemia medicinally. However, in most cases blood trans-

fusions are required, and then the question is the quantity and kind

of blood products. Since all blood products must be given by vein,

the effects of large intravenous infusions also must be

* considered.

The "overloaded" circulation

Over a century ago in Germany, a common diagnosis in man was

"beer-drinkers heart", the theory being that these individuals had

drunk so much beer as to have "overloaded their circulation", and

the "overloaded circulation" caused massive cardiac hypertrophy and

ultimately death.

'4i When the work of the heart was finally calculated, it was found

to be:

W 0 OX Mean BP + wV
2

-T#

4%
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where W is work, 0 is output of a ventricle, mean BP is self-evident,

w is the weight of blood, V is the velocity of blood in the aorta, and

g is the gravitational constant. Thus, the volume of circulating

blood is not a factor. The effects of an intravenous infusion on

cardiac work are negligible. When the cardiac output is 4.0 liters
per minute, an intravenous infusion at a rate of 20 ml per minute

will increase it to 4.020 liters, a change so insignificant as to be

noteworthy only to academicians.

When intravenous infusions are given, sodium chloride may accumulate

locally, particularly in collagen, which makes up 60% of the lung.

Cohnheim and Lichtheim 21 in 1877 studied the development of pulmonary

edema in rabbits given isotonic saline solution intravenously, and

found that pulmonary edema developed only after the animals received

half their body weight of solution within 30 minutes, obviously a far

greater dose than patients would receive. To produce pulmonary edema

in dogs in this way, the amount of solution equal to the body weight

of the animal must be infused within 30 minutes. The physiology of man

being different from that of rodents and canines, in normal persons an

intravenous infusion of 1500 ml of isotonic saline solution given within

a 10- to 30-minute period causes no detectable changes in the lungs.
22

In patients with moderate or severe congestive heart failure, a dose

of 1500 ml within 30 minutes may cause a decrease in vital capacity

and the app arance of a few rales. 22 There is no reason to expect that

blu-. "ru.sfusions in the usual volume would have any adverse effects
Sm

., .. , .. . ,... . . -. - . . .. . .... , ,, .. . - . ., . .: ,, ..
" -' 'S ' ' ' " " " " , "," .. . . . . . . . .
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on cardiopulmonary function because of "overload".

Although this theory would appear to be refuted by the substantial

accumulation of data from intensive care units devoted to the

resuscitation of patients with severe trauma, many of the patients

studied were given human serum albumin solution, which is known to

23
decrease cardiac inotropic function and to increase pulmonary

capillary permeability. Much of the infused material never reached

the left ventricle, making conclusions based on relations between

pulmonary artery pressures and left ventricle work invalid. Moreover,

when whole blood was used, no mention was made of the fact that

stored plasma also increases pulmonary capillary permeability,24 nor

was the quality of the transfused red blood cells defined, even

though it is known that cells with low 2,3 DPG levels may adversely

affect cardiac function.25 ,26  Further, studies have shown that some

patients who do not receive intravenous fluids during operations have

exactly the same pulmonary vascular changes as those who do receive

infusions. 27  In reality, there is nothing in clinical or experimental

medicine to substantiate the concept of "overload".

- .. Discounting "overload" as an objection to transfusion therapy in

-: cardiac patients, other factors should be considered. The first pertains

to the liquid component of the blood, and the second pertains to the

quality of the red blood cells. As regards the first, mention has already

been made of the finding that serum albumin solution and week-old plasma

• , o ' ,, ,~~~~~~~~~~~~~~~~~~~. ........ ' . .. .. ,....... ... ..... ,......-..,.,..,...- --- , ,.,-
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increase pulmonary capillary permeability.24,28,29 In view of the

tendency toward pulmonary edema in heart disease, it is important to

avoid anything that might exacerbate this tendency, including plasma

and albumin solution. The observation that stored whole blood depresses

the metabolism of skeletal muscle suggests that a similar depression

might also occur in cardiac muscle, 30 ,31 although there are no conclusive

data on this.

In addition to the accumulation of inimical substances in the

plasma of blood during liquid storage, some erythrocyte changes that

occur during storage may produce adverse effects. After approximately

5 days of storage in CPD anticoagulant, the red blood cell 2,3 DPG level

falls markedly,25 '32 -34 and the hemoglobin oxygen dissociation curve is

so changed as to impair the unloading of oxygen in the tissues. Published

studies have shown the adverse effects of perfusing various tissues with

A.. red blood cells that have low 2,3 DPG levels, whether as a direct result

of a lack of oxygen or due to some other metabolic change, and present

evidence to show that low 2,3 DPG blood should not be given to cardiac

patients. 25 What the anemic cardiac patient needs is washed plasma-free

red blood cells suspended in as little salt solution as possible, and

a. with 2,3 DPG levels that are normal or increased.

Patients with congestive heart failure accompanied by chronic anemia

usually suffer "high output" failure and relative renal insufficiency.

Whether or not the patient has congestive heart failure, a hemoglobin

concentration of 10 g% or less should be treated with red blood cells to

.* provide oxygen carrying and oxygen delivery capabilities. The transfused

'-a
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red cells should have posttransfusion survival values of at least 70%,

and red cell oxygen transport should be normal or improved to ensure

optimum oxyqen delivery to the tissues, especially to the myocardium.

Once the anemia is treated and the delivery of oxygen to the heart is

improved, it is possible that myocardial function may be improved or

restored to normal.

The volume and composition of the fluid administered to patients

in chronic congestive failure may influence the symptoms of underlying

cardiopulmonary insufficiency. Acute phlebotomy followed by the

infusion of red cell concentrates might be effective in the treatment

of acute hypervolemia in anemic patients with chronic congestive heart

fail ure.

Treatment of anemic patients with heart disease

Red cell concentrates are the treatment of choice for anemic

patients with chronic congestive heart failure. Usually a volume of

100 to 150 ml of sodium chloride solution is used to dilute the red

blood cell concentrates to ensure adequate flow. 35 When unwashed red

blood cell concentrates that still contain some plasma are transfused,

a smaller volume of sodium chloride is recommended. When the unwashed

red blood cell concentrate has a hematocrit value of 80 V%, a volume

of 10 to 15 ml of isotonic saline may be used to dilute the red cell

- .i concentrate for adequate flow through an ultrapore filter. The flow

of washed liquid-stored or previously frozen red blood cell concentrates

sis satisfactory when the hematocrit value is greater than 90 V% at the

I

..
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time of transfusion.36 Ultrapore filters (40 micron or less) are

recommended for the administration of blood products to patients

with heart and lung disease in order to remove as much of the micro-

aggregate material as possible. 25 ,37,38 Patients with chronic

congestive heart failure subjected to acute hemorrhage or operative

shock may be treated with crystalloid and colloid solutions together

with red blood cell concentrates. 39-45 Because of the increased

pulmonary capillary permeability in patients with chronic congestive

failure, 25 to 50 grams of salt-poor albumin and 5% albumin solution

may be advisable. Although it is true that albumin solutions remove

the problem of posttransfusion hepatitis, one cannot ignore the

'C.C potential adverse effects of albumin on myocardial function,23

pulmonary function,28'29 clotting system,
46 -48 renal function,49'50

and the immunologic state51 of the recipient.

Acute hypovolemic shock in a patient with congestive heart failure

can be treated with fresh frozen plasma, but there are potential hazards

associated with such treatment, i.e., the risk of allergic reactions
52

and posttransfusion hepatitis. 53-56 Acute hemorrhagic shock in patients

with chronic congestive heart failure should not be treated with large

volumes of isotonic crystalloid solution and hypertonic sodium chloride,

because the salt in these solutions is retained by the patient, producing

excessive edema especially in the lungs. Red blood cells produce an

increase in red cell volume followed by a prompt and satisfactory increase

in plasma.20 They do not themselves have an oncotic effect in vitro,

but they do produce an in vivo increase in plasma volume, apparently by

4,
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the mobilization of interstitial albumin when closed capillaries are

re-opened and perfused.

How does one determine if red blood cells have normal oxygen trans-

port function? For normal individuals with normal adult hemoglobin,

the red cell oxygen transport function is determined from temperature
< 25,34,57

and from red cell 2,3 DPG, ATP, pH, and pCO2 levels. These

factors affect the red cell affinity for oxygen which is usually reported

as the partial pressure of oxygen (mm Hg) needed to saturate 50% of the

hemoglobin at pH 7.4 and a pC02 of 40 mm Hg. An increase in red cell

2,3 DPG usually is seen in patients with anemic hypoxia, hypoxic hypoxia,

or stagnant hypoxia. 13 ,25 ,57  Red blood cells with increased 2,3 DPG

have a decreased affinity for oxygen, and this facilitates the unloading

of oxygen in the tissues.

Red cell 2,3 DPG is usually increased as a pathophysiological

d adaptation to anemic hypoxia, hypoxic hypoxia, or stagnant hypoxia. 12 ,57

The increase in red cell 2,3 DPG that occurs during anemic hypoxia

allows for a decrease in red cell volume by about one-third before

cardiac o,:tput increases to compensate for the decrease in the number

of red cells (Fig 1). In a normovolemic anemic individual, cardiac

output increases in response to a reduction in hemoglobin concentration
-* 4

to less than 10 g%. An increase in red cell 2,3 DPG from 0.9 moles DPG

per mole of hemoglobin (13 uM/g Hb) to 1.5 moles of DPG per mole of

hemoglobin (22 uM/g Hb) usually is observed in normothermic patients

with anemic hypoxia.12,57 Cardiac output does not increase until the

*I red cell volume is decreased by greater than one-third and until the

',
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2,3 DPG has risen to 1-1/2 to 2 times normal and the red cells have

improved their oxygen delivery capacity (Fig 1).

Patients with coronary artery disease with or without cardiomegaly

usually have normal red cell volume and normal red cell oxygen transport

function. 1 ,13 When the patient has valvular heart disease or myo-

cardiopathy with cardiomegaly, he may have normal or increased red cell

and plasma volumes and red cells with normal or only slightly elevated

20
2,3 DPG levels. Patients with heart disease and congestive heart

failure usually have red cells with 150% of normal 2,3 DPG levels and

improved oxygen transport function. 13 ,25 ,57 Cyanotic heart disease

with right-to-left shunts produces arterial hypoxemia, and these patients

usually have red cells with 150 to 200% of normal 2,3 DPG levels.
58 ,59

The oxygen transport function of the preserved red cells transfused to

patients with heart disease with or without congestive heart failure

should be similar to that of the recipient's own red blood cells.
60

To ensure acceptable posttransfusion survival values and normal

or slightly increased 2,3 DPG levels, the red cell concentrates should

be prepared from the unit of whole blood within 6 to 8 hours of collection.

When the hematocrit value of the red cell concentrate is 80 V%, the unit

*" can be stored at 4 C for 3 to 5 days with near normal 2,3 DPG levels.

. As a matter of f 4ng storage of blood in CPD or CPDA-l for 24

to 48 hours at 4 i an increase in the red cell 2,3 DPG level

(Figs 2-5).6 1-63 Ihe ,o rease in red cell 2,3 DPG occurring in red cell FIGS 2-5

concentrates during the 24- to 48-hour period of 4 C storage represents

a form of "cold rejuvenation". During the first 10 days of storage at

.'
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4 C, red cell 2,3 DPG is maintained better in stored red cell concentrates

than in stored whole blood (Figs 2-4).

The anticoagulant in which the red cell concentrate or whole blood

is stored affects the maintenance of red cell 2,3 DPG. The citrate in

the anticoagulant causes the red cell pH to rise, and this increase is

intensified as the red cells are stored in the anticoagulant at 4 C.63

Glycolysis is stimulated by an increase in pH, and glycolysis in the

presence of phosphate in the anticoagulant causes synthesis of 2,3 DPG

during the first 24 to 48 hours of 4 C storage. Thereafter, the 2,3 DPG

level begins to fall, and after 2 weeks of storage in CPD or CPDA-l

is reduced to about 10% of normal. 25 Red cells with 10% of normal 2,3 DPG

levels, increased oxygen affinity and low P50 values have been shown to

adversely affect cerebral and myocardial function under certain

circumstances.25 When the 2,3 DPG level is 70% of normal or less, the

red cells have an increased affinity for oxygen.

Preservation of red cells with normal or low affinity for oxygen

The red cell 2,3 DPG level and thus oxygen transport function is

better maintained during the first 3 to 5 days of 4 C storage when CPD

or CPDA-l is used as the anticoagulant and when the unit is stored as

a red cell concentrate rather than as whole blood. After liquid storage

at 4 C for 3 to 5 days in CPD or CPDA-l anticoagulant,34 red blood cells

can be frozen to ensure maintenance of 2,3 DPG (non-rejuvenated).

Alternatively, a biochemical modification process can be employed to

increase or restore the 2,3 DPG levels of indated and outdated red blood
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cells after storage at 4 C in CPD or CPDA-I (rejuvenated).25 ,63-68

Rejuvenated red cells must be washed before transfusion whether or not

they are subsequently frozen to remove the rejuvenation solution.
63

Red cells frozen with 40% W/V glycerol at -80 C or with 20% W/V glycerol

at -150 C are washed before transfusion to remove the glycerol, whether

or not they have been rejuvenated.
6 9 ,70

Rejuvenation of indated red blood cells increases 2,3 DPG levels

to 250' of normal, and biochemical treatment can increase the 2,3 DPG

level of outdated red cells to 150% of normal (Figs 6-8). Biochemically FIGS 6-8

treated red blood cells have been stored in the frozen state for at

least 4 years, with satisfactory posttransfusion results.63'67

Rapid infusion of red blood cell concentrates in patients with cardio-

pulmonary insufficiency

A study was made to evaluate the safety of infusing red cells at

a rapid rate to elderly patients with cardiopulmonary insufficiency.66

Eleven such patients (mean age 70; range 66-83) each was administered

a pool of from 4 to 10 units of washed previously frozen red cells with

a hematocrit of 70 V% within 60 minutes through a 40 micron or 170 micron

blood filter. These red blood cells had been stored at 4 C for 22 to 28

days, biochemically treated to increase 2,3 DPG to 150% of normal and ATP

to 175% of normal and to improve oxygen transport function, and frozen

with 40% W/V glycerol at -80 C (Fig 9). After frozen storage at -80 C, FIG 9

the red cells were thawed and washed and stored in the final wash solution

at 4 C for 24 hours. On the day of transfusion, the washed red cells

• , , , % , .' , % "- , . '" . ," ." . .. '.... -. ". -. . . ..'-"-',, . ......... .• - .••.•• " .,- *.. - . . ." .' . , ' , .• -
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were concentrated by centrifugation to remove the supernatant solution.

Four to 10 units were pooled and were transfused rapidly as a pool to

these elderly patients. The rapid infusion of these red cells with

improved oxygen transport function improved cardiopulmonary symptoms

and produced no adverse effects, contrary to the apprehension that

cardiopulmonary insufficiency might be aggravated.

Comparisons of red blood cells with low 2,3 DPG and high affinity for

oxygen to red blood cells with normal 2,3 DPG and normal affinity for

oxygen

A number of studies have been made to compare the therapeutic

effectiveness of red cells having low 2,3 DPG and high affinity for

oxygen (stored blood) with red cells having normal 2,3 DPG and normal

affinity for oxygen (fresh blood).
25 ,71

In a study by Collins and Stechenberg, rodents were exchanged

with either stored blood (low 2,3 DPG) or fresh blood (normal 2,3 DPG). 72

After the exchange transfusion, the rodent's red cell volume was adjusted

to either a normal or a decreased level and hemorrhagic shock was

produced. The rodents with a decreased red cell volume and a hematocrit

of 22 V% exhibited significantly increased mortality after the transfusion

of stored blood (low red cell 2,3 DPG and high affinity for oxygen) than

after transfusion of fresh blood (normal red cell 2,3 DPG and normal

affinity for oxygen). This study in rodents which involved a combination

of reduced red cell volume and red cells with low 2,3 DPG and increased

affinity for oxygen represented a simulation of the clinical condition of

'.4 ',€';' . '.. . " .'-;. -- ',; ; ' i ""•.". . -. ---- - - .. -.- + ."'' ' -'.- .
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resuscitation of massively injured individuals with large volumes of

stored blood, in which condition the patients usually are anemic and

have in their circulation donor red cells with low 2,3 DPG and high

affinity for oxygen.

Malmberg and his associates73 also have exchange-transfused

rodents prior to inducing hemorrhagic shock. Following exchange trans-

fusions of red cells with low 2,3 DPG and high affinity for oxygen or

red cells with normal 2,3 DPG and normal affinity for oxygen, the red

cell volume was normal with a hematocrit value of 40 V%. Oxygen

consumption and cardiac output were significantly lower and mortality

was significantly greater in the rodents treated with red cells with

low 2,3 DPG and high affinity for oxygen.

It is noteworthy that in both the Malmberg study 73 and the Collins

and Stechenberg study,72 higher mortality rates were seen when low

2,3 DPG red cells were used, even though in one study nonanemic rodents

were exchange-transfused and in the other study anemic rodents were

used, and there has been no explanation for these discrepancies.

Woodson and co-workers74 ,75 found that rodents exchange-transfused

with red cells with normal 2,3 DPG and normal affinity for oxygen showed

only minimal changes in cerebral and coronary blood flow as long as

their red cell volumes were normal. On the other hand, when red cells I
with low 2,3 DPG and high affinity for oxygen were used in the exchange

transfusions and the red cell volumes were normal, cerebral and coronary

blood flow was doubled. In some rodents with a red cell volume reduced

to a hematocrit value of 22 V%, the exchange transfusion with red cells

.. . . ... °" -'- . o " . °'° " , ." .° °" " ." °.. . . . . . . .. . . . . . . . . . . .".. . . . . . . . . . . . . . . . . ."°°-" "
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with low 2,3 DPG and increased affinity for oxygen caused the cerebral

blood flow to triple and the coronary blood flow to quadruple. The

increases in coronary and cerebral blood flow could not be attributed

either to an increase in cardiac work or to hypercapnia. The combination

of anemia and red cells with low 2,3 DPG and high affinity for oxygen

produced an increase in cerebral and coronary blood flow to compensate

for a decreased tissue oxygen tension. Patients who are not able to

compensate for a reduced red cell volume and impaired oxygen transport

function by increasing cerebral and coronary blood flow, could suffer

impairment of myocardial and cerebral function.

In a study by Holsinger and associates, 26 red blood cells depleted

of 2,3 DPG were infused into the circumflex coronary artery of a dog

with an anterior infarct that had been induced by occlusion of the left

anterior descending artery. During the infusion of red cells with low

2,3 DPG and high oxygen affinity, the left ventricular end-diastolic

pressure increased and ST segment elevation occurred. These investigators

contend that even though this was a pilot study, it provided direct

evidence that preserved red cells with low 2,3 DPG and high affinity for

oxygen produce myocardial ischemia when coronary blood flow is kept constant.

When Woodson and co-workers76'77 perfused red cells with low 2,3 DPG

levels and increased oxygen affinity at a normal but fixed cerebral

blood flow to an isolated dog brain, they observed decreased cerebral

oxygen consumption, decreased jugular venous P02 tension, and abnormalities

of the electroencephalogram. Subsequent perfusion with red cells with

* normal 2,3 DPG levels and normal affinity for oxygen resulted in

0,k ., ... -.. , .-. . .- -..... ',. , ,,..-.--- --. . -- ',; '--".,".'.i.'v...".
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restoration to normal of cerebral oxygen consumption, jugular venous

P02, and electroencephalogram.

These numerous studies in both rodents and dogs indicate that in

the presence of normal vasomotor function of the coronary and cerebral

blood, there usually are no adverse effects from red cells with low

2,3 DPG levels and increased affinity for oxygen. However, when there

is impairment in vasomotor function of cerebral and coronary blood

vessels, these red cells may produce an impairment in cerebral and myo-

cardial function. From these findings, it is reasonable to assume that

patients with heart disease should not be administered red blood cells

with low 2,3 DPG levels and increased affinity for oxygen.

Comparisons of red blood cells with low 2,3 DPG and high affinity for

oxygen and red blood cells with elevated 2,3 DPG and low affinity for

oxygen

In a study by Rice and his associates 78 in which baboons in hemorr-

S.hagic shock were resuscitated with red cells with either high or low

2,3 DPG levels, the red cells with 150% of normal 2,3 DPG

restored oxygen cow~umption and hemodynamic measurements at lower cardiac

output than did red cells with only 10% of normal 2,3 DPG.

Moores and associates 79 compared perfusions of pig red blood cells

with low 2,3 DPG and high affinity for oxygen and pig red blood cells

with slightly elevated 2,3 DPG and low affinity for oxygen, and found

that when the hemoglobin concentration was 10 g%, the low 2,3 DPG red

cells decreased the stroke volume significantly during extracorporeal

.....,.. -... ... ,- .- -... ,. . ... ..-,- . .,- -, . -. ... . ...... ... ..--- . . .. - ... . -.-.
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bypass at normothermic temperature.

Apstein and co-workers80 studied the perfusion of isolated rabbit

hearts with human red cells having 10% of normal 2,3 DPG or 150% of

normal 2,3 DPG at normothermic and hypothermic temperatures. These

investigators noted that at both 30 C and 37 C, the high 2,3 DPG red

blood cells produced a greater improvement in oxygen consumption and

myocardial function under basal conditions and after stimulation with

isoproterenol. In this study, coronary blood flow was maintained at a

constant rate to simulate conditions of fixed coronary blood flow.

Comparisons of red cells with normal to slightly reduced 2,3 DPG and

normal affinity for oxygen and red cells with 120 to 150% of normal

2,3 DPG and low affinity for oxygen

Pantely and associates81 used intravenous infusions of a iulution

containing pyruvate, phosphate and dihydroxyacetone, in dogs to increase

the red cell 2,3 DPG levels to 120% of normal and improve oxygen

delivery by increasing the P50 value by 2 to 3 mm Hg. Although these

investigators observed no significant changes in the size of induced

myocardial infarction, they did see changes in the volume of the vascular

bed of the coronary circulation, and they offer the speculation that

red cells with high 2,3 DPG and low affinity for oxygen may increase

oxygen delivery to ischemic myocardium when flow is restricted.

Dennis and associates82 studied patients coming off cardiopulmonary

bypass, 11 of whom had been given 6 units of rejuvenated previously frozen

washed red blood cells with 150% of normal 2,3 DPG, and 11 patients of

"d
o
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whom had received 6 units of nonrejuvenated liquid-stored nonwashed red

blood cells with 70% of normal 2,3 DPG. Immediately following cardio-

pulmonary bypass, the patients who received rejuvenated previously frozen

washed red blood cells had P50 values of 31.6 mm Hg, whereas the patients

who received nonrejuvenated liquid-stored nonwashed red blood cells had

values of 28.3 mm Hg (p O0.5) (Fig 10). Oxygen consumption values were FIG 10

135 and 106 mllminute/m respectively (p4O.O5). Mixed venous oxygen

tensions were similar in the two groups, but the arteriovenous content

difference was higher in the group who received the rejuvenated red

blood cells (p .0.05). Fluid load produced a significantly greater

increase in cardiac indices at comparable filling pressures in patients

who received rejuvenated red blood cells than in the patients who

received nonrejuvenated red blood cells (Fig 11). It has been suggested FIG 11

that the improved cardiac output may have been due to the fact that the

rejuvenated red blood cells were washed before transfusion and washing

removes citrate, whereas the nonwashed nonrejuvenated red cells contained

citrate which may have decreased ionized calcium or impaired myocardial

function.

It is true that large infusions of blood products containing

citrate might decrease the blood level of ionized calcium and adversely

affect myocardial function. To test the theory of citrate involvement,

Krausz and co-workers83 subsequently studied nonwashed and washed red

blood cells with low 2,3 DPG levels and washed red blood cells with 150%

of normal 2,3 DPG. The patients in this study, who were undergoing

*l elective resection of abdominal aneurysms and who were hypothermic with
"-i
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a body temperature of 35 C throughout the study, were given transfusions

of: (a) 4.5 units of washed liquid-stored red blood cells with 10% of

normal 2,3 DPG; (b) 4.5 units of nonwashed liquid-stored red blood cells

with 10% of normal 2,3 DPG; or (c) 4.5 units of washed previously frozen

red blood cells with 150% of normal 2,3 DPG. Blood ionized calcium levels

6 hours postoperatively were not significantly different among the patients

in the three groups, even though the nonwashed liquid-stored red cells

contained citrate. This may have been due to the relatively small volumes

_- of blood products which were administered and the intervals between

transfusion and measurement. Neither were there any significant

differences in myocardial function between the washed and nonwashed red

blood cell products.

An unexpected observation in this group of elective patients was

the 2.2 C fall in intraoperative body temperature to levels below 34 C

in some patients. This fall in temperature was accompanied by a 4.9

torr decrease (p (0.001) in in vivo P50 in the patients who received

nonwashed and washed liquid-stored red blood cell concentrates. A

comparable fall in temperature in the patients who received high 2,3 DPG

red blood cells was accompanied by an insignificant change in in vivo

P50 , and in these patients a normal affinity state was maintained during

surgery despite the fall in body temperature (Fig 12). Although there FIG 12

did not appear to be any improvement in myocardial function associated

with the red blood cells with high 2,3 DPG levels, these patients did

exhibit higher in vivo P50 values during hypothermia at 35 C, indicating

that the red cell 2,3 DPG attenuated the red cell increased affinity for

.. ,
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oxygen which occurs at decreased body temperatures.

More recently Jalonen and associates84 reported that in the immediate

reperfusion period during cardiopulmonary bypass, red blood cells with

150% of normal 2,3 DPG levels and improved oxygen delivery led to a

decrease in anaerobic metabolism and lactate production by the heart,

without enhancement of cardiac output.

None of these studies show unequivocally that red cells with 1507'

of normal 2,3 DPG are greatly superior to red blood cells with normal

2,3 DPG levels. The data do suggest, however, that red blood cells

with 150% of normal 2,3 DPG may be useful in patients with localized

myocardial ischemia. Moreover, there have been no adverse effects

associated with the use of high 2,3 DPG red blood cells, and in

consideration of the possible beneficial effects, more clinical studies

are indicated.

Comparisons of red blood cells with normal to slightly reduced 2,3 DPG

and normal affinity for oxygen and red blood cells with 250 to 300% of

normal 2,3 DPG and low affinity for oxygen

A number of factors affect the oxygen affinity of red blood cells,

including red cell pH, pC02 and 2,3 DPG and ATP levels, and temperature. 25,57,85-89

Hypothermia is known to increase the oxygen affinity of red blood cells,

and in vitro studies made at the Naval Blood Research Laboratory

demonstrated that biochemically modified human red cells with increased

2,3 DPG (150% and 250% of normal) exhibited significantly less affinity

40 for oxygen at 24 C than did red cells with 70% of normal 2,3 DPG. At

,S.. .:
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15 C, significant attenuation of affinity was associated with the trans-

fusion of red cells with 250 of normal 2,3 DPG but not with red cells
FIG 13

having 150% of normal 2,3 DPG (Figs 13 and 14).87,88,90 FIG 14

In a study in which isolated fibrillating dog hearts were perfused

at 24 C alternately with human red blood cells with 80% of normal 2,3 DPG

(nonrejuvenated) and 300% of normal 2,3 DPG (rejuvenated), significantly

greater oxygen consumption, higher coronary sinus partial pressures of

oxygen and carbon dioxide, higher in vitro P50 values, and lower arterial

and coronary sinus lactate levels were seen with the rejuvenated red

blood cells. 90 The data from this study suggest that high 2,3 DPG red

cells might protect myocardial tissue in patients undergoing hypoth-";c

cardiac operations.

Human red blood cells with 150% of normal 2,3 DPG also have been

perfused through extracorporeal circuits at normothermic temperatures

for 3 hours. The red blood cells had betn biochemically modified after

they had reached their outdating period to increase the red cell 2,3 DPG

and ATP levels to 150% of normal prior to freezing. The red cells were

frozen with 40% W/V glycerol and stored at -80 C, thawed, washed, and

stored at 4 C for as long as 3 days prior to use in the extracorporeal

circulation.91 These red blood cells had excellent posttransfusion

survival and improved oxygen transport function, and produced only minimal

91. hemolysis. In another study, nonrejuvenated human red blood cells with

80% of normal 2,3 DPG and indated-rejuvenated red cells with 250% of normal

2,3 DPG were perfused in combination with a cardioplegic solution through

a pump oxygenator at a hypothermic temperature of 15 C for 3 hours. The

. . . .. °.o ° . . . . . . . ..-... ..
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red cells were stored at 4 C for 7 days, biochemically treated, frozen

with 40% W/V glycerol and stored at -80 C, thawed, washed, and stored

at 4 C for 24 hours prior to perfusion through the extracorporeal circuit.

Both the nonrejuvenated and the indated-rejuvenated red cells had

." excellent viability and minimal hemolysis, with no sign of bacterial

contamination, the red blood cells with 80% of normal had normal oxygen

transport function, and the red blood cells with 250% of normal 2,3 DPG

had improved oxygen transport function (Figs 15-17). FIGS 15-17

In an attempt to protect the myocardium during cardiac surgery,

physicians have used local and systemic hypothermia, cardioplegic

arrest, and intermittent perfusion of the coronary circulation with

cardioplegic solutions with or without blood, although controversy as

to the most effective approach still exists.92-100 Myocardial oxygen

consumption is reduced during hypothermia, whether because the need

for and availability of oxygen is reduced, the distribution of blood

flow is abnormal, or the consumption of oxygen by the myocardium is

impaired.

Intermittent perfusion of cold cardioplegic solutions through the

coronary circulation is a widely used method of protecting the myo-

cardium during cardiac surgery. Cardioplegic solutions have been quite

effective, but because they are asanguinuous they carry very little

oxygen and therefore may not provide enough oxygen for the myocardium.

For this reason, it has been suggested that a combination of red blood

cells and cardioplegic solution might be more effective.10 1 The expected

I benefit of additional oxygen delivery to the myocardium expected from a

•.°..••• .01 • . .. ,° ° i * *. * . . . . . .o°. . . . .. .. ... .. . .
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combination of red blood cells and cardiopleqic solution might be offset$
by an increase in red cell affinity for oxygen occurring during hypo-

thermia which impairs the release of oxygen to tissues. Oxygen release

may be hindered further by an elevated pH and a reduced pC02, occurring

with hypothermia. It has been shown that high 2,3 DPG red cells will
87,88,90

attenuate a hypothermia-induced increase in oxygen affinity.

In a prospective randomized study in humans, the Naval Blood Research

Laboratory is studying the comparative effects on myocardial function of

the infusions of red blood cells with 80% of normal 2,3 DPG in a cardio-

plegic solution, red blood cells with 250% of normal 2,3 DPG in a cardio-

plegic solution, and a cardioplegic solution alone. Two units of washed

previously frozen red cells with 80% or 250% of normal 2,3 DPG were diluted

with a cardioplegic solution in a separate extracorporeal circuit, and

were perfused intermittently in the coronary circulation.

Post-operative ischemia was observed in one of eight patients who

received cardioplegic solution alone, in two of eight patients who received

a combination of red blood cells with 80% of normal 2,3 DPG and cardio-

plegic solution, and in two of eight patients who received a combination

of red blood cells with 250% of normal 2,3 DPG and cardioplegic solution.

No myocardial infarcts were seen in the group receiving cardioplegic solution

alone, whereas in each of the two groups receiving red blood cells and

cardioplegic solution, two patients suffered myocardial infarcts.

A quantitative creatine phosphokinase (CPK) MB assay showed pre-

4..' operative CPK levels of 8-18 units for the three groups. Immediately

upon cessation of bypass, the levels were 18-32 units, and 24 hours

later similar levels were seen in all three groups, with a mean of

-.0
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56 - 51 units.

All 24 patients survived surgery, did well clinically, and were

discharged from the hospital in an improved condition. Computer analysis

of the data has not been completed. If evaluation of oxygen transport

and biochemical data reveal no differences among groups, the study will

-- be terminated.

Although red cells with elevated 2,3 DPG levels do decrease the

affinity for oxygen that occurs with hypothermia, there are no definitive

signs that the intermittent perfusion of these red cells with cardio-

plegic solution in the coronary circulation of the hypothermic heart

has any beneficial effect.

* . Red cells with high 2,3 DPG and low affinity for oxygen in patients

with arterial hypoxemia

-'. It is important in studying the beneficial effects of 2,3 DPG-enriched

red blood cells that potential contraindications also be considered.

For instance, are there some instances in which decreased affinity for

oxygen associated with high 2,3 DPG red blood cells might impair oxygenation

of the red blood cells in the lungs? It is important that the effects of

red cell affinity on arterial oxygen content and oxygen tension in hypoxemia
be understood.102-109 A decreased red cell affinity for oxygen will

improve arterial hypoxemia due to cyanotic heart disease with right-to-left

anatomic shunts or ventilation-perfusion abnormalities with pulmonary

shunting (Fig 18).110-112 In patients with cardiac right-to-left shunts FIG 18

and pulmonary shunting, arterial p02 tension, mixed venous P02 tension,

,-P.-.......,
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and coronary sinus p02 tension will increase if the red cell affinity

for oxygen is decreased, provided that the inspired ambient oxygen

tension is adequate to maintain an arterial p02 tension of greater than

40 mm Hg, and in these patients red blood cells with 150 to 200% of

63,112
normal 2,3 DPG and low affinity for oxygen are indicated.6' Proctor

and associates 113 115 have reported clinical improvement in patients

with severe pulmonary insufficiency following the transfusion of human

red cells with elevated 2,3 DPG levels.

Blood products for cardiac surgery

Today there is an increased requirement for blood products for cardiac

surgery in which extracorporeal bypass is utilized.116'11 7 Blood products

are given to provide optimum oxygen to the tissues, especially to the heart

and brain, for maintenance or restoration of normal hemostasis, and for

optimum protection against infection. The patient's state of health and

the length of cardiopulmonary bypass determine which blood products are

required, whether oncotic, clotting, and opsonic proteins, platelets, or

red cells; the cardiopulmonary bypass procedure may adversely affect the

viability and function of these blood components. Abnormalities in blood

coagulation I18-131 and hemolysis of red cells 132'133 may occur during

bypass surgery. The heparin used to anticoagulate the patient's blood

during bypass and the citrate used in the anticoagulant in which the

blood product is stored both may adversely affect platelet function.
134 136

Moreover, hypothermia 137 ,138 and anesthesia 1 39 may affect the hemostatic

mechanism; drugs such as aspirin 140 may affect platelet function, and

%,-.
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heparin per se14 1-144 may produce thrombocytopenia.

The bleeding diathesis during and following extracorporeal bypass

surgery is a complicated process which may be affected in any nunmter of

ways, e.g., the failure of the surgeon to suture severed blood vessels,

by the length of the bypass procedure, the failure to neutralize

administered heparin, the excessive administration of protamine sulfate,

a decrease in level of clotting proteins, a reduction in platelet number

and abnormalities of platelet function, disseminated intravascular

coagulation, or by fibrinolysis.

Potential risks associated with donor blood products such as post-

transfusion hepatitis and isoimmunization can be reduced by collecting

blood from the patient prior to elective surgery, by collecting intra-

operative blood from the patient during surgery and shed blood after

surgery from thoracic drainage sites.25 ,145-151  It is recommended

though that shed blood be washed prior to reinfusion to prevent

disseminated intravascular coagulation and a bleeding diathesis.
152

Hemodilution with crystalloid-colloid solutions to produce acute

normovolemic anemia has been utilized during cardiopulmonary bypass
153-167

operations to minimize or eliminate the need for 
blood products.

Reports that moderate hemodilution produces no deleterious effects 168 170

are encouraging, though not substantiated by physiologic data.

Albumin also has been utilized during extracorporeal bypass for

the purpose of maintaining plasma oncotic pressure so as to minimize

the accumulation of edema fluid in the tissue. Although albumin has

also been shown to protect platelet function during cardiopulmonary
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bypass, 171 its disadvantages appear to outweigh its advantages. Albumin

has been shown to adversely affect the heart,
23 lung,28,2 9 kidney,49,50

immunologic system,51 and clotting function. 46 48  Mannitol reportedly

reduces myocardial edema during cardiopulmonary bypass sur-ery,
172

whereas the colloid solution, plasma protein fraction, is not recommended

because it may produce severe hypotension during extracorporeal bypass.
173-179

Numerous blood substitutes and blood products have been used to

prime the extracorporeal circuit: crystalloid solutions, colloid

solutions, and blood products, osmotic diuretic agents such as mannitol,

and buffer solutions such as bicarbonate. The pump may be primed with

crystalloid-colloid solutions and hemodilution, crystalloid-colloid

solutions and washed previously frozen red cells alone180 or in combination

with liquid-stored blood products, 18 1 crystalloid-colloid solutions in

combination with liquid-stored red blood cell concentrates or stored

whole blood, or crystalloid-colloid solutions in combination with fresh

whole blood.

Numerous studies have shown no differences in platelet counts or

platelet function, white cell count, clotting measurements, oxygen

transport, microaggregates, red cell function, hemodynamics, pulmonary

function, blood products used, or fluid balance, whether a membrane or

bubble oxygenator was utilized during extracorporeal bypass. 182 190

It may very well be true that there are no differences with these two

types of oxygenators; nevertheless, studies should be made to evaluate

the sensitivity of the measurements used. Other factors associated with

the surgery also may be involved which have a greater effect on blood

. "1, -"" ," ' ." ' •,. •• - - -""" . " ' ' , . . . . , , ... ., , _ ,.



31.

trauma than the oxygenator. Cardiotomy suction produces far more trauma

to blood than does the membrane or the bubble oxygenator, and suction

damage can easily mask any difference between oxygenators.
191 ,192

Coagulation tests, platelet counts, and platelet function tests during

.. and after cardiopulmonary bypass surgery

Plasma coagulation protein levels usually are decreased during

extracorporeal bypass. Coagulation factor levels about 30' of normal

usually are adequate for all factors, except for Factor V which shows

adequate hemostasis at levels of 10-15%.137 Abnormal bleeding following

cardiopulmonary bypass generally is not due to reductions in the levels

or function of coagulation factors. 130 '131'137 Moreover, factors such

as excessive anticoagulation with heparin, excessive neutralization

with protamine sulfate, qualitative defects in the polymerization of

fibrin, increased fibrinolytic activity, or the effects of fibrin-

fibrinogen degradation products on coagulation do not usually produce

bleeding following cardiopulmonary bypass.126,130'131 ,137

Postoperative hemorrhage in patients undergoing cardiopulmonary

bypass may be due to defective platelet plug formation related to

abnormalities of platelet function.1 9 The degree of impairment

s in platelet function is usually proportional to the duration of bypass

and to the level of hypothermia.137 The prostaglandin compounds, PGEl

and PGI 2 , have been utilized during extracorporeal bypass to maintain

platelet number and function.200 -202 The platelet dysfunction is

rapidly reversible in most patients, although clinical bleeding will

.
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occur in patients with a persistent functional platelet defect. The

standardized template bleeding time detects patients at risk of serious

postoperative bleeding. 137 ,194 Platelet concentrate transfusions are

indicated to treat a bleeding diathesis in a patient with a platelet

count below 50,000/ul, as well as for patients with a bleeding diathesis

and a bleeding time of greater than 20 minutes when the platelet count

exceeds 100,O00/ul. Bleeding time is a better indicator of the need

for platelet transfusion than the platelet count itself, and measurements

of both platelet count and bleeding time should be made in patients who

fail to stop bleeding after cardiopulmonary bypass surgery. No currently

available preoperative laboratory test of hemostatic function can

accurately predict coagulopathies resulting from cardiopulmonary bypass. 130

Blood products recommended during and after cardiopulmonary bypass surgery

Red blood cell concentrates with normal or improved oxygen transport

function have been shown to provide the best results in patients undergoing

cardiopulmonary bypass, and should be used instead of fresh whole blood or

stored whole blood. Red blood cell concentrates stored in the liquid

state at 4 C for 3 to 5 days with hematocrit values of 80 V% usually

have normal 2,3 DPG levels, and liquid-stored red blood cells can be

biochemically treated to elevate 2,3 DPG. Red cells with elevated 2,3 DPG

levels attenuate the increased red cell affinity for oxygen that occurs

during hypothermia and provide higher oxygen tension in the tissues.

Whether or not the tissues utilize the increased oxygen has not yet been

determined. Nevertheless, we believe that the safest course to follow
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for patients undergoing cardiopulmonary bypass surgery is to use red

cells with high 2,3 DPG levels and decreased oxygen affinity.

Crystalloid solutions, not colloid solutions such as albumin and plasma

protein fraction, are recommended as the volume expander for the pump

prime.

Platelet transfusions should not be administered during extra-

corporeal bypass. However, platelet transfusions should be used to

treat the bleeding diathesis after bypass associated with a significant

thrombocytopenia (less than 50,000 platelets/ul) or with bleeding

accompanied by a prolonged bleeding time and a platelet count of

100,000 or greater per ul. Six to 8 units of fresh platelets should

be administered. When it is necessary to administer preserved platelets,

it is important that the circulation and function of these platelets are

known. 203-212  Data have shown that platelets stored at 22 ± 2 C have

impaired function and require periods of time in the circulation to

restore function. 25'213  Platelets stored at 4 C for 24 hours have been

shown to have better function than platelets stored at room temperature

(22 ± 2 C) for 24 hours.214-216 No studies have yet been made in patients

undergoing cardiopulmonary bypass to measure the function of platelet

concentrates stored at room temperature (22 ± 2 C) for 5 days.

Patients with clinical bleeding and severe dilutional coagulopathies

are best treated with 4 to 6 units of fresh frozen plasma, although

there are no indications for the routine use of fresh frozen plasma

during extracorporeal bypass surgery.220 '221

Stored whole blood and plasma stored at 4 C have recently been

'-
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shown to give rise to impairment in oxygen consumption by isolated

skeletal muscle,30 '31 and increased pulmonary permeability, and there-

fore are not recommended during cardiopulmonary bypass surgery. As

- regards the use of plasma opsonic protein, this is still in the

222-227
speculative stage.

-a°.'

4. V

.

- * )°° .



I.I
I-h" 35.

Summary

The oxygen transport function of preserved red cells transfused to

anemic patients who have heart disease is critical. Patients with heart

disease should be given red cells with normal 2,3 DPG and normal affinity

for oxygen instead of low 2,3 DPG red cells. Our studies suggest that

red cells with high 2,3 DPG (150 to 200% of normal) and low affinity for

oxygen are the best form of transfusion therapy for anemic patients,

especially those with congestive heart failure. It may even prove useful

to use 2,3 DPG-enriched red cells in patients with patchy myocardial

ischemia and, at any rate, it can do no harm. High 2,3 DPG red blood

cells also are recommended in patients with right-to-left cardiac shunts

and pulmonary shunts, provided that the inspired ambient oxygen tension

-is adequate to maintain an arterial P02 tension of greater than 40 mm Hg.

Blood products utilized during extracorporeal bypass surgery should

ensure optimum oxygen delivery to tissue and maintain or restore normal

hemostasis, and red cells with 250% to 300% of normal 2,3 DPG and low

affinity for oxygen given in combination with crystalloid solution will

do this. Red cells with elevated 2,3 DPG levels do ensure optimum delivery

of oxygen to tissue, especially during hypothermia, although it cannot be

stated definitely whether or not they reduce myocardial damage.

A postoperative bleeding diathesis following cardiopulmonary bypass

due to a decrease in platelet number and to abnormalities of platelet

.'.. function should be treated with platelet transfusions. Although a

bleeding diathesis as a result of dilutional coagulopathies is rare,

4'.

*".' . ... . . .. . .
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severe dilutional coagulopathies should be treated with fresh frozen plasma.

However, routine use of fresh frozen plasma following cardiopulmonary

'i-. bypass is not recommended.
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Fig 1I- The effect of anemia on cardiac index and red cell 2,3 DPG level.

* * (Reproduced with permission from Finch CA and Lenfant C, N Engl J Med 1972;

* 286:412).
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Fig 2 -- The 2,3 DPG levels in red blood cells stored at 4 C in citrate-

phosphate-dextrose as whole blood with a hematocrit value of 40 V%, or as

a red blood cell concentrate with a hematocrit value of 70-80 V% or of

greater than 90 V%. Neither the whole blood nor the red blood cell concen-

trate was mixed during liquid storage at 4 C. (Reproduced with permission

from Valeri CR, Surgical Rounds 1981;4:41).
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Fig 3 -- The 2,3 DPG levels in red blood cells after storage in CPDA-l

at 4 C as whole blood or as a red blood cell concentrate with a hemato-

crit value of 70 V,.
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Fig 4 -- The 2,3 DPG levels of red cell concentrates stored at 4 C in CPD,

CPDA-1, CPDA-2 or CPDA-3 (Reproduced with permission from Valeri CR,

Crit Rev Clin Lab Sci, in press).
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Fig 5 -- The ATP and 2,3 DPG levels in red cell concentrates after storage

as whole blood in ACD, CPD, ACD-supplemented with 0.5 mM adenine, or CPD

supplemented with 0.25, 0.50, and 0.75 mM adenine. (Reproduced with

permission from Hogman CF, Akerblom 0, Arturson G, deVerdier C, Kreuger A,

and Westman M. In: Greenwalt TJ and Jamieson GA, eds. The Human Red Cell

S.- In Vitro. New York: Grune & Stratton, 1974:221).
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Fig 6 -- Red cell 2,3 DPG and ATP levels, and P50 values for red blood cell

-- concentrates with hematocrits of 80 t 5 V%, stored at 4 C in CPD for 6 to 8

days or for 25 days, biochemically treated with PIPA or FRES, frozen with

40% W/V glycerol in the original polyvinylchloride collection bag at -80 C,

thawed, and washed. (Reproduced with permission from Valeri CR, Crit Rev

Glin Lab Sci, CRC Press, in press).
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Fig 7 -- Red cell 2,3 DPG and ATP levels, and P50 values for red blood cell

concentrates with hematocrits of 80 ± 5 V%, stored at 4 C in CPDA-l for 35

days, biochemically treated with PIPA or FRES, frozen with 40% W/V glycerol

in the original polyvinylchloride collection bag at -80 C, thawed, and

washed. (Reproduced with permission from Valeri CR, Crit Rev Clin Lab Sci,

CRC Press, in press).
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Fig 8 -- Freeze-thaw-wash recovery in vitro, 51Cr 24-hour posttransfusion

survival, index of therapeutic effectiveness and length of storage at 4 C,

of red blood cell concentrates (hematocrit value of 80 + 5 V%) collected

in CPD or CPDA-l, biochemically modified with PIPA or FRES, frozen with

40% W/V glycerol in the primary collection bag and stored at -80 C,

washed in the Haemonetics Blood Processor 115 or the IBM Blood Processor

2991, and stored at 4 C for 24 hours in the final wash solution of 0.9",

NaCl-0.2% glucose-40 mg% inorganic phosphorus (pH 6.8) or 0.9% NaCl-0.2

' . glucose (pH 5.0). (Reproduced with permission from Valeri CR, Crit Rev

Clin Lab Sci, CRC Press, in press).
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Fig 9 -- Theoretical red blood cell mass and 51 Cr-measured red blood cell

mass in the recipient prior to and 24 hours after the transfusions.

The in Vivo P50 value, hematocrit, and red cell 2,3 DPG level are reported

- prior to and following the transfusions of red cells with 150% of normal

- 2,3 DPG. The red cell mass 24 hours after transfusion is the sum of the

red cell mass of the recipient prior to transfusion and the donor red

cell mass in the circulation 24 hours after transfusion which is the

product of the red cell mass of donor hemoglobin transfused multiplied

by the 24-hour posttransfusion survival measured by the automated

differential agglutination (ADA) procedure. (Reproduced with permission

- from Valeri CR, Zaroulis CG, Vecchione JJ, et al. Transfusion 1980;20:269).
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Fig 10 -- Transfusions of 2,3 DPG-enriched red blood cells resulted in

higher levels of 2,3 DPG and plasma inorganic phosphorus and an increased

in vivo P50 value. Oxygen consumption was increased in patients given red

blood cells high in 2,3 DPG in the period immediately after cardiopulmonary

bypass. Both the cardiac index and arteriovenous oxygen content difference

were elevated at this time. (Reproduced with permission from Dennis RC,

Hechtman HB, Berger RL, Vito L, Weisel RD, and Valeri CR, Ann Thorac Surg

1978;26:20).

S.

'"

'4:

'.,,'.

9-r..,

I.'



4 4-

0 -r

/ v- v : E<Z

0 0

z 0 -

w 0- 0-

L)ch aCL Cr1n E 7 4~
iL '--10 w o

IIr



-m 48.

Fig II -- Cardiac output and the filling pressure of the left ventricle

associated with volume loading prior to, immediately following, and 24

hours after cardiopulmonary bypass. During extracorporeal bypass for

coronary artery bypass surgery, these patients with coronary artery

disease received red blood cells with either 70% or 150% of normal

2,3 DPG levels. (Reproduced with permission from Dennis RC, Hechtman HB,

Berger RL, Vito L, Weisel RD, and Valeri CR, Ann Thorac Surg 1978;26:22).
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.

Fig 12 -- In vitro P50 decreased significantly 6 hours after surgery for

abdominal aneurysm resection in the patients who received nonwashed liquid-

stored red cell concentrates (p/-O.O05) and washed liquid-stored red cell

concentrates (pZO.OOl), but not in patients who received washed previously

frozen red cells with 150% of normal 2,3 DPG levels. Intraoperatively

body temperature decreased by more than 2.0 C in the three groups of

patients (pz0.0Ol). This was followed by falls of in vivo P50 in the patients

who received nonwashed packed red cells (p4 0.OOl) and washed red cells

(pz.0.05), while there was no change in the patients who received washed

previously frozen red cells with 150% of normal 2,3 DPG. The postoperative

rise in body temperature and fall in pH in the three groups of patients was

accompanied by a significant elevation of the in vivo P50 above preoperative

values in the patients who received high 2,3 DPG red cells (p/-O.O01).

(Reproduced with permission from Krausz MM, Dennis RC, Utsunomiya T, et al,

Ann Surg 1981;194:620).
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Figl3-- Red cell 2,3 DPG and ATP levels in non-rejuvenated and rejuvenated

red blood cells after cryopreservation. Three units of red blood cells

were stored in CPD at 4 C for about 7 days and then pooled. The 3-unit

pool was divided into three equal portions: 1 portion was not rejuvenated

(70% normal 2,3 DPG); 1 portion was rejuvenated with PIGPA Solution A

. (150% normal 2,3 DPG); and the third portion was rejuvenated with PIGPA

Solution B (250% normal 2,3 DPG). Each portion was glycerolized to a

final concentration of 40% W/V glycerol and then divided into three

-- 130 ml aliquots. Each of the nine aliquots was frozen separately and

stored at -80 C, thawed, and washed prior to study. (Reproduced with

permission from Valeri CR, Yarnoz M, Vecchione JJ, et al, Ann Thorac

Surg 1980;30:531).
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Fig 14-- The P50 values of washed previously frozen red blood cells with

70% of normal, 150% of normal, or 250% of normal 2,3 DPG, measured at

10 C, 15 C, 24 C, and 37 C. (Reproduced with permission from Valeri CR,

Yarnoz M, Vecchione JJ, et al, Ann Thorac Surg 1980;30:531).
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: L 51
Fig 15 -- The freeze-thaw-wash recovery, Cr 24-hour posttransfusion

: survival, and index of therapeutic effectiveness (ITE) of red blood cells

*:. with 80% or 250% of normal 2,3 DPG after small aliquot (10 ml) autotrans-

fusions with or without prior in vitro perfusion in a cardioplegic solution

at 15 C. Aliquots from 5 units with 250' of normal 2,3 DPG were auto-

transfused without prior perfusion. Three other units with 250% of normal

2,3 DPG were perfused in vitro for 3 hours, and an aliquot from each unit

was labeled with 51Cr and autotransfused. Two units with 80% of normal

2,3 DPG were perfused in vitro for 3 hours, and an aliquot from each unit

4 was labeled with 51Cr and autotransfused. (Reproduced with permission

from Valeri CR, Crit Rev Clin Lab Sci, CRC Press, in press).

- -

9 -



p..~~~-7 4.%7 7- - . . . . . . . - - .

*u -I. V)

R) )(

ZZt

q) q)

C~

c 'J c

i>

w

0- 0 0

0 c
"%< z



L - . -:W~

53.

Fig 16 -- Red blood cell 2,3 DPG, ATP, in vitro P50 , extracellular

osmolality, and sodium ion and potassium ion of red blood cells with 80%

of normal or 250% of normal 2,3 DPG perfused in vitro in a cardioplegic

solution at 37 C, 22 C or 15 C. (Reproduced with permission from Valeri

CR, Crit Rev Clin Lab Sci, CRC Press, in press).
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Fig 17 -- The supernatant hemoglobin of red blood cells with 80% of normal

2,3 DPG or 250% of normal 2,3 DPG perfused in vitro for 3 hours in a

* . *%*

cardioplegic solution at 37 C, 22 C and 15 C. (Reproduced with permission

from Valeri CR, Crit Rev Clin Lab Sci, CRC Press, in press).
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Fig 18 -- The relation between Pa02 and blood oxygen affinity at various

levels of right to left shunt (S). The calculations were based on the

following data. pH = 7.40, PaC02 = 40 torr, temperature 37 C, hemoglobin

concentration = 15 gm/l00 ml. The pulmonary arteriovenous difference of

oxygen was 4 ml/lO0 ml. The oxygen tension at 50% saturation at normal

acid-base state and temperature: newborn = 22, adult = 27, adult adapted

to hypoxia = 32 and "Super-DPG" blood = 37 torr. (Reproduced with permission

from Settergren G, Soderlund S, Eklop AC, Crit Care Med 1982;10:17).
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