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A KNOWLEDGE-BASED SYSTEM FOR LP MODELING

i * Daniel R. Dolk

) Naval Postgraduate School

’i ' \ 1. INTRODUCTION

g

“ The focus of this paper is on linear programming (LP) software in the

| context of model management and decision support. As a result, we will not
be interested in the algorithmic properties of LP or math programming (MP)

3‘ codes, but rather their applicability to more generalized modeling environments

N wherein models can be linked or decomposed in a manner which frees the user

3 from having to know the internal representation which the algorithms require.

S In particular, we will look at the objectives and functions of a generalized

; mode] management system and how these require a knowledge-based modeling

‘f capability. We will then describe a partial implementation of a knowledge-

é based modeling system for LP models called the Generalized eXperimental Math

Programming system (GXMP).

%, ’V

n 2. LP AND MODEL MANAGEMENT

- Most, if not all, LP software has operated on the assumption that users know

enough about their model to select the correct package to use to obtain a

\
%

S computer solution. In the decision support environment, the user, in fact,

!

may not be aware of what models are needed or available to solve the problem

j ) at hand. In this case, it becomes the task of the model management system to &

‘_f ! orchestrate the appropriate models and data to solve a user-described problem N
! (Figure 1). N —
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- Figure 1: Role of Model Management in Decision Support
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»
,¥ In order for an MMS to function in this capacity, it clearly requires
a knowledge-based capability for representing knowledge about models. The

‘; . following kinds of knowledge should be contained in the MMS, for example:
31 1. Which situations particular models are applicable to;
y 2. Model integrity statements;
;2 3. Information required to instantiate a model;
if 4. Which solution algorithm(s) to employ to solve a model;
o 5. How to link models to other models;
3; 6. How to decompose models into submodels;
X 7. Interpretation of model results.

In addition to knowledge representation and storage, an MMS must also
:g have one or more generalized problem-solving or inferencing capabilities for

manipulating the knowledge. This "reasoning" capability should encompass

y heuristic as well as deterministic reasoning so that, for example, the MMS
:E can pattern-match user-supplied problem descriptions with available model and
,% data instances. The first order predicate calculus has been suggested as one
A means of representation (Bonczek et al, 1981) which is well-suited for deter-
%g ministic kinds of inferences. Semantic networks have been considered to support
ié more heuristic kinds of reasoning within a modeling environment (Elam et al,
»_ 1980). The GXMP system is based on the concept of knowledge abstractions, or
;; in the case of modeling, model abstractions (Dolk, 1982; Konsynski and Dolk,
§ 1982), a knowledge representation scheme which attempts to combine the strengths

of deterministic and heuristic inferencing (Dolk, 1982).

A model abstraction consists of three parts: data objects, procedures
acting upon those objects, and assertions or facts (knowledge) concerning the
relationships between data objects and procedures (Figure 2). For MP models,

data objects correspond to constraint equations and model parameters, procedures
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DATA 0BJECTS
(Ex: Constraint Equations,
Index Sets)
PROCEDURES
(Ex: Add-Constraint-Model,
Modify-Index-Set-Yalue,
Linear (Equation))
ASSERTIONS

(Ex: Linear (Constraint),
Linear (Obj-Func))

Figure 2. Model Abstraction Structure

are operators which act upon the data objects (ADD-CONSTRAINT-TO-MODEL, e.g.),
and assertions specify integrity conditions ("constraints must be 1inear in an
LP model," e.g.).

A modeling system with a knowledge-based capability alters the traditional
view of modeling software (Figure 3). Typically, math programming software has
been algorithmically oriented wherein the input data are prepared by the user-
modeler and fed into a "black box" program which applies the algorithm to supply
the results. Knowledge about the models fs supplied externally by the modeler
in preparing the input and internally by the programmer in specifying the
algorithm. In neither case is this knowledge accessible to other users who see
only the input and the "black box." In the knowledge-based modeling system,
however, this structure is expanded to abstract the knowledge pertinent to a

model into a separate data component of the system. Furthermore, the algorithms
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gﬁ" are stored as data in a procedure library to be used by the reasoning module in
s8,
. constructing a model program to solve the problem described by the user. For
‘ o
> those familiar with rule-based expert systems, the knowledge base would consist
;:: . of rules expressed fn a IF <antecedents(s)> THEN <consequent{s)> fashion

and the reasoning program would correspond to a rule interpreter (Duda and

Gaschnig, 1981).
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3. THE GXMP SYSTEM

The remainder of this paper describes a "first pass" implementation
of a knowledge-based model management system for LP models called GXMP. Much
of the effort to date on GXMP has been involved with establishing a suitably
powerful modeling language for expressing MP models. As a result, the knowledge-
based capabilities of the system are still very limited. Development phases
for incorporating these features into GXMP are presented in the concluding
section.

Figure 4 shows the salient implementation features of GXMP. The system
is written in FORTRAN on a Vax-11/780 using the XMP linear programming library
(Marsten, 1980) and the ADBMS database management system (Hershey and Messink,
1975). The overall goal of the GXMP system is to serve as a user-friendly
virtual machine for LP (and eventually MP) algorithms. Thus, although the XMP
1ibrary was chosen as the source of the simplex algorithm, there is no restric-
tion on using other algorithms providing they accept input in matrix form.

The components of GXMP are shown in Figure 5. There are five different

database types:

1. The directory catalogs all instances of models, data objects, abstrac-
tions, and databases currently in the system;

2. The abstraction database stores model abstractions and serves as the
knowledge base of the system;

3. The procedure database stores the subroutines from the XMP Tibrary
including the source code;

4. The equation database stores an instance of a model expressed in the
GXMP modeling language;

5. The parameter database stores the associated numerical parameters of a
model instance (coefficient and right-hand-side values, e.g.).

Interface with the user occurs at two levels: a menu dialog for selecting the

system functions to be performed and a modeling language for expressing LP

-
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y Model Management System for LP

'? . FORTRAN

N XMP Library (Marsten, 1980)

- ADBMS (Hershey and Messink, 1975)

;; Knowledge-Based (model abstractions)
User-Friendly Virtual Machine for LP Algorithms
.. Figure 4. Features of GXMP Implementation
;;t

i

;‘ DATABASES

elava

Directory (catalog)
Abstraction (knowledge base)

Procedure (XMP library)
Equation (expressed in modeling language)

Parameter (coefs, rhs, etc.)

MENU DIALOG

- .

P

— gpetia

't:.

v MODELING LANGUAGE

» SOLUTION REPORTER

] Figure 5. Components of the GXMP System
:;.,

&,

."

models in a mathematical fashion. The menu dialog acconmodates the "naive”
user while the modeling language is geared toward the modeler. The solution

. reporter generates LP solutions in terms of the variables which the user
specifies during model creation. Examples of these various aspects of the system

are shown in the sample problem of the next section.
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The GXMP modeling language is designed to allow modelers to represent

fons in quasi-mathematical notation. It is somewhat similar to FORTRAN

and contains several key features:

User-supplied variable names in place of mathematical variables (self-
documenting):

Math-Var Description GXMP-Name
j city CITY
k| city CITY
Xij shipmeqt from city i SHIPMENT (i,])
to city j
Dj demand from city j DEMAND (j)

Use of inequality signs for expressing constraints.

MIN, MAX, SUM operators.
Use of mathematical indexes in equations.

FOR clause for specifying conditions on indexes and instantifating
indexes.
n
Ex: To express izl xij = Dj for j=1,...,n;

jeooi

SUM(1)[SHIPMENT(i)] = DEMAND(J)
FOR i OVER CITY, j OVER CITY, i<>j §

Use of index expressions

Ex: CONSUMPTION(p,t) + INVENTORY(p,t) -
INVENTORY(p,t-1) = SUPPLY(p,t)
FOR p OVER COMMODITY, t OVER PERIOD $

Several other syntactical features and restrictions should be mentioned:

A1l indexes must be expressed in lower case and cannot exceed four
characters in length. Indexes "max" and "min” are reserved names

(see 4. below).

Simple index expressions of the form <index> <"+" or "-">

<integer or index> are allowed, e.g.: X({-1,t+1).

Indexes must be used consistently over all equations and each index
appearing in an equation must be identified in that equation. The
first restriction states that index i, for example, must be the same
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in each equation in which it appears. Furthermore, different index
names cannot be used in different equations to represent the same
index (unless the index forms a link). The second restriction
requires identifying an index whenever it appears. This leads to a
certain amount of redundant specification but results in fully
documented equations.

Each instance of SUM must be followed by one or more indexes enclosed
in parentheses and the summand enclosed in square brackets, e.g.:

. L X
is expressed as: i,J

suM (i,3)x(3,3)]

Conditions on indexes can be expressed in conjunction with index
identification, thus we can express:

0 <= X(i,j) <= DEMAND(i,j) fOR i OVER CITY,
J OVER CITY, i <> j §

-
b
{
<
1
o

to indicate that the constraint holds for all 1i,j except i=j.
("<>" indicates the "not equal" operator.) The reserved words "max"
and "min" can be used to refer to the highest and lowest cardinal
values of an index respectively, thus

nil

X, .
igg
can be expressed as:

SUM(i,J)[X(i,3)] FOR i<max, j<max, i OVER...

A1l decision variables must be grouped onto one side of a constraint.
Thus if C and F are decision variables:

C(p,t) + F(p,t) = S(p,t) + F(p,t-1) FOR ...
will not be translated properly and should be rewritten as:

C(p,t) + F(p,t) - F(p,t-1) = S(p,t) FOR ...
Each unique combination of decision variable and indexes may appear
only once in a particular equation. Thus the following objective
function with decision variable DV:

MAX(SUM(1,3)[REV(§,j)*DV(i,3)-EXPNS(i,j)*OV(i,i)])..

will not be translated properly and should be rewritten as:

MAX(SUM(1,3)[(REV(i,J)-EXPNS(i,3))*DV(i,j)])..

P S .
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3
_‘5 Note this restriction does not obviate a decision variable from
N appearing more than once in an equation as long as it has different

N index expressions each time (see sample in 6. above).

RS

Dy 8. Only constraint and objective function expressions are allowed. No

o intermediate expressions may be inserted. This means that although it
" would be convenient to write the objective function above as:
X UNIT-PROFIT(i,j) = REV(i,j) - EXPNS(i,j)
,_:; PROFIT = SUM(i,J)[UNIT-PROFIT(i,§)*DV(i,j)]...
24 MAX {PROFTT)

it is not currently permitted in the GXMP.

-

) Only the last point is a serious restriction of the language in any sense, yet
)

ig it does not pose any conceptual difficulty involving implementation. It was

: imposed primarily to expedite the development time of a "first pass" version
f of the system.

3 An example of the language applied to a sample problem is presented in
<.
. the next section. .

o 4. A GXMP EXAMPLE

2

A

. This section presents a simple problem to show how the GXMP operates

-

in creating and solving a modei. The model we are going to use is the school

]

rezoning problem discussed in Hillier and Lieberman (1974, pp. 196-201). The

2 xie a8

gist of the problem is to minimize the distance students need tc be bused to

l &

school while maintaining a specified racial balance in each school. A mathe-

;
e

%} matical representation is displayed in Figure 6. J

:? GXMP recognizes three different kinds of parameters: 1

f;_ 1. index sets (i and j in this model); q
2. decision variables (X); :

23 3. numerical parameters (B, W, S, T);

Ti Index sets correspond to the indexes in the mathematical representation but

5 their values in the GXMP are always character quantities rather than numerical

10

:

T S .




Variable Description

xij No. of students in tract i assigned to school J

Dij Distance from tract i to school j

Bi No. of black students in tract i

wi No. of white students in tract i

Sj Capacity of school j

T Parameter such that .5-T < racial balance < .5+T

min ){'goﬁx‘.j for i=1,...,10; j=1,2,3
st §x1j=31.+w1. for i=1,...,10; §=1,2,3

(al1 students are assigned to schools)
L X528 for i=1,...,10; j=1,2,3
(school capacity not exceeded)

?‘:(.S-T-Hi/(BiWi))Xﬁf_O for i=1,...,105 j=1,2,3
] (.5-T-B,/(B;#W;))X 4 < 0 for i=1,...,10; §=1,2,3

1

(racial balance)

Xjy20 for i=7,...,10; =1,2,3

(nonnegativity)

Figure 6. Mathematical Description of School Rezoning
Model
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Ery quantities as in the mathematical case. This significantly increases the

lw: documentation value of the system. Decision variables are the quantities being
;§§ solved for by the simplex method. Numerical parameters are those quantities
;ﬁf with numerical values, usually coefficients or right-hand-sides in the

;; equations.

:53 When entering parameters, always enter the index sets first since subse-
33 quent parameters will depend upon them. This is done in our example by speci-
. fying TRACT for index i and SCHOOL for index j. For each parameter entered,

ji the system will prompt the user for parameter type, data type (not prompted

‘:g for index sets and decision variables), documentation, indexes (if any) that

é§ the parameter depends upon, and data values to be entered at this time (if any).
;; When entering parameters which are indexed, include the indexes as part
2%3 of the name selected ("DISTANCE(i,j)" for "X* for example). The indexes must
= be specified in Tower case and cannot exceed four characters in length. They
‘% must also be used consistently across parameters and equations, i.e. "i" cannot
;ﬁ refer to TRACT in one case and SCHOOL in another. Neither can “i" refer to

% TRACT in one case and "j" refer to TRACT in another (unless TRACT forms the

,*g basis of a network problem which is not the case here). The best way to avoid
R confusion is to construct a table that correlates the variables in the mathe-

matical description with their GXMP counterparts (Figure 7). Once the desired
parameters have been added to the model, a 1isting of those parameters can be
obtained (Figure 8).

The next step in specifying the model is to enter the objective function
and the constraints using the modeling language described in the previous
section. The important rules to remember when entering equations are:

1. No intermediate expressions are allowed, thus there will be only one
objective function expression;
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Model Variable Parameter Type GXMP Name

i Index set TRACT
J Index set SCHOOL
xij Decision var STUDENTS(1,])
Dij Parameter DISTANCE(1,j)
B, Parameter BLACKS(1)
W, Parameter WHITES(1)
Sj Parameter SCHOOL-CAPAC(J)
T Parameter THETA

Figure 7. GXMP Parameter Names for School Rezoning Model

Variables

2. A1l parameters appearing in an equation must be defined in the
parameter database prior to equation entry;

3. Gtach separate index appearing in an equation must be instantiated
in the FOR clause and, like parameter entry, indexes must be used

consistently across equatfons;
4. Summation is expressed by
SUM(index1,index2,...)[summand];

5. Always end each equation with a "$".
Equations are clas-i’ e. as either constraints (CONSTR) or objective function
(OBJPCN) and assionec - number as well. If the user does not specify
an {id number when _.:t ring an equation, the system will assign one automati-
cally. Once the equations have been entered, they can be displayed in a

manner similar to that of the parameters (Figure 9).

13




N

- *Type <CR> for Previous Menu

0 1 for Equation Operations
b oY 2 for Parameter Operations
;:j 3 to Solve Model

Y *2

f

*Type <CR> for Previous Menu

to Add Parameter(s)

to Delete Parameter(s)

to Modify Parameter(s)

to Specify Values for Parameters
to Link Parameters

to Display Parameters in Model
to Display Parameter Values

o AL
A A A

SO O BN

*6

*Parameter name (20 chars max)
(If adding, include indexes if any, eg: DEMAND(1i,J)
(Type ALL for ali, Hit <CR> to end parameter entry):

;
1§
- \'

*ALL
Data
Parameter-Name Type Type Description

&; BLACKS(1) PA R Black students in

00 i: TRACT tract i

% DISTANCE(1,3) PA R  Distance from tract i
’ ~ i: TRACT to school j

% J: SCHOOL

! SCHOOL IS €  Schools

o SCHOOL-CAPAC(j)  PA R School j student capacity
o J: SCHOOL
N STUDENTS(4,J) by R Students in tract i

j: TRACT assigned to school j
J: SCHOOL

199 THETA PA R Parametric quantity
~ TRACT IS c School tracts
59 WHITES(F) PA R White students in tract i
e i: TRACT

23. Figure 8. GXMP Session Displaying Schoo) Rezoning
e Mode! Parameters

&
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*Type <CR> for Previous Menu

1 for Equation Operations

2 for Parameter Operations

3 to Solve Model
*]
*Type <CR> for Previous Menu
to Add Equation(s) to Model
to Delete Equation(s) from Model
to Renumber Equation(s) in Model
to Display Equation(s) in Model
to List Variables in Equations
to Compile Equations

NN BN

*4

*Type <CR> to Return to Previous Menu
1 if Equation is a Constraint
2 1if Equation is Objective Function

*2
;gype equation id (0 for all):

OBJFCN-1d Equation

10 MIN(SUM({,3)[DISTANCE(1,J)*STUDENTS(1,j)])
FOR i OVER TRACT, j OVER SCHOOL $

1 OBJFCN equations in model

*Type <CR> to Return to Previous Menu
1 if Equatifon is a Constraint
" 2 if Equation 1s Objective Function

;;ype equation id (0 for all):

CONSTR-1d Equation

10 SUM(J )[STUDENTS(1,j)] = BLACKS(i) + unmzsm
FOR { OVER TRACT, j OVER SCHOOL
20 SUM(i ) [STUDENTS(i,J)] = SCHOOL-CAPAC(j)
FOR i OVER TRACT, j OVER SCHOOL $
30 SUM(1)[(.5 - THETA - WHITES(1)/(WHITES(i)

BLACKS(1)) )*STUDENTS(1,j)] <= 0.
FOR i OVER TRACT, j OVER SCHOOL §

40 SUM(i)[(.5 - THETA - BLACKS({i)/(WHITES({)
BLACKS(1)))*STUDENTS(i,j)] « O.

FOR 1 OVER TRACT, j OVER SCHOOL $

50 STUDENTS({,j) = 0.
FOR i OVER TRACT, j OVER SCHOOL $

5 CONSTR equations in model

Figure 9. GXMP Session Displaying School Rezoning
Model Equations
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The primary strength of the GXMP modeling language is the indexing
capability which allows equations to be specified symbolically and concisely.
Note that each constraint equation in the school rezoning problem in Figure 6
actually represents multiple constraint instances. Constraint 10, for example,
symbolizes i constraint instances. This economy of expression due to the mathe-
matical nature of the modeling language allows users to represent large models
with very few equations.

Furthermore, the language is robust in that it enforces a high degree
of independence between the equations and the data. It is sufficient to observe
that tracts and schools could be added or dropped from the parameter database
for the school rezoning problem without having to make a single change to the
equations in Figure 9. Similarly, equations could be added or deleted without
altering the parameter data values. This would not be the case if a language
required that each constraint be enumerated expliicitly. Clearly there is a
connection between model independence and the power of a modeling language.

Once a model has been fully specified (parameters, parameter values,
and equations), it is ready to be solved. The model solution orocess takes
place as shown in Figure 10. The appropriate model abstraction instance for

the model is located and a SOLVE predicate located within the abstraction. The
SOLVE predicate 1ists which XMP routines need to be invoked and the order of
invocation in order to effect a solution for the model. In a batch environment,
a job stream is estabiished consisting of JCL commands, the appropriate XMP
routines retrieved from the procedure library, and parameter data and equations
retrieved from the parameter and equatfion databases. The job stream is submitted
as a batch job whose result file is then processed interactively in a later
session. In a totally interactive setting, the XMP routines are executed

dynamically and the solution generated online. The obvious disadvantage of the
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Figure 10. The GXMP Model Solution Process for Batch Jobs

latter approach is that online processing may be too time-consuming for all

but small scale LP problems. Because our example is small, the interactive

approach is used in this case.
Once the model has been solyed yia the XMP routines, the solution

reporter is invoked to report the results (Figure 11). The reporting of
linear programming results has been a long-standing problem especially with

large models having many variables.

At the root of the problem is the naming

convention that systems impose on the unfortunate user which often results in
confusion as to which variable is which in the report. Names 1ike "Variable 1"
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* & % & & GXMP SOLUTION REPORTER * * * # «
Model Type : LP-EON

azcoR

: z- Model Instance: SCHOOL-REZONING
2; Number of Linear constraints 19
»:j Number of Variables (incl. slacks & artificials) 49
; Variable Identification Value
) STUDENTS(TRACT1,JEFFERSON) 0.45000000D+03
- STUDENTS(TRACT2,JEFFERSON) 0.40000000D+03
: STUDENTS(TRACT3,JEFFERSON) 0.500000000+03
i) STUDENTS(TRACT4 ,WASHINGTON) 0.500000000+03
Y STUDENTS(TRACTS ,WASHINGTON) 0.40000000D+03
STUDENTS( TRACT6 ,WASHINGTON ) 0.450000000+03
$o STUDENTS(TRACT7,JEFFERSON) 0.150000000+03
it STUDENTS( TRACT7 ,WASHINGTON) 0.300000000+03
Y STUDENTS (TRACTS, HAMILTON) 0.50000000D+03
¥ STUDENTS(TRACT9,WASHINGTON) 0.50000000D+02
" STUDENTS{TRACTS +HAMILTON) 0.350000000+03
STUDENTS(TRACT10,HAMILTON) 0.450000000+03
gz *-Remainder of variables are slacks/artificials***
A Constraint for Which Variable is Basic Value
X SCHOOL-CAPAC(HAMILTON 0.30000000D+03
WHITE-RATIO(JEFFERSON 0.55583337D0+03
WHITE~RATIO(WASHINGTON) 0.91668144D+00,
‘) WHITE-RATIO(HAMILTON) 0.410750020+03
:(3 TRACT-ASSIGNMENT (TRACT6) 0.891666890+02
(R, TRACT-ASSIGNMENT ( TRACT9 : 0.740083360+03
W TRACT-ASSIGNMENT(TRACTS 0.14825001D+03
! Value of Objective Function: -0.496500000+04
N Constraint Dual Variable
> TRACT-ASSIGNMENT (TRACT1) -0. 140000000+01
N mcr-nssxemsu'r{mcrz) -0.279999980+01
¥, TRACT-ASSIGNMENT (TRACT3) -0.899999920+00
TRACT~ASSIGNMENT ETRACT 4) -0.13000000D+01
TRACT-ASSIGNMENT(TRACTS) -0.40000001D+00
v TRACT-ASSIGNMENT(TRACT6 -0.60000002D+00
~: TRACT-ASSIGNMENT (TRACT7 ~0.140000000+01
k.. TRACT-ASSIGNMENT ( TRACTS ~0.17000001D+01
\} TRACT-ASSIGNMENT (TRACT9 -0.120000000+01
- TRACT-ASSIGNMENT (TRACT10) ~0.150000010+01
= SCHOOL -CAPAC(JEFFERSON) 0.199999930+00
! SCHOOL -CAPAC ?IASHINGTON ) 0.000000000+00
Y SCHOOL -CAPAC (HAMILTON) 0.500000060+00
0 WHITE-RATIO 2JEFFERSON) 0.000000000+00
WHITE-RATIO(WASHINGTON) 0.00000000D+00
- WHITE-RATIO(HAMILTON) 0.000000000+00
=3 BLACK-RATIO(JEFFERSON) 0.000000000+00
i BLACK-RATIO(WASHINGTON) 0.000000000+00
‘__,;, BLACK-RATIO ILTON) 0.000000000+00
t,‘a 4
X Figure 11. GXMP Display of School Rezoning Model Solution
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or "Demand(3,4)" are just not descriptive enough in most cases. Furthermore,
users are often required to enumerate each name as input which can be extremely
tedious for large problems. Imagine having to input "DEMAND(i,j)" for i and
J equal to 100.

The GXMP subverts this problem largely through the power of its modeling
language. The user need only enter each parameter name in the model once,
generically as it were. Thus, "DEMAND({i,j)" is the only GXMP entry necessary
for a parameter representing the demand from city j for a product at city i.
After the model with this parameter is formulated and solved, the solution
(assuming DEMAND(i,j) is a decision variable) is displayed with index values

substituted for i and J, e.g.:

DEMAND (DALLAS, SEATTLE) 1124,
DEMAND (DALLAS,LA) 3962.
DEMAND( TUCSON, SEATTLE) 836.

The decision variables are fully documented at the back end with this convention
while requiring a minimum of input at the front end. The user supplies only

the names (15 characters or less) for each "generic" variable. The same conven-
tion is employed in prompting the user for parameter data values once the param-
eter names have been defined. Thus, usage is consistent throughout the process
from model formulation to model solution.

Another user-friendly feature of this approach is the ability to focus
on a subset of the solution. This can be done in the solution reporter by
specifying explicitly which variables the user wants to see. Thus, one can
spectify STUDENTS(TRACTS,WASHINGTON) to see only that value, or more useful,
specify STUDENTS(*,WASHINGTON) to see the number of students from each tract
who are to be bused to the Washington school. The * "wild card" character
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provides a powerful feature for looking at only the parts of the solution which

a user is particularly interested in. The advantages of this approach over
wading through a massive printout to find a limited set of solution variables
are readily apparent, especially for large models with many decision variables.
Notice that in addition to fully identifying the decision variables in
the solution basis, GXMP also provides an equivalent capability for the dual
variables. This is accomplished by assigning each equation an equation name in
addition to a unique numeric identification. (Note: GXMP has not yet been
modified to display these names which is why they do not appear in Figure 9.)
Thus equation CONSTR 10 is TRACT-ASSIGNMENT, CONSTR 20 is SCHOOL-CAPAC and so
forth. Thus the dual variables can be associated with their corresponding
equation appropriately indexed as in Figure 11. This feature helps document

the equations and improves the readability of the solution report.
5. CONCLUSIONS AND FURTHER RESEARCH

The development of the GXMP system has been scheduled in three phases.
This paper has discussed the results of the first phase which is the design
and implementation of a model management system for LP models. The current
version of GXMP is essentially a user-friendly top end for LP software with
built-in capabilities for model management. Further work is necessary to make
fuller use of these features.

The second phase is concerned with extending the knowledge-based nature
of the system. Although the apparatus for a knowledge-based modeling system
is already in place, many theoretical issues remain to be studied before imple-
mentation can occur. In particular, the following areas need to be resolved:

1. What kinds of knowledge to represent about models.

2. How to represent this knowledge (the model abstraction needs to be
defined more carefully).

20
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3. What kind of inferencing and pattern-matching technique(s) to use
with regard to models.

The third phase of GXMP development is to extend the system to a general-
ized model management system (GMMS). This involves incorporating other classes
of models (e.g.: simultaneous equation estimation, discrete event simulation,
etc.) into the knowledge-based framework. This will test the versatility of
the model abstraction concept and may entail extensions to the modeling language
and compiler. Another important issue to be addressed in this stage is the
development of a technique for linking models to form composite models as well

as the inverse operation of decomposing models into simpler components which

can then be relinked after solution.
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