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Executive Summary

1 Report Overview

This is the second interim technical report for contract
F3062-81-C-132, entitled DOS Design and Implementation. The.-:....
system being developed under this effort has been given the name
Cronus. This report discusses project activities during the
period of July 1982 to December 1982..

This report is divided into two portions:

Part A: This part is the current version of the Cronus
Advanced Development Model (ADM) System/Subsystem Design.
A draft of this document was prepared for the Preliminary
Design Review, which was held in Cambridge on November
15-16, 1982 in Cambridge MA. The version included in
Part B below has been extensively revised, and reflects
modifications in the many details of the system that have
been made since the draft was prepared. This part is
available separately as BBll Report 5260.

Part B: This. part consists of a series of short notes and
reports of activities performed during the period.
Principal among these are disucssions of the various
activities supporting the development of the system, and
of the progress on the components of the system support
environment: gce. network, C70 constituent operating
system modifications.

2 Project Overview

The object of this project is to define, design, implement .
and test an Advanced Development Model for a distributed
operating system. The DOS controls the interactions among
collections of computers interconnected via high-speed local area
network technology. The overall function of the DOS is to , .!
integrate the various data processing subsystems into a coherent,
responsive and reliable system. The system is to include the
following functions: system monitoring, reliability and
survivability, access control and authentication, and a uniform .
command language. In addition, the system is to provide support
for the following system services: uniform file system, .. ,

*,0 , ,, . • ., - . % - . * . . , . .. - .' . . *. . . ', . .'- . ° .. - .' ** - . . . . .. ,! :,+ , 0,-, >: .. . ... ,.,.- .-; .:...-.-..,, ; ..,",. :.., -. .- . ,-., ,--. . ,.
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'- )electronic mail message distribution, data translation, and

interactive access to remote programs.

The project activity can be subdivided into five major
categories:

1. DafinitimO of the distributed operating system concept
and its function as they apply to this effort.

2. Selection of predominantly off-the-shelf hardware and
software components to represent the foundation of a
demonstration DOS system.

3. Daisgn of the DOS conceptual structure and its functional
elements.

4. Implementation of the design, culminating with the
integration of implementation units into a complete
Advanced Development Model for a distributed operating
system.

5. EY3~u~tdon of the concepts and realization of the Dos in
the environment of the ADM by means of test procedures
and practical demonstrations.

The results of the definition and selection phases of the
-S" 4project have previously been reported in Cronus, A Distributed

Operating System: Interim Technical Report No. 1, BBN Report No.
5086.

C..-

3 Summary of Recent Project Activity

Some of our major accomplishments during the preceding
period include the following:

o completed design of Cronus System Structure and first
phase design for all major system components

0 prepared System/Subsystem report -.

o completed the integration of the Ethernet local area
*.*. network into the GCE, the VAX/VMS and the C/70 UNIX hosts

o completed the integration of IP and TCP protocols into
the GCE, VAX/VMS and the C/70 UNIX and interfaced this
software to the Ethernet layers using the Virtual Local
Network concepts

-2-
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o completed a CHOS-based Telnet program to support
interactive access to other cluster hosts from the GCE.

" completed the integration of a disk subsystem into the
GCE COS System

o completed the design and part of the implementation for a 
-

elementary file system for the GCE, which is to serve as
the base implementation for the Cronus file system.

o completed a set of performance tests to evaluate the
Ethernet hardware and software, as well as IP and TCP
implementations

o developed and installed a system configuration management
plan for source code and documentation

o developed code for and assembled library functions needed
to support the development of Cronus system components

o established standards and approaches to achieve the high ...
degree of program portability required by our system.. ,
implementation approach
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1 Introduction

* This report presents the preliminary design for Cronus, the
.- system being developed under the Distributed Operating System

Design and Implementation project sponsored by Rome Air
Development Center(l). It is intended as an overview of the
system structure and as a synopsis of the current
system/subsystem decomposition and specification.

A previous report, 'Cronus, A Distributed Operating System:
Functional Definition and System Conceptm, BBN Report No. 5041 is
intended as a companion to the current report, and the reader is
assumed to be familiar with its contents. In Section 2, we
briefly review a few of the areas covered in the Functional
Definition, and extend them to cover current development plans.

Section 3 presents an overview of the Cronus operating
system. stressing the common framework into which its components
will fit and the functional decomposition of the system.

Sections 4 through 12 present the design for the various
". system functions. In a number of areas the design is only

partially complete. These sections will form the basis of a
continuing and evolving subsystem specification for the various

*' components, throughout the life of the project. Section 13
sketches how the system supports some common functions.

Section 14 is a description of the system environment,
including hardware, Virtual Local Network, GCE software, and
system utilities and libraries.

A-1

(1). This work is being performed under RADC contract No..:
F31602-81-C-0132,'-.-,
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2 Cronus Project Overview

2.1 Project Objectives

The objective of the Cronus project is to build an operating
system to organize and control a distributed system architecture.
The architecture was partially specified by the statement of
work, and further defined during early stages of the project. It
is described in the Cronus Functional Description [BBN 5041]. and
is summarized in Section 2.4. In addition to establishing a .-

system architecture. there are five other major aspects of the
Cronus project activities:

1. Select off-the-shelf hardware and software components to
create an Advanced Development Model (ADM) prototype
configuration for the distributed operating system.

2. Dflin& a model for the system operation, develop the
functions of the system, and decompose it into
implementation units.

3. Dsvelop the implementation units.

4. Integrat the implementation units in&ro a 'coherent
system. both by adjustments to the functional definitions
and by any optimizations necessary to achieve acceptable
performance.

5. ZaluAte the concepts and realization of the DOS in the
Advanced Development Model.

*" 2.2 Points of Emphasis

The Cronus design introduces a coherence and uniformity to a ?Z
set of otherwise independent and disjoint computer systems. This
grouping of machines, or iting under the control of a
distributed operating .• , is called a Cronus cluster. The

" aim is to provide fea' nparable to those found in a single,
modern centralized op. stem for the cluster configuration
as a whole. There are ways of viewing this uniformity L -

4nd coherence; each pla ie in the Cronus design.

From an end user's point of view. the Cronus DOS provides a
single account with access to all integrated system services, a
uniform distributed filing system and a uniform program execution

*: facility, which is independent of the site of the activity. From

A-3
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a programmer's point of view, Cronus provides a uniform interface
and access path to the distributed system resources, and supports
the initiation and control of distributed computations. More
importantly, from both an end user's and programmer's
perspective, Cronus provides a common ys.en framework for
applications. This means that otherwise independent computerized
activities can be constructed so that they are more easily made
to work together, despite implementations which cross host and
processor-type boundaries.

From an operations and administrative perspective Cronus
provides a logically centralized facility for monitoring and
controlling all of the connected systems. Functions such as
account authorization, user priority, and access control can be
applied system-wide rather than individually to each host.

In addition to coherence and uniformity, there are a number
of other system design goals. These are:

o Survivability and integrity of Cronus itself;

o Scalability to accommodate both small and large
configurations;

o Experimentation with resource management strategies that
effect global performance;

o Component substitutability to allow easy use of alternate
S-.functionally equivalent hardware; and

o Convenient operation and maintenance procedures.

2.3 System Phases

.A System development consists of three phases. The first
phase, coincident with the development of the functional k,
definition, included component selection, installation,
interconnection and testing. The second phase includes the
design and implementation of the basic system that will provide

r, the uniformity and coherency to the collection of machines. It
also provides the framework for the in-depth design,
implementation, and experimentation in the other areas of
interest (e.g. survivability), which are to occur as the third
phase. The second phase design is the subject of the remaining
sections of this report.

A-4
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2.4 The Cronus Hardware Architecture

2.4.1 System Environment

" This Cronus environment consists of several parts: the
local area network which provides the communications substrate
for a Cronus cluster, the set of hosts upon which the Cronus
system operates, and a mechanism for connecting a Cronus cluster
to the Internet environment and to other Cronus clusters.

Cronus enables a variety of constituent computer systems to
operate in an integrated manner. Cronus is distinguished from

* other distributed operating systems by one or more of the
following characteristics:

1. Cronus will run on a group of heterogeneous hosts.

2. Cronus hosts will run operating systems which are largely
unmodified. Cronus distributed operating system runs as
an adjunct rather than a replacement for the hosts'
primary operating systems.

3. Hosts will be included in Cronus with varying degrees of
system integration. Some support limited subsets of the
services'defined by the Cronus environment.

4. The interconnection network is designed on a hierarchical
model. A Cronus cluster includes a set of hosts '-
connected by a high-speed, low-latency local network. A
set of Cronus clusters may be connected over slower
long-haul networks.

The Cronus architecture provides a flexible environment for
connecting hosts so that facilities available on one host may be
conveniently used from other hosts. It provides two alternative
host integration schemes. A host may implement the Cronus
Interprocess Communication (IPC) mechanism and have efficient
communication and operations with the rest of the Cronus hosts;
or it may access the other Cronus hosts through an access
machine, which is a simpler, less expensive option for connection
of a host, but which may be more limited from a flexibility and
performance viewpoint.

V.-.

A-5
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Cronus hosts can be divided into three groups: mainframe .

hosts, Generic Computing Elements (GCEs), and workstations.

The collection of mainframe hosts, each of which serves a-
number of users simultaneously, includes a variety of machines
with unrelated architecture. A mainframe host may be tightly
integrated into the system, both offering and using Cronus
services and fully implementing Cronus interprocess
communication. Alternatively, they may be loosely integrated,
offering no services, possibly connecting into Cronus through an
access machine which provides communication with the rest of
Cronus.W

The GCE is the workhorse of Cronus. GCEs are small,
dedicated-function computers of a single architecture but varying
configuration. They provide access machines, file servers,
terminal concentrators, and other basic services. Since all GCEI
have the same architecture, they provide a replicated resource
which, with the appropriate software, enhances the reliability of
basic Cronus functions.

workstations are powerful, dedicated computers which provide
substantial computing power and graphics capability at the
disposal of a single user. They differ from mainframes in that
they support a single user. They differ from terminals in that
they offer a significant computational resources.

2.4.3 System Access

There are a variety of user access paths to Cronus. The
most typical is a connection by means of a Cronus terminal
concentrator. Users may gain access through Telnet protocols
from remote points. Cronus also supports access through terminal
access mechanisms on its mainframe hosts. These latter two

*access paths provide the same interface to the user as the
terminal concentrator. Access from a workstation will be
different than from a terminal, since the workstation defines the
user interface. The user has immediate access to the
workstation's capabilities.

V.4

A-6
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2.4.4 Local Area Network --.

"CThe set of hosts is connected by a local area network. The".-"
Ncharacteristics of the network are crucial to the success of.-'-
" Cronus, since they determine the kinds of communication and

operations that are feasible across host components of Cronus.

The selection of an Ethernet for the local area network for
the Advanced Development Model has been described in a recent

.* report [BBN 5086]. This choice was motivated by criteria in the
project's statement of work:

1. The network should be suitable to support a distributed
operating system,

2. The network should be currently available and economical.
Since the Advanced Development Model will not be operated
in a military environment, certain constraints applicable
to a field-deployable version were considerably relaxed.

N The Ethernet was chosen for the local area network substrate
for the following reasons:

o The network must be whigh-speed". For the ADM, a network
must operate at a minimum of 9.5 Megabits per second
(NBits) with low latency, and higher speeds are
desirable. The Ethernet operates at 11 MBits.

o Network interfaces to all of the computer systems in the
DOS ADM should be available. With the exception of the
C70, whose Ethernet interface has been constructed under
the present contract, this was the case.

o The local network must provide a datagram-style service.

The Ethernet fulfills all three requirements and we believe is,
at the present time, the most cost-effective network technology

- which does. In addition. the Ethernet provides broadcast and
multicast capabilities which, though not absolute requirements,
will be usefully exploited in the system.

The raw Ethernet layer will not be used directly. Cronus
will use an abstraction of the Ethernet capabilities which is

. provided by a Virtual Local Net (VLN) software layer, described
in Section 14.2. This permits the Cronus Interprocess
Communication (IPC) to use DoD standard 32-bit Internet addresses .
r rather than 48-bit Ethernet addresses. It also frees Cronus from .5'
a design commitment to the Ethernet. We expect that future

A-7
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versions of Cronus will need to be built upon a different local
network, such as the Flexible Interconnect, which have
reliability, communication security, and ruggedization not
available in current commercial products. By designing the VLN
layer and building Cronus upon it, it should be easy to
substitute any local network that provides the basic transport
services required by Cronus.

-70

2.4.5 Types of Hosts

GCEs are implemented in the ADM system by Multibus computers
with Sun processor board (the current vendor, one of several, is
Forward Technology) processors, large (1/2 megabyte).main
memories, an Ethernet controller, and additional hardware (disks,
RS-232 ports, etc) needed to support specific functions(2). The
Multibus cor.puters were chosen because

1. They are relatively inexpensive, permitting low cost
incremental system growth.

2. The Multibus standard guarantees the ability to package
individual GCEs in different ways with components from a*. variety of vendors.

3. New processors and devices are expected to evolve for the
Multibus over time.

Utility hosts provide the program development and
application execution environment for Cronus. In the ADM& this
function will be supported by C70 UNIX systems, and, to a lesser
extent, by a VAX 11/750(3). UNIX was chosen due to the rich set
of development tools already available for it and the ease of
developing new tools and applications. The C70 was chosen

(2). One of the functions we would normally install on a GCE is
the Cronus Internet Gateway, which will be installed on an DEC
LSI-11 computer instead, because the standard Internet Gateway
implementation uses the LSI-ll.
(3). The use of the VAX 12/750 in this role is a response to a
need to utilize the available hardware to distribute our work
over available machines. We do not plan a complete utility host

. environment, and its use as a utility host should be regarded as
a matter of local convenience.

A-8
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because it is one of the least cxpensive computers which supports
a multi-user UNIX, and because of the in-house expertise and
support for the hardware base. A VAX running the VMS operating
system was chosen to demonstrate the handling of heterogeneous
systems.

2.4.6 Cronus Clusters and the Internet

The goal of the Cronus project is development of a local
area network-based distributed operating system. The Cronus
cluster .will operate in the Internet environment as a class B
network. Cronus hosts will support the DoD Internet Protocol
(IP) for datagram traffic, and, where connections are required,
the DoD Transmission Control Protocol (TCP).

A Cronus cluster is expected to use the Internet environment
in two ways. First, access will be provided to Cronus from
points in the Internet external to the cluster. Second, the
Internet will support communication between distinct Cronus
clusters.

2.4.7 The Advanced Development Model

The Advanced Development Model (ADM) of Cronus is the first

instantiation of the Cronus hardware and software. It is, as its
name suggests, the development testbed for Cronus. The ADM
different from later models in several respects. First, it will *J.*q'C

undergo more rapid change as Cronus is developed, software is
implemented, altered, and improved.

In an environment this plastic, reliability and availability -
must suffer. The ADM cannot be as stable as later Cronus systems
are expected to be(4).

The ADM is being assembled from off-the-shelf hardware.
This reduces the cost of its components, permits the use of
state-of-the-art hardware not yet available in ruggedized
versions, and enables us to be more flexible in its design. We

(4). Near the end of the contract, we will conduct a period of .-
testing and evaluation during which we will minimize the amount
of change in the system so that we can properly evaluate
reliability and availability under more typical operation.
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are developing a design with the sufficient flexibility to permit
later substitution of more suitable hardware for deployable

-S.. configurations.
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3 System Overview

A distributed operating system manages the resources of a
collection of connected computers and defines functions and
interfaces available to application programs on system hosts.
Cronus provides functions and interfaces similar to those found .. '.

in any modern, interactive operating system (see the Cronus
Functional Definition and System Concept Report [BBN 5041]).

* Cronus functions, however, are not limited in scope to a single
host. Both the invocation of a function and its effects may
cross host boundaries. The distributed functions which Cronus
supports are:

o generalized object management
o process and user session management
o interprocess communication
o a distributed file system
o global name management
o input/output processing
o authentication and access control
o system access
o user interface
o system monitoring and control.

This report describes those aspects of the Cronus system
design which support these functions. In this section, we
introduce the Cronus design and briefly discuss the major
elements of the system decomposition.

3.1 System Concept

The primary design goal for Cronus is to provide a
uniformity and coherence to its system functions throughout the
cluster. Host-independent, uniform access to Cronus objects and
services forms the cornerstone for resource sharing that crosses
host boundaries.

There are two major aspects to the Cronus design:
structural and functional. The structural design is concerned
with the common framework in which Cronus entities operate. This
framework makes Cronus a system rather than simply a collection

of functions. The functional design defines the specific
services within this system framework, and is the major focus forsystem decomposition.

A-il
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The structural design is based on the abstract object model.

A distributed system consists of the interaction of concurrently
existing active entities called processes. Processes are objects
in the system. Processes reside on hosts which are part of the
cluster. Some processes, called object managers, play a special
role in implementing other objects of the system. Other
processes provide services and functions for the clients of the
system. Still other processes run user programs. Processes
communicate with each other to form larger abstractions and build -

more complex objects. At the most fundamental level,
communication between processes is through messages sent over a

-: local area network connecting the hosts of the cluster. At
higher levels, there exist other forms of communication and

* .abstractions in which the communication is implicit rather than
* explicit. Taken together, there are four interrelated parts to

the Cronus system model:

* . o A ketrnel] which supports the basic concepts of the object
model: processes, communication with objects, object
addressing, and the relationship between object types and

* manager processes. This part of the system includes
facilities for locating an object and controlling access
to it.

--- ,.

0 A gL.uP of basic object types, along with the object
managers which implement them. Basic object types
include files, processes, devices, and user records.

0 A 9Ara&dgm fg~r building and accessing new types of
objects, which spells out the methods for integrating new
object managers into the system on an equal basis with
the basic object managers.

0 A uajg.z inlarfacm and related utility programs (e.g., file
copy) to provide convenient access for both people and
programs to the system objects and services.

;,.-.... .

•4.-.

3.2 The Cronus Object Model

A isObject typing is the foundation of an important methodology
for system decomposition. By introducing the type concept at the
lowest levels of the design, we art able to decompose parts of
Cronus that would otherwise be massed together under the broad
heading of *the operating system." This formal decomposition is

Sran important tool in achieving a high degree of host-
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configuration flexibility, which is one of the key advantages of
a distributed architecture. In addition, it allows us to use
function-specific solutions in the design of the various parts of
the system.

A fundamental element of Cronus design is the introduction
of two system-wide name spaces for referencing objects. One of
these name spaces, the unique identifier (UID) space, provides a
context-independent method for the accessing objects. Unique
identifiers are fixed-length, numeric quantities, intended for
use by programs but unsuitable for people to read, remember, and
type. A unique identifier also contains the name of object's
type and the name of the host that generated it. The host name
is useful as a hint for locating certain classes of system
objects.

The unique number generator produces UIDs, and is itself an
example of a survivable distributed program. The generator must
be survivable, because without it new objects cannot be created,
and it must be distributed, because UIDs must be unique across
all hosts in the cluster, over the lifetime of the cluster.

The operation switch and its associated software interfaces
are part of the kernel of the system. The operation switch
supports both the location-independent, uniform invocations of
operations on objects and location-independent communication
between processes, which are themselves objects. Since processes
are system objects with defined operations to send and receive
messages, the operation switch provides a host-independent
interprocess communication (IPC) facility. This facility supports
communication for both the system implementation and user
application programs. Above these lowest levels of the Cronus .A'
system, objects can be accessed without regard to their location.
The design of the operation switch is described in Section 4. .

In general, three somewhat different classes of objects will
be accessed through the operation switch. These are:

1. Non-Migratory Objects

These are the simplest form of object, which are forever
bound to the host which created them. These, objects are
often referred to as primal, in the sense that there is
no simpler form of Cronus object for this role. An
example would be a Primal File, which is permanently
bound to its storage site. Primal objects have the
property that the host hint embedded in the UID is always
valid, and can be used to access the object directly.

A- 13
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2. Migratory Objects

These are objects which that may move from host to host
as situations and configurations change. An example
would be a directory, which might under a system
reconfiguration migrate to an alternate site. Despite
the possibility of migration, the global unique
identifier for an object remains the same throughout its
lifetime. A standard-Cronus mechanism that queries the
object managers can locate the current site to complete
an object access.

3. Structured and Replicated Objects

These are objects which have more internal structure than
a single uniquely identified object. For example, a
replicated file would as a unit have a single, global
unique identifier, but would have a number of primal file
as its constituent parts. In the case of replicated
objects the unique object identifier would be recognized
by manager processes on each of the sites for the more
primitive elements. Replicated objects and the managers
that support them are a key element in our approach to
system survivability. Invocation of operations against
replicated objects involves a selection phase in addition
to the location phase described for migrating objects.
The object access software implements a rudimentary form
of automatic resource management by selecting an
appropriate instance of the object for the operation
invocation. These resource management selections can be

S.- overridden by the accessing process, if desired.

-. -. Maintaining the integrity of complex objects is the
responsibility of the managers for the type. This means that
techniques can be tailored to the patterns of access to the
object being maintained. The construction of complex objects out
of the more primitive objects is or.* of the key aspects of Cronus
system extensibility.

Uniform access control is another part of the Cronus object
model. The object managers and controlling access to the objects
they maintain through the use of access control lists. The
operation switch assists by reliably stamping the UID of the

S.*',-. invoking process on each of its requests.

Up to this point. we have described the method of accessing

objects starting from a program-oriented unique identifier. The
Cronus system includes a global symbolic name space oriented
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toward human use. The primary purpose of this name space is to
catalog object names in a manner which is convenient for people
to use.

To access a symbolically cataloged object, the accessing
agent interacts with the Cronus symbolic catalog manager to find
the unique identifier for the object. After it obtains the UID,
the accessing agent can then invoke operations on the object.

In Cronus, the conventions for communication between
cooperating system entities are based on the message structure
facility (MSF). The MSF supports messages structured as
collections of key-value pairs. Many keys are standardized to
support the object model and basic interprocess communication
functions. Examples of standardized keys are operation name,
transaction identifier, and error code. Other keys are
standardized for particular system services and are published
with documentation for these functions. There are also
conventions that provide simple transaction protocols, and other
features to support flexible message handling and processing. The
MSF also standardizes the representation of certain values, which
allows the common interpretation of these data items across the
collection of heterogeneous Cronus hosts. The MSF design is
discussed in Section 6.

3.3 System Objects

The object-oriented system model is extensible along two
primary dimensions:

o new object types can be added to support new requirements
or functions, and

o more complex subtypes of objects can be added to extend
existing Cronus types.

To provide the initial operating capability, a number of
basic system objects and functions must be developed. These
parallel the functions outlined in the Cronus functional
definition. They include:

0 File objects and file managers which provide a
distributed filing system for both system and client
storage and retrieval.
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o Process objects and process managers support the Cronus

system and user programmable processes. They may be
linked together across the cluster, and connected through
interprocess communication to form a user session. User
programmable process objects represent another important
aspect of system extensibility.

0 Device objects and device managers support the
integration of I/O devices into Cronus.

o User identity objects and a permanent user data base
support authentication, access control.

0 Directory objects and catalog managers implement the
global symbolic name space.

Much of the Cronus design has been decomposed into the
subproblems of designing the components which provide these basic

. system objects.

3.4 The Cronus File System

Cronus supports several file types. The most basic file is
a primal file, which is stored entirely within a single host and
is bound to that host throughout its lifetime. Other types of
Cronus files, are built from primal files. For example a
migratory file can have multiple instances replicated across
Cronus hosts for increased availability or enhanced

Sresponsiveness, consists fo several primal files.

Hosts which contribute storage resources to Cronus must
support primal files. The collection of all Cronus files
constitutes the Cronus distributed file system. This file system
provides the major support for Cronus non-volatile storage
requirements. It supports an atomic update concept to aid in the
construction of object managers.

There is no single table that list all file objects.
Rather, each file manager owns all of the data for the file
objects it manages. Cooperation among object managers, and the
use of protocols based on broadcast requests to locate objects,
make possible a client interface in which knowledge of an object

-"*., UID is sufficient to access the object regardless of its
location. Clients can make file placement decisions themselves

*14 if they wish. Alternatively, placement decisions can be made

A-16

-%I%



'.F N * . . . . . .

Report No. 5261 - Part A Bolt Beranek and Newman

automatically by file access software. File managers support a
protocol for direct access to file data as well as higher-level,
complete file transfer protocols. The expected mode of access to
Cronus files is to transfer the file data in blocks as needed,
much like conventional file system access to disk files(5). 04O
Copies of Cronus files are made only to satisfy explicit user
requests. The design for the Cronus Primal File System can be

- found in Section 8.

3.5 Cronus Process Management

There is more than one type of process object in Cronus.
Primal processes are the simplest process entities. They are
constructed from the process abstraction that exists in the
constituent host operating system. This simple form of process
is used as a building block for the system implementation. Its
simplicity minimizes integration costs for new Cronus host types.
Primal processes are too inflexible to be used as vehicles for
general application programming. For example, they cannot be
loaded dynamically with user programs and they lack flexible
process control functions. They are tailored to their well
defined system roles.

To satisfy the requirements of application programs, primal
processes are augmented with a subtype, the program carrier
process. This subtype supports a richer process environment.
Program carrier processes can be loaded remotely and started in a
manner that is uniform across the cluster. In addition, program
carriers support, in a host-independent manner, the kind of
flexible control and interconnection of related processes found
in modern operating systems.

An important principle behind the Cronus process concept is
the additive nature of the common Cronus process semantics.
Cronus processes have most of the features natural to the host on
which they are built. No attempt is made to hide these features.

A An application builder has the choice of when to use locally-
supported features and when to use standardized Cronus features.
Clearly, to the extent that applications choose to adopt Cronus
process features, they will be better integrated with the other

(5). This is in contrast to a system such as NSW in which a
reference to a file always results in a complete file transfer
copy.
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cluster processing activities. The Cronus process concept is
described in Section 5.

S.- 3.6 Device Integration

Input/Output devices, such as line printers, tape drives,
and other special purpose devices are important elements in a
system configuration. The objective is to make these devices
available to the entire cluster. Devices are Cronus objects and
are integrated through a Cronus device manager which services the
particular type of device. The object system support makes
device I/O functions available from anywhere in the cluster. In
some cases, for example, for a line printer service, more
elaborate interfaces can provide a more convenient access path
with specialized features, such as spooling. Device integration

* -. is discussed in Section 10.

3.7 Cronus Symbolic Catalog

The Cronus Symbolic Catalog maps user-oriented symbolic
names into the program-oriented unique identifiers needed to
access Cronus objects. The Cronus catalog implements a global.
hierarchical, host-independent name space which can be used to
catalog any Cronus object. The catalog is distributed; different
hosts manage different parts of the name space. The
implementation is logically integrated, however, so any catalog
manager process can be asked to perform any of the catalog
operations. The upper portion of the hierarchy is replicated to
support the flexible assignment of parts of the name space to
catalog manager hosts. The symbolic catalog introduces and
supports additional system objects such as directories and

' catalog entries. Symbolic naming in Cronus is discussed is
Section 9.

:-..
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3.8 User Identities and Access Control

Users are represented by system objects, known as
principals. Associated with each principal is a data base entry
which is a record of information about that user's use of the
system. This information supports operations such as
authentication, and session initialization. The Authentication
Manager is responsible for managing the user data base. The
Authentication Manager component services the entire cluster.

The Authentication Manager and the unique identifiers for
principals play key roles in the uniform Cronus-wide
authentication and access control mechanism. The purpose of
Cronus access control is to prevent unauthorized access to Cronus

" objects. This is done uniformly by associating an access control
list with each object. Access is then either granted or denied '
based on the identity of the principal associated with the
accessing agent and the contents of the access control list for
the object. How these functions are accomplished in the Cronus
distributed system environment is discussed in Section 7.

3.9 Important Subsystems

Subsystems are components which use system-provided features
to support user services. Two important subsystems are part of
the initial system implementation. These are the user interface
subsystem and the monitoring and control subsystem.

The user interface is the component with which the user
interacts. One kind of user is the programmer building Cronus
applications. An important component of the programming
interface is a Program Support Library (PSL) which implements a
more convenient and powerful way to use the basic functions
provided by object managers. These areas have only been briefly
addressed so far in our design. Introductory discussion can be
found in Sections 11, 13, and 14.

The monitoring and control subsystem (MCS) makes it possible
for an operator to monitor and control the entire cluster
configuration from a single console. The functions of the MCS
include starting or restarting parts of the Cronus configuration,
monitoring its facilities and components, and collecting error
reports and statistics. The MCS is based on a functional
decomposition across the Cronus configuration rather than a ....
site-based decomposition. The monitoring and control design is
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described in Section 12.

3.10 The Layering of Protocols in Cronus

The underlying support for the Cronus cluster architecture
is a high-speed local area network. The Ethernet standard has
been selected for an interhost transport medium within the
initial Cronus configuration. However, two project goals
suggest that the Cronus implementation not be based directly on
the Ethernet. These are:

0 Substitutability.

Other instances of a Cronus cluster will not, in all
likelihood use the Ethernet as their physical local
network. Substitution of another local network should be
accomplished with minimum change to system software.

1%

The context for this project suggests that it is
important to maintain compatibility with the emerging DoD
standard Internet protocols.

To accomplish these objectives, we have developed a Virtual Local
Network based on Internet Protocol (IP) conventions and a
representative set of local area network capabilities. The
Virtual Local network is an interhost message transport medium
which is independent of the physical local network.

The Virtual Local Network layer is described in section
14.2. It provides a primitive datagram service, compatibility
with internet addressing, and independence from the details of
the physical local network. VLN datagrams can be specifically .60
addressed, broadcast, or multicast. The VLN guarantees that
datagrams are delivered in order (sequenced) when they are
delivered at all, and that a datagram is received once or not at
all by each intended recipient (non-duplication). The layering
of protocols in the system architecture is illustrated in the
following diagram.

. . 2
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I object system facilities

I object system support -

I II : ':
I UDP Datagrams

I IP

I Virtual Local Network

•I I '

I Ethernet -

The IP and UDP layers are the standard internet protocols.
UDP provides a datagram service with a 16-bit destination field,
and is needed to implement multiplexing of IP datagrams among the
Cronus modules below the object system layer. One example of a
function below that layer is the unique number generator
facility.

4"
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4" Object Management

4.1 General Object Model

This section contains an overview of the Cronus object
model, from its foundations in UID naming, through the most basic
operations on objects. It then presents the design for the
operation switch, which provides the underlying support for the
object orientation of-the system. Processes are objects with
defined operations Send and Receive. Therefore, basic system
support for low-level message-oriented interprocess communication
is part of the operation switch. Section 6 contains the design
for higher levels of Cronus interprocess communication.

The object model provides a coherent and uniform framework
lv. for the system components of Cronus, and potentially for some

application programs which will inhabit a Cronus cluster. A
Cronus object has two kinds of features:

o Require-d featires. Cronus requires certain minimal set of
features for each object type.

o nendtional features. The object model and its
associated system components define a number of
conventions, which may be adopted by subsystem designers,
on a case-by-case basis.

A subsystem designer can depend upon the existence of required
features in other system components, and is obligated to provide
them in each new component.

A Cronus system design goal is to minimize the number of
required features for system entities. This, in turn, minimizes
the buy-in costs for new host types. Designating features as
conventional rather than required also reduces the potential for
conflict between basic Cronus functions and those of Constituent
Operating Systems. Conflicts of this type can greatly increase
the integration costs for Cronus hosts.

The references [Xerox 1981, Rentsch 1982] discuss the
object-oriented model of programming. This section briefly
reviews the concepts of inheritance, subtypes, and supertypes and
explains their relationship to the Cronus design. The currently
defined Cronus Types may be found in Table 1. By convention,
Cronus types are designated with a prefix of CT_.:'6%..

Inheritance, subtypes, and supertypes describe ways that one
object type can be derived from another. A new type can be
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Object Name See Section

CT..Cronus...Host 5.1.4
CT-..Type...Name 4.2.3
CT-CronusProcess 5.1.2

-~~ CT...Primal Process 5.1.3 5*

CT...Program Carrier 5.2

CT...CronusCatalog 9.*2
CTCatalog-Entry 9.2.1

* CT...Directory 9.2.2
CTSymbolic..Link 9.2.3
CTEternal Link 9.2.4

CT Cronus-File 8.1
CT-.Primal File System 8.5
CT-..Primal File 8.1
CT-Migratory File 8.1
CT-Dispersed-Pile 8.1%
CT-Executable..File 8.1

CT-Principal 7.5.2
CT-Group 7.5.3

WCTAuthentication Data 7.5.1
CT.Session-Data 13.3

CT-Line Printer 10

CT-Elem File System 14

CT UNIX-Name Space 9.2.4

CT VMS Name Space 9.2.4

* Table 1. Cronus Objects

defined by the way it extends or differs from another object
*type. The properties that the new type has in common with the

old type are said to be inharited; the now type is called a
siukkypn of the old type, and the old type is a zAuttype of the
new one.

.1 More formally, to say that objects of type A inherit the
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- -* -properties of objects of type B means that the operations which
are valid on B objects are also valid on A objects, with the same
semantics. If type A objects inherit the properites of type B
objects, we say that A is a subtype of B, and B is a supertype of
A. The subtype-supertype relationships are transitive; if A is a
subtype of B and B is a subtype of C, then A is a subtype of C.
For example, CTPrimal File is an object type in the distributed
file system; the operations

Open (Primal File UID) reply code

*' Read (Primal File UID) file data

(...and so on)

act on objects of type CTPrimal File, inspecting or changing the
state of a CTPrimal File object. Executable files are primal
files, but they also have characteristics not shared by other
primal files. The similarities and the differences are captured
by defining a type CTExecutable-File as a subtype of
CT Primal File. Objects of type CTExecutableFile inherit the
operations valid for all primal files, and also respond to N.

.. operations unique to executable files, for example, we might have
operations such as:

Processor Type (Executable-File UID) returns
(The host class for the executable e.g. VAX)

Resource Requirements (Executable-File UID) returns data

(...and so on)

"" .Subtypes of CTExecutableFile could be defined to distinguish
• ..': OM68000Executable" from "VAXExecutable" and other kinds of -'p

executable objects with unique properties. For each of these
subtypes, the operations defined on objects of the supertypes
CTPrimal File and CTExecutable-File would be valid, as well is
any new operations defined on the subtype.

Subtype/supertype relationships are statically realized in
Cronus, through the cooperation of the object managers and the
operation switch. No automatic mechanism is currently provided
for inheritance. There are several static implementation

..-. techniques that can achieve inheritance. A manager may register
several type values with the operation switch, and implement some f-

as subtypes of the others internally. Alternatively, one manager
may invoke another through the standard mechanisms.

ftftrf..tft'
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4.2 Object Identification

4.2.1 Cronus Name Spaces

There are two levels of naming objects within Cronus.
Therefore, there are two distinct name spaces, and two levels of

" cataloguing and name management in Cronus.

At a relatively low level there is a global unique
identifier (UID) uniform name space for Cronus objects. Every
Cronus object has a UID name. Programs (as opposed to people)
are the primary users of this name space. A principal design
consideration for the UID name space is to make it easy for
programs to use, so UID names are fixed length bit strings.

Although there is no single identifiable catalog supporting
the UID name space, the notion of a catalog for UIDs is a useful
abstraction. This catalog will be referred as the "UID Table*
with the understanding that, in practice, the functions that it
supports are implemented by object managers for different object
types by means of UID-to-object-descriptor tables which can be
thought of as fragments of the UID Table. Every Cronus object is
catalogued in a UID table. When a Cronus object is created, an
entry is created in a UID table. This entry contains enough
information for the manager of the object to access it. Object
Managers generally support type-dependent operations for
creating, manipulating and deleting objects, and for inspection
and maintenance of the UID table entries. The Cronus operation
switch provides client processes with object-oriented addressing,
so merely having the object UID is sufficient to communicate with
the object.

.-4. At a relatively high level, there is a global symbolic name.-. *5•-.

.. space for Cronus objects. Symbolic names are more convenient for
human users, so the principal design consideration for the Cronus

- symbolic name space is to make, it easy for people to use.
*... Symbolic names are supported by a catalog which will be referred

to hereafter as the "Cronus Caalog", which provides a mapping
between the symbolic names that people use and the UIDs that are
required to actually access the objects. This name space is

-, hierarchically structured as a tree. The tree contains nodes and
directed labeled arcs. There is a node called the "root". Each
node has exactly one arc pointing to it, and can be reached by
traversing exactly one path of arcs from the root node. Nodes in
the tree generally represent Cronus objects which have symbolic

.- ".- names. A complete symbolic name is formed by listing the names -.-

of the arcs, separated by the punctuation mark ":". For example,
:a:b:c is the symbolic name of an object.

-. ,.
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i0
Not all Cronus objects have symbolic names, and those that

do may have more than one. When an object is given a symbolic
name, an entry is made in the Cronus Catalog, and when the name
for an object is removed, its entry is removed from the Cronus
Catalog. The Cronus Catalog supports Enter, Lookup, and Remove
operations. In addition, operations are provided to read and to
modify the contents of catalog entries. The catalog entry
corresponding to a symbolic name includes the UID of the object
named. The Cronus catalog is described in detail in Section 9.

A Cronus unique identifier consists of a pair

S <UNO, Type>

• where UNO is a 64-bit unique number, and Type is a 16-bit value
naming the type of the object. The UNO portion of the UID is
uniquely associated with a particular object. Each Cronus
service is administratively assigned a unique type and, all types
are statically well-known. Since the Type field will encode as
many as 65,536 distinct types, there is room for expansion to

. dynamic types at a later time. By convention, the symbolic names
of Cronus types all begin with the prefix "CT-", e.g.,
CTPrimal File.

The facility which generates unique numbers may be regarded
as existing continuously throughout the life of a Cronus
configuration, and is accessible to system and application

- processes. No two requests by client processes for a UNO ever
obtain the same UNO, over the entire lifetime of a Cronus
cluster. UNOs are guaranteed unique only over the domain of a
single cluster.

>"-,. UNOs are fixed-length strings of length of 64 bits or 8
bytes. They are comparable in size to short symbolic names, and
can be easily stored and manipulated on byte-oriented, 16-bit-
word, and 32-bit-word machine architectures.

The UNO generation scheme is logically centralized because
S'two generators in the same Cronus cluster must not generate the

same UNO. Since we want the facility to be continuously
available with high probability to processes distributed over
various hosts, the implementation of the UNO generator facility
is physically distributed(6) 4

(6) A description of the design and implementation for the Cronus
-. *vl unique number facility can be found in Section 14.4.
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The UNO consists of three fields: a HostNumber, a
HostIncarnation and a SequenceNumber. The HostNumber field
identifies the machine which generated the UNO. The
HostIncarnation is a centrally-generated number (or one which is
dependent upon local non-volatile storage and periodic central 7.
synchronization) which assures the uniqueness when a host crashes
and returns to the system. The SequenceNumber is incremented foreach request. ..

The UNO size, 64 bits, was derived from assumptions about
the number of UNOs that could be generated over the lifetime of a
Cronus cluster, We assume that the maximum number of hosts in a
cluster is 1024, and the maximum lifetime of a DOS cluster is 100
years. The implementation strategy imposes constraints upon the
rate at which UNOs can be generated (fewer than 1000 per second
per host) and on the rate at which a host can leave and reenter
the cluster-wide UNO generation mechanism (about once every 10
seconds).

A Cronus service is implemented from a Cronus process. The
UID for the process is a unique identifier of type
CT-Primal Process, selected when the process was created. To
facilitate communication between accessing agents and Cronus "
services, Cronus also assigns a logical name to each service. A
logical name is a UID selected from a reserved portion of the UID
name space which, is itself designated by a Cronus type,
T.CT-TypeName. Every Cronus type maps to a logical name UID

*. formed from a 16-bit type by setting the HostNumber field to an
arbitrary value, the HostIncarnation field to zero, the
SequenceNumber field to the 16-bit type, and the type field to
the constant CT Type-Name. 4.

Cronus provides a pair of functions which can be used to
convert between a type name and the logical name for the manager
process of that type. These functions are:

NameToType (LogicalNameUID) returns Type

TypeToName (Type) returns LogicalNameUID

Logical names, like types, can be referred to symbolically.
By convention, logical names begin with the prefix "CL-". For .
example, CLPrimal File refers to the process which manages
primal files. A logical name can be used to locate or generically
address an object manager for its type, or the collection of all
managers for the type.

Two basic kinds of UID names for Cronus objects have been .. -
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0'

introduced.

1. Spmifinc names.

The specific UID name is assigned when the object is
created, by requesting a new UNO. The creating agent may
retain the specific name or pass it on to other
processes, to allow the possessors of the name to operate
on the object.

2. Logical names.

All logical names in Cronus are well-known, and have
symbolic equivalents (e.g., CLPrimal File). Because
they are statically known, they can be built into the
system and application programs and used to establish a
rendezvous between processes and standard objects or
services.

Specific names are used for objects which can be created and
destroyed, and have private state information which is important
to the accessor (e.g., a particular file). Logical (generic)
names are used to refer to system services (e.g., CLPrimal File
refers to the processes which manage Primal Files). System
services usually fulfill the same role over long periods of time,
and are not created and destroyed by application programs.

Each Cronus service has a unique type and a logical name.
In addition, the processes which implement the service have
specific object UIDs, since they are process objects. Operations
can be invoked using either the logical name for the service or
the UID for the manager. For example, the logical name for a
Primal File Manager is well-known, and can be used to invoke
primal file operations and communicate with the primal file
manager independently of the current specific process UID name
for the Primal File manager. File operations invoked on the

"-- CL Primal File logical name, for example, would be delivered to
one or more Primal File managers. In contrast, the process
control operations defined on a Primal Process object can only be
invoked using the specific UID name of a particular Primal File
manager process.
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4.2.2 Accessing Objects

Accessing agents interact with object managers using Cronus
Interprocess Communication. Access may be initiated in one of
two ways:

1. Directly through the UID name space.

The accessing process has the UID of the object, and
invokes an operation upon it. The operation switch" delivers the requested operation, the UID, and any other

parameters to the appropriate object manager. The object
manager consults its fragment of the UID Table to access
the object as necessary to perform the requested
operation.

2. Through the symbolic name space.

The accessing process has a symbolic name for the object.
In this case, access is accomplished by consulting the
Cronus Catalog to find the UID for the object. Now
access to the object can proceed as described in (1)

* ~above. i..

Allowing the symbolic catalog to be by-passed when an object
. is accessed improves performance and enhances the flexibility of

using primitive objects to build complex objects.

Of course, the accessing process must have the UID for the
object in order to access it. The cost of achieving these
benefits is primarily one of increased implementation complexity:

1. Access control is performed in a decentralized fashion by
all of the object managers.

2. Information about objects is distributed among object
managers and catalog managers. Care must be taken to
ensure that the information about an object is
consistent, and if it is not, that the system can operate
properly.
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4.2.3 Summary of the Cronus UID Name Space

In preparation for the detailed discussion of the operation
switch design, we first briefly review the key properties of the
Cronus UID name space:

1. UIDs are fixed length bit strings.

A UID is 80 bits long and consists of a 64-bit Cronus
Unique Number (UNO) and a 16-bit type specifier.

2. The type of the object named by a UID can be determined
from the UID.

The UID has a 16-bit type field. The ability to
determine the type of an object solely from its UID is
critical to the implementation of the operation switch.

3. The UID for an object is a host independent name for the

object.

,V UIDs are host independent in two ways. First, the UID
may be used to refer to the object regardless of the host "
from which the reference is made. Second, the UID may be
used to refer to it regardless of the host (or hosts)
which implement the object.

Although it may not happen often in practice, objects may
move (or be moved) from host to host. When an object is
relocated in this fashion, its UID remains fixed.

4. The UID for an object contains a hint for the location of
the object.

The HostNumber field is used as a hint for the host
location of the object. This is the host that generated
the UNO, and it will frequently be the host responsible
for the object. Since some types of objects can move
from host to host, the HostNumber field of a UID for such
an object does not positively identify its location.

.- When the hint fails for these objects, a Locate operation
will find the object. For objects that cannot move
(e.g., primal processes, primal files) the hint is
guaranteed to be valid.

5. Communication with an object manager can be initiated
merely by knowing the type that it manages.
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Logical UID names which can be computed from the object
type, provide generic addressing.

--. 4.

4.3 Operations On Objects

4.3.1 Primitive Operations and objects

An operation to be applied to an object is represented as a
pai r

<OperationName. Parameters>

There are several ways to invoke an operation, but in some sense
the most primitive of which is anesnost. The function
supports the invocation of Operation on the object named by
ObjectUID on the host with internet address HostAddress.

Invocations do not necessarily cause a reply or
acknowledgement to be returned to the invoker. Most operations

* will follow a request-reply paradigm, but there are important
examples of operations that will not. The generation of a reply,
and the conventions describing the contents of the reply, are an
example of conventional features derived from the request-reply
paradigm.

" T InvokeOnlost can invoke an operation on a host that is
remote from the invoking process. The operation switch will
attempt to deliver the operation only to the addressed host or
hosts. The parameter HostAddress is a Virtual Local Network
address (see Section 14.2), and may refer to one host (if it is
a VLN specific address), all hosts (if it is the VLN broadcast
address), or a subset of hosts (if it is a VLN multicast
address). Assume for the present that HostAddress is, in fact, a
specific VLN address and refers to just one target host.

The ObjectUiD may be a logical name (i.e., a UID of type
CTTypeName). Logical names can be used to invoke operations on
system-defined object managers and service processes, or system-
defined objects.

The operation Locate is defined on every object in the
system; Locate is a required feature of every object manager.
The Locate operation can be invoked in the following way:

InvokeOnd ost(HostAddressObjectUIDP,
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<"Locate" ,ReplyOption>)

Locate generates a reply from the host HostAddress if the object
ObjectUID is present on that host. The ReplyOption parameter may
be either Always or PositiveOnly. A value of Always means both
positive and negative replies are generated. A value of
PositiveOnly means only positive replies are sent back.

If HostAddress is the VLN broadcast address, the Locate
operation queries all hosts. Then,

InvokeOnHost (VLNBroadcastAddress, Obj ectUIDP,
<"Locate" ,Always>). .

tests all active hosts for ObjectUID, and solicits a reply from
all hosts. The invocation

InvokeOnHost (VLNBroadcastAddress,CLPrimal File.
<"Locate", PositiveOnly>)

asks for replies from those hosts supporting the object type

CTPrimal File. This operation might be performed in preparation
* for creating a new primal file.

A library routine will be available which invokes the

operation collects the replies and presents them to the process:

Locate (ObjectUIDP,StopWhen,Timeout) returns ReadyList

This routine performs an InvokeOnHost to the VLN broadcast
address, on the object named through ObjectUIDP, with the
operation <"Locate",PositiveOnly>. The integer StopWhen
determines how many replies the routine returns. If StopWhen is
a positive integer, the routine will collect replies until
StopWhen replies are received, or Timeout seconds have elapsed,
whichever comes first. If StopWhen is 0, the routine waits until
Timeout seconds have elapsed. In either case, the information
contained in the replies is collected and, after editing, a
pointer to this list passed back to the caller.

The ReplyList contains the VLN addresses of replying hosts.
"-.4 If the ObjectUIDP refers to a logical name, the reply list will
* also contain the specific UID of each responding process. Type-

specific information may also be prqsent in the ReplyList. The
following paragraphs describe a simplified form of this
ReplyList, namely, that ReplyList [1] is simply a host address.

The InvokeOnHost and Locate can be combined to define a more
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general, host-independent Invoke operation, shown in the
pseudocode definition below.

operation Invoke(ObjectUID,Operation) is
Locate (ObjectUID, 1,TimeoutConstant)
if HostList(1) =/= NULL then

InvokeOnHost(HostList(l) ,ObjectUID,Operation)

This is the simplest possible form of Invoke; more complex
variants, which involve caching UIDs, for example, will be
developed. The properties of the Invoke operation will be
discussed further below; in particular, there is an important
optimization which makes the Locate operation unnecessary for
some object types, such as primal files, for which the hint in
the UID name is defined to be accurate.

4.3.2 Message Communication Support

In order to describe the design of the operation switch and
its role in message-oriented interprocess communication, we must
briefly introduce Cronus processes. The Cronus process concept
is described in detail in Section 5.

Cronus processes are constructed from constituent b ..t
~r~.e.BM2 (CHPs). The properties of a CHP are defined by the
machine architecture and the constituent host operating system
(COS). The Cronus process consists of a CHP plus the Cronus
process features. The simplest type of Cronus process is the
Primal Proess (PP). A Primal Process is a CHP with the ability
to invoke Cronus operations through InvokeOnHost. In addition,
there are operations which can be applied to Primal Process
objects, including SendToHost and Receive, which provide a simple
message service and basic process control. SendToHost and
Receive are implemented by the operation switch.

The SendToHost operation transmits a message from one
process to another, and the Receive operation makes a previously
sent datagram visible to the recipient.

SendToaost (TargetlnternetAddress,TargetProcessUID,Text)

Receive (SourcelnternetAddress,SourceProcessUID,Text)
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are a matching pair of SendToHost and Receive operations. Note
that Receive obtains the internet address of the sender, as well
as the sender's UID and the message text. The SendToHost command
above is considered to be equivalent to

InvokeOnHost(Target InternetAddress,
TargetProcessUID,
<"SendToHost " , Text>)

An implementation of Receive employs pseudo-interrupts or
other CHP-specific synchronization facilities, not defined here,
to build an asynchronous Receive operation.

The more general operation Send is related to SendToHost in
the same way that Invoke is related to InvokeOnHost. A simple
Send is defined as

operation Send(ProcessUID,Text) is
Locate(ProcessUID,HostList,l,TimeoutConstant)
if HostList(l) =/= NULL then

SendToHost (HostList (1) ,ProcessUID,Text)

As for Invoke, optimizations are possible.

4.4 Object System Implementation

4.4.1 The Operation Switch

This section describes the framework of the object system
implementation on Cronus hosts. Figure 1 illustrates the
relevant components on a single host.
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Figure 1 .Object System Components

The boxes in the figure represent abstract modules of the
* .~. implementation, and do not necessarily map one-to-one into CliPs

or address spaces.
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In Figure 1, boxes 1-4 are Cronus process objects; box 5 is
the operation switch, which accepts messages from and delivers
messages to the Cronus processes on this host; box 6 the local
host component of the UNO generation facility; box 7 is the UDP
protocol demultiplexing service; box 8 is the IP protocol
demultiplexing service; and box 9 is the Virtual Local Network
layer.

The operation switch is a table-driven switch, which routes
messages from process to process. The sender and receiver may
both be on a single host, or the IP layer may be involved in a
host-to-host message transfer. The operation switch does not
retain information about the messages, although it may gather
statistics and transmit them to a central collection point.

Operation switches are linked by a reliable message service.
The IPSend and IPReceive discussed below are made reliable

4 through extensions to IP datagram exchange.protocols and/or the
use of reliable TCP protocols. If an attempted InvokeOnHost
fails, the invoker may assume that the problem is not a transient
communication fault; with high probability, either the network or
the target host, or both, are down. Messages transmitted through
IPSend and IPReceive are not limited in size by the maximum
packet size supported by the Physical Local Network.

The InvokeOnHost operation is one of the principal system
calls to the Operation Switch. The invocation sequence for an
operation on another host is:

1. A Cronus process initiates an InvokeOnHost operation, -

transmitting the operation and its parameters to the
operation switch on the source host.

2. The source operation switch composes an IP message
containing the object UID, operation, and some other
information, and sends it to the operation switch on the
target host.

3. The target operation switch uses the object UID and its

own tables to decide which process should receive the
message, and delivers it.

4. The process on the target host receives the message using
the Receive operation; the SourceInternetAddress and
SourceProcessUID are those of the invoking process.

If the source and target processes are on the same host, the
source and target operation switches are the same, making the
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0
transmission of the data unnecessary.

The following sections explain the function of the Operation

* Switch in greater detail.
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4.4.2 The Operation Switch Interfaces

Figure 2 illustrates the transmission of an operation from
the invoking process, through the local operation switch, to the
remote operation switch, and finally to the receiving process.
This section defines the calls and the representation of data
structures at the interfaces 1, 2, and 3.

.- :...

- - - --------------------- 2-----------3--------------------
I Invoking I--->1 Local I I Remote I--->1 Receiving I
IProcess I OS OS I Process

Figure 2 . Operation Switch Interfaces

There are two major views on the invocation in Figure 2:
the invoking process may perform a SendToHost operation,
specifying a destination process name and expect it to be paired
with a Receive operation at the receiving process; or the
invoking process may perform an InvokeOnHost operation on the
Cronus object name that is ultimately directed to a manager
process and again accepted by a matching Receive.

In the first case, information crosses interfaces (1) and -.

(3) by means of calls made by the sending and receiving
processes; these calls appear as

SendToHost (TargetAddress,ProcessUID,MessageText)

Receive (SourceAddress,SenderUID,MessageText)

In the second case, information crosses interfaces (1) and
(3) by means of system calls made by the invoking and receiving
processes; these calls appear as

InvokeOnHost (TargetAddress,ObjectUID,Operation)

Receive(SourceAddress,SenderUID,ObjectUID,Operation)

where operation includes both the intended operation and its
parameters.
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Interface (2) is peer-to-peer communication between
operation switches. It is convenient to introduce IPSend and
IPReceive for this function. IPSend and IPReceive use a reliable
message service built above the Internet Protocol. IPSend and
IPReceive each accept just two parameters:

IPSend(TargetInternetAddress,Text)

IPReceive (SourceInternetAddress,Text)

IPSend will perform a certain number of retries in an attempt to
deliver a message; IPReceive will filter duplicates arising from

*.. retries. ".,a..

Messages exchanged between operation switches are octet
sequences with the following standard format:

I TargetUID I SourceUID I Mode I Message Structure I
.*-

10 octets 10 octets I N octets

1 octet

The TargetUID is the ProcessUID parameter to SendToHost or the
ObjectUID parameter to InvokeOnHost. The SourceUID is the
process UID of the invoking or sending process. Mode is an
enumeration variable with two values, SendMode and InvokeMode,
explained below. The Message Structure is the MessageText
parameter to SendToHost or the Operation parameter to
InvokeOnHost.

4.4.3 The Implementation of SendToHost and Receive

The operation switch implements the SendToHost and Receive
operations for processes, and Asa tsa in the implementation of
other operations by directing the messages to man Ag=er process..
The first case is illustrated in this section, and the second in --

the following section.
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Host = SourceAddress:

:' SendToHost (TargetAddress,TargetProcessUID,Text) -

I I (by Operation Switch) .

.I IPSend (TargetAddress, "
I .-." <TargetProcessUID, InvokerUID,SendMode,Text>) '

Host = TargetAddress:

'.-IPReceive (SourceAddress,
<TargetProcessUID, InvokerUID,SendMode,Text>)"-

i (by Operation Switch)

... Receive(SourceAddress, InvokerUID,Text) -

Figure 3 .The SendToHost-Receive Sequence
"-..' .-.

In Figure 3, the sending process at host SourceAddress
initiates the SendToHost opration, and the data passes into the
local operation switch. The operation switch at SourceAddress
uses IPSend to transmit the data to the Operation Switch on host
TargetAddress, where it is received by means of IPReceive. When
a matching Receive request made by the target process completes,
the SourceAddress, InvokerUID, and Text fields have been made
available to the target process (that is, moved into its address
space).

0%, The operation switch at the SourceAddress sets the Mode
value to indicate that the operation is a "SendToHost. The
operation switch at the TargetAddress detects the SendToHost-
Receive case by observing that tMode-SendMode; this is sufficient
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information to complete the matching Receive.

In order to use SendToHost and Receive, an operation switch
must know the Cronus UIDs of all processes on its host, and must
have a means of passing messages across the Operation-Switch-to-
Cronus-process boundary. The operation switch maintains the
mapping from UIDs to host-dependent process handles, and uses the
host-dependent system call convention to move the data.

The TargetProcessUID may be either a specific or logical
UID. If it is a logical name, the target operation switch
converts the name to the process UID for the process currently
supporting the logical function.

i~4F
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.0
[ 4.4.4 The General Invocation Sequence

0

Host = SourceAddress:

,. InvokeOnHost (TargetAddress,
TargetUID,
Operation)

I (by Operation Switch)
"I I" "~

v
I- IPSend(TargetAddress, -

<TargetUID,InvokerUID, InvokeMode,Operation>) .

v

Host = TargetAddress:

IPReceive (SourceAddress,
<TargetUID, InvokerUID, InvokeMode,Operation>)

I (by Operation Switch) .I I I*

"- Receive(SourceAddress,InvokerUID, "
I ObjectUID,Operation)

Figure 4 . The General Invocation Sequence

In Figure 4 the invoking process at SourceAddress initiates
the InvokeOnHost operation, and the data passes into the local

,* operation switch. The local operation switch sets Mode to
InvokeMode, and uses IPSend to transmit the data to the operation
switch on TargetAddress, where it is teceived by means of
IPReceive. The operation switch on TargetAddress observes that
this message is in InvokeMode, and delivers the message to the
object manager process for this type, whose name is derived from
the target UID.
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0

The operation switch on host TargetAddress tests the Type
" field of TargetUID. If the message has a generic address (the
• D.-'. UID type is CTTypeName), the operation switch uses the

NameToType function to determine the intended type; otherwise, it
uses the value of the Type field. The operation switch tries to ......
map the type to a manager process on this host (there is at most
one manager process on a host for any type). If the mapping is
not successful, the invocation is discarded, but will generate an
exception reply. If the mapping is successful, the information
is transmitted to the manager process as shown in Figure 4. The
manager obtains the information by initiating an ordinary Receive
request; when the Receive completes, the SourceAddress,
InvokerUID, ObjectUID and Operation have been made available to
the manager process.
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4.4.5 The Use of UID Location

* The operation switch often avoids the Locate operations
shown in the definitions of Invoke and Send by using the host
address from the UID parameter when it is a reliable hint to the

* object's location. In this case. the Invoke or Send can be
immediately replaced by an InvokeOnliost or SendToliost.
Pseudocode for an Invoke operation incorporating this
optimization is:

* operation Invoke(ObjectUlD,Operation) is
HostAddress :- OriginafUNO(ObjectUID.UNO)
if not GoodAddresseint(Type~f(ObjectUID)) then

Locate (ObjectUID,HostList,l ,TimeoutConstant)
* if HostList(l) = NULL then

elereturn

HostAddress := HostList(l)
InvokeOnHost (HostAddress,ObjectUID, Operation)

The predicate GoodAddressHint attests to the trustworthiness of
the host address in the object rJID.

Primal Process and Primal File are important examples of
types for which GoodAddressHint returns true.
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5 Process Management

5.1 Cronus Processes

5.1.1 Introduction

Each host and constituent operating system in a Cronus
cluster has at least one natural concept of the basic unit of
computational activity, the p/ cFu. More generally, several
different kinds of processes are present in each host, fulfilling
different roles. In the absence of a distributed operating
system, the processes on two heterogeneous hosts are unrelated to
each other. The first step towards building systems of
cooperating processes is to standardize communication protocols,
so that the processes on heterogeneous systems can talk to one
another.

Standard communication protocols are only the beginning. In
a modern operating system, a process is an object which can be
explicitly manipulated by other system and application processes.
The operating system makes available a group of pX.i iotrol ..
Qtrations. These operations are invoked by a controlling process
on a controlled process, often without the voluntary cooperation,
or even the knowledge, of the latter. Examples of process
control operations are:

Create
Terminate
Suspend
Resume
Set Priority
Set Access Rights
Interrupt

Cronus provides uniform process control operations across
-- *-the heterogeneous hosts in a Cronus cluster. Cronus processes

are constructed from cnatiuent boAt pLpae (CHPs). The
properties of a CHP are defined by the machine architecture and
the constituent host operating system (e.g., a UNIX CHP is very
different from a CMOS CHP). A Cronus process consists of a CHP
plus the Cronus process features. A CHP becomes a Cronus process
by functional enhancements that usually do not block or replace
the CHP's natural features. Cronus processes then have full
access to the resources of constituent hosts within the bounds of
access control. Unfortunately, the process control operations
which are native to different host operating systems are
dissimilar in scope and detail. By adopting uniformity as a
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goal, we acknowledge the inevitable mismatches between the Cronus
.. process control operations and the operations available on a

particular COS. It is the responsibility of the host integrator
to bridge this gap.

Requiring full compliance to process control may be too much
of a burden for some hosts. The Cronus design provides
flexibility in the degree of integration required of a host. The
host integrator decides which Cronus types will be supported by
the host.

5.1.2 Cronus Process Types -- Overview

There are two basic Cronus process types, CT Primal Process
and CT Program Carrier(7). The type CTProgram Carrier is a
subtype of CTPrimal Process. Primal processes and program
carriers never migrate; once created, the process remains on the
same host until it is destroyed. The host hint in a UID for a '.

primal process or program carrier is thus perfectly reliable.

. Every host participating in the system must support a Primal
- .Process Manager (PPM) and primal processes. A primal process

which plays a well-defined functional role within the system is
called a Cronus service. Cronus services are often object
managers for system-defined object types, for example, a Primal
File Manager or Program Carrier Manager. A Cronus service is a

.* primal process which has a registered Cronus type (and hence a
logical name) drawn from the space of Cronus types. Operations
can be invoked on a service and messages sent to a service using

*... its logical name.

In their minimal standard forms, Primal Processes and Primal
Process Managers are relatively simple. This keeps the cost of

*.: integrating a host into a Qronus cluster low for minimally
integrated hosts that can obtain system services from other
hosts, but do not provide system services.

Ordinary primal processes lack essential process control
functions and other desirable characteristics needed for

(7). Future system versions will introduce additional process
types which may be distributed in extent and have special
reliability properties.
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application programming. The subtype CT.Program Carrier provides
an environment tailored to the requirements of application
programs. For example, a program carrier can be remotely loaded
and started.

Either type of process may make use of some or all of the
functions in the Process Su1ort Library (PSL) which provides
high level interfaces to many system functions, as well as
general purpose utilities for interfacing to and manipulating the
Cronus environment. Portability is a major goal for the PSL, so
that it can be implemented readily in whole or in part on new
host types. The PSL is discussed further in Section 14.5.

5.1.3 The Operations on Objects of Type CTPrimal Process

The set of operations defined on objects of type
CTPrimalProcess is:

Locate (ProcessUID) -> HostID

Return the internet address of the host supporting
this Primal Process. (This is the standard Locate
operation defined for all objects of the system).

SendToHost (HostIDTargetProcessUlD,Text) -> ReplyCode

Send a message to a Primal Process; the message is
accepted by the Receive operation.

Receive () -> SourceHostlD,SourceProcessUID,Text ..

Accept a message sent to this Primal Process, along
with the source identity.

Destroy (ProcessUID) -> ReplyCode
°

.4

.4 Terminate the activities of the Primal Process and
.o release all resources allocated to it. This

operation does not cause the process to terminate
cleanly.

,-... ReportProcess Descriptor (ProcessUID,SelectionList) -> ..

Process Descriptor

Return the requested key-value pairs from the process
descriptor belonging to the target process.
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Change_Process Descriptor
(ProcessUID,ModifyList,DeleteList,InsertList) ->
ReplyCode

Insert, delete, or modify key-value pairs in the
process descriptor of the target process.

A process may invoke any of these operations on itself as the
target object (Receive may be invoked only on the invoking
process). A process may send itself messages, destroy itself, or
read or change its descriptor in the same way it performs these
operations on other objects. Locate, SendToHost, and Receive are
described in detail in section 4.4, and will not be discussed
further here.

The Destroy operation is invoked on a Primal Process to
"destroy" or "kill* the process. It erases all record of the
process state from the system and frees any resources dedicated
to the process.

A process which is destroyed is not notified of the
operation, and has no opportunity to terminate cleanly. Only the
resources actually used to implement the Primal Process object
can be freed directly; resources held as a result of the
computational activity of the process (e.g., locks on remote
files) are not freed. Some primal processes may possess
dedicated resources, and Destroy disables the process, without
releasing the resources.

A reply will be generated to the invoker to indicate that
the process has been destroyed. After receiving the reply, the

invoker knows that future operation using the specific UID of the
destroyed process will not succeed.

A =o&ess deriplto is a list of key-value pairs associated
with a Cronus process. Some of the values are components of the
process state used to implement process control. For example,
the pair (Priority,5) would indicate the importance of a process
relative to other processes competing resources. Some keys must
be present in the list ("required keys'), while others are
optional.

All process objects must respond to the rmguired krjz in a
uniform way. If a process object supports a standard D9onal
kn , the process must apply use it in a uniform, system-wide
manner. Additional, 11erJLve kgya may be present in a process
descriptor. Their interpretation is not specified by the system,
but is entirely the responsibility of the process and the other -
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processes with which it interacts. Elective keys are chosen not
to conflict with required or optional keys.

The required keys for Primal Processes are:

MyUID
MyAGS
IPCEnabled

The key MyUID is placed in the descriptor when a primal
process is created, and is never changed thereafter. The value
of the (MyUID,value) pair is the specific UID of this primal
process, and has type CTPrimalProcess.

The value of the MyAGS is the access group set, used with
access control lists to determine access rights to objects at
operation invocation time. The principal UID associated with
this process is an element of the access group set. The

* .initialization and use of this access control and authentication
data is discussed in detail in section 7.

The value of IPCEnabled controls communication through the
operation switch. If the value is true, the process can send and " ..
receive messages in the normal fashion. If it is false, the
process may not send or receive messages, or invoke operations on
Cronus objects. This feature can be used as a basic tool for
managing access to network resources.

The optional keys for Primal Processes are:

Priority

and others to be named at a later time.

The ReportProcessDescriptor and ChangeProcessDescriptor
operations permit a process to inspect or modify the descriptor
of another process. If several processes invoke Report and
Change Process Descriptor operations on another process at the
same time, the effect will be as if the operations were processed
sequentially, i.e., they are atomic with respect to each other.

ReportProcessDescriptor causes a reply to be generated to
the invoker. It may be invoked with a SelectionList requesting .

specific key-value pairs to be returned, in the reply, or it may

A-49

*-*".' *- .- . *L-". * ..--.. * . "-". *.*.- .-- -. ; . ....-....-.:....-.... . .... - .. "i..?..'i;.' - "-'a -- " - -'



*. ;. 7.. 7'. 7

Report No. 5261 - Part A Bolt Beranek and Newman

ask for the entire descriptor to be returned. Access control
restrictions will limit the set of key-value pairs to be
returned. ReportProcessDescriptor is also used as the standard
"are you there?" function. The reply is generated, independent
of the state of the process.

ChangeProcessDescriptor has three arguments, a Modify
list, a Delete list, and an Insert list. The Reply shows any
discrepancies between the requested changes and the changes
actually made. All modifications are made first, followed by all
deletions, followed by all insertions. A key-value pair might
occur in both the Modify and Insert lists, to guarantee that the
pair exists after the operation, whether or not it was present
before the operation.

5.1.4 Operations on Objects of type CTHost

The Primal Process Manager (PPM) implements operations
concerning primal processes as a class. Some of these operations
may be thought of as operations on the host itself. Because of
this, we assign it a type, CTHost.

A PPM is itself a Primal Process, and the operations in the
previous section all apply to it. They are activated by
InvokeOnHost applied to the logical name of the PPM.

* One of the operations, Destroy, has a special meaning when
applied to the PPM on a Cronus host. Because the PPM is the
implementer of Primal Processes, destroying the PPM destroys all
Cronus processes on the host. This forces a shutdown of the
Cronus system on the host.

The operations defined on objects of type CTHost are:

CronusRestart (HostID) -> ReplyCode

Combines the effects of a Destroy operation on the
PPM, followed by a "Cronus boot".

CreatePrimalProcess (HostID,Role) -> ProcessUID

This operation takes a role designator and starts a
Primal Process performing this role on the HostID.

v~.- The Primal Process is bound to a program when it is
4. created, in a host-dependent way invisible to the

Cronus system.
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Service-List (HostID) -> ServiceOnHost

Returns a list of the services which can be created
on this host, and indicates which are currently
active.

ProcessList (HostID) -> ProcessOnHost

Returns a list of the specific UIDs of all active
Primal Processes on this host.

Status-Probe (HostID) -> StatusDescriptor r

Returns a list of key-value pairs giving information
about the current status of the host-device
utilization, number of active processes, etc.

CreatePrimalProcess takes a role designator as an
argument, and starts a new primal process performing this role.
The role designator may be in one of the following forms:

1. A Cronus logical name for the service.

2. A Cronus symbolic service name. These are character
strings containing the literal characters of a logical
name, for example "CLPrimalFile".

3. A host dependent role designator. These are arbitrary
strings, which have meaning only to the PPM on a specific
host.

The designators of kinds (1) and (2) are strictly paired, and are
registered with the Cronus system administrator. They are the
names of standard Cronus functional units, which have unambiguous
meaning system-wide. The primal processes which implement them
are created using a designator of kind (1) or (2), which makes
the logical name known to the operation switch on the host, so
that the process can be gene rically addressed.

Designators of kind (3) provide for the activation of host-
specific programs or devices. The host dependent role designator
might be a COS-dependent file that is executed as a result of
CreatePrimalProcess. Primal processes created with a host-
dependent role designator generally have no associated logical
name, and cannot be generically addressed.

When the primal process is created, it receives a new
specific UID, never before used to name a Cronus object. The
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primal process will initialize its state entirely from non-
volatile storage (local or remote disks). The PPM will generate
a reply to the invoker indicating success or failure of the
operation; if it was successful, the reply will contain the
specific UID of the new process.

5.2 Program Carrier

5.2.1 Objects of Type CTProgramCarrier

The type CTProgramCarrier is a subtype of
" CTPrimalProcess, and all of the characteristics of primal

processes are inherited by program carriers. Additional
operations can be invoked on program carrier objects, and the set
of required keys in the process descriptor is enlarged. The
program carrier

o provides a process which can be created, loaded with a
program, started, and stopped under remote control;

o -0 binds processes to their principals;

o provides uniform monitoring and debugging support; and

o provides application developers with the ability to
control a collection of user written (possibly
distributed) processes.

A Cronus host is not required to support the CTProgram-Carrier
process type; however, hosts which are not dedicated to system
service roles usually support Program Carriers.

5.2.2 Operations on Objects of Type CTProgramCarrier -

The set of operations defined on objects of type
" CTProgramCarrier include those of its supertype,

CTPrimal-Process, and:

Clear-Program (ProcessUID) -> ReplyCode

Stop the process cleanly, if it is running, and clear
all program and data storage private to the process.
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Load-Program (ProcessUID,rrogramUID) -> ReplyCode

Load a binary program image into the process; the
process must be in cleared state.

Proceed (ProcessUID) -> ReplyCode

Start execution after a program load, suspend
operation, breakpoint halt, or single step.

Suspend (ProcessUID) -> ReplyCode

Stop the process as soon as possible, and save
sufficient state to permit a restart when the Proceed
operation is invoked.

Stop (ProcessUID,StopCode) -> ReplyCode

Terminate this program carrier process cleanly,
according to StopCode procedures and inform the
Controller of this process that it has been
destroyed.

ReportState(ProcessUID) -> ProcessState

Inspect process private state information.

Change-State (ProcessUID,ProcessState) -> ReplyCode

Change process private state information.

Breakpoint (ProcessUID, Address,InsertOrDelete) ->
ReplyCode

Place or remove a breakpoint in the address space of
the process.

These operations are sufficient to meet two basic
objectives: 1) It is possible to load a binary image into a new
program carrier object, start it, and allow the process to
complete or be cleanly stopped; and 2) the Suspend, Proceed,
ReportStateChange State, and Breakpoint operations together
with the Primal Process operations, will support the operation of
a remote debugger.

ReportProcessDescriptor and ChangeProcessDescriptor can
be applied to program carrier objects as well as primal process
objects. The required keys for program carriers are: -.
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MyUID
MyAGS
IPCEnabledPriority""1

-"- ' State
> ', " Standa rd_ Input

Standard_Output
Controller
Session
Attendant
Current Directory

MyUID, MyAGS, IPCEnabled, and Priority have the same meaning for
program carriers as for primal processes.

The State variable informs other processes of the current
state or mode of a process. The set of states includes Clear,

[.' ReadyToStart, Running, Suspended, and DebugWait. The states
• .- reflect only the interactions of Cronus operations and the

process object, and do not capture finer state subdivisions which
are host or local operating system dependent.

The Standard_Input and Standard-Output keys each has the
handle for a data stream as a value. These streams are
initialized before a program carrier is started. The streams are
used in a manner analogous to the standard input and standard
output of the UNIX process model.

The value of the Controller key is a Cronus process UID, the
controlling process. Program carrier processes exist in a
controller-controllee hierarchy; each controller may have many
controllees, but each controllee has one controller.

The Session key is a UID identifying the user session in
which this process was created. This value can be used to
identify the processes belonging to a terminal session.

The Attendant key may have either a null value, meaning the
process is currently unattended, or the UID of the terminal agent
of a logged-in user. The Attendant may be used as the target for
error messages which should be presented to a human being,
providing a standard error channel.

- The optional keys for program carriers are:

Program Name
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Program-LoadFile
Program-Version
User-Environment

and others to be defined later. o

5.2.3 The Program Carrier Manager Operations

The operations which may be invoked on a Program Carrier

Manager are:

CreateProgramCarrier (HostUID,Controller) -> UID

Create a new program carrier process in Clear state,
and return the UID of the process to the invoker.

ResourceTest (HostUID,ResourceTestList) -> ReplyCode

The parameters are the host resources needed for the
execution of a particular program, e.g., memory
requirements; the reply indicates whether or not they
are available.

SearchAllDescriptors (HostID,FieldList) -> List of UIDs

The parameter is a set of key-value pairs; the reply
contains the UIDS of all program carriers on this
host which contain all of the key-value pairs in
their descriptors.

CreateProgram_Carrier creates a new CTProgramCarrier
process and returns the UID of the new process. The new process
inherits the process descriptor of the creator, except for MyUID,
which becomes the UID of the new process; the streams .-
Standard_Input and Standard_Output, which are unbound; and
potentially the Controller entry. The new process inherits the
AGS, and hence the authorities, of the parent process.

A (optional) parameter allows the creator to specify whether
the new process should inherit the controller of the parent, or
should receive the parent's UID as its controller. When the
process is created, a message is sent to the controller
containing the parent and child process UIDs. The controller
uses these messages to keep track of the processes it controls.
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A group of routines will be available through the PSL to carry
out the standard bookkeeping operations.

Once a process has been created, the parent (or another
process) may alter values in its process descriptor, by means of
the ChangeProcessDescriptor operation. The parent may use this l
operation to change the Attendant or Controller values, or to
establish bindings to Standard-Input and Standard_Output.
Support for I/O redirection of the Standard Input and Standard
Output streams is provided through routines in the PSL.

The Resource_Test operation allows a process to test for the
availability of resources before performing the
CreateProgramCarrier operation. Resources may include
processor type, primary memory size, and special processor
capabilities, such as floating point hardware. This operation is
used as part of the scenario for selecting a site at which to run
a program (see Section 13.8). The current design does not support

. resource reservation.

The SearchAllDescriptors operation allows the invoker to
find all program carrier processes on a host with the designated
key-value pairs in their descriptors. Two important uses of this
operation are: 1) a search on the Session key-value pair, to
locate all process associated with a user session; 2) a search on
the Attendant key-value pair, to locate all processes currently

.- - attended by the same terminal device process.

5.2.4 Bindings Between Processes

The Cronus Process Structure supports several kinds of
relationships among processes. All processes belonging to a
session are related, and can Pe located as a group; pairs of
processes are related in controller-controllee relationships; and
processes are bound together by the data streams that connect
Standard_Input and Standard_Output (and by other streams that may
be explicitly opened by the processes).

The knowledge that a group of processes belong to the same
* session is useful for coarse-grained error recovery (killing the

session). Streams are used primarily to provide continuous data
- paths between processes.
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The controller-controllee relationship supports the flow of
* control information among processes. When a process is

destroyed, a message is sent to its controller. The controller
can then use that information to notify or terminate other
controllees that were communicating with the first process.
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6 Interprocess Communication

6.1 Overview

The message oriented interprocess communication (IPC)
facility uses the primitives SendToHost, InvokeOnHost, and '0
Receive (see Section 4). This facility supports both the system
implementation and application program needs for efficient
control message communication. There are further requirements
for supporting IPC in Cronus. First, there is a need to adopt
conventions for the common interpretation of the messages. These
conventions govern both the form of the message and its content.
Second, in the network environment IPC is found in two general
varieties, control messages and streams. Both modes of IPC are
useful and natural to different programming needs. In this
section we discuss the design of message structure conventions

- and higher level IPC abstractions.

6.2 Message Structure

6.2.1 Objectives

The Cronus message structure design assumes that the
dominant goal is the regularization of control tXaffic in the
heterogeneous Cronus system. Control traffic includes but is not
limited to requests for operations to be performed on objects,
replies generated by operations, exception notices, and messages
needed to coordinate distributed object managers. Control
messages are usually short (tens to hundreds of octets). Because
control messages are often in the critical path to completion of
an interactive command, performance is a major issue. Messages
should be compact, and efficiently composed and parsed.'

The Cronus message structure conventions are realized by a
group of software components collectively called the Message
Structure Facility. The M .&.turei Li b.a (MSL) is the
implementation of an MSF component, a library of functions or
procedures which are available to processes on every Cronus host.
Messages are composed by passing information to the MSL
procedures; the result of a sequence of such calls is a data
structure in the Standard External Representation (SER). This
data structure can be transmitted from one process to another,
and subsequently parsed by MSL procedures at the receiving .
process.
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The objectives for the Cronus message structuring facility,
in approximate order of impor'tance, are:

1. Lossless Storage. A process must be able to extract all of
the information inserted into a message structure by the "
process which created it.

2. Performance. The message data structure must be compact.

3. Portability. The MSL implementation should be easily
portable among the hosts in the Cronus ADM.

Attaining Objective (1) assures us that the MSF can be used
to move an arbitrary data structure (viewed as a bit- or octet-
vector) from one Cronus host to another. The representations of -

the data structures may differ at the sending and receiving
hosts, but no information will be lost. For example, on the VAX
a message in the SER may be stored as a consecutive sequence of 8
bit bytes, while on the C/70 the same message is stored as a
sequence of 10 bit bytes.

The MSL contains the functions to handle machine dependent
conversions to standard data representations. An example would .
be a MSL procedure on the C/70 which coerces a 20-bit C/70

"' integer into a 16-bit standard SER integer; some of the dynamic
range of the C/70 integer is lost in the conversion. These
procedures define relationships between SER data structures and
machine- or language-specific data structures, and are inherently
non-portable across heterogeneous machines and/or language
systems.

Portability of the MSL, Objective (3), helps reduce the cost
of the MSF implementation on the eight or more hosts in the ADM.
Large portions of the MSL will be portable among all of the ADM
hosts supporting the C language, with no changes to the MSL
source files.

6.2.2 Message Structure Conventions
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6.2.2.1 Self-Description

"- A message is self-describing if it contains information
about its own structure, or about the structure or type of its
components. A convention for message structure is self-
describing, if every message which conforms to the convention
contains some self-descriptive information. A receiver can
depend upon the presence of this information, and need not rely
upon higher-level protocols for its inclusion.

For example, a receiver might expect a message containing a
timestamp; a timestamp might be represented either as a binary
integer of 32 or 64 bits, or as a fixed length ASCII string. If
messages contain no self-descriptive information, the receiver
must make prior arrangement with the sender to either: 1) place
exactly one of the possible formats (e.g., 32-bit binary) in
every message; or 2) indicate in each message which variety of
timestamp was included. In case (2) the question of self-
description recurs, over the representation of the indicator
field.

The Cronus conventions for message structure contain self-
descriptive information.

6.2.2.2 Language Integration

Conventions for message structure can be influenced by the
programming language compiler and machine architecture used to
implement them. Tight integration would be achieved by

. developing a representation for a linguistic structure such as a
Pascal record or C structure and enforcing conformance by
compilers used; integration is achieved by packages which strive
for portability, and must be compiler-, language- and machine-
independent to a large degree.

Tight integration improves performance, because the compiler
can optimize reference to messages. The burden for defining the
data types of message fields can be borne by the typing
facilities of the host. On the other hand, tight integration
implies a strong dependence on a single language and compiler,
omitting or building distinctly less well-integrated packages for
other language environments.

The weakest form of integration implies reliance on a few
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language features that are present in many languages. For
example, the library of routines might use procedure calls as the
only form of invocation, arrays of integers as the only data ,-
structure, and only stack-oriented storage allocation at
procedure entry time. A library which obeys these constraints
could be easily implemented in Pascal, C, PL/l, and most other
block-structured languages. If portability is an important goal,
the implementation can be made portable across a range of
compilers and host machines. Thus weak integration allows '
structure conventions to be implemented uniformly on many
systems, at reasonable cost.

The Cronus environment requires us to refrain from using a
single language base. In that sense, the conventions employ weak
integration. However, as a practical matter, we are attempting
to limit our development activities to a single language to
enhance portability within the ADM and to minimize the effort in
bringing up initial components.

6.2.2.3 Data Type Support

A language-based convention will generally permit messages
to contain some or all of the standard types defined in the
language. In the simplest case, a convention may consider
messages to be composed only of bit- or byte-strings. The
responsibility for interpreting the message fields as integers,
character strings, etc., is left to higher-level software. A
somewhat more complex convention may define the representations
of basic data types (e.g., integers, booleans, and strings) in a
language- or host-independent way. These data types may or may
not include composite types (e.g., lists, records, arrays) which
can be used to build complex message structures.

A convention may explicitly acknowledge the ability of users
to define new types, to be treated like the pre-defined types.
There may be an administrative authority responsible for
guaranteeing the uniform interpretation of the types which evolve
after the convention has been established.

If the application domain is well understood, the convention
may incorporate data types especially important to the domain.
Control data might be a set of these conventional types, for
example, Universal Identifiers, Transaction Identifiers, and
timestamps in various formats.
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* . The issue of specification of data type representation is
* separable from the issue of self-description. A convention which

specifies the representation of a 32-bit, two's complement
* integer, for example, may or may not include a type tag on

elements when they are embedded in a message structure.

The Cronus message structure conventions are layered; the
lower layer assumes only integer and sequence of integer data *

types, and is thus highly portable. The upper layer defines a
group of data types (e.g, integers and strings) in terms of the
sequence of integer type, which can effectively handle host
heterogeneity but are not portable.

6.2.2.4 Performance

Execution time costs associated with message structures can
be roughly divided into three categories:

1. Since messages are transmitted through the IPC facility,
the cost of transmission accepting the message into the IPC
facility, buffering, transmitting, receiving, buffering,
and finally delivering the message to a client) is an
increasing function of message size.

2. Message structures are composed and accessed by routines
which implement the conventions the cost of these
operations is a function of the complexity of the
conventions.

3. The semantics of an application will not mesh perfectly
with the data typin4 or structural concepts provided by the
convention; there is a cost (borne by the clients) for
encoding higher-level concepts in those known to the
convention.

• . ... ,

If a convention is insufficiently rich in concept, (3) may be the
dominant cost of use. If it is too complex, (2) may dominate.
The most desirable situation is one in which (1) dominates, and
furthermore most of the information content of messages is useful
to the recipients.
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6.2.3 The Cronus Message Structure Facility

The Cronus MSF uses an external representation based on
key-value lists, where the key stored with each data value
indicates the meaning of the value. Both keys and values can vary
in length from one octet to many thousands, and are not
restricted in form. The data structure built by the MSL
functions will have a unique value for each key present in the

" structure. Null values are possible, and often useful when the
presence or absence of an key is an adequate expression of
intent. The type and structure of each value field is encoded
along with the value.

The assumption that most messages encoded in the standard
"'. external representation are small has an important consequence:

small messages have little substructure. Because the average key
or value is small and lacking in substructure the SER does not
explicitly encode recursive data structures, for example, values ..

*l which are themselves key-value lists.

The case in which a value is a list of similar elements is
common enough to warrant special attention. The MSL contains
functions which treat the value part of a key-value pair as an
array of fixed-sized elements.

The MSF-to-client interface is defined by the functions
(i.e., entry points) of the MSL. The functions are divided into
two classes, host independent and host dependent. The host-

_ independent functions of the MSL rely on the language environment
to support simple data structures (integers and sequences of
integers); the host dependent functions provide conversions
between complex, host dependent data structures (e.g., floating
point quantities) and the SER.

6.2.4 The Standard External Representation

The Standard External Representation defines a data
structure and a transmission order for the octets in the
structure. Knowledge of the representation is sufficient to
construct and interpret data structures exchanged among system . O
components through the Cronus local network.

* . A SER data structure is a sequence of octets, where each
octet is considered as a small integer in the memory of a host.
It begins with 4 octets of header information, followed by a list
of key-value pairs, as shown in Figure 5.
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0 Max Length
-"(high order) "
-------------

1I Max Length "
I (low order) -
-------------

2 Length .

I (high order) _
-------------

3 Length "
(low order) .

A I-------------
4 Key-Value -
• • / Pair1 /. I I

.-------------

-------------
I Key-Value I

/ Pair N /

o. I

..- .. / Pa-----/-------.

Figure 5 The SER Data Structure

One or more pAd octets may occur before the first key,
between a key arld its value, or after the last value. Pad octets
have the bit pattern '00111111'. Pad octets are skipped over
when the message structure is parsed.

The Max Length field of a SER data structure represents an
-- integer in the :ange 0..65535. The Max Length field is set by

the client when composing the message; the MSL routines will not
permit the length of the resultant structure to exceed Max
Length. The current length, in octets, of a SER data structure
is stored in the Length field (octets 2 and 3). The integer
values of the Max Length and Length fields are computed as
(high-order-octet)*256 + (low-order-octet).

A key-value pair consists of a key specifier followed by a
value specifier (possibly separated by pad octets). Both
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specifiers have the same format, and each may be as short as one
octet or a maximum of 16,385 octets. The first octet of a
specifier designates one of four possible encodings, as a
function of the two high-order bits in the octet. Figure 6
illustr'ates the possibilities.

To avoid ambiguities, it is necessary to restrict the way
arguments to MSL functions are encoded in the message. Assume
that a key or value argument of length N octets is to be inserted
in the message:

1. A one-octet key or value in the range 0..62 is encoded in a
Type 0 specifier.

2. A two-octet key or value in the range 0..16,383 is encoded
in a Type 1 specifier.

3. All other keys or values are encoded in Type 2 or 3
specifiers, in N+l or N+2 octets, respectively.

These rules guarantee that the key or value and its length can be
recovered from a SER structure unambiguously.

In this format, small integers are encoded in either one or
two octets, as a function of the required range. Short ASCII
strings are encoded with an overhead of one octet; large data
blocks (e.g., pages read from a remote disk) are encoded with an
overhead of two octets. The MSL functions select specifier types
automatically, on the basis of their arguments. When MSL
functions are used to build and parse message data structures,
the presence of four specifier formats in the SER is invisible to :',"'-:'
the client.

6.2.5 Canonical Types

A canonical j= defines a standard representation for
values of a basic data type in a sequence of octets. The use of
canonical types in message structures is by convention between
communicating processes, but it is usually the case that the key
and/or value of a key-value pair to be represented as an element
in the value set of a canonical type.
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0

Specifier is 1 octet long, the value is xxxxxx,
in the range 0..62:

Specifier is 2 octets long, the value is
(xxxxxx*256)+yyyyyyyy, in the range 0..16,383:

I lxxxxxx I yyyyyyyyI

Specifier is 1 to 64 octets long, xxxxxx is the
number of value octets after the first octet of
the specif ier:

---------------------------- / /-----
Il~xxxxxx I dddddddd I *. I ddddddddI
----- ------------------------ -----------

Specifier is 2 to 16,385 octets long,
(xxxxxx*256)+yyyyyyyy is the number of value
octets after the first two octets of the
specifier:

----- ---------------------------------- / ------------
Illxxxxxx I yyyyyyyy I dddddddd I .. Idddddddd
----------------------------------------- / /------------

* .Figure 6 .Specifiers for Keys and Values
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The octet can be viewed as the primitive canonical type. An
octet can be manipulated as an unsigned integer in the range
0..255 on any host supporting the MSF. The remaining
standardized canonical types, listed below, are represented in
one or more octets.

Abbrev Data T Lengt (Octets)

BOOL Boolean 1
U161 Unsigned 16 Bit Integer 2
S161 Signed 16 Bit Integer 2
U321 Unsigned 32 Bit Integer 4
S321 Signed 32 Bit Integer 4
ASC ASCII String 1 or more
BITS Bitstring 2 or more
UID Universal Identifier 10

The boolean type encodes "true" as 1 and "false" as 0.

The integer types place the high-order bits of the integer
representation in the octet with the smallest index. Signed
integers are represented in two's complement.

Strings consist of a variable number of octets, each octet
representing an arbitrary character from the full ASCII character
set. An ASCII character is stored as a small integer in the
range 0..127, i.e., the high-order bit of each ASC octet is zero.

A Bitstring of N bits (N>0) is represented by a sequence of
((N-1)/8)+2 octets, consisting of a prefix octet followed by a
sequence of data octets. The prefix octet contains an integer in
the range l..8, specifying the number of valid data bits in the
last data octet.

A Universal Identifier type is defined as a canonical type
because UID's will occur frequently in messages, and it is
convenient to develop standard functions to manipulate them. The
functions will transform a UID from a host dependent
representation to the canonical representation, and the reverse.

Additional canonical types will be defined as the need
arises.
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6.3 Higher Levels of Interprocess Communication

The operation switch provides an object-oriented IPC
mechanism with the primitives InvokeOnHost, SendToHost, Send and
Receive, which operate on messages.

This section describes additional layers of the IPC
. - function, which go beyond simple message communication in a

number of important respects:

1. Asynchrony and demultiplexing: Processes may engage in
many simultaneous transactions. There is a need for
asynchronous message delivery and a facility that matches
incoming messages with the appropriate processing for'.--'ithem.

2. Transactions among cooperating process: There are a
number of important message exchange paradigms used to
support the Cronus functionality.

3. Streams: The stream concept (a unidirectional or half-
duplex connection) is introduced.

4. Stream redirection. When a source and a sink process
both regard data flow to be taking place over a stream,
the effect is similar to a UNIX pipe. To make streams
more useful the logical binding of two processes to a
stream can be established by a third party process.

In the rest of this section we discuss facilities for
coordinating the use of message exchange and the development of a
stream concept. These discussions are very brief because the
design is currently being worked on. We include this tentative
discussion of the design to indicate its direction.

Receiving data is more complex than sending it, because 1) a
receiver may wait a long time before receiving data from a
particular source, and 2) it must be prepared to process data
from other sources in the meantime. Demultiplexing the incoming
message sequence is the responsibility of routines in the Process

.. Support Library. These routines are concerned with:
,O* ,

1. Demultiplexing: Data received from different origins is
sorted according to various criteria, so that the
receiving process can react properly.

2. Asynchronous receives: The receiver must be able to
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compute while waiting for IPC data. The computation may
include processing other IPC data, or it may be unrelated
to the communication activity of the process.

3. Buffering: Incoming data should be buffered so that the -
sender is not delayed. The receiving process should be
able to control the commitment of resources to buffering.

The demultiplexing facility uses well-specified key, value
pairs in the message structure to decide how an incoming message
is to be processed. In addition, the key, value pairs
transmitted form the basis for a message oriented transaction 6

.- protocol which organizes the cooperative behavior of multiple
Cronus processes.

-. 6.3.1 Message Patterns

Messages which support remote operations are of four types:
Request, Reply, Handoff, and InProgress. The simplest (and
probably most common) case involves one Request message generated
by the invoker, and one Reply generated by an object manager in 7.A

.. response. This case is diagramed in Figure 7.

A manager may delegate some or all of the responsibility for
performing an operation, and the communication protocol contains
the Handoff message type for this purpose. Figure 8 shows a
request sent to a manager process and then "handed-off" twice to
other manager processes before a reply is transmitted to the

-- .- invoker. Any number of handoffs may occur between the request
and reply messages; the processes which handle the message may
transform the message data structures in arbitrary ways before
the next handoff or the final reply message is sent. Thus in the
the event that an operation is handed-off several times, the last
manager process to receive the operation may "perform" it, or the
manager processes which handle the operation may share the

-.i burden, each performing a specialized sub-operation.

Figure 8 also illustrates the InProgress message type.
During managerl's handling of the request, managerl may send an
InProgress message to the original requestor. Any number of
InProgress messages may be generated by manager processes
handling a request; they are all addressed to the process which
initiated the Request message (8).

(8). In Figure 8, managerl would address the InProgress message
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". At Invoking Process At Manager Process

{ prepare parameters }
Invoke(targetUID,...)

--- Request Message ---- >

Receive(invokerUID,targetUID,...)
{ perform the operation }
Send(invokerUID,...)

<---- Reply Message ----

Receive(managerUID,...)
( interpret reply ,

Figure 7 . A Two Process Invocation (pseudo-code)

All of the messages in the operation protocol are marked as
belonging to the operation protocol, and each is marked with its
type--Request, Reply, Handoff, or InProgress. All messages
arising from one Request contain the same Cronus unique number

.* called the operation identifier; Messages arising from different
Request messages contain different operation identifiers. A
Request message also contains the operation name; a Handoff
message contains the operation name from the Request message, and
a "reply to" field; and a Reply message contains a standard reply
code. These are the minimal contents of the messages; they also
contain additional, operation-specific information.

We distinguish between a simple operation (or operation) and
a compound operation. The preceding paragraphs describe the
operation protocol as it applies to a simple operation. A simple
operation has, by definition, a single operation name and
operation ID. When a simple operation is handed off, it retains 0

* to the source process of the Request message; manager2 would
address the InProgress message to the process named by the value
of a reply-to message field.
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At Invoking Process At Manager Processes

{prepare parameters
* Invoke(targetlD,...)

---Request Message ---- >

manageri: Receive(invokerUID,targetUID, ...)
{perform part of first subtask}

<---- InProgress Message --

Receive (managerlUlD,...).
{interpret progress report}

{perform rest of firstsubtaskI
Send (manager2UID,...)

---Handoff Message ---- >

manager2: Receive(managerlUID,targetlD,...)
{perform part of second subtask

<---- InProgress Message --

Receive (manager2UID,...)
(interpret progress report

{pe-rform rest of second subtask
Send (manager3UID,...)

---Handoff Message ---- >

manager3: Receive (manager2UlD, targetU ID...)
{complete the operation

Send (invokerUID,...)
<---- Reply Message --

Receive (manager3u ID...)
{interpret reply

* .Figure 8 .A Multiple Process Invocation (pseudo-code)
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its identity--that is to say, it retains the original operation
name and operation ID.

Any manager process, in the course of acting upon a Request
or Handoff message, may invoke one or more new (simple)
operations by sending Request messages. A compound operation is
the aggregate of all simple operations arising from or caused by
the invocation of one simple operation. Normally, all of the
-suboperations" will complete before the intiating simple
operation completes. A compound operation may be a simple
operation or it may be composed of many simple operations, in
general with different operation names. Each of the simple
operations has its own unique operation ID; if this were not the
case, a process that invoked several sub-operations in parallel
might be unable to associate replies with invocations.

It is desirable for a Cronus process to be able to query the
status of a compound operation. The process initiating a
compound operation has immediate knowledge only of the operation
ID of the initiating simple operation. By transmitting this ID
in the Request and Handoff messages of all simple operations it

-'-: causes, the managers acting on suboperations have enough
-' information to respond to a status query keyed to the initiating

ID.

6.3.2 Stream IPC

A Cronus stream is a uni-directional data channel between
two Cronus objects. It has a source object that produces data
and a sink object that consumes data. Streams will be used to
interconnect processes with files, devices and other processes.
A source or sink object may be a static object such as a file.
Ultimately, however, the static object is represented by a
process which is one end of the stream.

Data flows only from the source to the sink. However, the
implementation of a stream involves transmissions in both
directions: from source to sink containing data, and from the
sink to source containing flow control and synchronization
information. There are a variety of implementation techniques

* which can be used to support the stream concept. These include
inter-host TCP connections, the exchange of multiple messages; or

. even a locally supported mechanism such a UNIX pipe, when the
entities are co-located.

e-
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The stream concept is supported by:

1. Library routines in the PSL, which provide the stream
interface to system and application programs.

2. The object-operation protocol and the transmission of
large messages.

3. A message stream protocol, implemented by the PSL library
routines.

4. Other existing host support software such as TCP
connections.

14
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7 Authentication, Access Control, and Security

7.1 Introduction

The goals of the Authentication and Access Control facility
are:

1. Prevention of unauthorized use of Cronus and unauthorized
access to DOS maintained data and services.

2. Preservation of the integrity of the system and its
components against intentional insertion of unauthorized
components.

3. Support for a uniform user view of access control to the
resources and functions provided by Cronus. C

The design of the access control and authentication facility
assumes that systems in a Cronus cluister are all in a single

- . administrative domain. There are a three broad classes of hosts
within the cluster:

0 hosts dedicated entirely to Cronus system functions and
not user programmable;

o hosts supporting user applications using tamper-proof
multiple protection domains (trusted multi-access hosts);
and

0 hosts supporting user applications without secure
multiple protection domains (single-user workstation
hosts).

We assume all hosts supporting dedicated Cronus functions
and multiple user protection domains are physically secure from

2tampering. Workstations may not be completely physically secure,
but have at least a tamper-proof component. At minimum, this
component is in the local network address insertion and reception
function. It could, however, be higher up in the workstation
system: in the virtual local network internet address insertion .

and reception function; in the object system process-unique
identifier insertion and reception function; or even higher. i n
this sense, all user-programmable hosts support multiple
protection domains (user and system) , although in the limiting
case, the "system" domain may simply be a piece of network
interface hardware. Since we are not aware of any workstation
systems meeting this requirement, we assume future product

0.-. -%
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-% packaging changes. There seem to be two viable positions to take
%' regarding the assumptions on these changes.

1. Assume only an absolute minimum, that a single low level
address" can be protected.

2. Allow the set of protected functions to grow as needed to _ -

conveniently interface the workstation in a manner as
similar as possible to multi-access systems.

The extreme solution to the second approach could be an access
machine for each workstation, although other solutions are also
possible. For our current work we will assume the second
approach, planning only for an arguably insecure implementation
directly within the workstation.

The network (cable) itself may also not be totally
physically secure. While parts of it can be expected to be
secure (e.g. within a secure machine room), other parts can be
expected to be exposed to unauthorized connection.

7.2 The Cronus Access Control Concept

7.2.1 Decomposition of the Access Control Problem

The basis of access control in Cronus is the ability of
Cronus to reliably deliver the address of a sender of a message
(or invoker of an operation) to the receiver of the message. The
Cronus communication subsystem is implemented so that this is
true. That is:

for IP and Virtual Local Network:

If the sender is within the Cronus cluster, the
internet host address of the sender is reliably
delivered to the receiver. If the sender is not within
the cluster, a non-cluster internet host address is
delivered to the receiver, which can be interpreted by
the receiver as indication that the authenticity of the ,
sender's address might be suspect.

for the Cronus IPC/object system:

The UID of the sending or invoking process is reliably
delivered to the recipient of the message.
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",- The recipient of a request can decide on the basis of the .
sender's identity whether or not to perform an operation
requested.

For this to be a useful basis for access control, a means
for reliably associating some authorization with senders'
addresses and process UIDs is required.

One approach is to make static bindings between
authorizations and addresses or UIDs. These bindings would be
"well-known", such that when a process receives a request from . "
the process with UIDY it knows that the process is acting under
the ZAuthority. This is method is used in the ARPANET TELNET
and FTP protocols; users assume that the process for sockets one
and three under the authority of the host administration and can
be trusted with their passwords. Static bindings are too
restrictive to be the sole mechanism in a system like Cronus,
although a few static bindings are required for the access
control mechanism to work (see Section 7.6).

Dynamic binding is useful when authorities are not all known
at system creation time, and when processes are dynamically
created. The system must not only support mechanisms to
dynamically establish the binding between a process and an
authority, but also to dynamically determine the binding from
some system entity in a trustworthy manner.

Most Cronus activity is the result of requests initiated by
users of the system. Human users are represented by an
abstraction called a "principal". If we extend the notion of a
principal to include elements of the system, such as object - -

managers, all activity in the system can be thought of as
initiated by principals. System elements which are principals .?
are called "system principals". Each Cronus principal (human or
system entity) has a unique identifier. Different system
principals have different authorities. For example the primal
file manager and the printer service are Cronus system
principals, neither of which need be authorized for all of the
objects and operations accessible to the other.

Access control can be thought of as consisting of the
following steps:

1. Identification. Determine the identity of the principal
that is requesting a particular operation.

2. Authorization. Determine whether the principal has been
authorized to perform the operation.

A -76. .,.
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For example, when an object manager must decide whether to
perform an operation, it must know the identity of the principal
that is requesting the operation (Identification) and the rights
the principal may have with respect to the operation

*" (Authorization).

7.2.2 Authorization

Cronus uses access control lists to support authorization.
The access control list (ACL), which is part of the object
descriptor, 'protects" a particular action. In the simplest
case, it is a list of the principals who have authorization to
perform the action. When a principal attempts an operation, the

* list is checked for the principal; if the principal is present
the authority to perform the operation has been verified and the
operation may occur.

In Cronus this simple idea is extended in two ways:

1. Group identifiers may appear on an ACL, so an entire
group of principals can be authorized as a unit, or have
its authorization revoked as a unit.

2. A set of rights is associated with each identifier on an
ACL. A single list can selectively control a principal's
or a group's access to an object for which several
operations are defined, such as a file. There is a right
corresponding to each possible operation.

An ACL is a list which contains elements of the form: ..-.:
-. (id, rights)

where midn is either a principal (PID) or a group identifier
(GID), and "rights' define t1e principal's or group's
authorization with respect to the object the ACL protects. The
allowable rights for a particular ACL are dependent upon the kind
of object being protected.

* Users log into Cronus as principals by supplying the
appropriate name and password(9). A system component called the

(9). See section 13.3 for a more complete description of the
login and session initiation scenarios.
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Authentication Manager maintains records of all principals and
groups. Collectively, these records form a User Data Base (UDB).
At login time the Authentication Manager expands the membership
of a user-specified subset of the access control groups which he
is a member. This is a transitive closure computation on the
specified list of group identifiers in the user's record. The
user's own id, PID, is added to the result of the expansion. The .
resulting set of principals is called the access group set (AGS)
for the process:(10)

AGS = {PID} U ShowGroup-MembershipExpanded (GID)
for the default GIDs in the PID record.

The AGS is used in access control checks as follows. When
an action protected by an ACL is attempted, the ACL is compared

-. .with the principal's AGS. If an entry of the form:

(ID, (..., Right, ... )

where

ID is in AGS, and
Right is required to perform the action

is found on the ACL, the principal's authorization is verified
and the action may be performed.

During a session, a user c,'n remove identities from the
current AGS. Group identities may be added, provided the user is
a member of the added group. This is accomplished by operations
invoked on the Authentication Manager, which causes the update of
the current process AGS list. These operations affect a single
process only.

7.2.3 Identification in Cronus

There are two related identification problems:

Ii. At the start of each session, the identity of the user
O must be established.

(10) The basic ideas associated with Access Group Sets have been
adapted from similar work at Carnegie Mellon University in the
Central File System project.
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12. Processes must be able to ascertain the identity of the
principal corresponding to the processes with which
they interact.

The solution to both problems lies in a set of mechanisms that
bind processes with principalaids and group identifiers. These
mechanisms depend upon the ability of the communication system to
deliver the UID of a sending process to the receiver of a message
reliably.

It is useful to restate these problems into the following
terms:

1. A binding must be established between a process and an
AGS;

2. There must be a means for a process P1 to determine the
binding between another process P2 and its AGS.

When a user approaches Cronus to start a session a process (P1)
is allocated(ll). P1 cannot be bound to U (the user's principal
identifier) until Cronus establishes the connection via password
authentication. Before that happens, P1 is bound to a well-known
principal, "NotLoggedIn", which has minimal authorization. One
task of the login procedure is to change the binding of P1 from
NotLoggedIn to U.

The binding between a principal identity and a process is
established by the Authenticate-As operation. The user engages
in an authentication dialogue with Cronus, supplying a name and
password which is checked against the UDB. If the authentication
dialogue succeeds, the AGS for U is computed and a binding is
established between P1 and U. A record of the binding

P1, U, AGS

is maintained by the process manager for the authenticated
process, to be used throughout the process lifetime. The
identity of the user has been established, completing problem II.

(11). Cronus actually uses a more complex process structure to
support a user session, as indicated in section 13.3. However,
the following discussion is insensitive to these details, so we
use this simple model in our explanation.
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Throughout the course of U's session, Pl and other processes
acting on behalf of U attempt actions which require authorization

verification by the processes that perform the actions. This is
-. ' -problem 12. Consider a situation in which P1 has requested

another process (Sl) to perform some action (A), shown in Figure
9.

-- -- -- --------

I I Invoke(A,...) "
I P1 I --------------------- >1 S I
I I I I-- -

V.. I
Invoke(AuthorizationBindingOf, PI)

V
-- -- -- -- -- --

* " I Process
• Descriptor ....... >1 Manager I"' • I I•

PlUAGSl j< ......* I . .I

... .......... o....... oo..........o.o....... o......

Figure 9 . Retrieving Access Control Data

In order to perform an access control check, S1 needs to
determine the binding of P1. The identity of P1 is known to Si
because Pl's UID was delivered along with the operation
invocation that requests A. qi can obtain the binding of P1 by
invoking the AuthorizationBindingOf. operation:

AuthorizationBindingOf(Pl) -> U, AGS.

-. Authorization_BindingOf causes a message to be sent from S1 to
the manager for process P1, which returns the bindings for the
process to Si.
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* The login sequence establishes a binding between user (U)
and an "initial" process (P1). Bindings are established for
other processes created during a user session through

-. inheritance. During a user session, processes created by an
authenticated process inherit both the principal identity and a
specifiable subset of the current AGS of the initiating process.
Object managers attain their principal identities and access
group sets as part of the system initialization phase.

7.3 Authentication Manager

* .[The Authentication Manager defines and maintainE two types
of abstract Cronus objects: CTPrincipal and CTGroup. Like
other system objects, the CTPrincipal and CTGroup identifier
objects have symbolic names for convenient human access.
Principals are symbolically named from a private namespace
maintained by the Authentication Service, which ensures their
uniqueness across the entire system. Symbolic group identifiers
can be placed anywhere in the Cronus catalog, at the convenience

.- of the creating user.

Operations on objects of type CTPrincipal and of type
CTGroup are controlled by access control lists. By convention,

* any legitimate principal can create a new CTGroup object, but
.- - only administratively authorized principals can create a new

principal. When the system is initialized, it contains at least
S. -one pre-defined principal, which is authorized to create other

principals.

The next phase of Cronus will support a redundant
Authentication Manager to ensure a survivable authentication
capability.

7.4 Objects Related to Authorization

The object of type CTAuthenticationData is the user data
base consisting of the records for system users and for groups of

.* principals which have been defined in the system.

The object of type CTPrincipal is the permanent data base
entry that Cronus maintains for each legitimate user. It is the
repository for such user-specific data as default priority and
other parameters associated with resource management; default " -
modes of behavior (e.g. default working directory); and -.
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authorization data. It is expected that new kinds of data will S
be added to the principal objects from time to time.

*" A CTPrincipal object can be expected to contain the
following data:

o Principal unique-identifier (PID)
o Symbolic name of principal
o Access control list
o Encrypted password
o Direct group memberships -
o Direct group memberships to be expanded on Login
o Range of priority service authorized
O Default priority
O Name of default initial subsystem
o Name of home directory for the principal ... (other

user-specific data)

The priority data will be used in resource management
functions. The default subsystem is the program automatically
invoked following login. A home directory is a directory
assigned to the principal that serves as the initial current V
directory for catalog accesses; in particular, it contains
additional user initialization data.

Groups (objects of type CTGroup) gather a number of
identities for purposes of collectively granting them rights to
objects and operations. Any user can create a new group, and ___

- .place any other principal or group in it. This group can then be
placed on an ACL. The access control list for the group object

., controls modification of the group definition.

A CTGroup object contains at least the following data:

o GID for the group
o Name of the group
o GIDs of the groups of which the group is directly a

member
0 o IDs of principals (PIDs) and groups (GIDs) that are

direct members of the group

There are a few special group identifiers. One of these
represents the set of principal identifiers (that is, it is an
all users group) without actually enumerating them anywhere.
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This group identifier is automatically appended to every AGS
computation. Another special group represents a "wheel" or
"superuser" capability. Admission to this group is carefully
controlled. A server with principal identifier which is a member
of the supervisor group can be used to support a capability based
manager for exporting rights from the cluster.

As a complement to All Users group, there is an entry which
gives an identity access to all objects in the manager process
domain. For example, a file manager identity might be given
access to all file objects (present and future). This is useful
in handling peer managers, which would be designated by a system
principal identifier specific to the function they perform.

7.5 Operations on Authorization Related Objects

7.5.1 Operations on the Object of type CTAuthenticationData

The following operations are used to create and locate the
objects of type CTPrincipal and CTGroup which comprise the
authentication data base:

Create-Principal (...initial parameters...) -> new
principalUID

When an object of type CT-principal is created, the
creating principal is given all rights to the created
object's operations. The new principal added to the
access control list has SetUserParameters permission,
as well as ShowSystemParameters and
ShowUserParameters permissions.

Lookup-Principal (principal symbolic name) -> PrincipalUID

Convert the symbolic name representation of a principal . -

into its unique identifier.

Create-group (... initial set of member UIDS) -> new group
UID

0
The creating principal is given all rights to the new
group. Anyone can create new groups.

The following operation is used during login to establish
the binding of the the user to the principal UID:
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Authenticate-As (user-name, encrypted password) ->
(principalUID, list of user specific keys and values for
UDB data)

Execution of this operation is controlled by the
password for the user entry. If successful,
Authenticate-As computes the current AGS, based on the
default expansion list for the principal. The
principalUID and the AGS for the invoking process are
replaced by the new principalUID and the current AGS.
The AutheticateAs operation can be performed by any
process at any time. The principalUID is returned to
the invoking process.

The following operations allow processes to control the
identities applicable to an authenticated process. They effect
only a single process, which may be either the invoking process
or another process authenticated to the same principal.

Enable_AccessGroup (list of groupUIDS, processUID) ->
status

Expanded the groupUID and add the result to the AGS of
the named process, provided the principal is already a
member of the groups named.

DisableAccessGroup (list of groupUID, processID) ->
status "

Remove the set of groups of the expanded groupUID (if
they are present) from the AGS of the process named by
processID.

7.5.2 Operations on Objects of type CTPrincipal

The following operations maintain and interrogate the

objects of type CTPrincipal:

Delete-Principal (principalUID) -> reply code

Permanently remove the object identified by
principalUID. This may be done only by system
administrators placed on the access control list when the
object was created.
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ShowGroupMemberships (principalUID) -> list of group_UIDs

Display the group UIDs for all groups of which this
principal is a direct member, noting which groups are in
the default expansion list for the principal.

Add__toDefaultGroupExpansionList (principalUID, list of
groupUID) -> reply code

Delete-fromDefaultGroupExpansionList (principalUID list
of group UID) -> reply code

Change-Password (principalUID, new password) -> reply code

The principal entry in the user data base contains user-
specific fields. To limit the number of distinct operations and
permissions needed to handle those fields, we specify two pairs
of operations, one to Show and Set parameters which are under
administrative control (e.g. allowable user priority range, disk
quota,) and the other to Show and Set user controllable
parameters (e.g. default priority, default home directory).

ShowSystemParametere (principalUID) -> (parameter name,
value pair list)

ShowUserParameters (principalUID) -> (parameter name,
value list)

SetSystemParameters (principalUID) (parameter name, value
list) -> reply code

SetUserParameters (principalVID), (parameter name, value
list) -> reply code

7.5.3 Operations on Objects of type CTGroup

The following operations are used to inspect and maintain
the group identifier objects:

Delete-Group (groupUID) -> reply code

AddtoGroup (groupUID, list of new member UIDS) -> reply
code
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Remove-fromGroup (groupeID, list of member UIDS to remove)
-> reply code

ShowGroupMembers (groupUID) -> (list of direct groupjii member UIDS) "

ShowGroupMembersExpanded (groupUID) -> (list of direct A
and indirect group memberUIDS)

ShowGroupMembership (groupUID) -> (list of groups of which
this group is an direct member

ShowGroupMembershipExpanded (groupUID) -> (list of groups
of which this group is a direct or indirect member)

7.5.4 Operations on Objects of Other Types

thatThe following operations are the show and modify operation
that apply to the access control lists for all the object types.
These operations are themselves controlled by the access control
list for the object being interrogated.

ShowAccessControlList (objectUID) -> list of ACL entries

Add-toAccessControlList (objectUID, list of ACL entries) "/
-> reply code

RemovefromAcessControlList (objectUID, list of ACL
entries) -> reply code % e

When an object is created, the default access control list
gives the creating principal all rights to it. Additional access
control list entries can be entered by the creating agent using

.- the access control list modification operations.

7.5.5 Operation of the Access Control Authorization Function

Cronus access control checks the current identity of the
accessing agent against access control lists maintained by the
service provider. A process is authenticated in a way which
binds the process UID to a set of external identities defining .. ,
the authorizations of the process. These identities, the AGS,

A-86

. .e. . . .-- 5

...". ,,. ..', .,, ... ..;,. ..v... ...... . ".. > ...-....,. . ,... "..',,.v-.-..'..,. .,,.. . .,,... . . .-.. .,..v'.. .,.. . . .v."..........

. . ,..., .. ,..< .. " .". '. "........ , .. '.. .,,,.,,: % ',',, -.4 ,.. . . .. * .,.,."



Report No. 5261 - Part A Bolt Beranek and Newman

are available to any service-providing process. This section
discusses the authorization function which is part of the service
provider.

In general, the access control steps within a resource
manager proceed as follows:

1. The request is parsed to determine the originating
process UID and the operation/object requested. The
processUID is trusted because it is added to the message
by the operation switch. Universal public privilege for
the operation to all objects managed by the manager is
first checked, to see if the specific access check is
needed.

2. A manager-based cache of process/object authorization
pairs for the processUID is checked for a valid current
entry.

3. If there is no corresponding cache entry, the accessing
agent's AGS is obtained. This data is also cached but on
a per-host basis by the AGS cache manager. If present on
the host, this cache manager provides a high performance
interface to the AuthenticationBindingsOf function.
There is a broadcast-based protocol for alterting AGS
cache managers to entries that should be purged. If an
AGS cache manager does not run on a host, managers

V execute the AuthenticationBindingsOf operation
directly, and the AGS is not cached.

4. The access control software computes a new
processUID/object authorization entry using the AGS and
the access control list maintained with the protected
object/operation. The processUID authorization entry is

"4 then put in the manager cache.

5. The process UID object authorization is used to verify
permission. If authorized, the operation is passed on to
the operation code. If unauthorized, the request is
rejected, and any cache entry is deleted.

The permission authorization function is accomplished by a
set of routines and data structures that we call the *gatekeeper"
because of its role as protector of the objects/operations.
Gatekeeper functions can be invoked as part of the procedures for
receipt of a message, or called directly from the host process.
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Access control can be applied to operations on the object -
set supported by the receiving manager process, or on operations
defined by the receiving service. There is a fixed maximum --
number of operations which can be access controlled by the
gatekeeper software (currently 32) for any object. These
operations are represented as positions in a bit vector
associated with both the identity it authorizes (principal
identifier or group identifier) and the object it controls.

7.6 Host Registration

The lack of physical security for various parts of the
system presents problems for the access control subsystem. Since
the network cable may be accessible to tampering, the network
might be tapped. An outsider could then inject or inspect
packets under an assumed network address. A workstation might
pose as the site of a trusted manager. We can use administrative
authorization to alleviate these problems.

Encryption of all local network traffic at the communication'S
* level is a form of authorization. It can remove the threat of

tapping for either listening for or insertion of packets.
Providing the host with the encryption/decryption key is
administrative authorization to participate in the Cronus
cluster. If a host can communicate at all, it can be considered
an authorized host. Because encryption/decryption is isolated in
the communication interface, it can be added transparently at any
time. While communication encryption can be thought of as part
of the Cronus design, it will not be part of the initial
implementation.

Since workstations may be treated specially for some access
control decisions, system configuration registry could be the
source of such identification. In addition, the undesirability
of tightly controlling responses to broadcast Locate operations,
makes the registry useful in determining the authenticity of the
respondee. A configuration registry enumerates all of the
authorized system hosts, and the system services (Cronus
functions) which they have been authorized to run.

One secure way to make the registry service available is to
support it on one (or more) well-known Cronus hosts (i.e. hosts
at a well-known internet addresses, say host No. 1, ... ). The
configuration data can then be obtained with an Invoke On Host to
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the well-known hosts using the logical name for the service(12). "."
The cluster configuration service would support the following
functions:

ShowConfigurationHosts (modifier or all) -> configuration
data for all hosts or only for those indicated by
modifier

SetConfigurationHosts (mpdifier, data) - reply code
" modifier indicates ne, configuration, add, delete, etc.!I
.4} Standard access controls apply, with ShowConfigurationHosts

being universally allowed, while Set_Configuration_Hosts limited
to a system administration group.

.4. ..

1). 
.i c t.

-.-,,.

a.. 
..- '

~veracity of responses to the Locate operations, it can not safely ':

"" use Locate to find out where configuration,managers are running. .-'

t.. .
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8 Cronus Primal File System

8.1 Cronus Primal Files

Cronus supports a number of different kinds of files,
including:

0 Primal files. a,'V .

The primal file is the most basic kind of Cronus file.
Other kinds of Cronus files are implemented from primal
files. A primal file is stored entirely within a single
host, and is bound to the host.

o Migratory files.

A migratory file can be moved from host to host. A
migratory file is implemented by one or more primal
files. Each primal file used to implement a migratory
file contains all of the file data.

0.ao Dispersed files. -'

A dispersed file is implemented by one or more primal
files. A dispersed file is one whose contents may be
distributed over more than one host. Each of the primal

. files used to implement a dispersed file contains part of
the contents.

The initial implementation supports only primal files, which
*; are implemented upon underlying single-host file systems. ...,

Primal files are Cronus objects. They have unique
identifiers (UIDs), and may be given symbolic names. There is a
Cronus object type CTPrimalFile. -

Primal files cannot be moyed from one host to another; the
primal file system is partitioned among hosts that store primal
files. The HostNumber component of the UID for a primal file

- always specifies the host on which the file is stored. A copy of
a primal file can be created on another host, and the original
can be deleted. The copy is a different primal file with a
different UID; it just happens to contain the same data as the
original file.

Like other Cronus objects, primal files are accessible to

*-. processes by means of the interprocess communication and ...

operation switch (Section 6). There is a Primal File Manager
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process on each host that stores part of the primal file system.
A client process accesses a primal file by invoking an operation
on the file, in which the UID for the file and the operation to

-- be performed on the file are specified.

The Primal File Manager that maintains a primal file also
defines a mapping between the UID for the primal file and the
information required to manage the file. The collection of
information necessary to manage a primal file is called its
descriptor. The file descriptor includes:

UID of the creator;
Date and time of creation;
Date and time of last write;
Access control list (ACL) for the file;
Information necessary to find the file data on

the storage media;
Current size of the file;
Other information (to be specified as needed)

Most of the operations provided by conventional file systems
(create, read, write, etc.) are implemented for Cronus primal
files. The design is discussed in terms of the normal life cycle
of a primal file which includes:

1. The file is created.
2. Data in the file may be read or written by a client.
3. Information in the file descriptor may be read or written

by a client.
4. The right to access the file may be granted to or revoked

" from other users.
5. The file may be deleted.

File creation involves: the generation of a UID; the
creation and initialization of a descriptor for the file; the
binding of the UID and the file descriptor in the Primal File UID

,.;., Table. Until data is written into the file, the file is empty.
When a primal file is created by a Primal File Manager, it is
created on that manager's host.

There is an issue regarding whether it should be necessary
to open a primal file before reading or writing file data. One
reason for "open" and "close* is to provide for reader-writer
synchronization; another is optimization of read/write
operations. The disadvantage is that open/close add complexity
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..

to the Primal File Manager because it must maintain state
information for open files and deal with the problem of files
opened which are never explicitly closed (e.g., because the
client's host has crashed). Furthermore, if we require open and
close, additional operations must be invoked on the file even
when the read or write is for a small amount of data.

The Primal File Manager supports access to files without
open and provides an open/close facility for clients that need
it. A read or write without open is called a "free read" or a

* "free write". The client may then chose whether the additional
overhead of opening and closing the file is worthwhile. For
example, if we wish to write a simple log message when a process
is initiated, we would probably chose the free write. If, on the
other hand, we were copying a file, we would probably chose to
open the files, incurring the overhead of initiation once, and
gaining further system support for synchronization and data
integrity. A client process may read or write data in a primal
file (subject to authorization considerations) without opening
it, unless another process has opened the file in such a way that
free reads and writes are forbidden.

Free reads and writes are synchronized in the sense that
multiple reads and writes are serializable. This means that the
File Manager will, in effect, perform each read or write
operation in its entirety before performing another operation.

When a file is opened, two parameters specify the access
state requested. One specifies either Read or ReadWrite access.
The second specifies the type of reader-writer synchronization
desired. There are two types of synchronization supported:
*frozen" which permits either N readers or a single writer; and
"thawed" which permits any number of simultaneous writers and
readers. When a file is opened with "thawed" access, readers of

.* the file see updates made by writers of the file.

.\-, Thus, the access states defined for a file are:

free;
frozen read open;
frozen readwrite open;
thawed open;
read in progress;
write in progress.

A file may be opened so long as the access state requested
does not conflict with the current access state of the file.
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Table 2 defines the compatibility of the access states with one
a.-". another, and with read and write operations invoked by a client

without previously opening the file. An OK for an (OPERATION,
ACCESS STATE) entry in the table means that a client process can
perform the operation on a file when the file is in the
corresponding access state; a NO entry means that the operation
will fail when the file is in the corresponding state; a DELAY
operation means that the operation will be delayed until the
operation in progress (and any others that may be queued) are
completed.

ACCESS STATE

free frozen frozen thawed read in write in
read readwrite progress progress

OPERATION

frozen
read OK OK NO NO OK DELAY
open

frozen
readwrite OK NO NO NO DELAY DELAY
open

thawed OK NO NO OK DELAY DELAY
open

free OK OK NO OK OK DELAY
read
free OK NO NO OK DELAY DELAY

write
Table 2. Access State Compatibility

The data in a primal file as a sequence of bytes, numbered
from 0 to N. The read operation specifies the first byte to be -.
read and the number of bytes to be read. The write operation
specifies the byte position of the first byte to be written and N
bytes of data to be written.

In e'rder *, support data system recovery, data that is
written a , le that has been opened for (ReadWrite, Frozen) ,*
access doe- not become part of the permanent file data until the
file is closed. It is possible to close a file opened for -I

A-93

.. . . - ... - .-.- .. ,.- .. ::. '

%e . . • • - - .. " . . . . . ° - -- . .~ * .' . • . . • . - I . - .



Report No. 5261 - Part A Bolt Beranek and Newman

(ReadWrite, Frozen) access in a way that aborts writes made to
the file while it was open.

A file is open to a process. The Primal File Manager
.. provides an operation which returns a list of the UIDs for the

processes, if any, that have a file open. Another operation
returns a list of the UIDs for the files, if any, that a process
has open.

When a process is destroyed with files open, the files are

closed and any writes to (ReadWrite, Frozen) open files are
aborted. The normal close operation may only be invoked by the
process that opened the file. An alternate close operation can
be used by other processes to close a file during cleanup.

A client can read the descriptor of a primal file. Some of
the information in the file descriptor is changed as a side
effect of operations on the file. For example, when a file is
written, the date and time of last write is changed. There is
other information that the client may wish to change explicitly.

Access to a primal file is controlled by its access control
-... list (ACL). Access to a primal file may be granted to other

users by adding entries to the ACL. Similarly, access to a file
may be revoked from a user by removing the corresponding entry
from the ACL.

This document assumes that only Delete will be supported,
but it is relatively straightforward to modify the specification

"" of Cronus primal files to accommodate a Delete, Undelete, and
.5 Expunge model of file removal.

8.1.1 Executable Files

Executable programs will be stored as files of type
CTExecutableFile which is a subtype of primal File. There will

"'-" be many different kinds of hosts in Cronus, and generally an
executable program file which can run on one host type will not
be able to run on another. In addition to the normal
descriptive information, files of this type have information that
specifies where they can be run. The additional information

"- . . maintained for an executable file would include:

-. . O The type of processor required to execute the program
stored in the file.

."5 .. . .. . . . . . . . . .-.. . . . . . . . . . *
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o The run-time environment required by the program
including the local operating system and necessary
peripheral devices.

8.2 Crash Recovery PropertiesI

If a primal file operation is invoked, the Primal File
Manager normally acknowledges the operation, indicating the
disposition of the operation (e.g., success, failure, and reason)
and, depending upon the operation, to return any data requested.

The Primal File Manager does not acknowledge write requests
until the data has been written to non-volatile storage. A
client process can be sure that the data has been written when
the acknowledgement is received, even if the Primal File Manager
or its host should crash shortly afterward.

Primal File write operations are atomic with respect to host
crashes. That is, if the Primal File Manager host should crash-
during a write operation, after the host and Primal File Manager
have been restarted and the Primal File Manager has performed its
recovery procedures, the write operation will have either
occurred in its entirety or no part of it will have occurred. If

* the crash occurs after the data has been safely written but
before the acknowledgement has been sent, the acknowledgement
will never be generated.

This atomicity property is true for the Close-and-
RetainWrites operation. That is, either none or all of the
writes made while the file was open will have been performed.

8.3 Operations for Objects of type CT-Primal.File

The following operations are supported for primal files:

.,The Open and Close operations provide an atomic transaction
capability for a single primal file. At somelater point, we may
define explicit BeginTransaction, EndTransaction, and
AddToTransaction operations which could be used to provide a

for,
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capability for transactions that involve more than a single
primal file.

8.3.1 Operations on Object of Type CT-PrimalFileSystem

The following operation is defined on the object of type
CT...Primal-File-.system:

- Statu.'HostID) -> StatusInformation

Create(HostID CLPrimalFile) -> UID

Create a primal file and return the UID for the new

file. The file is empty until data is written into
it. The ACL for the file given the creator has every
right that is defined for a primal file.

Delete(UID) -> ReplyCode

Deletes the file specified by UID.

Open(UID, TypeOfAccess, TypeOfSynchronization) -> ReplyCode

where TypeOfAccess is:

Read, or
ReadWrite

and TypeOfSynchronization specifies the reader-writer
synchronization for the file and may be:

Frozen, which means N readers, or 1 writer is
permitted, or

-.. Thawed, multiple writers and readers permitted.

Close(UID, Mode)

where Mode is

RetainWrites or AbortWrites.

RetainWrites causes the file data to be updated.
AbortWrites causes the file data to remain as it was
prior to being opened. (This mode is only meaningful

% %-"-96
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Read(UID, Position, Amount) -> Data

Position specifies a starting byte position, Amount
specifies the number of bytes to be read, and Data is
the file data returned.

Write(tJID, Position, AmountToWrite, Data) -
AmountWritten

Position specifies a starting byte position (the
value -1 is used to indicate the current end of the
file); Data is the data to be written AmountToWrite
is the number of bytes to be written; and
AmountWritten is the number of bytes actually
written.

Truncate(UlD, Length) -> Reply Code

*Truncate the file to Length, discarding all data
* beyond that point.

Append(UID), AmountToWrite, Data ->amount written

Append data to the current end of the file. This
operation is equivalent to Write with a position of
-1, but permission may be granted separately.

ReadDescriptor(UID) -> file descriptor data structure

Returns the file descriptor for the file. r-

WriteDescriptor(UID, WriteSpec) -> ReplyCode

WriteSpec specifies the changes to be made to the

descriptor for the file. 7

ReadACL(UID) -> ACL

Returns the access control list for the specified
file.

AddToACL(UID, ACL-Entry)IlAdds the AC-sntry to the access control list for the
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RemoveFromACL(UID, ACLEntry)

Removes the ACLEntry from the access control list
for the file.

FilesOpenBy(HostID,ProcessUID) -> List

Returns a list of the primal files managed by the
Primal File Manager on HostID that are currently open
by the specified process. The list of element is of
the form: (PrimalFileUID, TypeOfAccess,
TypeOfSynchronization).

OpenStatusOf(UID) -> List

Returns a list of the processes which currently have
the file open. The list element is of the form:
(ProcessUID, TypeOfAccess, TypeOfsynchronization).

CloseProcessOpenFile(FileUID, ProcessUID, Mode) -> Reply
Code

Close the file, retaining or aborting writes as
specified by Mode HostID, if it is currently open by
the specified process.

CloseAllProcessOpenFiles(HostID,ProcessUID, Mode) -> Reply
Code

Close all files open by the process that are managed
by the File Manager on HostId.

°'.- ,
The Primal File Manager returns information about the status of
the primal file it manages, such as the amount of free space, the
amount of space used by existing files, the number of files it ;."
manages, the number of files it manages, the number of files
currently opened, etc.

This information will be useful to system operations
personnel as well as to clients who might use it when deciding
where to create primal files.
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9 Symbolic Naming

9.1 The Cronus Symbolic Name Space

9.1.1 General Syntactic Conventions

Cronus has a global symbolic name space with the following
properties:

'C 1. Cronus symbolic names are location independent.

a. A name for an object is independent of its host.

b. A name that refers to an object can be used
regardless of the location from which it is used.

-2. Cronus symbolic names are uniform.

Common syntactic conventions apply to names for different
types of objects.

The symbolic name space is constructed upon a
hierarchically structured tree. The tree contains nodes andfo

* directed labeled arcs. There is a distinguished node called the
root". Each node has exactly one arc pointing to it, and can be
reached by traversing exactly one path of arcs from the root
node. Nodes in the tree represent Cronus objects which have
symbolic names. A link facility transforms the name space into a
network, so a node may be reached by more than one path.

Non-terminal nodes (those from which arcs may originate) are
called directories. Each labeled arc corresponds to a catalog
entry. The label for an arc is called an "entry name"

The complete name of a Dode, which is the symbolic name for
the object, is formed by concatenating the labels on the arcs
traversed on the path from th~e root node to the node in question,
separated with the character U 3 * In other words, the syntax for
a complete name is:

where x' and ly' are arc labels, the , brackets indicate
optional presence, the *:" is a punctuation mark to separate name
components, and I( s )** means zero or more occurrences of s.

It is also possible to name nodes relative to a directory.
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Such a relative or partial name is formed by concatenating the

labels on the arcs traversed on the path from the directory in
question to the node. The syntax for a partial name is:

{x : yI

There are conventional names for the current ("connected" or
"working") directory, its parent, and the user's initial
directory.

9.1.2 Types of Objects Cataloged

The most common types of cataloged objects are the various
kinds of files, but any other object may be cataloged. Some
conventions will be adopted; for example, there will be a :dev

. directory which contains the symbolic names for the devices on
the system. These conventions are not enforced by the system,
and any object may be entered into any directory (assuming
appropriate authorizations) at the convenience of the user.

There are certain special object types which are used in
support of the catalog itself, including:

o Directories

A directory object (type CTDirectory) is the collection of
catalog entries which correspond to the arcs that originate
from a non-terminal node in the name hierarchy tree.

0 Links .

The catalog entry for a link (type CTSymbolicLink)
identifies another point in the symbolic name space called
the link target. These objects are stored in the catalog
itself. Links are cataloged as terminal nodes in the name
hierarchy tree. Links are handled specially within the
Lookup operation.

o External linkages

An external linkage (type CTExternalLinkage) is an object
which implements access to another name space. External
linkages are cataloged as terminal nodes in the name
hierarchy tree. External linkages permit users to refer to
non-Cronus objects directly from the Cronus name space. For
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example, an external linkage might be used to give a file
-, directory on a Cronus application host a Cronus symbolic

name.

For some object types it is useful to be able to think of a
collection of the objects as a sequence of "versions" or

".. revisions' of the same logical object. The Cronus Catalog
""*-"implements a version feature for certain types of objects; for

example, versioning will be supported for files, but it will not
be supported for directories.

For types for which versioning is supported, the catalog
entry operation will permit the same name to be entered into a
directory more than once. The first time a name is entered, the
result will be version 1 of the object. Subsequent entries of

'" the same entry name will result in successively higher versions
of the object. All of the catalog operations which take a name
parameter will allow the specification of a version number as

-. -- well.

The catalog managers provide routines that can scan through
the catalog and return catalog entries for names that match a
specified pattern.

,. ° 4

9.1.3 Directories and Links

The catalog entry operation can be used to establish a
symbolic name for a Cronus object of any type except a directory,
symbolic link, or external linkage object. These objects must be
created by special operations because they are inserted in the
catalog when they are created (since other objects need not be
named, the creation of the object and naming of the object are
separated). In a sense, these objects are special in that they

" must have a symbolic name in addition to a UID.

- Figure 10 shows a relatively simple symbolic name tree and
p.... Figure 11 shows part of the underlying directory structure that

corresponds to the part of the tree that contains the name
:a:b:c.4

When a lookup operation is invoked, the catalog manager
interprets a complete Cronus symbolic name by starting at the
root directory. The UID of the root directory is well-known.

V.
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The catalog manager processes a name component by searching the
current directory for a matching catalog entry. If it finds a

A matching entry and there are no more name components, the lookup
is complete and it returns the catalog entry. If it finds a
matching entry and if there are more name components to
interpret, the entry must be for a directory, symbolic link, or
external linkage, or else the lookup ends in failure. If the
entry is a directory, the catalog manager continues the lookup by
obtaining the UID for the directory from the entry and then using
it to interpret the next component. Interpretation of a partial
symbolic name is handled in the same fashion, differing only in
where the lookup starts. For alpartial name, the catalog manager
starts its search at the starting directory parameter of the
l.okup operation.

Symbolic links encountered during lookup are handled
specially. When a link is encountered, a new name is formed by

substituting the link target, which is a complete Cronus symbolic
name held in the catalog entry, for the portion of the symbolicname evaluated so far. The lookup operation then resumes by

interpreting this new name. Links can be thought of as macros
which are expanded during the lookup operation.

A parameter of the lookup operation controls whether links
are to be expanded. If the parameter specifies that links are to
be expanded, the substitution of link targets during the lookup
operation occurs. If the parameter is set to prevent links from
being expanded, the lookup operation terminates when a link is

• "encountered. In this case, the lookup operation will be
_. considered successful if the name has been completely evaluated.

Otherwise, it will be considered a failure.

9.2 Objects Related to the Catalog

9.2.1 Objects of Type CTCatalogEntry

" Each catalog entry is a Cronus object. A catalog entry will
contain the following information:

UID for the object;
Complete symbolic name for the object;
UID for creator of entry (PrincipalUID); and
Type-dependent information.

Type-dependent information for objects of type CTDirectory,
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CTSymbolicLink, and CTExternalLinkage is discussed below.
For objects that are not part of the Cronus catalog, everything
that can be known about an object is maintained by (or can be
obtained from) the manager for the object. The issue is, what
part of this information, if any, should be replicated in their
Cronus catalog entries? This question is answered on a case-by-
case for each object type.

The disadvantage of maintaining information in the catalog
is that the information becomes obsolete as the objects undergo
modification. Maintenance of such information is more difficult
when the object has more than one symbolic name, and hence, more
than one catalog entry.

Performance and reliability are improved if we maintain
information in the catalog about objects. The performance
advantages occur because the overhead of interacting with the
object manager can sometimes be avoided. The reliability
advantages occur when the object manager for the object is
inaccessible, but the catalog entry for the object is accessible.

What, then, is the nature of the coupling between the
information about an object in its catalog entry and the
information held by the object manager? The simplest approach
couples the information very loosely and places responsibility on
the client process. Since this places the burden on all clients,
the information is likely to be unreliable. The Cronus catalog
software provides a tight coupling. When a name is established
for an object, the catalog manager will send an ObjectCataloged
message to the object manager. The object manager then sets an
ObjectCataloged flag in its descriptor for the object, and sends .
back a message containing the information that should be stored
in catalog entry.

As an example, the catalog entry for a primal file might contain "
type-dependent information, such as:

UID of the file creator (a PrincipalUID);
Date and time of creation;
Date and time of last write; and L

Current size of the file.

When an object is modified whose ObjectCataloged flag has
been set, its object manager will send the information necessary
to update catalog entries for the object to the catalog manager.
The information about an object held by its manager is the truth

-• -
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and any information held in catalog entries for it, except its
symbolic name and UID, is advisory and maintained as a
convenience. The system is structured so that its correct
operation does not depend upon information found in the catalog.

9.2.2 Objects of Type CTDirectory

For directories, no type-dependent information, except
possibly the host that stores the directory, would be maintained
in the catalog entry. All other information about the directory

will be maintained with the directory object itself.

9.2.3 Objects of Type CTSymbolicLink

For a symbolic link, the type-dependent information, which
completely specifies the link, a link is the complete symbolic
name for the link target.

UID;
Complete symbolic name for the link;
UID for creator of entry (PrincipalUID); and
Complete symbolic name for the link target.

.- ,,

9.2.4 Objects of Type CTExternalLinkage

For an external linkage, the type-dependent information
completely specifies the external linkage. It includes a Cronus
interpretable designator for locating the other name space and a
symbolic name that is interpretable in that other name space.
The details of the method for designating other name spaces and
for interacting with them are incomplete. A catalog entry for an
external linkage will include:

UID;
Complete (Cronus) symbolic name for the external -,.

linkage;
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UID for creator of entry (PrincipalUID)
-. Cronus interpretable designator for the other

name space; and
Symbolic name interpretable in the other

name space.

9.3 Catalog Operations

9.3.1 Objects of Type CTCatalogEntry

= The following operations are defined for the Cronus symbolic
catalog:

Enter(DirUID, EntryName, ObjectUID) -> CatEntUID

Establishes a symbolic name for an object. A check is
made to determine whether EntryName is already in use
an the specified directory. If EntryName is not in
use, a catalog entry is created. If EntryName is in
use, and the type of the object cataloged under
EntryName is the same as the type for ObjectUID, and

- versioning is supported for that type, then a new
entry for a new version of EntryName is created;
otherwise, the operation will fail. This operation is
not defined for objects of type CTDirectory,
CTSymbolicLink, and CTExternalLinkage.

Remove (DirUID, CatEntUID) -> ReplyCode

Remove CatEntUID from DirUID. The corresponding
name for the object is also removed from the symbolic
name space. This operations not defined for objects
of type CTDirectory.

Lookup (StartDirUID, Name, FollowLinks)
-> DirUID, CatEntUID, CatEntContents

-v Find the Name in the catalog. FollowLinks controls
whether links are to be expanded during the lookup.
If Name begins with " :", it is a complete symbolic

eze, name and the lookup begins in the root directory.
Otherwise, Name is treated as a partial name. In

*..
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this case, StartDirUID is the start point for the
lookup. The DirUID returned is the UID of the
directory that contains the catalog entry.
CatEntContents is the data structure for the catalog
entry. It includes the object UID, the complete
sybmolic name, and possibly other type-dependent
information. If any links were expanded during the
lookup, the symbolic name in the CatEntContents will
not be the same as the Name parameter.

* .ReadEntry(DirUID, CatEndUID) -> CatEntContents

Returns the contents of the specified catalog entry.

ChangeEntry(DirUID, CatEntUID, NewContents) -> Reply Code

Modifies the type dependent information in a catalog
entry.

InitScan(StartDirUID, PatternSpec)
-> ScanState, DirUID, CatEntUID,

CatEntContents

Initializes a catalog scan, and returns the DirUID,
CatEntUID, and contents for first catalog entry, if
any, that matches PatternSpec. If it begins with a
":", the pattern is for complete names and the
StartDirUID parameter is ignored. Otherwise,
PatternSpec specifies partial names and StartDirUID
is required. ScanState represents the current state
of the scan and must be supplied on subsequent
interactions with catalog to obtain additional
catalog entries matching PatternSpec. ScanState can
be tested to determine when the scan has ended.

-. - ScanDirectory (ScanState).: ' [ -> ScanState, DirUID, '""
CatEntUID, CatEntContents

Perform the next step of a catalog scan and returns
the next catalog entry, if any, that matches the
pattern. The ScanState specifies the current
position of the scan, and the returned value of

- ScanState parameter indicates the position after the
step has been taken.

LookupWild(DirUID, PatternSpec)
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0

-> list of
(DirUID, CatEntUID, CatEntContent)
tuples

This operation initiates and performs a catalog scan.

EntriesOf (ObjectUID)
-> list of (DirUID, CatEntUID) pairs

Returns the UIDs of all catalog entries for the _-
specified object. The result may be zero, one, or -m

more catalog entry UIDs. This operation does not
. * return pairs which are the result of links.

ChangeObjectEntries(ObjectUID, NewContents) -> Reply Code

Update every catalog entry for the specified object.
It will be used by object managers to keep
information held in catalog entries for object
current.

9.3.2 Objects of Type CTDirectory

The following special operations are defined for objects oftype CTDirectory:

CreateDir(OldDirUID, EntryName [, HostID]) -> DirUID,
Cat EntU ID

Creates a new directory by entering it. A catalog
entry for into the OldDirUID under the name
EntryName. The optional HostID specifies the Cronus
catalog host that is to store the new directory. The
Host ID parameter is examined only if the dispersal
cut (see Section 9.4) is below OldDirUID. If it is
not supplied and OldDirUID is above the cut, the new
directory is created above the dispersal cut. If the
HostID parameter is supplied, then the new directory
is created below the cut and is stored on the
specified host. Versions are not supported for -
directories.

DeleteDir(ContainingDirUID, DirUID) -> .-,

- .Delete a directory, which succeeds only if the "'"
directory is empty. .n
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9.3.3 Objects of Type CTSymbolicLink

The following special operation is defined for objects of
type CTSymbolicLink:

EnterLink(DirUID, EntryName, TargetName)
-> CatEntUID

Establishes a link in DirUID with name and target
TargetName, which must be a complete symbolic name.
Versions are not supported for links.

9.3.4 Objects of Type CTExternalLinkage

.'. . . The following special operation is defined for objects of
type CTExternalLinkage:

EnterExternalLinkage (DirUID, EntryName,
ExternalNameSpaceSpec,

ExternalName) .
-> CatEntUID

Establishes a new external linkage in DirUID.
ExternalNameSpacespec specifies the external name
space. ExternalName specifies the target for the
external linkage, and is a name that is interpretable
within the external name space. Versions are not
supported for ExternalLinkages.

9.3.5 Access Control for Catalog Operations

All of the catalog operations are operations on one or more
directories. There are three rights defined for access control
purposes:

ReadDirectory,
WriteDirectory, and
ModifyACL.

ReadDirectory rights are needed in Lookup for each of the
directories required to interpret the Name. ReadDirectory rights

M are needed in ReadEntry for the directory that contains
CatEntUID; in EntriesOf for the directories that contain any
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CatEntUIDs that are returned; in InitScan for the start
directory; in LookupWild for all directories encountered; and in
ScanDirectory for the directory specified in the ScanState.

WriteDirectory rights are needed in Enter for DirUID; in
Remove for the directory that contains CatEntUID; in ChangeEntry
for the directory that contains the entry to be changed; in
CreateDir for OldDirUID; in ChangeObjectEntries for each
directory that contains a catalog entry that is changed; and in
DeleteDir for the directory that contains the directory being
deleted.

The Table 3 summarizes the access rights required for the
various operations.

Read Write
Directory Directory

Enter x
EnterLink x
EnterExternalLinkage x
Remove x
Lookup x
LookupWild x
InitScan x
ScanDirectory x
ReadEntry x
ChangeEntry x
CreateDir x
DeleteDir x
EntriesOf x
ChangeObj ectEntries x

Table 3. Access Rights Required for Catalog Operations

9.4 Catalog Implementation

,4.
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9.4.1 Introduction .

The following implementation issues are discussed below:

1. the use of Cronus data storage resources to implement the
catalog data base;

i.4- 2. the distribution of the catalog data base among Cronus
hosts; and,

3. the manner in which client processes interact with the
catalog manager which implement the catalog functions.

9.4.2 Implementation of the Catalog Hierarchy

Directories are implemented by files. The catalog manager
maintains a UID table for the objects it manages. Since the
principal objects implemented by the catalog manager are
directories, this table is called the Directory UID Table. The
Directory UID Table maps the UIDs for directories and their
object descriptors.

A directory contains zero or more catalog entries. The
catalog entry for a (inferior) directory contains the UID of that
directory. To access a directory given its UID, the catalog
manager uses the Directory UID Table to obtain the object
descriptor for the directory, and then uses the file UID in the
descriptor to access the file that holds the directory.

The catalog manager also maintains a Cataloged Object Table
which implements an object-UID-to-catalog-entry mapping, which
has an entry for each Cronus object that has a symbolic name.
The entry contains the UID of the cataloged object and a list of
(DirUID, CatEntUID) pairs for each catalog entry for the object.
The Cataloged Object Table is updated as part of the Enter,
Remove, CreateDir and DeleteDir operations, and it is used to
implement the EntriesOf and ChangeObjectEntries operations.
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9.4.3 Distribution of the Catalog

9.4.3.1 Principles Affecting Distribution

Among the considerations influencing catalog distribution
are:

1. The catalog should not be stored at only one site.

This is a reliability consideration.

The catalog should be distributed, and it should probably
be replicated in some fashion.

2. The entire catalog should not be stored at any single
site.

This is a scalability consideration.

3. It should always be possible to access an object when the

site that stores the object is accessible.

This is a reliability consideration.

Access to objects through the UID name space has this
property since the information required to access an
object, given its UID, is maintained used by object
managers. Access to objects through the symbolic name
space should also exhibit it.

The catalog entry for an object (or a copy of the entry)
should be stored at the same site as the object. In
addition, there should be enough information at the
object site to control access to the object.

4. There is little utility in maintaining a catalog entry
• ,for an object in a more reliable fashion than the object

itself.

This is a common sense consideration.

It is not necessary to replicate catalog entries for
objects beyond that required by (3).

The next two subsections discuss considerations (2) and (4)
in more detail. The discussion includes elements of the
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implementation of the reliable system as well as the primal
system, because these may impose constraints on the primal system
design.

9.4.3.2 Dispersal Of The Catalog

This section examines the requirement that the catalog not
be stored at a single site. The line of reasoning followed is
essentially that that lead to the design of the Elan hierarchy
[BBN 3796].

Directories are the basic unit of distribution for the
Cronus catalog. Directories are implemented by Cronus primal
file so a directory is stored entirely within a single host. The
lookup operation follows the components of a symbolic name
through a number of different directories, one for each component
in the name (assuming it does not encounter a symbolic link).
Unless there is a further restriction on the dispersal of the
catalog, each directory could be at a different site from the
previous one.

It is desirable to limit the number of sites that must be
visited in a lookup operation. Two useful restrictions are to:

1. Require that the catalog structure for entire subtrees below
a certain cut (the 'dispersal cut") through the catalog tree
be stored within a single site. We call a subtree that is
rooted at the dispersal cut a "dispersal subtree" .  

-

2. Require that the catalog structure above the dispersal cut
be stored within a single site. We call the structure above
the dispersal cut the "root portion" of the hierarchy.

Restriction 1 ensures that lookup operations within a
subtree that is below the dispersal cut can be confined to a
single site. Restriction 2 ensures that the task of determining
the site that stores a particular dispersal subtree can be
confined to the site that stores the root portion of the
hierarchy. As a result, lookup operations require at most two
catalog sites.

*.It is useful to add a third property to the dispersal of the
catalog:
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3. The root portion of the catalog hierarchy should be
replicated. Furthermore, a good way to replicate it
is to maintain it at each site that maintains a part

- " of the catalog (i.e. a dispersal subtree). The
reasons for doing this are:

To distribute the load resulting from
lookup operations among several sites.

To allow some lookup operations to be
confined to a single site.

To increase the availability of the root portion of
the hierarchy.

Figure 12 illustrates how a simple name hierarchy might be
dispersed among several hosts according to these three
restrictions.

For this to be practical, it must be possible to maintain
the copies of the root portion in a consistent fashion among the
same set of hosts that store parts of the catalog. It has been
observed that the root changes very slowly, because few users are
authorized to make changes, and because changes generally occur

*" . as the result of the addition or deletion of a user or project.
This means that the maintenance mechanism need not be powerful
enough to handle the general multiple copy update problem.

9.4.3.3 Dispersal of the Cataloged Object Table

The Cataloged Object Table supports the EntriesOf and
ChangeObjectEntries operations. The EntriesOf operation returns
any entries in the Cataloged Object Table for an object
specified. The ChangeObjectEntries operation uses this
information entry for the specified object to find the catalog
entries that need to be modified, and then it modifies them.

When a name is established for an object, an addition is
made to the Cataloged Object Table. If the object already had a
symbolic name, an addition is made to its existing entry. When a
name is removed, the corresponding information is removed from
the Cataloged Object Table. The entry for an object is removed
when its last symbolic name is removed.
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Logically, the Cataloged Object Table can be viewed as a
single table which contains an entry for each object that has a
symbolic name. However, like the catalog itself, the Cataloged
Object Table will be implemented in a distributed fashion. The
following are three approaches to distributing the Cataloged

* Object Table.

1. Total Replication

The Cataloged Object Table can be replicated in its
entirety at every catalog site, so it is accessible
whenever any catalog site is. This simplifies the
EntriesOf and ChangeObjectEntries operations.
Maintaining full copies of the table is relatively
expensive both in terms of storage space, and difficult
to do in a consistent fashion.

2. Fragmentation Among Catalog Sites

Each site that stores part of the catalog can also store
the corresponding part of the Cataloged Object Table. Itis then relatively easy to maintain the individual

fragments of the table. The only catalog activity that
modifies a site's fragment is a change to the part of the
catalog managed at the site. The disadvantage of this
approach is ChangeObjectEntries operations are more
complex; there may be entries for an object i% fragements
at several sites.

3. Fragmentation Among Object Sites

Each site that stores an object can maintain the
Cataloged Object Table entry, if any, for that object.
Its use by EntriesOf and ChangeObjectEntries is
relatively straightforward since the entire entry for an
object is stored at the site that manages the object.
The disadvantage is that, in general, changes occur as
the result of operations performed by catalog managers
that are remote from the entry. For example, whenever a
catalog entry is added to or removed from a directory by
a catalog manager a corresponding change must be made to
a Cataloged Object Table entry which will, in general, be
remote from the catalog manager. Consequently,
cooperation between catalog managers and software at the
object hosts is required to maintain the Cataloged Object
Table fragments.

This approach meshes well with the scheme for providing
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secondary symbolic access paths to objects described
below. Activity that requires modification to the
Cataloged Object Table at a site also requires
modification to the collection of catalog entry copies at
that site. The Cataloged Object Table and the collection
of the catalog entry copies could be implemented by a
single data base, structured so that it can be searched
in two ways: by object UID to obtain the corresponding

,. Cataloged Object Table entry; and by symbolic name to
obtain the corresponding catalog entry copy.

Our inclination at present is to avoid the fully replicated
approach (1), and to continue considering the two fragmented
approaches (2 and 3).

*- 9.4.3.4 Replication of Catalog Information

For the purposes of the current implementation, we can defer
consideration of the problems associated with cataloguing
multiple copy objects.

The primary consideration for replicating catalog

information is one of reliability. The objective is to ensure
that Cronus objects with symbolic names are accessible
symbolically whenever the sites that manage the objects are.

There seem to be two approaches to providing symbolic access
to objects when the Cronus catalog is inaccessible.

1. Replicate the catalog sufficiently to ensure that it is
available with the degree of reliability that is desired. s'
This would involve maintaining multiple copies of
directories.

2. Replicate the catalog information required to access a
particular object (i.e., the information in its catalog
entry) to the degree desired and store it at the host
that stores the object.

We rule out the first approach for two reasons:

1. Directories below the dispersal cut will change
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relatively frequently, making it difficult to maintain
multiple copies of them in a consistent fashion,

2. In later versions of Cronus, a directory may hold catalog
entries for single copy objects and for multiple copy
objects that are replicated differing amounts, making it
unclear how may copies of the directory should be
maintained.

In the second approach, we maintain a secondary symbolic
access path to objects rather than replicate the catalog.
structure itself. The primary symbolic access path to an object .,

-' ' can be represented schematically as:

Cronus
Name -- > catalog -- > UID -- > UID -- > Object

entry Table

The secondary symbolic access path would be supported at the
host managing the object by a copy of the Cronus catalog entry
for the symbolic name. If the object has more than one symbolic
name, a copy of each catalog entry will be stored at the object's
host(13). The secondary path can be represented schematically
as:

Distributed
copies of

Name -- > Cronus -- > UID -- > UID -- > Object
catalog Table
entries

That is, there will be a collection of Cronus catalog entries at
each host for those objects that have symbolic names that require
access to directories on other hosts. The catalog manager

* . software will maintain the consistency between these distributed
- catalog entry copies and the Cronus catalog.

Figure 13 illustrates how the cataloging information will be
maintained. The circular nodes represent objects that are stored
at the same host as their entry in the catalog hierarchy and the

(13). If all of the directories required to find a particular
symbolic name for an object are located on the same host as the
object, there is no need to maintain an additional copy of its
catalog entry at the host to support a secondary access path.
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square nodes are used to represent catalog entries for objects
* .that are stored remotely from their entries.

Under normal conditions, the lookup operation uses the
symbolic catalog. When not all of the directories are available,
the secondary symbolic access path is used. The lookup will
succeed whenever the object itself can be reached, since if the
object has a symbolic name, a copy of the catalog entry object
will be stored at the site that manages the object.

Lookup by means of the primary path is much more efficient
since it is directed, whereas lookup by means of the secondary
path is undirected. There is no a priori knowledge of the host
or hosts that need to be consulted to perform a lookup by the
secondary path. Furthermore, because the collection of catalog
entry copies does not hold complete information about the full

* structure of the naming hierarchy, it will be difficult to
organize the copies into a data structure that can be searched as
efficiently as the hierarchical catalog database.

9.4.4 Cronus Catalog Managers

There is a catalog manager process at each host that
maintains part of the catalog. It is the object manager for
objects of CT-CatalogEntry, CT.Directory, CTSymbolic-Link, and
CTExternal-Linkage.

The catalog managers communicate with client processes by
means of the standard Cronus IPC facility. Since the catalog
hierarchy is distributed among Cronus hosts, different managers
will have direct access to different parts of the catalog. Some
catalog operations can be accomplished by a single catalog
manager and some require the cooperation of two or more catalog
managers.

For example, the Remove(DirUID, catEntUlD) operation would
normally be sent to the manager for directory DirtJID, and only
that manager is required. The lookup operation may require
catalog managers on two hosts if the manager to which it is sent
does not contain the subtree required to interpret the entire--
symbolic name. Finally, the ChangeObjectEntries operation may
require the participation of every manager.

A client process will not, in general, know which catalog
manager is the best one to perform a given operation. For this
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reason, a client can initiate a catalog operation with any ,
catalog manager. If the manager selected can perform the
operation requested by itself, it will. If not, it will interact
with other managers as necessary to perform the operation.
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10 Input/Output

The addition of I/O devices the Cronus DOS must be
considered at three levels: the Cronus user, internal Cronus, and
constituent OS levels. In this section, I/O integration is
examined at each level, and the interfaces to other components of
the same level and to other levels is described. Line printer
and tape drive devices are used as examples.

Devices are Cronus objects, and there are object manager for
each device type. Device names are entered in the symbolic
catalog.

]nteractions with a device within Cronus are with the
manager for the device, which hides the device driver of the
constituent operating system from the client. The generalized
location-independent framework is also independent of particular
devices and of device-specific functions.

Each cevice type has a Cronus logical name (i.e., a well-
known UID with type CTType_Name), and each instance of a device
has a specific UID. There is a single manager on a host for each
device type having a device instance on that host. The manager
will select an available device and initiate the operation. Some
device types may associate a separate Cronus process with each
instance of a device; in this case, the generic request to the
manager will be forwarded to one of the device processes.

Each device has a device manager which maps generic
input/output operations into the corresponding calls into the I/0

. Process Support Library. There four generic operations:

- o Open (DeviceUID, ProcessUID) -> DeviceTaskUID
o Close (DeviceTaskUID) -> Reply
o Read (DeviceTaskUID NumberOfBytes) -> DataBytesRead
o Write (DeviceTaskUID, Data, NumberOfBytes) ->

BytesWritten
The device manager receives an Open request to initiate a device
task for a process. The device manager determines who the
principal is and applies the standard access control mechanisms.
On the successful completion of device initialization, it keys a
task state record to DeviceTaskUID, and replies to the requestor
to proceed. Subsequent requests for input or output must be
accompanied by DeviceTaskUID. When the manager receives a Close
command, from the user process, the dev-ice is released, the task
is terminated, and all state information associated with it is
purged. The task state information will also be purged if the
device manager learns that the user process died without closing
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the device.

Device managers are normally passive entities and must be
directed by explicit requests from user processes. Although this
is the default behavior, it is desirable in some cases for the
device manager to play a more active role. Some device managers,
therefore will be able to initiate an activity.

Consider, for example, how a printer spooler might work. A
user, desiring that a file be printed, executes the "print" file
command which puts a copy of the file in the spooler directory.
The spooler process selects the file from the spooler directory,
and sends an open request to the primal file manager. After a
successful open reply, the spooler sends an open request to the

* line printer manager. When a successful line printer reply is
received, the spooler prints the file by requesting data from the

* primal file manager and sending to the printer process. After
the file is completely printed, close operations are performed on
both the file and the printer, and the spooled file is deleted.

Assume that the spooler, file, and printer manager are not
all on the same host. In this case it is inefficient to require
that each data block go through the spooler. Instead, the
spooler gives the line printer device manager the file object UID

* with directions to initiate a "copy* on that object. When
printing is complete, the line printer device manager notifies
the spooler.

The four generic operations listed above are required for
device managers. There may be any number of additional device-
specific operations supported by a particular device manager.
For example, in addition to the read and write operations, a tape
drive manager must support the tape positioning functions, tape
read/write density, and so on. Any process that is permitted
direct access to the tape drive device manager is allowed to
invoke the device-specific functions. For instance, an archive
process would open the tape drive for reading, and then, on

*direction of a user, retrieve files or even directory trees from
an archive tape.

Symbolic names for devices are in the Cronus Symbolic
*Catalog, in the directory :dev. Assuming there are several line

printers in Cronus, the names ":devtlpt3" or ":dev:gce2-.lptl"
then refer to specific instances of line printers, and are bound

* to the appropriate device UIDS. The symbolic name for the
default line printer is ":dev:lpt". Bound to this name is the

. type name UID for line printer, which can be used to find an
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instance of a line printer.

The constituent operating systems (COSs) are responsible for
handling devices at the most basic level. For each Cronus
device, there must be device driver. The details of the
implementation of this driver COS- and device-dependent. Once
the device driver is established, there is a COS dependent access
path to the device. This access path provides for both device
control and data transfer.

The COS dependence is hidden by the Process Support Library
functions. The implementation of this library varies from one
COS type to another, but it presents a uniform interface to the
Cronus device process.

16
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11 User Interface

The user interface for Cronus consists of several parts.
System access requires a mechanism for enabling the user to
interact with Cronus. This is normally provided by connecting a
terminal to Cronus. The user interface also provides a command
interface, which allows the user to control the session.

The objective is to provide users with flexible, convenient
access paths to the system. Cronus will support a number of
different types of access points including:

1. Terminal access computers (TACs): A Cronus terminal
multiplexer connected directly to the DOS local area
network. TACs are implemented in dedicated GCEs.

2. The Internet: The Cronus local network is connected to
the Internet by means of a gateway computer. Users
outside the cluster may access Cronus through the
-tandard terminal handling protocol (Telnet) which
operates upon a lower level, reliable transport protocol

.. (TCP).

3. Mainframe hosts: Cronus mainframe computers are likely to
have terminal ports, which enable access to Cronus
through Telnet, like other hosts on the Internet.

4. Dedicated workstation computers: A workstation is a
computer that is, at any given time, dedicated to a
single user. Workstation hosts have sufficient
processing and storage resources to support non-trivial
application programs, such as editors and compilers, and
to operate autonomously for long periods of time(14).

User interation is supported by software that runs on one or . --

more computers. This software includes two principal modules.
One module is responsible for handling the user's terminal.
Since this module will often run at the user's access point, we
call it the "access point agent". The other module interacts
with the user at a higher level to provide access to Cronus
resources in response to user commands. We call this module the
"session agent". It is useful to think of the access point agent
and the session agent as processes.

tA (14). The Primal system will not support workstations.
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For a user whose access point is a TAC, the access point
agent runs on the TAC and the session agent runs on a shared
host. Users who access Cronus through the Internet are allocated
user agents that run on shared hosts, and their access point
agents may run either on the (non-Cronus) host used to access the
DOS or on a host within the DOS cluster.

The standard user interface software will be written to
operate with CRT terminals that have cursor positioning
capabilities. More capable terminal devices (e.g., graphics
displays) can emulate the standard terminal device to obtain a
compatible interface. In addition, a means will exist for users
with other less capable terminal devices (e.g., printing
terminals) to access the system. In the latter case, some
sacrifice in the quality, uniformity, and power of the user
interface is unavoidable.

The purpose of a user interface to Cronus is to provide
human users with uniform, convenient access to the functions and
services. User requests should be similar regardless of the
particular Cronus components that implement them. For example,
the way a user instructs Cronus to run a program should be the
same (except for the name of the program) regardless of where
within the cluster the program will execute. A user should not
have to pay undue attention to the mechanics of establishing t;A
access. For example, to run an interactive program, a user
should not have to explicitly establish a communication path with
the host. Similarly, to delete a file a user should not have to
explicitly establish communication with a file manager.

To be uniform and convenient does not mean that a user
interface must make the network or the distribution of the system
invisible to users. Often users will want the distribution to be --
transparent, and the user interface should provide transparency.

. There will also be situations where it will be important for the
- . distribution to be visible to users and for users to exert

control over how the systeni deals with distribution. For
example, system operators and maintainers will need to deal
directly with the system's distributed nature. Furthermore,
ordinary users may want to control where programs run or files
are stored.

A variety of different user interface programs can be
constructed to manipulate the Cronus functions previously
described. Cronus has been designed such that almost all of the
user interface is provided by application level programs, which
permit the coexistence of many different user interfaces and an
evolving approach toward developing them.
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The development of user interface functions will be based on
the following principles:

o Since most requests cannot be performed directly by the
user interface it acts on the user's behalf to initiate
activity by other modules.

o The user interface enables a user to initiate and control
multiple simultaneous tasks. In particular, a user may
have several application programs executing concurrently.

o The command interpreter may be selected at login time.
Users with strong preferences for different styles of
interaction can be accommodated simply by running
different user interaction modules.

O The user interface functions developed for the ADM DOS
will be designed to operate best with a high speed CRT
display terminal, with cursor positioning capability. It
will make use of multiple windows on the display surface

-.-. to display user interactions with the separate activities
being controlled by the user. In addition, windows will
be used to display system status and user help
information.

% ,%
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12 Monitoring and Control

12.1 System Capabilities

The monitoring and control system (MCS) for Cronus includes
monitoring and control of hosts and of the Cronus functions on
these hosts, of the network substrate, and of gateways. The
monitoring and control station provides the functionality of an
operator's console for the Cronus Distributed Operating System.
The MCS treats Cronus as an integrated system, decomposed by
function rather than by host. Where practical, it also monitors
and controls Constituent Operation System (COS) functions from
the same station, but such functions are limited by our desire to
modify the COSs as little as possible. The discussion in this
section includes elements of the Reliable System as well as of
the Primal System. These additions are included to assure that
the Primal System design does not interfere with future
extensions.

Cronus is restarted from the Monitoring and Control System.
For some hosts, the MCS will invoke functions already on the
hosts; in other cases (for example, GCEs which have no disks),
the MCS will download the host to start Cronus.

Network monitoring and controlof a local area cable-based
network such as the Ethernet is relatively simple. It includes a
detection and reporting of changes in host availability;
monitoring and controlling traffic levels on the cable. Cable
utilization and the traffic level of each host is measured.
Priority or allowable traffic density may be set for each host.
Transmissions from a host may be stopped altogether.

12.2 System Model for Monitoring and Control

Cronus consists of a set of services(15) and low-level
system support entities, including the Cronus IPC mechanism. The
MCS is a set of processes on a Cronus host; its functions can be
executed from anywhere in the cluster.

(15) A Cronus service is a process which performs Cronus
operations in response to requests from other Cronus processes.
All object managers, for instance, are services.
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Figure 14 .Structure of the MCS

The MCS monitors both the support layer and the services.
The set of services is extensible, and the MCS is designed to
accommodate new services. 5

The MCS is based on a functional decomposition rather than
on a site-based decomposition of the system. For example, one
service monitor monitors all file system managers while another
monitors authentication managers. The MCS will be aware of
distinctions between sites and to distinguish them in its
reports.

.
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12.3 Structure of the MCS

The MCS runs as one or more Cronus processes. The MCS
station is not bound to any particular site, although certain
information gathering functions are most conveniently performed
at one location. It uses the Cronus file system, in which it
will store data, and the Cronus IPC facility. The MCS will be
divided into two parts. The first part is the interactive
section, which does on-line data collection, display, and control
of Cronus. It obtains status information from host and service
probes, and incorporates it into its own data base. The second
part performs data reduction and generates reports.

The interactive section of the MCS consists of a very low-
level module and a higher level module (see figure 1). The
majority of the MCS resides in the high-level module, a Cronus
service which communicates with its probes through the Cronus
interprocess communication facility. The low-level module uses
only the lowest level of network protocol (User Datagram
Protocol). This primitive lower level can be relied upon when
little of Cronus is functioning. This portion will be
implemented first. It provide the functions required to
bootstrap Cronus, to examine and alter memory on Cronus hosts,
and to do simple monitoring of the Cronus network.

There are two types of reports to the MCS: polled messages
and traps. Polled messages are reports in response to a request
from the MCS. Traps are reports from probes which are
unsolicited. They normally represent unexpected or unusual
events.

,.- The MCS uses polled messages as the primary data gathering
technique. The polling request provides a mechanism which will
quickly recognize when a host or service disappears.

Traps are employed for reports about specific events, which
. may require real-time response, or which are unanticipated. For

instance, the crash of a service would be reported as a trap, so
that service restoration or reconfiguration could be instituted
immediately. A host coming up would similarly be reported by a
trap message, because of the timeliness of the information and
because a new host on the network might not get any unsolicited
polls (16).

(16) . Polling for hosts which are known to Cronus but currently
down would continue at a low rate, however, so that a lost trap

% .. for such a host coming up would not be fatal.
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The MCS contains a trap logging service. Trap reports are
generated by both host and service probes. Trap messages include
a service type and priority in their header, so that display
routines can easily determine which traps require immediate
display in a high-priority window, and so that the operator can
easily select all traps in a priority range from a given service
class (e.g. file system). The trap logger could be extended to
permit automatic operations in response to traps, so that a
service crashed" trap report could be used to force a restart of

"-" the service from the MCS.

The display processes normally directs critical reports to
the system operator, with each process controlling one or more
text streams. A text stream may be directed to a display
terminal window, a hardcopy output device, a file, or several
different places. The operator terminal should support a multi-

- window display, which will enable the operator to monitor a
variety of aspects of system operation simultaneously, with one
window usually reserved for critical reports. Other windows will
be created to present data as requested. For instance, an
operator might choose a process in one window which presents the
general status for all hosts in the network, and another window
to present the load status for a particular host of interest.

When the sophisticated window package is not available, a
simpler interface would enable the operator to monitor one window
at a time; the difference would be invisible to the MCS since
each window would look to it like an independent display.

The data reduction facilities of Cronus can reside wherever
.-* convenient, and will be regarded as background tasks. The --

integrity of the system does not depend on their availability,
but their reports should prove useful to the tuning and
management of the network.

The data reduction section will take advantage of the fact
that the files generated by the interactive section are available . I
globally as part of the Cronus file system.

12.4 Host Probes, Service Probes, and Network Monitoring

A host probe is a primitive entity which every Cronus host
must provide to report status to the MCS. A host probe must at
least report the presence of the host and its internet address at
the time the host operationally enters Cronus, and must respond
to AREYOUTHERE messages broadcast from the MCS. The host probe
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0
is the distributed part of the low-level section of the *-

monitoring and control system. A host probe will often offer
further information in its report: host type, probe reports
available, current MCS reports, Cronus services, level of
integration, etc.

Service probes are monitoring entities in all Cronus
services. Services to be monitored will include object managers,
terminal concentrators, and user authenticators. Service probes
reflect a functional rather than site-based decomposition of
Cronus. Data from related service probes on different hosts are
combined in the MCS, in order to present a more understandable
picture of the service. The MCS specifies what types of data
should be collected and reported through poll responses and
through traps.

A service probe is located within the service. Unlike host
probes, they may require a certain level of Cronus functions,
since the loss of service monitoring and control does not
compromise our ability to restart the system. Service probes use
the full range of Cronus services, especially the Cronus IPC
facility.

Some messages, including control messages and high-priority
monitoring, will run with a priority above that of the service.
Most monitoring, however, will run with a priority below that of
the se-'vice itself.

The service probes for the Cronus file system reports the
loading on the local portion of the file system, the number of
requests for various classes of services, etc. It may also
include the ability to trace all activities on particular files
(using traps) as a debugging aid.

The process manager probe reports machine process loading,
- both for Cronus and non-Cronus processes, and optionally supports

tracing services for activities on Cronus processes. The probe
will report certain classes of exceptional events on processes,
and will provide services, invokable from the MCS, for invoking
and killing processes, and for tracing process activity on a
per-process basis.

Gateway monitoring would normally fall into the category of

service monitoring; however, the gateway already reports status
in response to polling by a host. We will use this capability to
obtain gateway and internet status. Since we do not wish to do
development in this area, we will to restrict ourselves to the
available capabilities. .
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The MCS will not monitor the cable network traffic directly. .
Rather, it will gather reports from hosts on the traffic sent,
traffic received, and the collision rate at each node.

12.5 Loading and Debugging Support "

The control function has the capability for restarting
Cronus on the hosts of the network. It may do this in one of two
ways. In some cases (e.g. GCE), this includes transmitting the
code directly to the host to be loaded. In other cases, the
computer's own loading sequence is invoked, using its private
secondary storage. In no event should the downloading procedure
require the assistance of a third machine. Some machines may
detect some of their own failures and restart themselves

A distributed, heterogeneous system such as Cronus poses
special problems for debugging tools. The goal is to have a
sophisticated debugger which runs on one host and debugs on
another. We would like to have a single debugging system be
capable of debugging computers of differing architectures.
Moreover, we would like the debugger to be able to debug at
source language level to provide for efficient development.
Currently, the leading candidate for developing such a tool is
XMD, which is adapted from the multi-window editor PEN. XMD does -'

not currently debug code in high-level languages, but can be
extended in this direction, since it does not depend on the
structure of the debugged code, relying instead on symbol table
entries to provide it with information about the target code.
XMD may soon be extended to debug C source code as part of the
effort of another project at BBN.

.'.

12.6 Cronus Initialization

The initialization of Cronus is performed from the
Monitoring and Control Station. In initializing the system, the
MCS will have no certain knowledge of what hosts are available.
The first step is to poll for the available hosts, and then to
initialize each host which responds.
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The initialization of Cronus proceeds as follows(17): (See
the scenario in Section 13.)

1. The MCS broadcasts AREYOUTHERE onto the network.

2. Each host has a routine in its COS that listens for
AREYOUTHERE and responds with HEREIAM and the
parameters (a) name, (b) internet address, (c) boot
class, (d) boot file name, and any other required
information. The name is printable. The boot class
indicates the method used to initialize the host.
Class 1 hosts accept a BOOTYOURSELF command and
initialize local Cronus software upon its receipt.

-., Class 2 hosts require a BOOTLOAD command, which is
followed by a boot file (item d) which passed to the to
the host with the code to load. Class 3 hosts require
a host-specific loading protocol, which is executed on
the MCS from the boot file. (There are no plans to
implement Class 3 hosts in the ADM.)

3. When the MCS receives a HEREIAM message, it enters the
addresses of the host in a host monitor table, with a
notation that the host is not up. It then sends a
BOOTYOURSELF message if it is a class 1 host, or a
BOOTLOAD followed by the required file if it is a Class
2 host.

4. When a host has completed Cronus initialization, it
sends a message BOOTDONE to the MCS. Alternatively, it
may send the message BOOTFAIL, possible with parameters
indicating reason (e.g. "missing file block 5"). The
MCS may then retry the boot, if appropriate.

5. After the host is initialized, the MCS will communicate
with it using the Cronus IPC mechanism. It will
normally obtain a list of available services and will
then ask it to start up the services it supports.

The initialization procedure requires a small amount of code
resident in each processor in order to respond to the MCS
messages. This code will fit in ROM on machines which do not
have secondary storage.

(17) : These messages do not use the full Cronus IPC mechanism in
the first four steps of the procedure, since the operation switch
and primal process manager are not in place on the host being
initialized. Instead, they will be implemented as VLN messages.
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12.7 Siting the Monitoring and Control System

Should the MCS be located on the GCE or on an application
"". host? Using a GCE is desirable because it can be specially

configured to support the MCS; it is intended to be the dedicated
processor; it provide' controlled, predictable performance with '0
dedicated, low cost hardware; and it is expected to be
redundantly available. Since UNIX hosts may not be available
redundantly, we would less often have back-up service if use it
on a UNIX application host for the MCS. On the other hand,
building the MCS on an application host has several advantages:
the UNIX host provides a much richer development environment;
have already been written for UNIX, so that less program
development would be necessary; we can take advantage of the set
of available UNIX utilities.

For the near term, we will build the tools on UNIX. We will
be careful to code the routines in a portable manner, so we can
easily move them to a GCE environment. This provides us with the
benefit of using UNIX in the short term, while keeping the
eventual goal of relying on redundant GCE's for Cronus services.

12.8 Phased Implementation

Implementation of the monitoring and control station will
occur in phases, both in terms of functionality, and in terms of
reliability and performance. The functionality will be increased
both as the reporting capabilities of the probes increases, and
as the need for data analysis grows.

Initially, the MCS will exist on a single host, without
strong reliability or performance goals. We will first build the
host monitoring section of the MCS, and simple host probes in

04 order to be able to start and restart Cronus hosts and services,
and to record the status (up/down) of hosts. As services are
written, we will add service probes, and extend the MCS to
monitor them. This initial system will utilize the UNIX file
system until the Cronus primal file system is available, and will

--'- then convert to the use of Cronus files. Later the MCS will
reside on a GCE and will use standard Cronus files.
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4'.... 13 Scnaio ofoerto
13.1 Basic User Commands and Functions

This section presents examples of the use of Cronus
functions and of the integration of structural units. Scenarios
are presented for typical system and application tasks. The
intent is to suggest the interactions through the flow of control
and shared data. The scenarios also suggest how the primitive
functions might be combined to support operations required of
modern operating systems. The first few sections are narrative,
and the later ones provide pseudo-code examples. Details of
syntax and calling sequences in these examples are not those of
the actual implementation.

Many of the user commands and functions of Cronus fall into
the following categories:

0 Session initiation and termination: Login, Logout,
Attach, etc.

o User and system data base status and maintenance: Display
and edit user records, access control lists, show logged
on users, etc.

o File manipulation and file/directory maintenance: name
lookup, read, write, directory listing, etc.

o Program invocation and control: create process, terminate
process, etc.

o Input/Output: List file etc.

o System Operation: Starting the system, monitoring its
components, etc.

Each of the following sections presents a scenario from one
of these categories.
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13.2 Registering a New User

New users may be added to the system only by members of the
administrative group. The command to create a principal entry
issues an Invoke operation specifying the logical name for the 4
principal data base manager (CLPrincipal) as the target process,
and including the CreatePrincipal operation and its parameters
in the message text. The Invoke uses the Locate(CLPrincipal)

. operation, to find an available principal data base manager, then
sends the message text to one of the sites that responds using
SendToHost. The site identifier may be cached to simplify
subsequent requests. The principal data base manager creates a

. user entry and returns the unique identifier for the new object.
This UID is the Cronus internal name of the principal, and will
appear in Access Group Sets and Group specifications. It may

-[also be used to identify the user record whenever that record
needs to be accessed.

When a principal is added, a number of user data base
entries are initialized. One of those is the priority range
authorized for the user. A private directory is created, and the
principal is given all rights to it. The pathname for this
directory is entered as the default home directory for the
principal. The home directory serves as the repository for

* command interpreter profile data that specifies user-customizable
system features.

13.3 Login

A user may connect to Cronus either through Telnet and a
standard session agent running on a shared Cronus host, or
through a Cronus Terminal Access Computer (TAC). Telnet supports
access from outside the cluster through gateways, and from other
devices obeying the protocol.

Access through a Cronus terminal device process is available
" only from a host that supports Cronus interprocess communication

protocols and will probably be supported only on workstations or
Cronus TACs. It is more powerful, because the access point
software is fully integrated with Cronus.

To initiate a session, a user must have a terminal device
process to manage his terminal communication, and a session
controller process to manage interactions with the system.
Telnet access requires both processes to execute on a shared host
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of the system. A workstation access path can support both
processes; a Cronus TAC access path places the terminal device
process in the TAC and the session controller process on a shared
host.

Login is handled by the Cronus session controller process.
The user is prompted for a login name and password, which are
used by the session controller process to build a request to the
Authentication Manager by invoking the operation.

AuthenticateAs (name,encrypted-password)

On receiving this message, the Authentication Manager retrieves
the associated principal data base entry, verifies the password,
and creates the Access Group Set for the process.

The Authentication Manager interacts with the Cronus Session
Manager to record the session. The Session Manager assigns a
session identifier and adds it to the table of active sessions.
A session record contains are the UIDs of the session principal,
controller process, and terminal device process. This table is
used to satisfy status requests about the cluster and active
users. Some emergency procedures, (for example, destroying all
processes associated with a session), may also rely upon this
table.

The session identifier,the AGS, and other user data base
entries are placed in the process environment through an
interaction with the process manager for the authenticating
process.

After modifying the process environment to indicate
successful authentication, Authenticate-As returns the principal ..-

UID to the authenticated process. This identifier is used to
interrogate the user data base for other information needed to
complete the login sequence. One such item is the default home
directory, the symbolic name of the initial Cronus directory
which is used for unrooted catalog lookup operations, including
the search for additional user initialization data. The
directory name is converted to a catalog entry UID by an
interaction with the catalog manager, and the UID is stored in
the process descriptor.

A principal may have a default program registered with the
Authentication Manager; if so, this program is executed at login
time. If no program is specified, the standard command
interpreter is assumed. The standard input and output for the
executing process are directed to the principal's terminal device
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.1*

process.

13.4 Accessing a File

Each process descriptor contains (among other things) an
entry for the UID of the current directory. This value is
initialized at login to the principal's home directory, but can
be modified during the course of the session. The current
directory is inherited by a new program carrier process.

Suppose a client process wants to read the first 500 bytes
of data in the primal file with the symbolic name :a:b:c. To do
this, it would obtain the UID for the Primal File by means of:

Lookup(nullDirUID, ":a:b:c", true)
-> abDirUID, abcCatEntUID, abcCatEntContents.

By convention, the UID for the null directory, nullDirUID, is
used to specify the starting directory whenever a complete name
is to be looked up. Next, it would read the file data by means
of:

Read(abcCatEntContents.ObjectUID, 0, 500)

which would cause the primal file manager to send the first 500
bytes of data for the file.

. These operations are made available by a single function
call in the Process Support library.

ReadFileData(":a:b:c", 0, 500)

Now, assume that a process has a relative symbolic name for a
file. The current directory UID is included in the request to
the catalog to look up the file name. Using the general form of
Invoke, the catalog manager is found based on the hint in the
catalog entry UID. The catalog manager performs the lookup and
returns the primal file UID associated with the symbolic name.
The primal file UID is then used to find the file manager for
this object, again using the hint which is part of the file UID
to locate the manager.

A- 140

% - ..

. . . -'' -.. . . •, ,, b [,,, I a I'.,'a," ,.-,.-." : -. :,a.,," : " ", " ,,'; .-. / '.,.,':-., .,".-',.- ,.-.•....N, . ,-.-,"-.., ., ,



.-. -4 ~ ** ** .~.. *.-.*-...-~cJ.'. ~ f* .. c c. . . y .*. **. - ";

Report No. 5261 - Part A Bolt Beranek and Newman

13.5 Creating a File

A Cronus cluster may contain many hosts with file managers,
each willing to store and retrieve file data at the request of

' other processes. The operation

Locate(CL_Primal File)

can be invoked by a process to determine the set of accessible
primal file managers.

One policy for the creation of files might be to try to
- * create the file on the same host as the creating process if a

local primal file manager responded. If this is not possible, a
remote manager can be selected and asked to create the file. The
primal files manager include status information, information in
the responses, such the amount of unused disk storage available;
a measure of the current I/O and processor load; or a restriction
on the principal UIDs that may to create files through this
manager. This information can be used to select a storage site
for the file. The selection strategies are packaged in a library
routines in the Process Support Library.

The file may need a symbolic catalog entry. The catalog
entry operation is carried out by the catalog manager of the
directory to which the file is being added.

v4.

Suppose that the client process wants to create a file and
to give it the symbolic name :a:b:c. Further suppose that a

%%"  directory named :a:b already exists.

First the client would use the

Create-> FileUID

operation to create a new primal file. The file would be empty.
* The client could write data i9to the file by means of:

Write(FileUID, BytePosition, Data)

or by bracketing the write(s) by

Open(FileUID, ReadWrite, Frozen)

and
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Close(FileUID, RetainWrites)

operations.

To catalog the file, the client first obtains the UID of the
directory that will contain the catalog entry for the new name:

Lookup(nullDirUID, ":a:b", true)
-> aDirUID, abCatEntUID, abCatEntContents

and then enters the new name:

Enter(abCatEntContents.ObjectUID, "c", FileUID)
-> abcCatEntUID.

If there were no directory :a:b or :a, then the client would
first have to create both :a and :a:b. This could be done as
follows. First the client would obtain the UID for the root
directory. By convention the name of the root directory is
:Root. The fact that the root directory is cataloged in itself
represents the only violation of the tree structured property of
the Cronus symbolic name space.

Lookup(nullDirUID, ":Root", true)
-> rootDirUID,

rootCatEntUID,
rootCatEnt Contents

Next, the client would create the directory :a:

CreateDir(rootDirUID, "a")
-> aDirUID, aCatEntUID

and then, it would create the directory :a:b:

Create(aDirUID, "b") -> abDirUID, abCatEntUID.

At this point, the symbolic name :a:b:c can be established, as
above, for the primal file.

The Process Support Library contains routines coupling the
creation and naming of files, to avoid the situation where a
failure produces a file which does not have a symbolic catalog
entry and hence is not easily accessed. The operations are
ordered such that the symbolic name is entered before the file is

-.. . closed. If the process fails after the name is entered, the
catalog entry may be deleted by explicit user commands, or by
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-automatic recovery mechanisms.

13.6 Deleting a File

Suppose the name of the file to be deleted is >a>b>c.
Deletion is accomplished by the following operations:

Lookup(nullDirUID, w:a:b:c", true)
-> abDirUID, abcCatEntUIlD, abcCatEntContents

Delete (abcCatEntContents.ObjectUlD)

Remove (abcCatEntUID)

If the primal'file and catalog manager are coupled, the
Delete operation could have the side effect of invoking the
Remove operation.

13.7 Listing a Symbolic Catalog Directory

Suppose the name of the directory is :a:b:c. A utility
program executes the following sequences of operations to print
the desired file names.

InitScan(nullDirUID, ":a:b:c:*.*u)
->abcScanState,

xDirUID,
xCatEntUID,
xCatEntContents

repeat until abcScanState indicates end of scan
Iif Type~f(xCatEntContents.ObjectJID) = &filetype
then print xCatEntContents. SymbolicName;

* ScanDirectory(abcScanState)
-abcScanState,

xCatEntUID,
xCatEntContents;
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13.8 Running a Program

'. Application programs are executed within program carrier
objects. The creation of an application process has three steps:
a program carrier is created, the program carrier is loaded with

.- the program image, and the program carrier is started

The program image will generally be obtained from a Cronus
,.5. file, which may be anywhere within the Cronus file system. A

routine, that combines these process creation steps process
creation will be available in the PSL. This routine takes as one
of its arguments the symbolic name of the program image file.
The symbolic name is translated to the file UID by means of a
symbolic catalog lookup, and the file UID is used to load the
program image into a new program carrier object.

° -

In a heterogeneous system, a particular program image can
only be executed on certain processors. A VAX program image, for
example, can only be executed on a VAX host. Some mechanism must
exist to match the the program image to a processor capable of
executing it.

Subtypes of program carriers are defined for each processor
architecture for example, CTVAXProgramCarrier. These subtypes
contribute no new operations to objects of type
CTProgram Carrier, but provide a means of locating a specific
kind of processor. For example, the operation

Locate (CLVAXProgramCarrier)

will attempt to locate all program carrier managers on VAX hosts.
.5. ' .

Executable files are subtypes of primal files with the type
CTExecutable. The descriptor of a program image file contains
the logical name of a program carrier subtype, e.g.,
CLVAXProgramCarrier. The file descriptor may also contain
other information such as special host requirements. An
operation on program carrier managers, Resource-Test, determines
if a particular manager has the resources which are prerequisites
to execution; the CreateProcess routine can invoke this test -.-.
whenever a process has special needs.

The actions carried out by the library routine can now be
described in greater detail:

1. The symbolic program name is translated to an executable -

file UID, by means of a symbolic catalog lookup.
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2. The routine requests the file descriptor of the program
image file, by invoking the Read_Descriptor on the file
object.

3. The required program carrier type and any special

requirements are determined from the file descriptor.

4. A Locate operation finds the Program Carrier Managers
capable of executing this process, and a ResourceTest
operation narrows the candidates further.

5. A Program Carrier Manager is selected according to some
policy (18) and the operation CreateProgramCarrier is
invoked on it; the UID of the new Program Carrier object
is returned.

6. The LoadProgram operation is invoked on the program
carrier object.

7. When the load operation is complete, the routine receives
.. a reply from the Program Carrier object, and then invokes

Proceed on the Program Carrier to start it.

The CreateProgramCarrier operation takes as a implicit
parameter the process descriptor of the creating process, which
is inherited (with certain changes) by the new process.

A process descriptor contains some information which is
maintained securely by the system (e.g., the process UID, and the
UID of its principal) and an open-ended set of information
inserted into the descriptor by the ChangeProcessDescriptor
operation. All of the open-ended information is inherited
directly by the descendants of the process. Some of the system

. information is inherited (e.g., the principal is normally
inherited) and some of it is not (e.g., the process UID of a
descendant is unique to it). The system information defines the -*

authority of the new process for access to information and
resources.

The creating process may invoke ChangeProcessDescriptor

(18) A reasonable policy might select the Program Carrier manager
on the local host, if it is a candidate, and to select the most
lightly loaded host (from information in the reply to Locate) if
it is not. Many other policies are possible, and exploring the
possibilities is an important area of future work.
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after but before starting, the program carrier to make changes in
the descriptor.

13.9 Starting a Cronus Service

In this section we sketch a scenario which might be directed
by a cluster control station, to startup, operate, and take down
a Time Service instance on one host. It is indicative of the
steps required to initiate and control an initial process load
sequence. The steps required to bring up each host to the point
assumed in this scenario have been discussed in Section 12.

The Cronus Time Service has two main functions:

1. To respond to direct requests for the date and time, and
for format conversions among the Cronus date and time
formats.

2. To periodically multicast the date and time on a well-known
VLN multicast channel.

Assume that host CVAX has joined the Cronus system, and the
primal process manager is the only active Cronus process. The
control station performs

InvokeOnHost("CVAX",
CLPrimal Process,
<(CKOperationName,COServiceList)>

and receives in reply a list of the services which could be
created on CVAX; only the PPM is marked as active. The logical .
name CLTimeService is contained in the list. The control
station then performs

InvokeOnHost ("CVAX",
CLPrimal Process,

,0. °  <(CKOperationName,COCreate_Primal Process)
(CKUIDServiceName,CLTimeService)>)

The Time Service process is created and started, and the control
station receives a reply containing CVAXTimeServiceUID, the
specific UID of the Time Service Primal Process. The Time
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Service begins its work, and if left undisturbed will
periodically multicast the date and time forever. The control
station (or any other Cronus process) could request the current °
date and time by performing

InvokeOnHost ("CVAX",
CLTimeService,
<(CKOperationName,CODate_Time)>)

At some later time, it becomes necessary to temporarily
inhibit the periodic multicasts of the Timer Service. The VIA
control station performs

InvokeOnHost ("CVAX",
CVAXTimeServiceUID,

*- "-, <(CKOperationName,CO_ChangeProcessDescriptor),
(CKModify,)
(CKIPCEnabled, "false")>)

After the control station receives the reply confirming this
operation, it is known that all IPC to or from the Time Service
has been inhibited. The Time Service process continues to exist,
however, and is eventually restored to its normal function when
the control station performs

InvokeOnHost ( "CVAX",
CVAX_TimeServiceUID,

* ".: <(CKOperationName,COChangeProcessDescriptor),
(CK-Modify,)
(CKIPCEnabled, "true")>)

Finally, perhaps in preparation for replacing the Time Service
code with a new version, the control station does

InvokeOnHost ("CVAX",
CVAX_TimeServiceUID,
<(CKOperationName,CODestroy)>)

and the Time Service process is known to be destroyed when the
reply arrives at the control station.
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-A
14 Cronus Primal System Support

14.1 Primal System Hardware

The Advanced Development model of the Cronus distributed
operating system will have three mainframe computers, four GCEs,
and a gateway. The mainframe computers are two BBN C70s and a
Digital Equipment Corporation VAX 11/750, the GCEs are Multibus
computers with M68000 central processors, and the gateway is an
DEC LSI-11 based computer.

The C70 computers are configured as general development
machines. The first, C70-1, is the site of the majority of the
development work since it supports both the C70 development tools
and those of the GCEs. We will rent time on a second C70, C70-2,
which will be used to exercise Cronus support for reliable
redundant hosts, and to test scalability. Both C70s will run
UNIX version 7 as released by BBN Computer Corporation and
modified by the Cronus project.

The VAX 11/750 provides a VMS-based software development
environment, as well as a mainframe of a distinctly different
architecture. Its purpose in the ADM is to provide a limited
integration host. Since it is a large well-supported mainframe,
it will contain its own development environment, and we will also
use it as a source of computer power for general tasks, both to
off-load the C70, and to test real usage of the Cronus
heterogeneous host environment. The VAX is configured to reflect
its usage as a software development machine.

The Cronus system has four GCEs, configured for a variety of
tasks. Since they are compatible machines, their configurations
will vary over time, as we perform different experiments on the
network, and as we make board substitutions to make one GCE
perform functions of another which is temporarily out of service.
The configuration table for the GCEs should be regarded as only a
typical set of GCE configurations.

The Cronus gateway is implemented on an DEC LSI-1 computer.

This would normally be a task for a GCE; however, standard
internet gateways are currently implemented on LSI-ll, and
adoption of the LSI-11 gateway allows us to obtain an off-the-
shelf implementation. The next generation of internet gateways
is expected to be built on M68000 computers, and at that time we
will probably move the gateway to a GCE.

7.%
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C70-1 1 Mbyte main storage
2 80 Mbyte removable disk drives
Magnetic Tape Drive,

800/1600 bpi, 125 ips (Cipher)
Arpanet 1822 LHDH interface
Ethernet interface (using

Interlan protocol module)

C70-2 1/2 Mbyte main storage
2 160 Mbyte removable disk drives
Arpanet 1822 LHDH interface
Ethernet interface (using

Interlan protocol module)

VAX 11-750 1 Mbyte main memory
1 160 Mbyte Winchester disk
Magnetic tape drive, 1600 bpi, 40 ips
MDI high speed synchronous serial interface
3COM Ethernet Interface
VMS Operating System

Table 4. Software Development Hosts
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GCE-l+2 Forward Technology M68000 - -.

processor with 256 Kbytes memory
Micro-Memory 256 Kbyte memory board
80 Mbyte Winchester Disk Drive and SMD interface
3COM Ethernet Interface
9-slot Multibus backplane

GCE-3 Forward Technology M68000 processor
with 256 Kbytes memory

Micro-Memory 256 Kbyte memory board
8-line RS-232 serial interface
3COM Ethernet Interface
9-slot Multibus backplane

GCE-4 Forward Technology M68000 processor
with 256 Kbytes memory

a Micro-Memory 256 Kbyte memory board
8-line RS-232 serial interface
300 1pm line printer
3COM Ethernet Interface
9-slot Multibus backplane

Table 5. Generic Computing Elements -- Typical Configurations

Gateway LSI11/03 processor card
64 Kbyte memory card
DLVlIJ 4 line terminal card
MRV11C ROM card (bootstrap)
ACC 1822 interface with DMA
Interlan N12010 QBUS Ethernet controller
BBN FNVll Fibernet interface
MDB backplane and power-supply.

Table 6. Gateway Configuration
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mI
14.2 Virtual Local Network

14.2.1 Purpose and Scope

The Cronus Virtual Local Network (VLN) provides interhost
message transport in the Cronus Distributed Operating System.
The VLN client interface is available on every Cronus host.
Client processes can send and receive messages using specific,
broadcast, or. multicast addressing.

The VLN stands in place of a direct interface to the
physical local network (PLN). This additional level of
abstraction is defined to meet two major system objectives:

o Compatibility. The VLN is compatible with the Internet
Protocol (IP) and with higher-level protocols, such as the
Transmission Control Protocol (TCP), based on IP.

o Substitutability. Cronus software built above the VLN is
dependent only upon the VLN interface and not its
implementation. It is possible to substitute one physical
local network for another provided that the VLN interface
specification is satisfied.MI

This description assumes the reader is familiar with the
concepts and terminology of the DARPA Internet Program; reference
[NIC 1982] is a compilation of the important protocol
specifications and other documents. Documents in [NIC 1982] of
special significance here are [Postel 1981a] and [Postel 1981b]. 1-i

The Advanced Development Model ADM will be connected to the
ARPANET, and it is important that the ADM conform to the standard
and conventions of the DARPA internet community. In addition, a

. large body of software has evolved, and continues to evolve, in
the internet community. For example, protocol compatibility
permits Cronus to assimilate existing software components
providing electronic mail, remote terminal access, and file
transfer.

The substitutability goal reflects the belief that different
instances of Cronus will use different physical local networks.
Substitution may be desirable for reasons of cost, performance,
or other properties of the physical local network such as
mechanical and electrical ruggedness.

Figure 15 shows the position of the VLN in the lowest layers
of the Cronus protocol hierarchy. The VLN interface
specification leaves programming details of the interface and
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host-dependent issues unspecified. The precise representation of
the VLN data structures and operations will vary from machine to
machine, but the functional capabilities of the interface are the
same regardless of the host.

-'.

- - - - - - - - - - - - - -.

Transmission I Us-r I I
Control I Datagram I ... '

. Protocol I Protocol I .
----------------------------------

I" ' Internet Protocol ,
(IP) I

----------------------------------
I-- "Virtual Local Network ,

(VLN) A
---------------------------------- I

'I. Physical Local Network "
(PLN, e.g. Ethernet) I

Figure 15 . Cronus Protocol Layering

The VLN is completely compatible with the Internet Protocol
as defined in [Postel 1981b]. No changes or extensions to IP are
required to implement IP above the VLN.

14.2.2 The VLN-to-Client Interface

The VLN layer provides a datagram transport service among
hosts in a Cronus cluster, and between these hosts and other
hosts in the DARPA internet. The hosts belonging to a cluster 0
are attached to the same physical local network. CommunicationI. with hosts outside the cluster is achieved through inte"rne

-"-"a -, shown in Figure 16, connected to the cluster. The VLN
routes datagrams to a gateway if they are addressed to hosts
outside the cluster, and delivers incoming datagrams to the
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0

appropriate VLN host. A VLN is a network in the internet, and
thus has an internet network number(19). - -

to internet

network X

Ihostli IgtwyAl Ihost2I Ihost3"

I I I

Ihost4l Ihost51 IgtwyBj lhost6l

to internet
network Y

Figure 16 . A Virtual Local Network Cluster

The VLN interface will have one client process on each host,
normally the host's IP implementation. The VLN performs no
multiplexing/ demultiplexing function.

The structure of messages which pass through the VLN is
identical to the structure of internet datagrams. The VLN
definition assumes that there is a well-defined representation
for internet datagrams on any host supporting the VLN interface.
The argument name "Datagram" in the VLN operation definitions
below refers to this well-defined but host-dependent datagram
representation.

(19). The network numbers for the PLN and VLN may be the same or
different. If the numbers are different, the gateways are
somewhat more complex. Either approach is consistent with the
internet model.

A- I 3

[i~i !':i~i! '-....



Report No. 5261 - Part A Bolt Beranek and Newman

The VLN guarantees that a datagram of 576 or fewer octets
can be transferred between any two VLN clients. Although larger
datagrams may be transferred between some client pairs, clients
should avoid sending datagrams exceeding 576 octets unless there
is clear need to do so. The sender must be certain that all
hosts involved can process the oversized datagrams.

The internal representation of an VLN datagram is not
included in the specification, and may be chosen for
implementation convenience or efficiency.

Although the structure of internet and VLN datagrams is
- identical, the VLN-to-client interface places its own

interpretation on internet header fields, and differs from the
IP-to-client interface in significant respects:

1. The VLN layer uses only the Source Address, Destination
Address, Total Length, and Header Checksum fields in the
internet datagram; other fields are accurately transmitted
from the sending to the receiving client.

2. Internet datagram fragmentation and reassembly is not
performed in the VLN layer, nor does the VLN layer
implement any aspect of internet datagram option
processing.

3. At the VLN interface, a special interpretation is placed
S.upon the Destination Address in the internet header, which
.. allows VLN broadcast and multicast addresses to be encoded

in the internet address structure.

4. With high probability, duplicate delivery of datagrams sent .'.
between hosts on the same VLN does not occur.

5. Between two VLN clients S and R in the same Cronus cluster,
the sequence of datagrams received by R is a subsequence of
the sequence sent by S to R; a stronger sequencing property
holds for broadcast and multicast addressing.

In the DARPA internet, an internt address is defined to be
a 32-bit quantity that is partitioned into two fields, a network."
number and a local Address. VLN addresses share this basic
structure, but it attaches special meaning to the local address
field of a VLN address.

Each network is assigned a class (A, B, or C), and a network
number. The partitioning of the 32-bit internet address into
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network number and local address fields as a function of the
class of the network is shown in Table 7.

Width of Width of '

Network Number Local Address

Class A 7 bits 24 bits

Class B 14 bits 16 bits

Class C 21 bits 8 bits

Table 7. Internet Address Formats

The bits not included in the network number or local address
fields encode the network class, e.g., a 3 bit prefix of 110
designates a class C address (see [Postel 1981a]).

The interpretation of the local address field is the
responsibility of the network. For example, in the ARPANET the
local address refers to a specific physical host. VLN addresses,
in contrast, may refer to all hosts (broadcast) or groups of
hosts (multicast) in a Cronus cluster, as well as specific hosts
inside or outside of the cluster. Specific, broadcast, and
multicast addresses are all encoded in the VLN local address
field (20). The meaning of the local address field of a VLN
address is defined in Table 8.

I _.._._

(20). The ability of hosts outside a Cronus cluster to transmit
datagrams with VLN broadcast or multicast destination addresses
into the cluster may be restricted by the cluster gateway(s), for
reasons of system security.
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Address Modes Local Address Valu"-

* Specific Host 0 to 1,023

Multicast 1,024 to 65,534

Broadcast 65,535

Table 8. VLN Local Address Modes

In order to represent the full range of specific, broadcast, and
multicast addresses in the local address field, a VLN network.FRO

. should be either class A or class B.

The VLN does not attempt to guarantee reliable delivery of
datagrams, nor does it provide negative acknowledgements of
damaged or discarded datagrams. It does guarantee that received
datagrams are accurate representations of transmitted datagrams.

The VLN guarantees that datagrams will not replicate during
transmission, so each intended receiver, a given datagram given
to the VLN by higher levels is received once or not at all(21).

Between two VLN clients S and R in the same cluster, the
sequence of datagrams received by R is a subsequence of the
sequence sent by S to R, that is datagrams are received in order,
possibly with omissions. A stronger sequencing property holds
for broadcast and multicast transmissions. If receivers RI and
R2 both receive broadcast or multicast datagrams D1 and D2,
either they both receive D1 before D2, or they both receive D2
before Dl.

While a VLN could be implemented on a long-haul or virtual-
circuit-oriented PLN, these netwcrks are generally ill-suited to
the task. The ARPANET, for example, does not support broadcast
or multicast addressing modes, nor does it provide the VLN

- sequencing guarantees. If the ARPANET were the base for a VLN

""""(21). A protocol operating above the VLN layer (e.g., TCP) may
employ a retransmission strategy; the VLN layer does nothing to
filter duplicates arising in this way.
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implementation, broadcast and multicast would have to be
constructed from specific addressing, and a network-wide
synchronization mechanism would be required to implement the
guarantees. Although the compatibility and substitutability
benefits might still be achieved, the implementation would be
costly, and performance poor.

A good implementation base for a Cronus VLN would be a
high-bandwidth local network with all or most of these
characteristics:

1. The ability to encapsulate a VLN datagram in a single PLN
datagram.

2. An efficient broadcast addressing mode.

3. Natural resistance to datagram replication during
transmission.

- 4. Sequencing guarantees like those of the VLN interface.

5. A strong error-detecting code (datagram checksum). _

Good candidates include Ethernet, the Flexible Intraconnect, and
.. Pronet, among others.

14.2.3 A VLN Implementation Based on Ethernet

The Ethernet local network specification is the result of a
collaborative effort by Digital Equipment Corp., Intel Corp., and "
Xerox Corp. The Version 1.0 specification [DEC 1980] was
released in September 1980. Useful background information on the

.. Ethernet internet model is supplied in [Dalal 1981].

The addresses of specific Ethernet hosts are arbitrary 48-
bit quantities, not under the control of the DOS. The VLN
implementation must map VLN addresses to specific Ethernet
addresses. The mapping can not be maintained manually in each
VLN host, because manual procedures are too cumbersome and
error-prone for a local network with many hosts, each of which
may join and leave the nptwork frequently. A protocol is
described below which allows a host to construct the mapping
dynamically, beginning only with knowledge of its own VLN and
Ethernet host addresses.

An internet datagram is encapsulated in an Ethernet frame by
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placing the internet datagram in the Ethernet frame data field,
and setting the Ethernet type field to "DoD IP", as shown in
Figure 9.

The Ethernet octet ordering is required to be consistent 0
with the IP octet ordering. If IP(i) and IP(j) are internet
datagram octets and i<j, and EF(k) and EF(1) are the Ethernet ..-
frame octets which represent IP(i) and IP(j) once encapsulated,
then k<l. Bit orderings within octets must also be consistent.

%Each VLN component maintains a virtual-to-physical address
% map (the VPMap) which translates a 32-bit specific VLN host

address to a 48-bit Ethernet address. The VPMap data structure
and the operations on it will implemented using hashing
techniques.

Each host controller has an Ethernet host address (EHA) to
which it responds. The EHA is determined by Xerox and the
controller manufacturer. In addition, the VLN assigns a
multicast-host address (MHA) to each host. This multicast
address is constructed from th: local host portion of the
internet address.

When the VLN client sends a datagram to a specific host, the
local VLN component encapsulates it and transmits it without
delay. The Source Address in the Ethernet frame is the EHA of
the sending host. The Ethernet Destination Address is formed
from the destination VLN address in the datagram, and is either:

o the EHA of the destination host, if the sending host knows
it, or

o the MHA formed from the host number in the destination VLN
address, as described above, if the sending host does not
know the EHA coresponding to the host number.

When a VLN component receives an Ethernet frame with type
"DoD IP", it decapsulates the internet datagram and delivers it
to its client. If the frame was addressed to the EHA of the ° "
receiving host, no further action is taken. If the frame was
addressed to the MHA of the receiving host, the VLN component
broadcasts an update for the VPMaps of the other hosts. The

a ---
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0 12 3

01 23 45 6 789 01 23 45 67 89 01 23 4 5 678 9 01

I Destination Address

IDestination Address (contd.) ISource AddressI

I Source Address (contd.)I

I Type ("DoD IP")

IVersioni IHL IType of Servicel

Total Length I IdentificationI

I~as Fragment Offset ITime to Live I Protocol I

I Header Checksum ISource Address

I Source Address (contd.) IDestination AddressI

I Destination Address (contd.)

I Data

* I Frame Check SequenceI

Table 9. An Encapsulated Internet Datagram
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other hosts can then use the EHA of this host for future traffic.
If the MHA is represented as a sequence of octets in hexadecimal,
it has the form:

A B C D E F

09-00-0•8-00-hh-hh

A is the first octet transmitted, and F the last. The two octets
J E and F contain the host local address:

E F

000000hh hhhhhhhh

MSB LSB

The type field of the Ethernet frame containing the update
is "Cronus VLN", and the format of the data octets in the frame
is: -

0 1 2 3
-'-"0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1-,

[I Subtype ("Mapping Update") I Host VLN Address I

I Host VLN Address (contd.) I

When a local VLN component receives an Ethernet frame with type
"Cronus VLN" and subtype "Mapping Update", it performs a
StoreVPPair operation using the Ethernet Source Address field and
the host VLN address sent as frame data.

A VLN datagram will be transmitted in broadcast mode if the
specifies the VLN broadcast address (local address = 65,535,
decimal) as the destination. The receiving VLN component merely
decapsulates and delivers the VLN datagram.

The implementation of multicast addressing is more complex.
.'." Each host defines the number of multicast addresses which can be .-

"- simultaneously "attended" (listened to). This number is a
function of the particular Ethernet controller hardware and of
the resources that the host dedicates to multicast processing..
The VLN protocol permits a host to attend any number of multicast
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addresses, from 0 to 64,511 (the entire VLN multicast address
space), independent of the controller in use.

It is possible to implement the VLN rnulticast mode using
only the Ethernet broadcast mechanism. Every VLN host would
receive and process every VLN multicast, discarding uninteresting
datagrams. More efficient operation is possible if some Ethernet
multicast addresses are used, and if the Ethernet controller has
multicast recognition which automatically discard misaddressed

* frames.

There is no standard for multicast recognition. The 3COM
* Model 3C400 controller performs no multicast address recognition.

It passes all multicast frames to the host for further
* processing. The Intel Model iSEC 550 controller permits the host

to register a maximum of 8 multicast addresses with the
controller, and the Interlan Model NM10 controller permits a
maximum of 63 registered addresses.

A VLN-wide constant, Multicast-Registered, is equal to the
smallest number of Ethernet multicast addresses that can be
simultaneously attended by all hosts in the VLN. A network
composed of hosts with the Intel and Interlan controllers
mentioned above, for example, would have Multicast..Registered
equal to 7 (22); a network composed only of hosts with 3COM Model
3C400 controllers would have Multicast-Registered equal to
64,511, since the controller itself does not restrict the number

*of Ethernet multicast addresses to which a host may attend (23).

A mapping is defined which translates the VLN multicast
address to an Ethernet multicast address. The first

'pMulticast Registered VLN multicast addresses are assumed to be
attended by each host. The local address portion of the internet

* address of a VLN Rnulticast channel is a decimal integer M in the
* range 1,024 to 65,534.

,1 1. (M - 1,023) <= MulticastRegistered. In this case, the
Ethernet multicast address is

9 -00-08-00-mm-mm

2. (M 1,023) > MulticastRegistered. The Ethernet broadcast "

(22); MultiRegistered is 7, rather than 8, because one multicast
slot in the controller is reserved for the host's MHA.
(23) . For the Cronus Advanced Development Model,
Multicast Registered is currently defined to be 60.
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address is used. A VLN component which attends VLN
multicast addresses in this range must receive all
broadcast frames, and select those with VLN destination
address corresponding to the attended multicast address.

Delivered datagrams are accurate copies of transmitted
datagrams because VLN components do not deliver datagrams with
invalid Frame Check Sequences. A 32-bit CRC error-detecting code
is applied to Ethernet frames.

Datagram duplication does not occur because the VLN layer
does not perform retransmissions, the primary source of
duplicates in other networks. Ethernet controllers do perform
retransmission as a result of collisions on the channel, but the
collision enforcement mechanism or "jam" assures that no
controller receives a valid frame if a collision occurs.

The sequencing guarantees hold because mutually exclusive
access to the transmission medium defines a total ordering on
Ethernet transmissions, and because a VLN component buffers all
datagrams in FIFO order.

14.2.4 VLN Operations

There are seven functions defined at the VLN interface. An
implementation of the VLN interface has wide latitude in the
presentation of these operations to the client; for example, the
functions may or may not return error codes.

The functions are to occur synchronously or asynchronously
with respect to the client's computation. We expect that the
ResetVLNInterface, MyVLNAddress, SendVLNDatagram,

.-. PurgeMAddresses, AttendMAddress, and IgnoreMAddress operations
will be synchronous with respect to the client.
ReceiveVLNDatagram will usually be asynchronous; that is, the

S. client initiates the operation, continues to compute, and at some
S.. later time is notified that a datagram is available.

ResetVLNInterface()

The VLN for this host is reset. For the Ethernet
implementation, the operation ClearVPMap is performed,
and a frame of type "Cronus VLN" and subtype "Mapping
Update" is broadcast. This operation does not affect the
set of attended VLN multicast addresses.
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MyVLNAddress ()

Returns the VLN address of this host.

*.- SendVLNDatagram(Datagram)

-- When this operation completes, the VLN layer has copied
the Datagram. The transmitting process cannot assume that
the message has been delivered when SendVLNDatagram"
completes.

ReceiveVLNDatagram (Datagram)

When this operation completes, Datagram is a
representation of a VLN datagram which has not previously
received.

PurgeMAddresses ()

When this operation completes, no VLN multicast addresses
are registered with the local VLN component.

AttendMAddress (MAddress)

If this operation returns True then MAddress, which must
be a VLN multicast address, is registered as an alias for
this host, and messages addressed to MAddress by VLN

.. clients will be delivered to the client on this host.

IgnoreMAddress (MAddress)

When this operation completes, MAddress is not registered
as a multicast address for the client on this host.

Whenever a Cronus host comes up, ResetVLNInterface and
PurgeMAddresses are performed on the VLN. A VLN component may
depend upon state information obtained dynamically from other
hosts, and there is a possibility that incorrect information
might enter a component's state tables. A cautious VLN client
could call ResetVLNInterface periodically to force the VLN
component to reconstruct the tables.

0,. 0
.:.. A VLN component will limit the number of multicast addresses

to which it will simultaneously attend; if the client attempts to
"""'register more addresses than this, AttendMAddress will return

False with no other effect.

. "6
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The VLN layer does not guarantee buffering for datagrams at
either the sending or receiving host(s). It does guarantee that
a SendVLNDatagram function performed by a VLN client will
eventually complete; this implies that datagrams may be lost if
buffering is insufficient and receiving clients are too slow.

14.3 Generic Computing Element Operating System

One of the more important Cronus hardware components is the
Generic Computing Element (GCE). Prior to its introduction to
the Cronus DOS project, CMOS was under development at BBN as a
real-time operating system for several types of communication
processors, such as gateways and network terminal concentrators.
In addition, a support environment for building and debugging

* CMOS applications is available under UNIX. CMOS provides the
* following basic operating system features:

o multiple processes
o interprocess communication/coordination
o asynchronous I/O
o memory allocation
o system clock management

CMOS is an open operating system; that is, no distinct
division exists between the operating system and the application
program. The operating system is a collection of library
routines that can be easily extended by adding new routines and
can be reduced by excluding unneeded routines. The programmer
can directly access lower-level interfaces. ''

CMOS is a portable operating system. The use of the high-
level language C is the principal factor in CMOS portability.
Small size and simplicity are other important factors. The
design minimizes the amount of machine-dependent code and
segregates it. The I/O system design allows for easy replacement
of device-dependent modules.

The debugging environment is provided by XMD, a display
oriented debugger based on the PEN editor. All of the features
of the editor are available to the user in addition to the
debugger specific commands. PEN is a multi-window editor with
capabilities for manipulating multiple files and edit buffers.
XMD displays a special configuration of windows that are
appropriate to debugging. This configuration consists of a source
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window, a register display window, a breakpoint window, and a
window for displaying variables.

A low-level debugger is resident in the target processor to
interpret and execute commands sent to it over the communication
path, currently a terminal line to the C70 UNIX host processor
where XMD is running.

Access to networks will be provided to CMOS applications
from three levels. At the highest level, the user can open a TCP
stream. The first application at this level will be Telnet and
terminal concentration software. At the next level, there is an
internet datagram service. This will be used to implement inter-
process communication between hosts, as well as other standard
internet protocols. The lowest level is the Ethernet local
network interface.

The communication module in XMD will be changed to use the
Ethernet instead of a terminal line, increasing its flexibility
and usefulness. Downloading will be possible over the network,
plus it will be easier to debug multiple GCEs from one site.

The internal device structure was changed to give the
1/0 system more flexibility in dealing with the number of
possible relationships between hardware devices and the

interrupts generated by those devices. Without this change, the
capability of writing simple device drivers for CMOS is
compromised.

A name service capability was added for the run-time binding
of string names to processes and devices. The name space is
hierarchical and there is a notion of absolute and relative
pathnames. In the presence of some form of mass storage, the
names can be made non-volatile.

14.4 Cronus Utilities

14.4.1 General

O A number of Cronus processes or services are so widely used
or needed, that they warrant description as utilities for the
system.

|. , . .
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14.4.2 Elementary File System

14.4.2.1 Introduction

The Elementary File System (EFS) is an easily ported single
host file system that serves as a common base of implementation
support for Cronus file managers Cronus Generic Computing

* Elements (GCEs) configured with disks, on the UNIX system, and on
the VAX. The underlying implementation of the EFS is consituent
host dependent, but the interface presented to the Cronus File
Manger is uniform. As a result, portability of the File Manager
is enhanced, and the cosf of integration of new hosts is reduced.
The EFS was originally developed as a primitive file storage

* icapability for the GCE mass storage devices.

S-The two principal design objectives of the EFS are:

1. Sufficient functional capability to support the Cronus
distributed file system.

2. Simplicity and efficiency.

" Iko. The principal users of the EFS will be object managers.

Client processes will seldom, if ever, directly access files
through the EFS. Therefore, only the most basic file
operations need be supported. More complex file functions
can be supported by the object managers themselves. Simple
steps have been taken in the internal organization of the
EFS to support effective crash recovery and system restart

procedures.

The Elementary File System will have the following
characteristics:

1. The name space for EFS files is flat. Names for EFS files
are called FileIDs, and they are fixed length bit strings.
FileIDs are not Cronus UIDs. A FileID is unique on the EFS
that generated it, but it is not unique across all Cronus
hosts. The EFS is a Cronus object in much the same way that
the existing UNIX or VMS file systems are Cronus objects,
but

2. A EFS file is not a Cronus object. .

3. File data is organized as a sequence of fixed length blocks.
File i/o is sequential, and is block oriented. The basic
file i/o operations are:
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• " : "ReadEFSFileBlo(-k(FileID, BicckNcL er, Puffer) , and
-'.'-'.'• WriteEFSFile~lock(Fi,'elD, Blockt*LMI-er, Buffer) .[.

4. There are no open or close operaticns. No setup is
necessary to read data from or write data to an existing EFS
file.

5. It is necessary to create a EFS file before writing data toit. This is accomplished by the

CreateEFSFile ()

operation, which creates an empty EFS file and returns its
FileID.

6. EFS files are deleted by the

DeleteEFSFile (FileID)

operation.

7. There is no access control for EFS files. Possession of the
FileID for a EFS file is sufficient to access the file.

The EFS will normally be accessible only to Cronus Services.
* The primal file manager is an example of such a service. These

services provide controlled access to the objects and operations
that they implement, as described in Section 8.

In addition to supporting the local primal file manager, the
EFS may be operated on as an object to permit remote access for
maintenance and debugging purposes. There is a single access
control list (ACL) associated with access to the entire EFS
through the EFSFile Manager. Only a very few principals will be
on the ACL for a EFS. An example of a principal which might be

-.. granted access to the EFS isfthe "System Maintenance" principal.

14.4.2.2 File Formats

The following description of the Elementary File System
structure assumes that a disk can be represented by a series of
fixed length blocks. In the Cronus ADM, the storage may be:

a disk drive on a GCE;
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a disk device in a UNIX system; or

a contiguous file on the VAX/VMS.

The EFS makes few demands on the underlying recording medium, and
it is relatively easy to see that most potential Consituent
Operating Systems will provide a construct upon which the EFS can
be built.

File disk blocks are self-identifying for reliability
purposes. Each block includes a header that contains the FileID
and the block number. The file header in each block contains a
NextBlock pointer which is the disk address of the next block, if
any, in the file. The NextBlock pointer in the last block
contains a special value marking the end of file.

There is a FileID Table which provides a mapping between
FileIDs and the disk address of block 0 of the file (see Figure
17). The FileID Table is as a file with a well-known FileID
(FileID = 1). Its block 0 will be stored at a known disk address
(with an alternate copy stored at another location to prevent
loss of data in case the primary block is bad). The FileID Table
is a hash table.

There is a FreeDiskBlock table which records the disk blocks
that are available. The FreeDiskBlock table is a bit table
stored in a file with a well-known FileID (FileID = 2). Its
block 0 is stored at a known disk address. When a file is
deleted, its blocks are recorded in the FreeDiskBlock table, and
the FileID field in the headers of each of the blocks is cleared.
As disk blocks are needed they are allocated using the
FreeDiskBlock table.

There are two types of EFS files. The type of the file is
contained in the header of block 0. The types of EFS files are
(see Figure 18):

a. Short file.

This is a file, all of whose data will fit within block 0.

b. Normal file. O

This is a file whose data will not fit within a single
block.

A Normal file may contain index blocks which allow random access
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Random Access GCE Files
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to the file. By convention, the first of these blocks is given
block number -1, and contains:

i. A block index which holds the disk address of blocks 1
through N of the file; and

ii. The disk addresses for two overflow blocks, named
OverflowBlockl and OverflowBlock2, which can bc used to find
the block index entries for blocks numbered greate- than N.

If the file is very large, not all of its index will fit into
block -1.

OverflowBlockl is used as an index for blocks which store
part of the block index which will not fit in block -1.
Specifically, if block -1 can store indices for blocks I through
N, if OverflowBlockl can store M disk addresses as indices, and
if each block it indexes can store P disk addresses,
OverflowBlockl can provide access to indices for M*P additional E .
blocks, numbered (N+l) through (N+M*P). The block index for the
Normal file shown in Figure 18 overflows block -1 into
OverflowBlockl, and is small enough that it doesn't require
OverflowBlock2.

OverflowBlock2 provides an additional level of indirection
for very large files. It contains an index for blocks which are
used in the same manner OverflowBlockl is. If OverflowBlock2 can
hold Q disk addresses as indices, then it can provide access to
indices for M*P*Q blocks, numbered (N+M*P+l) through
(N+M*P+I+M*P*Q).

By convention the BlockNumber for OverflowBlockl is -2. Any
index blocks referenced by OverflowBlockl, as well as
OverflowBlock2 (if present), and any index blocks it references
directly or indirectly are assigned BlockNumbers in a negative
sequential fashion starting at -3 in the obvious manner.

Some constituent hosts will have multiple disks (in the case
of UNIX, these may actually be disjoint regions on a single
physical disk, and in the case of VMS, they would be multiple
contiguous files). Part of the FileID specifies the disk on
which the file resides. The CreateEFSFile operation takes an
optional parameter which specifies a disk. If the parameter is
supplied, block 0 and all subsequently created blocks of the file
are allocated on the specified disk. If the parameter is not
supplied, block 0 and subsequent blocks are allocated on the disk
the EFS sees fit.
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14.4.2.3 Disk Salvaging

There is a BadDiskBlock table which holds the disk addresses
of bad disk blocks. The BadDiskBlock table is stored in a file
with a well-known FileID (FileID = 3).

There is a EFS disk salvage operation which can reconstruct
the FileID table, the FreeDiskBlock file, and the BadDiskBlock
file, and reset the NextBlock pointers in files.

The salvager may encounter files with missing blocks. When --

it does, it will fill in any hole it encounters with a newly
allocated filler block, linking the filler block into the file
where the hole was. The FileID of the filler block will be set
to the ID of the file, and its BlockNumber will be set to a
special BlockNumber which identifies it as a filler block. The
only data in a filler block will be the BlockNumbers of the
previous and next file blocks which contain data. Higher level
software can be used to recover the data in a file which contains
filler blocks.

As the salvage procedure encounters bad disk blocks, it
records them in the BadDiskBlock file. If it encounters a bad
block which is part of a file, the salvager will remove the block
from the file and substitute a newly allocated replacement block
by linking it with the other blocks of the file in place of the
bad block. The FileID of the replacement block will be set to
the ID of the file, and its BlockNumber will be set to a special
BlockNumber which identifies it is a replacement block. The only
data in the replacement block will be the BlockNumber of the
block it replaces. This will make it possible for higher level
software to recover the data in other blocks of the file. " "

14.4.2.4 EFS File System Operations

The following functions will be supported by the EFS:

0 CreateEFSFile ([Disk], [NewFileID])
-> FileID, Block0DiskAddress

Create a file, by allocating a FileID and a disk block for
block 0 of the file. Make entry in the FileID Table.

For EFSs with more than one disk, the optional Disk
parameter, if present, specifies the disk on which the new
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file is to be stored.
, °__ .'"

If the optional NewFileID parameter is specified a check
will be made to see if a file with that FileID exists. If
not, NewFileID will be used as the FileID of the new file.
If so, the operation will fail.

o DeleteEFSFile (FileID)

Deletes a file by: Deletion involves

1. Clearing the FileID field in each block.
2. Updating the FreeDiskBlock table; and
3. Removing the entry for the file from the FileID

Table.

O ReadEFSFileBlock(FileID, BlockNumber, Buffer,
[DiskAddress] )

Read BlockNumber of file FileID into Buffer. Find the block
by following NextBlock pointers and counting. If the FileID

- and BlockNumberID stored in the disk block are not the same
as those specified in the call parameters, the operation

- fails.

The optional DiskAddress parameter is a hint. If present,
the block at DiskAddress is read, and if it is block

.' . BlockNumber of file FileID, it is returned as the result of
the read.

If the operation succeeds, the disk address of the block is
returned.

o WriteEFSFileBlock(FileID, BlockNumber, Buffer,
[DiskAddress])

Writes the data in Buffer into the specified block

(BlockNumber) of the specified file (FileID). If

BlockNumber > CurrentNumberOfFileBlocks -

the operation will fail. If

BlockNumber < CurrentNumberOfFileBlocks,
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the disk block for BlockNumber is overwritten with the data
in Buffer. If

BlockNumber = CurrentNumberOfFileBlocks 1,

a disk block is allocated and the data in Buffer is written.

"-"- " The optional DiskAddress parameter is interpreted as a hint.
If present and

-, .- -

BlockNumber < CurrentNumberOfFileBlocks,

"" .4 .the block at DiskAddress is read, and if it is block
BlockNumber of file FileID, the data in Buffer is written
into the block at DiskAddress. If

BlockNumber = CurrentNumberOfFileBlocks,

DiskAddress is ignored.

WriteEFSFileBlock is responsible for the adjustments needed
S-. for the case that the block being written converts the file

into a normal file.

o ReadRandomEFSFileDataBlock (FileID, DataBlockNumber,
Buffer)

This is the random read operation. It is used to read file
" . data blocks; index blocks are not accessible via this

operation. Block -1 is used to obtain the block index (if
any) for the file, and the block index is used to find the
disk address of the specified file data block. The data at
that block is read into Buffer.

0 WriteRandomEFSFileBlock(FileID, DataBlockNumber, Buffer)

This is the random write operation. If

DataBlockNumber > CurrentNumberOfFileDataBlocks,

then the write will fail. Block -1 is used to obtain the
O block index (if any) for the file, the index is used to find -

the disk address of the specified file data block. If

DataBlockNumber < CurrentNumberOfFileDataBlocks

the data in Buffer is written into the block specified by

1,7
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the disk address. If

DataBlockNumber =(CurrentNumberOfFileDataFlocks + 1), .

then a disk block is allocated for the file and the data in"O
Buffer is written. If no block index exists when this call

is.iis made, it will create one.

0 SalvageElementaryFileSystem

This initiates the salvage procedure for the EFS.

14.4.3 UNO Generation

Unique numbers are used to name Cronus objects. They may
also be used for a variety of other purposes such as transaction
identifiers, or cluster-wide names for objects in the application
domain.

Cronus supports a service which generates unique numbers
(UNOs) and is accessible to system and application processes.
Processes may request a UNO at any time, from any of the hosts in
a Cronus cluster. The UNO service guarantees that any requesting
process is promptly supplied with a UNO. No two requests by
client processes ever obtain the same UNO, over the entire
lifetime of a Cronus cluster.

The UNO service is composed of two types of software
components, the SmallStepper, on every Cronus host, and the
LargeStepyer, residing on any subset of Cronus hosts with non-
volatile storage. The production of a lengthy sequence of UNOs
is the result of cooperation between the SmallStepper component
on a particular host and at least one ,argeStepper component,
sometimes remote.

Because all Cronus hosts use the UNO service, the
implementation of the SmallStepper component is part of the
integration cost of every host. This cost is small because the
SmallStepper component is simple; the most difficult aspects of
the reliability problem are treated in the design of the
LargeStepper components. Delay in satisfying UNO requests is
minimized because SmallStepper and LargeStepper need
synchronization only infrequently; most requests can be satisfied
locally and quickly.
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High reliability is an important goal of the UNO generation
scheme, both in the sense of continuous availability and of
ccnsistent restarts should all of the LargeStepper hosts fail or
be shut down at the same time. We assume only that at least one
LargeStepper host retains its non-volatile storage across an

* . outage of all LargeStepper hosts, in order to automatically
resume the production of UNOs when that host is restarted. A
manual procedure exists which allows a restart of the UNO
facility if ajj hosts lose non-volatile storage; initial UNO
facility startup is a special case of this situation.

A Unique Number is a 64-bit quantity whose representation is
dependent upon the host programming language and machine
architecture.

The central property of the UNO is that two distinct
invocations of the GenerateUNO function will never yield the same
UNO. Calls to GenerateUNO by processes in different DOS clusters
may yield the same bitstring; UNOs are universal only over the
domain of a single cluster.

The local host number of the machine is a field of the UNO
bitstring, and can be extracted with the OriginOfUNO operator.
All UNOs generated by a host aie strictly o.dered by time of
creation, and can be compared using the OrderOfUNOs operator.
UNOs generated by different hosts are not comparable; OrderOfUNOs
will detect and .indicate this situation to its caller.

The UNO size, 64 bits, was derived from assumptions about
the maximum number of UNOs needed during the lifetime of a Cronus

- -cluster. We assume that the maximum number of hosts in a cluster
.:i is 1024, and the maximum lifetime of a DOS cluster is 100 years.

The implementation strategy imposes constraints upon the rate at
which UNOs can be generated (fewer than 1000 per second per host)
and on the rate at which a host can leave and re-enter the
cluster-wide UNO generation mechanism (about once every 10
seconds). The latter constraint increases the boot-up delay of a
Cronus host by a few seconds while it initializes its
SmallStepper component.

There are three primitive operations on UNOs in addition to
" assignment. The interface operations defined in this section are

available as procedure or system calls to a client process. In O
-.. the C language, assuming a typedef UNO, they might appear as

follows:

BOOL GenerateUNO(unoptr) UNO *unoptr;
O. --O

."~~ .' 

.. "0

A-176

. a . . .* a .a -. .

a -, --

*. a *a L- a a



-.-- .- .r j~ , . . ,._.- . ".-. . • .

Report No. 5261 - Part A Bolt Beranek and Newman

0

Generate a new UNO in the structure pointed to by unoptr
and return TRUE, otherwise return FALSE.

HOSTNUM OriginOfUNO(unoptr) UNO *unoptr;

Return the internet address of the host which generated the
UNO *unoptr, unless the UNO is well-known, in which case
return UNDEFINED.

UNOORD OrderOfUNOs(unoptrl,unoptr2)
UNO *unoptrl, *unoptr2;

Compare the UNOs *unoptrl and *unoptr2, and return a result
indicating equality, or the ordering between the UNOS, ordeclare them incomparable.

These operations are continuously available, and will
complete successfully unless the invoker's host fails during the 6
call. GenerateUNO may fail (return FALSE) if all LargeStepper
hosts are down or inaccessible for a long period of time. The
implementation of the SmallStepper component will guarantee, that
a GenerateUNO request completes in a small, bounded amount of
time, unless the client's host fails during the request.

A portion of the UNO space is reserved for well-known UNOs.
These will never be returned by the GenerateUNO operation; some
of them are statically associated with primitive objects in the
Cronus system. For these UNOs, OriginOfUNO returns the value
UNDEFINED, a 32-bit quantity which is not a valid internet
address. When one or more of the arguments of OrderOfUNOs is a
well-known UNO, the result is UNOINCOMP.

The structure of a UNO as visible to the implementation has
three fields: HostAddress, HostIncarnation, and SequenceNumber.
In C, the structure might be declared:

typedef struct

unsigned HostAddress: 10; /* bits */
unsigned HostIncarnation: 32; /* bits*/
unsigned SequenceNumber: 22; /* bits /

A UNO with a HostIncarnation field equal to zero is a well known
UNO. The HostAddress and SequenceNumber fields of a well known
UNO are manually selected, arbitrary constants.
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The SmallStepper component enforces mutual exclusion while
responding to client requests, and while performing incarnation
number updates based on transmissions from LargeStepper
components.

Most invocations of GenerateUNO will cause the SmallStepper
to increment a 22-bit sequence number, and combine this with the
host address and current incarnation number, to form the UNO.
The UNO generator obtains the host address of its host from the
VLN interface.

Normally the SmallStepper maintains at least two incarnation
numbers, the current incarnation number and the next incarnation 4

number. If a GenerateUNO request causes the sequence number to
overflow, the next incarnation number replaces the current
incarnation number, and the sequence number is reset to zero.
The next incarnation number will be refilled as soon as the
SmallStepper receives a broadcast from a LargeStepper component
or by incrementing a locally maintained non-volatile incarnation
number. If the sequence number overflows and no next incarnation
number is available, the current incarnation number becomes
unavailable, and GenerateUNO will fail.

The SmallStepper component can obtain a new incarnation

number passively, by listening for the next message transmitted

on a well-known multicast channel if it does not maintain its own
-.  non-volatile version of it. This incarnation number becomes the

current incarnation number if it was previously unavailable, or
else it becomes the next incarnation number if that was
unavailable, or else it is discarded. The LargeStepper
components periodically transmit a new incarnation number on the
channel; each number is guaranteed to be strictly greater than
all previous incarnation numbers transmitted.

The separation of the SmallStepper and LargeStepper
components removes the requirement for reliable, non-volatile
storage at each host; the problem is now reduced to the
generation of a monotone incarnation number stream by the
LargeStepper components.
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14.5 Process Support Library

The Process Support Library (PSL) is a collection of
functions, that may be bound into the load image of a Cronus
process. Only those routines actually needed by a process will
be included in the load image. The data structures implemented
by the PSL are within the protection domain of the process.

PSL routines are considered part of the Cronus system and
will generally be maintained by system programmers. The PSL

*fulfills five major roles:

-. 1. It provides a convenient interface to Cronus operations.

2. It provides access to special Cronus features such as the
GenerateUNO facility and the GCE file system; these

features are not normally accessed though the Operation
S.'i Switch.

3. It provides the Message Structure Facility a collection
of routines to build and parse messages.

4. It provides an IPC facility at a higher level than the
primitive InvokeOnHost level.

5. It provides COS interface and utility routines necessary
to support the production of portable programs. This
includes format conversion routines and machine-dependent
constants, for example.
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1 Introduction

This part of Interim Techinal Report #2 consists of a series of
short notes and reports of activities performed during the
period. Principal among these are discussions of the various
activities supporting the development of the system, and of the
progress on the components of the system support environment:
gce, network, C70 constituent operating system modifications.

The following accomplishments during the preceding period
are described in this section:

o completed the integration of the Ethernet local area
network into the GCE, the VAX/VMS and the C/70 UNIX hosts

o completed the integration of IP and TCP protocols into
the GCE, VAX/VMS and the C/70 UNIX and interfaced this
software to the Ethernet layers using the Virtual Local
Network concepts

o completed a CMOS-based Telnet program to support
interactive access to other cluster hosts from the GCE

o completed the integration of a disk subsystem into the
GCE CMOS System

o completed the design and part of the implementation for a
elementary file system for the GCE, which is to serve as
the base implementation for tke Cronus file system.

o completed a set of performance tests to evaluate the
Ethernet hardware and software, as well as IP and TCP
implementations

o developed and installed a system configuration management

plan for source code and documentation

0 developed code for and assembled library functions needed
to support the development of Cronus system components

o established standards and approaches to achieve the high
degree of program portability required by our system
implementation approach

-Sq
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2 GCE Network Software

A Generic Computing Element (GCE) is a multi-purpose
": microcomputer system which is custom configured for a variety of

special purpose host roles in the Cronus architecture. It is
based on M68900 processor technology in a Multibus chassis. The
operating system for the GCE hosts is named CMOS.

Work has been completed in all the following areas of
network protocols on the GCE under CMOS.

1) Ethernet Protocols

2) Virtual Local Net

3) Internet Protocols

4) TCP

5) Telnet

4' The objective of this work is to implement the communication
V protocols as a base for the Cronus communication and control

systems.

The initial plan for bringing up network software on the
GCEs was to adapt the BBN-UNIX version. Subsequently, it was
brought to our attention that there was, at MITRE, an IP - TCP
implementation based on an older version of the CMOS operating
system. Although the BBN-UNIX IP - TCP was more complete (the IP
layer supported ICMP and UDP), the MITRE implementation was used
because it would be easier to bring up on the current version of

The MITRE IP -TCP was encapsulated, to minimize the number
of changes necessary to run on the new version of CMOS. The
encapsulation was soon completedr and was followed by the
integration with the Ethernet software. A TCP test program was
written, and the debugging phase.

Figures 1 and 2 indicate the test configurations used to
demonstrate IP and TCP. Test 1 demonstrated character-at-a-time
functionality between two GCEs on the Ethernet using TCP
protocol. Test 2 showed the same functionality Between a GCE and
the C70 UNIX (using its ARPANET 1822 interface) with the Cronus
gateway interposed. In order to get IP to work with the Cronus
gateway, the VLN address mapping scheme was added to the local
network code. After this was done, test 2 was performed

. pie
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successfully. Test 3 demonstrates the functionality of Test 2
but directly through the Ethernet..9..-

Figure 1

TCP FUNCTIONAL DEMONSTRATIONS

Test 1:

+--------------------- +---------------------
IGCE IIGCEI

I I Ethernet I
I TCP Test I <---------------- >1 TCP Test

+--------------------- +---------------------

Test 2:

I GCEIII
I I EthernetII

4 ~ ~~ < T-Tst---------------- >1Gaey II C Tes Gatwa
+--------------------- +---------------------

I C70
TCP Test -.
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Figure 2

TCP FUNCTIONAL DEMONSTRATIONS (Continued)

Test 3:

------------------------- +---------------------
i GCE I I C70
I I Ethernet I I
I TCP Test < ---------------- >1 TCP Test I... I I I I-. -

Tests 1. 2 and 3 have all been successfully completed.

Finally. we developed a simplified GCE user Telnet program.
This is a prototype implementation that is a modification and
extension of the TCP test program. In the course of debugging
Telnet, a number of bugs were found and fixed in the Cronus
gateway. The GCE Telnet has been used to login to Arpanet hosts
from a Cronus network GCE, to perform various commands on these
hosts (such as listing directories), to logout, to disconnect, to
re-connect, and to login again. The following are the Telnet
test configurations.

,...
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TgLba? rt bCT iCAhAL DE8KONSTRAT IONS

* Test 1:

* ---------------------- ----------------------- 49

* IGCz GCEI
II EteneI

*I Telnet User I<------------------- >1 Telnet Server

----------------------- -----------------------

Test 2:

9" .---------------------- +----------------------
I GCE II

I I EthernetII
I Telnet User 1< ----------------- >1 Gateway

+---------------------- +----------------------

-4. +------------------------

I Telnet user I

+----------------------

.5B-5
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6. Figure 4

TELNET FUNCTIONAL DEMONSTRATIONS (Continued)9

Test 3:

----------------------- -----------------------
GCE I I C70I

I I Ethernet II1
I Telnet User < ----------------- >1 Telnet Server

---------------- --------------------

Test 1 was a trivial Telnet to Telnet connection between
GCEs. Test 2 showed the GCE capability for logging in to a remote
host through the Cronus gateway. Test 3 demonstrates the
compatibility for the C70 of the implementation with other host
types over the Ethernet.:-
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3 GCE Disk Software

The Interphase SMD 2181 Storage Module Controller was chosen
as the disk controller for the Cronus GCEs. Production problems
delayed delivery of this controller, so we initially used an SMD
2180 disk controller (with which the SMD 2181 was advertised to
be upward-compatible) and began implementing the elementary File
System. We constructed a CMOS device driver, Elementary File
System Initialization program and the CreateEFSFile,
DeleteEFSFile, and sequential read and write routines for the SMD
2180. (See Section 14 of Part B for the description of the
Elementary File System).

When the SMD 2181 controller arrived, we found that it was
not completely compatible with the SMD 2180, so we converted our "
code to run on the new controller. There were a number of other
problems we encountered in integrating the new controller, -. *

causing extremely high error rates. After trying new firmware ..
for the controller, which did not fix the problem, we shipped one
of our controllers and disk drives back to Interphase. so that
they could find and fix the problem, which turned out to be a
byte order incompatibility in accessing Multibus memory.

Another problem occurred in which some random bytes would at
times be overwritten with the wrong data when reading a block of
data from the disk. This problem was traced to bus contention
occurring when the controller transferred the data from its on-
board buffer into its Multibus memory. Interphase provided us
with a patch to correct this, which we have installed. The board .'.

now seems to run with very few problems, although some advertised
features of the board (such as error correction) are not
implemented in the current version of the microcode.

-.- The GCE implementation of the Elementary File System, which
is now largely implemented, is being tested using the SMD 2181
controller.

)-% %
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4 C/70 Network Facilities

The task to connect the C/70 UNIX to the Cronus Ethernet is
broken up into three pieces. The first piece is building
hardware interface (called MIENI) to connect the C/70 to the-
Interlan NMI Ethernet controller. The second is writing and
debugging C/70 microcode to drive the hardware. Last is the UNIX
driver connecting hardware to the UNIX operating system.

The hardware was debugged in the fall of 1982. Since that
time, two bugs were found while debugging the software. The
first bug was a bad interaction between the NM10 and the MIENI -:

board which caused the microcode to read the status byte twice
instead of once. The second bug caused the interface to stop
transmitting when it was highly loaded. There was a timing
problem in the MIENI causing it to occasionally send a bad
command.

During this time, the second MIENI board was brought up and
is now operational. We also received new NMI boards from
Interlan which fixed some minor problems in the hardware.

The microcode has been stable for four months. While
debugging the C driver, one bug was discovered. During some
interrupts, the microcode neglected to change the memory maps to
be in UNIX 'kernel space, which caused the microcode to fetch data
from the wrong address.

The UNIX driver is still being debugged. At this moment one
known bug remains that causes the network software to add random
data to the good data. It is being attacked with the help of the
network software group. We expect this bug to soon be found and
corrected.
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5 VAX/VMS Network Software

IP and TCP for the VAX/VMS have recently been installed in
our test configuration. After dealing with a number of
operational difficulties and deficiencies in handling Ethernet
address translations, we now have the software running. We have
added the Virtual Local network software to the 3Com Ethernet
device driver, and are now in the process of testing and
evaluating the IP and TCP implementations.

.... _ -.
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6 Cronus Network Performance

6.1 Introduction

Over the past several months, performance measurements have
been made on the Ethernet local area network. These tests were
designed to give us concrete information on the performance
limits of the Ethernet and of IP.

The three most important characteristics of the Cronus
network are throughput delay, and reliability. Throughput is
the rate at which data can be sent from one host to another.
Delay is the time from initiation of transmission of a single

Sdatagram. until the datagran is available to the receiving
d-process. Reliability is measured by determining the percentage of
datagrams which do not reach the receiving process; datagrams are

-:lost because of hardware errors or because the receiver can't
-. keep up (overspeeding). These three characteristics are a

function of the size of datagrams. Other interesting
dependencies include the Ethernet addressing mode, and the
buffering and synchronization techniques.

The tests measure the characteristics between two MC68000-
based GCEs on an otherwise unloaded network. The reported
results are the average values for 2000 datagrams. The
measurement programs run under the CMOS operating system, and use
standard CMOS i/o and synchronization techniques.

6.2 Explanation of Terms

1) Datagram size

Datagram size is the number of octets in the data field of a
datagram. It does not include header or trailer information
used by various protocols. For example, an Ethernet datagram
(referred to as a 'frame' 6y the standard) consists of a 14

baoctet header which includes addresses and a type field, 46 to
1500 octets of data, and a 4 octet CRC. The smallest Ethernet
datagram is 64 octets, and the largest is 1518 octets
including protocol overhead. Since datagram size refers to
the data field only, for the Ethernet it may range from 46
octets to 1500 octets. IP datagrams add another 20 overhead
octets, and may range in size from 20 octets (no data) to the
maximum allowed by the underlying protocols, which in the case
of Ethernet is 1500 octets. Subtracting the header size, the
datagram size for IP may range from 1 octet to 1480 octets.
Note that IP datagrams with a datagram size of 26 octets or
less are transparently padded when encapsulated in an Ethernet

B-la

B- .0...,.....
.........

s- .2 A A .. 9. .*:. .. * J



. . - . -. .°-

Report No. 5261 - Part B Bolt Beranek and Newman

datagram. because minimum Ethernet datagram size is 46 octets.
This definition of datagram size is chosen as the throughput
or delay measurement depends on the amount of data sent.

2) Throughput

Throughput. is the rate at which data can be transferred
between hosts by sending datagrams back to back as quickly as
possible. If the transmitting host can send data faster than
the receiving host can accept it, a condition known as
overspeeding results. Datagrams will be lost if the receiver
is not ready to accept them. Throughput is measured in bits
per second (Mbps = megabits/second, Kbps = kilobits/second)
and datagrams per second.

3) Bandwidth Utilization

Assuming that the Ethernet's raw bandwidth is 10.0 Mbps,
bandwidth utilization value is the percentage of the raw
bandwidth used in transmission. The usable bandwidth is less
than 10.0 Mbps, if one takes into account the overhead of
protocol headers. This usable bandwidth varies according to
the datagram size; it seemed a dubious complication to compu*-'. . -.
the percentage of usable bandwidth utilization.

4) Errors

All datagrams for which errors are detected in either the
Ethernet or IP layers are discarded. Statistics are kept by
the Ethernet driver and the IP protocol handler, and are
accessable to the test programs. Ethernet transmission errors
that are detected by the controller or driver include 1) too
many collisions encountered in attempting transmission, and 2)
controller errors. Ethernet receive errors include 1) CRC
errors, 2) framing errors, 3) controller errors, and 4) no
receive request outstanding for the data link type of the
received datagram. The controller also detects the lack of
receive buffer space on the controllers but this error is not
counted because these datagrams are discarded with no
indication to the driver. Lost datagrams not accounted for in
other statistics are assumed to have been discarded due to
lack of controller buffers.

IP errors which are detected include 1) datagrams received on
the Ethernet but not addressed to the host, 2) lack of IP
buffer space, 3) incompatable version number, 4) datagram
received with a protocol field for which there is no open
stream, and bad IP checksum.

B-11.
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Of all these errors which can be detected, the only error ever
detected was the Ethernet 'no receive request outstanding for 71
data link type'. This is not an error of the Ethernet itself,
but is a consequence of the decision to have the CMOS Ethernet
device driver discard datagrams for which no outstanding

-. receives have been queued. Other strategies might have
included buffering of datagrams in the driver itself, waiting
for receives to be queued. This approach was not taken
because higher-level protocols are better equipped to make
buffering decisions. No datagrams were discarded for any
other reason, including lack of controller buffers.

5) Received Datagrams

A datagram is counted as received when it reaches the
destination with no errors detected.

6) Dropped Datagrams

A datagram is counted as dropped if it is received properly by
the hardware. but discarded because there was no receive
request outstanding for the data link type.

7) Overspeeding

If the receiver cannot keep up with the transmission rate, a
condition known as overspeeding occurs. Though buffering can
absorb bursts of datagrams coming in at high speeds, it cannot
prevent overspeeding if the transmitter consistently transmits

o datagrams faster than the receiver can accept them. Buffering
occurs in the controller, with room for two datagrams, and in
the user process. User buffers are queued to receive
datagrams of a certain data link type, are returned to the
receiver process when received datagrams have been placed in
them. Overspeeding occurs if either of these two buffer
resources is exhausted. IP adds an extra level of buffering,
with IP buffers being passed down to the Ethernet layer to be
used as Ethernet buffers. Overspeeding can also occur if the
pool of IP buffers is used up. During the course of the tests,
the only type of overspeeding observed was caused by Ethernet

* user buffers not being queued fast enough.

8) Delay

The round trip delay is the time to send a dataqram of a
certain size and to receive a datagram of the same size as an

* * acknowledgement. The one-way dealy is one-half of the round
. trip delay. Delay is measured in milliseconds/datagram.

B-12
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9) Go Bit Test

In the go-bit test, the controller repeatedly transmits the
same datagram, with no copying of data. When a transmit
complete interrupt occurs, the program restarts the
transmission. This measures the speed of the controller
hardware. The test does not implement the portions of the
Ethernet Data Link protocol implemented in software for the
3Com Controller

10) Datagram Copy Test

This test is run as a stand-alone program without CMOS or the
CMOS Ethernet device driver. A maximum size datagram is
copied into the controller's transmit buffer and transmitted.
When the controller interrupts, signalling completion of the
transmit, the datagram is copied again and the operation
repeats. This test measures the overhead that CMOS and the
Ethernet device driver introduce. As with the go-bit test,
the software portions of the Ethernet Data Link Protocol are
not implemented.

11) Back To Back Test

The back to back test measures the speed at which a GCE cantransmit data with no acknowledgements. The transmitting
machine sits in a loop, sending datagrams as quickly as
possible, and the receiver tries to keep up. This test was run
for both raw Ethernet, and IP.

12) Round Trip Test.

The round trip test measures the speed at which a pair of GCEs
can transfer data with acknowledgements. The acknowledgement
datagrams are the same size as the message datagrams to permit
the calculation of one way delay. The test does not implement -.-'

* .a reliable channel with sequence numbers, timeouts, and the
* like.

6.3 Results

6.3.1 Go-Bit-Test

The Go-Bit Test indicated that the 3Com Ethernet controller "-.
- ,.meets the Ethernet specifications. It helps verify the timing of

the other tests, since the results were predictable from the
specification. ,

"i'--
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The clock rate on this Ethernet is 10.0 Mhz, which means
that one bit-time is 100 nsec. No controller can sustain a data
rate of 10 Mbps, since the protocol requires a 9.6 microsecond
interdatagram spacing and a 64-bit preamble for hardware

" synchronization. The maximum size of an Ethernet datagram not
including header and trailer, is 1500 octets, or 12000 bits.
Each datagram also includes 144 bits of header and trailer. and
requires the 64 bit preamble, making the number of bit times per
datagram 12208. In addition, 96 bit times are required for the
interdatagram spacing delay, making the total number of bit times
to transmit a single, maximum size datagram 12304. The maximum
usable bandwidth of the Ethernet is thus

10 Mbps * 12000/12304 = 9.75 Mbps.

The measured maximum usable bandwidth is 9.6 Mbps, close enough • -

to be confident that the hardware is functioning normally, and
that the timing of the performance measurements is accurate. The
slight reduction in usable bandwidth is attributable to the
interrupt latency of the MC68000, execution time of the interrupt
handler. and the occasional preemption of the interrupt handler
by a memory refresh interrupt.

6.3.2 Datagram Copy Test

Any real data transfer using the Ethernet must encapsulate ..-
the data to be transmitted, and then copy the data into the
controller's buffer. The CMOS Ethernet device driver performs
these operations, as well as handling the portions of the data
link protocol not handled in hardware. A stand-alone program
which copies a datagram to the controller's buffer before
transmitting it provides a useful point of comparison to the
Ethernet device driver, since such a program would give a upper
bound on performance of simple data transfer. The maximum
throughput in the Datagram Copy Test was 3.2 Mbps for 1500 octets
of data per datagram. This is nearly 1/3 of the bandwidth of the
network.

In performing other tests, it was found that datagrams with
an odd number of octets require substantially more time to
process than do datagrams with an even number of octets. For
example, the throughput for the Datagram Copy Test for datagrams
with 1499 octets of data was 2.06 Mbps, only 64% of the
throughput for datagrams with 1500 octets of data. The
difference was caused by the data movement routine, and is the
result of interactions between the architecture of the MC68000and the 3Com Multibus Ethernet Controller. The cpu must copy the ..

B-14 '
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Ethernet datagram from its local memory into the controller's
buffer in multibus memory space. To save complexity in the
controller, the datagram is aligned with the end of the buffer.
rather than the beginning. The controller is given an offset to
the start of the datagram, and stops transmitting when it gets to
the end of the buffer. This eliminates the need for a counter in
the controller; however, it does introduce the odd-even
disparity. The M68000 has a 16-bit external data bus, which
means that a copy algorithm can move the data in 16-bit chunks,
but the data transfer must be aligned on an even-byte for both
address source and destination. It is thus impossible to use
16-bit move instructions to transfer a data block from an even-
aligned address to an odd aligned address, or vice-versa. This
case occurs when a datagram has an odd number of octets in it,
since the start will be an odd number of bytes before the end of
the even-aligned controller buffer. In the even-size case, data i .
is copied using the more efficient word-sized instructions, but

• "must be copied using byte moves for odd-sized datagrams.

6.3.3 Raw Ethernet Back-To-Back Test

The Ethernet back-to-back test was run over a range of
datagram sizes from 50 to 1500 octets, with separate tests for

m specific, broadcast, and multicast addressing modes. The
differences in throughput modes and delay for different
addressing modes were negligible. Even for multicast addressing,
which uses a lookup table in the driver to perform address
recognition, an increase in processing time was seen. The time
spent copying the datagram to the controller's buffer and in
process synchronization is a high percentage of the overall time
spent in the Ethernet driver, and small changes in the rest of
the processing are thus insignificant. The results given here
are for the specific addressing mode.

Raw Ethernet throughput ranged from 90 Kbps for 50 octet
datagrams, up to 1.39 Mbps for 1500 octet datagrams (see Figure
5). A single GCE can utilize about 14% of the available
bandwidth of the network under idealized circumstances. The
relationship between datagram size and throughput is fairly
smooth, with some bumps in the curve for small datagrams. The
curve inexplicably takes a small dip between 1300 and 1350 -
octets. The datagram sizes ranged from 50 octets to 1500 octets
by 50, so all of the test points are for even-sized datagrams.
Datagram throughput ranged from 227.0 datagrams/second for 50
octet datagrams, to 115.7 datagrams/second for the maximum-sized
1500 octet datagrams (see Figure 6). The shape of the datagram
throughput curve for small datagrams is difficult to explain. It
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is probably related to the slight non-linearity through the same
range of datagram sizes seen in the throughput curve.

Buffering and synchronization decisions in the receiver
played a substantial role in determining whether it could keep up
with the transmitter, avoiding overspeeding. The simplest
scheme uses a single receive buffer and one outstanding receive
request. The receiver process enters a wait state after
resubmitting the buffer and request. Receiving a datagram tojus
entails the following: 1) copying the datagram to the supplied

.- buffer from the controller, 2) signalling the waiting receiver
process, 3) rescheduling of the receiver process, 4) the
switching into the process, and the 5) resubmissing of the buffer
and receive request. There is queue management overhead for

-- signalling and scheduling, as well as in the scheduler overhead
and the context switching time. This simple technique resulted in
severe overspeeding for small datagrams, because the fixed

6." overhead of CMOS synchronization is a relatively high percentage
..V of the total overhead. (See Figure 7.)

A somewhat more sophisticated method uses multiple receive
". buffers and outstanding receive requests. When several datagrams

come in back to back, the device driver is able to buffer them at
interrupt level if several receive requests are outstanding.
Each buffered datagram causes a signal to be queued for the
receiver process. When the receiver process is rescheduled, it
is able to handle a number of completed receives without the
overhead of CMOS rescheduling and context switching for each
received datagram. This scheme was much more successful than the
simple scheme described above. With only two buffers, the
receiver was able to keep up with the transmitter completely,

" resulting in no dropped datagrams (see figure 3).

6.3.4 Raw Ethernet Round Trip Test

The Ethernet Round Trip Test was run over the same range of
datagram sizes as the Back-To-Back Test; 50 octets through 1500
octets. The transmitter sends a datagram and waits to receive an
acknowledgment datagram from the receiver. The receiver, after
receiving a datagram, sends an acknowledgement back which is the
same size as the test datagram. Since both the receiver and
transmitter use the same techniques for transmitting and
receiving datagrams, and the datagrams going in both directions
are the same size, dividing the round trip time by two gives the
time from starting transmission until the datagram is available
to the receiving process. This time is the one-way delay. The
one-way delay ranged from 7.38 milliseconds/datagram for a
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datagram size of 50 octets, through 13.28 milliseconds/datagram
for a datagram size of 1500 octets. The relationship betweendatagram size and delay is exactly linear (see Figure 8).

6.3.5 IP Back-To-Back Test

The IP Back-To-Back Test was run for datagram sizes ranging
from 50 to 1450 octets, so as to be directly comparable to the
Ethernet test. The largest IP datagram which can be encapsulated
in an Ethernet datagram is 1480 octets. The throughput ranged
from 40 Kbps for a datagram size of 50 octets, through 830 Kbps P-,
for a datagram size of 1450 octets (see Figure 5). Comparing
these figures to those for raw Ethernet, IP throughput ranges
from 44% to 60% of Ethernet throughput for the same datagram
size. The IP throughput curve is smoother than the corresponding
Ethernet curve. All datagram size test points are even numbers.
Datagram throughput ranged from 89.0 datagrams/second for 50
octet datagrams, through 71.4 datagrams/second for 1450 octet . -

datagrams. Unlike the Ethernet datagram throughput curve, the IP .-: -.
datagram throughput curve is smooth.

Though IP uses multiple receive buffers, the IP receiver .'
program could not keep up with the transmitter, even for large
datagrams. This suggests that the fixed overhead of the IP
protocol and the CMOS synchronization, scheduling, and context
switching outweighs the per octet overhead of data copying (see
Figure 9). The increase in dropped datagrams from 50 octet
datagrams through 450 octet datagrams, and the subsequent sharp
reduction can be explained by examining the buffering algorithm.. __"

For datagrams up through 450 octets, IP allocates a buffer which-
is the exact size of the datagram, copies the data from the
receive buffer into this buffer, and gives the buffer to the
receiving process. The receive buffer is then reused. For
larger datagrams, the receive buffer is passed to the receiving
process with no data copying, and a new receive buffer is
allocated to take its place. This algorithm is motivated by the
desire not to waste a full-sized buffer on small datagrams. The
extra overhead of the copy operation for small datagrams causes
the number dropped datagrams to increase through a datagram size
of 450 octets. The sharp drop shows where IP switches to the
alternate buffer management scheme. Datagrams are dropped
because there are no outstanding Ethernet receive requests when a
datagram comes in. Because the multiple buffer scheme for raw
Ethernet avoids some of the the fixed overhead of CMOS, it
provides an increase in the basic receive rate sustainable by the
program. No such reduction in overhead is achieved by the
multiple buffering scheme in IP, so no improvement in the dropped
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datagram rate is seen.

6.3.6 IP Round Trip Test

The one-way delay for IP datagrams ranges from 19.1
milliseconds/datagram for 50 octet datagrams, through 24.8
milliseconds/datagram for 450 octet datagrams, in which IP is
using the copy buffer management algorithm, and then from 20.0
milliseconds/datagram for 500 octet datagrams through 23.1
milliseconds/datagram for 1450 octet datagrams, using the no copy
buffer management algorithm (see Figure 8). Within these two
ranges, the curve is linear.

9._ .;..

6.4 Discussion

6.4.1 Performance Enhancements Suggested By The Tests

As was seen before, IP throughput is between 44% and 60% of
raw Ethernet throughput for the same size datagrams"
Encapsulating data in an IP datagram is not inherently more
complex than encapsulating it in an Ethernet datagram. The
performance penalty is mostly a result of not having tuned the
implementation of IP. Upon examination of the test results,

. several areas for improvement suggest themselves.

1) Encapsulation Of Odd-Sized Ip Datagrams

. Because there is such a disparity in performance between odd-
and even-sized datagrams that is inherent in the interaction
between the controller and cpu. a substantial gain can be '
achieved for odd-sized datagrams by transparently padding them
to an even length.

2) IP Buffer Management Algorithms And CMOS

The current implementation of IP does multiple buffering of
receives at the IP level, rather than at the Ethernet level.
The process that handles Ethernet receives merely signals IP
that a datagram has arrived, passing the buffer up. IP either
copies the data to a small buffer and passes this buffer to
the client process, or passes the receive buffer directly. It
then queues a buffer indirectly by passing it to the Ethernet
level, which then actually requeues the receive request.
Separating the Ethernet and IP levels is probably a good idea,
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since it allows easier implementation of the VLN. But CMOS
process management overhead is high enough so that running
different protocol levels as separate processes and buffering
in a higher-level protocol causes an unacceptable dropped-
datagram rate. These tests measure only pairwise
communication on an unloaded network. In actual operation, if
multiple transmitters.address the same receiver
simultaneously, burst receive data rates may far exceed the
rates measured in these simple tests, causing even worse
performance. It is important that resubmission of receive
requests occur as quickly as possible. There are two possible
solutions to this problem: either buffer incoming data as
close as possible to the device driver and use a more

-- sophisticated buffering algorithm, and/or find the bottlenecks
in CMOS process management and eliminate them.

. *-. ,

- .-
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7 Message Structures

7.1 Purpose and Scope

The message structure selected for the Cronus system is
described in Section 6 of Part B. The discussion in this section
is an analysis of alternatives considered in making these
decisions.

Communicating processes in a distributed operating system
will not usually have access to shared memory or common state

, information at primary memory speeds, for two reasons: 1) two
processes may be on different processors which do not share
physical memory; 2) even when processes are on the same host and
could interleave accesses to the host's primary memory, it may be
impractical or undesirable to do so. Shared memory may be
impractical because of its complex interactions with virtual
memory support, for example; it may be undesirable because of the

S-. importance of the programming paradigm that allows processes to
communicate only through messages.

Without system-wide conventions for message structure Cronus
components would find it very difficult to talk to one another.
Programs could make pair-wise agreements, but this approach
becomei cumbersome and eventually unmanageable as the number of

• correspondents increases. More in keeping with the primary
project objective of coherence and uniformity is a system-wide
convention for message structure.

-.- Conventions for message structure vary widely in their goals
and scope of application. We assume here that the dominant goal

..is the regularization of control traffic in the Cronus
system. Control traffic includes, among other things, requests
for operations to be performed on objects, replies generated by
operations, exception notices, and messages needed to coordinate
distributed object managers. Control messages are usually short
(tens to a few hundred octets) and are bounded by the maximum
datagram size (a few hundred to a few thousand octets). Because -

- control messages are often in the critical path to completicn of
an interactive command, performance is a major issue--messages
should be compact, and efficiently composed and parsed.

Electronic mail an important example of structured messages
o which are not control messages. Conventions for the structure of

mail messages meet very different goals than those for control
traffic. Since the delivery of mail occurs as a background
activity, relatively large space and time overheads can be
tolerated. Mail messages are often large (tens of thousands of
octets) and rarely smaller than a large control message (an

O -2--4
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ARPANET mail message containing one sentence of text is about 300
octets long). Mail messages can be very highly structured, and
fields such as "Date" and "Sender's Phone Number" that have
immediate significance to human readers; thus there is a natural
tendency to use English keywords as structural markers. Often
the processes that send, receive, forward, or file mail need to
interpret only a few fields in a header, passing or storing the
remainder for human interpretation. Standardization of message .
structure is extremely important in electronic mail systems that
extend through the internet and link mail programs, operating
systems, and hosts provided by diverse vendors. Two mail
standards are surveyed below. Finally, because mail messages are
mostly text, they can be composed, altered, and examined by word
processing tools such as text editors and formatters. The
maximum benefit from electronic mail is obtained in systems which
smoothly integrate mail and word processing tools.

Standards for the structure of electronic mail messages will
be applied to mail in Cronus, but it should not be surprising
that these standards are not suitable for Cronus control
messages.

7.2 Design Issues

7.2.1 Objectives

The Cronus message structure conventions will be realized by
a group of software components collectively called the Message
Structure Facility (MSF). The Messg-e Structur Library (MSL) is
the realization of an MSF component, a library of functions or
procedures which are available to processes on any Cronus host.
Messages are composed by passing information to the MSL
procedures; the result of a sequence of such calls is a data
structure. This data structure can be transmitted from one
process to another, and subsequently parsed by MSL procedures at
the receiving process.

The objectives for the MSF relate to the MSL and the data
representation; in approximate order of importance, they are:

1. LOSSLESS STORAGE. A process should be able to extract all
_ of the information inserted into a message structure by the

process which created it. The specification of the MSL
interface should precisely define the data structures
passed into and out of MSL procedures, so that this
property has a clear and simple meaning to MSF clients.
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2. EXPRESSIVE POWER. The message structure should capture
enough of its clients' semantics (e.g., the size and type
of data fields) for its use to be natural and convenient.
Stated differently, clients of the MSF should not usually
communicate and retain information relevant to message
structure, except through the agency of the MSF.

3. PERFORMANCE. The data structures should be compact
relative to the data they contain (e.g., less than 100%
overhead for messages of if octets, and less than 25%
overhead for messages of 100 octets or more). The MSL

* algorithms should be simple and have execution time linear
in the message size.

4. PORTABILITY. The MSF concept should be portable to
different language environments, e.g., the MSL could be
coded easily in C, Pascal, or Ada. The C implementation in
particular should be portable among all of the hosts in the
Cronus ADM.

Attaining Objective (1) assures us that the MSF can be used
to move an arbitrary data structure (viewed as a bit- or octet-
vector) from one Cronus host to another. The representations of
the data structures may differ at the sending and receiving
hosts, but no information will be lost. For example, on the VAX
a message may be stored as a consecutive sequence of 8-bit bytes,
while on the C/70 the same message is stored as a sequence of
10-bit bytes.

Whether or not the MSF meets Objective (2) is unavoidably a
subjective judgement. The potential uses of the MSF are diverse
and unspecified. Because the MSF is accessible to application
programmers, even a complete specification of the system
requirements would not be sufficient to understand all of the
implications of the design.

of Objective (3) implies that efficient composition and parsing
*o very large messages (thousands of octets) is not a

requirement. For small messages, it is acceptable for the MSL to
locate fields by linear search and move fields by block
transfers, operations which require time proportional to the
message size. A structuring facility for large messages might
well find these costs too high, and thus rule out the most
straightforward implementation based on contiguous octet vectors.
Further, if message fields were known to be large on the average
(e.g., hundreds of octets for a paragraph of text or tens of
thousands of octets for a bitmap graphics image), the message
structure could use large field descriptors without increasing
the percentage of storage devoted to overhead; this would open
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many possibilities for more complex and efficient structure
encodings. The small message assumption requires structural

. information to be small in absolute volume, for example, a
message with 100 octets of client-supplied information should be
smaller than 125 octets.

Portability, Objective (4), reduces the cost of the
implementation on the eight or more hosts in the ADM. Large
portions of the MSL will be portable among all of the ADM hosts
supporting the C language. The host-dependent procedures must be
recoded for each machine type (e.g., C/70, 68000, LSI-II) in the
ADM, but the implementations will be very similar.

We did not make compatibility with any existing standard for
message structure a goal because we know of no such standard that
adequately complies with these four objectives.

7.2.2 A Taxonomy of Message Structure Conventions

A standard for message structure can be described as a point
in a design space. Self-description, language integration, data
type support, and performance are proposed in this section as ns
useful axes in this spa-ce. These aspects and their significance
to the MSF are described individually below.

A message is self-deribkinsg if it contains information
about itself--about its own structure, or about the structure or
type of its components. If we adopt such a convention, a
receiver can depend upon the presence of this information, and
need not rely upon higher-level protocols for its inclusion.

For example, a receiver might expect a message containing a
timestamp; a timestamp might be represented either as a binary
integer of 32 or 64 bits, or as a fixed length ASCII string. If Ib.
messages contain no self-descriptive information, the receiver -71

must make prior arrangement with the sender to either: 1) place
exactly one of the possible formats (e.g., 32-bit binary) in
every message; 2) indicate in each message which variety of
timestamp was included. In case (2) the question of self-
description recurs, over the representation of the indicator
field.

The conventions for message structure considered in this
note contain self-descriptive information which applies to the
position, size, data type, and symbolic name of a message field,
although not all of these are present in each convention.
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Conventions for message structure can be influenced to a
greater or lesser extent by the programming languages used to .0

r -implement them. Tight integration might be achieved by
developing a standard representation for a linguistic structure ...

such as a Pascal record or C structure; weak integration is
achieved by packages which strive for portability, and must be
compiler or even language independent to a large degree.

.2'.. Tight integration tends to improve performance, because the
compiler's ability to optimize references to messages using
structure-like objects defined in the language can be exploited.
Such conventions may be convenient to use, because they blend
well with features of the language; for example, expressions
involving messages might be written in the language's standard

m syntax for structure accesses.

Tight integration has costs as well as benefits. It implies
'. a strong dependence on a single language. Alternately, one must

be willing to modify compilers to force message structures to
conform to a standard representation. Certain concepts natural
to message structures may be foreign to the data structuring

---- • facilities of the host language (e.g., inclusion of self-
. descriptive information), and these may be difficult to
S.-implement.

The weakest form of integration implies reliance on only a
few language features, that are present in many languages. For
example, a message structure library of might use procedure calls
as the only form of invocation, arrays of integers as the only . -
data structure, and only stack-oriented storage allocation at
procedure entry time. A library which obeys these constraints
could be implemented in Pascal, C, PL/l, and most other block-
structured languages. Furthermore, if portability is an

S'-' important goal, the implementation for each language can be made
portable across a range of compilers and host machines. Thus
weak integration allows structure conventions to be implemented
uniformly on many systems, at reasonable cost.

A library that is language-, compiler-, and host-independent
imposes the burdens of integration on its users. For example, an
application program may be forced to convert internal structures
to message structures through a lengthy series of procedure
calls, one field at a time. Programs will be more complex and
execution slower if this approach is followed.

The conventions described in this note are language

independent, in general. In order to mitigate the costs of the
, interface between message structures and data structures within a

program. it is suggested that local data objects should sometimes
be stored in the message format, i.e., the MSF can be viewed, to
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some extent, as an alternative to the record or structure data
I0 types in the host language.

The degree to which the convention incorporates data type
concepts is related to language integration. A language-based
convention permits messages to contain some or all of the
standard types defined in the language.

In the simplest case, a convention may consider messages to
be composed only of bit- or byte-strings. The responsibility for .

interpreting the message fields as integers, character strings,
etc., is left to higher-level software. A somewhat more complex
convention may define the representations of basic data types
(e.g., integers, booleans, and strings) in a language- or host- * . -

independent way. These data types may or may not include
composite types (e.g., lists, records, arrays).

A convention may explicitly support the definition of new
types, to be treated like the predefined types. There may be an
administrative authority which guarantees the uniform
interpretation of the types which evolve after the convention has
been established.

If the application domain of the convention is well

understood, data types especially important to that domain, may
be included. Electronic mail systems are an important example; -

data types such as "phone number" and "network address" can be
helpful here. Control traffic in a DOS might utilize a different
set of conventional types, for example, Universal Identifiers,
Transaction Identifiers, and timestamps in various formats.

Specification of data type representations is separable from
the issue of self-description. A convention which specifies the

* representation of a 32-bit, two's complement integer, for f. -

example, may or may not include a type tag on elements of this
type when they are embedded in a message structure.

Small and simple structures are easier to parse than large
• and complex ones. More complex conventions imply, in general,

more complex and costly software packages to assemble and
disassemble messages.

- Execution time costs associated with message structures can
be roughly divided into three categories:

1. The cost of transmission is an increasing function of
message size.

2. The cost of composing and accessing the message is a
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function of the complexity of the convention.

3. There is a cost borne by the clients for encoding higher-
level concepts in those known to the convention.

If a convention is insufficiently rich in concept, (3) may be the
dominant cost of use. If it is too complex, (2) may dominate.
The most desirable situation is one in which (1) dominates, and
furthermore most of the information content of messages is useful
to the recipients.

The Cronus conventions selected have the following -. -
characteristics: 1) most operations on data structures are
octet-oriented, and octet-oriented machine operations are
efficient; 2) small data fields (e.g., an enumerated type with a
few values) are represented very compactly, usually in one or two
octets; 3) a key is stored with each data value to indicate its
meaning or purpose--keys can be as short as one octet, or many
octets (e.g., some keys may be symbolic names). The message
structure routines are simplified because they contain no
inherent knowledge of the keys.

7.2.3 Four Existing Conventions

7.2.3.1 NSWB8

The NSWB8 protocol [1] defines the structure of NSW control
messages, thus its intended use is similar to that of the Cronu's
MSF. NSWB8 does not define a uniform client interface, but only
the data structure.

An NSWB8 message is a string of octets; all fields of the
message are octet-aligned. Each field is preceded by an octet
designating the type of the field (i.e., one of empy, bDQIean,
index, integer, bitziLring, charsti, jist, or pad); the length of
a field can be inferred from the field's type. The primitive
types empty, boolean. index, integer, and pad are fixed length,
and occupy from 1 to 5 octets, including the type octet. The
types bitstring and charstr contain a count (a 16 bit unsigned .
integer), followed by "count" bits (in ("count"+7)/8 octets) or"count" octets, respectively.

The type list permits NSWB8 messages to be recursively
structured. A list begins with a type octet and a count, as for *.. .

bitstring and charstr, but is followed by "count" fields of
arbitrary type; some of these may again be of type list. NSWB8
is not closely tied to any programming language or host
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architecture; the set of defined types is minimal, and does not
include types (such as floating point) that are quite machine
specific.

The most important deficiency of NSWB8 is the absence of a
client interface specification to a standard library for
manipulating NSWB8 structures. This interface is a necessary
prerequisite for the construction of a portable MSL. Two further
problems are 1) the amount of overhead for some fields (e.g., a
variable length field has a 3-octet descriptor), and 2) the
requirement that every receiver have knowledge of all defined
types in order to parse an NSWB8 message because the size of a . -
field is not explicitly coded in the field descriptor.

Finally, the NSWB8 protocol draws a sharp line between types
defined in the protocol (e.g., integer, boolean, charstr) and 0.
new, client-defined types (e.g., an enumeration type); it does
not suggest how the latter should be represented. In this
respect the expressive power of NSWB8 is limited.

7.2.3.2 The Internet Message Protocol

The Internet Message Protocol (IMP) [2] is intended to be
used for the transmission of electronic mail messages in the ARPA
internet environment. The protocol includes conventions for
multi-media messages as well as conventional ASCII text. Multi-
media messages may contain digitized speech and video
information; these fields tend to be extremely large (tens to
hundreds of thousands of octets). In the ARPA internet, messages
constructed are transmitted on TCP connections, and the
transmission protocol imposes no limit on the size of messages.

IMP defines twelve basic data elements. A data element is a
- sequence of octets beginning with a type tag, which is an

unsigned integer between 0 and 11. Nine of the data (No
Operation, Padding, Boolean, Index, Integer, Extended Precision
Integer, Bit String, Name String, and Text String) refer to
atomic data elements without substructure visible to IMP. Three
types (List, Proplist, End of List) are used to build composite
structures. Composite structures may be recursive, e.g., a List
may be an element of another List. The variable length elements
(Padding, Extended Precision Integer, Bit String, Text String,
List, and Proplist) contain a three-octet count immediately
following the type octet. The Name String type has a one-octet
count following the type octet, to reduce the overhead in the
representation of short strings.
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A simple example is the representation of the key-value pair
COLOR:blue. Using IMP to represent this pair as the single
element of a property list, the encoding would be:

1 2 3 4 5 6 7 8 9 10 11 12

01 01 0 1 131 71 51 CI 0 LI 01 RI 71

Proplist Name, 1 1 I String"

Count Name I
String I

Count

13 14 15 16 17 18

I 4 I b I 1 I u I e I 11 I

Count End List

A key always has type Name String, and the IMP defines a large
- set of well known key names significant in the electronic mail

application domain, e.g., "NET", "OPERATION", "TYPE-OF-SERVICE".
"DATE", "TRANSACTION".

Lists and property lists are powerful and convenient
structuring concepts. The primary deficiency of the IMP, from
the viewpoint of the Cronus MSF requirements, is the large
overhead implied for small messages. An empty property list is
five octets long; the smallest meaningful property list has a
minimum of eight octets of structural information. The Cronus
MSF is a descendant of the IMP, but is optimized for the compact
representation of small structures.
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7.2.3.3 The NBS Message Format

The National Bureau of Standards "Specification for Message
Format for Computer Based Message Systems" [3], like the Internet
Message Protocol, is intended as a standard for the format of
electronic mail messages. These two standards have comparable
domains of application, but two philosophical differences are
apparent: 1) the Internet Message Protocol addresses the
requirements of multi-media messages more directly; and 2) the
NBS Message Format addresses broader issues, for example, the
allocation of certain variable values for vendor-defined
purposes.

A message conforming to the NBS Message Format is composed
of data elements; there are 19 defined data types, 7 primitive .

types and 12 constructor that are used to combine elements and
other data types:

Eimitive Constructors

ASCII-String Compressed
Bit-String Date
Boolean Encrypted
End-Sf-Constructor Extension
Integer Field
No-Op Message
Padding Property-List

Property
Sequence
Set
Unique-ID
Vendor-Defined

V.z

In its most general form, a data element is structured
containing five fields:

1. Identifier Octet

2. Length Field

3. Qualifier Field

4. Property-List

4. Element Contents

The Identifier Octet specifies one of the defined data types, and
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whether or not a particular instance has a Property-List (e.g.,
one instance of Integer may have a Property-List, while another
does not). The Length field specifies the number of octets in S
the data element, after the Length Field. The Qualifier is
present only for six data types (Bit-String, Field, Property,
Compressed, Encrypted, Message), and is used to encode data-
element-specific information, for example, the encryption
algorithm for an Encrypted data element. The Property List binds
properties to a data element; the only properties defined in the ".0
NBS Message Format are "Printing-Name" and "Comment". The
Contents field contains the actual data represented by the data
element.

A representation of the property "COLOR" with the value
"blue" in a Property-List data element, assuming that COLOR is a -.

vendor-defined property, is:

1 2 3 4 5 6 7 8 9 10 11 12

36 1 15 1 691 13 1 1341 0 1 C I 0 I LI 01 R I 2 I
---------------------------------------------------------------------. . .. .- .

Property- I I I I Vendor- ASCII-
List I I Length I Defined String

Length I I
.I Qualifier

Property

13 14 15 16 17

I 41 bI 1I uI eI

Length

The amount of structural information (Identifier Octets,
Length fields, Qualifier headers) in a message conforming to the

-; NBS Message Format is comparable to that in a similar Internet
Message Protocol message. One difference is that the NBS Message
Format encodes many message field names as well known binary
numbers (e.g., From=l, To=5, Reply-To=3), while the Internet '.
Message Protocol represents the analogous field names as ASCII
text. Thus messages in the NBS Message Format are potentially
more compact, at the expense of greater static context in
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programs that display messages to humans. From the viewpoint of O
Cronus control traffic, the difference is minimal, because the
few field names are common to the domains of electronic mail and
system control messages.

Like the Internet Message Protocol, the NBS Message Format
is tailored to the electronic mail application, is oriented 0

, towards large messages, and defines only a class of
representations. It does not define a client interface for
manipulating data structures in the standard representation.

7.2.3.4 Courier

The Courier protocol [4], developed at Xerox Corp., is quite
different from NSWB8, the Internet Message Protocol, and the NBS
Message Format. The Courier definition says that it "facilitates
the construction of distributed systems by defining a single
request/reply or transaction discipline for an open-ended set of
higher-level application protocols." Layer Two of Courier defines
the atomic and structured data objects or messages which can be
built in accord with the standard.

Courier data objects carry very little self-descriptive
information, instead relying upon global context for successful
communication. The Layer Two of Courier defines 14 canonical
external types, 7 predefined or atomic types, and 7 constructed
types. Only the String and Sequence types include self-
descriptive information. Sending and receiving processes must
possess a common understanding of the message structure,
including the type and length of each message field. For
example, Courier encodes an Integer value in the range
-32,768..32,767 in a 16-bit data object field, in two's

,ku complement representation. The encoding contains no explicit
indication of type or length of the data object; a recipient must
be aware that an Integer field begins at a particular 16-bit
boundary within a message to extract in Network Unreachable

. formation from it. The 14 data object types specified in
Courier are:
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'r e d..f i n.d _Q .. u.rLed

Integer Enumeration
Long integer Array
Boolean Sequence
Cardinal Record
Long cardinal Choice
String Procedure
Unspecified Error

The origins of Courier data types are rooted in the concepts of
programming languages rather than the context of electronic mail.
The approach suggests a model of distributed programming in which

*-:- the global context for message interpreting phase. A
Courier message could be described by a type template which
automatically drives the composition and parsing of messages. In
fact, Courier specifies a grammar that could be used to define
the class of templates, represented as ASCII character strings.
The Courier standard talks about templates being created at
"documentation time" for a software module. An example of a
template for an enumeration type from the standard is:

Mode: TYPE = {readPage(0),writePage(l),readAndOrWritePage(2) 1;

where a message of type Mode has three possible values, readPage,
writePage, and readAndOrWritePage, which will be represented in a
16-bit field by the integers 0, 1, and 2, respectively.

Courier provides no direct encoding of key-value lists. The
COLOR:blue example above could be encoded as a record composed of
two String fields, using the Courier template grammar:

RECORD[Key,Value: String]

The corresponding representation of the pair COLOR:blue as a
sequence of octets would be:

. ..J. .

.T'
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1 2 3 4 5 6 7 8 9 10 11 12

:01

SI I I 0.:.

Length I Length

End-of-String

13 14 15

Iul el 0

End-of-String

Courier messages can be extremely compact, since they
contain little self-descriptive information, but proper
interpretation of the messages depends upon pre-established ,
context. This is true of any message but Courier would require
more externally-supplied context in the domain of electronic mail
applications, for example, than the Internet Message Protocol or
the NBS Message Format. In general, a protocol which includes

- more self-descriptive information is a better choice for the
Cronus project, because it reduces the mechanism supporting

* [. process-to-process communication.

, .
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8 Cronus System Libraries

The Process Support Library (PSL) is a collection of
functions, that may be bound into the load image of a Cronus
process. Only those routines actually needed by a process will
be included in the load image. The data structures implemented
by the PSL are within the address space of the process.

The PSL contains two important classes of function entry
points. One class is widely used directly in application program
development. The other class corresponds more or less to system.
calls in ordinary operating systems. These generally invoke a
single operation on a particular type of object; the first class
is generally implemented from components in this class.

During the period covered by this report, the general
outline of the library has been prepared. Documentation of the
principal object operation functions has been developed, and is
currently being revised. Certain service routines, in
particular, a portable i/o library, string, message structure,
and data table manipulation functions have been written.

There are two packages available for data table
initialization and maintenance. These insert, delete, and find
key buffers and their associated value buffers. They are
intended to be used in applications requiring many fast data
retrievals.

The first of these, the LQH table maintenance package,
creates an open address table, which is statically allocated by
the calling program. It uses a linear quotient hashing scheme
(i.e. double hashing if a collision occurs). These routines work
fastest in a relatively unpopulated table.

The second, the BKH table maintenance package, gets storage
as it needs it. It uses a bucket hashing algorithm, storing its
values in linked lists. The linked list structure makes this
package very effective for applications requiring many insertions
or deletions.
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9 Configuration Management

A configuration management plan for Cronus has been
developed, and tools developed and acquired to automate aspects
of this plan. The general principle of configuration management
in the Cronus system is based on saving an audit trail of
modifications to all source files (both program and English
text), and of archiving obsolete program object files. The
source file modifications, except those in the user manuals, are
saved using the Revision Control System, which was obtained from
Walter Tichy of Purdue. The manual revisions use the standard
BBN-UNIX manual subsystem. Program objects are automatically .i
saved by the inat.ll command.

The basic commands in the Revision Control system are as

follows:]
ci checkin a file
co checkout a file
rcsident identify a version
rcsdiff diff the current version

with the RCS version
rcs modify the rcs control and commentary
rlog show selected portions of the file history
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10 Standards, Policies, and Procedures

A Standards, Practices, and Policies Manual has been .
prepared for the Cronus Distributed Operating Project. Since the

. Cronus Advanced Development Model (ADM) is only the first
instance of the Cronus DOS, the standards and practices described
herein are designed to support the substitutability and

- portability goals of the project as well as to enhance the

overall maintainability of the system.
The Cronus System is implemented on a heterogeneous

collection of machines and constructed from a number of
constituent operating systems. LA
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11 System Documentation

11.1 User Manual

Documentation is an important aspect of Cronus development.
We will be preparing a User Manual, an Operations Manual and
Program Maintenance Manual describing the system from these
various viewpoints. We have formulated initial plans for the:2, development of these manuals.

The User Manual (UM) consists of those documents required to
%%- make effective use of the system. Many users will require only

documents which describe the terminal interface to the system,
others will need a description of the programming interface,
while other users will require more detailed information. The
complete UM is compiled from numerous documents from several
sources. The following are components of the UM:

o The basic user manual is a series of separate documents
organized into sections which describe the manner in
which commands may be invoked directly by a user, and the
programming interface for standard library functions.
This manual exists in online and hardcopy forms.

o A Cronus Glossary of terms used in the various documents,
particularly the User Manual, System/Subsystem
Definition. Program Maintenance Manual, and Manual will

.4.., be compiled.

o There are reference manuals for the more complex commands
and subsystems. These documents generally exist in
hardcopy only, although the text generally exists in

machine readable form as well.

o User manuals for certain parts of the Constituent
Operating systems may be included in the Cronus UM.

The online user manual will be maintained throughout the life of
the project.

11.2 Operations Manual

The Operations Manual (OM) consists of a series of
documents, including:

o The Cronus Operations manual which describes procedures
for operating the Cronus System, including startup,
shutdown, crash recovery, and the interpretation of

...-.
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console messages and other similar status and exception

information.

o The Operations manuals for each of the COSs.

o The Operations manuals for other system components, for
example, for the the internet gateway.

11.3 Program Maintenance Manual

The Program Maintenance Manual (PMM) consists of the
information which is needed to understand and modify the various
programs which comprise the Cronus DOS. Information contained in
the Functional Description and in the System/Subsystem
Description is essential to the comprehensive understanding of
the system. can be considered part of the PMM. The Program
Maintenance Manual is made up of a number of other documents,
including:

o The Cronus Standards, Procedures and Policies document
defines the methods used in coding and documenting
programs, establishes standard practices for the use of
program libraries, and describes the configuration
management used in the Cronus Project.

o Manuals for the Constituent Operating Systems,
specialized software packages used in the Cronus System,
and for the hardware components in the Cronus systems.
These are generally supplied by the vendors from whom the
hardware or software was obtained.

o Manuals, drawings, and other documentation as
appropriate, fcr all hardware developed by BBN
specifically for the Czfonus project.

o The Program Maintenance Tools are described in the PMM
section devoted to the analysis of code.

o The Program Code Analysis contains the results of
applying the Program Maintenance Tools to the code, and
also contains listings of the delivered version of the
code, which provides unambiguous documentation of the
system.

o The System Notebook contains the series of informal
documents, known as DOS Notes, accumulated during the
life of the project.
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