
R1A39 991 A KNO&ILEDGE-BASED SYSTEM FOR LP (LINEAR PROGRAMMING) i/i
all~mMODELING(U) NAVAL POSTGRADUATE SCHOOL MONTEREY CR

UNCLR51FIE R P 01K 19 JAN 83 NP-54-83-@i2 /12 N

USI FE L/ ±/

li1.0 EM32A

I~hI ~ 21.8

MICROCOPY RESOLUTION TEST CHART
FATt*0AL BiRIAM-OF STANDARDS- 1963-A

0~
NPS-54-83-012

NAVAL POSTGRADUATE SCHOOL
Monterey, California

DTIC

~ B

A KNOWLEDGE-BASED SYSTEM FOR LP MODELING

by

Daniel R. Dolk

LLI
.- I

, 10 January 1983

Approved for public release; distribution unlimited.

Prepared for:
Chief of Naval Research

Arlingto, Va 22217

84 04 11 031.
, - ,% % -,, -, - ,- . %-%- . .. % . *

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Commodore R. H. Shumaker David A. Schrady
Superintendent Provost

This report was sponsored by the Foundation Research Program at the

Naval Postgraduate School.

Reproduction of all of this report is authorized.

This report was prepared by:

DMIEL R. ML, Assistant Professor
Department of Administrative Sciences

Reviewed by: Released by:

WC I A %. O Kof Research
Department of Administrative Sciences

*1

*0i

.51 ¢ . . .' .. :.; : ..' :.?..?....:. ..'. ..';:.' .x 2 --- ,.-,:.-"2-" :"_
.. . .*,' , , ,

UNCLASSIFIED
s ac Um-r7. ASSUICATIGH op THInS P^09 (Slim, Do*e 5*1w

4 REPORTI DOCUMENTATION PAGE RE~cA V ISTW io..
Nepai5-83ollGf 22. QQT CC 80 NO: APOWENT-S CATALOG MUNGER

NpS-4-8-012'AO/59 1,9 ____ ___ ___

14. T1Ti3(";-0UI* S. TV06 or ItWORT 6 io oum

*A Kriowledge-Based System for LP Modeling Technical Report

7. AUT@(OJ . COWNACT ON GNAMY Mhl54h

Daniel R. Dolk

C. P8XNuIFIC ORGA06IZATION M*AM AIWO ADDRESS 2:. £06"20 v. peojg51 TAWK

Naval Postgraduate School 61152N4; RWOO0-01-10
Monterey, CA 93940 N000 1483OR30 104

11I. COwTROLi.IN~G OFFIC9 MNZ ANO ADDRESS 12. RIE303? DATS

Chief of Naa esac 10 January 1983
Arliriton, Va 22217 22 UNE r AE

14. 'BONl 0 O A N WV MNZ & AOMNSSU(O diffemp &I C~aOaa M **) 1S. SEUNI? CLASS. to# We No~

Unclassified sueam

14. SiSrtNIOUT1010 STATEMENT W. NIs Stepwo)

Approved for public release; distribution unlimited.

1?. 514TNVgOT101 STAYWEMENT (of the eOsweef eaemd to Wook as. it Alfwm 6- 3.-el

10. SUPPLEMENTARY NOTES

It. KEY 50305 (CMW ee Wo E Ieseeaamp m Wph ea

Model Management
Knowl1edge- Based Sys temns
Linear Programming

n 4*. ASTiACT (Conalie mn reuw.@ off If 0"Is -W MmW, or WooS on"
Mathematical programuiing software has tended to be more algorithmn-oriented and
less concerned with model management capabilities. This report studies the
objectives, functions, and subsequent structures required of a generalized model

*management system. A prototype software package implementing some of these
structures is described.

Dou o~e 00 147 Nbo ov s 008"Ms UNCLASSIFIED

d~~~~ 'V

A KNOWLEDGE-BASED SYSTEM FOR LP MODELING

Daniel R. Dolk
Naval Postgraduate School

1. INTRODUCTION

The focus of this paper is on linear programing (LP) software in the

context of model management and decision support. As a result, we will not

be interested in the algorithmic properties of LP or math programming (MP)

codes, but rather their applicability to more generalized modeling environments

wherein models can be linked or decomposed in a manner which frees the user

from having to know the internal representation which the algorithms require.

In particular, we will look at the objectives and functions of a generalized

model management system and how these require a knowledge-based modeling

capability. We will then describe a partial implementation of a knowledge-

based modeling system for LP models called the Generalized eXperimental Math

Prograuming system (GXMP).

2. LP AND MODEL MANAGEMENT

Most, if not all, LP software has operated on the assumption that users know

enough about their model to select the correct package to use to obtain a

computer solution. In the decision support environment, the user, in fact,

may not be aware of what models are needed or available to solve the problem

at hand. In this case, it becomes the task of the model management system to Cl

orchestrate the appropriate models and data to solve a user-described problem 1

(Figure 1).
_ Dt t ributl on/"I
Availability Codes

vail and/or

Dist special

% %

V ~ ,, s,- V - . V V . V V ~ % * i~* . ~~~.

DECISION-MAKER AND PROBLEM ENVIRONMENT I

4' [jjj MODEL MANAGEMENT SYSTEM Z

MODEL BANK DATA BANK

MODEL A DB 1

MODEL B DB 2

MODEL C DB 3

Figure 1: Role of Model Management in Decision Support

2

--L39 VV. IN A.; IV III ,,9_ U. . '.,,

In order for an MMS to function in this capacity, it clearly requires

a knowledge-based capability for representing knowledge about models. The

*following kinds of knowledge should be contained in the t1S, for example:

N 1. Which situations particular models are applicable to;

2. Model integrity statements;

3. Information required to instantiate a model;

4. Which solution algorithm(s) to employ to solve a model;

5. How to link models to other models;

6. How to decompose models into submodels;

7. Interpretation of model results.

In addition to knowledge representation and storage, an MMS must also

have one or more generalized problem-solving or inferencing capabilities for

manipulating the knowledge. This "reasoning" capability should encompass

heuristic as well as deterministic reasoning so that, for example, the MMS

can pattern-match user-supplied problem descriptions with available model and

data instances. The first order predicate calculus has been suggested as one

means of representation (Bonczek et al, 1981) which is well-suited for deter-

ministic kinds of inferences. Semantic networks have been considered to support

more heuristic kinds of reasoning within a modeling environment (Elam et al,

1980). The GUMP system is based on the concept of knowledge abstractions, or

in the case of modeling, model abstractions (Dolk, 1982; Konsynski and Dolk,

1982), a knowledge representation scheme which attempts to combine the strengths

of deterministic and heuristic inferencing (Dolk, 1982).

A model abstraction consists of three parts: data objects, procedures

acting upon those objects, and assertions or facts (knowledge) concerning the

relationships between data objects and procedures (Figure 2). For MP models,

data objects correspond to constraint equations and model parameters, procedures

3

-%

DATA OBJECTS

(Ex: Constraint Equations,
Index Sets)

PROCEDURES

(Ex: Add-Constraint-Model,
Modify-Index-Set-Value,
Linear (Equation))

ASSERTIONS

(Ex: Linear (Constraint),
Linear (Obj-Func))

Figure 2. Model Abstraction Structure

are operators which act upon the data objects (ADD-CONSTRAINT-TO-MODEL, e.g.),

and assertions specify integrity conditions ("constraints must be linear in an

LP model," e.g.).

A modeling system with a knowledge-based capability alters the traditional

view of modeling software (Figure 3). Typically, math programing software has

been algorithmically oriented wherein the input data are prepared by the user-

modeler and fed into a "black box" program which applies the algorithm to supply

the results. Knowledge about the models Is supplied externally by the modeler

in preparing the input and internally by the programer In specifying the

algorithm. In neither case is this knowledge accessible to other users who see

only the input and the "black box." In the knowledge-based modeling system,

however, this structure is expanded to abstract the knowledge pertinent to a

model into a separate data component of the system. Furthermore, the algorithms

4

INPUT OUTPUT~PROGRA14

(a) Traditional Modeling Software System

(7REDURE
OCLIBRARY

A
I I

V

REASONING 7ODEL
PROGRAM PROGRAM4

(b) Knowledge-Based Modeling System

Figure 3. Difference Between Traditional and Knowledge-Based
Modeling Systems

are stored as data in a procedure library to be used by the reasoning module in

constructing a model program to solve the problem described by the user. For

those familiar with rule-based expert systems, the knowledge base would consist

of rules expressed in a IF <antecedents(s)> THEN <consequent(s)> fashion

and the reasoning program would correspond to a rule Interpreter (Duda and

Gaschnig, 1981).

<

3. THE GXMP SYSTEM

The remainder of this paper describes a "first pass" implementation

of a knowledge-based model management system for LP models called GXMP. Much

of the effort to date on GXMP has been involved with establishing a suitably

powerful modeling language for expressing MP models. As a result, the knowledge-

based capabilities of the system are still very limited. Development phases

for incorporating these features into GXMP are presented in the concluding

section.

Figure 4 shows the salient implementation features of GXMP. The system

is written in FORTRAN on a Vax-11/780 using the XMP linear programming library

(Marsten, 1980) and the ADBMS database management system (Hershey and Messink,

1975). The overall goal of the GXMP system is to serve as a user-friendly

virtual machine for LP (and eventually MP) algorithms. Thus, although the XMP

library was chosen as the source of the simplex algorithm, there is no restric-
tion on using other algorithms providing they accept input in matrix form.

The components of GXMP are shown in Figure 5. There are five different

database types:

1. The directory catalogs all instances of models, data objects, abstrac-
tions, and databases currently in the system;

2. The abstraction database stores model abstractions and serves as the
knowledge base of the system;

3. The procedure database stores the subroutines from the XMP library
including the source code;

4. The equation database stores an instance of a model expressed in the
GXMP modeling language;

5. The parameter database stores the associated numerical parameters of a
model instance (coefficient and right-hand-side values, e.g.).

Interface with the user occurs at two levels: a menu dialog for selecting the

system functions to be performed and a modeling language for expressing LP

6

....(~~ w T~- .J . .. g. - , ,.

Model Management System for LP

FORTRAN

XMP Library (Marsten, 1980)

AOBMS (Hershey and Messink, 1975)

Knowledge-Based (model abstractions)

User-Friendly Virtual Machine for LP Algorithms

Figure 4. Features of GXMP Implementation

DATABASES

Directory (catalog)

Abstraction (knowledge base)

Procedure (XMP library)

Equation (expressed in modeling language)

Parameter (coefs, rhs, etc.)

MENU DIALOG

MODELING LANGUAGE

SOLUTION REPORTER

Figure 5. Components of the GXMP System

models in a mathematical fashion. The menu dialog accommodates the "naive"

user wltile the modeling language is geared toward the modeler. The solution

reporter generates LP solutions in terms of the variables which the user

specifies during model creation. Examples of these various aspects of the system

are shown in the sample problem of the next section.

7

.4
The GXMP modeling language is designed to allow modelers to represent

expressions in quasi-mathematical notation. It is somewhat similar to FORTRAN

and contains several key features:

1. User-supplied variable names in place of mathematical variables (self-
documenting):

Math-Var Description GXMP-Name

i city CITY

city CITY
shipment from city i SHIPMENT (ij)

to city j

0. demand from city j DEMAND (j)

S. 2. Use of inequality signs for expressing constraints.

3. MIN, MAX, SUM operators.

.. 4. Use of mathematical indexes in equations.

5. FOR clause for specifying conditions on indexes and instantiating
indexes.

Ex: To express X for J-l,...,n; J<>i

SUM(i)[SHIPMENT(i)] DEMAND(J)
FOR i OVER CITY, j OVER CITY, 1<>j $

6. Use of index expressions

Ex: CONSUMPTION(p,t) + INVENTORY(p,t) -
INVENTORY(p,t-1) - SUPPLY(p,t)
FOR p OVER COMMODITY, t OVER PERIOD $

Several other syntactical features and restrictions should be mentiomed:

1. All indexes must be expressed in lower case and cannot exceed four
characters in length. Indexes "max" and "min" are reserved names
(see 4. below).

2. Simple index expressions of the form <index> <"+" or "-">
<integer or index> are allowed, e.g.: X(i-lt+l).

3. Indexes must be used consistently over all equations and each index
appearing in an equation must be identified in that equation. The
first restriction states that index i, for example, must be the same

8

~ ~ .- ~. *~-.* .. %

;,,, ;,, ."-.. . :w_ :b , .~ -. . . , . ,,- ,+:-, , , . I / ,, ,. _,t 1 + 1 , ,,V *,,i, + -

in each equation in which it appears. Furthermore, different index
names cannot be used in different equations to represent the same
index (unless the index forms a link). The second restriction
requires identifying an index whenever it appears. This leads to a

* * certain amount of redundant specification but results in fully
documented equations.

4. Each instance of SUM must be followed by one or more indexes enclosed
in parentheses and the summand enclosed in square brackets, e.g.:

Z xi
is expressed as: i,j J

SUM (i,j)[X(i,j)]

5. Conditions on indexes can be expressed in conjunction with index
identification, thus we can express:

0 <= X(i,j) <= DEMAND(i,j) fOR i OVER CITY,
1 OVER CITY, i <> j $

to indicate that the constraint holds for all i,j except i= j.
("<>" indicates the "not equal" operator.) The reserved words "max"

and "min" can be used to refer to the highest and lowest cardinal
values of an index respectively, thus

n-I
I xij
i,j

can be expressed as:

SUM(ij)[X(ij)] FOR i<max, j<max, i OVER...

6. All decision variables must be grouped onto one side of a constraint.
Thus if C and F are decision variables:

C(pt) + F(p,t) = S(p,t) + F(p,t-l) FOR ...

will not be translated properly and should be rewritten as:

C(pt) + F(p,t) - F(p,t-l) = S(pt) FOR ...

7. Each unique combination of decision variable and indexes may appear
only once in a particular equation. Thus the following objective
function with decision variable DV:

MAX(SUM(i,j)[REV(i,j)*DV(i,j)-EXPNS(i,j)*DV(i,j)])..

will not be translated properly and should be rewritten as:

MAX (SUM(i,j) [(REV(it,j)-EXPNS(i ,j))*DV (i ,j)])..

9
I

&:..:.. ..':-7...;§... { ,- ;,,- ,-'-.,..&:..> ,...,.

Note this restriction does not obviate a decision variable from
appearing more than once in an equation as long as it has different
index expressions each time (see sample in 6. above).

8. Only constraint and objective function expressions are allowed. No
intermediate expressions may be inserted. This means that although it
would be convenient to write the objective function above as:

UNIT-PROFIT(i,j) = REY(i,j) - EXPNS(i,j)

PROFIT = SUM(i,j)[UNIT-PROFIT(i ,j)*DV(i,j)]...

MAX (PROFTT)

it is not currently permitted in the GXMP.

Only the last point is a serious restriction of the language in any sense, yet

it does not pose any conceptual difficulty involving implementation. It was

imposed primarily to expedite the development time of a "first pass" version

of the system.

An example of the language applied to a sample problem is presented in

the next section.

4. A GXMP EXAMPLE

This section presents a simple problem to show how the GXMP operates

in creating and solving a model. The model we are going to use is the school

rezoning problem discussed in Hillier and Lieberman (1974, pp. 196-201). The

gist of the problem is to minimize the distance students need tc be bused to

school while maintaining a specified racial balance in each school. A mathe-

matical representation is displayed in Figure 6.
GXMP recognizes three different kinds of parameters:

1. index sets (i and j in this model);

2. decision variables (X);

3. numerical parameters (B, W, S, T);

Index sets correspond to the indexes in the mathematical representation but

their values in the GXMP are always character quantities rather than numerical

10

Variable Description

Xij No. of students in tract i assigned to school j

D iD Distance from tract i to school j
N

B. No. of black students in tract i

i

4" Wi No. of white students in tract i

T Parameter such that .5-T < racial balance < .5+T

min D i DjXij for i=--,...,I0; jl 1,2,3
ij

st ;XIj s Bi + Wi for i=l,...,0; j= 1 ,2,3

.
(all students are assigned to schools)

X X. Si . for i-l,...,0; j=1,2,3

(school capacity not exceeded)

* (.5-T-Wi/(Bi+Wi))Xi < 0 for i= 1,...,10; j P1,2,3

(.5-T-Bi/(Bi+WI))Xij< 0 for i=l,...,lO; j-1,2,3
Sii-

(racial balance)

, Ij> 0 for j=,...,lO; p1,2,3

(nonnegativi ty)

eFigure 6. Mathematical Description of School Rezoning

Model

, 1I

j1 quantities as in the mathematical case. This significantly increases the

. documentation value of the system. Decision variables are the quantities being

solved for by the simplex method. Numerical parameters are those quantities

with numerical values, usually coefficients or right-hand-sides in the

equations.

When entering parameters, always enter the index sets first since subse-

quent parameters will depend upon them. This is done in our example by speci-

*" fying TRACT for index i and SCHOOL for index j. For each parameter entered,

the system will prompt the user for parameter type, data type (not prompted

for index sets and decision variables), documentation, indexes (if any) that

the parameter depends upon, and data values to be entered at this time (if any).

When entering parameters which are indexed, include the indexes as part

of the name selected ("DISTANCE(i,j)" for "X" for example). The indexes must

be specified in lower case and cannot exceed four characters in length. They

must also be used consistently across parameters and equations, i.e. "i" cannot

refer to TRACT in one case and SCHOOL in another. Neither can "i" refer to

TRACT in one case and "J" refer to TRACT in another (unless TRACT forms the

basis of a network problem which is not the case here). The best way to avoid

confusion is to construct a table that correlates the variables in the mathe-

matical description with their GXMP counterparts (Figure 7). Once the desired

parameters have been added to the model, a listing of those parameters can be

obtained (Figure 8).

The next step in specifying the model is to enter the objective function

and the constraints using the modeling language described in the previous
section. The important rules to remember when entering equations are:

1. No intermediate expressions are allowed, thus there will be only one
objective function expression;

12

Model Variable Parameter Type GXMP Name

i Index set TRACT

j Index set SCHOOL

X Decision var STUDENTS(i,J)

D Parameter DISTANCE(i ,j)

Bt Parameter BLACKS(i)

WI Parameter WHITES(i)

Sj Parameter SCHOOL-CAPAC (J)

T Parameter THETA

Figure 7. GX1 Parameter Niams for School Rezoning Model
Variables

2. All parameters appearing in an equation must be defined in the
parameter database prior to equation entry;

3. Each separate index appearing in an equation must be instantiated
in the FOR clause and, like parameter entry, indexes must be used
consistently across equations;

4. Sumation is expressed by

SUM(Indexl,index2,...)([sumwndj;

5. Always end each equation with a IT.

Equations are clasi' i. s either constraints (CONSTR) or objective function

(OBJFCN) and assinner number as well. If the user does not specify

an id number when -:it ring an equation, the system will assign one automati-

cally. Once the equations have been entered, they can be displayed in a

manner similar to that of the parameters (Figure 9).

13

... .. . * ., *# ,. ." :, -S •. *..~...
• ,.'e.. ,-. . • . . . L'..,.'> .. ',"; "

!. ...J . ..1 , _ P- 4 .'tW j.,r..o ,. f*V | J J d. = .; ~ -*

*Type <CR> for Previous Menu
1 for Equation Operations
2 for Parameter Operations
3 to Solve Model

*2

*Type <CR> for Previous Menu

1 to Add Parameter(s)
2 to Delete Parameter(s)
3 to Modify Parameter(s)
4 to Specify Values for Parameters
5 to Link Parameters
6 to Display Parameters in Model
7 to Display Parameter Values

*6

*Parameter name (20 chars max)
(If adding, include indexes if any, eg: DEMAND(1,j)
(Type ALL for all, Hit <CR> to end parameter entry):

*ALL

Data
Parameter-Name Type Type Description

BLACKS(1) PA R Black students in
i: TRACT tract i

DISTANCE(1,j) PA R Distance from tract i
i: TRACT to school j
j: SCHOOL S

SCHOOL is c Schools
SCHOOL-CAPAC(J) PA R School j student capacity

J: SCHOOL

STUDENTS(ij) DV R Students in tract i
i: TRACT assigned to school j
J: SCHOOL

THETA PA R Parametric quantity
TRACT IS C School tracts
WHITES(i) PA R White students in tract i

t: TRACT

Figure 8. GXNP Session Displaying School Rezoning
Model Parameters

14

%,Vt K K W kW v t i * W . a7

*Type <CR> for Previous Menu
1 for Equation Operations
2 for Parameter Operations
3 to Solve Model*1

*Type <CR> for Previous Menu
1 to Add Equation(s) to Model

" 2 to Delete Equation(s) from Model
3 to Renumber Equation(s) in Model
4 to Display Equation(s) in Model
5 to List Variables in Equations
6 to Compile Equations

*4

*Type <CR> to Return to Previous Menu
1 if Equation is a Constraint
2 if Equation is Objective Function

*2
*Type equation id (0 for all):
#0

OBJFCN-rd Equation
10 MIN(SUt(i ,J)[DISTANCE(i ,j)*STUDENTS(i ,j)])

FOR i OVER TRACT, j OVER SCHOOL $
1 OBJFCN equations in model

*Type <CR> to Return to Previous Menu
1 if Equation is a Constraint
2 if Equation is Objective Function*1

*Type equation id (0 for all):
#0

CONSTR-Id Equation
10 SUM1 J)STUENTS(t,j)] - BLACKS(1) + WHITES(i)

FOR I OVER TRACT, j OVER SCHOOL $
20 SUM(I)[STUDENTSCi ,J)] a SCHOOL-CAPAC(J)

FOR i OVER TRACT, j OVER SCHOOL $
30 SUM(i)[(.5 - THETA - WHITES(i)/(WHITES(i)

BLACKS(i)))*STUDENTS(i ,j)] <- 0.
FOR i OVER TRACT, j OVER SCHOOL $

40 SUMJC(.5 - THETA - BLACKS(i)/(WHITES(i)
BLACKS(i)))*STUDENTS(t ,j)) <, 0.
FOR i OVER TRACT, j OVER SCHOOL $

50 STUDENTSOX .):o 0.
FOR I OVER TRACT, j OVER SCHOOL S

5 CONSTR equations in model

Figure 9. GXMP Session Displaying School Rezoning
Model Equations

15
'i' - , '.-.-..........,,- , .. ,,. , . . . , . . . ,i.s

--o.5

The primary strength of the GXMIP modeling language is the indexing

capability which allows equations to be specified symbolically and concisely.

Note that each constraint equation in the school rezoning problem in Figure 6

actually represents multiple constraint instances. Constraint 10, for example,

symbolizes i constraint instances. This economy of expression due to the mathe-

matical nature of the modeling language allows users to represent large models

with very few equations.

Furthermore, the language is robust in that it enforces a high degree

of Independence between the equations and the data. It is sufficient to observe

that tracts and schools could be added or dropped from the parameter database

for the school rezoning problem without having to make a single change to the

iequations in Figure 9. Similarly, equations could be added or deleted without

altering the parameter data values. This would not be the case if a language

required that each constraint be enumerated explicitly. Clearly there is a

connection between model Independence and the power of a modeling language.

Once a model has been fully specified (parameters, pirameter values,

and equations), it is ready to be solved. The model solution process takes

place as shown in Figure 10. The appropriate model abstraction instance for

the model is located and a SOLVE predicate located within the abstraction. The

SOLVE predicate lists which XMP routines need to be invoked and the order of

invocation in order to effect a solution for the model. In a batch environent,

a job stream is established consisting of JCL commands, the appropriate XMP

routines retrieved from the procedure library, and parameter data and equations

retrieved from the parameter and equation databases. The job stream is submitted

as a batch job whose result file Is then processed interactively in a later

session. In a totally interactive setting, the XMP routines are executed

dynamically and the solution generated online. The obvious disadvantage of the

16

*.** , *q . : N?. , .

2IN

MP PROBLEM-SOLVER

4M.

A B S T R A C T I O NJ
O C N T L

~MODEL 1 40HDEL DATA

PROCESSOR

REPORT RESULTS

REPORT GENERATOR FL

Figure 10. The GXMP Model Solution Process for Batch Jobs

4 latter approach is that online processing may be too time-consuming for all

but small scale LP problem. Because our example is small, the interactive

. approach is used in this case.

eu Once the model has been solved via the XMP routines, the solution

reporter is invoked to report the results (Figure 11). The reporting of

-C linear programing results has been a long-standing problem especially with

large models having many variables. At the root of the problem is the naming

convention that systems impose on the unfortunate user which often results in

confusion as to which variable is which in the report. Names like "Variable 1"

17

WILW- - -71L

* *** *GXM4P SOLUTION REPORTER* **

Model Type :LP-EON
Model Instance: SCHOOL-REZONING

Nuber of Linear constraints 19
Number of Variables (incl. slacks & artificials): 49

Variable Identification Value

STUDENTS(TRACT1IJEFFERSON) 0. 450000000+03
STUDENTS (TRACT2 ,JEFFERSON) 0.400000000+03
STUDENTS(TRACT3 ,JEFFERSON) 0.500000000+03
STUDENTS (TRACT4,WASHINGTON) 0.500000000+03
STUDENTS (TRACTS ,WASHINGTON) 0.400000000+03
STUDENTS (TRACT6 SWASHINGTON) 0.450000000+03
STUDENTS(TRACT7,JEFFERS0N) 0.15000000D+03
STIJDENTS(TRACT7 ,WASHINGTON) 0.300000000+03
STUDENTS(TRACT8,HAMILTON) 0.50000000D+03
STUDENTS(TRACT9 ,WASHINGTON) 0. 50O0O0OOD+02
STUDENTS (TRACT9,HAMILTON) 0.350000000+03
STUDENTS (TRACTIOHAMILTON) 0.450000000+03
* ,Remainder of variables are slacks/artificials***

Constraint for Which Variable is Basic Value

SCHOOL-CAPAC (HAMILTON) 0.300000000+03
* WIITE-RATIO(JEFFERSON) 0.555833370+03

WHITE-RATIO(WASHINGTON) 0.916681440+00.
WHITE-RATIO(HANILTON) 0.41075002D+03
TRACT-ASSIGNMENT(TRACT6) 0.891666890+02
TRACT-ASSIGNMENT (TRACT9) 0.740083360+03
TRACT-ASSIGNHENT(TRACT8) 0.14825001D+03

Value of Objective Function: -0.496500000+04

Constraint Dual Variable

TRACT-ASSIGNMENT(TRACT1) -0.140000000+01
V TRACT-ASSIGNMENT (TRACT2) -0.279999980+01

TRACT-ASS IGNMENT (TRACT3) -0.899999920+00
TRACT-ASSIGNMENT (TRACT4) -0.130000000+01
TRACT-ASSIGNMENT (TRACT5) -0.400000010+00
TRACT-ASSIGMENTRACT6) -0.600000020+00
TRACT-ASSIGNMNT (TRACT7) -0.140000000+01
TRACT-ASSIGNMENT(TRACT8) -0.170000010+01
TRACT-ASSIGNMENT (TRACT9) -0.120000000+01
TRACT-ASSIGNMENT(TRACTl 0) -0.150000010+01
SCHOOL-CAPAC(JEFFERSON) 0.199999930+00
SCHOOL-CAPAC (WASHINGTON) 0.000000000+0
SCHOOL-CAPAC (HAMILTON) 0.500000060+00
WITE-RATIO (JEFFERSON) 0.000000000+00
WITE-RATIO (WASHRNGTON) 0.000000000+00
WuIITE-RATIO(HAN!LTON) 0.000000000+00
BLACK-RATIO(JEFFERSON) 0.000000000+00

4 BLACK-RATION(ASHINGTON) 0.000000+0
BLACK-RATIO (AM ILTONI 0.0000000O00

Figure 11. GXMP Display of School Rezoning Model Solution

18

*~r~..-...... ~ ~ *~~'~* .. *~ *** I

or "Demand(3,4)" are just not descriptive enough in most cases. Furthermore,

users are often required to enumerate each name as input which can be extremely

tedious for large problems. Imagine having to input "DEMAND(i,j)" for i and

* ;J equal to 100.

The GXMP subverts this problem largely through the power of its modeling

language. The user need only enter each parameter name in the model once,

generically as it were. Thus, "DEAND(i,j)" is the only GXMP entry necessary

for a parameter representing the demand from city j for a product at city i.

After the model with this parameter is formulated and solved, the solution

(assuming DEMAND(Ij) is a decision variable) is displayed with index values

substituted for i and J, e.g.:

DEMAND(DALLAS,SEATTLE) 1124.

DEMAND(DALLAS,LA) 3962.

DEMAND (TUCSON, SEATTLE) 836.

The decision variables are fully documented at the back end with this convention

while requiring a minimum of input at the front end. The user supplies only

the names (15 characters or less) for each "generic" variable. The same conven-

tion is employed in prompting the user for parameter data values once the param-

eter names have been defined. Thus, usage is consistent throughout the process

from model formulation to model solution.

Another user-friendly feature of this approach is the ability to focus

on a subset of the solution. This can be done in the solution reporter by

specifying explicitly which variables the user wants to see. Thus, one can

specify STUDENTS(TRACT5,WASHINGTON) to see only that value, or more useful,

specify STUDENTS(*,WASHINGTON) to see the number of students from each tract

who are to be bused to the Washington school. The * "wild card" character

19

V., . ; ,'' ,, *%. ",," *.-' Vk. ; ".,,. .. ;%,. .. "'.2 ' .. ., .d . C , .. " . 2 v,., "..d "'.*."". . . " .. " *

provides a powerful feature for looking at only the parts of the solution which

a user is particularly interested in. The advantages of this approach over

wading through a massive printout to find a limited set of solution variables

are readily apparent, especially for large models with many decision variables.

Notice that in addition to fully identifying the decision variables in

."k the solution basis, GXMP also provides an equivalent capability for the dual

variables. This is accomplished by assigning each equation an equation name in

addition to a unique numeric identification. (Note: GXMP has not yet been

modified to display these names which is why they do not appear in Figure 9.)

Thus equation CONSTR 10 is TRACT-ASSIGNMENT, CONSTR 20 is SCHOOL-CAPAC and so

forth. Thus the dual variables can be associated with their corresponding

equation appropriately indexed as in Figure 11. This feature helps document

the equations and improves the readability of the solution report.

5. CONCLUSIONS AND FURTHER RESEARCH

The development of the GXMP system has been scheduled in three phases.

This paper has discussed the results of the first phase which is the design

and implementation of a model management system for LP models. The current

version of GXMP is essentially a user-friendly top end for LP software with

built-in capabilities for model management. Further work is necessary to make

fuller use of these features.

The second phase is concerned with extending the knowledge-based nature

of the system. Although the apparatus for a knowledge-based modeling system

is already in place, many theoretical issues remain to be studied before imple-

mentation can occur. In particular, the following areas need to be resolved:

1. What kinds of knowledge to represent about models.

2. How to represent this knowledge (the model abstraction needs to be

defined more carefully).

20

Wj . " - - . - .--.- .. .--

p75

3. What kind of inferencing and pattern-matching technique(s) to use

with regard to models.

The third phase of GX14P development is to extend the system to a general-

ized model management system (GMS). This involves incorporating other classes

of models (e.g.: simultaneous equation estimation, discrete event simulation,

etc.) into the knowledge-based framework. This will test the versatility of

the model abstraction concept and may entail extensions to the modeling language

and compiler. Another important issue to be addressed in this stage is the

development of a technique for linking models to form composite models as well

as the inverse operation of decomposing models into simpler components which

can then be rel'nked after solution.

2

21

REFERENCES

,. 1. Bonczek, Robert B., Holsapple, Clyde W. and Whinston, Andrew B. A
generalized decision support system using predicate calculus and network
data base management, Operations Research, 29, 2 (1981), 263-281.

2. Dolk, Daniel R. The uses of abstraction in model management, Ph.D.
Dissertation (unpublished), The University of Arizona, 1982.

3. Duda, R. 0. and Gaschnig, J. G. Knowledge-based expert systems come of
age, Byte, September 1981, pp. 238-282.

4. Elam, Joyce J., Henderson, John C. and Miller, L. W. Model management
systems: An approach to decision support in complex organizations,
Technical Report No. 80-08-04, Department of Decision Sciences, University
of Pennsylvania, 1980.

5. Hershey, Ernest A. and Messink, Paul W. A data base management system for
PSA based on DBTG 71, ISOS Working Paper No. 88, University of Michigan,
1975.

6. Konsynski, B. and Dolk, D. Knowledge abstractions in model management,Proceedings of DSS-82, June 1982.

7. Marsten, Roy E. The design of the XMP linear programming library, TOMS,
7, 4 (1981), 481-497.

22

%jig

* " - "7 "*"*;"

DISTRIBUTION LIST

No. Copies

Office of Research Administration 1
Code 0121
Naval Postgraduate School
Monterey, CA 93943

Knox Library 2
Code 0142
Naval Postgraduate School
Monterey, CA 93943

Defense Technical Information Center 2
Cameron Station
Alexandria, VA 23314

Professor Gordon H. Bradley
Code 52Bz
Naval Postgraduate School
Monterey, CA 93943

Professor Gerald G. Brown I
Code 55Bw
Naval Postgraduate School
Monterey, CA 93943

Professor Daniel R. Dolk 5
Code 54Dk
Naval Postgraduate School
Monterey, CA 93943

Professor Richard S. Elster, Chairman I
Code 54Ea
Naval Postgraduate School
Monterey, CA 93943

Professor Norman Lyons
Code 54Lb
Naval Postgraduate School
Monterey, CA 93943

Professor Norman F. Schneidewind
Code 54Ss
Naval Postgraduate School
Monterey, CA 93943

Professor Roger Welssinger-Baylon
Code 54Ws
Naval Postgraduate School
Monterey, CA 93943

I0

23

No. Copies

Computer Center Library
I

Code 0141
Naval Postgraduate School
Monterey, CA 93943

4.2

q

e, 24

4 S

4 -. V.p... *.t ,C.r

~t

A. '1 3'

S tuft;r~4 4 ~ z"
A -

-
*~.$it

6
h.4 ~ t ' - "'- r~ 3 £' ~

74 If

14
r ~ N t 44-s.

&siei&j~4; L9~'~M
/

~ ~'
9

2 f S
~Z ~ * < 't Ni,

A

t t~4

* V i"' *' L wA .~

r
t- 1,

4 A

'
t

t

C *

* t* 4 ft ffL.&Lt ~ -s~ -/;I ~4 I' CA

A ~ K; ~ L~ ~-'A

A W

ctl.httAt~"A*. csee.s,~..jda - ~ ~

I., J -. 4
7

IT -

-
1

14
I S$ift~(t)~f(jtz. ~ 2~t. ,nr.. * -A . t.

4 -~ tA

* t.,--.1 I SJ~fAt b4'q . f -

* .~. J'*tft rx;~;>. &
- V F,,-

* -4. V

*
4

. ... ~ -

6 1
- A

'4 S t i-A

IA *I~- s*tA 4.

-
~t I

jrj I j
-.

n* ~

- . - - A - - - * . * - A

4,y'

