AD-A139 983 CRONUS A DISTRIBUTED OPERRTING S?STEH(U) BOLT BERRNEK
AND NEWMAN INC CAMBRIDGE MR R SCHANTZ ET AL. DEC 83
BBN-5261 RADC-TR-83-255 F38692 81-~C-8132

UNCLASSIFIED

A

- o i

I-

[——
—
—
——

: S EEE

——
e———
——
e ——

14

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANOARDS - 1963 ~A

l.
=

L o8

g VPR L

e '.o S ,lv...‘v .
'} dhdl *nv'ﬂ’.ff* c‘l!q(ﬂﬁtﬂf‘lnf -ﬂullqc--'- " e e v e
- al \\5 ; Y -v- n‘.-l- % § MR S ARl . \ﬂ.o\...-u. LY, OO

,Nh\\ \ti- /oo Py --ﬁ\ ! \\,.. f \ \. 5 .--. " q. .--'\J..)L" ‘\-\Q\m)\\-\\.

RADC-TR-83-253

interim Technical Report #2
Decomber 1983

CRONUS, A DISTRIBUTED OPERATING
SYSTEM

ADAis9983
Bolt Beranek and Newman, Inc.

R. Schantz, B. Woznick, G. Bono, E. Burke, S. Geyer, M. Hoffman
W. MacGregor, R. Sands, R. Thomas and S. Toner

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Ve
a R
S -
~. ROME AIR DEVELOPMENT CENTER DTIC .
- Air Force Systems Command ELECTERN * . %
— Griffiss Air Force Base, NY 13441 APR111984 §7r1 il
==-’= L]
c= D ° _.1
o
4 11 018 S
84 0 : | I}
e ‘ =

LA YA T T G A A I I R L A i F-‘.‘r~..‘rr Bl g Al e i R AR e i e e Suts e s JER B SRR B
L PR AP e e e LT T I N IS Rl = ,.‘1

This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RADC-TR-83~255 has been reviewed and is approved for publication.

APPROVED: %[lr %tgaﬂ/

THOMAS F. LAWRENCE
Project Engineer

APPROVED:

JOHN J. MARCINIAK, Colonel, USAF
Chief, Command and Control Division

FOR THE COMMANLZR: a
[

JOHN A. RITZ
Acting Chief, Plans Office

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organizationm,
please notify RADC (COTD) Griffiss AFB NY 13441, This will assist us in
maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices
on a specific document requires that it be returned.

| EE

,- . P
R W
R . e
A U I TR
. FAETEAT AT S
SN LRSI I

UNCLASSIFIED
SECURITY CL ASSIPICATION OF THIS PAGE (When Data Bntersd)

REPORT DOCUMENTATION PAGE BEF oD TR T ION S
ORT NUM —'z. GOVT ACCESSION uo 3. RECIPIENT'S CATALOG NUMBER
RADC~TR-83-255 -A13%1 7 73
4. TITLE (end Subtitle) o S. TYPE OF REPORT & PERIOD COVERED

Interim Technical Rpt No.
82 July - 82 December

6. PERFORMING OG. REFPORYT NUMBER

BBN Report No. 5261

CRONUS, A DISTRIBUTED OPERATING SYSTEM

7. AUTHOR(s) 0. CONTRACT OR GRANT NUMBER(s)
R. Schantz E. Burke W. MacGregor S. Tonef
B. Woznick S. Geyer R, Sands F30602-81-C-0132
G. Bono M. Hoffman R. Thomas
9. PERFORMING ORGANIZATION NAME AND ADORESS 10. ::ggnm‘oznunzasﬁrnzao.fc;r TASK

Bolt Beranek and Newman, Inc.
10 Moulton Street ’ 63728F
Cambridge MA 02238 25300107

1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

December 1983
Rome Air Development Center (COTD)
Criffiss AFB NY 13441 Mgt o Pheke

T ONITORING AGENCY NAME & ADDRESS(// different from Controlling Office) | 15. SECURITY CLASS. (of thie report)

Same UNCLASSIFIED

TSa. oectnunc'n' TON/ DOWNGRADING |
SCHEDULE

N/A

16, OISTRIBUTION STATEMENT (of this Report)
Approved for public release, distribution unlimited.

17. DISTMIBUTION STATEMENT (of the abstract sntered in Bleck 20, Il different frem Repert)

Same

10. SUPPLEMENTARY NOTES
RADC Project Engi . : Thomas F. Lawrence (COTD)

19. XEY WORDS {Continue on eree side if y and idontify by bieck number)
Cronus
Distributed Operating System
Object Mode
Local Network

20. ABSTRACT (Centinue on reverse side If and @ ly by bleck bor)
This report contains the preliminary system/subsystem specification for
the Cronus Distributed Operating System. It also reports progress in the
development of the underlying support system components, the measurement
of local network performance, and the structuring of system messages.

DD , '3 1473 coimion oF 1 nov 315 casoLETE UNCLASSTFIED

SECUMITY CLASSIFICATION OF THIS PAGE (When Dete Entered)

\- *- '-“.‘\‘-‘\ \ \

. --] \-.. -.. o
N L ...\
.ﬂ\-\ \.- ‘ -l

DA

.n.d-_

y
v
. .
o (4]
! £
X []
' = =i N
o
. m o o @
, o o o
. Q e o o
o = ¢ o
. o o o
* L o] e o o
o = e o @
, [} o o o
. e &
o o e o o
. [] e« e o
. [4 e o o
o [\] e o o
1 ¥) e e °
» [1] e o o
' m o o o
h s o o
’ e m e o o
. - & e o o
. Q = *« o o
: m o o o
g e e o Q)
. m e oo
o’ o oD
A (&) o oomd
. o o Q)
i Wd e o O
o (o] o oo
' o
| h o o Q)
. s ¢ 0
v, 0 o 2 @
. [e oM
. > B4 ¢« ¢ 0O
' ~ o o M
o [] o oy
o . o
' m lw.t
. . [=
. 02 209
. ' 2% @
. > i 0
_ - “ o 0o umr
: S 28 32
% n S, . ﬁc_/.u
4 & 1 .m
. * PO M -m. o nW. e |
. o - B = O o -, 9
: o 58 EE=5%| (228"
! & B« N H O 4y r i 1. SE—
. M. a oot [PPSR am—
. Q B '
O Mo bay 0
o O™ A%NDU.N WD»A mﬂ

(

Report No. 5261 - Summary Bolt Beranek and Newman Inc.

Executive Summary

1 Report Overview

This is the second interim technical report for contract
F30602-81-C-08132, entitled "DOS Design and Implementation." The
system being developed under this effort has been given the name
Cronus. This report discusses project activities during the
period of July 1982 to December 1982.

This report is divided into two portions:

Part A: This part is the current version of the Cronus
Advanced Development Model (ADM) System/Subsystem Design.
A draft of this document was prepared for the Preliminary
Design Review, which was held in Cambridge on November
15-16, 1982 in Cambridge MA. The version included in
Part B below has been extensively revised, and reflects
modifications in the many details of the system that have
been made since the draft was prepared. This part is
available separately as BBN Report 5260.

Part B: This part consists of a series of short notes and
reports of activities performed during the period.
Principal among these are disucssions of the various
activities supporting the development of the system, and
of the progress on the components of the system support
environment: gce. network, C78 constituent operating
system modifications.

2 Project Overview
"7 The object of this project is to define, design, implement
and test an Advanced Development Model for a distributed
operating system. The DOS controls the interactions among
collections of computers interconnected via high-speed local area
network technology. The overall function of the DOS is to
integrate the various data processing subsystems into a coherent,
responsive and reliable system. The system is to include the
following functions: system monitoring, reliability and
survivability, access control and authentication, and a uniform
command language. In addition, the system is to provide support
for the following system services: uniform file system,

— —

Report No. 5261 -~ Summary

~

Bolt Beranek and Newman Inc.

\T>e1ecttonic mail message distribution, data translation, and
interactive access to remote programs.

The project activity can be subdiviééd into five major
categories:

1.

2.

Definition of the distributed operating system concept
and its function as they apply to this effort.

Selection of predominantly off-the-shelf hardware and
software components to represent the foundation of a
demonstration DOS system.

Design of the DOS conceptual structure and its functional
elements,

Implementation of the design, culminating with the
integration of implementation units into a complete
Advanced Development Model for a distributed operating
system.

Evaluation of the concepts and realization of the DOs in
the environment of the ADM by means of test procedures
and practical demonstrations.

The results of the definition and selection phases of the
project have previously been reported in Cronus, A Distributed
Operating System: Interim Technical Report No. 1, BBN Report No.

5086.

3 Summary of Recent Project Activity

Some of our major accomplishments during the preceding
period include the following:

o

completed design of Cronus System Structure and first
phase design for all major system components

prepared System/Subsystem report

completed the integration of the Ethernet local area
network into the GCE, the VAX/VMS and the C/7@ UNIX hosts

completed the integration of IP and TCP protocols into
the GCE, VAX/VMS and the C/78 UNIX and interfaced this
software to the Ethernet layers using the Virtual Local
Network concepts

- - » -
b2 2 RO

1 Tttt

’ * 1 .] o .

Report No. 5261 - Summary Bolt Beranek and Newman Inc.

0 completed a CMOS-based Telnet program to support
interactive access to other cluster hosts from the GCE

o0 completed the integration of a disk subsystem into the
GCE CMOS System

o0 completed the design and part of the implementation for a
elementary file system for the GCE, which is to serve as
the base implementation for the Cronus file system.

o completed a set of performance tests to evaluate the
Ethernet hardware and software, as well as IP and TCP
implementations

o developed and installed a system configuration management
plan for source code and documentation

o developed code for and assembled library functions needed
to support the development of Cronus system components

o established standards and approaches to achieve the high
degree of program portability required by our system
implementation approach

ty i
»

,.._.,.
B N

K
L'

1=
5
..’
b4

o e
A\ S s,
Y DAY
- Report 5261 A
-"\‘ .'.b"
“!:_ AN
. v
-" J',;"
7
O
:c \'-’ PART A :n-:';
o N
» * :-'z ’
e . S
S Cronus, A Distributed Operating System: .
{ Preliminary SYSTEM/SUBSYSTEM Specification e
o R
S;E:I M. Hoffman., W. MacGregor, R. Schantz, ::j?:
s R. Thomas, E. Burke and B. Woznick N
.\, kv
o 0
N o
.\:;t" :-':-
el - .
XN

S d

s

0

i A
':'.‘ 2
g .’l "l

P
ALY, & -l
.. -

R

Prepared for: e

Vo

Rome Air Development Center o

Griffiss Air Force Base WV
- s
"% o
R -
. o
:}\n -.:.“
Ky 4

N

\:_

AT SN R O L T T A T G .
'.\'_.\::\,"-\:‘-‘-'.\\:}\:: NN T A e e
.. , . o,
- L]

L TSI \ " AT R I
,~.v‘.g-. v - *'.-. (L] “m Va0 “al n.'.:-
B N I T N g e e s

Y,

f&"s .

PN
'f v,.n'.-l {‘ "1

Report No. 5261 - Part A Bolt Beranek and Newman

-

Table of Contents

b
I

Introduction.-...............O..l.!.!....l.o.'l..l..l.

Ctonus PtOject ovetview..........Q...ll............l..

1 Ptoject objeCtives....l.....ll......l.".'...'..'..'

2 Points Of EmpPhasiS.ceeerccesccccccossosacecvnaccsoscascs

3 system phases...l'.l........C.'-...tl...............

4 The Cronus Hardware Architectur@...cccecvececcecsccss

4 System Environment....ceeceesscsscececcscscsscccss

4 Host Classes..........'..l.l..........'.........a.

4 system Access..!.....0...."l..l..".‘.'......'.O.

‘ Local Area Netwotk..Q..0....0.....0...00'0...Q‘Q.I

4 wms Of Hosts.l.'."...l....'....l.....'......l.C

4 Cronus Clusters and the Internet..c.cccecccecerncces

4 The Advanced Development Model....ccevecccccccacce
Ystem ovetview.loﬁ......lII....C.....O.....l..l..... 11

1 system Concept......C."...I.O....Q.l.'..'.......l. 11

2 The cronus Object Hodell"....................l.... 12

3 system objects....l.......Q’......-..I.‘......l...l 15

4 The Cronus File SysteM.cceccccsccsscsccsccccscasces 16

5 Cronus Process ManagemeNt..ccceccescesscccsscscscce 17

6 DQVice Integration....O.I.'..0...........‘.'....0.. 18

7 Cronus SymbOIic Catalog..."'....Q.C.OIQ.I.'.l..... 18

g User Identities and Access CONtrol..c.cceceecocesces 19

1

1

2

2

2

2

3

3

3

4

4

4

4

R

4

4

1

WOONAMNNTNEWWW .,

NN WN -

Immttant subsystems....‘.......C...O..l.........ll 19
0 The Layering of Protocols in CronuUBS..ccccecocscses 20
Object Management..c.ccecececscsccesscsscoscscssscscnnses 22

Genetal Object Hodel..............'....I'..."..l.. 22

bR WWWWWWWWWWWANNNNNNONNODNDNDNNDNND DN

o, .

‘-.“ L] Object Identification....l..00...0......'...'0.'... 25
N 2.1 Cronus Name SpaCeS...c.cccoceosssssccccssscsscoce 25
:‘ * .2 AcceSSing objeCts..O....'.....l...l.......l.'...l 29
Yy .2.3 summary of the Cronus UID Name SpPacC@.cceccccccces 30
».' . omtations on objectso...'..’.....l."l'......l.... 31
L. .3.1 Primitive Operations and ObjectS..cccceeceeessess 31
- .3.2 Message Communication GUPPOLt.ccceetccncsccocnaes 33
R . Object System ImplementatioON.c.cccecccccccscccacsees 34
’: . .1 The onration switch‘.......'..ll.OlOO.......OI" 34
“a .4.2 The Operation Switch Interfaces.......ccecoces00s 38

.4.3 The Implementation of SendToHost and

i eceive

::‘: ® 0 0 5000 6005000000 000000000 G000 C GO OENON GECE LSOO CEOSESBPBOIOOS 39
A 4.4.4 The General Invocation SeqUeNCe....ccoeceeesseses 42
--:': 4. Is The Use of UID Location...I..O...........l..'."0 44
:.'q': 5 Ptocess Hanagement..............Il'...'l..I...ll.l..l ‘5
d 5. Ctonus Ptocesses......0.0...'0............l...'.... 45
2

h"..

~; A-i

.'t,

~

.
e

oo ¥ Cle [W, (N R a8 i R ey Bt N T T T L M T W e VL T T TN T e e T T T TR LAl B AN

e S
. s £- 28
ot e
Yy e
;: Report No. 5261 - Part A Bolt Beranek and Newman e
"\: -'.
: ‘ 5.1 .1 Introduction. ® 0 9 0 00 0 00 00 0000 0SS OGSO OO SR e PN S P NS 45 ::?'::
;‘3 5.1.2 Cronus Process Types —— OvVeIrVieW...ceceosccsacese 46 it
Pt 5.1.3 The Operations on Objects of Type -
(N CT_Primal_Process o
“ @ 0 0 0 00 0 800 0 0 0 800 O GO0 O OO T O C L OO0 OOV OO O S0 E S TSSO O N e eSS 47 -*
S.1.4 Operations on Objects of type CT_HOSt.eceeceseees 50 A4
;. . 5’2 Progtam Carriet ® 0 ¢ 00 0 000 0 C 90O TE S OO0 C OO OO B OO PREETSOOES 52 ':.:'-'-‘
e $5.2.1 Objects of Type CT_Program_Carri€r.cecesecccceses 52 e
N 5.2.2 Operations on Objects of Type 2.9
- CT_Program Carrier w

‘\ ® % 000000005 08000008000 OGS OO PO OO T S ON OEE 0SS S SOOI BEERNRISIETPOEERSES 52

The Program Carrier Manager OperationS........... 55 o

5.2.3
- 5.2.4 Bindings Between ProcesseS....cccseecesccccccsoes 56 A
N 6 Interprocess Communication...ccecececesccccecccnscecas 58 NS
.;‘ 6.1 OVeIVieW-.-...-..--.-....c-.oo-o........-.......... 58 fii
D 6.2 Message StructUre.ccecccccecccoscccocscsscsssncssaces 58 e
.ni' 6.2.1 Objectives........o...oo....-.........-.-.--..o.. 58 -:'.-,'.
v 6.2.2 Message Structure ConventionS.....cceses0e000000s 59 Iy
\" 6.2.201 Self-Description....................-......--.. 60 '-.::'
2% 6.2.2.2 Language IntegrationN.....cecceecscccccccccscees 60 N
:’ 6.2.2.3 Data Type supwrt..‘.......l......‘.......I..O' 61 .';\-
é 6.2.2.4 Perfotmance...ll...0............0....'....l.... 62 ::'.::?
» 6.2.3 The Cronus Message Structure FacilitY.c..eeeeceeee 63 s
6.2.4 The Standard External Representation...cccccceocee 63 s

} 6.2;5 canonical Types.l..........l'.l.................. 65 ."'-.‘
X 6.3 Higher Levels of Interprocess Communication........ 68 e
\’. 6-391 Hessage Pattetns.ooc-ooo.o.ooooo-oooooooooooo.noo 69 :’:‘..-:“
:n 6.3.2 stream IPC..................0.'............'...'0 72 '._'.':‘
AN 7 Authentication, Access Control, and Security..cc.ecc.. 74 Ry
N 7.1 Introduction.............'.C.......l....l.’l....... 74 - -
..\ 702 The Ctonus Access COntIOI concept.oocoooooooooa.ooo 75 :1'.‘_‘
L) 7.2 Decomposition of the Access Control o

P

roblem S
........6.........‘.................'............... 75 -"

1

]

2 Authorizationoto.o.ooooooqoooo.o.t.ooonn.nooooooo 77 :::-‘:
3 »

7
7. Identification in CronuS...ccecececccccccesscecee 78 .

A 7 » 3 Authentication Hanager L BN B BN) ; ® 6 0 00000 00000 OO OSSO GCOOSTDNY 81 & .
X 7.4 Objects Related to Authorization.....cececeeeceee.. 81 -
% 7.5 Operations on Authorization Related Objects........ 83 S
N 7.5.1 Operations on the Object of type e
e CT_Authentication_bData e
e ‘..O......l'...........................'C......'.... 83 -—.;‘-:.
L 7.5.2 Operations on Objects of type Cr_Principal....... 84 il
o 7.5.3 Operations on Objects of type CI_GrOUP.cccececesecss. 85 A%
oo 7.5.4 Operations on Objects of Other TypeS..c.c.ccceeeee. 86 o
o0 7.5.5 Operation of the Access Control iy
- Authorization Punction AR
.'.f GO0 00000000005 000 0606006000606 0 0060000000000 060060 000806006000 86 ‘:'-:_.'.
L pou
o7 SN
:-:. "\:_‘-:
d - - ‘.\-‘:..
4 A=t 2
-]

- ".

............................
..

Report No. 5261 -~ Part A Bolt Beranek and Newman ;?E

6 Host Registration...ccccecvecececrcecssenccsasceees 88 e

Cronus Primal File System......-......-.............. 90 "':.:‘;.'
1 Cronus Primal FileS...ccoevoescccossseccscscnsssces 90 RO
1.1 Executable FileS...cccceeeesccsccscccocssccccases 94 o
2 Crash Recovery Properties...cecccececccescccccccoes 95 e
3 Operations for Objects of type RS
CT_Primal_File 95 Rt
8.3.1 Operations on Object of Type CT-

Primal_File_System 96
Symbolic Naming.....l........O..............Q’..l.... 99
The Cronus Symbolic Name SpacCe..ceccescceccsccccses 99 T

General Syntactic ConventionS...cceccccsoecececcses 99

Types of Objects Cataloged...c.ccccececccccccseecs 100 A

Directories and LinkS.cceceoccoccscccsssssccnceses 101
Objects Related to the Catalog.c.cccccecesceccecss 104

Objects Of Type CT_Catalog_Entry..........-..... 14 i

ObjeCts of Tym Q_Directoty.......O...........O 106 \...‘

Objects of Type CT_Symbolic_Link....cccececeeeee 106 O

Objects of Type CT_External_Linkage....cceceeces 106 N
catalog Owrations.................OO..D.....O...I 107 :::':-

objECts of Type CT_C&talog_EntIy..............-. 107)'-‘:

Objects of wm m_Ditectoty.l...‘......l...l..l 19 n\“;;;

Objectﬁ Of Type cr_smbOliC_Link................ llﬂ .~._‘

Objects of Type CT_External_Linkage....ccecceeee. 1180 A

Access Control for Catalog Operations.....ecce... 1180 S

Catalog ImplementationN...ceccesccoceascsccscsncacese 1ll Y
Introduction..........0....'......0...........00 112 -":-..
Implementation of the Catalog Hierarchy...eeso.. 112 wre g

Distribution of the Catalog..'...............OCQ 113 .:".)
.1 Principles Affecting Distribution........c.... 113 ~i
.2 Dismrsal Of The Catalog..'....‘....QQ......l. 114 -\f:‘
.3 Dispersal of the Cataloged Object Table....... 115 -7
9-4.3.4 Replication Of Catalog Informationoo-o-ooo’oouo 118 >
9.4.4 Cronus Catalog ManagerS...cscccccescecscscssscse 120 7@
lﬂ Input/outputo..-o...........o-.otoocoocoooooooouoco 123 '“...':E",
11 User Interface.ll......O.......Q..Ol....'..Dl’.ll.. 126 .-..
12 Monitoring and Control..ccccecsescsvscesocosscscssseaces 129
12.1 system Capabilities.....Qioﬂl.'...l...........'.t 129 .._'-._'-
12,2 System Model for Monitoring and Control.......... 129 AN
12.3 structure of the HCS.........0‘.....'........‘... 131 L‘.r“
12.4 Host Probes, Service Probes, and Network R

Monitoring :

@O 0 0 9 0 60 5 00T 5 0P T O SO OO OO OO O N OO OO 0O OU S OE OSSOSO IPOIESEOCOTeETS 132
12.5 Loading and Debugging Support.cccesccescecscsecsecs 134 RN,
12.6 Cronus InitializatioN.ieceececcocescssooerscanssesee 134 A
12.7 Siting the Monitoring and Control System......... 136 Y

o o o o e o o o
WWWWN = U W N o W N = W -

B WWWWWWNONNNDNDN -
L

pp 2SR bt R A T T R A D e S A S A A NC N -~ A MR AL A A G AR]

...............

o T el
7 -":'.'T-‘
‘. Y

OS]

Report No. 5261 - Part A Bolt Beranek and Newman 'ﬁ*i:

5 12.8 Phased ImplementatioON..eeeeeeececsccacscosccsecss 136
13 Scenarios of OperatioON..ccescecvssccosesasessescsses 137
- 13.1 Basic User Commands and FunctionS....cccecceseeees 137
-, 13.2 Registering a New USer..c.cccecsscccsascassssccass 138

13.3 Loginl.....l'."'......'.......'.......l..l....'. 138

gersrt e T
R

Lt LR
@ L

LA
&

XN 13.7 Listing a Symbolic Catalog DirectorY..ceceeeceeeso 143 X
?\ 13.8 Running a Ptogram......-.-a.....-................ 144 -Ii:
13.9 Starting a Cronus ServiCe.cescscscccscocscscccsss 146 !
o 14 Cronus Primal System SUPPOrt.ccccicecsoscscsccsecss 148
X 14.1 Primal System Hardwar€...evceoeseceescccoesasscecss 148
.l: 14-2 Virtual LOCal Network.'l."......l...'......"..l 151
) 14.2.1 Purpose and SCOPE..ccesevesscsssccscssascssesss 151
) 14.2.2 The VLN-to-Client Interface.....ceececeeccecess 152
> 14.2.3 A VLN Implementation Based on Ethernet......... 157
140204 VLN operations........'..‘.......'l............ 162
14.3 Generic Computing Element Operating System....... 164

.t 13-4 AccessingaFile...--.-......-..-................ 140 .:'_;;_,.l
_q 13-5 Cfeating a File..........--....-...-...........-. 141 }if:
"'- 13.6 DeletingaFile.o....-.----.........---........-. 143 ‘\._‘-.‘:
Lal
<

)
te 'r

:} 14.4 Ctonus Utilities."....‘....."l........l........ 165
::'\‘ 14.4.1 General......'.Ill..'......l....'........"l... 165
- 14.4.2 Elementary File SysteM.c.cceecsosccccscscccccces 166

1 Introduction. 9 O O 9 O 0 00 ¢ 0SB OB O e OSSO0 OSSN S e s 0D 166
2 File Formats......'........'..QI....'......IQ 167

14.4 3 Disk salvaging. ® 8 5 5 0 5 0 ¢ 000 "GO S 08 SO0 et e e S0 0 172
14.4.2.4 EFS File System OperationS...ecceeececcccseses 172

b 14.4 .3 UNO Generation. ® 0 0 60 6 0 00 000 008 00O OO P E eSO Se 175
- 14.5 Process Support Library.ccceceecsccsccscscssccces 179

14.4.2.
L 14.4.2
o «2

L d
L]
L]

CAAN.

- “ﬁ':l :l :l "n .’l 5 y . ¥ r{‘

o
"

'.I
)
&

q
~
-~
~
S
W

A-iv

Report No. 5261 - Part A Bolt Beranek and Newman

FIGURES
W) SN
b) \:'\:'\
n.: '_\.\..
» IR TR Y
- R
. A- z

Object System CompoNeNtS.cccccececcsccsaccsscsssscscssssss 35
Operation Switch InterfaceS..ccceecrecececcccsscsscsscsaces 38
The SendToHost-Receive SequUeNCe.cccscscscccccsccsscsseses 40
- The General Invocation SeqQUENCe.cccececscssccccsssscccasss 42
’:’ The SER Data structure.........-o---...........-o.......- 64
- Specifiers for Keys and . 2lUueS.ccccctcscccsscccscsscanccase 66

A Two Process Invocation (pseudo-code)...cccecceccccceces 10
o A Multiple Process Invocation (pseudo-code).ccceseeccecececs 11
2 Retrieving Access Control Dat@.cscevesccsscsscscosscsscsce 80
J Catalog Hierarchy..ccecececcecccecccsncossecssossccsscssse 102
3 Implementation of Cronus Catalog.cececcocosescscanccaces 183
y Dispersal of the Catalog...cceccecevseccosccecsscscnacss 116
- Secondary Symbolic Access Path.ceceveccoccecascnccaneses 121
" Structure of the MCS...'..".'Q..Q....I.l....‘.l........ 130
'.’ CIOHUS P!’OtOCOl Layeringno.oootancoio-c'ooooooo.no.ooo.. 152
A Virtual Local Network Cluster.cceveesceccssrsssvsoscsecss 153
'.- EFS File Table............-...'.'.".."'l..l...l.l..'.. 169
: EFS File Types..‘.....l.....I.O.l..!..'.....l....ll..o'. 170

-~ e

s 2

R WO A ,'...

A .. R
" i .._
_'1 hSCIRR
-~ T
" S
-~ '
al -
Y, -«
.‘. ‘.'l - ~-.
. . '.s.-.l '.
. - l\
o bR

4 A
R ,-'...‘
@

o

g R] J‘ .-l’l’!’l

LY,
Sy TaTe b

Report No. 5261 - Part A

TABLES

Bolt Beranek and Newman

A-

cronus objects..'.....C............O...l.................. 23
ACCess state commtibility............Q.................. 93

Access Rights Required for Catalog OperationSceccecccecess
Software Development HOStB.cececscccvscecscosccsscvscocs
Generic Computing Elements -- Typical

Configurations

Gateway Configuration.ccececcccccccoccccsacccecocosocscse
Internet Addtess Formats..c.....C...........0.......0..0
VLN Local Addtess Hodes.a.......0000..0.........0.......
An Encapsulated Internet Datagramicccceccsscscecsanrcecccs

A-vii

111
149

158
151
155
156
159

s
o ‘4-.' g
-\ _--'.-"

’

A A
f 4 ’

' ‘1‘!'),

ey,

T SN

-
L)

AR 40

] ,..
Al by

AN

[Y'Y

Report No. 5261 - Part A Bolt Beranek and Newman

1 1Introduction

This report presents the preliminary design for Cronus, the
system being developed under the Distributed Operating System
Design and Implementation project sponsored by Rome Air
Development Center(l). It is intended as an overview of the
system structure and as a synopsis of the current
system/subsystem decomposition and specification.

A previous report, "Cronus, A Distributed Operating System:
Functional Definition and System Concept", BBN Report No. 5041 is
intended as a companion to the current report, and the reader is
assumed to be familiar with its contents. 1In Section 2, we
briefly review a few of the areas covered in the Functional
Definition, and extend them to cover current development plans.

Section 3 presents an overview of the Cronus operating
system, stressing the common framework into which its components
will fit and the functional decomposition of the system.

Sections 4 through 12 present the design for the various
system functions. In a number of areas the design is only
partially complete. These sections will form the basis of a
continuing and evolving subsystem specification for the various
components, throughout the life of the project. Section 13
sketches how the system supports some common functions.

Section 14 is a description of the system environment,
including hardware., Virtual Local Network, GCE software, and
system utilities and libraries.

(1). This work is being performed under RADC contract No.
F30602-81-C-0132

A-1

RN

i
? [» . '
R P PLE L L T T

R 'l '0 ’l .
S e
LI ‘. I:

...- ,.,) . . .
0 [. . N . N v .

‘..‘-'- s e e o R CAPREI

NANER

s "‘.)

P A
PLALPLPN
&

4

[]

A

‘!
’
I A
J '.l "

v r e e
AR
A

'.l‘l“".‘
LAAA?

Report No. 5261 - Part A Bolt Beranek and Newman

2 Cronus Project Overview
2.1 Project Objectives

The objective of the Cronus project is to build an operating
system to organize and control a distributed system architecture.
The architecture was partially specified by the statement of
work, and further defined during early stages of the project. It
is described in the Cronus Functional Description [BBN 5641], and
is summarized in Section 2.4. 1In addition to establishing a

system architecture. there are five other major aspects of the
Cronus project activities:

1. Select off-the-shelf hardware and software components to
create an Advanced Development Model (ADM) prototype
configuration for the distributed operating system.

2. Define a model for the system operation, develop the
functions of the system, and decompose it into
implementation units.

3. Develop the implementation units.

4. Integrate the implementation units info a coherent
system. both by adjustments to the functional definitions

and by any optimizations necessary to achieve acceptable
performance.

5. Evaluate the concepts and realization of the DOS in the
Advanced Development Model.

2.2 Points of Emphasis

The Cronus design introduces a coherence and uniformity to a
set of otherwise independent and disjoint computer systems. This
grouping of machines. or =ting under the control of a

distributed operating - -+ . », is called a Cronus cluster. The
aim is to provide fea“ mparable to those found in a single,
modern centralized op .. . 'stem for the cluster configuration
as a whole. There are ways of viewing this uniformity
and coherence; each pla .ie in the Cronus design.

From an end user's point of view. the Cronus DOS provides a
single account with access to all integrated system services, a
uniform distributed filing system and a uniform program execution
facility, which is independent of the site of the activity. From

T

[
’n'.r
4

DAY
o, 0,18

P
0

4
"
, &8, 0,

.' ‘l < -‘ -
’'y

'’

.,

X

NRAL AN

tAL

Ny B A AL A
o

p'f
Py

A
‘.'.-,'
D
"'
a"s

"/" P
e ey

4
]

Al

‘

L
.-: '
oo

3

oy
L

92 {2
l...:'

‘-“.‘.
',

AR ,
PR 4 e
%

L]
‘Y
.
LI S U

l"l

PN
el e

<l

AN
.

W)
[2]
SR

Y

s 4%
[

M
5

-

.
.

0
"
a" s a"s

e A AL
e
Lae

*

‘l {l

Ko
AA
L7
(et

RS

Report No. 5261 - Part A Bolt Beranek and Newman

a programmer's point of view, Cronus provides a uniform interface
and access path to the distributed system resources, and supports
the initiation and control of distributed computations. More
importantly., from both an end user's and programmer's
perspective, Cronus provides a common system framework for
applications. This means that otherwise independent computerized
activities can be constructed so that they are more easily made
to work together, despite implementations which cross host and
processor~type boundarijies.

From an operations and administrative perspective Cronus
provides a logically centralized facility for monitoring and
controlling all of the connected systems. Functions such as
account authorization. user priority, and access control can be
applied system-wide rather than individually to each host.

In addition to coherence and uniformity, there are a number
of other system design goals. These are:

o Survivability and integrity of Cronus itself;

o Scalability to accommodate both small and large
configurations;

o] Experimentation with resource management strategies that
effect global performance;

0 Component substitutability to allow easy use of alternate
functionally equivalent hardware; and

o Convenient operation and maintenance procedures.

2.3 System Phases

System development consists of three phases. The first
phase, coincident with the development of the functional
definition, included component selection., installation,
interconnection and testing. The second phase includes the
design and implementation of the basic system that will provide
the uniformity and coherency to the collection of machines. It
also provides the framework for the in-depth design,
implementation, and experimentation in the other areas of
interest (e.g. survivability), which are to occur as the third
phase. The second phase design is the subject of the remaining
sections of this report.

T

y e
I N

’I

e b By Ny
P WL A)

51') l‘ ’ l.
A A A sl

g

YRR
Al

/

3

4
ALY

A A 4 i

(Wl

AT

)

= "]

ML

" e
- &

YA NANG -9

Report No. 5261 - Part A Bolt Beranek and Newman

2.4 The Cronus Hardware Architecture
2.4.1 System Environment

This Cronus environment consists of several parts: the
local area network which provides the communications substrate
for a Cronus cluster, the set of hosts upon which the Cronus
system operates, and a mechanism for connecting a Cronus cluster
to the Internet environment and to other Cronus clusters.

Cronus enables a variety of constituent computer systems to
operate in an integrated manner. Cronus is distinguished from
other distributed operating systems by one or more of the
following characteristics:

l. Cronus will run on a group of heterogeneous hosts.

2. Cronus hosts will run operating systems which are largely
unmodified. Cronus distributed operating system runs as
an adjunct rather than a replacement for the hosts'
primary operating systems.

3. Hosts will be included in Cronus with varying degrees of
system integration. Some support limited subsets of the
services defined by the Cronus environment.

4. The interconnection network is designed on a hierarchical
model. A Cronus cluster includes a set of hosts
connected by a high-speed, low-latency local network. A
set of Cronus clusters may be connected over slower
long-haul networks.

The Cronus architecture provides a flexible environment for
connecting hosts 80 that facilities available on one host may be
conveniently used from other hosts. It provides two alternative
host integration schemes. A host may implement the Cronus
Interprocess Communication (IPC) mechanism and have efficient
communication and operations with the rest of the Cronus hosts;
or it may access the other Cronus hosts through an access
machine, which is a simpler, less expensive option for connection
of a host, but which may be more limited from a flexibility and
performance viewpoint.

CNNT

L s
sy,
.

W e, Calo W We V0, < N AN LA AL N LA IO, AL 0 o S 10 A SR IC G LA dad W £ % (CAOR DA S AL bl A, ol

Report No. 5261 - Part A Bolt Beranek and Newman

2.4.2 Host Classes

Cronus hosts can be divided into three groups: mainframe
hosts, Generic Computing Elements (GCEs), and workstations.

The collection of mainframe hosts, each of which serves a

BN number of users simultaneously, includes a variety of machines
N with unrelated architecture. A mainframe host may be tightly
}iﬁ integrated into the system, both offering and using Cronus

Ny services and fully implementing Cronus interprocess

N communication. Alternatively, they may be loosely integrated,
. offering no services, possibly connecting into Cronus through an
o access machine which provides communication with the rest of
4 e Cronus.

"-{i-

DY The GCE is the workhorse of Cronus. GCEs are small,
A dedicated-function computers of a single architecture but varying
2. configuration. They provide access machines, file servers,

> o terminal concentrators, and other basic services. S8ince all GCEs
}53 have the same architecture, they provide a replicated resource
> which, with the appropriate software, enhances the reliability of
~{Q basic Cronus functions.

‘.;:.

Workstations are powerful, dedicated computers which provide
substantial computing power and graphics capability at the
N disposal of a single user. They differ from mainframes in that
;: they support a single user. They differ from terminals in that

b they offer a significant computational resources.
3
ol
_é 2.4.3 System Access
’o
R There are a variety of user access paths to Cronus. The
- most typical is a connection by means of a Cronus terminal
. concentrator. Users may gain access through Telnet protocols
- from remote points. Cronus also supports access through terminal
e access mechanisms on its mainframe hosts. These latter two
:}:' access paths provide the same interface to the user as the
o terminal concentrator. Access from a workstation will be
W different than from a terminal. since the workstation defines the
s user interface. The user has immediate access to the
o workstation's capabilities.
3
78]
{!;f.
@
N
~

Report No. 5261 - Part A Bolt Beranek and Newman

2.4.4 Local Area Network

The set of hosts is connected by a local area network. The
characteristics of the network are crucial to the success of
Cronus, since they determine the kinds of communication and
operations that are feasible across host components of Cronus.

The selection of an Ethernet for the local area network for
the Advanced Development Model has been described in a recent
report [BBN 50886]. This choice was motivated by criteria in the
project's statement of work:

1. The network should be suitable to support a distributed
operating system,

2. The network should be currently available and economical.
Since the Advanced Development Model will not be operated
in a military environment, certain constraints applicable
to a field-deployable version were considerably relaxed.

The Ethernet was chosen for the local area network substrate
for the following reasons:

o The network must be "high-speed®. PFor the ADM, a network
must operate at a minimum of 8.5 Megabits per second
(MBits) with low latency, and higher speeds are
desirable. The Ethernet operates at 16 MBits.

Network interfaces to all of the computer systems in the
DOS ADM should be available. With the exception of the
C78, whose Ethernet interface has been constructed under
the present contract, this was the case.

o0 The local network must provide a datagram-style service.

The Ethernet fulfills all three requirements and we believe is,
at the present time, the most cost-effective network technology
which does. 1In addition. the Ethernet provides broadcast and
multicast capabilities which, though not absolute requirements,
will be usefully exploited in the system.

The raw Ethernet layer will not be used directly. Cronus
will use an abstraction of the Ethernet capabilities which is
provided by a Virtual Local Net (VLN) software layer, described
in Section 14.2. This permits the Cronus Interprocess
Communication (IPC) to use DoD standard 32-bit Internet addresses
rather than 48-bit Ethernet addresses. It also frees Cronus from
a design commitment to the Ethernet. We expect that future

L A T
.."’

AT T AT
) _a:".."‘fln ' ‘.A{_‘r

[N

Report No. 5261 - Part A Bolt Beranek and Newman

versions of Cronus will need to be built upon a different local
network, such as the Plexible Interconnect, which have
reliability, communication security, and ruggedization not
available in current commercial products. By designing the VLN
layer and building Cronus upon it, it should be easy to
substitute any local network that provides the basic transport
services required by Cronus.

2.4.5 Types of Hosts

GCEs are implemented in the ADM system by Multibus computers
with Sun processor board (the current vendor, one of several, is
Forward Technology) processors, large (1/2 megabyte). main
memories, an Ethernet controller, and additional hardware (disks,
RS-232 ports, etc) needed to support specific functions(2). The
Multibus corputers were chosen because

1. They are relatively inexpensive, permitting low cost
incremental system growth.

2. The Multibus standard guarantees the ability to package
individual GCEs in different ways with components from a
variety of vendors.

3. New processors and devices are expected to evolve for the
Multibus over time. '

Utility hosts provide the program development and
application execution environment for Cronus. In the ADM, this
function will be supported by C76 UNIX systems, and, to a lesser
extent, by a VAX 11/750(3). UNIX was chosen due to the rich set
of development tools already available for it and the ease of
developing new tools and applications. The C780 was chosen

(2). One of the functions we would normally install on a GCE is
the Cronus 1Internet Gateway, which will be installed on an DEC
LSI-11 computer instead, because the standard Internet Gateway
implementation uses the LSI-1ll.

(3). The use of the VAX 11/750 in this role is a response to a
need to utilize the available hardware to distribute our work
over available machines. We do not plan a complete utility host
environment, and its use as a utility host should be regarded as
a matter of local convenience.

2. - « . . . o B s -) -
PN IO IR S SR P ERR T RN .._' . L
-\i" .L\:‘L‘. "..4.‘. » ¥ .‘ ¥ ¥ -. '. - ~‘ i i

e’
2%)

LB M N

NI - { 2008

-
i

.‘l‘ e “7';‘. _‘n .‘n S A

[

’

i N
« 4 8 - L[}

s, .? P ':.

PAERT AT

1]
»

»
.
-
.l
.‘
bE o

Report No. 5261 - Part A Bolt Beranek and Newman

because it is one of the least expensive computers which supports
a multi-user UNIX, and because of the in-house expertise and
support for the hardware base. A VAX running the VMS operating
system was chosen to demonstrate the handling of heterogeneous
systems.

2.4.6 Cronus Clusters and the Internet

The goal of the Cronus project is development of a local
area network-based distributed operating system. The Cronus
cluster .will operate in the Internet environment as a class B
network. Cronus hosts will support the DoD Internet Protocol
(IP) for datagram traffic, and, where connections are required,
the DoD Transmission Control Protocol (TCP).

A Cronus cluster is expected to use the Internet environment
in two ways. PFirst, access will be provided to Cronus from
points in the Internet external to the cluster. Second, the
Internet will support communication between distinct Cronus
clusters.

2.4.7 The Advanced Development Model

The Advanced Development Model (ADM) of Cronus is the first
instantiation of the Cronus hardware and software. It is, as its
name suggests, the development testbed for Cronus. The ADM
different from later models in several respects. First, it will
undergo more rapid change as Cronus is developed, software is
implemented, altered, and improved.

In an environment this plastic, reliability and availability
must suffer. The ADM cannot be as stable as later Cronus systems
are expected to be(4).

The ADM is being assembled from off-the-shelf hardware.
This reduces the cost of its components, permits the use of
state-of-the—-art hardware not yet available in ruggedized
versions, and enables us to be more flexible in its design. We

(4). Near the end of the contract, we will conduct a period of
testing and evaluation during which we will minimize the amount
of change in the system 80 that we can properly evaluate
reliability and availability under more typical operation.

..........

PR R N R i 1) e gy N A" CAVL T g% g0 JULE N, T Y D I R U E e I et A A A A AN

e Report No. 5261 - Part A Bolt Beranek and Newman

e
*\3‘ are developing a design with the sufficient flexibility to permit
:?fﬁ later substitution of more suitable hardware for deployable

e configurations.
.F.' .'.'.

&Uﬂﬁ
e Py P

i

5
~

G a R N &
;ﬁﬁpbﬂ
| AT

LA

i

L

YRS
L]

LA

("{.
o,

XX
I

;

RS AN
b A
.'.‘)

*55@!ﬂﬂ
Sl ilen

.
sttt

 a"a
.

A-10

.
B e

Ry

h}

<4 T, .

[y
s
AN
Pl
e

‘s N
%
A 8

.
-

9

-

ALY

l.\ s e "y

L i
PR M P
- ol

"“i' .l, 4."*'. .!
N 8.

P
.
D

Vet

o AR AR
(., . - 1
i v e te? 'n"-";"' ‘

NN
PR LIRS
A l.'\

Report No. 5261 - Part A Bolt Beranek and Newman

~

3 System Overview

A distributed operating system manages the resources of a
collection of connected computers and defines functions and
interfaces available to application programs on system hosts.
Cronus provides functions and interfaces similar to those found
in any modern, interactive operating system (see the Cronus
Punctional Definition and System Concept Report [BBN 5041]).
Cronus functions, however, are not limited in scope to a single
host. Both the invocation of a function and its effects may
cross host boundaries. The distributed functions which Cronus
supports are:

generalized object management
process and user session management
interprocess communication

a distributed file system

global name management

input/output processing
authentication and access control
system access

user interface

system monitoring and control.

'4".5\}'.?)~;'

P e v s
K)
Sl Al s s

o
o
]
o
(o]
o
(o]
o]
o]
o]

This report describes those aspects of the Cronus system
design which support these functions. 1In this section, we
introduce the Cronus design and briefly discuss the major
elements of the system decomposition.

3.1 System Concept

The primary design goal for Cronus is to provide a
uniformity and coherence to its system functions throughout the
cluster. Host-independent, uniform access to Cronus objects and
services forms the cornerstone for resource sharing that crosses
host boundaries.

b

There are two major aspects to the Cronus design:
structural and functional. The structural design is concerned
with the common framework in which Cronus entities operate. This
framework makes Cronus a system rather than simply a collection
of functions. The functional design defines the specific
services within this system framework, and is the major focus for
system decomposition.

A \‘_\ SO WL N _'. _'-',:."'."'
.' S -

o
\.' PRI

Nt LT TN A SN R il A e R N e N T S A AN R D Tt PR e Rt haiC g) KO N

L v,
o -
2 Report No. 5261 - Part A Bolt Beranek and Newman o
{ @
. The structural design is based on the abstract object model.
S A distributed system consists of the interaction of concurrently .
- existing active entities called processes. Processes are objects s
in the system. Processes reside on hosts which are part of the S
. cluster. Some processes, called object managers, play a special -
- role in implementing other objects of the system. Other s
fgq processes provide services and functions for the clients of the e
'\ system., Still other processes run user programs. Processes RO
e communicate with each other to form larger abstractions and build ol
An more complex objects. At the most fundamental level, e
- communication between processes is through messages sent over a A
o local area network connecting the hosts of the cluster. At RIS
~ higher levels, there exist other forms of communication and Q}g
. abstractions in which the communication is implicit rather than PR
- explicit. Taken together, there are four interrelated parts to D
S the Cronus system model: T
s 2 TR
e o A kernel which supports the basic concepts of the object O
N model: processes, communication with objects, object e
R addressing, and the relationship between object types and oo
A0 manager processes. This part of the system includes e
.- facilities for locating an object and controlling access e
-y W T
i{ o A group of basic object types, along with the object N
sa managers which implement them. Basic object types A
;3 include files, processes, devices, and user records. gy:
. o A paradigm for building and accessing new types of .
. objects, which spells out the methods for integrating new R
- object managers into the system on an equal basis with R
:j the basic object managers. '?3
108 ._....:.
o2 o A user interface and related utility programs (e.g., file A
s copy) to provide convenient access for both people and x
N programs to the system objects and services. Ll ¢
'V'\ :—\‘.‘-'.
X s
":: : . .::..::
T <
. 3.2 The Cronus Object Model e
bt R
- Object typing is the foundation of an important methodology O
P for system decomposition. By introducing the type concept at the e
ihd lowest levels of the design, we are able to decompose parts of RS
. Cronus that would otherwise be massed together under the broad N
N heading of "the operating system." This formal decomposition is AR
'l an important tool in achieving a high degree of host- . &
..’-n - =
'.::: \:‘.\:
- A-12 \
" .

...............
.............................

T .'_". » . - -
o W P R S
BT AW W SRS WL PR A AR

.................

Report No. 5261 - Part A Bolt Beranek and Newman g
@
- configuration flexibility, which is one of the key advantages of S
2N a distributed architecture. In addition, it allows us to use el
L function-specific solutions in the design of the various parts of RO
. the system. R
o
-G A fundamental element of Cronus design is the introduction AN
o of two system~wide name spaces for referencing objects. One of A
3 these name spaces, the unique identifier (UID) space, provides a T
;% context-independent method for the accessing objects. Unique B
~ identifiers are fixed-length, numeric quantities, intended for T
use by programs but unsuitable for people to read, remember, and * o
< type. A unique identifier also contains the name of object's N
~ type and the name of the host that generated it. The host name ~g
NS is useful as a hint for locating certain classes of system PO
- objects. }ﬁgﬁ
; The unique number generator produces UIDs, and is itself an =
= example of a survivable distributed program. The generator must S
- be survivable, because without it new objects cannot be created, S
- and it must be distributed, because UIDs must be unique across DO
h < all hosts in the cluster, over the lifetime of the cluster. A
- Y
The operation switch and its associated software interfaces e
‘_ are part of the kernel of the system. The operation switch o
o supports both the location-independent, uniform invocations of Y
- operations on objects and location~independent communication RO
N between processes, which are themselves objects. Since processes R
o are system objects with defined operations to send and receive SORE
e messages, the operation switch provides a host-independent iy
- interprocess communication (IPC) facility. This facility supports =y
o communication for both the system implementation and user RN,
o application programs. Above these lowest levels of the Cronus -g{f
A system, objects can be accessed without regard to their location. o
o The design of the operation switch is described in Section 4. Qﬁﬁ.
- In general, three somewhat different classes of objects will g,
b be accessed through the operation switch. These are: iy:?
oy i"-",‘d
N 1. Non-Migratory Objects e
- ::\‘:
. These are the simplest form of object, which are forever s
@ bound to the host which created them. These, objects are 'k
- often referred to as primal, in the sense that there is D
N no simpler form of Cronus object for this role. An RN
i example would be a Primal File, which is permanently AT
ﬁ: bound to its storage site. Primal objects have the NS
o property that the host hint embedded in the UID is always SRR
@ valid, and can be used to access the object directly. e @
2 DAY
-~ A-13 e

......................

Report No. 5261 - Part A Bolt Beranek and Newman

2. Migratory Objects

These are objects which that may move from host to host e
as situations and configurations change. An example A
would be a directory, which might under a system .
reconfiguration migrate to an alternate site. Despite
the possibility of migration, the global unique
identifier for an object remains the same throughout its
lifetime. A standard-Cronus mechanism that queries the
object managers can locate the current site to complete
an object access.

Flooe
.
o

3. Structured and Replicated Objects

CpY

s l‘.f'

P 2
[

These are objects which have more internal structure than
a single uniquely identified object. For example, a
replicated file would as a unit have a single, global
unique identifier, but would have a number of primal file 4
as its constituent parts. In the case of replicated s
objects the unique object identifier would be recognized o
by manager processes on each of the sites for the more .
primitive elements. Replicated objects and the managers N
that support them are a key element in our approach to o
system survivability. Invocation of operations against L
replicated objects involves a selection phase in addition N
to the location phase described for migrating objects.

The object access software implements a rudimentary form 5
of automatic resource management by selecting an R
appropriate instance of the object for the operation O
invocation. These resource management selections can be o
overridden by the accessing process, if desired. ol

Maintaining the integrity of complex objects is the ~
responsibility of the managers for the type. This means that -
techniques can be tailored to the patterns of access to the o
object being maintained. The construction of complex objects out &'
of the more primitive objects is ore of the key aspects of Cronus =
system extensibility.

-l
"y

Uniform access control is another part of the Cronus object
model. The object managers and controlling access to the objects
they maintain through the use of access control lists. The
operation switch assists by reliably stamping the UID of the

invoking process on each of its requests. -@:

VA Up to this point., we have described the method of accessing ﬂﬁ
Y objects starting from a program-oriented unique identifier. The)
';;a Cronus system includes a global symbolic name space oriented A
7 -

MSF also standardizes the representation of certain values, which
allows the common interpretation of these data items across the
collection of heterogeneous Cronus hosts. The MSF design is
discussed in Section 6.

A

RO

?::-::::

Report No. 5261 - Part A Bolt Beranek and Newman e
8

toward human use. The primary purpose of this name space is to Y
catalog object names in a manner which is convenient for people o
to use. ,::.::
- v

To access a symbolically cataloged object, the accessing SUE
agent interacts with the Cronus symbolic catalog manager to find DA
the unique identifier for the object. After it obtains the UID, ERC
the accessing agent can then invoke operations on the object. ;&y
LN

In Cronus, the conventions for communication between s
cooperating system entities are based on the message structure E;ﬁn
facility (MSF). The MSF supports messages structured as S
collections of key-value pairs. Many keys are standardized to Lol
support the object model and basic interprocess communication B
functions. Examples of standardized keys are operation name, T
transaction identifier, and error code. Other keys are e
standardized for particular system services and are published HXY
with documentation for these functions. There are also el
conventions that provide simple transaction protocols, and other S
features to support flexible message handling and processing. The Y

3.3 System Objects

The object-oriented system model is extensible along two
primary dimensions:

o new object types can be added to support new requirements
or functions, and

o more complex subtypes of objects can be added to extend
existing Cronus types.

To provide the initial operating capability, a number of
basic system objects and functions must be developed. These
parallel the functions outlined in the Cronus functional
definition. They include:

o] File objects and file managers which provide a
distributed filing system for both system and client
storage and retrieval.

-
LI J >

By
s

P AR Y

r}\ SN
LA A

i’

& U.l‘-‘l'\

(

AR . A SN LA AL sl Ll ekt el nl a it g A ar A % 8

.... - r©
............ P o)

Report No. 5261 - Part A Bolt Beranek and Newman

o Process objects and process managers support the Cronus
system and user programmable processes. They may be
linked together across the cluster, and connected through
interprocess communication to form a user session. User
programmable process objects represent another important
aspect of system extensibility.

o Device objects and device managers support the
integration of I/0 devices into Cronus.

o User identity objects and a permanent user data base
support authentication, access control.

o Directory objects and catalog managers implement the
global symbolic name space.

Much of the Cronus design has been decomposed into the
subproblems of designing the components which provide these basic
system objects.

3.4 The Cronus File System

Cronus supports several file types. The most basic file is
a primal file, which is stored entirely within a single host and
is bound to that host throughout its lifetime. Other types of
Cronus files, are built from primal files. For example a
migratory file can have multiple instances replicated across
Cronus hosts for increased availability or enhanced
responsiveness, consists fo several primal files.

Hosts which contribute storage resources to Cronus must
support primal files. The collection of all Cronus files
constitutes the Cronus distributed file system. This file system llq
provides the major support for Cronus non-volatile storage Y
requirements. It supports an atomic update concept to aid in the
construction of object managers.

There is no single table that list all file objects.
Rather, each file manager owns all of the data for the file
objects it manages. Cooperation among object managers, and the
use of protocols based on broadcast requests to locate objects,
make possible a client interface in which knowledge of an object
UID is sufficient to access the object regardless of its
location. Clients can make file placement decisions themselves
if they wish. Alternatively, placement decisions can be made

......

.........
S
R}

Report No. 5261 - Part A Bolt Beranek and Newman

automatically by file access software. File managers support a T?ﬁ

protocol for direct access to file data as well as higher-level, ot
complete file transfer protocols. The expected mode of access to R
Cronus files is to transfer the file data in blocks as needed, o
much like conventional file system access to disk files(5). o, |
Copies of Cronus files are made only to satisfy explicit user L
requests. The design for the Cronus Primal File System can be oy
found in Section 8. oo

3.5 Cronus Process Management

There is more than one type of process object in Cronus. kb‘
Primal processes are the simplest process entities. They are NS
constructed from the process abstraction that exists in the —

constituent host operating system. This simple form of process Py
is used as a building block for the system implementation. Its Oy
simplicity minimizes integration costs for new Cronus host types. s
Primal processes are too inflexible to be used as vehicles for -
general application programming. For example, they cannot be S
loaded dynamically with user programs and they lack flexible 2
process control functions. They are tailored to their well e
defined system roles.

To satisfy the requirements of application programs, primal -
processes are augmented with a subtype, the program carrier
process. This subtype supports a richer process environment. S
Program carrier processes can be loaded remotely and started in a i
manner that is uniform across the cluster. 1In addition, program R
carriers support, in a host-independent manner, the kind of e
flexible control and interconnection of related processes found s
in modern operating systems. oy

An important principle behind the Cronus process concept is
the additive nature of the common Cronus process semantics. -
Cronus processes have most of the features natural to the host on]
which they are built. No attempt is made to hide these features, "o
An application builder has the choice of when to use locally- S

supported features and when to use standardized Cronus features. ;::
Clearly, to the extent that applications choose to adopt Cronus ¥
process features, they will be better integrated with the other o
.'.'-*
(5). This is in contrast to a system such as NSW in which a O
reference to a file always results in a complete file transfer }f
= copy. N
5 -
= T
.\ L)
- \ :

"""1~A.'

>4

1

.—l

~J
A2 2L
Y

. s a

. .
N XL

LR NN AEMNE S A Ak e Y A e S i /e A v B e A S A= = ha~ A e s 20 SRR

Report No. 5261 - Part A Bolt Beranek and Newman ot

cluster processing activities. The Cronus process concept is
described in Section 5.

3.6 Device Integration

Input/Output devices, such as line printers, tape drives,
and other special purpose devices are important elements in a
system configuration. The objective is to make these devices
available to the entire cluster. Devices are Cronus objects and
are integrated through a Cronus device manager which services the
particular type of device. The object system support makes
device I/0 functions available from anywhere in the cluster. 1In
some cases, for example, for a line printer service, more
elaborate interfaces can provide a more convenient access path
with specialized features, such as spooling. Device integration
is discussed in Section 189.

3.7 Cronus Symbolic Catalog

The Cronus Symbolic Catalog maps user-oriented symbolic
names into the program-oriented unique identifiers needed to
access Cronus objects. The Cronus catalog implements a global.
hierarchical, host-independent name space which can be used to
catalog any Cronus object. The catalog is distributed; different
hosts manage different parts of the name space. The
implementation is logically integrated, however, so any catalog
manager process can be asked to perform any of the catalog
operations. The upper portion of the hierarchy is replicated to
support the flexible assignment of parts of the name space to
catalog manager hosts. The symbolic catalog introduces and
supports additional system objects such as directories and
cataiog entries. Symbolic naming in Cronus is discussed is
Section 9.

PO ORI a8
’ > a« e . (] . »

N

£

g YRR PL

Y T YYYR

LT i WL N

(l

Far A4

ARl 7YY

<,
a‘a

’.
T

Report No. 5261 -~ Part A Bolt Beranek and Newman

3.8 User ldentities and Access Control

Users are represented by system objects, known as
principals. Associated with each principal is a data base entry
which is a record of information about that user's use of the
system. This information supports operations such as
authentication, and session initialization. The Authentication
Manager is responsible for managing the user data base. The
Authentication Manager component services the entire cluster.

The Authentication Manager and the unique identifiers for
principals play key roles in the uniform Cronus-wide
authentication and access control mechanism. The purpose of
Cronus access control is to prevent unauthorized access to Cronus
objects. This is done uniformly by associating an access control
list with each object. Access is then either granted or denied
based on the identity of the principal associated with the
accessing agent and the contents of the access control list for
the object. How these functions are accomplished in the Cronus
distributed system environment is discussed in Section 7.

3.9 Iﬁportant Subsystems

Subsystems are components which use system-provided features
to support user services. Two important subsystems are part of
the initial system implementation. These are the user interface
subsystem and the monitoring and control subsystem.

The user interface is the component with which the user
interacts. One kind of user is the programmer building Cronus
applications. An important component of the programming
interface is a Program Support Library (PSL) which implements a
more convenient and powerful way to use the basic functions
provided by object managers. These areas have only been briefly
addressed so far in our design. Introductory discussion can be
found in Sections 11, 13, and 14.

The monitoring and control subsystem (MCS) makes it possible
for an operator to monitor and control the entire cluster
configuration from a single console. The functions of the MCS
include starting or restarting parts of the Cronus configuration,
monitoring its facilities and components, and collecting error
reports and statistics. The MCS is based on a functional
decomposition across the Cronus configuration rather than a
site-based decomposition. The monitoring and control design is

A-19

'. l’
2P e

O NS~
‘-“S"‘: LY ‘r‘: %! ‘\

v,._
hb

R

s) A L)
‘." .’,.'.' '-/' : I ‘e .‘r:' ':'

rs

X N
LN S A WY A

AN A

e 2 a
L3
2% % ",

-k

...............

Report No. 5261 - Part A Bolt Beranek and Newman

described in Section 1l2.

3.10 The Layering of Protocols in Cronus

The underlying support for the Cronus cluster architecture
is a high-speed local area network. The Ethernet standard has
been selected for an interhost transport medium within the
initial Cronus configuration. However, two project goals
suggest that the Cronus implementation not be based directly on
the Ethernet. These are:

0 Substitutability

Other instances of a Cronus cluster will not, in all
likelihood use the Ethernet as their physical local
network. Substitution of another local network should be
accomplished with minimum change to system software.

o Compatibility

The context for this project suggests that it is
important to maintain compatibility with the emerging DoD
standard Internet protocols.

To accomplish these objectives, we have developed a Virtual Local
Network based on Internet Protocol (IP) conventions and a
representative set of local area network capabilities. The
Virtual Local network is an interhost message transport medium
which is independent of the physical local network.

The Virtual Local Network layer is described in section
14.2. It provides a primitive datagram service, compatibility
with internet addressing, and independence from the details of
the physical local network. VLN datagrams can be specifically
addressed, broadcast, or multicast. The VLN guarantees that
datagrams are delivered in order (sequenced) when they are
delivered at all, and that a datagram is received once or not at
all by each intended recipient (non-duplication). The layering
of protocols in the system architecture is illustrated in the
following diagram.

A-20

>

o
.

u

&

2L
By 4y 4y

<+
4

_d
Ay

v
N
Py

‘. -
1 .
.

o, RN RN S L AU AR ACIACHAIFISISA ST N AR e N LN D (I S S Al S "t s SR A A -.-\-‘F‘)"‘.*F‘.“_‘.__’::'._\.
: :. : ..'::\ \

AN ORI
(S secd
23 RN

Report No. 5261 - Part A Bolt Beranek and Newman R

! —

A\ v .
N :J'
" e

P A :

J‘.'# .

J.... - '.. <
: . o

s

object system facilities

'v

. J

\S -
N object system support N

\‘i j
it UDP Datagrams 'tfﬂ
7 N
> g
o
%b IP o
- g.l. T

JSAd
LY

l,l.‘

Virtual Local Network

VA g
.

'

£,

A,
"

3 oo
o oy
“u Ethernet S
S DAY
. o
s‘:-' X
I._ .

o The IP and UDP layers are the standard internet protocols. RN
N UDP provides a datagram service with a 16-bit destination field, N
and is needed to implement multiplexing of IP datagrams among the AR
Cronus modules below the object system layer. One example of a "

» function below that layer is the unique number generator S
. facility. Y

‘et
e e
‘.'-' "_h.‘ ..
P ’.. -
AN ~T
L '-"‘ RN Y
- :__.:_\.
A _-{_\
s NN
-.'-. [-.
T s
R
2 -3
v R
i fe
<. R
[I'. w‘_‘
M) S
w Poa
s
S
~
A
e A-21
..\.
d-
!.‘!
»
A
-
e Ta T PSS
LR el) PO R Jh
ARy R

A

- aQaWe ¥V Va¥u LY L Ve T n T Y (RN o T s 7 5, AAE Y QLA AL S bRl R A A A A M A A I R R IR NS

Report No. 5261 -~ Part A Bolt Beranek and Newman

Saal
B

4 Object Management

L
SN

4.1 General Object Model

v
H Y

(Y '.‘ -" ‘. >
LA AR R A
v
UL A
3

This section contains an overview of the Cronus object
model, from its foundations in UID naming, through the most basic T
operations on objects. It then presents the design for the R
operation switch, which provides the underlying support for the RN
S object orientation of- the system. Processes are objects with o
A defined operations Send and Receive. Therefore, basic systenm :
" support for low-level message-oriented interprocess communication e
is part of the operation switch. Section 6 contains the design o
for higher levels of Cronus interprocess communication. .

v The object model provides a coherent and uniform framework s

for the system components of Cronus, and potentially for some A
application programs which will inhabit a Cronus cluster. A -
Cronus object has two kinds of features:

$Q. 0 Reguired features. Cronus requires certain minimal set of }3:
features for each object type. .ﬁf

o Conventional features. The object model and its e
associated system components define a number of e
conventions, which may be adopted by subsystem designers, -

. on a case-by-case basis.

3 A subsystem designer can depend upon the existence of required -t
» features in other system components, and is obligated to provide o
< them in each new component. e

AN A Cronus system design goal is to minimize the number of

SN required features for system entities. This, in turn, minimizes
Y the buy-in costs for new host types. Designating features as

s conventional rather than required also reduces the potential for
o conflict between basic Cronus functions and those of Constituent -
Operating Systems. Conflicts of this type can greatly increase Phg
the integration costs for Cronus hosts. e

N The references [Xerox 1981, Rentsch 1982] discuss the N
258 object-oriented model of programming. This section briefly P
- reviews the concepts of inheritance, subtypes, and supertypes and

explains their relationship to the Cronus design. The currently = 4.
DA defined Cronus Types may be found in Table 1. By convention, e
-~ Cronus types are designated with a prefix of CT_. SRRk

object type can be derived from another. A new type can be

Y
ta Inheritance. subtypes, and supertypes describe ways that one
-
“»

.............

{ _/

o

:f Report No. 5261 - Part A Bolt Beranek and Newman
£
(;
.:,:.
.::3
WY

Eg Object Name See Section

| CT_Cronus_Host 5.1.4
o CT_Type_Name 4.2.3
A CT_Cronus_Process 5.1.2

i CT_Primal Process 5.1.3
5 CT_Program Carrier 5.2

. CT_Cronus_Catalog 9.2

e CT_Catalog_Entry 9.2.1

A CT_Directory 9.2.2

.7 CT_Symbolic_Link 9.2.3

o CT_Eternal Link 9.2.4

;J CT Cronus File 8.1

o~ CT_Primal File System 8.5

~/ CT_Primal File 8.1
! CT_Migratory File 8.1

o~ CT_Dispersed File 8.1

< CT_Executable_File 8.1
L CT_Principal 7.5.2
e CT_Group 7.5.3

1o CT_Authentication Data 7.5.1

i& CT Session _Data 13.3

A

- CT Line Printer 10

N CT_Elem File System 14

v

N CT UNIX_Name Space 9.2.4
N CT VMS Name Space 9.2.4

~

NS Table 1. Cronus Objects
)

N defined by the way it extends or differs from another object
@ type. The properties that the new type has in common with the

old type are said to be inherited; the new type is called a

subtype of the old type, and the old type is a gupertype of the
new one.

o More formally, to say that objects of type A inherit the e

EORE A SR O S i A MAGADACH

Report No. 5261 -~ Part A Bolt Beranek and Newman

,a,. ,

T , T
‘o

L etat et

A

subtype of B and B is a subtype of C, then A is a subtype of C.
For example, CT_Primal File is an object type in the distributed
file system; the operations

Open (Primal File UID) reply code

::j properties of objects of type B means that the operations which
A are valid on B objects are also valid on A objects, with the same
S semantics. If type A objects inherit the properites of type B
) objects, we say that A is a subtype of B, and B is a supertype of
'3’ A. The subtype-supertype relationships are transitive; if A is a

Read (Primal File UID) file data
(...and so on)

act on objects of type CT_Primal File, inspecting or changing the
state of a CT_Primal File object. Executable files are primal
files, but they also have characteristics not shared by other
primal files. The similarities and the differences are captured
by defining a type CT_Executable File as a subtype of

CT Primal File. Objects of type CT_Executable_File inherit the
operations valid for all primal files, and also respond to
operations unique to executable files, for example, we might have
operations such as:

Processor Type (Executable_File UID) returns
(The host class for the executable e.g. VAX)

Resource Requirements (Executable_File UID) returns data
(...and so on)

Subtypes of CT_Executable File could be defined to distinguish
"M68000_Executable™ from "VAX_Executable" and other kinds of
executable objects with unique properties. For each of these
subtypes, the operations defined on objects of the supertypes
CT_Primal File and CT_Executable_File would be valid, as well ns

i any new operations defined on the subtype.

RN

{Q&: Subtype/supertype relationships are statically realized in
ol Cronus, through the cooperation of the object managers and the

"N operation switch. No automatic mechanism is currently provided
Fr7 for inheritance. There are several static implementation

TN techniques that can achieve inheritance. A manager may register

102 several type values with the operation switch, and implement some

;g} as subtypes of the others internally. Alternatively, one manager
N

may invoke another through the standard mechanisms.

»
g

N ‘.l Il
PRTRI AN e

A~-24

LA
2, o &

=z

Pt
A,
Y|

......
..............

‘.‘-‘-

';.,‘- 4 4

......
............................

.......
......

:'.
)

o Al N i Dl etk A At s T R) A AT] ‘e iV AN I I [t LIS SCA R LIS R e A S A O

a5 -
_l.--q\ "-
'cf_f;% :_;
:‘:.::' X
O e
533 Report No. 5261 - Part A Bolt Beranek and Newman "
AR

(M s _.
RS .:__.
:}5. 4.2 Object ldentification -
T <
NS 4.2.1 Cronus Name Spaces ey
T Oy
' : There are two levels of naming objects within Cronus. -
280 Therefore, there are two distinct name spaces, and two levels of .-
}:& cataloguing and name management in Cronus. el
e o
) At a relatively low level there is a global unique e
o identifier (UID) uniform name space for Cronus objects. Every JONE
- Cronus object has a UID name. Programs (as opposed to people) b{
. are the primary users of this name space. A principal design ity
N congideration for the UID name space is to make it easy for o
:?d programs to use, so UID names are fixed length bit strings. oy
;ﬁtj Although there is no single identifiable catalog supporting -
oy the UID name space, the notion of a catalog for UIDs is a useful

e abstraction. This catalog will be referred as the "UID Table"

e with the understanding that, in practice, the functions that it

ho supports are implemented by object managers for different object .
iﬁ? types by means of UID-to-object-descriptor tables which can be N
o thought of as fragments of the UID Table. Every Cronus object is o

catalogued in a UID table. When a Cronus object is created, an =
entry is created in a UID table. This entry contains enough Foa
information for the manager of the object to access it. Object
managers generally support type-dependent operations for

creating, manipulating and deleting objects, and for inspection
and maintenance of the UID table entries. The Cronus operation
switch provides client processes with object-oriented addressing, L
so merely having the object UID is sufficient to communicate with ~
the object. IRy

‘ 3
N}

At a relatively high level, there is a global symbolic name KN,
space for Cronus objects. Symbolic names are more convenient for :
human users, so the principal design consideration for the Cronus ~L
symbolic name space is to make. it easy for people to use. ke @
Symbolic names are supported by a catalog which will be referred e
to hereafter as the "Cronus Catalog®, which provides a mapping O
between the symbolic names that people use and the UIDs that are :
required to actually access the objects. This name space is
hierarchically structured as a tree. The tree contains nodes and
directed labeled arcs. There is a node called the "root". Each
node has exactly one arc pointing to it, and can be reached by
: traversing exactly one path of arcs from the root node. Nodes in
- the tree generally represent Cronus objects which have symbolic
names, A complete symbolic name is formed by listing the names
of the arcs, separated by the punctuation mark ":". For example,
sasb:c is the symbolic name of an object.

e

AR

N'l '.
e,
N

A-25

..

. _»

b IS
..

AW

' X3

__

Report No. 5261 - Part A Bolt Beranek and Newman

Not all Cronus objects have symbolic names, and those that
do may have more than one. When an object is given a symbolic
name, an entry is made in the Cronus Catalog, and when the name
for an object is removed, its entry is removed from the Cronus
Catalog. The Cronus Catalog supports Enter, Lookup., and Remove
operations. In addition, operations are provided to read and to
modify the contents of catalog entries. The catalog entry
corresponding to a symbolic name includes the UID of the object
named. The Cronus catalog is described in detail in Section 9.

A Cronus unique identifier consists of a pair
<UNO, Type>

where UNO is a 64-bit unique number, and Type is a 1l6-bit value
naming the type of the object. The UNO portion of the UID is
uniquely associated with a particular object. Each Cronus
service is administratively assigned a unique type and, all types
are statically well-known. Since the Type field will encode as
many as 65,536 distinct types, there is room for expansion to
dynamic types at a later time. By convention, the symbolic names
of Cronus types all begin with the prefix "CT_", e.g.,

CT_Primal File.

The facility which generates unique numbers may be regarded
as existing continuously throughout the life of a Cronus
configuration, and is accessible to system and application
processes. No two requests by client processes for a UNO ever
obtain the same UNO, over the entire lifetime of a Cronus
cluster. UNOs are guaranteed unique only over the domain of a
single cluster,

UNOs are fixed-length strings of length of 64 bits or 8
bytes. They are comparable in size to short symbolic names, and
can be easily stored and manipulated on byte-oriented, 1l6-bit-
word, and 32-bit-word machine architectures.

The UNO generation scheme is logically centralized because
two generators in the same Cronus cluster must not generate the
same UNO. Since we want the facility to be continuously
available with high probability to processes distributed over
various hosts, the implementation of the UNO generator facility
is physically distributed(6)

(6) A description of the design and implementation for the Cronus
unique number facility can be found in Section 14.4.

Report No. 5261 - Part A Bolt Beranek and Newman

The UNO consists of three fields: a HostNumber, a
HostIncarnation and a SequenceNumber. The HostNumber field
identifies the machine which generated the UNO. The
HostIncarnation is a centrally-generated number (or one which is
dependent upon local non-volatile storage and periodic central
synchronization) which assures the uniqueness when a host crashes
and returns to the system. The SequenceNumber is incremented for
each request.

The UNO size, 64 bits, was derived from assumptions about
the number of UNOs that could be generated over the lifetime of a
Cronus cluster. We assume that the maximum number of hosts in a
cluster is 1024, and the maximum lifetime of a DOS cluster is 100
years. The implementation strategy imposes constraints upon the
rate at which UNOs can be generated (fewer than 1860 per second
per host) and on the rate at which a host can leave and reenter
the cluster-wide UNO generation mechanism (about once every 190
seconds) .

A Cronus service is implemented from a Cronus process. The
UID for the process is a unique identifier of type
CT_Primal Process, selected when the process was created. To
facilitate communication between accessing agents and Cronus*®
services, Cronus also assigns a logical name to each service. A
logical name is a UID selected from a reserved portion of the UID
name space which, is itself designated by a Cronus type,
CT_Type_Name. Every Cronus type maps to a logical name UID
formed from a 16-bit type by setting the HostNumber field to an
arbitrary value, thoa HostIncarnation field to zero, the
SequenceNumber field to the 16-bit type, and the type field to
the constant CT Type_Name.

Cronus provides a pair of functions which can be used to
convert between a type name and the logical name for the manager
process of that type. These functions are:

NameToType (LogicalNameUID) returns Type
TypeToName (Type) returns LogicalNameUID

Logical names, like types, can be referred to symbolically.
By convention, logical names begin with the prefix "CL_". For
example, CL_Primal File refers to the process which manages
primal files. A logical name can be used to locate or generically
address an object manager for its type, or the collection of all
managers for the type.

Two basic kinds of UID names for Cronus objects have been

Report No. 5261 - Part A Bolt Beranek and Newman

introduced.
1. Specific names.

The specific UID name is assigned when the object is
created, by requesting a new UNO. The creating agent may
retain the specific name or pass it on to other
processes, to allow the possessors of the name to operate
on the object.

Logical names.

All logical names in Cronus are well-known, and have
symbolic equivalents (e.g., CL_Primal File). Because
they are statically known, they can be built into the
system and application programs and used to establish a
rendezvous between processes and standard objects or
services.

Specific names are used for objects which can be created and
destroyed, and have private state information which is important
to the accessor (e.g., a particular file). Logical (generic)
names are used to refer to system services (e.g., CL_Primal File
refers to the processes which manage Primal Files). System
services usually fulfill the same role over long periods of time,
and are not created and destroyed by application programs.

Each Cronus service has a unique type and a logical name.
In addition, the processes which implement the service have
specific object UIDs, since they are process objects. Operations
can be invoked using either the logical name for the service or
the UID for the manager. For example, the logical name for a
Primal File Manager is well-known, and can be used to invoke
primal file operations and communicate with the primal file
manager independently of the current specific process UID name
for the Primal File manager. File operations invoked on the
CL Primal File logical name, for example, would be delivered to
one or more Primal File managers. 1In contrast, the process
control operations defined on a Primal Process object can only be
invoked using the specific UID name of a particular Primal File
manager process.

RN
-.' ' ' ‘.
j? Report No. 5261 - Part A Bolt Beranek and Newman :_? -
{ R/
4.2.2 Accessing Objects RN
Accessing agents interact with object managers using Cronus -
. Interprocess Communication. Access may be initiated in one of SRR
2 two ways: B
- 1. Directly through the UID name space. _‘:
» ‘..._ -:
i The accessing process has the UID of the object, and ;§i§3
- invokes an operation upon it. The operation switch SIS
. delivers the requested operation, the UID, and any other L
parameters to the appropriate object manager. The object L |
o manager consults its fragment of the UID Table to access RN
v the object as necessary to perform the requested e
'3 operation. S
- 2. Through the symbolic name space.
A The accessing process has a symbolic name for the object. oy
.- In this case, access is accomplished by consulting the SRR
. Cronus Catalog to find the UID for the object. Now ﬁﬁiy
g access to the object can proceed as described in (1) SN
. above. I
(Allowing the symbolic catalog to be by-passed when an object .%25;
o is accessed improves performance and enhances the flexibility of L
: using primitive objects to build complex objects. i }Lﬁq
2 Of course, the accessing process must have the UID for the ij:*.
- object in order to access it. The cost of achieving these ——
. benefits is primarily one of increased implementation complexity: ;f,;f
& 1. Access control is performed in a decentralized fashion by ;Qﬁ??
~ all of the object managers. i
2. Information about objects is distributed among object f@#:
‘ managers and catalog managers. Care must be taken to e
- ensure that the information about an object is .
- consistent, and if it is not, that the system can operate %
- properly. -
L 9
‘ RO
N
v ..:‘, ;-"..
¢ ien

LI 3 ¢ ..l ’.l .'l 4
3’2 'J.'J '«’ ‘.' ..

.l’.‘.'.
ST

PO

-
»
¢

s

Report No. 5261 - Part A

Bolt Beranek and Newman

4.2.3 Summary of the Cronus UID Name Space

In preparation for the detailed discussion of the operation
switch design, we first briefly review the key properties of the
Cronus UID name space:

1.

UIDs are fixed length bit strings.

A UID is 80 bits long and consists of a 64-bit Cronus
Unique Number (UNO) and a l16-bit type specifier.

The type of the object named by a UID can be determined
from the UID,

The UID has a 16-bit type field. The ability to
determine the type of an object solely from its UID is
critical to the implementation of the operation switch.

The UID for an object is a host independent name for the
object.

UIDs are host independent in two ways. First, the UID
may be used to refer to the object regardless of the host
from which the reference is made. Second, the UID may be
used to refer to it regardless of the host (or hosts)
which implement the object.

Although it may not happen often in practice, objects may
move (or be moved) from host to host. When an object is
relocated in this fashion, its UID remains fixed.

The UID for an object contains a hint for the location of
the object.

The HostNumber field is used as a hint for the host
location of the object. This is the host that generated
the UNO, and it will frequently be the host responsible
for the object. Since some types of objects can move
from host to host, the HostNumber field of a UID for such
an object does not positively identify its location.

When the hint fails for these objects, a Locate operation
will find the object. For objects that cannot move
(e.g., primal processes, primal files) the hint is
guaranteed to be valid.

Communication with an object manager can be initiated
merely by knowing the type that it manages.

-

T

P A DI S g S) Al i 24 A A - AANESAINAA A A - e e T L S T T s L L L T v s
‘!5 -
- RN
- Report No. 5261 - Part A Bolt Beranek and Newman RN
.t:'._ :"':..
(. @
O Logical UID names which can be computed from the object ,;;
P type., provide generic addressing. o
2 S
QY 4.3 Operations On Objects :ikﬁ
fiﬂ 4.3.1 Primitive Operations and Objects ::QF
':i An operation to be applied to an object is represented as a i
pair g
ﬂi <OperationName, Parameters> ?ﬁf.
;; There are several ways to invoke an operation, but in some sense f@E
e the most primitive of which is InvokeOnHost. The function <
- supports the invocation of Operation on the object named by ey
ObjectUID on the host with internet address HostAddress. xff
- Invocations do not necessarily cause a reply or 'Ej;
< acknowledgement to be returned to the invoker. Most operations N
~ will follow a request-reply paradigm, but there are important ROt
§ examples of operations that will not. The generation of a reply, E;;
{ and the conventions describing the contents of the reply., are an SR
L example of conventional features derived from the request-reply el
o paradign. s
e InvokeOnHost can invoke an operation on a host that is S
. remote from the invoking process. The operation switch will N
" attempt to deliver the operation only to the addressed host or o
o hosts. The parameter HostAddress is a Virtual Local Network N
X address (see Section 14.2), and may refer to one host (if it is }fg
R a VLN specific address), all hosts (if it is the VLN broadcast RO
Y address), or a subset of hosts (if it is a VLN multicast N
*at address). Assume for the present that HostAddress is, in fact, a ST
. specific VLN address and refers to just one target host. :fﬁ\
;f, The ObjectUID may be a logical name (i.e., a UID of type i¥\3
v CT_Type_Name). Logical names can be used to invoke operations on ol
S system-defined object managers and service processes, or system- T
o defined objects. R
o The operation Locate is defined on every object in the qiy-
g system; Locate is a required feature of every object manager. oSN
y The Locate operation can be invoked in the following way: ;?L:
. N
Aoy InvokeOnHost (HostAddress,ObjectUIDP, -

Report No. 5261 -~ Part A Bolt Beranek and Newman

<"Locate",ReplyOption>)

Locate generates a reply from the host HostAddress if the object
ObjectUID is present on that host. The ReplyOption parameter may
be either Always or PositiveOnly. A value of Always means both
positive and negative replies are generated. A value of
PositiveOnly means only positive replies are sent back.

If HostAddress is the VLN broadcast address, the Locate
operation queries all hosts. Then,

InvokeOnHost (VLNBroadcastAddress,ObjectUIDP,
<"Locate",Always>)

tests all active hosts for ObjectUID, and solicits a reply from
all hosts. The invocation

InvokeOnHost (VLNBroadcastAddress,CL_Primal File.
<{"Locate"”,PositiveOnly>)

asks for replies from those hosts supporting the object type
CT_Primal File. This operation might be performed in preparation
for creating a new primal file.

A library routine will be available which invokes the
operation collects the replies and presents them to the process:

Locate (ObjectUIDP,StopWhen,Timeout) returns ReadyList

This routine performs an InvokeOnHost to the VLN broadcast
address, on the object named through ObjectUIDP, with the
operation <"Locate",PositiveOnly>. The integer StopWhen
determines how many replies the routine returns. If StopWhen is
a positive integer, the routine will collect replies until
StopWhen replies are received, or Timeout seconds have elapsed,

whichever comes first. 1If StopWhen is 6, the routine waits until.

Timeout seconds have elapsed. In either case., the information
contained in the replies is collected and, after editing, a
pointer to this list passed back to the caller.

The ReplyList contains the VLN addresses of replying hosts.
If the ObjectUIDP refers to a logical name, the reply list will
also contain the specific UID of each responding process. Type-
specific information may also be present in the ReplyList. The
following paragraphs describe a simplified form of this
ReplyList, namely, that ReplyList [1l] is simply a host address.

The InvokeOnHost and Locate can be combined to define a more

AN

"'rfr'r. o
. i
*l
O

. N
2R
iﬁ Report No. 5261 - Part A Bolt Beranek and Newman :}ff
‘. ‘\." .I_" -". .
{ A
e general, host-independent Invoke operation, shown in the i::g
Y pseudocode definition below. N
::: :'_.-\":\:c /
- _'4__}-:', ‘
= operation Invoke(ObjectUID,Operation) is o
Locate (ObjectUID,1,TimeoutConstant) -
o~ if HostList(l) =/= NULL then S
o InvokeOnHost (HostList (1) ,ObjectUID,Operation) ;ﬁ;}
o R
A This is the simplest possible form of Invoke; more complex g
’ variants, which involve caching UIDs, for example, will be (m
. developed. The properties of the Invoke operation will be 1
. discussed further below; in particular, there is an important SRR
M optimization which makes the Locate operation unnecessary for
7 some object types, such as primal files, for which the hint in
>N the UID name is defined to be accurate.

Y

e 4.3.2 Message Communication Support

f; In order to describe the design of the operation switch and

{ 1 its role in message-oriented interprocess communication, we must

o briefly introduce Cronus processes. The Cronus process concept

- is described in detail in Section 5.

ii Cronus processes are constructed from constituent host Sl

.? (CHPs) . The properties of a CHP are defined by the R
- machine architecture and the constituent host operating system g
. (COS). The Cronus process consists of a CHP plus the Cronus SAeNS

o process features. The simplest type of Cronus process is the N

- Primal Procegs (PP). A Primal Process is a CHP with the ability RN

e to invoke Cronus operations through InvokeOnHost. 1In addition, R
- there are operations which can be applied to Primal Process P
LN objects, including SendToHost and Receive, which provide a simple =

message service and basic process control. SendToHost and A

jg Receive are implemented by the operation switch. SN
o S

- The SendToHost operation transmits a message from one RSy
‘. process to another, and the Receive operation makes a previously e

Z; sent datagram visible to the recipient. P
Zf SendToHost (TargetInternetAddress,TargetProcessUlD,Text) :;ﬁ;ﬁ
EE Receive(SourceInternetAddress, SourceProcessUID, Text) :

> -
" S
d "h\“-_“
;;’ A-33 ‘:'.‘:-

.~
.
Su
-

o

Ly vie A aa
R ~ PN ."'.
r“;’."; fe T

LS
3
-

iy
)
’

.- I

4

N 4
ARCRANA (AR
] «r it}

o
Fsm
[ary =

2k

-
2 ']
_.7..'_1' «

N

)
F.u"
Ml

o

'

’
S
o

o
-

St

]
...............

Report No. 5261 - Part A Bolt Beranek and Newman

are a matching pair of SendToHost and Receive operations. Note
that Receive obtains the internet address of the sender, as well
as the sender's UID and the message text. The SendToHost command
above is considered to be equivalent to

InvokeOnHost (TargetInternetAddress,
TargetProcessUID,
<"SendToHost", Text>)

An implementation of Receive employs pseudo-interrupts or
other CHP-specific synchronization facilities, not defined here,
to build an asynchronous Receive operation.

The more general operation Send is related to SendToHost in
the same way that Invoke is related to InvokeOnHost. A simple
Send is defined as

operation Send(ProcessUID,Text) is
Locate (ProcessUID,HostList,l,TimeoutConstant)
if HostList(l) =/= NULL then
SendToHost (HostList (1) ,ProcessUID, Text)

As for Invoke, optimizations are possible.

4.4 Object System Implementation
4.4.1 The Operation Switch
This section describes the framework of the object system

implementation on Cronus hosts. Figure 1 illustrates the
relevant components on a single host.

A-34

PR R
PR
ettt e
.
v e,

M 2 B
-.‘.‘-\'Ihl"

S s

Report No. 5261 ~ Part A Bolt Beranek and Newman

1 2 3 4

|{Primal Process| |Primal File| |Program Carrier| | Program | iﬁf

| Manager | | Manager | | Manager | | cCarrier |

' o :
l .
e R e
51 | P o
- G AR R G G SED G e D G Ty S G S G D GED W SN G eme -~\.
I Operation | o
] Switch | 2
| —————— e a——————- | it
| ReliableMessage | 3
| Service | -
- 6 s
| - o
| | uNo | S
| ————- 3
' l aakadl WA ‘ \
| 71 1
uDP N
{ l__--_-' £
! | g
l D . G D Gny S G G S G G ~oT ’

81 | S

[1P l RN
| "
9 | =,

{ VLN | e

.
Vit e s

Figure 1 . Object System Components f:-

o
‘ﬁff The boxes in the figure represent abstract modules of the ?2;
Sy implementation, and do not necessarily map one-to-one into CHPs ;ﬁ.

o or address spaces. 3:}
i -

o

A-35 Eé

\l-:‘: =
2 .
et -
A
SO e
. e, .
f:l Report No. 5261 =~ Part A Bolt Beranek and Newman -
"\-‘
s
n.‘ -‘
N In Figure 1, boxes 1-4 are Cronus process objects; box 5 is
DA the operation switch, which accepts messages from and delivers
e messages to the Cronus processes on this host; box 6 the local
N host component of the UNO generation facility; box 7 is the UDP
3

protocol demultiplexing service; box 8 is the IP protocol 5}3
- demultiplexing service; and box 9 is the Virtual Local Network _
S layer.

5 The operation switch is a table-driven switch, which routes i
“ messages from process to process., The sender and receiver may e
both be on a single host, or the IP layer may be involved in a i

- host-to-host message transfer. The operation switch does not e
e retain information about the messages, although it may gather T
o statistics and transmit them to a central collection point. o
o I
A‘:z Operation switches are linked by a reliable message service. N
: The IPSend and IPReceive discussed below are made reliable e
2 through extensions to IP datagram exchange protocols and/or the 0y
RO use of reliable TCP protocols. 1If an attempted InvokeOnHost o
e fails, the invoker may assume that the problem is not a transient
o communication fault; with high probability, either the network or
. the target host, or both, are down. Messages transmitted through
o IPSend and IPReceive are not limited in size by the maximum s
‘o packet size supported by the Physical Local Network. o
Lo o
_iy The InvokeOnHost operation is one of the principal system RN
o calls to the Operation Switch. The invocation sequence for an Bt
o operation on another host is: T
! 1. A Cronus process initiates an InvokeOnHost operation, i;'
) transmitting the operation and its parameters to the B
o operation switch on the source host. N
l-\: :~:~: -
33 2. The source operation switch composes an IP message e
Y containing the object UID, operation, and some other e
] information, and sends it to the operation switch on the :
" target host. o
- "\:_
: 3. The target operation switch uses the object UID and its R
. own tables to decide which process should receive the o
message, and delivers it. T
s 4. The process on the target host receives the message using ;?
N the Receive operation; the SourcelnternetAddress and -
SQ SourceProcessUID are those of the invoking process. 'iéa
'\.':\.) o
:;* If the source and target processes are on the same host, the Gy
,‘; source and target operation switches are the same, making the)
A D
- AN
- - . A"” 3 6 M -.':

P
P4

DAL RS
[
'
,
D
.
'
.
'
’
.
.
t
¢
.
s
'
.
b
By
f
[
'
.
¢
3
.
,

i

AR
...

ARSI
PRV SR

Report No. 5261 - Part A Bolt Beranek and Newman

e,

Z; transmission of the data unnecessary.
N The following sections explain the function of the Operation
. Switch in greater detail.

‘o~
a

AR

XX

l' ["AI A ’
e

P,

‘;_-.y’x

AN)\
RRARA .

»,

-

h
!‘ LN
N
-
a,

hY

»
» o
“ e

o . “'v.
-, AN
[
b“ - "
e .
' bl L
i
v l‘- . -
-'_.. .‘.' A
. MRS
- A
-~ SRS
- - -
XX Dy
.' --" ..I_I
.. -
" ..
-
A
L] S
-* .ﬂ '. c-- N
CA) ST
“w A
-c:_'- *_.“_s
.. ~\ n.
Yoo »

ot !,
[P

e Jo i)
ll.l.

Y

.
. e

e

.,‘- 2

I.’I ’

A-37 S
2 L
3

................
.........

Report No. 5261 - Part A Bolt Beranek and Newman

4.4.2 The Operation Switch Interfaces

Figure 2 illustrates the transmission of an operation from
the invoking process, through the local operation switch, to the
remote operation switch, and finally to the receiving process.
This section defines the calls and the representation of data
structures at the interfaces 1, 2, and 3.

| Invoking |=--->| Local | | Remote |--->| Receiving |
| Process | | os] | 0s | | Process |

-—— - - - - - e - - e e > = - - - e w. e .

Figure 2 . Operation Switch Interfaces

There are two major views on the invocation in Figure 2:
the invoking process may perform a SendToHost operation,
specifying a destination process name and expect it to be paired
with a Receive operation at the receiving process; or the
invoking process may perform an InvokeOnHost operation on the
Cronus object name that is ultimately directed to a manager
process and again accepted by a matching Receive.

In the first case, information crosses interfaces (l) and
(3) by means of calls made by the sending and receiving
processes; these calls appear as
SendToHost (TargetAddress,ProcessUID,MessageText)
Receive (SourceAddress, SenderUID,MessageText)
In the second case, information crosses interfaces (1) and
(3) by means of system calls made by the invoking and receiving
processes; these calls appear as
InvokeOnHost (TargetAddress,ObjectUID,Operation)
Receive(SourceAddress, SenderUID,ObjectUID,Operation)

where operation includes both the intended operation and its
parameters.

...........

Report No. 5261 - Part A Bolt Beranek and Newman

Interface (2) is peer-to-peer communication between

> operation switches. It is convenient to introduce IPSend and SRR
e IPReceive for this function. 1psend and IPReceive use a reliable AT
o message service built above the Internet Protocol. IPSend and SRR
IPReceive each accept just two parameters: T e
22 AR
<. IPSend(TargetInternetAddress, Text) .
}Z IPReceive(SourceInternetAddress, Text)
IPSend will perform a certain number of retries in an attemp: to
. deliver a message; IPReceive will filter duplicates arising from
- retries.

Messages exchanged between operation switches are octet
sequences with the following standard format:

R CIARKD

;; | TargetUID | SourceUID | Mode | Message Structure | ;i@{;
jf CTTTTLTTTTTTTTTTTLTTTTTTTTLTTTTTT S T T ;ﬁ;ﬁ:
-’ RSASAS
i 19 octets 10 octets | N octets Tt
(I »a
» 1 octet .}(f;
;} The TargetUID is the ProcessUID parameter to SendToHost or the : .
.- ObjectUID parameter to InvokeOnHost. The SourceUID is the Ry
" process UID of the invoking or sending process. Mode is an voeTy

enumeration variable with two values, SendMode and InvokeMode, hites. !
- explained below. The Message Structure is the MessageText T
N parameter to SendToHost or the Operation parameter to BN
XY InvokeOnHost. RO
'ij _m*{
~

4.4.3 The Implementation of SendToHost and Receive

- The operation switch implements the SendToHost and Receive
- operations for processes, and asgists in the implementation of
i other operations by directing the messages to manager processes.
= The first case is illustrated in this section, and the second in
- the following section.

A-39

TS para——y -
e o T T A R R N T T T R A

Report No. 5261 - Part A Bolt Beranek and Newman

Host = SourceAddress:

——— - o . — — " D G P G - ey G G fEe G e S g S e P T S S T G, G G G G I G S G G R S G G5 W =

SendToHost (TargetAddress,TargetProcessUID, Text)

|
| (by Operation Switch)
I

v
IPSend(TargetAddress,
<TargetProcessUID, InvokerUID, SendMode, Text>)

Host = TargetAddress:

—— e - Y — T - G N T - W - S (e G . S —— T - S S e S S e G N e e G S = W G S .

IPReceive(SourceAddress,
<TargetProcessUID, InvokerUID, SendMode, Text>)

v
Receive(SourceAddress, InvokerU1D, Text)

- — - - —— — . - Ty - - G — - — Y - 5 - — — . g — " G = - . - G G W - —

|

|

| |

| | (by Operation Switch)
| |

|

|

Figure 3 . The SendToHost-Receive Sequence

In Fiqure 3, the sending process at host SourceAddress
initiates the SendToHost opgration, and the data passes into the
local operation switch. The operation switch at SourceAddress
uses IPSend to transmit the data to the Operation Switch on host
TargetAddress, where it is received by means of IPReceive. When
a matching Receive request made by the target process completes,
the SourceAddress, InvokerUID, and Text fields have been made
available to the target process (that is, moved into its address
space) .

The operation switch at the SourceAddress sets the Mode
value to indicate that the operation is a "SendToHost". The
operation switch at the TargetAddress detects the SendToHost-
Receive case by observing that Mode=SendMode; this is sufficient

A-40

TN AT A T e L

.
IR IS TN LIPS DO D
MOV G S LS O S

Report No. 5261 - Part A Bolt Beranek and Newman

information to complete the matching Receive.

In order to use SendToHost and Receive, an operation switch
must know the Cronus UIDs of all processes on its host, and must
have a means of passing messages across the Operation-Switch-to-
Cronus-process boundary. The operation switch maintains the
mapping from UIDs to host-dependent process handles, and uses the
host-dependent system call convention to move the data.

The TargetProcessUID may be either a specific or logical
UID. If it is a logical name, the target operation switch
converts the name to the process UID for the process currently
supporting the logical function.,

N R N A Y AR AL JA R A S i A e o S i IS e i e S p v - i

. 'lf"l’.’.' "

':i

o Report No. 5261 - Part A Bolt Beranek and Newman

G

(s

:i 4.4.4 The General Invocation Sequence

3 o
. flq
T Host = SourceAddress:]
' 9
S Tty :

N | InvokeOnHost (TargetAddress, |

st | TargetUID, |

A | Operation) I

= | | [

i} | | (by Operation Switch) |

3 | | |

= | v |

- | IPSend (TargetAddress, |

i | <TargetUID, InvokerUID, InvokeMode,Operation>) |

\~ ———

D |

N |

"~ v

. . G G G G R G Y T G = T S G G G G = S G G S G S e S T T = TS G S . Y W

IPReceive(SourceAddress,
<TargetUID, InvokerUID, InvokeMode,Operation>)
|
| (by Operation Switch)
I

3L v
fﬁ Receive(SourceAddress, InvokerUID,
< ObjectUID,Operation)
ittt dei et
N

' Figure 4 . The General Invocation Sequence
fj In Figure 4 the invoking process at SourceAddress initiates
- the InvokeOnHost operation, and the data passes into the local
; operation switch., The local operation switch sets Mode to
i InvokeMode, and uses IPSend to transmit the data to the operation
7o switch on TargetAddress, where it is received by means of
~ IPReceive. The operation switch on TargetAddress observes that
e, this message is in InvokeMode, and delivers the message to the
- object manager process for this type, whose name is derived from
- the target UID,

‘e

et
~

Report No. 5261 - Part A Bolt Beranek and Newman

The operation switch on host TargetAddress tests the Type
field of TargetUID. If the message has a generic address (the
UID type is CT_Type_Name), the operation switch uses the
NameToType function to determine the intended type; otherwise, it
uses the value of the Type field. The operation switch tries to
map the type to a manager process on this host (there is at most
one manager process on a host for any type). If the mapping is
not successful, the invocation is discarded, but will generate an
exception reply. If the mapping is successful, the information
is transmitted to the manager process as shown in Figure 4. The
manager obtains the information by initiating an ordinary Receive
request; when the Receive completes, the SourceAddress,
InvokerUID, ObjectUID and Operation have been made available to
the manager process.

A-43

...........

Report No. 5261 ~ Part A Bolt Beranek and Newman

4.4.5 The Use of UID Location

The operation switch often avoids the Locate operations
shown in the definitions of Invoke and Send by using the host
address from the UID parameter when it is a reliable hint to the
object's location. 1In this case., the Invoke or Send can be
immediately replaced by an InvokeOnHost or SendToHost.
Pseudocode for an Invoke operation incorporating this
optimization is:

operation Invoke(QbjectUID,Operation) is
HostAddress := OriginOfUNO (ObjectUID.UNO)
if not GoodAddressHint (TypeOf (ObjectUID)) then
Locate (ObjectUID,HostList,l,TimeoutConstant)
if HostList(l) = NULL then
return
else
HostAddress := HostList(1l)
InvokeOnHost (HostAddress,ObjectUID,Operation)

The predicate GoodAddressHint attests to the trustworthiness of
the host address in the object UID.

Primal Process and Primal File are important examples of
types for which GoodAddressHint returns true.

A
‘*“l‘

P LA

4
. v

Q.
he]

| "
X;
24

A-44

 »
v \-:-::‘-;‘-
L S

................................

Report No. 5261 - Part A Bolt Beranek and Newman

’
*

5 Process Management R

5.1 Cronus Processes

e R
'.'.'l".'

5.1.1 Introduction Te

Each host and constituent operating system in a Cronus e
cluster has at least one natural concept of the basic unit of NRER
; computational activity, the process. More generally, several v
o different kinds of processes are present in each host, fulfilling T

. different roles. In the absence of a distributed operating P
aad system, the processes on two heterogeneous hosts are unrelated to e
each other. The first step towards building systems of i

< cooperating processes is to standardize communication protocols, fcﬂ~

= so that the processes on heterogeneous systems can talk to one S
qi another. R

Standard communication protocols are only the beginning. 1In NS
- a modern operating system, a process is an object which can be O
i explicitly manipulated by other system and application processes. .l
- The operating system makes available a group of process control R
o operations. These operations are invoked by a controlling process X
e on a controlled process, often without the voluntary cooperation,
L or even the knowledge, of the latter. Examples of process

R control operations are:

Create o

=] Terminate <

w0 Suspend TN
' Resume

i Set Priority

e Set Access Rights

- Interrupt

Cronus provides uniform process control operations across e
the heterogeneous hosts in a Cronus cluster. Cronus processes e
are constructed from constituent host processes (CHPs). The s
properties of a CHP are defined by the machine architecture and s
the constituent host operating system (e.g., a UNIX CHP is very Sl
o different from a CMOS CHP). A Cronus process consists of a CHP R
T plus the Cronus process features. A CHP becomes a Cronus process @
T by functional enhancements that usually do not block or replace -

the CHP's natural features. Cronus processes then have full

e access to the resources of constituent hosts within the bounds of
. access control. Unfortunately. the process control operations

ﬂj‘ which are native to different host operating systems are zﬁﬁf
@7 dissimilar in scope and detail. By adopting uniformity as a rom

'.j'.;, ’\
Y A-45 e

.......

....................
........................

»
e 8 s,
.

ﬁiﬂSQ?‘

fﬂ'.i,'_“r."i“‘l 2

DG
‘l.n [
e]

[}
i3

.
L}

v l'}‘l". ’. ”.

SPSPFUNT SN

- »
e, L3
Y

v N

Lt
ISR

BRSNS - . M o
.'." s q'//nw‘ s "."‘{
AR A SISy U

Dt}

-

»
.

'; 54 A
) .' M

]

Pt
Shan

A Y

s .
.ll'

Report No. 5261 - Part A Bolt Beranek and Newman

goal, we acknowledge the inevitable mismatches between the Cronus
process control operations and the operations available on a
particular COS. It is the responsibility of the host integrator
to bridge this gap.

Requiring full compliance to process control may be too much
of a burden for some hosts. The Cronus design provides
flexibility in the degree of integration required of a host. The
host integrator decides which Cronus types will be supported by
the host.

5.1.2 Cronus Process Types -- Overview

There are two basic Cronus process types, CT Primal Process
and CT Program Carrier(7). The type CT_Program Carrier is a
subtype of CT_Primal Process. Primal processes and program
carriers never migrate; once created, the process remains on the
same host until it is destroyed. The host hint in a UID for a
primal process or program carrier is thus perfectly reliable.

Every host participating in the system must support a Primal
Process Manager (PPM) and primal processes. A primal process
which plays a well-defined functional role within the system is
called a Cronus service. Cronus services are often object
managers for system-defined object types, for example, a Primal
File Manager or Program Carrier Manager. A Cronus service is a
primal process which has a registered Cronus type (and hence a
logical name) drawn from the space of Cronus types. Operations
can be invoked on a service and messages sent to a service using
its logical name.

In their minimal standard forms, Primal Processes and Primal
Process Managers are relatively simple. This keeps the cost of
integrating a host into a Qronus cluster low for minimally
integrated hosts that can obtain system services from other
hosts, but do not provide system services.

Ordinary primal processes lack essential process control
functions and other desirable characteristics needed for

(7) . Puture system versions will introduce additional process
types which may be distributed in extent and have special
reliability properties.

Report No. 5261 - Part A Bolt Beranek and Newman

application programming. The subtype CT_Program Carrier provides
an environment tailored to the requirements of application
programs. For example, a program carrier can be remotely loaded
and started.

Either type of process may make use of some or all of the
functions in the Process Support Library (PSL) which provides
high level interfaces to many system functions, as well as
general purpose utilities for interfacing to and manipulating the
Cronus environment. Portability is a major goal for the PSL, so
that it can be implemented readily in whole or in part on new
host types. The PSL is discussed further in Section 14.5.

5.1.3 The Operations on Objects of Type CT_Primal Process

The set of operations defined on objects of type
CT_Primal_Process is:

Locate (ProcessUID) -~> HostID
Return the internet address of the host supporting
this Primal Process. (This is the standard Locate
operation defined for all objects of the system).
SendToBHost (HostlD,TargetProcessUID,Text) -> ReplyCode

Send a message to a Primal Process; the message is
accepted by the Receive operation.

Receive () => SourceHostlD,SourceProcessUID, Text

Accept a message sent to this Primal Process, along
with the source identity.

Destroy (ProcessUID) -> ReplyCode

Terminate the activities of the Primal Process and
release all resources allocated to it. This
operation does not cause the process to terminate
cleanly.

Report_Process Descriptor (ProcessUID,SelectionList) =->
Process Descriptor

Return the requested key-value pairs from the process
descriptor belonging to the target process.

.'-
XLt el s

2.4
et LT
S AR L

A 4
v,

'.! A SR
. 1 . «
ER AR ,
. » .
v . e’ o
B . R .
o A, e
AN .

s
[AP

- Report No. 5261 - Part A Bolt Beranek and Newman

;¢j Change_Process Descriptor
= (ProcessUID,ModifyList,DeleteList,InsertList) ->
e ReplyCode

Insert, delete, or modify key-value pairs in the
process descriptor of the target process.

A process may invoke any of these operations on itself as the
target object (Receive may be invoked gpnly on the invoking
process). A process may send itself messages, destroy itself, or
read or change its descriptor in the same way it performs these
operations on other objects. Locate, SendToHost, and Receive are
described in detail in section 4.4, and will not be discussed
further here.

The Destroy operation is invoked on a Primal Process to
"destroy”™ or "kill" the process. It erases all record of the
process state from the system and frees any resources dedicated
to the process.

A process which is destroyed is not notified of the
operation, and has no opportunity to terminate cleanly. Only the
resources actually used to implement the Primal Process object
can be freed directly; resources held as a result of the
computational activity of the process (e.g., locks on remote
files) are not freed. Some primal processes may possess
dedicated resources, and Destroy disables the process, without
releasing the resources.

A reply will be generated to the invoker to indicate that
the process has been destroyed. After receiving the reply., the
invoker knows that future operation using the specific UID of the
destroyed process will not succeed.

A process descriptor is a list of key-value pairs associated
with a Cronus process. Some of the values are components of the
process state used to implement process control. For example,
the pair (Priority,5) would indicate the importance of a process
relative to other processes competing resources. Some keys must
be present in the list ("required keys"), while others are
optional.

All process objects must respond to the required keys in a
uniform way. If a process object supports a standard gptional
key, the process must apply use it in a uniform, system-wide
manner. Additional, elective keys may be present in a process
descriptor. Their interpretation is not specified by the system,
but is entirely the responsibility of the process and the other

.“..“'.'.: ‘i'f"."-"d.v.'.-" k) -..‘ ."_,. '.‘.

A-48

\ Report No. 5261 - Part A Bolt Beranek and Newman
{ .. @
, . RN
- processes with which it interacis. Elective keys are chosen not ARt
" to conflict with required or optional keys. T
{ . &L
;. The required keys for Primal Processes are: e
e
¥ MyUID BN
- MyAGS ORIt
- IPCEnabled -‘ B
- The key MyUID is placed in the descriptor when a primal AT
- process is created, and is never changed thereafter. The value Ry
5 of the (MyUID,value) pair is the specific UID of this primal i
o process, and has type CT_Primal_Process. RO
é The value of the MyAGS is the access group set, used with EE$5»
b5 access control lists to determine access rights to objects at A
N operation invocation time. The principal UID associated with e
;{ this process is an element of the access group set. The AN
e initialization and use of this access control and authentication A
. data is discussed in detail in section 7. Elj;
{ e
v The value of IPCEnabled controls communication through the e
0 operation switch. If the value is true, the process can send and e
o receive messages in the normal fashion. 1If it is false, the N
2 process may not send or receive messages, or invoke operations on :3}‘
i~ Cronus objects. This feature can be used as a basic tool for T
managing access to network resources. an ¢
i The optional keys for Primal Processes are: :i}f
- TN
& Priority A,
. and others to be named at a later time. ',
*:
‘3‘ The Report_Process_Descriptor and Change_Process_Descriptor
P, operations permit a process to inspect or modify the descriptor
~ of another process. If several processes invoke Report and R
4 Change Process Descriptor operations on another process at the S
- same time, the effect will be as if the operations were processed TR
oy sequentially, i.e., they are atomic with respect to each other. e
- S
- Report_Process_Descriptor causes a reply to be generated to ﬁ;ggz
T the invoker. It may be invoked with a SelectionList requesting TN
i specific key-value pairs to be returned, in the reply, or it may hemva
- RN
-:_ \'__:-:\
W A-49 N

RS
o

Report No. 5261 ~ Part A Bolt Beranek and Newman

ask for the entire descriptor to be returned. Access control
restrictions will limit the set of key-value pairs to be
returned. Report_Process_Descriptor is also used as the standard
"are you there?" function. The reply is generated, independent
of the state of the process.

Change_Process_Descriptor has three arguments, a Modify
list, a Delete list, and an Insert list. The Reply shows any
discrepancies between the requested changes and the changes
actually made. All modifications are made first, followed by all
deletions, followed by all insertions. A key-value pair might
occur in both the Modify and Insert lists, to guarantee that the
pair exists after the operation, whether or not it was present
before the operation.

CUEN e e St
,.-.-.f.'...'.. A e YT LN
we®, "V, e e e e S PR

o BN _ NN N S e AP

5.1.4 Operations on Objects of type CT_Host

The Primal Process Manager (PPM) implements operations
concerning primal processes as a class. Some of these operations
may be thought of as operations on the host itself. Because of
this, we assign it a type, CT_Host.

A PPM is itself a Primal Process, and the operations in the
previous section all apply to it. They are activated by
InvokeOnHost applied to the logical name of the PPM.

One of the operations, Destroy, has a special meaning when
applied to the PPM on a Cronus host. Because the PPM is the
implementer of Primal Processes, destroying the PPM destroys all
Cronus processes on the host. This forces a shutdown of the
Cronus system on the host.

The operations defined on objects of type CT_Host are:
Cronus_Restart (HostID) -> ReplyCode

Combines the effects of a Destroy operation on the
PPM, followed by a "Cronus boot”.

Create_Primal_Process (BostID,Role) -> ProcessUID

This operation takes a role designator and starts a
Primal Process performing this role on the HostID.
The Primal Process is bound to a program when it is
created, in a host-dependent way invisible to the
Cronus system.

"""" -“t':n'. e P L LS e T R -. ... ‘_‘*_“ R o ST
TN L T e, e e el e
°

PP WA

ahs . PRI A R Ry b IS A e S o o L P

..............

}i: Report No. 5261 - Part A Bolt Beranek and Newman P
‘..:.‘ e T
L 2
] -- . w‘-_n
o Service_List (HostID) -> ServiceOnHost]
- - ;4"_
ji; Returns a list of the services which can be created Gy
s on this host, and indicates which are currently Tl
- active, "o

Process_List (HostID) -> ProcessOnHost

Returns a list of the specific UIDs of all active
o Primal Processes on this host.

\ Status_Probe (HostID) =-> StatusDescriptor
Returns a list of key-value pairs giving information

about the current status of the host-device
utilization, number of active processes, etc.

Create_Primal_Process takes a role designator as an
{s argument, and starts a new primal process performing this role.
A The role designator may be in one of the following forms:
-

1. A Cronus logical name for the service. e

{ ' 2. A Cronus symbolic service name. These are character el
. strings containing the literal characters of a logical .
e name, for example "CL_Primal_File".

. 3. A host dependent role designator. These are arbitrary PON
o strings, which have meaning only to the PPM on a specific :
) host. ekt |

-/

'-
el 2o 5

The designators of kinds (1) and (2) are strictly paired, and are R
registered with the Cronus system administrator. They are the e
names of standard Cronus functional units, which have unambiguous T
meaning system-wide. The primal processes which implement them S
are created using a designator of kind (1) or (2), which makes i A
the logical name known to the operation switch on the host, so U
that the process can be generically addressed.

) AP
(TNk

2,

Designators of kind (3) provide for the activation of host-
: specific programs or devices. The host dependent role designator
- might be a COS-dependent file that is executed as a result of
o Create_Primal_Process. Primal processes created with a host-
dependent role designator generally have no associated logical o
name, and cannot be generically addressed.

. n"“"llll "

When the primal process is created, it receives a new
specific UID, never before used to name a Cronus object. The .

Report No. 5261 - Part A Bolt Beranek and Newman

primal process will initialize its state entirely from non-
volatile storage (local or remote disks). The PPM will generate
a reply to the invoker indicating success or failure of the
operation; if it was successful, the reply will contain the
specific UID of the new process.

5.2 Program Carrier
5.2.1 Objects of Type CT_Program_Carrier

The type CT_Program_Carrier is a subtype of
CT_Primal_Process, and all of the characteristics of primal
processes are inherited by program carriers. Additional
operations can be invoked on program carrier objects, and the set
of required keys in the process descriptor is enlarged. The
program carrier

o provides a process which can be created, loaded with a
program, started, and stopped under remote control;

o binds processes to their principals;
o provides uniform monitoring and debugging support; and
o provides application developers with the ability to

control a collection of user written (possibly
distributed) processes.

A Cronus host is not required to support the CT_Program_Carrier
process type; however, hosts which are not dedicated to system
service roles usually support Program Carriers.

5.2.2 Operations on Objects of Type CT_Program_Carrier
The set of operations defined on objects of type
CT_Program_Carrier include those of its supertype,
CT_Primal_Process, and:
Clear_Program (ProcessUID) -> ReplyCode

Stop the process cleanly, if it is running, and clear
all program and data storage private to the process.

R Report No. 5261 - Part A Bolt Beranek and Newman T

D Load_Program (ProcessUID,FrogramUID) -> ReplyCode

. Load a binary program image into the process; the
[“{‘ process must be in cleared state.

Proceed (ProcessUID) -> ReplyCode

e
oo
< Start execution after a program load, suspend
e operation, breakpoint halt, or single step. N
e Suspend (ProcessUID) -> ReplyCode e
A .-
A Stop the process as soon as possible, and save .,j}
e sufficient state to permit a restart when the Proceed A
l operation is invoked. e
. Stop (ProcessUID,StopCode) -> ReplyCode ~:?'
o . .
L Terminate this program carrier process cleanly, .
}{. according to StopCode procedures and inform the -
A Controller of this process that it has been e
- destroyed. R
(Report_State (ProcessUID) -> ProcessState ???;
i; Inspect process private state information. }3;;
;ﬁ; Change_State (ProcessUID,ProcessState) -> ReplyCode jli
' Change process private state information. pias
o Breakpoint (ProcessUID, Address,InsertOrDelete) =-> RN
o ReplyCode Qi
ii Place or remove a breakpoint in the address space of S
R the process. o
f} These operations are sufficient to meet two basic .;jl
N objectives: 1) It is possible to load a binary image into a new AN
o program carrier object, start it, and allow the process to RN
h complete or be cleanly stopped; and 2) the Suspend, Proceed, ’
o Report_State_Change State, and Breakpoint operations together
N with the Primal Process operations, will support the operation of L
}2. a remote debugger. A
~ RO
;}} Report_Process_Descriptor and Change_Process_Descriptor can S
A be applied to program carrier objects as well as primal process SR
@1 objects. The required keys for program carriers are: -m
yl .'i.r‘_.'
- A-53 S
2 R
4 -

L o - X e " - - - - - - -
SRR IR A IR B e St SRRl AR TS

Report No. 5261 - Part A Bolt Beranek and Newman R

MyUID

MyAGS
IPCEnabled
Priority

State
Standard_Input
Standard_Output
Controller
Session
Attendant
Current Directory

MyUID, MyAGS, IPCEnabled, and Priority have the same meaning for
program carriers as for primal processes.

The State variable informs other processes of the current
state or mode of a process. The set of states includes Clear,
ReadyToStart, Running, Suspended, and DebugWait. The states
reflect only the interactions of Cronus operations and the
process object, and do not capture finer state subdivisions which
are host or local operating system dependent.

The Standard_Input and Standard_Output keys each has the
handle for a data stream as a value. These streams are
initialized before a program carrier is started. The streams are
used in a manner analogous to the standard input and standard
output of the UNIX process model.

The value of the Controller key is a Cronus process UID, the
controlling process. Program carrier processes exist in a
controller-controllee hierarchy; each controller may have many
controllees, but each controllee has one controller.

The Session key is a UID identifying the user session in
which this process was created. This value can be used to
identify the processes belonging to a terminal session.

The Attendant key may have either a null value, meaning the
process is currently unattended, or the UID of the terminal agent
of a logged-in user. The Attendant may be used as the target for
error messages which should be presented to a human being,
providing a standard error channel.

The optional keys for program carriers are:

Program_Name

A~54

Report No. 5261 - Part A Bolt Beranek and Newman

Program_Load_File
Program_Version
User_Environment

and others to be defined later.

5.2.3 The Program Carrier Manager Operations

The operations which may be invoked on a Program Carrier
Manager are:

1 1 P
' .

« 't
)

Create_Program_Carrier (HostUID,Controller) -> UID

NN -

e

Create a new program carrier process in Clear state,
and return the UID of the process to the invoker.

Resource_Test (HostUID,ResourceTestList) -> ReplyCode
The parameters are the host resources needed for the
execution of a particular program, e.g., memory
requirements; the reply indicates whether or not they
are available.

Search_All Descriptors (HostID,FieldList) -> List of UIDs

The parameter is a set of key-value pairs; the reply
contains the UIDS of all program carriers on this
host which contain all of the key-value pairs in
their descriptors.

Create_Program_Carrier creates a new CT_Program_Carrier
process and returns the UID of the new process. The new process
inherits the process descriptor of the creator, except for MyUID,
which becomes the UID of the new process; the streams
Standard_Input and Standard_Output, which are unbound; and
potentially the Controller entry. The new process inherits the
AGS, and hence the authorities, of the parent process.

A (optional) parameter allows the creator to specify whether
the new process should inherit the controller of the parent, or
should receive the parent's UID as its controller. When the
process is created, a message is sent to the controller
containing the parent and child process UIDs. The controller
uses these messages to keep track of the processes it controls.

...

&N :
R =
e Report No. 5261 - Part A Bolt Beranek and Newman S
- i
- °
A A group of routines will be available through the PSL to carry e
SRt out the standard bookkeeping operations.
:ﬁif Once a process has been created, the parent (or another 1_;
5 process) may alter values in its process descriptor, by means of Ll
v the Change_Process_Descriptor operation. The parent may use this :-.'.QL
s operation to change the Attendant or Controller values, or to e
e establish bindings to Standard_Input and Standard_Output. e
e Support for I/0 redirection of the Standard Input and Standard B
A Qutput streams is provided through routines in the PSL. e

. The Resource_Test operation allows a process to test for the
R availability of resources before performing the
Create_Program_Carrier operation. Resources may include
processor type, primary memory size, and special processor
capabilities, such as floating point hardware. This operation is
used as part of the scenario for selecting a site at which to run
a program (see Section 13.8). The current design does not support
resource reservation.

The Search_All_Descriptors operation allows the invoker to
find all program carrier processes on a host with the designated
key-value pairs in their descriptors. Two important uses of this

- operation are: 1) a search on the Session key-value pair, to

e locate all process associated with a user session; 2) a search on
: the Attendant key-value pair, to locate all processes currently

attended by the same terminal device process,

”Rf 5.2.4 Bindings Between Processes

£ The Cronus Process Structure supports several kinds of
- relationships among processes. All processes belonging to a
session are related, and can pe located as a group; pairs of
o processes are related in controller-controllee relationships; and
e processes are bound together by the data streams that connect
A Standard_Input and Standard Output (and by other streams that may
‘.L be explicitly opened by the processes).

The knowledge that a group of processes belong to the same
session is useful for coarse-grained error recovery (killing the
session)., Streams are used primarily to provide continuous data
paths between processes.

B e T S
RN Y & W VY SN P AT T N W U

ANCCES R LU LA IC RN O O T A S S -

AR

S

g -.:

N

-,:_>
,ﬁg(Report No. 5261 - Part A Bolt Beranek and Newman
[§

'E? The controller-controllee relationship supports the flow of
T control information among processes. When a process is

e destroyed, a message is sent to its controller. The controller
o can then use that information to notify or terminate other

} controllees that were communicating with the first process.

s

BN

i

a2

Qi

Report No. 5261 - Part A Bolt Beranek and Newman

6 Interprocess Communication
6.1 Overview

The message oriented interprocess communication (IPC)
facility uses the primitives SendToHost, InvokeOnHost, and
Receive (see Section 4). This facility supports both the system
implementation and application program needs for efficient
control message communication. There are further requirements
for supporting IPC in Cronus. First, there is a need to adopt
conventions for the common interpretation of the messages. These
conventions govern both the form of the message and its content.
Second, in the network environment IPC is found in two general
varieties, control messages and streams. Both modes of IPC are
useful and natural to different programming needs. In this
section we discuss the design of message structure conventions
and higher level IPC abstractions.

6.2 Message Structure
6.2.1 Objectives

The Cronus message structure design assumes that the
dominant goal is the regularization of control traffic in the
heterogeneous Cronus system. Control traffic includes but is not
limited to requests for operations to be performed on objects,
replies generated by operations, exception notices, and messages
needed to coordinate distributed object managers. Control
messages are usually short (tens to hundreds of octets). Because
control messages are often in the critical path to completion of
an interactive command, performance is a major issue. Messages
should be compact, and efficiently composed and parsed.

The Cronus message structure conventions are realized by a
group of software components collectively called the Message
Structure Facility. The Message Structure Library (MSL) is the
implementation of an MSF component, a library of functions or
procedures which are available to processes on every Cronus host.
Messages are composed by passing information to the MSL
procedures; the result of a sequence of such calls is a data
structure in the Standard External Representation (SER). This
data structure can be transmitted from one process to another,
and subsequently parsed by MSL procedures at the receiving
process.

fF 4 Lot
e _v ¥ [
P

Y

i
i

.............................

3 .‘ N
" Report No. 5261 - Part A Bolt Beranek and Newman fffi
l -

The objectives for the Cronus message structuring facility,
in approximate order of importance, are:

1. Lossless Storage. A process must be able to extract all of éf{ﬁ‘

the information inserted into a message structure by the RN

- process which created it. ¢3i§
RS

-~ P
. 2. Performance. The message data structure must be compact. ;ﬁﬁjfz

- 3. Portability. The MSL implementation should be easily
portable among the hosts in the Cronus ADM.

-l
-

Attaining Objective (1) assures us that the MSF can be used
to move an arbitrary data structure (viewed as a bit- or octet-
vector) from one Cronus host to another. The representations of
the data structures may differ at the sending and receiving
hosts, but no information will be lost. For example, on the VAX
a message in the SER may be stored as a consecutive sequence of 8
. bit bytes, while on the C/78 the same message is stored as a
N sequence of 18 bit bytes.

o

LI IRIRL AL P 5y

x The MSL contains the functions to handle machine dependent
{ conversions to standard data representations. An example would
be a MSL procedure on the C/70 which coerces a 20-bit C/70
integer into a 16-bit standard SER integer; some of the dynamic
range of the C/70 integer is lost in the conversion. These Come
procedures define relationships between SER data structures and LT
5 machine- or language-specific data structures, and are inherently RENE

Aty
LA A N

non-portable across heterogeneous machines and/or language éﬂ*‘t
systems. }ﬁ¢}:
- R
N Portability of the MSL, Objective (3), helps reduce the cost N
% of the MSF implementation on the eight or more hosts in the ADM. RARNN
. Large portions of the MSL will be portable among all of the ADM RN
s hosts supporting the C language, with no changes to the MSL b e
source files. SANNR
’! 6.2.2 Message Structure Conventions
3
p

fl A-59

Report No. 5261 - Part A Bolt Beranek and Newman

6.2.2.1 Self-Description

A message is self-describing if it contains information
about its own structure, or about the structure or type of its
components. A convention for message structure is self-
describing, if every message which conforms to the convention
contains some self-descriptive information, A receiver can
depend upon the presence of this information, and need not rely
upon higher-level protocols for its inclusion.

For example, a receiver might expect a message containing a
timestamp; a timestamp might be represented either as a binary
integer of 32 or 64 bits, or as a fixed length ASCII string. 1If
messages contain no self-descriptive information, the receiver
must make prior arrangement with the sender to either: 1) place
exactly one of the possible formats (e.g., 32-bit binary) in
every message; or 2) indicate in each message which variety of
timestamp was included. 1In case (2) the question of self-
description recurs, over the representation of the indicator
field.

The Cronus conventions for message structure contain self-
descriptive information.

6.2.2.2 Language Integration

Conventions for message structure can be influenced by the
programming language compiler and machine architecture used to
implement them. Tight integration would be achieved by
developing a representation for a linguistic structure such as a
Pascal record or C structure and enforcing conformance by
compilers used; integration is achieved by packages which strive
for portability, and must be compiler~-, language~ and machine-
independent to a large degree.

Tight integration improves performance, because the compiler
can optimize reference to messages. The burden for defining the)
data types of message fields can be borne by the typing -1
facilities of the host. On the other hand, tight integration L
implies a strong dependence on a single language and compiler, o
omitting or building distinctly less well-integrated packages for Lol
other language environments.

The weakest form of integration implies reliance on a few

PN AT N I AL AT

Report No. 5261 - Part A Bolt Beranek and Newman

)
’

'
et e N B R
.|4" P "."A‘. . ..‘_",.1,. .

oo lanquage features that are present in many languages. For
example, the library of routines might use procedure calls as the .
only form of invocation, arrays of integers as the only data v
e structure, and only stack-oriented storage allocation at

? procedure entry time. A library which obeys these constraints
e could be easily implemented in Pascal, C, PL/1l, and most other o
~ block-structured languages. If portability is an important goal, A
S the implementation can be made portable across a range of
N compilers and host machines. Thus weak integration allows PN
'\{: structure conventions to be implemented uniformly on many Rk
’ systems, at reasonable cost. oo

R ¢
- @
N
.

o The Cronus environment requires us to refrain from using a i
X single language base. 1In that sense, the conventions employ weak :Q}
A integration. However, as a practical matter, we are attempting AN
e to limit our development activities to a single language to s
el enhance portability within the ADM and to minimize the effort in =
SR bringing up initial components.

LAARA
AN

wialsls
I' /
255

6.2.2.3 Data Type Support

~
2
'I
Lg%
[k
B

A language-based convention will generally permit messages o
to contain some or all of the standard types defined in the re
language. In the simplest case, a convention may consider RN
messages to be composed only of bit- or byte-strings. The R
responsibility for interpreting the message fields as integers, e
' character strings, etc., is left to higher-level software. A Y

somewhat more complex convention may define the representations SR
of basic data types (e.g., integers, booleans, and strings) in a o
language- or host-independent way. These data types may or may e
not include composite types (e.g., lists, records, arrays) which o
can be used to build complex message structures. -

.
2

PP

’
PR Syl BT
L] B

YA

.

£

T s

O Y ’I
> a0
N

» s 7 ¥
4 ‘.l‘"l“'h'
A
LA LA,

(. XN
;r.‘

A convention may explicitly acknowledge the ability of users e
to define new types, to be treated like the pre-defined types. ol
There may be an administrative authority responsible for O
guaranteeing the uniform interpretation of the types which evolve <3q
after the convention has been established. T

(N A .
Bt s
AL

wly N4 N

P PO S P L PG

.‘N - -
1@

55 “-

If the application domain is well understood, the convention N
may incorporate data types especially important to the domain. X
Control data might be a set of these conventional types, for N
example, Universal Identifiers, Transaction Identifiers, and NN
timestamps in various formats.

LI B N
P A A
"."."-" .

{

@ -
~-.:-
AN

:'-I'.':: A-61

.............
.................

o

o

Fo:.

f?} Report No. 5261 - Part A Bolt Beranek and Newman
Lo

,;fﬂ The issue of specification of data type representation is
MO separable from the issue of self-description. A convention which
AR specifies the representation of a 32-bit, two's complement

AN integer, for example, may or may not include a type tag on

) elements when they are embedded in a message structure.

The Cronus message structure conventions are layered; the
lower layer assumes only integer and sequence of integer data
types, and is thus highly portable. The upper layer defines a
group of data types (e.g, integers and strings) in terms of the
sequence of integer type, which can effectively handle host
heterogeneity but are not portable.

AL
30

4

Ll
CAEARN

e o

s a
PRI

£l

6.2.2.4 Performance

e,
. e n‘t'

v;n(Execution time costs associated with message structures can
‘jzi be roughly divided into three categories:
J‘\.F
i 1. Since messages are transmitted through the IPC facility,
{ the cost of transmission accepting the message into the IPC
.f@; facility, buffering, transmitting, receiving, buffering,
N and finally delivering the message to a client) is an
e increasing function of message size.
- 2. Message structures are composed and accessed by routines
' which implement the conventions the cost of these
" operations is a function of the complexity of the
;ﬁ conventions.
A 3. The semantics of an application will not mesh perfectly
I with the data typind or structural concepts provided by the
= convention; there is a cost (borne by the clients) for
- encoding higher-level concepts in those known to the
RN convention.
A
e If a convention is insufficiently rich in concept, (3) may be the
S dominant cost of use. If it is too complex, (2) may dominate.
" é The most desirable situation is one in which (1) dominates, and
L E furthermore most of the information content of messages is useful
o to the recipients.
.,
N
;;:,"; A-62
"

Nl
4, e
)

W~
o A
i Report No. 5261 - Part A Bolt Beranek and Newman o
- . .‘-' .
{ e
;; 6.2.3 The Cronus Message Structure Facility R
R Tt
N The Cronus MSF uses an external representation based on T
o key-value lists, where the key stored with each data value SO
indicates the meaning of the value. Both keys and values can vary e
- in length from one octet to many thousands, and are not :
% restricted in form. The data structure built by the MSL
, functions will have a unique value for each key present in the
T structure. Null values are possible, and often useful when the
;: presence or absence of an key is an adequate expression of

intent. The type and structure of each value field is encoded
. along with the value.

e The assumption that most messages encoded in the standard T
- external representation are small has an important consequence: R
Wi small messages have little substructure., Because the average key wN,
= or value is small and lacking in substructure the SER does not =

explicitly encode recursive data structures, for example, values ,f%&
which are themselves key-value lists. LS

,
P d

The case in which a value is a list of similar elements is R
common enough to warrant special attention. The MSL contains o
functions which treat the value part of a key-value pair as an =
array of fixed-sized elements. 3

v, i
. 0
Sttt N

-~y
-"

."

(Y

The MSF-to-client interface is defined by the functions e
(i.e., entry points) of the MSL. The functions are divided into RIS
two classes, host independent and host dependent. The host- RN
independent functions of the MSL rely on the language environment R
. to support simple data structures (integers and sequences of bl

integers); the host dependent functions provide conversions PR
? between complex, host dependent data structures (e.g., floating
: point quantities) and the SER.

N 4
Lt

. 6.2.4 The Standard External Representation

o The Standard External Representation defines a data oo
~ structure and a transmission order for the octets in the O
B structure. Knowledge of the representation is sufficient to S
@ construct and interpret data structures exchanged among system -
components through the Cronus local network. f

S A SER data structure is a sequence of octets, where each
T octet is considered as a small integer in the memory of a host.
. It begins with 4 octets of header information, followed by a list
.3 of key-value pairs, as shown in Figure 5.

”r-_-'
L it

e
]
4

T
2%

."S ‘! [
Dl

-
‘ hood :n "V:r

e s

FLAC L
]
.

/d

a s
XA

........ a? At Ta T e TR S e ta st g tacatay Tuigh g (N e BT NIRRT

Report No. 5261 - Part A Bolt Beranek and Newman

- - - -

Max Length |
(high order)

Max Length |
(low order) |

Length |
(high order) |

|
|
|
]
|
|
|
|
3 Length [
} (low order) |
|
/
I
|

4 Key-Value |
. Pair 1 /
. |
o Jmmm——m——————- |

i

| Key-Value |
/ Pair N /
| !

Figure 5 . The SER Data Structure

One or more pad octets may occur before the first key,
between a key and its value, or after the last value. Pad octets
have the bit pattern '06111111'. Pad octets are skipped over
when the message structure is parsed.

The Max Length field of a SER data structure represents an
integer in the :-ange 0..65535. The Max Length field is set by
the client when composing the message; the MSL routines will not
permit the length of the resultant structure to exceed Max
Length. The current length, in octets, of a SER data structure
is stored in the Length field (octets 2 and 3). The integer
values of the Max Length and Length fields are computed as
(high~order-octet)*256 + (low-~order-octet).

A key-value pair consists of a key specifier followed by a
value specifier (possibly separated by pad octets). Both

A-64

.......

3 L. R

E S . Lot .

PR S LSRR
T e

PAEAD)
e N,
o

P AT
I PR
«Tatale

LN
FA N
A e 2 h o,
AT AP
‘) i

. Report No. 5261 - Part A Bolt Beranek and Newman

octet or a maximum of 16,385 octets. The first octet of a
specifier designates one of four possible encodings, as a
function of the two high-order bits in the octet. Figure 6
illustrates the possibilities.

» specifiers have the same format, and each may be as short as one
"
v

To avoid ambiguities, it is necessary to restrict the way
arguments to MSL functions are encoded in the message. Assume

that a key or value argument of length N octets is to be inserted
in the message:

. 1. A one-octet key or value in the range 8..62 is encoded in a
Type @ specifier.

2, A two-octet key or value in the range 6..16,383 is encoded
o in a Type 1 specifier.

- 3. All other keys or values are encoded in Type 2 or 3
= specifiers, in N+l or N+2 octets, respectively.

These rules guarantee that the key or value and its length can be
y recovered from a SER structure unambiguously.

In this format, small integers are encoded in either one or
two octets, as a function of the required range. Short ASCII
strings are encoded with an overhead of one octet; large data
blocks (e.g., pages read from a remote disk) are encoded with an
overhead of two octets. The MSL functions select specifier types
automatically, on the basis of their arguments. When MSL
functions are used to build and parse message data structures,

the presence of four specifier formats in the SER is invisible to
the client.

» 5 *
. &'x"'f'. ~

v

6.2.5 Canonical Types

] A canonical type defines a standard representation for Y |
= values of a basic data type in a sequence o0f octets. The use of RS
- canonical types in message structures is by convention between

. communicating processes, but it is usually the case that the key
and/or value of a key-value pair to be represented as an element
in the value set of a canonical type.

* PR
. S
P S

4 A
320
:¥§ Report No. 5261 - Part A Bolt Beranek and Newman
{:
7
A
:5 Iype 8
V? Specifier is 1 octet long, the value is xxxxxx,
L in the range #..62:
i?ﬁ | BOxxxxxx |
-
S Type 1
ikf Specifier is 2 octets long, the value is
oy (xxxxxx*256) +yyyyyyyy, in the range 0..16,383:
3 | Blxxxxxx | yyyyyyyy | -
o Type 2 T
(Specifier is 1 to 64 octets long, xxxxxx is the -
s number of value octets after the first octet of
e the specifier:
2 e L B o
- | 10xxxxxx | dddddddd | o | dddddddd |
4 0 TTETESTTsSssssmssosmees / Y i
= Type 3 T
o Specifier is 2 to 16,385 octets long, hh
o (xxxxxx*256) +yyyyyyyy is the number of value AR
’ octets after the first two octets of the o

specifier:

—— - ——— G —_ G W - —— —— —— - e - . S - — -

? | 1lxxxxxx | yyyyyyyy | dddddadd | ... | dddddadd |
---------------------------------- / /---..___-__-_

:;; Figure 6 . Specifiers for Keys and Values a

AN o

.

N T A St Tt A edt Al S A S SR E AN AL S Y

Report No. 5261 - Part A Bolt Beranek and Newman

The octet can be viewed as the primitive canonical type. An
octet can be manipulated as an unsigned integer in the range
X P..255 on any host supporting the MSF. The remaining
- standardized canonical types, listed below, are represented in

one or more octets. e
- e
S SRR
] Abbrey Data Iype Length (Qctets) T
R BOOL Boolean 1 et
) vleél Unsigned 16 Bit Integer 2 o
ﬁ; Sl61 Signed 16 Bit Integer 2 S
?Q U321 Unsigned 32 Bit Integer 4 AR
V! s321 Signed 32 Bit Integer 4 o
f, ASC ASCII String 1l or more R
R BITS Bitstring 2 or more S
~ uID Universal Identifier 10 =

The boolean type encodes "true" as 1 and "false" as 0.

The integer types place the high-order bits of the integer ?}f~
representation in the octet with the smallest index. Signed e
integers are represented in two's complement. b

s ™ S ARy
. REACARS ".".".‘"

s . 0
L SR

Strings consist of a variable number of octets, each octet
representing an arbitrary character from the full ASCII character
set. An ASCII character is stored as a small integer in the
range #..127, i.e., the high-order bit of each ASC octet is zero.

g

T ¥
LA
Y

- A Bitstring of N bits (N>#) is represented by a sequence of -
- ((N-1)/8)+2 octets, consisting of a prefix octet followed by a AN
r. sequence of data octets. The prefix octet contains an integer in e
the range 1..8, specifying the number of valid data bits in the ST
last data octet.

'

v i il
26N LU
0

)

A Universal Identifier type is defined as a canonical type
o because UID's will occur frequently in messages, and it is el

convenient to develop standard functions to manipulate them. The RANRN
. functions will transform a UID from a host dependent e
representation to the canonical representation, and the reverse.

'r'
4
can

a e

L GAN

o .
. 5

e

Additional canonical types will be defined as the need
arises.

*s
)
.

-

)
> 4.

Report No. 5261 - Part A Bolt Beranek and Newman

6.3 Higher Levels of Interprocess Communication

The operation switch provides an object-oriented IPC
mechanism with the primitives InvokeOnHost, SendToHost, Send and
Receive, which operate on messages.

This section describes additional layers of the IPC
function, which go beyond simple message communication in a
number of important respects:

1. Asynchrony and demultiplexing: Processes may engage in
many simultaneous transactions. There is a need for
asynchronous message delivery and a facility that matches
incoming messages with the appropriate processing for
them.

2. Transactions among cooperating process: There are a
number of important message exchange paradigms used to
support the Cronus functionality.

3. Streams: The stream concept (a unidirectional or half-
duplex connection) is introduced.

4, Stream redirection. When a source and a sink process
both regard data flow to be taking place over a stream,
the effect is similar to a UNIX pipe. To make streams
more useful the logical binding of two processes to a
stream can be established by a third party process.

In the rest of this section we discuss facilities for
coordinating the use of message exchange and the development of a
stream concept. These discussions are very brief because the
design is currently being worked on. We include this tentative
discussion of the design to indicate its direction.

Receiving data is more complex than sending it, because 1) a
receiver may wait a long time before receiving data from a
particular source, and 2) it must be prepared to process data
from other sources in the meantime. Demultiplexing the incoming
message sequence is the responsibility of routines in the Process
Support Library. These routines are concerned with:

1. Demultiplexing: Data received from different origins is
sorted according to various criteria, so that the
receiving process can react properly.

2, Asynchronous receives: The receiver must be able to

A-68

. e t 1':‘
DAL e
.'.'l.' v-‘l.l"
s Lnns

nh? Report No. 5261 - Part A Bolt Beranek and Newman

- &
}
o,

[compute while waiting for IPC data. The computation may

i include processing other IPC data, or it may be unrelated L
S to the communication activity of the process. e
3. Buffering: 1Incoming data should be buffered so that the)

sender is not delayed. The receiving process should be
able to control the commitment of resources to buffering.

The demultiplexing facility uses well-specified key, value
pairs in the message structure to decide how an incoming message
is to be processed. 1In addition, the key, value pairs i

transmitted form the basis for a message oriented transaction S
protocol which organizes the cooperative behavior of multiple -
Cronus processes. T

F{i

6.3.1 Message Patterns

Messages which support remote cperations are of four types:
Request, Reply, Handoff, and InProgress. The simplest (and
probably most common) case involves one Request message generated s
by the invoker, and one Reply generated by an object manager in -
response. This case is diagramed in Figure 7.

A manager may delegate some or all of the responsibility for
performing an operation, and the communication protocol contains
the Handoff message type for this purpose. Figure 8 shows a
request sent to a manager process and then "handed-off" twice to Al
other manager processes before a reply is transmitted to the e
invoker. Any number of handoffs may occur between the request
and reply messages; the processes which handle the message may
transform the message data structures in arbitrary ways before
the next handoff or the final reply message is sent. Thus in the
the event that an operation is handed-off several times, the last - -4
manager process to receive the operation may "perform"™ it, or the
manager processes which handle the operation may share the
burden, each performing a specialized sub-operation.

Figure 8 also illustrates the InProgress message type.

During managerl's handling of the request, managerl may send an q
InProgress message to the original requestor. Any number of _
InProgress messages may be generated by manager processes -3

handling a request; they are all addressed to the process which S
initiated the Request message (8). e

(8). In Figure 8, managerl would address the InProgress message f.j

......

i :

b,y

- Report No. 5261 - Part A Bolt Beranek and Newman

S At Invoking Process At Manager Process i
. o)
:]
{ prepare parameters }
Invoke(targetUID,...)

---- Request Message —---->

Receive(invokerUID,targetUID,...)
{ perform the operation }
Send(invokerUID,...)

{---- Reply Message ~-—--

Receive (managerUID,...)
{ interpret reply }

Figure 7 . A Two Process Invocation (pseudo-code)

All of the messages in the operation protocol are marked as
belonging to the operation protocol, and each is marked with its
type--Request, Reply, Handoff, or InProgress. All messages
arising from one Request contain the same Cronus unique number
called the operation identifier; Messages arising from different
Request messages contain different operation identifiers. A
Request message also contains the operation name; a Handoff
message contains the operation name from the Request message, and
a "reply to" field; and a Reply message contains a standard reply
code. These are the minimal contents of the messages; they also
contain additional, operation-specific information.

We distinguish between a simple operation (or operation) and I,f

a compound operation. The preceding paragraphs describe the ©d
operation protocol as it applies to a simple operation. A simple o
operation has, by definition, a single operation name and T
operation ID. When a simple operation is handed off, it retains 9
to the source process of the Request message; manager2 would jﬁﬂ
address the InProgress message to the process named by the value ,ﬁ@
of a reply-to message field. DN
e

D

S

-

B N S S ‘ L

I I S A A R T P N T I O I A I S N D IO e SO L

" o A
:_':‘ N ‘;
: Report No. 5261 - Part A Bolt Beranek and Newman - fﬁ
[L/
3 s
At Invoking Process At Manager Processes LA
- .
o { prepare parameters } S
o Invoke (targetUID,...) e
---- Request Message ----> S
NN
managerl: Receive(invokerUID,targetUID,...) R
{ perform part of first subtask } Ny
¢=-=--- InProgress Message ---- RO
- Receive(managerlUID,...) . é;&l
> { interpret progress report } . Ry
8 . e
o { perform rest of firstsubtask } o
. Send (manager2UID,...) e
o -~-- Handoff Message ----> T
manager2: Receive(managerlUID,targetUID,...) Sifi
- { perform part of second subtask } L
N {---- InProgress Message ---- e
- Receive (manager2UID,...) . E:
- { interpret progress report } . L ;
) . “ =
e { perform rest of second subtask } S
i Send (manager3UID,...) R
A ---- Handoff Message ----> RN
~ -- _-_-_t\ -
:ﬁ manager3: Receive(manager2UID,targetUID,...) S
: { complete the operation } N
g Send(invokerUID,...) e
- {(==-—-- Reply Message ----
n; Receive(manager3UID,...)
- { interpret reply }
Figure 8 . A Multiple Process Invocation (pseudo-code)

WSy

<l'.l ,. .,l

[

P .

Report No. 5261 - Part A Bolt Beranek and Newman

its identity--that is to say, it retains the original operation
name and operation ID.

Any manager process, in the course of acting upon a Request
or Handoff message, may invoke one or more new (simple)
operations by sending Request messages. A compound operation is
the aggregate of all simple operations arising from or caused by
the invocation of one simple operation. Normally, all of the
"suboperations"™ will complete before the intiating simple
operation completes. A compound operation may be a simple
operation or it may be composed of many simple operations, in
general with different operation names. Each of the simple
operations has its own unique operation ID; if this were not the
case, a process that invoked several sub-operations in parallel
might be unable to associate replies with invocations.

It is desirable for a Cronus process to be able to query the
status of a compound operation. The process initiating a
compound operation has immediate knowledge only of the operation
ID of the initiating simple operation. By transmitting this ID
in the Request and Handoff messages of all simple operations it
causes, the managers acting on suboperations have enough
information to respond to a status query keyed to the initiating
ID.

6.3.2 Stream IPC

A Cronus stream is a uni-directional data channel between
two Cronus objects. It has a source object that produces data
and a sink object that consumes data. Streams will be used to
interconnect processes with files, devices and other processes.
A source or sink object may be a static object such as a file.
Ultimately, however, the static object is represented by a
process which is one end of the stream.

Data flows only from the source to the sink. However, the
implementation of a stream involves transmissions in both
directions: from source to sink containing data, and from the
sink to source containing flow control and synchronization
information. There are a variety of implementation techniques
which can be used to support the stream concept. These include
inter-host TCP connections, the exchange of multiple messages; or
even a locally supported mechanism such a UNIX pipe, when the
entities are co-located.

Sl

Tel ot et e tas e e e
coa e e e
. . R R
. - . R T IR I I
...... . N
& oo, o

VDALY '..A..ip,." [N

i Report No. 5261 - Part A Bolt Beranek and Newman Rty

The stream concept is supported by: 53?2"

l. Library routines in the PSL, which provide the stream
interface to system and application programs.

2. The object-operation protocol and the transmission of . PR
large messages. :;v"

3. A message stream protocol, implemented by the PSL library
routines,

. 4. Other existing host support software such as TCP
o connections.

a4 4G ‘l_'l et - AT

- .'-

LA

PP

e SRR
hiamc

“.‘.l‘.o.l.l.n.

LR A

~

n.' .
PN
L
“
... .

B R A A R A A AN uJ?iuhﬂﬁ?ﬂ“JVFSfﬁ?ﬁwﬁ:vﬁnf¢?5:¢iﬁfvfwﬁ
{
M
-

Report No., 5261 - Part A Bolt Beranek and Newman

7 Authentication, Access Control, and Security
7.1 Introduction

The goals of the Authentication and Access Control facility
are:

l. Prevention of unauthorized use of Cronus and unauthorized
access to DOS maintained data and services.

2, Preservation of the integrity of the system and its
components against intentional insertion of unauthorized
components.

3. Support for a uniform user view of access control to the
resources and functions provided by Cronus.

The design of the access control and authentication facility
assumes that systems in a Cronus cluster are all in a single
administrative domain. There are a three broad classes of hosts
within the cluster:

o] hosts dedicated entirely to Cronus system functions and
not user programmable;

o hosts supporting user applications using tamper-proof
multiple protection domains (trusted multi-access hosts);
and

o hosts supporting user applications without secure
multiple protection domains (single-user workstation
hosts) .

We assume all hosts supporting dedicated Cronus functions
and multiple user protection domains are physically secure from
tampering. Workstations may not be completely physically secure,
but have at least a tamper-proof ccmponent. At minimum, this
component is in the local network address insertion and reception
function. 1It could, however, be higher up in the workstation
system: in the virtual local network internet address insertion
and reception function; in the object system process-unique
identifier insertion and reception function; or even higher. 1In
this sense, all user-programmable hosts support multiple
protection domains (user and system), although in the limiting
case, the "system" domain may simply be a piece of network
interface hardware. Since we are not aware of any workstation
systems meeting this requirement, we assume future product

Report No. 5261 - Part A Bolt Beranek and Newman

packaging changes., There seem to be two viable positions to take
regarding the assumptions on these changes.

1. Assume only an absolute minimum, that a single low level
*address" can be protected.

2. Allow the set of protected functions to grow as needed to
conveniently interface the workstation in a manner as
similar as possible to multi-access systems.

The extreme solution to the second approach could be an access
machine for each workstation, although other solutions are also
possible. For our current work we will assume the second
approach, planning only for an arguably insecure implementation
directly within the workstation.

The network (cable) itself may also not be totally
physically secure. While parts of it can be expected to be
secure (e.g. within a secure machine room), other parts can be
expected to be exposed to unauthorized connection.

7.2 The Cronus Access Control Concept
7.2.1 Decomposition of the Access Control Problem

The basis of access control in Cronus is the ability of
Cronus to reliably deliver the address of a sender of a message
(or invoker of an operation) to the receiver of the message. The
Cronus communication subsystem is implemented so that this is
true. That is:

for IP and Virtual Local Network:

If the sender is within the Cronus cluster, the
internet host address of the sender is reliably
delivered to the receiver. If the sender is not within
the cluster, a non-cluster internet host address is
delivered to the receiver, which can be interpreted by
the receiver as indication that the authenticity of the
sender's address might be suspect.

for the Cronus IPC/object system:

The UID of the sending or invoking process is reliably
delivered to the recipient of the message.

Y ’.' 0 ."
T 5l

Report No. 5261 - Part A Bolt Beranek and Newman

The recipient of a request can decide on the basis of the
sender's identity whether or not to perform an operation
requested,

For this to be a useful basis for access control, a means
for reliably associating some authorization with senders'
addresses and process UIDs is required.

One approach is to make static bindings between
authorizations and addresses or UIDs. These bindings would be
"well~known", such that when a process receives a request from
the process with UID_Y it knows that the process is acting under
the Z_Authority. This is method is used in the ARPANET TELNET
and FTP protocols; users assume that the process for sockets one
and three under the authority of the host administration and can
be trusted with their passwords. Static bindings are too
restrictive to be the sole mechanism in a system like Cronus,

although a few static bindings are required for the access
control mechanism to work (see Section 7.6).

Dynamic binding is useful when authorities are not all known
at system creation time, and when processes are dynamically
created. The system must not only support mechanisms to
dynamically establish the binding between a process and an
authority, but also to dynamically determine the binding from
some system entity in a trustworthy manner.

Most Cronus activity is the result of requests initiated by
users of the system. Human users are represented by an
abstraction called a "principal". 1If we extend the notion of a
principal to include elements of the system, such as object
managers, all activity in the system can be thought of as
initiated by principals. System elements which are principals
are called "system principals". Each Cronus principal (human or
system entity) has a unique identifier. Different system
principals have different authorities. For example the primal
file manager and the printer service are Cronus system
principals, neither of which need be authorized for all of the
objects and operations accessible to the other.

Access control can be thought of as consisting of the
following steps:

1. 1Identification, Determine the identity of the principal
that is requesting a particular operation,

2. Authorization. Determine whether the principal has been
authorized to perform the operation.

S I A
. vlat e e PR
PR ESREYES E Ty T e S A AL

...' . .v'-. et .
PR R
o

'n-'.'.‘. - - - -
PR PRSP N

.- "-{."‘I‘

G

.

s R 2 o §°
IR RS ARAT T

Report No. 5261 - Part A Bolt Beranek and Newman

For example, when an object manager must decide whether to
perform an operation, it must know the identity of the principal
that is requesting the operation (Identification) and the rights

the principal may have with respect to the operation
(Authorization).

7.2.2 Authorization

Cronus uses access control lists to support authorization.
The access control list (ACL), which is part of the object
descriptor, "protects" a particular action. 1In the simplest
case, it is a list of the principals who have authorization to
perform the action. When a principal attempts an operation, the
list is checked for the principal; if the principal is present

the authority to perform the operation has been verified and the
operation may occur.

In Cronus this simple idea is extended in two ways:

1. Group identifiers may appear on an ACL, soO an entire
group of principals can be authorized as a unit, or have
its authorization revoked as a unit.

2. A set of rights is associated with each identifier on an
ACL. A single list can selectively control a principal's
or a group's access to an object for which several
operations are defined, such as a file. There is a right
corresponding to each possible operation.

An ACL is a list which contains elements of the form:
(id, rights)
where "id" is either a principal (PID) or a group identifier
(GID) , and "rights" define the principal's or group's
authorization with respect to the object the ACL protects. The

allowable rights for a particular ACL are dependent upon the kind
of object being protected.

Users log into Cronus as principals by supplying the
appropriate name and password(9). A system component called the

(9). See section 13.3 for a more complete description of the
login and session initiation scenarios.

A=-77

ﬁ‘[

iﬁjﬁ Report No. 5261 - Part A Bolt Beranek and Newman

A

L

‘:iy Authentication Manager maintains records of all principals and

AN groups. Collectively, these records form a User Data Base (UDB).

e At login time the Authentication Manager expands the membership

SO of a user-specified subset of the access control groups which he

- is a member. This is a transitive closure computation on the

-) specified list of group identifiers in the user's record. The
1') user's own id, PID, is added to the result of the expansion. The

resulting set of principals is called the access group set (AGS)
for the process:(18)

AGS = {PID} U Show_Group_Membership Expanded (GID)
for the default GIDs in the PID record.

The AGS is used in access control checks as follows. When
an action protected by an ACL is attempted, the ACL is compared
with the principal's AGS. If an entry of the form:

(1D, (..., Right, ...))
where

ID is in AGS, and
Right is required to perform the action

is found on the ACL, the principal's authorization is verified
and the action may be performed.

During a session, a user can remove identities from the
current AGS. Group identities may be added, provided the user is
ey a member of the added group. This is accomplished by operations
e invoked on the Authentication Manager, which causes the update of
S the current process AGS list. These operations affect a single
. process only.

e 7.2.3 1Identification in Cronus
There are two related identification problems:

Il. At the start of each session, the identity of the user
must be established.

(1) The basic ideas associated with Access Group Sets have been
adapted from similar work at Carnegie Mellon University in the O
Central File System project.

.....

A4

fi Report No. 5261 - Part A Bolt Beranek and Newman

4.'.

1:

-l I2. Processes must be able to ascertain the identity of the

B principal corresponding to the processes with which

e they interact.

L& The solution to both problems lies in a set of mechanisms that

. bind processes with principalaids and group identifiers. These

- mechanisms depend upon the ability of the communication system to

- deliver the UID of a sending process to the receiver of a message

SN reliably.

ﬂ} It is useful to restate these problems into the following

; terms:

-

~ 1. A binding must be established between a process and an

. AGS;

S

{l 2, There must be a means for a process Pl to determine the

i binding between another process P2 and its AGS.

%)

N

Y

qﬂ When a user approaches Cronus to start a session a process (Pl)

T is allocated(ll). Pl cannot be bound to U (the user's principal

{ identifier) until Cronus establishes the connection via password

- authentication., Before that happens, Pl is bound to a well-known

3{ principal, "NotLoggedIn®", which has minimal authorization. One .

- task of the login procedure is to change the binding of Pl from :

oo NotLoggedIn to U. .
s s
- The binding between a principal identity and a process is N_.w.i
; established by the Authenticate As operation. The user engages EOOIE

in an authentication dialogue with Cronus, supplying a name and A
password which is checked against the UDB. If the authentication AN
dialogue succeeds, the AGS for U is computed and a binding is e
established between Pl and U. A record of the binding

et
P
11 P WL Sy 3

Pl, U, AGS

oo is maintained by the process manager for the authenticated
s process, to be used throughout the process lifetime. The
- identity of the user has been established, completing problem Il.

. (11) . Cronus actually uses a more complex process structure to
e support a user session, as indicated in section 13.3. However,
N the following discussion is insensitive to these details, so we
o use this simple model in our explanation,

~

o
o A-79

......
.........
.......

.
«
.
A
*
'
-
B
.
.
1
L
.
'
:
i
.
.
f
.
L
“
.
o
a,
LT el
:‘,(
R .
s
A

......

B AR A R A A A A A - A CAENCA AL OO AR AL Al I ORI G T S G A i A gre SUL et Aol ol

A N L Y a

Report No. 5261 - Part A Bolt Beranek and Newman

Throughout the course of U's session, Pl and other processes
acting on behalf of U attempt actions which require authorization
verification by the processes that perform the actions. This is
problem I2. Consider a situation in which Pl has requested

another process (Sl) to perform some action (A), shown in Figure

-—— - —— —— — - —-—

Invoke (Authorization_Binding_ _Of, Pl)
'.....Ql........."...'l'l.'..'.....‘.'l.....l...ll..‘.

A .

—— - Y — A" Gon -

Descriptor cosesee Manager

[
Process |
|
|

O~ — o — - ——— - — -~ -

' PI'U,AGSI '<ono-cc

- v - —— - —

LI B R A S A A B A S B S R B S B I R A B A B A IR B S B R IR S I B R B B N R NN A B A A

Figure 9 . Retrieving Access Control Data

In order to perform an access control check, £1 needs to
determine the binding of Pl. The identity of Pl is known to Sl
because Pl's UID was delivered along with the operation
invocation that requests A. §1 can obtain the binding of Pl by
invoking the Authorization_Binding_Of. operation:

Authorization_Binding_0Of(Pl) -> U, AGS.
Authorization_Binding_Of causes a message to be sent from Sl to

the manager for process Pl, which returns the bindings for the
process to Sl.

A-80

Semdogobontn i ol od ol ol e et s o ns

Report No. 5261 - Part A Bolt Beranek and Newman

The login sequence establishes a binding between user (U)

. . and an "initial"™ process (Pl). Bindings are established for

~T other processes created during a user session through

o inheritance. During a user session, processes created by an
authenticated process inherit both the principal identity and a
specifiable subset of the current AGS of the initiating process.
Object managers attain their principal identities and access
group sets as part of the system initialization phase.

7.3 Authentication Manager

r The Authentication Manager defines and maintainc two types

S of abstract Cronus objects: CT_Principal and CT_Group. Like

o other system objects, the CT_Principal and CT_Group identifier
objects have symbolic names for convenient human access.
Principals are symbolically named from a private namespace
maintained by the Authentication Service, which ensures their
uniqueness across the entire system. Symbolic group identifiers
can be placed anywhere in the Cronus catalog, at the convenience
of the creating user.

Operations on objects of type CT_Principal and of type
e CT_Group are controlled by access control lists. By convention,
. any legitimate principal can create a new CT_Group object, but
S only administratively authorized principals can create a new
- principal. When the system is initialized, it contains at least
) one pre-defined principal, which is authorized to create other
principals.

N The next phase of Cronus will support a redundant e
: Authentication Manager to ensure a survivable authentication R
capability.]

i *o%
L 7.4 Objects Related to Authorization |

:ij The object of type CT_Authentication_Data is the user data
e base consisting of the records for system users and for groups of
ﬂbf principals which have been defined in the system.

!
]
,‘ ‘.1.

The object of type CT_Principal is the permanent data base
entry that Cronus maintains for each legitimate user. It is the
repository for such user-specific data as default priority and
other parameters associated with resource management; default
modes of behavior (e.g. default working directory); and

i

9

]

SN 4

'
P
1
ok

Lo e e,
- P AT
. R R AR A ST
. D . . .
PR '-. o T
e . . L
R ala s lels v 0 e ! [

P s
L SN

'. _'; \;'I') ‘Q:I

I. .

ta s

o« w ¥y .“ v l1~1. t -T-‘ .W h—‘ » '.-‘ .—' . .-‘ .‘

A" iiad.
_____________ DA i B e A W M B A A L A A P e e A eeba s et

Report No. 5261 - Part A Bolt Beranek and Newman

authorization data. It is expected that new kinds of data will
be added to the principal objects from time to time.

A CT_Principal object can be expected to contain the
following data:

Principal unique-identifier (PID)
Symbolic name of principal
Access control list

Encrypted password -
Direct group memberships '
Direct group memberships to be expanded on Login
Range of priority service authorized

Default priority

Name of default initial subsystem)
Name of home directory for the principal ... (other o
user-specific data) @

co0o0o00000O0O

The priority data will be used in resource management
functions. The default subsystem is the program automatically
invoked following login. A home directory is a directory .
assigned to the principal that serves as the initial current N)
directory for catalog accesses; in particular, it contains
additional user initialization data.

Groups (objects of type CT_Group) gather a number of R
identities for purposes of collectively granting them rights to A
objects and operations. Any user can create a new group, and J
place any other principal or group in it. This group can then be -
placed on an ACL. The access control list for the group object o
controls modification of the group definition. i

A CT_Group object contains at least the following data: fﬂ;

0 GID for the group
o Name of the group T
o] GIDs of the groups of which the group is directly a SN
member <
o IDs of principals (PIDs) and groups (GIDs) that are "
direct members of the group .-
There are a few special group identifiers. One of these 'f;
represents the set of principal identifiers (that is, it is an T
all users group) without actually enumerating them anywhere. o
-.

A-82

iT!
¥ o
T, S T T T R P Tt o ST T S SR

Report No. 5261 - Part A Bol. Beranek and Newman
This group identifier is automatically appended to every AGS f:ci
computation. Another special group represents a "wheel" or el

"superuser" capability. Admission to this group is carefully ;fﬁ:”
controlled. A server with principal identifier which is a member R
of the supervisor group can be used to support a capability based @
manager for exporting rights from the cluster.

As a complement to All Users group, there is an entry which

gives an identity access to all objects in the manager process %if
domain., For example, a file manager identity might be given T
access to all file objects (present and future). This is useful o
in handling peer managers, which would be designated by a system R
principal identifier specific to the function they perform. ;i;;.
SO
7.5 Operations on Authorization Related Objects %%ﬁé
7.5.1 Operations on the Object of type CT_Authentication_Data ,f?
The following operations are used to create and locate the ‘hﬂ
objects of type CT_Principal and CT_Group which comprise the =
authentication data base: ;1‘

Create_Principal (...initial parameters...) =-> new e
principal_UID e

When an object of type CT_principal is created, the L
creating principal is given all rights to the created o
object's operations. The new principal added to the jglptna
access control list has Set_User_Parameters permission, S
as well as Show_System_Parameters and B

Show_User _Parameters permissions. "

Lookup_Principal (principal symbolic name) -> Principal_UID

Convert the symbolic name representation of a principal S
into its unique identifier. SRR
Create_group (... initial set of member UIDS) =-> new group o
U1D I
. o , : . L

The creating principal is given all rights to the new

group. Anyone can create new groups.
The following operation is used during login to establish
the binding of the the user to the principal UID:

o

D-A139 983 CRONUS A DISTRIBUTED OPERATING SVSTEH(U) BOLT BERRNEK 2/3
AND NEWMAN INC CAMBRIDGE MR R SCHANTZ DEC 8
BBN-5261 RADC-TR-83-255 F30602-81-C- 9132

UNCLASSIFIED

MRS ARG A R hEpl o LAk DRV L CLEAICHCUEALE CNLEIIOLIYCNES S A, (LN MRS U S Sty Ly el g W A & p

~

l‘.

I -

OO

‘ o

| 0 &K |

““égl-unz_z |

} _— u ks "= j
TR =

&~

I

s

I 2.

N
ol

Ay

g
R
2 8%s 4

o

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS - 1963~ A

ol

&

.

L)
boe

TR AR

4

)

QTSNS

' 4

:- . '.. L r..r.:—
’ .:'.n MY 1Y

e

.
..............

S Report No. 5261 - Part A Bolt Beranek and Newman
!
\ -
2- Authenticate_As (user_name, encrypted password) ->
- (principal _UID, list of user specific keys and values for
;: UDB data)
. Execution of this operation is controlled by the
password for the user entry. If successful,
' Authenticate_As computes the current AGS, based on the o
; default expansion list for the principal. The DIRNS
. principal_UID and the AGS for the invoking process are i
. replaced by the new principal UID and the current AGS. T
The Autheticate_As operation can be performed by any &ij
process at any time. The principal _UID is returned to =L |
;: the invoking process. e
-\ .
v .
o The following operations allow processes to control the N
-~ identities applicable to an authenticated process. They effect
' only a single process, which may be either the invoking process e
or another process authenticated to the same principal. :;1;’
SR
= Enable_Access_Group (list of gqroup_UIDS, process_UID) => ??;3
- status AN
C. N . :
; Expanded the group_UID and add the result to the AGS of 'fff
y the named process, provided the principal is already a s
o member of the groups named. ﬁqﬁ:
<) \.~ ‘_:-P
\f Disable_Access_Group (list of group_UID, process_ID) => 3§ﬁi
o status A
- . ,‘ hi“:.-
] Remove the set of groups of the expanded group_UID (if '
-4 they are present) from the AGS of the process named by
N process_1ID.
N
= 7.5.2 Operations on Objects of type CT_Principal
{L The following operations maintain and interrogate the
. objects of type CT_Principal:
Q":
'g Delete_Principal (principal_UID) -> reply code
< L3 .

Permanently remove the object identified by
- principal _UID. This may be done only by system L
“t administrators placed on the access control list when the A
- object was created. RO

Report No. 5261 - Part A Bolt Beranek and Newman ffﬁﬁj
ke
SRS
Show_Group_Memberships (principal UID) -> list of group_UIDs ;lﬂﬁ
RS
Display the group UIDs for all groups of which this e
principal is a direct member, noting which groups are in N
the default expansion list for the principal. e
.~ :_‘ ..
Add_to_Default_Group_Expansion_List (principal_UID, list of R
group_UID) -> reply code ¢ﬁ35~
\.:_‘f_:.
Delete_from_Default_Group_Expansion_List (principal UID list 32{}1
of group UID) ~-> reply code b
Change_Password (principal UID, new password) -> reply code E%?f
The principal entry in the user data base contains user- fj;}
specific fields., To limit the number of distinct operations and e
permissions needed to handle those fields, we specify two pairs ;Qs:
of operations, one to Show and Set parameters which are under aj};
administrative control (e.g. allowable user priority range, disk RN
quota,) and the other to Show and Set user controllable RS
parameters (e.g. default priority, default home directory). NN
Show_System_Parametere (principal UID) -> (parameter name, P
value pair list) ?3<’
.-\r:"-.-
Show_User_Parameters (principal_UID) -> (parameter name, }ﬁ;:
value list) ﬁtffi
Set_System_Parameters (principal UID) (parameter name, value :;__‘
list) -> reply code NG
AR,
Set_User_Parameters (principal UID), (parameter name, value ﬁxfk
list) -> reply code o
C})
7.5.3 Operations on Objects of type CT_Group :?iff
The following operations are used to inspect and maintain Eii’
the group identifier objects: ORI
\‘_\:_\‘
Delete_Group (group_UID) =-> reply code tj@b
Y
Add_to_Group (group_UID, list of new member _ UIDS) -> reply }?3}
code -
N N

A-85

Report No. 5261 - Part A Bolt Beranek and Newman

}I Remove_from_Group (group_UID, list of member UIDS to remove)

N => reply code

j: Show_Group_Members (group_UID) -> (list of direct group

23 member UIDS)

. Show_Group_Members_Expanded (group_UID) =-> (list of direct

fgf and indirect group member_UIDS)
:qﬂ Show_Group_Membership (group_UID) =-> (list of groups of which ?ifi
. this group is an direct member e
D8 Show_Group_Membership_Expanded (group_UID) =-> (list of groups 2{!,
ﬁ{ of which this group is a direct or indirect member) AN
2% Do
Q"{-' -E,E:::;-:'
2% 7.5.4 Operations on Objects of Other Types &i'
"W RS
-" ., - --' L)
.ig The following operations are the show and modify operation A
o that apply to the access control lists for all the object types. .
4 These operations are themselves controlled by the access control ~nd
; list for the object being interrogated. S
. e O
. Show_Access_Control_List (object_UID) -> list of ACL entries ;j;q
)._:, N
b Add_to_Access_Control_List (object_UID, list of ACL entries) 'E;_
.. -> reply code LSS
v “.-:: '~
o Remove_from_Acess_Control_List (object_UID, list of ACL .
o entries) -> reply code S
A5 \i\:
b - YA
A% When an object is created, the default access control list RSN

. gives the creating principal all rights to it. Additional access A
— control list entries can be entered by the creating agent using . Tely]
o the access control list modification operations. RIDAR
L :‘._" T
S \‘_ﬂ.:_\
o 7.5.5 Operation of the Access Control Authorization Function e
oy o1
0 Cronus access control checks the current identity of the -~
ot accessing agent against access control lists maintained by the Iﬁi
N service provider. A process is authenticated in a way which e
e binds the process UID to a set of external identities defining NN
3 the authorizations of the process. These identities, the AGS, T
o -
oo R
. A-86 A,
2 Wl

3 Dk A WA M A AACAC AT AL SEE AL AL A LR SLE MR S A
o

',‘\

‘s

" L]

3 Report No. 5261 - Part A Bolt Beranek and Newman
?\

}; are available to any service-providing process. This section

s discusses the authorization function which is part of the service
- provider.

= In general, the access control steps within a resource

. manager proceed as follows:
‘i: 1. The request is parsed to determine the originating

by process UID and the operation/object requested. The
- - process_UID is trusted because it is added to the message

by the operation switch. Universal public priviiege for
, the operation to all objects managed by the manager is
o first checked, to see if the specific access check is

- needed.

Lo 2. K manager-based cache of process/object authorization

. pairs for the process_UID is checked for a valid current
entry.

o 3. 1If there is no corresponding cache entry, the accessing

agent's AGS is obtained. This data is also cached but on
a per~host basis by the AGS cache manager. 1If present on

{

. the host, this cache manager provides a high performance
. interface to the Authentication_Bindings _Of function.
& There is a broadcast-based protocol for alterting AGS
e cache managers to entries that should be purged. If an
N AGS cache manager does not run on a host, managers
3 execute the Authentication_Bindings_Of operation
N, directly, and the AGS is not cached.

4. The access control software computes a new

- process_UID/object authorization entry using the AGS and
it the access control list maintained with the protected

N object/operation. The process_UID authorization entry is
o then put in the manager cache.

o S. The process UID object authorization is used to verify

¥ permission. If acthorized, the operation is passed on to
. the operation code. If unauthorized, the request is

ﬁj rejected, and any cache entry is deleted.

“

The permission authorization function is accomplished by a
set of routines and data structures that we call the "gatekeeper"
o because of its role as protector of the objects/operations.
1 Gatekeeper functions can be invoked as part of the procedures for
receipt of a message, or called directly from the host process.

Y A-87

N Y.V W, At AT W, WL T, T W T AT e V. O V. \,I-..q_.\‘~\\\. TR Y (At TN, DR 2din ANl

by 4

\: .

R

\:':

}Eg Report No. 5261 -~ Part A Bolt Beranek and Newman

\

\T.\

:ﬁ Access control can be applied to operations on the object

N set supported by the receiving manager process, or on operations

5& defined by the receiving service. There is a fixed maximum

<, number of operations which can be access controlled by the
gatekeeper software (currently 32) for any object. These

7 operations are represented as positions in a bit vector

v associated with both the identity it authorizes (principal

3 identifier or group identifier) and the object it controls.

be

J‘:-'

) 7.6 Host Registration

2o

7*: The lack of physical security for various parts of the

-é- system presents problems for the access control subsystem. Since

. the network cable may be accessible to tampering, the network
might be tapped. An outsider could then inject or inspect

N packets under an assumed network address. A workstation might

N pose as the site of a trusted manager. We can use administrative

;; authorization to alleviate these problems.

—

,b{ Encryption of all local network traffic at the communication

R level is a form of authorization. It can remove the threat of

s tapping for either listening for or insertion of packets.

ﬁj Providing the host with the encryption/decryption key is

:i administrative authorization to participate in the Cronus

3. cluster. If a host can communicate at all, it can be considered

Py an authorized host. Because encryption/decryption is isolated in

o the communication interface, it can be added transparently at any
time. While communication encryption can be thought of as part

}. of the Cronus design, it will not be part of the initial

N implementation.

Cal

y 3]
«

Since workstations may be treated specially for some access
control decisions, system configuration registry could be the
source of such identification. 1In addition, the undesirability
of tightly controlling responses to broadcast Locate operations,
makes the registry useful in determining the authenticity of the
respondee. A configuration registry enumerates all of the
authorized system hosts, and the system services (Cronus
functions) which they have been authorized to run.

L4

v

One secure way to make the registry service available is to
support it on one (or more) well-known Cronus hosts (i.e. hosts
at a well-known internet addresses, say host No. 1, ...). The
configuration data can then be obtained with an Invoke On Host to

A-88

-
:::::
Z,{':: Report No. 5261 - Part A Bolt Beranek and Newman :
A é'_;;_,.
I:«-P' the well-known hosts using the logical name for the service(l2). :ﬁ::i
N The cluster configuration service would support the following O
N functions: R
-".\ .-.-.::
WS Show_Configuration_Hosts (modifier or all) =-> configuration '.f.;
e data for all hosts or only for those indicated by 7T
A modifier i
2 o
e Set_Configuration_Hosts (mpdifier, data) -> reply code LSS
S modifier indicates neyw configuration, add, delete, etc. _.‘5_-”
.,f- Sstandard access controls apply, with Show_Configuration_Hosts \
5N being universally allowed, while Set_Configuration_Hosts limited e
o to a system administration group. i
N L
'S ‘_ E
A i
o3 RO
-._“.: -,
\::‘. '\."::
‘t'..d‘ :::.:
o e
i 3
.‘.;::.
o
X
R
S A .
~ B
-“‘Q.‘
e
Do
DY
—~ :
(12) . Since this function is often used to determine the :l:Z:i'f.
veracity of responses to the Locate operations, it can not safely NN
use Locate to find out where configuration.managers are running. g.:-_’f
s
A-89
e A
i ..:- ..\
o o
::::' '::';:‘.:‘ » --':?ii.:::'.;"‘:"::-:"::'.::::-::_'_ AN ~.':-'.':.:':'.':':':::':-.':‘C':s:.':"\'_ "-\':"-‘:\':'.':‘-‘:-:::-.::\':\':\':\': (:.':\‘_'-.:_\'(:.:,a:_‘f_\:_:.:.-.',
.., Ca %,. ’ .'._’ '(.

.......

‘{ .‘l f‘
'fS('I' i ..".- D

(R]
'l/

Report No. 5261 - Part A Bolt Beranek and Newman

N
N
ArY)
-
.'_‘.

'y
(s

180N 8 Cronus Primal File System
Y 8.1 Cronus Primal Files

Cronus supports a number of different kinds of files,
- including:

:3 o Primal files.
'.
{3 The primal file is the most basic kind of Cronus file.

Other kinds of Cronus files are implemented from primal
e files. A primal file is stored entirely within a single
-ﬁ: host, and is bound to the host.

.

0 Migratory files.

A migratory file can be moved from host to host. A
migratory file is implemented by one or more primal
files. Each primal file used to implement a migratory
file contains all of the file data.

I\ ;‘?’
e Y 4

R R
- o Dispersed files. "
A dispersed file is implemented by one or more primal ‘i_x
o files. A dispersed file is one whose contents may be TR
o distributed over more than one host. Each of the primal e
" files used to implement a dispersed file contains part of ?;ni
-4 the contents. N
" _-:-.A-"
The initial implementation supports only primal files, which e
o are implemented upon underlying single-host file systems.)
K % ! * " .‘
k", v <4 '..
- Primal files are Cronus objects. They have unique PR
& identifiers (UIDs), and may be given symbolic names. There is a e
' Cronus object type CT_Primal_File. Iﬁgi_
Primal files cannot be moyed from one host to another; the fﬁf'
primal file system is partitioned among hosts that store primal Taa
files. The HostNumber component of the UID for a primal file PN

alvays specifies the host on which the file is stored. A copy of ORI
a primal file can be created on another host, and the original -

can be deleted. The copy is a different primal file with a Cata
different UID; it just happens to contain the same data as the L
original file. i

Like other Cronus objects, primal files are accessible to \Léi
processes by means of the interprocess communication and RN
operation switch (Section 6). There is a Primal File Manager T

Iemanis
oy
OO
A-90 AR
- ‘\--.- q.
N
hA O

,"‘r?‘."itnxiq.: KAAAR 1 20NN T-T 7'13 ERANAAXD

Report No. 5261 - Part A Bolt Beranek and Newman

process on each host that stores part of the primal file system.
A client process accesses a primal file by invoking an operation
on the file, in which the UID for the file and the operation to

be performed on the file are specified.

The Primal File Manager that maintains a primal file also
defines a mapping between the UID for the primal file and the
information required to manage the file. The collection of
information necessary to manage a primal file is called its
descriptor. The file descriptor includes:

UID of the creator;

Date and time of creation;

Date and time of last write;

Access control list (ACL) for the file:

Information necessary to find the file data on
the storage media;

Current size of the file;

Other information (to be specified as needed)

Most of the operations provided by conventional file systems
(create, read, write, etc.) are implemented for Cronus primal
files. The design is discussed in terms of the normal life cycle
of a primal file which includes:

. The file is created.

. Data in the file may be read or written by a client.

. Information in the file descriptor may be read or written
by a client.

. The right to access the file may be granted to or revoked
from other users.

. The file may be deleted.

W -~ W N -

File creation involves: the generation of a UID; the
creation and initialization of a descriptor for the file; the
binding of the UID and the file descriptor in the Primal File UID
Table. Until data is written into the file, the file is empty.
When a primal file is created by a Primal File Manager, it is
created on that manager's host.

There is an issue reqarding whether it should be necessary
to open a primal file before reading or writing file data. One
reason for "open" and "close® is to provide for reader-writer
synchronization; another is optimization of read/write
operations. The disadvantage is that open/close add complexity

A-91

..................
....................................

............................

v

>

e v
Y
s
B

LN e]
)
MR R)

"". a
X,

Report No. 5261 - Part A Bolt Beranek and Newman

to the Primal File Manager because it must maintain state
information for open files and deal with the problem of files
opened which are never explicitly closed (e.g., because the
client's host has crashed). Furthermore, if we require open and
close, additional operations must be invoked on the file even
when the read or write is for a small amount of data.

The Primal File Manager supports access to files without
open and provides an open/close facility for clients that need
it. A read or write without open is called a "free read" or a
"free write". The client may then chose whether the additional
overhead of opening and closing the file is worthwhile. For
example, if we wish to write a simple log message when a process
is initiated, we would probably chose the free write. If, on the
other hand, we were copying a file, we would probably chose to
open the files, incurring the overhead of initiation once, and
gaining further system support for synchronization and data
integrity. A client process may read or write data in a primal
file (subject to authorization considerations) without opening
it, unless another process has opened the file in such a way that
free reads and writes are forbidden.

Free reads and writes are synchronized in the sense that
multiple reads and writes are serializable. This means that the
File Manager will, in effect, perform each read or write
operation in its entirety before performing another operation.

When a file is opened, two parameters specify the access
state requested. One specifies either Read or ReadWrite access.
The second specifies the type of reader-writer synchronization
desired. There are two types of synchronization supported:
"frozen" which permits either N readers or a single writer; and
"thawed” which permits any number of simultaneous writers and
readers. When a file is opened with "thawed" access, readers of
the file see updates made by writers of the file.

Thus, the access states defined for a file are:

free;

frozen read open;
frozen readwrite open;
thawed open;

read in progress;
write in progress.

A file may be opened so long as the access state requested
does not conflict with the current access state of the file.

A-92

. .
''''''''''''

Report No. 5261 - Part A Bolt Beranek and Newman

Table 2 defines the compatibility of the access states with one
another, and with read and write operations invoked by a client
without previously opening the file. An OK for an (OPERATION,
ACCESS STATE) entry in the table means that a client process can
perform the operation on a file when the file is in the
corresponding access state; a NO entry means that the operation
will fail when the file is in the corresponding state; a DELAY
operation means that the operation will be delayed until the
operation in progress (and any others that may be queued) are
completed.

ACCESS STATE

free frozen frozen thawed read in vwrite in
read readwrite progress progress

OPERATION
frozen
read OK OK NO NO OK DELAY
open
frozen
readwrite oK NO NO NO DELAY DELAY
open
thawed OK NO NO OK DELAY DELAY
open
free OK OK NO OR OK DELAY
read
free OK NO NO OK DELAY DELAY
write

Table 2. Access State Compatibility

The data in a primal file as a sequence of bytes, numbered
from 8 to N. The read operation specifies the first byte to be
read and the number of bytes to be read. The write operation
specifies the byte position of the first byte to be written and N
bytes of data to be written.

In ~rder * , support data system recovery, data that is
written » a / le that has been opened for (ReadWrite, Frozen)
access doe~ not become part of the permanent file data until the
file is closed. It is possible to close a file opened for

A-93

L S

P LA

2t
PR Y .

L |

fl

“y
vy l':. [N

‘r
¢ ¢

Sy ‘e

,.‘..
& ey
o

5.9
l,l /A ’
5 %

.f{'f." »

:
»

T BN]
ARy
2,8,

rr
R £ A
o

oAb vy

s

‘l. I ‘.v 4
q"‘c.,o"’l_' [
AN

oy 4
!
.

.

- 5
'y .

TN N

["' Ps

'y L)
I‘-

o'{ & ‘e 4
.b‘f&
AR

[}
»
.
-

Y.

F 1o

Report No. 5261 - Part A Bolt Beranek and Newman

(ReadWrite, Frozen) access in a way that aborts writes made to
the file while it was open.

A file is open to a process. The Primal File Manager
provides an operation which returns a list of the UIDs for the
processes, if any, that have a file open. Another operation
returns a list of the UIDs for the files, if any, that a process
has open.

When a process is destroyed with files open, the files are
closed and any writes to (ReadwWwrite, Frozen) open files are
aborted. The normal close operation may only be invoked by the
process that opened the file. An alternate close operation can
be used by other processes to close a file during cleanup.

Ny
AN

A client can read the descriptor of a primal file. Some of
the information in the file descriptor is changed as a side
effect of operations on the file. For example, when a file is
written, the date and time of last write is changed. There is
other information that the client may wish to change explicitly.

Access to a primal file is controlled by its access control
list (ACL). Access to a primal file may be granted to other
users by adding entries to the ACL. Similarly, access to a file
may be revoked from a user by removing the corresponding entry
from the ACL.

This document assumes that only Delete will be supported,
but it is relatively straightforward to modify the specification
of Cronus primal files to accommodate a Delete, Undelete, and
Expunge model of file removal.

8.1.1 Executable Files

Executable programs will be stored as files of type
CT_Executable_File which is a subtype of primal File. There will
be many different kinds of hosts in Cronus, and generally an
executable program file which can run on one host type will not
be able to run on another. In addition to the normal
descriptive information, files of this type have information that
specifies where they can be run. The additional information
maintained for an executable file would include:

o The type of processor required to execute the program
stored in the file.

A-94

Report No. 5261 - Part A Bolt Beranek and Newman

o The run-time environment required by the program
including the local operating system and necessary
peripheral devices.

8.2 Crash Recovery Properties

If a primal file operation is invoked, the Primal File
Manager normally acknowledges the operation, indicating the
disposition of the operation (e.g., success, failure, and reason)
and, depending upon the operation, to return any data requested.

The Primal File Manager does not acknowledge write requests
until the data has been written to non-volatile storage. A
client process can be sure that the data has been written when
the acknowledgement is received, even if the Primal File Manager
or its host should crash shortly afterward.

Primal File write operations are atomic with respect to host
crashes. That is, if the Primal File Manager host should crash
during a write operation, after the host and Primal File Manager
have been restarted and the Primal File Manager has performed its
recovery procedures, the write operation will have either
occurred in its entirety or no part of it will have occurred. 1If
the crash occurs after the data has been safely written but
before the acknowledgement has been sent, the acknowledgement
will never be generated.

This atomicity property is true for the Close-and-

RetainWrites operation. That is, either none or all of the
writes made while the file was open will have been performed.

8.3 Operations for Objects of type CT_Primal_File

The following operations are supported for primal files:
The Open and Close operations provide an atomic transaction
capability for a single primal file. At somelater point, we may

define explicit BeginTransaction, EndTransaction, and
AddToTransaction operations which could be used to provide a

A-95

,,.
‘v‘ f’t‘
4,

.

[}
42,

d

4

L
o
W
N
>
.
~

»
04
2 %s

,
R

A

Report No. 5261 - Part A Bolt Beranek and Newman

capability for transactions that involve more than a single
primal file.

8.3.1 Operations on Object of Type CT-Primal_File_System

The following operation is defined on the object of type
CT_Primal_File_system:

Status ‘HostID) -> StatusInformation

Create(HostID CL_Primal_File) => UID
Create a primal file and return the UID for the new
file. The file is empty until data is written into

it. The ACL for the file given the creator has every
right that is defined for a primal file,

Delete (UID) -> ReplyCode
Deletes the file specified by UID.

Open (UID, TypeOfAccess, TypeOfSynchronization) -> ReplyCode
where TypeOfAccess is:

Read, or
ReadWrite

and TypeOfSynchronization specifies the reader-writer
synchronization for the file and may be:

Frozen, which means N readers, or 1 writer is
permitted, or

Thawed, multiple writers and readers permitted.
Close (UID, Mode)

where Mode is

RetainWrites or AbortWrites.

RetainWrites causes the file data to be updated.

AbortWrites causes the file data to remain as it was
prior to being opened. (This mode is only meaningful

Report No. 5261 - Part A Bolt Beranek and Newman ﬁiﬁj
.9
when the file open was for ReadWrite and Frozen). f??i

Read(UID, Position, Amount) => Data

Position specifies a starting byte position, Amount
specifies the number of bytes to be read, and Data is
the file data returned.

Write (UID, Position, AmountToWrite, Data) =->
AnountWritten

Position specifies a starting byte position (the
value -1 is used to indicate the current end of the
file); Data is the data to be written AmountToWrite
is the number of bytes to be written; and
AmountWritten is the number of bytes actually
written,

Truncate (UlD, Length) ~> Reply Code

Truncate the file to Length, discarding all data
beyond that point.

Append (UID), AmountToWrite, Data -> amount written
Append data to the current end of the file. This
operation is equivalent to Write with a position of
-1, but permission may be granted separately.
ReadDescriptor (UID) -> file descriptor data structure
Returns the file descriptor for the file.
WriteDescriptor (UID, WriteSpec) =-> ReplyCode

WriteSpec specifies the changes to be made to the
descriptor for the file.

ReadACL(UID) -> ACL

Returns the access control list for the specified
file.

AddToACL(UID, ACL_Entry)

Adds the ACL_Entry to the access control list for the
file.

. A-97

v,

O

. L
PP _.A L5 :r.

%N %
TRV A

4
I 0

”-

g :;. }l..‘l ',-_f

‘s
.t

__ NN

R
N
s s g

.
< »

':.5,9'.._] ’

-y &
A AR

[

s 9 F w VvV
LR AR N c{
PRV

s

Ny

e a8

Report No. 5261 - Part A Bolt Beranek and Newman

RemoveFromACL(UID, ACL_Entry)

Removes the ACL_Entry from the access control list
for the file.

FilesOpenBy(BHostID,ProcessUID) -> List

Returns a list of the primal files managed by the
Primal File Manager on HostlD that are currently open
by the specified process. The list of element is of
the form: (PrimalFileUID, TypeOfAccess,

j;l"‘ﬂ‘q e, 0,

TypeOfSynchronization).
OpenStatusOf (UID) -> List o
Dt
Returns a list of the processes which currently have ;Rﬁﬁ
the file open. The list element is of the form: A

(ProcessUID, TypeOfAccess, TypeOfsynchronization).

CloseProcessOpenFile(FileUID, ProcessUID, Mode) -> Reply
Code

Close the file, retaining or aborting writes as
specified by Mode HostlD, if it is currently open by
the specified process.

CloseAllProcessOpenFiles(Host ID,ProcessUID, Mode) -> Reply
Code

Close all files open by the process that are managed
by the File Manager on Hostld.

The Primal File Manager returns information about the status of
the primal file it manages, such as the amount of free space, the
amount of space used by existing files, the number of files it
manages, the number of files it manages, the number of files
currently opened, etc.

This information will be useful to system operations
personnel as well as to clients who might use it when deciding
where to create primal files.

.

et et .

f:'f !
> x~1 ®s

Report No. 5261 - Part A Bolt Beranek and Newman

l(.l{

e
l-...

’

o
.

&
{.

9 symbolic Naming
9.1 The Cronus Symbolic Name Space

9.1.1 General Syntactic Conventions

o Cronus has a global symbolic name space with the following
A properties:

WA

'j}ﬁ 1. Cronus symbolic names are location independent.

a. A name for an object is independent of its host.

b. A name that refers to an object can be used
regardless of the location from which it is used.

2. Cronus symbolic names are uniform.

« 1NN}
DL
v . S

LS v S

Common syntactic conventions apply to names for different
types of objects.

., l'l

N, -

The symbolic name space is constructed upon a

hierarchically structured tree. The tree contains nodes and
directed labeled arcs. There is a distinguished node called the
"root". Each node has exactly one arc pointing to it, and can be
reached by traversing exactly one path of arcs from the root
node. Nodes in the tree represent Cronus objects which have
symbolic names. A link facility transforms the name space into a
network, so a node may be reached by more than one path.

Non-terminal nodes (those from which arcs may originate) are
called directories. Each labeled arc corresponds to a catalog
entry. The label for an arc is called an "entry name”.

OTASS
e
ML

Lot

f- ;".'.r; :' s -

¢ AN
’
U

The complete name of a node, which is the symbolic name for
the object, is formed by concatenating the labels on the arcs =~
traversed on the path from the root node to the node in question, o
separated with the character ":", 1In other words, the syntax for R
a complete name is:

s { x s }*y
DS where "x" and "y" are arc labels, the "{","}" brackets indicate
DO optional presence, the ":" is a punctuation mark to separate name
.j{; components, and "{ s }*" means zero or more occurrences of s.
S
b It is also possible to name nodes relative to a directory.
4
o3
g A-99
~b \C:,
A
ol
S R R e T T
e L e T e e N e

Report No. 5261 - Part A Bolt Beranek and Newman :ﬁ}

Such a relative or partial name is formed by concatenating the e,
labels on the arcs traversed on the path from the directory in S
question to the node. The syntax for a partial name is:

{ x:}*y

There are conventional names for the current ("connected" or
*working") directory, its parent, and the user's initial
directory.

9.1.2 Types of Objects Cataloged

The most common types of cataloged objects are the various
kinds of files, but any other object may be cataloged. Some
conventions will be adopted; for example, there will be a :dev
directory which contains the symbolic names for the devices on
the system. These conventions are not enforced by the system,
and any object may be entered into any directory (assuming
appropriate authorizations) at the convenience of the user.

There are certain special object types which are used in
support of the catalog itself, including:

Ill

o Directories

SRy

A directory object (type CT_Directory) is the collection of
catalog entries which correspond to the arcs that originate
from a non-terminal node in the name hierarchy tree.

(o} Links

The catalog entry for a link (type CT_Symbolic_Link)
identifies another point in the symbolic name space called
the link target. These objects are stored in the catalog
itself. Links are cataloged as terminal nodes in the name
hierarchy tree. Links are handled specially within the
Lookup operation.

o External linkages

An external linkage (type CT_External_Linkage) is an object
which implements access to another name space. External
linkages are cataloged as terminal nodes in the name
hierarchy tree. External linkages permit users to refer to
non-Cronus objects directly from the Cronus name space. For

J:_:-'_
e
b
.
NN
o Report No. 5261 - Part A Bolt Beranek and Newman
Y
{«
?-j example, an external linkage might be used to give a file
g directory on a Cronus application host a Cronus symbolic
g %
» f‘ name.
A
"
_é‘ For some object types it is useful to be able to think of a
O collection of the objects as & sequence of "versions" or
SR "revisions™ of the same logical object. The Cronus Catalog
T implements a version feature for certain types of objects; for
Ao example, versioning will be supported for files, but it will not
~ be supported for directories.
S For types for which versioning is supported, the catalog
o entry operation will permit the same name to be entered into a
Y directory more than once. The first time a name is entered, the
[result will be version 1 of the object. Subsequent entries of
;;_ the same entry name will result in successively higher versions
\ £ of the object. All of the catalog operations which take a name
NN parameter will allow the specification of a version number as
.‘.::'- well .
,:j: The catalog managers provide routines that can scan through
“

the catalog and return catalog entries for names that match a
‘ specified pattern.

;*3 9.1.3 Directories and Links
r;, The cataiog entry operation can be used to establish a
‘;;- symbolic name for a Cronus object of any type except a directory,
NN symbolic link, or external linkage object. These objects must be
Tt created by special operations because they are inserted in the
A catalog when they are created (since other objects need not be

= named, the creation of the object and naming of the object are
= separated). In a sense, these objects are special in that they
e must have a symbolic name in addition to a UID.
:ﬁ% Figure 10 shows a relatively simple symbolic name tree and
Yo Figure 11 shows part of the underlying directory structure that
ol corresponds to the part of the tree that contains the name

sazb:c.

When a lookup operation is invoked, the catalog manager
interprets a complete Cronus symbolic name by starting at the
root directory. The UID of the root directory is well-known.

A-101

‘!, ¢ -', 'l‘"." L
a)t . e .
'|.l ..
v L T

I R
L N S A
s !“v' ?""?.(‘

e
el

a'’
v e

. . .

Iy o D
" 8 PPN
y s
0 .
. Vo e
v . .

.t f‘r‘fl'

/'f‘ ’
)
¥

.

‘

s,

A

>

I

GRS,

Report No. 5261 - pPart A

A

Rootl directory

e

v o ~

¢

Catalog Hierarchy
Figure 10

A-102

Bolt Beranek and Newman

AR I ML L LN RO

L :"g’_'

. "

NN

L | Al
A ONCAY R S
y) l.. g 4-.- \J-.J\- > ;
AT

. 11 @anbya
N =1
; m
", Q
; z {oanbrung 0 Y
V. o hq pet-ouny) .._\.m: R st ™
g F 21qeL qIn J LR Joine LI -
e oltd - &
[
n \
o
b B
m (obouny
~ bhonyng
b Pa pohinurg) 1o 140 uleIn a1
. . 1 917470
- 2 219%L QI Toygo T e
A30)99a1Q gIn-ye grn-e -
_ —th
y
™
o
—~
]
<
< LA diX | /
armn 460 arn<agae arad e iy fiine
Y] 92Qenc. gD n< o :WL
d 9 q. " i
Y
!
~-
\0
o~ 2:0Ds ©1Y q<o< Rauyneap ne KioyHmanp Raoyreup 10u
L)) 8410w JdwA syunWe 1dw sy 0 (dw FpUBWD YU
WYy ey Yy vy Yy Y wyy ey

Boquye) snuod;) Jo uorywytomajdugy

o
%
»
o]
3
"~

I
LR
e LrPL

t]
8.2,
LA

X
e

4y 8, g4, 4
v‘../ "/“f.

I.’J A

¢

4
B

[
4

»”

fﬁ.l .2
AR
Ol S BN

‘J' .l
Ay
~

.
'-:-‘.b_l
s e &

DGR
'3
ARN

P I P N

nee
l. ..

AP
a

[A4
. .“.lﬂl~

vy
AR
KR

1

Report No. 5261 - Part A Bolt Beranek and Newman

The catalog manager processes a name component by searching the
current directory for a matching catalog entry. If it finds a
matching entry and there are no more name components, the lookup
is complete and it returns the catalog entry. If it finds a
matching entry and if there are more name components to
interpret, the entry must be for a directory, symbolic link, or
external linkage, or else the lookup ends in failure. If the
entry is a directory, the catalog manager continues the lookup by
obtaining the UID for the directory from the entry and then using
it to interpret the next component. Interpretation of a partial
symbolic name is handled in the same fashion, differing only in
where the lookup starts. For a’partial name, the catalog manager
starts its search at the starting directory parameter of the
l.okup operation.

Symbolic links encountered during lookup are handled
specially. When a link is encountered, a new name is formed by
substituting the link target, which is a complete Cronus symbolic
name held in the catalog entry, for the portion of the symbolic
name evaluated so far. The lookup operation then resumes by
interpreting this new name. Links can be thought of as macros
which are expanded during the lookup operation.

A parameter of the lookup operation controls whether links
are to be expanded. If the parameter specifies that links are to
be expanded, the substitution of link targets during the lookup
operation occurs. If the parameter is set to prevent links from
being expanded, the lookup operation terminates when a link is
encountered. 1In this case, the lookup operation will be
considered successful if the name has been completely evaluated.
Otherwise, it will be considered a failure.

9.2 Objects Related to the Catalog
9.2.1 Objects of Type CT_Catalog _Entry

Each catalog entry is a Cronus object. A catalog entry will
contain the following information:

UID for the object;

Complete symbolic name for the object;

UID for creator of entry (PrincipalUID); and
Type-dependent information.

Type-dependent information for objects of type CT_Directory,

A-104

| A | AR

IR AR AR
b A Y
£ -

a2

P A
Ay Ry N, 0, o
o y

.'.' ? .

I8
Q Ve

»
4 i

BRI
AL,
DN

N ST S
»

1

‘ 'u"‘n C YN

A,
l.l

L] I.V.
* 4

1,3 v.;l‘..-" N

[v
) 0.' -"J'._l.. { ":‘}:’.’ LAY

¥s

*

NN
% NS R YA

CIN N
.
«“.

4

s
Cd \:
A

Report No. 5261 - Part A Bolt Beranek and Newman

CT_Symbolic_Link, and CT_External_Linkage is discussed below.
For objects that are not part of the Cronus catalog, everything
that can be known about an object is maintained by (or can be
obtained from) the manager for the object. The issue is, what
part of this information, if any, should be replicated in their
Cronus catalog entries? This question is answered on a case-by-
case for each object type.

The disadvantage of maintaining information in the catalog
is that the information becomes obsolete as the objects undergo
modification. Maintenance of such information is more difficult
when the object has more than one symbolic name, and hence, more
than one catalog entry.

Performance and reliability are improved if we maintain
information in the catalog about objects. The performance
advantages occur because the overhead of interacting with the
object manager can sometimes be avoided. The reliability
advantages occur when the object manager for the object is
inaccessible, but the catalog entry for the object is accessible,

What, then, is the nature of the coupling between the
information about an object in its catalog entry and the
information held by the object manager? The simplest approach
couples the information very loosely and places responsibility on
the client process. Since this places the burden on all clients,
the information is likely to be unreliable. The Cronus catalog
software provides a tight coupling. When a name is established
for an object, the catalog manager will send an ObjectCataloged
message to the object manager. The object manager then sets an
ObjectCataloged flag in its descriptor for the object, and sends
back a message containing the information that should be stored
in catalog entry.

As an example, the catalog entry for a primal file might contain
type-dependent information, such as:

UID of the file creator (a PrincipalUID);
Date and time of creation;

pDate and time of last write; and

Current size of the file.

When an object is modified whose ObjectCataloged flag has
been set, its object manager will send the information necessary
to update catalog entries for the object to the catalog manager.
The information about an object held by its manager is the truth

A-105

o)

v,
“,8,

. .’
sl

IR %
. c' ,.'
» ROy i

Report No. 5261 - Part A Bolt Beranek and Newman

and any information held in catalog entries for it, except its
symbolic name and UID, is advisory and maintained as a
convenience. The system is structured so that its correct
operation does not depend upon information found in the catalog.

9.2.2 Objects of Type CT_Directory

For directories, no type-dependent information, except
possibly the host that stores the directory, would be maintained
in the catalog entry. All other information about the directory
will be maintained with the directory object itself.

9.2.3 Objects of Type CT_Symbolic_Link

For a symbolic link, the type-dependent information, which
completely specifies the link, a link is the complete symbolic
name for the link target.

UID;

Complete symbolic name for the link;

UID for creator of entry (PrincipalUID); and
Complete symbolic name for the link target.

9.2.4 Objects of Type CT_External_Linkage

For an external linkage, the type-dependent information
completely specifies the external linkage. It includes a Cronus
interpretable designator for locating the other name space and a
symbolic name that is interpretable in that other name space.

The details of the method for designating other name spaces and
for interacting with them are incomplete. A catalog entry for an
external linkage will include:

UID;
Complete (Cronus) symbolic name for the external
linkage;

R IR b SR s e e ins e et A i c ACREAAC A A AR AL B e W L L L T T T e R T e e BT e T T
N - - - . - e - - . -
CAS
Q‘ .J
S
h" -

:3 Report No. 5261 - Part A Bolt Beranek and Newman
o
l«
A UID for creator of entry (PrincipalUID)
SN Cronus interpretable designator for the other
258 name space; and
- Symbolic name interpretable in the other
"o, name space.
BN ;
10 9.3 cCatalog Operations -
$§§ 9.3.1 Objects of Type CT_Catalog_Entry ?
‘\f The following operations are defined for the Cronus symbolic 5
% catalog:
E;; Enter(DirUID, EntryName, ObjectUID) =-> CatEntUID
:fé Establishes a symbolic name for an object. A check is
e made to determine whether EntryName is already in use
) an the specified directory. If EntryName is not in
\ . use, a catalog entry is created. 1If EntryName is in
b use, and the type of the object cataloged under
RN EntryName is the same as the type for ObjectUID, and
N versioning is supported for that type, then a new
ﬂgk entry for a new version of EntryName is created;
s otherwise, the operation will fail. This operation is
. not defined for objects of type CT_Directory,
i;{ CT_Symbolic_Link, and CT_External_Linkage.
; Remove (DirUID, CatEntUID) -> ReplyCode
e
ol Remove Cat_EntUID from DirUID. The corresponding
o name for the object is also removed from the symbolic
<o name space. This operations not defined for objects
o of type CT_Directory.
S0 Lookup (StartDirUID, Name, FollowLinks)
e -> DirUID, CatEntUID, CatEntContents
o
s Find the Name in the catalog. FollowLinks controls
Far whether links are to be expanded during the lookup.
N 1f Name begins with ":", it is a complete symbolic
Wi name and the lookup begins in the root directory.
e Otherwise, Name is treated as a partial name. 1In

éﬁ A-107

........

{i; Report No. 5261 - Part A Bolt Beranek and Newman

this case, StartDirUID is the start point for the
lookup. The DirUID returned is the UID of the
directory that contains the catalog entry.
CatEntContents is the data structure for the catalog
entry. It includes the object UID, the complete
sybmolic name, and possibly other type-dependent

S information. If any links were expanded during the
o lookup, the symbolic name in the CatEntContents will
O not be the same as the Name parameter.

y ."/"/".‘ .

ReadEntry(DirUID, CatEndUID) -> CatEntContents

- Returns the contents of the specified catalog entry.
- ChangeEntry{DirUID, CatEntUID, NewContents) -> Reply Code
Modifies the type dependent information in a catalog

entry.

InitScan(StartDirUID, PatternSpec)

AR -> ScanState, DirUID, CatEntUID,
CatEntContents

. Initializes a catalog scan, and returns the DirUID,
o CatEntUID, and contents for first catalog entry, if
any, that matches PatternSpec. If it begins with a
e ":", the pattern is for complete names and the

S~ StartDirUID parameter is ignored. Otherwise,

) PatternSpec specifies partial names and StartDirUID
Shi) is required. ScanState represents the current state
;Ji of the scan and must be supplied on subsequent
e interactions with catalog to obtain additional
RN catalog entries matching PatternSpec. ScanState can
- be tested to determine when the scan has ended.

ScanDirectory (ScanState)

-> ScanState, DirUID,
CatEntU1ID, CatEntContents

b~ Perform the next step of a catalog scan and returns
2 the next catalog entry, if any, that matches the

o pattern. The ScanState specifies the current

“. position of the scan, and the returned value of

o ScanState parameter indicates the position after the
= step has been taken.

LookupWild(DirUID, PatternSpec)

A-108

A AT S S

g

“u
-,
.
-

-

et

IR T

............

Report No. 5261 - Part A Bolt Beranek and Newman
-> list of
(DirUID, CatEntUID, CatEntContent)
tuples
This operation initiates and performs a catalog scan.
EntriesOf (ObjectUID)

=> list of (DirUID, CatEntUID) pairs

Returns the UIDs of all catalog entries for the
specified object. The result may be zero, one, or
more catalog entry UIDs. This operation does not
return pairs which are the result of links.

ChangeObjectEntries(ObjectUID, NewContents) => Reply Code

Update every catalog entry for the specified object.
It will be used by object managers to keep
information held in catalog entries fur object
current.

9.3.2 Objects of Type CT_Directory

The following special operations are defined for objects of
type CT_Directory:

CreateDir(01dDirUID, EntryName [, HostID]) =-> DirUID,

CatEntUID

Creates a new directory by entering it. A catalog
entry for into the 018DirUID under the name
EntryName. The optional HostID specifies the Cronus
catalog host that is to store the new directory. The
HostID parameter is examined only if the dispersal
cut (see Section 9.4) is below 01dDirUID. If it is
not supplied and 0l1dDirUID is above the cut, the new
directory is created above the dispersal cut. If the
HostID parameter is supplied, then the new directory
is created below the cut and is stored on the

specified host. Versions are not supported for
directories,

DeleteDir(ContainingbDirUID, DirUID) =->

Delete a directory, which succeeds only if the
directory is empty.

A-109

.....
.......................

...... -
L S ..
T A

vk aonE Srvee o &_ar b s sind ondl Saih e EESSSEE AL AR St I 4 4 T . ! T . W
LA AR A B i it e it Ao Pullir gt onl adt a6 G AN EM AT NGE A il iy il 2 RVACRARRAR Y -'Aqi_u‘ A" IO S e A D R
. - B S A R A . R R

»

e
» ‘l

]
o~
L

.

e a n T ¥ e e T T DAEN RAE AR SR ERCAJICRE AR Sl Sl oyl

Report No. 5261 - Part A Bolt Beranek and Newman

9.3.3 Objects of Type CT_Symbolic_Link

The following special operation is defined for objects of
type CT_Symbolic_Link:
EnterLink (DirUID, EntryName, TargetName)
-> CatEntuUID

Establishes a link in DirUID with name and target
TargetName, which must be a complete symbolic name.
Versions are not supported for links.

9.3.4 Objects of Type CT_External_Linkage

The following special operation is defined for objects of
type CT_External_Linkage:

EnterExternalLinkage(DirUID, EntryName,
ExternalNameSpaceSpec,

ExternalName)
=> CatEntuiID

Establishes a new external linkage in DirUID.
ExternalNameSpacespec specifies the external name
space. ExternalName specifies the target for the
external linkage, and is a name that is interpretable

within the external name space. Versions are not
supported for ExternallLinkages.

9.3.5 Access Control for Catalog Operations

All of the catalog operations are operations on one or more
directories. There are three rights defined for access control
purposes:

ReadDirectory,
WriteDirectory, and
ModifyACL.

ReadDirectory rights are needed in Lookup for each of the
directories required to interpret the Name. ReadDirectory rights
are needed in ReadEntry for the directory that contains
CatEntUID; in EntriesOf for the directories that contain any

A-110

RN nT AT T A SO LA T O LN N e e e e
o ‘-:‘\: LR : L \':\J\' 'i:\".}\': ':.:':.'{\ S o RS \‘ Wy = NI “_. - - ,_-', l"
. T o (N A S SR L S U TR e Lo et
o'y ™ ,* P e LI] \ \' - -‘. v l'. -\. A RN v -\ - e e e e e ‘._-. .-“ :.- - . -

A e al o~ *

LR

K M LN

L N
PR

D T
) O]

[y

tete
7 e "0 4

RN
PRy R RF R A1

]

U

S RIS AT

Report No. 5261 - Part A Bolt Beranek and Newman

CatEntUIDs that are returned; in InitScan for the start
directory; in LookupWild for all directories encountered; and in
ScanDirectory for the directory specified in the ScanState.

WriteDirectory rights are needed in Enter for DirUID; in
Remove for the directory that contains CatEntUID; in ChangeEntry
for the directory that contains the entry to be changed; in
CreateDir for 0l1dDirUID; in ChangeObjectEntries for each
directory that contains a catalog entry that is changed; and in
DeleteDir for the directory that contains the directory being
deleted.

The Table 3 summarizes the access rights required for the
various operations.

Read Write
Directory Directory

Enter

EnterLink
EnterExternalLinkage
Remove

Lookup

LookupWild

InitScan
ScanDirectory
ReadEntry
ChangeEntry
CreateDir

DeleteDir

EntriesOf
ChangeObjectEntries

Table 3. Access Rights Required for Catalog Operations

9.4 Catalog Implementation

Report No. 5261 - Part A Bolt Beranek and Newman

9.4.1 Introduction
The following implementation issues are discussed below:

1. the use of Cronus data storage resources to implement the
catalog data base;

2. the distribution of the catalog data base among Cronus
hosts; and,

3. the manner in which client processes interact with the
catalog manager which implement the catalog functions.

9.4.2 Implementation of the Catalog Hierarchy

Directories are implemented by files. The catalog manager
maintains a UID table for the objects it manages. Since the
principal objects implemented by the catalog manager are
directories, this table is called the Directory UID Table. The
Directory UID Table maps the UIDs for directories and their
object descriptors.

A directory contains zero or more catalog entries. The
catalog entry for a (inferior) directory contains the UID of that
directory. To access a directory given its UID, the catalog
manager uses the Directory UID Table to obtain the object
descriptor for the directory, and then uses the file UID in the
descriptor to access the file that holds the directory.

The catalog manager also maintains a Cataloged Object Table
which implements an object-UID-to-catalog-entry mapping, which
has an entry for each Cronus object that has a symbolic name.
The entry contains the UID of the cataloged object and a list of
(DirUID, CatEntUID) pairs for each catalog entry for the object.
The Cataloged Object Table is updated as part of the Enter,
Remove, CreateDir and DeleteDir operations, and it is used to
implement the EntriesOf and ChangeObjectEntries operations.

A-112

RAACAES LY

N
:yf Report No. 5261 - Part A Bolt Beranek and Newman
N
{
N
o 9.4.3 Distribution of the Catalog
= 9.4.3.1 Principles Affecting Distribution
- Among the considerations influencing catalog distribution
. are:
g? 1. The catalog should not be stored at only one site.
o This is a reliability consideration.
1Y
NN The catalog should be distributed, and it should probably
N be replicated in some fashion.
ﬁf 2. The entire catalog should not be stored at any single
i site.
-
’;‘ This is a scalability consideration.
fﬁ 3. It should always be possible to access an object when the
iﬁ site that stores the object is accessible.
{ This is a reliability consideration.
ﬁ; Access to objects through the UID name space has this
0N property since the information required to access an
-Ts object, given its UID, is maintained used by object
N managers. Access to objects through the symbolic name
' space should also exhibit it.
j3 The catalog entry for an object (or a copy of the entry)
i should be stored at the same site as the object. 1In
o addition, there should be enough information at the
.. object site to control access to the object.

; 4. There is little utility in maintaining a catalog entry
e for an object in a more reliable fashion than the object
:?'.': itselfo

This is a common sense consideration.

It is not necessary to replicate catalog entries for

;;: objects beyond that required by (3).

e

A The next two subsections discuss considerations (2) and (4)
;; in more detail. The discussion includes elements of the

A-113

Report No. 5261 - Part A Bolt Beranek and Newman

implementation of the reliable system as well as the primal
system, because these may impose constraints on the primal system
design.

9.4.3.2 Dispersal Of The Catalog

This section examines the requirement that the catalog not
be stored at a single site. The line of reasoning followed is
essentially that that lead to the design of the Elan hierarchy

[BBN 3796].

Directories are the basic unit of distribution for the
Cronus catalog. Directories are implemented by Cronus primal
file so a directory is stored entirely within a single host. The
lookup operation follows the components of a symbolic name
through a number of different directories, one for each component
in the name (assuming it does not encounter a symbolic link).
Unless there is a further restriction on the dispersal of the
catalog, each directory could be at a different site from the
previous one.

It is desirable to limit the number of sites that must be
visited in a lookup operation. Two useful restrictions are to:

1. Require that the catalog structure for entire subtrees below
a certain cut (the "dispersal cut") through the catalog tree
be stored within a single site. We call a subtree that is
rooted at the dispersal cut a "dispersal subtree".

2, Require that the catalog structure above the dispersal cut
be stored within a single site. We call the structure above
the dispersal cut the "root portion" of the hierarchy.

Restriction 1 ensures that lookur operations within a
subtree that is below the dispersal cut can be confined to a
single site. Restriction 2 ensures that the task of determining
the site that stores a particular dispersal subtree can be
confined to the site that stores the root portion of the
hierarchy. As a result, lookup operations require at most two
catalog sites.

It is useful to add a third property to the dispersal of the
catalog:

A-114

'*“; § :/."’-.'- v,

TGN,
'll‘ !
Jee)e
NI AR

)
Fad
.

14

Report No. 5261 - Part A Bolt Beranek and Newman fﬂ'

3. The root portion of the catalog hierarchy should be)
replicated. Furthermore, a good way to replicate it e
is to maintain it at each site that maintains a part N
of the catalog (i.e. a dispersal subtree). The

reasons for doing this are: o
To distribute the load resulting from i;ﬂ
lookup operations among several sites, ROE
To allow some lookup operations to be N

confined to a single site.

To increase the availability of the root portion of

the hierarchy. 3{

Figure 12 jillustrates how a simple name hierarchy might be e
dispersed among several hosts according to these three)
restrictions. .
For this to be practical, it must be possible to maintain Y

the copies of the root portion in a consistent fashion among the
same set of hosts that store parts of the catalog. It has been .
observed that the root changes very slowly, because few users are -
authorized to make changes, and because changes generally occur
as the result of the addition or deletion of a user or project. NS
This means that the maintenance mechanism need not be powerful e
enough to handle the general multiple copy update problem. S

AR

L [

S
KRN

7

9.4.3.3 Dispersal of the Cataloged Object Table

>
A. L
.

o L 4
PN AR

.5

‘3}*‘
P

The Cataloged Object Table supports the EntriesOf and
ChangeObjectEntries operations. The EntriesOf operation returns
any entries in the Cataloged Object Table for an object
specified. The ChangeObjectEntries operation uses this
information entry for the specified object to find the catalog
entries that need to be modified, and then it modifies them.

A
3

i]
N 1

‘272"z a"»
LN 4

XN
.
e
ALY
‘/"Oll‘l
. I,{’

k]
-
RO WA

L[}
n. ‘ -.'
a4
-
R RN

When a name is established for an object, an addition is
made to the Cataloged Object Table. If the object already had a
symbolic name, an addition is made to its existing entry. When a
name is removed, the corresponding information is removed from
the Cataloged Object Table. The entry for an object is removed
when its last symbolic name is removed.

A-115 NS

.
L]
v
.
.
’

Bolt Beranek and Newman

Replicated Root Portion
of Ncme Hierarchy

A-116

Host D
Dispersal Subtrees
at Host D
Dispersal of the Catalog
Figure 12

Host C

-
3
o
T
"
L4
Q.
2
Q

Report No. 5261 -~ Part A
Host B

NN

R di’- '! f- ’Oh .-q fo o

N WAL AN

s
%

e Ba Ay 0 Yy

[EARPEK Y B

.

-’ \' l'. -" l.

D

AV LANLSIE

...................

Report No. 5261 - Part A Bolt Beranek and Newman

Logically, the Cataloged Object Table can be viewed as a
single table which contains an entry for each object that has a
symbolic name. However, like the catalog itself, the Cataloged
Object Table will be implemented in a distributed fashion. The
following are three approaches to distributing the Cataloged
Object Table.

1. Total Replication

The Cataloged Object Table can be replicated in its
entirety at every catalog site, so it is accessible
whenever any catalog site is. This simplifies the
EntriesOf and ChangeObjectEntries operations.
Maintaining full copies of the table is relatively
expensive both in terms of storage space, and difficult
to do in a consistent fashion.

2. Fragmentation Among Catalog Sites

Each site that stores part of the catalog can also store
the corresponding part of the Cataloged Object Table. It
is then relatively easy to maintain the individual
fragments of the table. The only catalog activity that
modifies a site's fragment is a change to the part of the
catalog managed at the site. The disadvantage of this
approach is ChangeObjectEntries operations are more
complex; there may be entries for an object ii fragements
at several sites.

3. Fragmentation Among Object Sites

Each site that stores an object can maintain the
Cataloged Object Table entry, if any, for that object.
Its use by EntriesOf and ChangeObjectEntries is
relatively straightforward since the entire entry for an
object is stored at the site that manages the object.

The disadvantage is that, in general, changes occur as
the result of operations performed by catalog managers
that are remote from the entry. For example, whenever a
catalog entry is added to or removed from a directory by
a catalog manager a corresponding change must be made to
a Cataloged Object Table entry which will, in general, be
remote from the catalog manager. Consequently,
cooperation between catalog managers and software at the
object hosts is required to maintain the Cataloged Object
Table fragments.

This approach meshes well with the scheme for providing

A-117

Report No. 5261 -~ Part A Bolt Beranek and Newman

secondary symbolic access paths to objects described
below. Activity that requires modification to the
Cataloged Object Table at a site also requires
modification to the collection of catalog entry copies at
that site. The Cataloged Object Table and the collection
of the catalog entry copies could be implemented by a
single data base, structured so that it can be searched
in two ways: by object UID to obtain the corresponding
Cataloged Object Table entry; and by symbolic name to
obtain the corresponding catalog entry copy.

Our inclination at present is to avoid the fully replicated
approach (1), and to continue considering the two fragmented
approaches (2 and 3).

9.4.3.4 Replication of Catalog Information

For the purposes of the current implementation, we can defer
consideration of the problems associated with cataloguing
multiple copy objects.

The primary consideration for replicating catalog
information is one of reliability. The objective is to ensure
that Cronus objects with symbolic names are accessible
symbolically whenever the sites that manage the objects are.

There seem to be two approaches to providing symbolic access
to objects when the Cronus catalog is inaccessible.

1. Replicate the catalog sufficiently to ensure that it is
available with the degree of reliability that is desired.
This would involve maintaining multiple copies of
directories.

Replicate the catalog information required to access a
particular object (i.e., the information in its catalog
entry) to the degree desired and store it at the host
that stores the object.

out the first approach for two reasons:

Directories below the dispersal cut will change

- e % Y w8 Y . W
—yrgTy v . 3 B A A > - v e o e e A - .« . ®, -
SRR RS R N R 2 0wt D 2 AecRACat el R RO Acsac cea e pRCaacr AL IR G BSOS IDLRER RSO 2 DACIROIACERL N DRI N At A
o3

.
A

3

b,

Et% Report No. 5261 - Part A Bolt Beranek and Newman .
o Zij
LA relatively frequently, making it difficult to maintain e
o multiple copies of them in a consistent fashion, -

- ® ¥-:

.35? 2. In later versions of Cronus, a directory may hold catalog

entries for single copy objects and for multiple copy

O objects that are replicated differing amounts, making it
PR unclear how may copies of the directory should be
o maintained.

In the second approach, we maintain a secondary symbolic
o] access path to objects rather than replicate the catalog
’

o structure itself. The primary symbolic access path to an object
o can be represented schematically as:
i;j Cronus
- Name --> catalog ~--> UID =--> UID -=> Object
4] entry Table
%
% The secondary symbolic access path would be supported at the
N host managing the object by a copy of the Cronus catalog entry
= for the symbolic name. If the object has more than one symbolic
_ name, a copy of each catalog entry will be stored at the object's
A host (13) . The secondary path can be represented schematically
v as:
N Distributed
e copies of
SV, Name -~-> Cronus -=-> UID --> UID -=> Object
catalog Table
- entries
ot

- That is, there will be a collection of Cronus catalog entries at

e each host for those objects that have symbolic names that require
. access to directories on other hosts. The catalog manager

software will maintain the consistency between these distributed

:3§ catalog entry copies and tne Cronus catalog.
ifi} Figure 13 illustrates how the cataloging information will be
R maintained. The circular nodes represent objects that are stored
iki at the same host as their entry in the catalog hierarchy and the
ﬁ;é (13). If all of the directories required to £ind a particular
. symbolic name for an object are located on the same host as the
e object, there is no need to maintain an additional copy of its
Sty catalog entry at the host to support a secondary access path.
o
I
o A-119
e
o
.
J."' ------- P - - «m e " QLA e N T e Te et et e e N et
N L PN e T T e W D S T
A S L et e e e e e e T T T e T e e . D SR JES
OIS SRy G o s T AT A

Report No. 5261 - Part A Bolt Beranek and Newman

square nodes are used to represent catalog entries for objects
that are stored remotely from their entries.

Under normal conditions, the lookup operation uses the
symbolic catalog. When not all of the directories are available,
the secondary symbolic access path is used. The lookup will
succeed whenever the object itself can be reached, since if the
object has a symbolic name, a copy of the catalog entry object
will be stored at the site that manages the object.

Lookup by means of the primary path is much more efficient
since it is directed, whereas lookup by means of the secondary
path is undirected. There is no a priori knowledge of the host
or hosts that need to be consulted to perform a lookup by the
secondary path. Furthermore, because the collection of catalog
entry copies does not hold complete information about the full
structure of the naming hierarchy, it will be difficult to
organize the copies into a data structure that can be searched as
efficiently as the hierarchical catalog database.

9.4.4 Cronus Catalog Managers

There is a catalog manager process at each host that
maintains part of the catalog. It is the object manager for
objects of CT_Catalog_Entry, CT_Directory, CT_Symbolic_Link, and
CT_External_Linkage.

The catalog managers communicate with client processes by
means of the standard Cronus IPC facility. Since the catalog
hierarchy is distributed among Cronus hosts, different managers
will have direct access to different parts of the catalog. Some
catalog operations can be accomplished by a single catalog
manager and some require the cooperation of two or more catalog
managers.

For example, the Remove(DirUID, catEntUID) operation would
normally be sent to the manager for directory DirU0ID, and only
that manager is required. The lookup operation may require
catalog managers on two hosts if the manager to which it is sent
does not contain the subtree required to interpret the entire
symbolic name. Finally, the ChangeObjectEntries operation may
require the participation of every manager.

A client process will not, in general, know which catalog
manager is the best one to perform a given operation. For this

Ll Radl Sad e e i A A N
huChSNe LAGdh et eh ACHA 24 i s 0 At A B e B A e "l 8 (o AR Sl A Sl ta SR e A B S S AT e O S LAMEIAE)
Iyl K
-t
AN i
- *a .) .
SRS -t
O .
.-
O._ . -
ot
-3
«

SN Report No. 5261 - Part A Bolt Beranek and Newman

PRIMARY ACCESS PATH

Dispersal Cut

Repliccted Root Portion
0 of Name Hierarchy

(')

a
.

SECONDARY ACCESS PATH

.
0' I.

‘2
«
s
‘<
.

D
s

[
e
»
»

K

-

Secondary Symbolic Access Path
Figure 13

,
1@
.

[

~
"./ o

s,

a-121

" ‘;."
. e

0
By

.
-
.
‘e
-,
.
0
.
.
el

5
;’:‘ - o
o Report No. 5261 - Part A Bolt Beranek and Newman ST
S{. reason, a client can initiate a catalog operation with any fﬁg,

}k catalog manager. If the manager selected can perform the .
o operation requested by itself, it will. 1If not, it will interact SENE
LT, with other managers as necessary to perform the operation. Iylj

- .
O .

J:J < .
~". 4 « .
3 :

Cal -'1

.
~ . N
v e ..
" . t .
- Ca .
-, .
e’ c v
<
~ N P T
E 7 -

OO e
PR
T I,
LA e

¥
i

AN

.
[A A N

Q.
-

)
1.I.l.

[}
o W7 a .

A-122

AR

L

o
RS -+

PoL Ty
'
..

3

.
.

Report No. 5261 - Part A Bolt Beranek and Newman

16 Input/Output

The addition of I/0 devices the Cronus DOS must be
considered at three levels: the Cronus user, internal Cronus, and
constituent 0OS levels. In this section, I/0 integration is
examined at each level, and the interfaces to other components of
the same level and to other levels is described. Line printer
and tape drive devices are used as examples.

Devices are Cronus objects, and there are object manager for
each device type. Device names are entered in the symbolic
catalog.

Interactions with a device within Cronus are with the
manager for the device, which hides the device driver of the
constituent operating system from the client. The generalized
location-independent framework is also independent of particular
devices and of device-specific functions.

Each cevice type has a Cronus logical name (i.e., a well-
known UID with type CT_Type_Name), and each instance of a device
has a specific UID. There is a single manager on a host for each
device type having a device instance on that host. The manager
will select an available device and initiate the operation. Some
device types may associate a separate Cronus process with each
instance of a device; in this case, the generic request to the
manager will be forwarded to one of the device processes.

Each device has a device manager which maps generic
input/output operations into the corresponding calls into the 1/0
Process Support Library. There four generic operations:

Open (DeviceUID, ProcessUID) ~-> DeviceTaskUID

Close (DeviceTaskUID) -> Reply

Read (DeviceTaskUID NumberOfBytes) -> DataBytesRead
Write (DeviceTaskUID, Data, NumberOfBytes) ->
BytesWritten

The device manager receives an Open request to initiate a device
task for a process. The device manager determines who the
principal is and applies the standard access control mechanisms.,
On the successful completion of device initialization, it keys a
task state record to DeviceTaskUID, and replies to the requestor
to proceed. Subsequent requests for input or output must be
accompanied by DeviceTaskUID. When the manager receives a Close
command, from the user process, the device is released, the task
is terminated, and all state information associated with it is
purged. The task state information will also be purged if the
device manager learns that the user process died without closing

0000

A-123

ENN

.............

Report No. 5261 - Part A Bolt Beranek and Newman

the device.

Device managers are normally passive entities and must be
directed by explicit requests from user processes. Although this
is the default behavior, it is desirable in some cases for the
device manager to play a more active role. Some device managers,
therefore will be able to initiate an activity.

Consider, for example, how a printer spooler might work. A
user, desiring that a file be printed, executes the "print" file
command which puts a copy of the file in the spooler directory.
The spooler process selects the file from the spooler directory,
and sends an open request to the primal file manager. After a
successful open reply, the spooler sends an open request to the
line printer manager. When a successful line printer reply is
received, the spooler prints the file by requesting data from the
primal file manager and sending to the printer process. After
the file is completely printed, close operations are performed on
both the file and the printer, and the spooled file is deleted.

Assume that the spooler, file, and printer manager are not
all on the same host. 1In this case it is inefficient to require
that each data block go through the spooler. 1Instead, the
spooler gives the line printer device manager the file object UID
with directions to initiate a "copy" on that object. When
printing is complete, the line printer device manager notifies
the spooler.

The four generic operations listed above are required for
device managers, There may be any number of additional device-
specific operations supported by a particular device manager.
For example, in addition to the read and write operations, a tape
drive manager must support the tape positioning functions, tape
read/write density, and so on. Any process that is permitted
direct access to the tape drive device manager is allowed to
invoke the device-specific functions. For instance, an archive
process would open the tape drive for reading, and then, on
direction of a user, retrieve files or even directory trees from
an archive tape,

Symbolic names for devices are in the Cronus Symbolic
Catalog, in the directory :dev. Assuming there are several line
printers in Cronus, the names ":dev:lpt3" or ":dev:gce2_lptl"
then refer to specific instances of line printers, and are bound
to the appropriate device UIDs. The symbolic name for the
default line printer is ":dev:1pt". Bound to this name is the
type name UID for line printer, which can be used to find an

A-124

.
.
N
. e
e
CRRE
Tl
-4
ACER Y
<
PRI
Ny
W
.

s
o
<
e
o
= '.;.4

. .b 4 %

) } .'. ... ,"*- . ,'. .

Report No. 5261 - Part A Bolt Beranek and Newman

instance of a line printer.

The constituent operating systems (COSs) are responsible for
handling devices at the most basic level. For each Cronus
device, there must be device driver. The details of the
implementation of this driver COS- and device-dependent. Once
the device driver is established, there is a COS dependent access
path to the device. This access path provides for both device
control and data transfer.

The COS dependence is hidden by the Process Support Library
functions. The implementation of this library varies from one
COS type to another, but it presents a uniform interface to the
Cronus device process.

Report No. 5261 - Part A Bolt Beranek and Newman

11 User Interface

The user interface for Cronus consists of several parts.
System access requires a mechanism for enabling the user to
interact with Cronus. This is normally provided by connecting a
terminal to Cronus. The user interface also provides a command
interface, which allows the user to control the session.

The objective is to provide users with flexible, convenient
access paths to the system. Cronus will support a number of
different types of access points including:

1. Terminal access computers (TACs): A Cronus terminal
multiplexer connected directly to the DOS local area
network. TACs are implemented in dedicated GCEs.

The Internet: The Cronus local network is connected to
the Internet by means of a gateway computer. Users
outside the cluster may access Cronus through the
standard terminal handling protocol (Telnet) which

operates upon a lower level, reliable transport protocol
(TCP) .

Mainframe hosts: Cronus mainframe computers are likely to
have terminal ports, which enable access to Cronus
through Telnet, like other hosts on the Internet.

Dedicated workstation computers: A workstation is a
computer that is, at any given time, dedicated to a
single user. Workstation hosts have sufficient
processing and storage resources to support non-trivial
application programs, such as editors and compilers, and
to operate autonomously for long periods of time(l4).

User interation is supported by software that runs on one or
more computers. This software includes two principal modules.
One module is responsible for handling the user's terminal.

Since this module will often run at the user's access point, we
call it the "access point agent"., The other module interacts
with the user at a higher level to provide access to Cronus
resources in response to user commands. We call this module the
"session agent"™., It is useful to think of the access point agent
and the session agent as processes.

(14). The Primal system will not support workstations.

.........
......................

Report No. 5261 - Part A Bolt Beranek and Newman

For a user whose access point is a TAC, the access point
agent runs on the TAC and the session agent runs on a shared
host. Users who access Cronus through the Internet are allocated
user agents that run on shared hosts, and their access point
agents may run either on the (non-Cronus) host used to access the
DOS or on a host within the DOS cluster.

The standard user interface software will be written to
operate with CRT terminals that have cursor positioning
capabilities. More capable terminal devices (e.g., graphics
displays) can emulate the standard terminal device to obtain a
compatible interface. 1In addition, a means will exist for users
with other less capable terminal devices (e.g., printing
terminals) to access the system. In the latter case, some
sacrifice in the quality, uniformity, and power of the user
interface is unavoidable.

The purpose of a user interface to Cronus is to provide
human users with uniform, convenient access to the functions and
services. User requests should be similar regardless of the
particular Cronus components that implement them. For example,
the way a user instructs Cronus to run a program should be the
same (except for the name of the program) regardless of where
within the cluster the program will execute. A user should not
have to pay undue attention to the mechanics of establishing
access. For example, to run an interactive program, a user
should not have to explicitly establish a communication path with
the host. Similarly, to delete a file a user should not have to
explicitly establish communication with a file manager.

To be uniform and convenient does not mean that a user
interface must make the network or the distribution of the system
invisible to users. Often users will want the distribution to be
transparent, and the user interface should provide transparency.
There will also be situations where it will be important for the
distribution to be visible to users and for users to exert
control over how the systen deals with distribution., For
example, system operators and maintainers will need to deal
directly with the system's distributed nature. Furthermore,
ordinary users may want to control where programs run or files
are stored.

A variety of different user interface programs can be
constructed to manipulate the Cronus functions previously
described. Cronus has been designed such that almost all of the
user interface is provided by application level programs, which
permit the coexistence of many different user interfaces and an
evolving approach toward developing them.

A-127

[3 I'_"]

A & B P arS P SR TRl A

-.‘. o

&
[N XA
o) ‘:‘r{‘-..,\ 9 Y
LR LR AL B

3 XA
...

Report No. 5261 - Part A Bolt Beranek and Newman

The development of user interface functions will be based on
the following principles:

o Since most requests cannot be performed directly by the
user interface it acts on the user's behalf to initiate
activity by other modules.

o The user interface enables a user to initiate and control
multiple simultaneous tasks. 1In particular, a user may
have several application programs executing concurrently.

o The command interpreter may be selected at login time.
Users with strong preferences for different styles of
interaction can be accommodated simply by running
different user interaction modules.

0 The user interface functions developed for the ADM DOS
will be designed to operate best with a high speed CRT
display terminal, with cursor positioning capability. It
will make use of multiple windows on the display surface
to display user interactions with the separate activities
being controlled by the user. In addition, windows will
be used to display system status and user help
information,

A-128

Ll e A gl A A S NP T I SO RS P LR LN AR ST A A St M it S e S

.....
.....

T e T e P T e T VY e

Report No. 5261 - Part A Bolt Beranek and Newman

12 Monitoring and Control
12.1 System Capabilities

The monitoring and control system (MCS) for Cronus includes
monitoring and control of hosts and of the Cronus functions on
these hosts, of the network substrate, and of gateways. The
monitoring and control station provides the functionality of an
operator's console for the Cronus Distributed Operating System.
The MCS treats Cronus as an integrated system, decomposed by
function rather than by host. Where practical, it also monitors
and controls Constituent Operation System (COS) functions from
the same station, but such functions are limited by our desire to
modify the COSs as little as possible. The discussion in this
section includes elements of the Reliable System as well as of
the Primal System. These additions are included to assure that

the Primal System design does not interfere with future
extensions.

Cronus is restarted from the Monitoring and Control System.
For some hosts, the MCS will invoke functions already on the
hosts; in other cases (for example, GCEs which have no disks),
the MCS will download the host to start Cronus.

Network monitoring and controlof a local area cable-based
network such as the Ethernet is relatively simple. It includes a
detection and reporting of changes in host availability:
monitoring and controlling traffic levels on the cable. Cable
utilization and the traffic level of each host is measured.
Priority or allowable traffic density may be set for each host.
Transmissions from a host may be stopped altogether.

12.2 System Model for Monitoring and Control

Cronus consists of a set of services(l5) and low-level
system support entities, including the Cronus IPC mechanism. The
MCS is a set of processes on a Cronus host; its functions can be
executed from anywhere in the cluster.

(15) A Cronus service is a process which performs Cronus
operations in response to requests from other Cronus processes.
All object managers, for instance, are services.

A-129

............
........

- o “nA'.u. P

o '.IN'\' R

W W W W ey g YRS, T, TR
vl.-'l.l" I . U .-l'l- . . g

...............................

Report No. 5261 - Part A Bolt Beranek and Newman

| | | | |
|Service |] MCS | | Data
| Probe | | Service | =—- | Reduction
| | =>= <~ Process | \ {
------------ \ /mmmemmmmemeee N\ mmmmm e
\ / \
\ / - |
---------------- / \ /\==—=- | |
/N — \, | mmememm—e-
/ -—— \ | / Cronus \
| | \ | File
| Cronus IPC | ->1 System
| |/ \
| |/ meememe——-
\ - P
\ / \ memeeee- |
———- \ / \ /\-——- :
|
/
......................... /
| | | |/
1 Host | \===——- (== MCS ==
| Probe |=>===\ | Host |
| | | Process |

Figure 14 . Structure of the MCS

The MCS monitors both the support layer and the services.
The set of services is extensible, and the MCS is designed to
accommodate new services.

The MCS is based on a functional decomposition rather than
on a site-based decomposition of the system. For example, one
service monitor monitors all file system managers while another
monitors authentication managers. The MCS will be aware of
distinctions between sites and to distinguish them in its
reports.

A-130

Report No. 5261 - Part A Bolt Beranek and Newman

12.3 Structure of the MCS

The MCS runs as one or more Cronus processes. The MCS
station is not bound to any particular site, although certain
information gathering functions are most conveniently performed
at one location. It uses the Cronus file system, in which it
wil)l store data, and the Cronus IPC facility. The MCS will be
divided into two parts. The first part is the interactive
section, which does on-line data collection, display, and control
of Cronus. It obtains status information from host and service
probes, and incorporates it into its own data base. The second
part performs data reduction and generates reports.

The interactive section of the MCS consists of a very low-
level module and a higher level module (see figure 1). The
majority of the MCS resides in the high-level module, a Cronus
service which communicates with its probes through the Cronus
interprocess communication facility. The low-level module uses
only the lowest level of network protocol (User Datagram
Protocol). This primitive lower level can be relied upon when
little of Cronus is functioning. This portion will be
implemented first. It provide the functions required to
bootstrapr Cronus, to examine and alter memory on Cronus hosts,
and to do simple monitoring of the Cronus network.

There are two types of reports to the MCS: polled messages
and traps. Polled messages are reports in response to a request
from the MCS. Traps are reports from probes which are
unsolicited. They normally represent unexpected or unusual
events.

The MCS uses polled messages as the primary data gathering
technique. The polling request provides a mechanism which will
quickly recognize when a host or service disappears.

Traps are employed for reports about specific events, which
may require real-time response, or which are unanticipated. For
instance, the crash of a service would be reported as a trap, so
that service restoration or reconfiguration could be instituted
immediately. A host coming up would similarly be reported by a
trap message, because of the timeliness of the information and
because a new host on the network might not get any unsolicited
polls(16).

(16) . Polling for hosts which are known to Cronus but currently
down would continue at a low rate, however, so that a lost trap
for such a host coming up would not be fatal.

Report No. 5261 - Part A Bolt Beranek and Newman

The MCS contains a trap logging service. Trap reports are
generated by both host and service probes. Trap messages include
a service type and priority in their header, so that display
routines can easily determine which traps require immediate
display in a high-priority window, and so that the operator can
easily select all traps in a priority range from a given service
class (e.g. file system). The trap logger could be extended to
permit automatic operations in response to traps, so that a
"service crashed" trap report could be used to force a restart of
the service from the MCS.

The display processes normally directs critical reports to
the system operator, with each process controlling one or more
text streams. A text stream may be directed to a display
terminal window, a hardcopy output device, a file, or several
different places. The operator terminal should support a multi-
window display, which will enable the operator to monitor a
variety of aspects of system operation simultaneously, with one
window usually reserved for critical reports. Other windows will
be created to present data as requested. For instance, an
operator might choose a process in one window which presents the
general status for all hosts in the network, and another window
to present the load status for a particular host of interest.

When the sophisticated window package is not available, a
simpler interface would enable the operator to monitor one window
at a time; the difference would be invisible to the MCS since
each window would look to it like an independent display.

The data reduction facilities of Cronus can reside wherever
convenient, and will be regarded as background tasks. The
integrity of the system does not depend on their availability,
but their reports should prove useful to the tuning and
management of the network.

The data reduction section will take advantage of the fact
that the files generated by the interactive section are available
globally as part of the Cronus file system.

12.4 Host Probes, Service Probes, and Network Monitoring

A host probe is a primitive entity which every Cronus host
must provide to report status to the MCS. A host probe must at
least report the presence of the host and its internet address at
the time the host operationally enters Cronus, and must respond
to AREYOUTHERE messages broadcast from the MCS. The host probe

A-132

UL AL AL At n s A E A AR e A AN I AT e it At St S S AR Tk A i O ARG

L .

Report No. 5261 - Part A Bolt Beranek and Newman

1s the distributed part of the low-level section of the
monitoring and control system. A host probe will often offer
further information in its report: host type, probe reports
available, current MCS reports, Cronus services, level of
integration, etc.

Service probes are monitoring entities in all Cronus
services., Services to be monitored will include object managers,
terminal concentrators, and user authenticators. Service probes
reflect a functional rather than site-based decomposition of
Cronus. Data from related service probes on different hosts are
combined in the MCS, in order to present a more understandable
picture of the service. The MCS specifies what types of data
should be collected and reported through poll responses and
through traps.

A service probe is located within the service. Unlike host
probes, they may require a certain level of Cronus functions,
since the loss of service monitoring and control does not
compromise our ability to restart the system. Service probes use
the full range of Cronus services, especially the Cronus IPC
facility.

Some messages, including control messages and high-priority
monitoring, will run with a priority above that of the service.
Most monitoring, however, will run with a priority below that of
the service itself.

The service probes for the Cronus file system reports the
loading on the local portion of the file system, the numkar of
requests for various classes of services, etc. It may also
include the ability to trace all activities on particular files
(using traps) as a debugging aid.

The process manager probe reports machine process loading,
both for Cronus and non-Cronus processes, and optionally supports
tracing services for activities on Cronus processes. The probe
will report certain classes of exceptional events on processes,
and will provide services, invokable from the MCS, for invoking
and killing processes, and for tracing process activity on a
per-process basis.

Gateway monitoring would normally fall into the category of
service monitoring; however, the gateway already reports status
in response to polling by a host. We will use this capability to
obtain gateway and internet status. Since we do not wish to do
development in this area, we will to restrict ourselves to the
available capabilities.

RN

YT
- LA

-
@

IS
» .
LA,
100l

e

a

v er
“w " e

LB
«
»
»
. s EY
.
»

o RRRAREAS

Report No. 5261 - Part A Bolt Beranek and Newman

The MCS will not monitor the cable network traffic directly.
Rather, it will gather reports from hosts on the traffic sent, e
traffic received, and the collision rate at each node. NN

12.5 Loading and Debugging Support -j!?

The control function has the capability for restarting S
Cronus on the hosts of the network. It may do this in one of two e
ways. In some cases (e.g. GCE), this includes transmitting the RS
code directly to the host to be loaded. In other cases, the ::fﬁ
computer's own loading sequence is invoked, using its private ,q

secondary storage. In no event should the downloading procedure R
require the assistance of a third machine., Some machines may w
detect some of their own failures and restart themselves

A distributed, heterogeneous system such as Cronus poses
special problems for debugging tools. The goal is to have a
sophisticated debugger which runs on one host and debugs on
another. We would like to have a single debugging system be
capable of debugging computers of differing architectures.
Moreover, we would like the debugger to be able to debug at
source language level to provide for efficient development.
Currently, the leading candidate for developing such a tool is
XMD, which is adapted from the multi-window editor PEN. XMD does
not currently debug code in high-level languages, but can be
extended in this direction, since it does not depend on the
structure of the debugged code, relying instead on symbol table
entries to provide it with information about the target code.
XMD may soon be extended to debug C source code as part of the
effort of another project at BBN.

12.6 Cronus Initialization

The initialization of Cronus is performed from the
Monitoring and Control Station. 1In initializing the system, the
MCS will have no certain knowledge of what hosts are available.
The first step is to poll for the available hosts, and then to
initialize each host which responds.

A-134

Report No. 5261 - Part A Bolt Beranek and Newman

The initialization of Cronus proceeds as follows(l7): (See
the scenario in Section 13.)

1. The MCS broadcasts AREYOUTHERE onto the network.

2. Bach host has a routine in its COS that listens for
AREYOUTHERE and responds with HEREIAM and the
parameters (a) name, (b) internet address, (c¢) boot
class, (d) boot file name, and any other required
information. The name is printable. The boot class
indicates the method used to initialize the host.
Class 1 hosts accept a BOOTYOURSELF command and
initialize local Cronus software upon its receipt.
Class 2 hosts require a BOOTLOAD command, which is
followed by a boot file (item 4d) which passed to the to
the host with the code to load. Class 3 hosts require
a host-specific loading protocol, which is executed on
the MCS from the boot file. (There are no plans to
implement Class 3 hosts in the ADM.)

3. When the MCS receives a HEREIAM message, it enters the
addresses of the host in a host monitor table, with a
notation that the host is not up. It then sends a
BOOTYOURSELF message if it is a class 1 host, or a
BOOTLOAD followed by the required file if it is a Class
2 host.

4, When a host has completed Cronus initialization, it
sends a message BOOTDONE to the MCS. Alternatively, it
rmay send the message BOOTFAIL, possible with parameters
indicating reason (e.g. "missing file block 5"). The
MCS may then retry the boot, if appropriate.

5. After the host is initialized, the MCS will communicate
with it using the Cronus IPC mechanism. It will
normally obtain a list of available services and will
then ask it to start up the services it supports.

The initialization procedure requires a small amount of code
resident in each processor in order to respond to the MCS
messages, This code will fit in ROM on machines which do not
have secondary storage.

(17) : These messages do not use the full Cronus IPC mechanism in
the first four steps of the procedure, since the operation switch
and primal process manager are not in place on the host being
initialized. Instead, they will be implemented as VLN messages.

A-135

- .'.,
ot S e
@

.,““‘.‘
T e .

1)
Sl ARl

. 'l

" . - . Gl
'-,-., A ,',"!. AR
PERSEA v S A s Y | 3

e

S

Report No, 5261 - Part A Bolt Beranek and Newman o
S

.9

12,7 Siting the Monitoring and Control System ;}g
N A :.«1

Should the MCS be located on the GCE or on an application ca
host? Using a GCE is desirable because it can be specially e
configured to support the MCS; it is intended to be the dedicated]
processor; it provides controlled, predictable performance with e

dedicated, low cost hardware; and it is expected to be
redundantly available. Since UNIX hosts may not be available
redundantly, we would less often have back-up service if use it
on a UNIX application host for the MCS. On the other hand,
building the MCS on an application host has several advantages:
the UNIX host provides a much richer development environment;
have already been written for UNIX, so that less program
development would be necessary; we can take advantage of the set
of available UNIX utilities.

For the near term, we will build the tools on UNIX. We will
be careful to code the routines in a portable manner, so we can
easily move them to a GCE environment. This provides us with the
benefit of using UNIX in the short term, while keeping the
eventual goal of relying on redundant GCE's for Cronus services.

12.8 Phased Implementation

Implementation of the monitoring and control station will
occur in phases, both in terms of functionality, and in terms of
reliability and performance. The functionality will be increased
both as the reporting capabilities of the probes increases, and
as the need for data analysis grows.

Initially, the MCS will exist on a single host, without
strong reliability or performance goals. We will first build the
host monitoring section of the MCS, and simple host probes in
order to be able to start and restart Cronus hosts and services,
and to record the status (up/down) of hosts. As services are
written, we will add service probes, and extend the MCS to
monitor them. This initial system will utilize the UNIX file
system until the Cronus primal file system is available, and will
then convert to the use of Cronus files. Later the MCS will
reside on a GCE and will use standard Cronus files.

A-136

F)
r s %
]
’

UME NG A Jan it Sak R0 B I R AR IR RSP VA AN AR AR A SO AL AN E AN A o P S 3

5 .

r e
£ Report No. 5261 - Part A Bolt Beranek and Newman .
=]
{ o
- 13 Scenarios of Operation L
1, o .

i 13.1 Basic User Commands and Functions

N This section presents examples of the use of Cronus

functions and of the integration of structural units. Scenarios
are presented for typical system and application tasks. The

e intent is to suggest the interactions through the flow of control
- and shared data. The scenarios also suggest how the primitive

- functions might be combined to support operations required of
modern operating systems. The first few sections are narrative,
and the later ones provide pseudo-code examples. Details of
syntax and calling sequences in these examples are not those of

N the actual implementation.
3ﬁ Many of the user commands and functions of Cronus fall into
! the following categories:
N o] Session initiation and termination: Login, Logout,

- Attach, etc.
Ay
{Z o] User and system data base status and maintenance: Display
; and edit user records, access control lists, show logged
L on users, etc.
;ﬂ o File manipulation and file/directory maintenance: name
N lookup, read, write, directory listing, etc.

o] Program invocation and control: create process, terminate

i process, etc.

< o Input/Output: List file etc.
fﬂ o System Operation: Starting the system, monitoring its
\LL components, etc.
o Each of the following sections presents a scenario from one RN
o of these categories. S]
" RIS
< T
@ ..
- o
N o
~J
@
‘:j
) ::: A-137

+

v

R AT YR IO Y
SR PRI IPEPLPRIRTS Y T IRI TLALR

A NN Rt O o GO R AT AN Bl T ol T AP i A M S S i it e TR S S fig 4
o

.\'I
)

Report No. 5261 - Part A Bolt Beranek and Newman gy
.

13.2 Registering a New User R
L

New users may be added to the system only by members of the S
administrative group. The command to create a principal entry DAY

issues an Invoke operation specifying the logical name for the
principal data base manager (CL_Principal) as the target process,
and including the Create_Principal operation and its parameters
in the message text. The Invoke uses the Locate(CL_Principal)
operation, to find an available principal data base manager, then
sends the message text to one of the sites that responds using
SendToHost. The site identifier may be cached to simplify
subsequent requests. The principal data base manager creates a
user entry and returns the unique identifier for the new object.
This UID is the Cronus internal name of the principal, and will
appear in Access Group Sets and Group specifications. It may
also be used to identify the user record whenever that record
needs to be accessed.

When a principal is added, a number of user data base
entries are initialized. One of those is the priority range
authorized for the user. A private directory is created, and the
principal is given all rights to it. The pathname for this
directory is entered as the default home directory for the
principal. The home directory serves as the repository for
command interpreter profile data that specifies user-customizable
system features.

13.3 Login

A user may connect to Cronus either through Telnet and a
standard session agent running on a shared Cronus host, or
through a Cronus Terminal Access Computer (TAC). Telnet supports
access from outside the cluster through gateways, and from other
devices obeying the protocol.

Access through a Cronus terminal device process is available
only from a host that supports Cronus interprocess communication
protocols and will probably be supported only on workstations or
Cronus TACs. It is more powerful, because the access point
software is fully integrated with Cronus.

To initiate a session, a user must have a terminal device
process to manage his terminal comrmunication, and a session
controller process to manage interactions with the system.

Telnet access requires both processes to execute on a shared host

A-138

a_

D ale e a e

[2
‘-

-
.«

Tl 4‘-'- L L
@

|

I'l s,
e
RS SR

P S AN
. ., 4_ 2

Report No. 5261 - Part A Bolt Beranek and Newman

of the system. A workstation access path can support both
processes; a Cronus TAC access path places the terminal device
process in the TAC and the session controller process on a shared
host.

Login is handled by the Cronus session controller process.
The user is prompted for a login name and password, which are
used by the session controller process to build a request to the
Authentication Manager by invoking the operation.

Authenticate_As(name,encrypted_password)

On receiving this message, the Authentication Manager retrieves
the associated principal data base entry, verifies the password,
and creates the Access Group Set for the process.

The Authentication Manager interacts with the Cronus Session
Manager to record the session. The Session Manager assigns a
session identifier and adds it to the table of active sessions.

A session record contains are the UIDs of the session principal,
controller process, and terminal device process. This table is
used to satisfy status requests about the cluster and active
users. Some emergency procedures, (for example, destroying all
processes associated with a session), may also rely upon this
table.

The session identifier,the AGS, and other user data base
entries are placed in the process environment through an
interaction with the process manager for the authenticating
process.

After modifying the process environment to indicate
successful authentication, Authenticate_As returns the principal
UID to the authenticated process. This identifier is used to
interrogate the user data base for other information needed to
complete the login sequence. One such item is the default home
directory, the symbolic name of the initial Cronus directory
which is used for unrooted catalog lookup operations, including
the search for additional user initialization data. The
directory name is converted to a catalog entry UID by an
interaction with the catalog manager, and the UID is stored in
the process descriptor.

A principal may have a default program registered with the
Authentication Manager; if so, this program is executed at login
time. If no program is specified, the standard command
interpreter is assumed. The standard input and output for the
executing process are directed to the principal's terminal device

A-139

o
Report No. 5261 - Part A Bolt Beranek and Newman e
.0
oS
prOCeSS. \:’._:
NS
13.4 Accessing a File @

Each process descriptor contains (among other things) an T
entry for the UID of the current directory. This value is h
initialized at login to the principal's home directory, but can
be modified during the course of the session. The current
directory is inherited by a new program carrier process.

Suppose a client process wants to read the first 560 bytes
of data in the primal file with the symbolic name :a:b:c. To do
this, it would obtain the UID for the Primal File by means of:

b PP

Lookup(nullpirUID, ":a:b:c", true)
-> abDirUID, abcCatEntUID, abcCatEntContents.

g

By convention, the UID for the null directory, nullDirU1D, is
used to specify the starting directory whenever a complete name
is to be looked up. Next, it would read the file data by means
of:

Read(abcCatEntContents.ObjectUID, 8, 508)

which would cause the primal file manager to send the first 500
bytes of data for the file.

These operations are made available by a single function
call in the Process Support library.

ReadFileData(":a:b:c", 8, 588)

Now, assume that a process has a relative symbolic name for a
file. The current directory UID is included in the request to
the catalog to look up the file name. Using the general form of
Invoke, the catalog manager is found based on the hint in the
catalog entry UID, The catalog manager performs the lookup and
returns the primal file UID associated with the symbolic name.
The primal file UID is then used to find the file manager for
this object, again using the hint which is part of the file UID
to locate the manager.

{:
::-

-,

B % 2l Y ay
‘I_zll'l.l

et
R T T

A

Report No. 5261 - Part A Bolt Beranek and Newman

13.5 Creating a File

A Cronus cluster may contain many hosts with file managers,
each willing to store and retrieve file data at the request of
other processes. The operation

Locate (CL_Primal File)

can be invoked by a process to determine the set of accessible
primal file managers.

One policy for the creation of files might be to try to
create the file on the same host as the creating process if a
local primal file manager responded. If this is not possible, a
remote manager can be selected and asked to create the file. The
primal files manager include status information, information in
the responses, such the amount of unused disk storage available;
a measure of the current I/0 and processor load; or a restriction
on the principal UIDs that may to create files through this
manager. This information can be used to select a storage site
for the file. The selection strategies are packaged in a library
routines in the Process Support Library.

The file may need a symbolic catalog entry. The catalog

entry operation is carried out by the catalog manager of the
directory to which the file is being added.

Suppose that the client process wants to create a file and
to give it the symboli¢ name :a:b:c. Further suppose that a
directory named :a:b already exists.

First the client would use the

Create -> FileCUCID

operation to create a new primal file. The file would be empty.
The client could write data into the file by means of:

Write(FileUID, BytePosition, Data)
or by bracketing the write(s) by
Open(FileUID, ReadWrite, Frozen)

and

A-141

[

...................

- P T T '-‘-'.-'n'.-" . P o -
PV R FE TN VPSPPI P S S vl 1y il W)

@r

)
oo

[
.

‘.'."'-;.“‘- 2,
SO

Ly & -'-’\.

)
PR]
RS VR

Report No. 5261 - Part A Bolt Beranek and Newman

Close(FileUID, RetainWrites)

operations.,

To catalog the file, the client first obtains the UID of the
directory that will contain the catalog entry for the new name:

Lookup(nullDirUID, ":a:b", true)
-> abDirUID, abCatEntUID, abCatEntContents

and then enters the new name:

Enter (abCatEntContents.ObjectUID, "c", FileUID)
-> abcCatEntUID.

If there were no directory :a:b or :a, then the client would
first have to create both :a and :a:b. This could be done as
follows. First the client would obtain the UID for the root
directory. By convention the name of the root directory is
:Root. The fact that the root directory is cataloged in itself
represents the only violation of the tree structured property of
the Cronus symbolic name space.

Lookup(nullDirUID, ":Root", true)
-> rootDirUID,
rootCatEntUID,
rootCatEntContents

Next, the client would create the directory :a:

CreateDir(rootDiru1D, "a")
-> abirUilD, aCatEntUID

and then, it would create the directory :a:b:
Create(aDirUID, "b") -> abDirUID, abCatEntUID.

At this point, the symbolic name :a:b:c can be established, as
above, for the primal file.

The Process Support Library contains routines coupling the
creation and naming of files, to avoid the situation where a
failure produces a file which does not have a symbolic catalog
entry and hence is not easily accessed. The operations are
ordered such that the symbolic name is entered before the file is
closed. If the process fails after the name is entered, the
catalog entry may be deleted by explicit user commands, or by

A-142

.....
............
.....

.............
.................

..................

}5 Report No. 5261 - Part A Bolt Beranek and Newman
) ",

{

X .automatic recovery mechanisms.

\i

13.6 Deleting a File

Y Suppose the name of the file to be deleted is >a>b>c.
Deletion is accomplished by the following operations:
Lookup(nullDirUID, ":a:b:c", true)
-> abDirUID, abcCatEntUID, abcCatEntContents

Delete (abcCatEntContents.ObjectUID)
Remove (abcCatEntUID)
R If the primal file and catalog manager are coupled, the

N Delete operation could have the side effect of invoking the
et Remove operation.

{ 13.7 Listing a Symbolic Catalog Directory

-, Suppose the name of the directory is :a:b:c. A utility

: program executes the following sequences of operations to print
-L the desired file names.

InitScan(nullDirUID, ":a:b:c:*.*") N
-> abcScanState,
xDirUID,
xCatEntUID,
xCatEntContents

- NN

repeat until abcScanState indicates end of scan
[if TypeOf(xCatEntContents.ObjectUID) = A_filetype
then print xCatEntContents.SymbolicName;

e
«

. ScanDirectory(abcScanState) ‘

-> abcScansState, R
xDirUID, i
xCatEntUID,
xCatEntContents;

AL,

A-143

NI PR

L]

A

'ﬁ Report No. 5261 - Part 2 Bolt Beranek and Newman

= 13.8 Running a Program

s

< «

. Application programs are executed within program carrier

,}ﬁ objects. The creation of an application process has three steps:

a program carrier is created, the program carrier is loaded with
the program image, and the program carrier is started.

N IR
e The program image will generally be obtained from a Cronus RO
o file, which may be anywhere within the Cronus file system. A AR
> routine, that combines these process creation steps process Lo
= creation will be available in the PSL. This routine takes as one ST
\ of its arguments the symbolic name of the program image file. v
“a The symbolic name is translated to the file UID by means of a T
AN symbolic catalog lookup, and the file UID is used to load the T
4y program image into a new program carrier object. o
N s
SN In a heterogeneous system, a particular program image can e
i only be executed on certain processors. A VAX prodgram image, for b
N example, can only be executed on a VAX host. Some mechanism must e
f- exist to match the the program image to a processor capable of A
o executing it. N
i AR
N Subtypes of program carriers are defined for each processor Ejﬁ}
(architecture for example, CT_VAX Program_Carrier. These subtypes e
contribute no new operations to objects of type v
CT_Program Carrier, but provide a means of locating a specific MADASA
kind of processor. For example, the operation i}i?
AN
Locate (CL_VAX_Program_Carrier) e
o will attempt to locate all program carrier managers on VAX hosts. =R
.:j Executable files are subtypes of primal files with the type o
' CT_Executable. The descriptor of a program image file contains y
s the logical name of a program carrier subtype, e.g.,
CL_VAX_Program_Carrier. The file descriptor may also contain
. other information such as special host requirements. An

operation on program carrier managers, Resource_Test, determines
if a particular manager has the resources which are prerequisites
to execution; the Create_Process routine can invoke this test
whenever a process has special needs.

.
.,
. >
L)
‘e
.l
b
-

-

The actions carried out by the library routine can now be
described in greater detail: T

l. The symbolic program name is translated to an executable
file UID, by means of a symbolic catalog lookup.

- N

” Sateve
............ N N L S e T S e
- .- .\ - - - - ‘.\‘ l\ - - .\ \ -.‘a-. e . .“ ------ =~ L
- N - -~ P T R T AL A .--_ - - - \ \q

Report No. 5261 - Part A

2. The routine requests the file descriptor of the program
image file, by invoking the Read_bDescriptor on the file
object.

3. The required program carrier type and any special
requirements are determined from the file descriptor.

4. A Locate operation finds the Program Carrier Managers
capable of executing this process, and a Resource_Test
operation narrows the candidates further.

5. A Program Carrier Manager is selected according to some
policy (18) and the operation Create_Program_Carrier is
invoked on it; the UID of the new Program Carrier object
is returned.

6. The Load_Program operation is invoked on the program
carrier object.

7. When the load operation is complete, the routine receives
a reply from the Program Carrier object, and then invokes
Proceed on the Program Carrier to start it.

The Create_Program_Carrier operation takes as a implicit
parameter the process descriptor of the creating process, which
is inherited (with certain changes) by the new process.

A process descriptor contains some information which is
maintained securely by the system (e.g., the process UID, and the
UID of its principal) and an open-ended set of information
inserted into the descriptor by the Change_Process_Descriptor
operation, All of the open-ended information is inherited
directly by the descendants of the process. Some of the system
information is inherited (e.g., the principal is normally
inherited) and some of it is not (e.g., the process UID of a
descendant is unique to it). The system information defines the
authority of the new process for access to information and
resources.

The creating process may invoke Change_Process_Descriptor

(18) A reasonable policy might select the Program Carrier manager
on the 1local host, if it is a candidate, and to select the most
lightly loaded host (from information in the reply to Locate) if
it is not. Many other policies are possible, and explorirg the
possibilities is an important area of future work.

A-145

Bolt Beranek and Newman :ﬁﬁ}

o F »

.o
Y
-
..

¢

~
!’ 4.

4 " 3 [y |
LI

N
-'l L AP

.
LAY

Rk
D .
PRI AP SN | %

]!

KRV R Ry

S
et
s 8

,'..‘-'s‘.".‘.‘
AT P
PUNEN

Pl

BAPR
Yol e

T
s
»

yy

\l
PR

0 0
AL,

Report No. 5261 - Part A Bolt Beranek and Newman

after but before starting, the program carrier to make changes in
the descriptor.

13.9 Starting a Cronus Service

In this section we sketch a scenario which might be directed
by a cluster control station, to startup, operate, and take down
a Time Service instance on one host. It is indicative of the
steps required to initiate and control an initial process load
sequence. The steps required to bring up each host to the point
assumed in this scenario have been discussed in Section 12.

The Cronus Time Service has two main functions:

1. To respond to direct requests for the date and time, and
for format conversions among the Cronus date and time

formats.

2. To periodically multicast the date and time on a well-known
VLN multicast channel.

Assume that host CVAX has joined the Cronus system, and the
primal process manager is the only active Cronus process. The
control station performs

InvokeOnHost ("CVAX",
CL_Primal Process,
<(CK_Operation_Name,CO_Service_List)>

)

and receives in reply a list of the services which could be
created on CVAX; only the PPM is marked as active. The logical
name CL_Time_Service is contained in the list. The control
station then performs

InvokeOnHost ("CVAX",
CL_Primal Process,
<(CK_Operation_Name,CO_Create_Primal Process)
(CK_UID_Service_Name,CL_Time_Service)>)

The Time Service process is created and started, and the control

station receives a reply containing CVAX_Time_Service_UID, the
specific UID of the Time Service Primal Process. The Time

A-146

’/"/’ L
[] ¥ » 8
Ll

Py
.
<

»

AT

L 28
;Zf Report No. 5261 - Part A Bolt Beranek and Newman o
R o]
. .‘
4

Service begins its work, and if left undisturbed will

periodically multicast the date and time forever. The control o
station (or any other Cronus process) could request the current]
date and time by performing A

-
InvokeOnHost ("CVAX", :1ﬂ

CL_Time_Service, s
<(CK_Operation_Name,CO_Date_Time)>) Ll

At some later time, it becomes necessary to temporarily
inhibit the periodic multicasts of the Timer Service. The
control station performs

InvokeOnHost ("CVAX",
CVAX_Time_Service_UID,
<(CK_Operation_Name,CO_Change_Process_Descriptor),
(CK_Modify,)
(CR_IPCEnabled, "false")>)

After the control station receives the reply confirming this
operation, it is known that all IPC to or from the Time Service
has been inhibited. The Time Service process continues to exist,
however, and is eventually restored to its normal function when
the control station performs

InvokeOnHost ("CVAX",
CVAX_Time_Service_UID,
<(CK_Operation_Name,CO_Change_Process_Descriptor),
(CK_Modify,)
(CK_IPCEnabled, "true™)>)

Finally, perhaps in preparation for replacing the Time Service
code with a new version, the control station does

InvokeOnHost ("CVAX",
CVAX_Time_Service_UID,
<(CK_Operation_Name,CO_Destroy)>)

and the Time Service process is known to be destroyeé when the
reply arrives at the control station.

Report No. 5261 - Part A Bolt Beranek and Newman

14 Cronus Primal System Support
14.1 Primal System Hardware

The Advanced Development model of the Cronus distributed
operating system will have three mainframe computers, four GCEs,
and a gateway. The mainframe computers are two BBN C78s and a
Digital Equipment Corporation VAX 11/756, the GCEs are Multibus
computers with M680800 central processors, and the gateway is an
DEC LSI-11 based computer.

The C78 computers are configured as general development
machines. The first, C78~1, is the site of the majority of the
develorment work since it supports both the C78 development tools
and those of the GCEs. We will rent time on a second C70, C786-2,
which will be used to exercise Cronus support for reliable
redundant hosts, and to test scalability. Both C70s will run
UNIX version 7 as released by BBN Computer Corporation and
modified by the Cronus project.

*y .‘l ". '1‘. ,v'.; ks

The VAX 11/750 provides a VMS-based software develorment

environment, as well as a mainframe of a distinctly different A
architecture. 1Its purpose in the ADM is to provide a limited .
integration host. Since it is a large well-supported mainframe, o
it will contain its own development environment, and we will also &

use it as a source of computer power for general tasks, both to N
off-load the C78, and to test real usage of the Cronus ASRGC
heterogeneous host environment. The VAX is configured to reflect -
its usage as a software development machine. e

' ".':‘/, '

The Cronus system has four GCEs, configured for a variety of
tasks. Since they are compatible machines, their configurations
will vary over time, as we perform different experiments on the
network, and as we make board substitutions to make one GCE
perform functions of another which is temporarily out of service.
The configuration table for the GCEs should be regarded as only a .
typical set of GCE configurations. 2.

The Cronus gateway is implemented on an DEC LSI-11 computer.
This would normally be a task for a GCE; however, standard
internet gateways are currently implemented on LSI-11, and
adoption of the LSI-1l gateway allows us to obtain an off-the- .
shelf implementation. The next generation of internet gateways v
is expected to be built on M680080 computers, and at that time we *
will probably move the gateway to a GCE.

fo— wan

A-148


~~~~~~~
...................

T
,f Report No. 5261 -~ Part A Bolt Beranek and Newman qi;j
: ..o
= ]
\:; "_:‘; -
« c70-1 1 Mbyte main storage : _';(.y
. 2 80 Mbyte removable disk drives DA
r Magnetic Tape Drive, S
- 800/1600 bpi, 125 ips (Cipher) L
A Arpanet 1822 LHDH interface
I Ethernet interface (using
- Interlan protocol module)

Y
- C70-2 1/2 Mbyte main storage
= 2 168 Mbyte removable disk drives
- Arpanet 1822 LHDH interface
- Ethernet interface (using
n Interlan protocol module)

{f VAX 11-756 1 Mbyte main memory
- .- 1 168 Mbyte Winchester disk

Magnetic tape drive, 1660 bpi, 40 ips

. MDI high speed synchronous serial interface
- 3COM Ethernet Interface

( VMS Operating System
- Table 4. Software Development Hosts
~
&~

o

[~
o
<
Xe
\::-

o
LJ)

o
e A-149
2
"




...........
...............

Report No. 5261 - Part A Bolt Beranek and Newman N

GCE-1+2 Forward Technology M680090
processor with 256 Kbytes memory
Micro-Memory 256 Kbyte memory board
80 Mbyte Winchester Disk Drive and SMD interface
3COM Ethernet Interface
9-slot Multibus backplane

GCE-3 Forward Technology M68000 processor
with 256 Kbytes memory
Micro-Memory 256 Kbyte memory board
8-line RS-232 serial interface
3COM Ethernet Interface
9-slot Multibus backplane

GCE-4 Forward Technology M68866 processor
with 256 Kbytes memory
Micro-Memory 256 Kbyte memory board
8-line RS-232 serial interface
300 1lpm line printer
3COM Ethernet Interface
9-slot Multibus backplane

Table 5. Generic Computing Elements -- Typical Configurations

Gateway LSI11/83 processor card
64 Kbyte memory card
DLV11J 4 line terminal card
MRV11C ROM card (bootstrap)
ACC 1822 interface with DMA
Interlan NI2819 QBUS Ethernet controller
BBN FNV1l Fibernet interface
MDB backplane and power-supply.

Table 6. Gateway Configuration

A-150




Report No. 5261 - Part A Bolt Beranek and Newman

14.2 Virtual Local Network
14.2.1 Purpose and Scope

The Cronus Virtual Local Network (VLN) provides interhost
message transport in the Cronus Distributed Operating System.
The VLN client interface is available on every Cronus host.
Client processes can send and receive messages using specific,
broadcast, or. multicast addressing.

The VLN stands in place of a direct interface to the
physical local network (PLN). This additional level of
abstraction is defined to meet two major system objectives:

o Compatibility. The VLN is compatible with the Internet
Protocol (IP) and with higher-level protocols, such as the
Transmission Control Protocol (TCP), based on IP.

o Substitytabjlity. Cronus software built above the VLN is
dependent only upon the VLN interface and not its
implementation. It is possible to substitute one physical
local network for another provided that the VLN interface
specification is satisfied.

This description assumes the reader is familiar with the
concepts and terminology of the DARPA Internet Program; reference
[NIC 1982] is a compilation of the important protocol
specifications and other documents. Documents in [NIC 1982) of
special significance here are [Postel 198lal] and [Postel 1981b].

The Advanced Development Model ADM will be connected to the
ARPANET, and it is important that the ADM conform to the standard
and conventions of the DARPA internet community. 1In addition, a
large body of software has evolved, and continues to evolve, in
the internet community. For example, protocol compatibility
permits Cronus to assimilate existing software components
providing electronic mail, remote terminal access, and file
transfer.,

The substitutability goal reflects the belief that different
instances of Cronus will use different physical local networks.
Substitution may be desirable for reasons of cost, performance,
or other properties of the physical local network such as
mechanical and electrical ruggedness.

Figure 15 shows the position of the VLN in the lowest layers
of the Cronus protocol hierarchy. The VLN interface
specification leaves programming details of the interface and

A-151

RIS - e ST - '. ...... - " "b .'-\
N R RS o,
SN R ARS IR L
BACALPLIRE VST POy oV PR ALY 8. A0 19 v

.........

A
o

.v_ a0

»
! .
f S

P e
3
Y W

.-

il A tat,




Report No. 5261 - Part A Bolt Beranek and Newman

host-dependent issues unspecified. The precise representation of
the VLN data structures and operations will vary from machine to
machine, but the functional capabilities of the interface are the
same regardless of the host.

| Transmission | User | |
| Control | Datagram | ... |
| Protocol | Protocol | |

| Internet Protocol |
| (1P) |

| Virtual Local Network |
| (VLN) [

| Physical Local Network |
) (PLN, e.g. Ethernet) |

—— - T - G — S ny — - —— - — - — = S G S W= -

Figure 15 . Cronus Protocol Layering

The VLN is completely compatikble with the Internet Protocol
as defined in [Postel 198l1b]. No changes or extensions to IP are
required to implement IP above the VLN.

14.2.2 The VLN-to-Client Interface

The VLN layer provides a datagram transport service among
hosts in a Cronus cluster, and between these hosts and other
hosts in the DARPA internet. The hosts belonging to a cluster
are attached to the same physical local network. Communication
with hosts outside the cluster is achieved through internet
gateways, shown in Fiqure 16, connected to the cluster. The VLN
routes datagrams to a gateway if they are addressed to hosts
outside the cluster, and delivers incoming datagrams to the

A-152




Report No. 5261 - Part A Bolt Beranek and Newman

appropriate VLN host. A VLN is a network in the internet, and ,¢,:f
thus has an internet network number(19). ¢gif‘

to internet
network X

____________________
————————————————————
——————————————————————————————————————————————————
————————————————————

to internet
network Y

Figure 16 . A Virtual Local Network Cluster

The VLN interface will have one client process on each host,
normally the host's IP implementation. The VLN performs no
multiplexing/ demultiplexing function.

The structure of messages which pass through the VLN is
identical to the structure of internet datagrams. The VLN
definition assumes that there is 3 well-defined representation
for internet datagrams on any host supporting the VLN interface.
The argument name "Datagram” in the VLN operation definitions
below refers to this well-defined but host-dependent datagram
representation.

- (19) . The network numbers for the PLN and VLN may be the same or
-7 different. If the numbers are different, the gateways are
somewhat more complex. Either approach is consistent with the
internet model.



Report No. 5261 - Part A Bolt Beranek and Newman

The VLN guarantees that a datagram of 576 or fewer octets
can be transferred between any two VLN clients. Although larger
datagrams may be transferred between some client pairs, clients
should avoid sending datagrams exceeding 576 octets unless there
is clear need to do so. The sender must be certain that all
hosts involved can process the oversized datagrams.

The internal representation of an VLN datagram is not
included in the specification, and may be chosen for
implementation convenience or efficiency.

Although the structure of internet and VLN datagrams is
identical, the VLN-to-client interface places its own
interpretation on internet header fields, and differs from the
IP-to-client interface in significant respects:

1. The VLN layer uses only the Source Address, Destination
Address, Total Length, and Header Checksum fields in the
internet datagram; other fields are accurately transmitted
from the sending to the receiving client.

Internet datagram fragmentation and reassembly is not
performed in the VLN layer, nor does the VLN layer
implement any aspect of internet datagram option
processing.

At the VLN interface, a special interpretation is placed
upon the Destination Address in the internet header, which
allows VLN broadcast and multicast addresses to be encoded
in the internet address structure.

With high probability, duplicate delivery of datagrams sent
between hosts on the same VLN does not occur.

Between two VLN clients S and R in the same Cronus cluster,
the sequence of datagrams received by R is a subsequence of
the sequence sent by S to R; a stronger sequencing property
holds for broadcast and multicast addressing.

In the DARPA internet, an internet address is defined to be
a 32-bit quantity that is partitioned into two fields, a network
number and a local address. VLN addresses share this basic
structure, but it attaches special meaning to the local address
field of a VLN address.

Each network is assigned a ¢lass (A, B, or C), and a network
number. The partitioning of the 32-bit internet address into

» B T e
. . . . P AL
. X « VAT
v . PRI L] L
. & . -’ - LR L I 8 : -t

| A AN




.......

Report No. 5261 - Part A Bolt Beranek and Newman

network number and local address fields as a function of the
class of the network is shown in Table 7.

width of Width of

Network Number Local Address
Class A 7 bits 24 bits
Class B 14 bits 16 bits
Class C 21 bits 8 bits

Table 7. Internet Address Formats

The bits not included in the network number or local address
fields encode the network class, e.g., a 3 bit prefix of 110
designates a class C address (see [Postel 198la]).

The interpretation of the local address field is the
responsibility of the network. For example, in the ARPANET the
local address refers to a specific physical host. VLN addresses,
in contrast, may refer to all hosts (broadcast) or groups of
hosts (multicast) in a Cronus cluster, as well as specific hosts
inside or outside of the cluster. Specific, broadcast, and
multicast addresses are all encoded in the VLN local address
field (20). The meaning of the local address field of a VLN
address is defined in Table 8.

(20) . The ability of hosts outside a Cronus cluster to transmit
datagrams with VLN broadcast or multicast destination addresses
into the cluster may be restricted by the cluster gateway(s), for
reasons of system security.

A-155




Report No. 5261 - Part A Bolt Beranek and Newman

Address Modes VLN Local Address Values
Specific Host ) to 1,023
Multicast 1,024 to 65,534
Broadcast 65,535

Table 8. VLN Local Address Modes

In order to represent the full range of specific, broadcast, and
multicast addresses in the local address field, a VLN network
should be either class A or class B.

The VLN does not attempt to guarantee reliable delivery of
datagrams, nor does it provide negative acknowledgements of
damaged or discarded datagrams. 1t does gquarantee that received
datagrams are accurate representations of transmitted datagrams.

The VLN guarantees that datagrams will not replicate during
transmission, so each intended receiver, a given datagram given
to the VLN by higher levels is received once or not at all(2l).

Between two VLN clients S and R in the same cluster, the
sequence of datagrams received by R is a subsequence of the
sequence sent by S to R, that is datagrams are received in order,
possibly with omissions. A stronger sequencing property holds
for broadcast and multicast transmissions. If receivers Rl and
R2 both receive broadcast or multicast datagrams D1 and D2,
either they both receive D1 before D2, or they both receive D2
before Dl.

While a VLN could be implemented on a long-haul or virtual-
circuit-oriented PLN, these netwcrks are generally ill-suited to
the task. The ARPANET, for example, does not support broadcast
or multicast addressing modes, nor does it provide the VLN
sequencing guarantees. If the ARPANET were the base for a VLN

(21) . A protocol operating above the VLN layer (e.g., TCP) may
employ a retransmission strategy; the VLN layer does nothing to
filter duplicates arising in this way.

A-156




AT A A A LA it S A Ayt e R TR B\ iee S e ASHA S MR S LA A AR AR A S A SASEAURASE A M

...........

Report No. 5261 - Part A Bolt Beranek and Newman

implementation, broadcast and multicast would have to be
constructed from specific addressing, and a network-wide
synchronization mechanism would be required to implement the
guarantees. Although the compatibility and substitutability
benefits might still be achieved, the implementation would be
costly, and performance poor.

A good implementation base for a Cronus VLN would be a
high-bandwidth local network with all or most of these
characteristics:

1., The ability to encapsulate a VLN datagram in a single PLN
datagram.

2., An efficient broadcast addressing mode.

3. Natural resistance to datagram replication during
transmission.

4. Sequencing guarantees like those of the VLN interface.
5. A strong error-detecting code (datagram checksum).

Good candidates include Ethernet, the Flexible Intraconnect, and
Pronet, among others.

14.2.3 A VLN Implementation Based on Ethernet

The Ethernet local network specification is the result of a
collaborative effort by Digital Equipment Corp., Intel Corp., and
Xerox Corp. The Version 1.8 specification [DEC 1988] was
released in September 1980. Useful background information on the
Ethernet internet model is supplied in [Dalal 198l1].

The addresses of specific Ethernet hosts are arbitrary 48-
bit quantities, not under the control of the DOS. The VLN
implementation must map VLN addresses to specific Ethernet
addresses. The mapping can not be maintained manually in each
VLN host, because manual procedures are too cumbersome and
error-prone for a local network with many hosts, each of which
may join and leave the network frequently. A protocol is
descrited below which allows a host to construct the mapping
dynamically, beginning only with knowledge of its own VLN and
Ethernet host addresses.

An internet datagram is encapsulated in an Ethernet frame by

.l-.-l
-
R
A-157
-
\I'
t-.'-t
! .
S < S R S R PR X [ T 2P PR S P L e e,
AR S > e - T AT
T S @\ ..... K SN SN LN \
- R R T I T L2 - I R A R I TR S S R e R T
IR ;'.(-p--AnA".-A o S g PRI '.L-‘-A'P_A'-..\‘\t‘;' AR WU LL W SELE R,




S TR TR T e A e e e N T e T e N s e s e A S R N T AT TN T I VIV TR W ey
- R i padlias & T

...................

Report No. 5261 - Part A Bolt Beranek and Newman

placing the internet datagram in the Ethernet frame data field,
and setting the Ethernet type field to "DoD IP", as shown in
Figure 9.

The Ethernet octet ordering is required to be consistent
with the IP octet ordering. If IP(i) and IP(j) are internet
datagram octets and i<j, and EF(k) and EF(l) are the Ethernet
frame octets which represent IP(i) and IP(j) once encapsulated,
then k<l. Bit orderings within octets must also be consistent.

Each VLN component maintains a virtual-to-physical address
map (the VPMap) which translates a 32-bit specific VLN host
address to a 48-bit Ethernet address. The VPMap data structure
and the operations on it will implemented using hashing
techniques.

Each host controller has an Ethernet host address (EHA) to
which it responds. The EHA is determined by Xerox and the
controller manufacturer. 1In addition, the VLN assigns a
multicast-host address (MHA) te each host. This multicast
address is constructed from the local host portion of the
internet address.

When the VLN client sends a datagram to a specific host, the
local VLN component encapsulates it and transmits it without
delay. The Source Address in the Ethernet frame is the EHA of
the sending host. The Ethernet Destination Address is formed
from the destination VLN address in the datagram, and is either:

o the EHA of the destination host, if the sending host knows
it, or

o the MHA formed from the host number in the destination VLN
address, as described above, if the sending host does not
know the EHA coresponding to the host number.

When a VLN component receives an Ethernet frame with type
"DoD IP", it decapsulates the internet datagram and delivers it
to its client. If the frame was addressed to the EHA of the
receiving host, no further action is taken. If the frame was
addressed to the MHA of the receiving host, the VLN component
- broadcasts an update for the VPMaps of the other hosts. The

[y

¥
Y

- .Y %
G“:..'. e

%1 Q

)

A-158

R

AT T e g




wZ, g ! - . gl ' - Y s et s aT T T AT e T & A
r\'.*'\ I, TNl Sl S Ve, _.‘-',_-.._':.’- ._-.._ _:_ RS } .* .‘ R ".‘.l';“_ N N . .4_"_ A '_~‘_.‘_:‘ _T- —‘-;1. T AT’ _n' P }‘ > . - -

NP ;
" \-:__-
o ‘.."%
B '
JAEN
T
SO Report No. 5261 - Part A Bolt Beranek and Newman
0 1 2 3

1234567 8901234567890 1234561789901
B e e e S e R e Rl e B e B e r b ek ok Sk T FAST S SRy RS
] Destination Address |
B ek rat e e e e l ks B Bl B e T % ST REpy D R W W WS
| Destination Address (contd.) | Source Address ]
B ks et e e B e ks s Bk Ak ks Gl Sk ik Rk ok T SRR R P PR P A S DR WS
| Source Address (contd.) |
e kR s St B s s T S S T St R Rt Kk Rk Sk S T EIR WU S UERFRNEI SRY SR UG ST R B SR
| Type ("DoD IP") |
B s T S ek ok o TR P SR SRR

e S T B b ot et k. et S

[Version| IHL |[Type of Servicel
e e e o e e e e e el o el e e e R ok ks R Tk Bt Bt e Bl B E S B ks S

| Total Length | Identification |
R ks s D B e ak ok Sk, St S E U WA RV R LN WEE WY DY IRART SY SRS R WA U iy
|Flags| Fragment Offset | Time to Live | Protocol |
B R ko k T ey e e B B X, VA SHTIpyr SR DY DT Ry U U W YA DT ST SHpY s
| Header Checksum | Source Address ]
Lk s Dk ke e e e s A R e S N N N T . |
| Source Address (contd.) | Destination Address |

s Rk ek ek et T SEE WP U S Ut U ST WK SYY WP UGN WY WARF SN W S RN VR DR U vy
| Destination Address (contd.) |
T e e ak ok oo T St S SEpS

 E ks kel e e B e B B T O O s

i |
R e D B B R s s A st s e ek ek St T SEP S S S B ST R DR

,.
s
LAl

AORIBE
.

G
] Data | sion
e ke el e e e D e kL e R e k iaks Sk ks e ok S BRI T S N

Ao e o e B e e ks ek ek Rk e, S B B B e e

o -
- | |
tq:y +=t=t=tmd=t=t—tmtmtmtmdmt—tmdmdm et fmfmfpmfm o fm o =} 3
--_.- - ..‘ )
SCAEN -
S5 e e ek e S R B e e e e e et s Sk i s e ik ok S SR L SRS AR T e
re; | Frame Check Sequence I <
e ek a ah ard  h h ke ks ek ks ek T P PR RPN A S e S
P,::.:_:. -
el Table 9. An Encapsulated Internet Datagram
e .-
h../ i =
b, T, ¢
[0 :

PR I LIV S <
AN '-.-._.'\q'_.’ -

.
A s LI S N
LRIV I PP AP S S S




]
r

o
LA A S

R

&

NN NN P '."."'. PR

Report No. 5261 - Part A Bolt Beranek and Newman ‘*;ﬁi

other hosts can then use the EHA of this host for future traffic.
If the MHA is represented as a sequence of octets in hexadecimal,
it has the form:

A B C D E F
#S5-00-08-006-hh-hh

A is the first octet transmitted, and F the last. The two octets
E and F contain the host local address:

E F
960080hh hhhhhhhh

MSB LSB

The type field of the Ethernet frame containing the update
is "Cronus VLN", and the format of the data octets in the frame

is:

9 1 2 3 ST
01234567890 12345678906123456789401 RN
e s kB R e Rk Sk Bk Sk s Rt Sk St s 2k e S DL P Tl SR S S e
| Subtype ("Mapping Update") | Host VLN Address | ST
R s ek s ek 2 ek s s s e ks ek Sk St BT B B R B A e R ks s s A2
] Host VLN Address (contd.) |

44—ttt d—tmtmtmtmtmt=t—t=t=t=—+

when a local VLN component receives an Ethernet frame with type

"Cronus VLN" and subtype "Mapping Update", it performs a Tt
StoreVPPair operation using the Ethernet Source Address field and AR
the host VLN address sent as frame data. b T @

A VLN datagram will be transmitted in broadcast mode if the T
specifies the VLN broadcast address (local address = 65,535, AR
decimal) as the destination. The receiving VLN component merely i

decapsulates and delivers the VLN datagram.

The implementation of multicast addressing is more complex.
Each host defines the number of multicast addresses which can be
simultaneously "attended" (listened to). This number is a RN
function of the particular Ethernet controller hardware and of IR
the resources that the host dedicates to multicast processing. S
The VLN protocol permits a host to attend any number of multicast ;ft;-

A-160 PRIRN




LN AL % s Sl Al SO RN AL TV e

.....

Report No. 5261 - Part 2 Bolt Beranek and Newman

addresses, from @ to 64,511 (the entire VLN multicast address
space), independent of the controller in use.

It is possible to implement the VLN multicast mode using
only the Ethernet broadcast mechanism. Every VLN host would
receive and process every VLN multicast, discarding uninteresting
datagrams. More efficient operation is possible if some Ethernet
multicast addresses are used, and if the Ethernet controller has
multicast recognition which automatically discard misaddressed
frames.

There is no standard for multicast recognition. The 3COM
Model 3C408 controller performs no multicast address recognition.
It passes all multicast frames to the host for further
processing. The Intel Model iSBC 550 controller permits the host
to register a maximum of 8 multicast addresses with the
controller, and the Interlan Model NM1@ controller permits a
maximum of 63 registered addresses.

A VLN-wide constant, Multicast_Registered, is equal to the
smallest number of Ethernet multicast addresses that can be
simultaneously attended by all hosts in the VLN. A network
composed of hosts with the Intel and Interlan controllers
mentioned above, for example, would have Multicast_Registered
equal to 7 (22); a network composed only of hosts with 3COM Model
3C4008 controllers would have Multicast_Registered equal to
64,511, since the controller itself does not restrict the number
of Ethernet multicast addresses to which a host may attend (23).

A mapping is defined which translates the VLN multicast
address to an Ethernet multicast address. The first

Multicast Registered VLN multicast addresses are assumed to be
attended by each host. The local address portion of the internet
address of a VLN multicast channel is a decimal integer M in the
range 1,024 to 65,534.

1. (M - 1,023) <= Multicast Registered. 1In this case, the
Ethernet multicast address is

P9-00-08-00-mm~mm

2. (M -1,023) > Multicast_Registered. The Ethernet broadcast

(22); Multi_Registered is 7, rather than 8, because one multicast
slot in the controller is reserved for the host's MHA,

(23). For the Cronus Advanced Development Model,
Multicast Registered is currently defined to be 68.

A-161

P

. "
:)5.‘ :
Yo

» . L
S

e

s

. SR

N



Report No. 5261 - Part A Bolt Beranek and Newman

address is used. A VLN component which attends VLN
multicast addresses in this range must receive all
broadcast frames, and select those with VLN destination
address corresponding to the attended multicast address.

Delivered datagrams are accurate copies of transmitted
datagrams because VLN components do not deliver datagrams with
invalid Frame Check Sequences. A 32-bit CRC error-detecting code
is applied to Ethernet frames,

Datagram duplication does not occur because the VLN layer
does not perform retransmissions, the primary source of
duplicates in other networks. Ethernet controllers do perform
retransmission as a result of collisions on the channel, but the
collision enforcement mechanism or "jam" assures that no
controller receives a valid frame if a collision occurs.,

The sequencing guarantees hold because mutually exclusive
access to the transmission medium defines a total ordering on
Ethernet transmissions, and because a VLN component buffers all
datagrams in FIFO order,

14.2.4 VLN Operations

There are seven functions defined at the VLN interface. An
implementation of the VLN interface has wide latitude in the
presentation of these operations to the client; for example, the
functions may or may not return error codes.

The functions are to occur synchronously or asynchronously
with respect to the client's computation. We expect that the
ResetVLNInterface, MyVLNAddress, SendVLNDatagram,
PurgeMAddresses, AttendMAddress, and IgnoreMAddress operations
will be synchronous with respect to the client.
ReceiveVLNDatagram will usually be asynchronous; that is, the
client initiates the operatien, continues to compute, and at some
later time is notified that a datagram is available.

ResetVLNInterface()

The VLN for this host is reset. For the Ethernet
implementation, the operation ClearVPMap is performed,
and a frame of type "Cronus VLN" and subtype "Mapping
Update" is breocadcast. This operation does not affect the
set of attended VLN multicast addresses.

A-162

a -
'a o A

1
v,
Ry




o '
o RS
fi?{ Report No. 5261 - Part A Bolt Beranek and Newman L
('L .o
ST MyVLNAddress () s
f%ff Returns the VLN address of this host. 25}
" SendVLNDatagram(Datagram) ;ﬁ;
When this operation completes, the VLN layer has copied L
the Datagram. The transmitting process cannot assume that RS
the message has been delivered when SendVLNpatagram Dy
completes. o
ReceiveVLNDatagram(Datagram) ;{:
When this coperation completes, Datagram is a iﬂr
representation of a VLN datagram which has not previously o
received. s
PurgeMAddresses() o
When this operation completes, no VLN multicast addresses Qj
are registered with the local VLN component. L
AttendMAddress (MAddress) ,f
If this operation returns True then MAddress, which must fﬁ
be a VLN multicast address, is registered as an alias for N
this host, and messages addressed to MAddress by VLN Y
clients will be delivered to the client on this host. N
IgnoreMAddress (MAddress) L
When this operation completes, MAddress is not registered f;f
as a multicast address for the client on this host. iy
N Whenever a Cronus host comes up, ResetVLNInterface and .
@ . PurgeMAddresses are performed on the VLN. A VLN component may ?T:
SRV depend upon state information obtained dynamically from other -
AOAN hosts, and there is a possibility that incorrect information S
o might enter a component's state tables. A cautious VLN client el
A could call ResetVLNInterface periodically to force the VLN o
e component to reconstruct the tables. T
o LJ
SO A VLN component will limit the number of multicast addresses
Oy to which it will simultaneously attend; if the client attempts to .
A register more addresses than this, AttendMAddress will return -
f?f False with no other effect. -
g . .
1 e
< N
B Lo
NAEN A-163 ey
e o
-‘.-...-. L




A ‘\. x .‘. Al |

Report No. 5261 - Part 2 Bolt Beranek and Newman ‘ﬁfff

The VLN layer does not gquarantee buffering for datagrams at
either the sending or receiving host(s). It does guarantee that
a SendVLNDatagram function performed by a VLN client will
eventually complete; this implies that datagrams may be lost if
buffering is insufficient and receiving clients are too slow.

14.3 Generic Computing Element Operating System

One of the more important Cronus hardware components is the
Generic Computing Element (GCE). Prior to its introduction to
the Cronus DOS project, CMOS was under development at BBN as a
real-time operating system for several types of communication
processors, such as gateways and network terminal concentrators.
In addition, a support environment for building and debugging
CMOS applications is available under UNIX. CMOS provides the
following basic operating system features:

multiple processes

interprocess communication/coordinatiocn
asynchronous I/0

memory allocation

system clock management

00000

CMOS is an open operating system; that is, no distinct
division exists between the operating system and the application
program. The operating system is a collection of library
routines that can be easily extended by adding new routines and
can be reduced by excluding unneeded routines. The programmer
can directly access lower-level interfaces.

CMOS is a portable operating system. The use of the high-
level language C is the principal factor in CMOS portability.
Small size and simplicity are other important factors. The
design minimizes the amount of machine-dependent code and
segregates it. The I/O system design allows for easy replacement
of device-dependent modules.

The debugging environment is provided by XMD, a display
oriented debugger based on the PEN editor. All of the features
of the editor are available to the user in addition to the
debugger specific commands. PEN is a multi-window editor with
capabilities for manipulating multiple files and edit buffers.
XMD displays a special configuration of windows that are
appropriate to debugging. This configuration consists of a source

3
- A-164




P L A
. R . ] .
e LT e ls

SO e S

.........................

Report No. 5261 - Part 2 Bolt Beranek and Newman

window, a register display window, a breakpoint window, and a
window for displaying variables.

A low-level debugger is resident in the target processor to
interpret and execute commands sent to it over the communication
path, currently a terminal line to the C78 UNIX host processor
where XMD is running.

Access to networks will be provided to CMOS applications
from three levels. At the highest level, the user can open a TCP
stream. The first application at this level will be Telnet and
terminal concentration software. At the next level, there is an
internet datagram service. This will be used to implement inter-
process communication between hosts, as well as other standard
internet protocols. The lowest level is the Ethernet local
network interface.

The communication module in XMD
Ethernet instead of a terminal line, increasing its flexibility
and usefulness. Downloading will be possible over the network,
pius it will be easier to debug multiple GCEs from one site.

will be changed to use the

The internal device structure was changed to give the
I/0 system more flexibility in dealing with the number of
possible relationships between hardware devices and the
interrupts generated by those devices. Without this change, the
capability of writing simple device drivers for CMOS is
compromised.

A name service capability was added for the run-time binding
of string names to processes and devices. The name space is
hierarchical and there is a notion of absolute and relative
pathnames. In the presence of some form of mass storage, the
names can be made non-volatile.

14.4 Cronus Utilities

14.4.1 General

A number of Cronus processes or services are so widely used
or needed, that they warrant description as utilities for the
system.

A-165

bl

Py




e

N~ O

[
APV .

{3

.
L4

Report No. 5261 - Fart 2 Bolt Beranek and Newman

14.4.2 Elementary File System
14.4.2.1 Introduction

The Elementary File System (EFS) is an easily ported single
host file system that serves as a common base of implementation
support for Cronus file managers Cronus Generic Computing
Elements (GCEs) configured with disks, on the UNIX system, and on
the VAX. The underlying implementation of the EFS is consituent
host dependent, but the interface presented to the Cronus File
Manger is uniform. As & result, portability of the File Manager
is enhanced, and the cost of integration of new hosts is reduced.
The EFS was originally develorped as a primitive file storage
capability for the GCE mass storage devices.

The two principal design objectives of the EFS are:

1. Sufficient functional capability to support the Cronus
distributed file system.

2., Simplicity and efficiency.

The principal users of the EFS will be object managers.
Client processes will seldom, if ever, directly access files
through the EFS. Therefore, only the most basic file
operations need be supported. More complex file functions
can be supported by the object managers themselves. Simple
steps have been taken in the internal organization of the
EFS to support effective crash recovery and system restart
procedures.

The Elementary File System will have the following
characteristics:

1. The name space for EFS files is flat. Names for EFS files
are called FileIDs, and they are fixed length bit strings.
FileIDs are not Cronus UIDs. A FilelID is unique on the EFS
that generated it, but it is not unique across all Cronus
hosts. The EFS is a Cronus object in much the same way that
the existing UNIX or VMS file systems are Cronus objects,
but

2., A EFS file is not a Cronus object.
3. File data is organized as a sequence of fixed length blocks.

File i/o is sequential, and is block oriented. The basic
file i/o operations are:

A~166




e
)
v

s )
)
« - -

b, A2t
N B

vy
vy,
o '
e

.

vy
e

-, NG
Ta e

)
QL
. s e

1

.“ 4‘_ g

. e te
s

A

»
P

& . “ .
A

»
s Woa o e

L T T T
LWs Wi h

K
MM e v s Bt A G e A Ad i Sl Bag sl And Syl At Sl Se il S Ihadh S S TriosorewIvY .

Report No. 5261 - Fart 2 Ec.t Berornek and Newman

ReadEFSFileBlork (FilelID, BlcckNumber, Buffer), and
WriteEFSFileBlock{FilelD, Blcckhumber, Buffer).

4. There are no open or close cperaticns. No setup is
necessary to read data from or write data to an existing EFS
file.

5. It is necessary to create a EFS file befcre writing cate to
it. This is accomplished by the

CreateEFSFile ()

operation, which creates an empty EFS file and returns its
FilelID.

6. EFS files are deleted by the
DeleteEFSFile(FilelD)

operation.

7. There is no access control for EFS files. Possession of the
FileID for a EFS file is sufficient to access the file.

The EFS will normally be accessible only to Cronus Services.
The primal file manager is an example of such a service. These
services provide controlled access to the objects and operations
that they implement, as described in Section 8.

In addition to supporting the local primal file manager, the
EFS may be operated on as an object to permit remote access for
maintenance and debugging purposes. There is a single access
control list (ACL) associated with access to the entire EFS
through the EFS_File Manager. Only a very few principals will be
on the ACL for a EFS. An example of a principal which might be
granted access to the EFS is;the "System Maintenance" principal.

14.4.2.2 File Formats

The following description of the Elementary File System
structure assumes that a disk can be represented by a series of
fixed length blocks. 1In the Cronus ADM, the storace may bke:

a disk drive on a GCE;

A-167

e T T WY LT LTy

LIPS

R I A

ot e -
.. LR
AP P '

- @




.........
.........................................

f: Report No. 5261 - Part 2 Bolt Beranek and Newman ;u5§g
N RO
l‘,

E: a disk device in a UNIX system; or

N a contiguous file on the VAX/VMS.

The EFS makes few demands on the underlying recording medium, and
it is relatively easy to see that most potential Consituent

Operating Systems will provide a construct upoh which the EFS can o
be built. AR

File disk blocks are self-identifying for reliability R
purposes. Each block includes a header that contains the FilelD Rt
L and the block number. The file header in each block contains a v
Iy NextBlock pointer which is the disk address of the next block, if oA
o any, in the file. The NextBlock pointer in the last block
o contains a special value marking the end of file.

There is a FileID Table which provides a mapping between
FileIDs and the disk address of block @ of the file (see Figure
X 17). The FileID Table is as a file with a well-known FilelD
e (FileID = 1). 1Its block @ will be stored at a known disk address
: (with an alternate copy stored at another location to prevent
loss of data in case the primary tlock is bad). The FileID Table
is a hash table.

- There is a FreeDiskBlock table which records the disk blocks -
- that are available. The FreeDiskBlock table is a bit table woe
o stored in a file with a well-known FileID (FileID = 2). 1Its
block @ is stored at a known disk address. When a file is
deleted, its blocks are recorded in the FreeDiskBlock table, and R
X the FileID field in the headers of each of the blocks is cleared. M
- As disk blocks are needed they are allocated using the e
FreeDiskBlock table,

There are two types of EFS files. The type of the file is Ity
contained in the header of block 8. The types of EFS files are .
(see Figure 18): a

o a. Short file. o
< This is a file, all of whose data will fit within block @. RN
o b. Normal file. e
.. This is a file whose data will not fit within a single e
By block. AR
Y RS
.\ Sele L
'i A Normal file may contain index blocks which allow random access SR
A-les SN




" l',’l“ 'l:’l:‘f ,/

Report No. 5261 - Part A

Bolt Beranek and Newman

Disk blocks for file 5

FilelD Taobie

FitelD | BlockO 5

i

N
J

~

File disk bleck format

FelelD

BlockNumber
NextBlock

Null

DATA

EFS File Table
Pigure 17

A-169

'!'-R-A

MAA

..'>.‘

x S
4 ‘A‘ ‘-"‘.‘ N

L.A.x‘..-.. 'L-?_-\.-F_

“
»

‘
'
A a2 s

I".

. Lo e e
.. W
b e

e ' RS

y -L ‘-&



T . S
LY 24 R L

S

-
S
.

RN, £ AL WL A S S AT IO SN

Report No. 5261 - Part A

Bolt Beranek and Newman

Random Access GCE Files

File Disk Block Format

Forell
BiockNu~ber
NextBlcck

DATA

Normal File

for

[ndex
t BLk Index
|

OverflowBlockt

Small File

J

0

Noli

t Type = O

DATA |

CRTR

Pc~t cf

Bilk Ingex

‘ Pa~t cf :
[ Blk Irmoex
3

More Data Blocks

EFS File Types
Figure 18

A-170

' ;




RIS A T T AT AT i

'.’4_"-_. Y e

_ Report No. 5261 - Part A Bolt Beranek and Newman
. to the file. By convention, the first of these blocks is given }ﬁ
“ block number -1, and contains: RS
o i. A block index which holds the disk address of blocks 1 'ﬂi
through N of the file; and T.J
ii. The disk addresses for two overflow blocks, named o

X OverflowBlcckl and OverflowBlock2, which can bc used to find
. the block index entries for blocks numbered greater than N.

If the file is very large, not all of its index will fit into
block -1.

- OverflowBlockl is used as an index for blocks which store

o part of the block index which will not fit in block -1.

- Specifically, if block -1 can store indices for blocks 1 through
N, if OverflowBlockl can store M disk addresses as indices, and
if each block it indexes can store P disk addresses,
OverflowBlockl can provide access to indices for M*P additional
blocks, numbered (N+1l) through (NM+M*P). The block index for the
Normal file shown in Figure 18 overflows block -1 into

o OverflowBlockl, and is small enough that it cocesn't require

" OverflowBlock2.

{ OverflowBlock2 provides an additional level of indirection
o for very large files. It contains an index for blocks which are
e used in the same manner OverflowBlockl is. If OverflowBlock2 can

hold Q disk addresses as indices, then it can provide access to
Yo indices for M*P*Q blocks, numbered (N+M*P+1l) through
- (N+M*P+1+M*P*Q) .

4 By convention the BlockNumber for OverflowBlockl is -2. Any T
gl index blocks referenced by OverflowBlockl, as well as ~&[ﬁﬁ
I OverflowBlock2 (if present), and any index blocks it references e
- directly or indirectly are assigned BlockNumbers in a negative

o sequential fashion starting at -3 in the obvious manner.

Some constituent hosts will have multiple disks {in the case
of UNIX, these may actually be disjoint regions on a single
physical disk, and in the case of VMS, they would be multiple
contiguous files). Part of the FilelD specifies the disk on
which the file resides. The CreateEFSFile operation takes an
optional parameter which specifies a disk. If the parameter is
supplied, block @ and all subsequently created blocks of the file
are allocated on the specified disk. If the parameter is not
supplied, block 8 and subsequent blocks are allocated on the disk
the EFS sees fit.

BU REALIIRE

'h., N ‘J'
s .



Report No. 5261 - Part A Bolt Beranek and Newman

14,4.2.3 Disk Salvaging

o There is a BadDiskBlock table which holds the disk addresses
- of bad disk blocks. The BadDiskBlock table is stored in a file
. with a well-known FileID (FilelID = 3).

ﬁj There is a EFS disk salvage operation which can reconstruct
T the FilelD table, the FreeDiskBlock file, and the BadDiskBlock
file, and reset the NextBlock pointers in files.

A The salvager may encounter files with missing blocks. When
it does, it will fill in any hole it encounters with a newly
allocated filler block, linking the filler block into the file
where the hole was. The FilelD of the filler block will be set
to the ID of the file, and its BlockNumber will be set to a
special BlockNumber which identifies it as a filler block. The
only data in a filler block will be the BlockNumbers of the

N previous and next file blocks which contain data. Higher level
A software can be used to recover the data in a file which contains
- filler blocks.

61,28

* RN AR

- As the salvage procedure encounters bad disk blocks, it

{ records them in the BadDiskBlock file. If it encounters a bad
block which is part of a file, the salvager will remove the block

from the file and substitute a newly allocated replacement block

by linking it with the other blocks of the file in place of the

- bad block. The FileID of the replacement block will be set to

- the ID of the file, and its BlockNumber will be set to a special

BlockNumber which identifies it is a replacement block. The only

data in the replacement block will be the BlockNumber of the

[ block it replaces. This will make it possible for higher level

- software to recover the data in other blocks of the file.

A 14.4.2.4 EFS File System Operations

sff The following functions will be supported by the EFS:

ﬁf o CreateEFSFile ([Disk], [NewFilelD])

f; ~> FileID, Block®DiskAddress

fﬁ Create a file, by allocating a FileID and a disk block for
- block @ of the file. Make entry in the FileID Table.

1?; For EFSs with more than one disk, the optional Disk

T parameter, if present, specifies the disk on which the new
@

- A-172




L
N Report No. 5261 - Part A Bolt Beranek and Newman
C
file is to be stored.
_‘_:. :
e If the optional NewFileID parameter is specified a check s
S will be made to see if a file with that FileID exists. 1If R
y not, NewFileID will be used as the FileID of the new file. T e
: If so, the operation will fail. S
e o DeleteEFSFile (FileID) R
g Deletes a file by: Deletion involves ‘{wi
1. Clearing the FileID field in each block. A
2. Updating the FreeDiskBlock table; and .
3. Removing the entry for the file from the FilelD
Table. “
~
. o ReadEFSFileBlock(FileID, BlockNumber, Buffer, kel
- [DiskAddress])) L
:xz Read BlockNumber of file FileID into Buffer. Find the block t@ff
- by following NextBlock pointers and counting. If the FilelID R
- and BlockNumberID stored in the disk block are not the same EA
( as those specified in the call parameters, the operation vl
. fails. -
b The optional DiskAddress parameter is a hint. If present, S
e the block at DiskAddress is read, and if it is block RO
e BlockNumber of file FileID, it is returned as the result of AN
[ the read. gaaal
».*.‘ . . -‘f
INE I1f the operation succeeds, the disk address of the block is S
o returned. L
i
oy o
_y 0 WriteEFSFileBlock(FileID, BlockNumber, Buffer, e
Sh [DiskAddress]) T
. ]
o Writes the data in Buffer into the specified block o
o (BlockNumber) of the specified file (FileID). If NN
;!i BlockNumber > CurrentNumberOfFileBlocks l;ﬁ,
the operation will fail. 1If 2
e
jﬁ; BlockNumber < CurrentNumberOfFileBlocks, ?f}f
. -
o A-173




o - it 1 nd ] b At Snin ad J by
A e A A A A A A A A AN AR A S A AL Ay

Report No. 5261 - Part A Bolt Beranek and Newman .

the disk block for BlockNumber is overwritten with the data e
in Buffer. If o

BlockNumber = CurrentNumberCfFileBlocks 1,
a disk block is allocated and the data in Buffer is written.

The optional DiskAddress parameter is interpreted as a hint.
If present and

BlockNumber < CurrentNumberOfFileBlocks, o
the block at DiskAddress is read, and if it is block

BlockNumber of file FileID, the data in Buffer is written
into the block at DiskAddress. If EREN

BlockNumber = CurrentNumberOfFileBlocks, A
=
DiskAddress is ignored. ;g
WriteEFSFileBlock is responsible for the adjustments needed .}
for the case that the block being written converts the file ST
into a normal file. R
0o ReadRandomEFSFileDataBlock (FileID, DataBlockNumber, .?23
Buffer) “QW

This is the random read operation. It is used to read file L
data blocks; index blocks are not accessible via this ?TJ
operation. Block -1 is used to obtain the block index (if g
any) for the file, and the block index is used to find the T
disk address of the specified file data block. The data at e
that block is read into Buffer, R

o WriteRandomEFSFileBlock (FileID, DataBlockNumber, Buffer) S*‘a
This is the random write operation. If o

%ﬁf DataBlockNumber > CurrentNumberOfFileDataBlocks,

T then the write will fail. Block -1 is used to obtain the

?!ﬁ block index (if any) for the file, the index is used to find
. the disk address of the specified file data block. If

PJJQ DataBlockNumber < CurrentNumberOfFileDataBlocks
DARA
" the data in Buffer is written into the block specified by

T TR SR L AP
............
-----

VLSRRI

LR TR
WP T S Y




-
e S S T Mt M b i S - 2 2 Sven S -0 g - Bt it S D D N L Skh
x. o adn Tt St pas I S o ‘.F__i'_.r..'."u..' DTSN DA R » . PR . DR .

Report No. 5261 - Part A Bolt Beranek and Newman

the disk address. 1If

DataBlockNumber = (CurrentNumberOfFileDataFlocks + 1),
then a disk block is allocated for the file and the data in
Buffer is written. If no block index exists when this call
is made, it will create one.

o SalvageElementaryFileSystem

This initiates the salvage procedure for the EFS,

14.4.3 UNO Generation

Unique numbers are used to name Cronus objects. They may
also be used for a variety of other purposes such as transaction
identifiers, or cluster-wide names for objects in the application
domain,

Cronus supports a service which generates unigque numbers
(UNOs) and is accessible to system and application processes.
Processes may request a UNO at any time, from any of the hosts in
a Cronus cluster. The UNO service guarantees that any requesting
process is promptly supplied with a UNO. No two requests by
client processes ever obtain the same UNO, over the entire
lifetime of a Cronus cluster.

The UNO service is composed of two types of software
components, the SmallStepper, on every Cronus host, and the
LargeStepper, residing on any subset of Cronus hosts with non-
volatile storage. The production of a lengthy sequence of UNOs
is the result of cooperation between the SmallStepper component
on a particular host and at least one wargeStepper component,
sometimes remote.

Because all Cronus hosts use the UNO service, the
implementation of the SmallStepper component is part of the
integration cost of every host. This cost is small because the
SmallStepper component is simple; the most difficult aspects of
the reliability problem are treated in the design of the
LargeStepper components. Delay in satisfying UNO requests is
minimized because SmallStepper and LargeStepper need
synchronization only infrequently; most requests can be satisfied
locally and quickly.

A-175




P M 4‘— RO i -
SOAAN RPN

»
et et L,

A AS
Rk
LAl

o

aae
I Y T
ORI e
SRR

T
.
.

AP
Sl et

|
L
s e .

Report No. 5261 - Part A Bolt Beranek and Newman

High reliability is an important gocal of the UNO generation
scheme, both in the sense of continuous availability and of
consistent restarts should all of the LargeStepper hosts fail or
be shut down at the same time. We assume only that at least one
LargeStepper host retains its non-volatile storage across an
outage of all LargeStepper hosts, in order to automatically
resume the production of UNOs when that host is restarted. A
manual procedure exists which allows a restart of the UNO
facility if all hosts lose non-volatile storace; initial UNO
facility startup is a special case of this situation.

A Unique Number is a 64-bit quantity whose representation is
dependent upon the host programming language and machine
architecture.

The central property of the UNO is that twe distinct
invocations of the GenerateUNO function will never yield the same
UNO. Calls to GenerateUNO by processes in different DOS clusters
may yield the same bitstring; UNOs are universal only over the
domain of a single cluster.

The local host number of the machine is a field of the UNO
bitstring, and can be extracted with the OriginOfUNO operator.
All UNOs generated by a host are strictly ocdereé by time of
creation, and can be compared using the OrderOfUNOs operator.
UNOs generated by different hosts are not comparable; OrderOfUNOs
will detect and -indicate this situation to its caller.

The UNO size, 64 bits, was derived from assumptions about
the maximum number of UNOs needed during the lifetime of a Crorus
cluster. We assume that the maximum number of hosts in a cluster
is 1624, and the maximum lifetime of a DOS cluster is 160 years.
The implementation strategy imposes constraints upon the rate at
which UNOs can be generated (fewer than 1000 per second per host)
and on the rate at which a host can leave and re-enter the
cluster-wide UNC generation mechanism (about once every 10
seconds). The latter constraint increases the boot-up delay of a
Cronus host by a few seconds while it initializes its
SmallStepper compcnent.

There are three primitive operations on UNOs in addition to
assignment. The interface operations defined in this section are
available as procedure or system calls to a client process. 1In
the C language, assuming a tyredef UNO, they might appear as
follows:

BOOL GenerateUNO(unoptr) UNO *unoptr;

A-176

S

0l

o e e
.

% e I




Report No. 5261 - Part A Bolt Beranek and Newman

£

' et ' S
RIS .. a,
Sl ' .
Lo e o o
ot . PR
. Py et
. P T PR
, - . ., . .
Ty .‘-AJ - '

Generate a new UNO in the structure pointed to by unoptr ;;ﬁt
and return TRUE, otherwise return FALSE. T

HOSTNUM OriginOfUNO{unoptr) UNO *unoptr;

Return the internet address of the host which generated the

UNO *unoptr, unless the UNO is well-known, in which case

return UNDEFINED.
UNOORD OrderQfUNOs(unoptrl,unoptr2) R
UNO *unoptrl, *unoptr2; —

e
Compare the UNOs *unoptrl and *unoptr2, and return a result e

indicating equality, or the ordering between the UNOS, or
declare them incomparable.

These operations are continuously available, and will e
complete successfully unless the invoker's host fails during the A
call. GenerateUNO may fail (return FALSE) if all LargeStepper »
hosts are down or inaccessible for a long period of time. The

implementation of the SmallStepper component will guarantee, that iﬁﬁgf
a GenerateUNO request completes in a small, bounded amount of A
time, unless the client's host fails during the request. BRRO

A portion of the UNO space is reserved for well-known UNOs. .
These will never be returned by the GenerateUNO operation; some AT
of them are statically associated with primitive objects in the
Cronus system. For these UNOs, OriginOfUNO returns the value AR
UNDEFINED, a 32-bit quantity which is not a valid internet e
address. When one or more of the arguments of OrderOfUNOs is a ———
well-known UNO, the result is UNOINCOMP,. L

The structure of a UNO as visible to the implementation has o
three fields: HostAddress, HostIncarnation, and SequenceNumber. -
In C, the structure might be declared:

typedef struct
{

X unsigned HostAddress: 19; /* bits */
unsigned HostIncarnation: 32; /* bits */
unsigned SequenceNumber: 22; /* bits */

}

A Be 4n on 20 e ou hu e

A UNO with a HostIncarnation field equal to zero is a well known o
UNO. The HostAddress and SequenceNumber fields of a well known RN
UNO are manually selected, arbitrary constants. R




Report No. 5261 - Part 2 Bolt Beranek and Newman

N The SmallStepper ccmponent enforces mutual exclusion while )
- responding to client requests, and while performing incarnation o
- number updates based on transmissions from LargeStepper S
SN components.

- | Most invocations of GenerateUNO will cause the SmallStepper '4‘
- to increment a 22-bit sequence number, and combine this with the -
host address and current incarnation number, to form the UNO.
The UNO generator cbtains the host address of its host from the
VLN interface.

, Normally the SmallStepper maintains at least two incarnation o
o numbers, the current incarnation number and the next incarnation
T number., If a GenerateUNO request causes the sequence number tc
T overflow, the next incarnation number replaces the current -
e incarnation number, and the sequence number is reset to zero. R
T The next incarnation numker will be refilled as soon as the IS
7] SmallStepper receives a broadcast from a LargeStepper component
o or by incrementing a locally maintained non-volatile incarnation
number. If the sequence number overflows and no next incarnation
it number is available, the current incarnation number becomes N
L unavailable, and GenerateUNO will fail. :

The SmallStepper component can obtain a new incarnation N
number passively, by listening for the next message transmitted i
on a well-known multicast channel if it does not maintain its own
non-volatile version of it. This incarnation number becomes the
current incarnation number if it was previously unavailable, or
else it becomes the next incarnation number if that was IR
unavailable, or else it is discarded. The LargeStepper bl
ccmponents periodically transmit a new incarnation number on the R
channel; each number ies guaranteed to be strictly greater than A
all previous incarnation numbers transmitted. BN

. The separation of the SmallStepper and LargeStepper ‘

RO, components removes the requirement for reliable, non-volatile - @
storage at each host; the problem is now reduced to the

generation of a monotone incarnation number stream by the

LargeStepper components.

A-178 I;Z;;'_Ii;




e T T e T . o T
i SN S ot S U SV e - s A S ol S o AL S s ik e s St it i S T I S Y .‘.‘I:‘r_ﬂ"ﬂ» ‘s‘tl'ic‘,‘i,‘\.\j_‘-.'..'-_» LR

Report No. 5261 - Part 2 Bolt Beranek and Newman

14,5 Process Support Library

The Process Support Library (PSL) is a collection of
functions, that may be bound into the load image of a Cronus
process., Only those routines actually needed by a process will
be included in the locad image. The data structures implemented
by the PSL are within the protection domain ¢of the process. a

PSL routines are considered part of the Cronus system and
will generally be maintained by system programmers. The PSL
fulfills five major roles:

P

1. It provides a convenient interface to Cronus operations.

2. It provides access to special Cronus features such as the
GenerateUNO facility and the GCE file system; these
features are not normally accessed though the Operation
Switch.

3. It provicdes the Message Structure Facility a collection
of routines to build and parse messages.

4., It provides an IPC facility at a higher level than the
primitive InvokeCOnHost level.

5. It provides COS interface and utility routines necessary
to support the production of portable programs. This
includes format conversion routines and machine~dependent
constants, for example. -

A-179

S T
PTOPL TP PETS PRI TR IS U8 PRV Y

IR O AR L W IP NI Y AT Vel U “.'.'L"A‘J’J'm‘_“."\‘ P 7 N0 W RS TR Yol W SuT |




‘AD-A139 983 CRONUS A DISTRIBUTED OPERATING SYSTEM(U) BOLT BERANEK
AND NEWMAN INC CRAMBRIDGE MR R SCHANTZ ET AL. DEC 83

BBN-5261 RADC-TR-83-255 F30602-81-C-0132
UNCLASSIFIED F/G 9/2




D KL Gl WL M 0 Sl & L Sl N, L Gl SN L R L it KR g 0 et . an IR S R AN S S A Loyl = e e S - S i

O
FE
i

-
e B2
el ;

= w B2 a3
== & . |
Bl [ EX I
4 ’ l I ::__ N §
’ . LS z

g = s |

) |

sﬂ =

[y TETER

2 |
AN "
a0

'-‘.; |

N

::ﬁ:‘ MICROCOPY RESOLUTION TEST CHART ]

= .J NATIONAL mmo{sunouos-ru:—,i

;f%‘
MERA X RERS MR ROAL P PR I L PR R R AP SN PR

o e, e L e « e .
, ote N L Sy e e e e, R N .'J el «~
M.MQAMA{&J-{I&&JJK& A SNy SR RS,




u=- l.l."
AR L LN

Y I

[
(3
b7 A-181
{‘
¢
b
"3"“" "i‘)- ""‘:.‘-’ "{’:3.': N AN "'f*.-, O R R S
. - '.'. - ..- ...... g TR -, e .\'. .\. .

Ly “e My u% '. c e o L e ~ e, W e
\C‘| \\‘ Lt‘ O, A Wh A ROSCACH f'-‘c’ f'g.- -". (A SN '.'q"'--"-‘a.p¢ P A Y

REFERENCES

{BBN 5041)
"Cronus, a distributed operating system: functional
definition and system concept,"” M. D. Hoffman, W. I.
MacGregor, R. E. Schantz, & R. H. Thomas, Technical Report
#5041, Bolt Beranek and Newman Inc., June 1982,

[BBN 5086}
"Cronus, A Distributed Operating System: Interim Technical
Report No. 1," R. Schantz, E. Burke, S. Geyer, M. Hoffman, A.
Lake, K. Pogran, D. Tappan, R. Thomas, S. Toner, and W.
MacGregor, Technical Report #5886, Bolt Beranek and Newman
Inc., July 1982.

(Dalal 1981]
"48-bit absolute internet and Ethernet host numbers,"™ Yogen
K. Dalal and Robert S. Printis, Proc. of the 7th Data
Communications Symposium, October 198l.

[DEC 1980)
"The Ethernet: a local area network, data link layer and
physical layer specifications," Digital Equipment Corp., Intel
Corp., and Xerox Corp., Version 1.0, September 1980.

[NIC 1982]
"Internet protocol transition workbook," Network Information
Center, SRI International, Menlo Park, California, March 1982.

[Postel 198la)
"Assigned numbers," Jon Postel, RFC 790, USC/Information
Sciences Institute, September 1981.

[Postel 1981b]
"Internet Protocol - DARPA internet program protocol
specification," Jon Postel, ed., RFC 791, USC/Information
Sciences Institute, September 1981.

[Rentsch 1982)
"Object oriented programming,” T. Rentsch, SIGPLAN Notices,
September 1982, pp. 51-57.

[Xerox 1981)
"The Smalltalk-80 system," Xerox Learning Research Group, BYTE,
August 1981, pp. 36-47.

A

IACAL
PRI
AR
DR
SRS
LRy
L ACACH
PR
,A_:.A_'.e‘
el
" .l.'~ -“.-
WO e Tt
‘. '-._. -
N
LSS
AR
REAE
e
il




o Report No. 5261 - Part A Bolt Beranek and Newman

oAy INDEX

b
-.-:::-
Vﬂ Abortwrites..........'............."..'....C".‘..".... 96
.x access.....'..........‘..O..'0.'....'....'.......'.. 126' 162

M aCCess COntroloOOOl'.ool'.......QOQOOQO.QQ.'..C 14' 110' 123
_.}\.‘ access control 1ist..lli.......0........00...... 19' 94' 167

..': access machine. @ O O 0 66 0 O S 00 00O G OO D OO S T OO OO OGO O SO0 S O OON OSSO 5
k .P . access mint agent. ® ® 0 8 0 5 8 0 0 0 0O OO SO SO T OO O OO0 OO OO EO NG PSS 126
. aCknOWIedgeo ® 0 0 0 00 0 00 8 OO OO PP O BSOS D O OB OO S PO O SN OO O OO OSSO OO PSR 95
-'.‘—‘ aCknOWIedgements ® 0 B 9 00 O OO S0 B T OO P SO0 OO OE 00N ES NI NSeSOe S EDS 156
:.“-: additive' ® 6 6 6 0 0 & 0 O 00 00 00 B OO O E OO0 OO OO P O E SO E SO OSSO EEODSSS 17
.-,;:J' address recognition. ® P 6 0 8 8 8 & 0 00O 0O OO OO SO0 OO O OO OO NG E S PE SO 161
..:-‘JI AddTOACL 0 0 0 8 5 00 0O 0 8OOSO O D OO OO SO0 OO OO OSSP OO O S EN OSSOSO PRSTS 97
W Advanced Development Model ADM...ccecescoscscccccccccsece 3¢ 9
w’ application process. ® 0 0 0 0 0 0 9 O QG 0O OO OO DO OSSN OO OSSO PO NSO e N 144
-q'\'- arc-...."..........'.l.....l.l......!I..Q...'..'........ 99
‘:S:'-'. AREYOUTHERE. ® 0 6 8 0 0 5 &5 0 OO OO O PO OGSO OO O E OB O SN OD e OO eSO RS O 135
:;‘: arrays..'0....C.0'.........'l'....l...'IOIO......‘....'.. 61
“\::.lA ASC'oonocooooooccotocoo-oooooo.ooo.ooooooooconn.oco.oo..o 67
.

n.j‘: asynchronous I/o' @ 0 0 60 00 00 0 0 000 00O 0T PG OO0 OO OO L OO OeN TS O e 164
Asynchrony' ® 0 00 &0 0 U 00 OO0 O OO E OO0 OO NS OO0 NSO G OO el 0o 68
atomic.'Ou.-.o....o..l.l..o.‘oo......t‘..00..0......0 49' 95

"::-":: Attendantcoo.-ocoooo-;ooo-.ooo-ooo‘oooo.n-ooo-ocoo-oacoo- 54
‘ﬁ'v AttendMAddreSS...-...................................... 163
.‘::4': authentication managerooo'ooo-oooooooooooocooooocoonooooo 19
::'-:;‘ aUthOIity........o..........-......-..-.........-....... 145
. availability..........................................-. 176
\ available........................-o--.o...............-. 177

‘:h\| BadDiskBlock table..O...'...........'..........‘.I...... 172
'.‘3 basic data type...'............0...............'......... 65

‘:\.‘i‘. BITS..."C.....................C....l........'..t........ 67
\.'Q* block......I.................'..l....'.......'.......... 166

7. 4 block indexl. 5 8 8 ¢ 0 8000000000 O 0P O OET O ORN O OO GO NSO ON OSSOSO TPSGSETDBSDS 171
’ BOOLO S 0 & ¢ 06 000 00 0% P GO0 O OB S OO LN TS O T OO S0 PO OO0 OO OO eSS OOTS 67
BOMLOAD. ® ® 5 0 00 0 0 00000 OO0 OO0 O OO 0000 000NN ON 000N SNBSS 135
BOOTYOURELF. ® 0 0 0 0% 90 OSSO O OO OO PO O ON OO0 PO OSSO T P C OSSOSO 135
bound. ® 0 08 06060 00 ¢ 00 00000 R S OO OE OO 0SSO OO OO RO P N OO OO OO STS 13
broadcastl ® 0 0 @ 0 8 00 90O QC OO PO OO OO e GO OO O SN e ee NS 32’ 154' 156
broadcast addressing mode. @ ¢ & ¢ 0 00 90 0 OO S S0 OO OO OB OO OSSOV E 157
Buffering. ® 6 60 060 00 90 00 00O 0SS0 QOO0 0 OSSO0 N OO SO OESOSPTRTES 69
bufferingl ® € 0 9 0 8 & 0 9 09 O OO0 OSSO OO N OB 00T OB OB OSSOSO e OO OOONE 164
byte position. 9 0 0 % 208 00 0 0000 4SO S LSOO TS OO C O OO RO OO S SO OEOOPRPOE 93

C7ﬂs.l‘...........'...l....l....Ql.......'..'...'....... 148

cable...‘Q...‘.........'....Q.l'....'.‘.l...I.'......... 134

canonical type...'..................."ll.....'......l... 65




Report No. 5261 - Part A Bolt Beranek and Newman

- "‘.. .. .
DR A I
-l YA R,
l" DR L

g
-

L 4

controller..... e & 8 0 & 0 0 0 0 0 000 0 00 SO L QO OS PO GO C OGO N OO DT I GENSOSEBE P 54
controlling ProCeSS.ecesecsccsossccsssccsscsesnscssasossssee 54
Convenient @ 0 ¢ 0 & 0 0 8 00 P 0 6 5O O LSO S0P OB PO OGP OO S E eSO N e E PO PSS CCD 127
conventional featUreS..ceceecvcescooccrrcrsosscosersecnonss 22
Cooperating processes. @ 6 9 @0 0 6 08 O S 3OO O OO OO O QPGS0 B NSO PPN 45
copy‘.0.......00....0..‘.‘....00.....0.'...'.'.‘....0.... 9“
Cos intetfaceo LR BN BN BN B BN BN BN B BN Y BN BN BN N N N BN I NN BE RN B B BN NN B Y N B BN B B BN BN BN NE B BN BN AN 179
Crash...l."‘...'l.....Q....I.....'.........Q..l.l.. 95' 131
CRC..O...IO.I.I.0.0..O’OOO'.l..".l.ll....'l...llIl..... 162
create..................l....l.....0‘.............‘.' 45' 96
create.l..........l....ll.Q.'.l.....l..'...l!....l..'lt. 167
Create a file. ® 9 © 0 0. 8 0 080 0 6 00 00 PO QO G 00O OO OSSO L OO O S0 S0 e e 141
CreateDir.....Q......’..0.'.'.....'..l.....'..ll..'..'.. lgg
CreateEFsFile. ® 0 0 8 00 0 0 O 0 0 6P 0O S SO O 8 0SSOSO OG0 NN e N eOD 167’ 172
Create_Primal ProCeSS.ccsseccscscssccsosasssssesssssasscse 50
Create_Program _Cartier- ® 6 8 00 0 6 0 63 & ¢ 05 " 090 OO C PO OO OSSN S 55
Creating a File. S 0 8 ¢ 0 9 O 0 OO OO O P OO A S e OO SO RO PO PE SN EE G RSO TPSS 14
cronus catalog. @ 6 008 0 O 6 00 200 0 0T B S A GO OO PSS T SO OO B OO0 0N C e N 25
Cronus C1uster. ® 8 0 0 00 0 0 0 0 GO OO OO A2 %O S SOOI O NS E S SN SO OO 3' 5
Cronus 1°giCa1 name. ® 0 ¢ 0 0 0 8 0 0 0 P SO VO GO0 PO OO OB OO SN O O eSO 51
cronus proceSSQ ® 0 0 0 @ 0 0 0 00 0O OO ST NSO OO PO OO eSO OSSN 45
Cronus service. ® 0 9 0 8 0 O 0 00 00O D OO OO G O OO O E OO 00RO Se SIS e 46' 129
Cronus sybolic service Name..eccccececescrscosocasscocessses 51
Cronus VLN.'......l.......‘.....l. 8 00 0 0 ¢ 0 00 00 0" & 0o 0o 160
Ctonus_Restart. ® 6 0 08 0 0 0 00 0 000000 P NSO OO VOO OO e NI OGSO O e OO e 50
ct_....'.......C.‘............0...........l...Q.....I..C' 26
CT_Catalog_Entry. ® 9 00 0 6 000 0000 O ST B OV O O E OO SO SO C OSSN 1“4' 1“7
CT_Directory...'Ql...........'...0......’..... 100, 1”6' 109
CT_External_,Linkage- ® 0 & 09 080 O O PO OV SO OO SO SO SGEOSN lo I 106 r 110
CT_PI imal Process ® 0 & & 0 8 9 0000090 00 PO SO GO OO T OO OT OO E N e OGS 46
CT _Program _Carrierleeecsccescececsccasnscoccsossoscsossscsnce 46, 52
CT_SYmbOliC.Linku S 0 8 0 00 00 00 05 5000 VOO OO SN OO OO OCOCETPREEEOSTSS 10 ' 106
CT_TYpe_Name. 9 O 0 6 0 00 00 0 00 OO N O D E OO Y SOOI OO0 00N OB O OO N0 SE NS SO 27
current diIQCtory. @ 9 0.0 2 0 6 0000000 VOO OO0 SO0 NSO POOINOSIEE ONPSSOOOE 100
cursor msitioning. @ 0 0 0 8 0 0000 0080 P PP GO E O SO P E OO OSSO PO NSO COCOS 127
data teduction. ® € 9 000 C 000 00 VO B OB P SN O E O OB PO ONOE OSSOSO OO 132
datagram.'..lﬁtobol....l.l..l.....'l........ 9' 20' 152' 157
datagram option processingl * o0 ..O P % 60060005 0000000009080 0000 154
datagram replication. ® 0 6 % 0000000 E O 90O PO E OO OO PN OO O OO N DOOE TGOS 157
debuggerOOCOOOQOlCQOOIQQ.O...........Q......Q....... 53' 164
debugging...C.0..0..l.....'................ltll‘......l. 134
Debugwait G 0 & 0 0 00 0 00000 VDO OO OO OO QL OO SO OO OO 0PN OE S S P OO PNOOSOCOTS 54
DEC LSI-ll........0.....'........'0.. 9 & 0000 000008 SRS 148
Delete"..‘...‘.....Q......l..........l......0...'... 94' 96
DeleteDir..........l...............l.................... 109
DeleteEFSFileo ® 0 & 06 0 0 8 0000600000600 000006900000 00008 LRSI PSIE 173
Deleting a File. ® 8 00 05 9 00000 0 ¢ 60 0 QOO O OO OO OO OO E SO OOe PO EOEONDN 143
demultiplexing. @ 0 0 60 0.0 0 0900000000 00O OB PN O O SGSOEPeEPBSNEEDS 68’ 153

Py
L ‘.\
y l.l"l'."v:

":;

s
s [ .
el

L ¢ Ry
- y "-gjf_f"{_.

r
CANN]

a'la




Report No. 5261 - Part A

catalog........0000..00..'.0..0..0.0..0..00'0.".....0.‘0 18
catalog data base @ & & 06 0 06 P O & ¢ OO0 O S OO C O OO OO OO O OO O OO BSOS GGOOOCN 112
Catalog MANAGErecccsetssvcssosccesssosssessecesss 101, 112, 120
catalog the file. ® 6 0 0 0 0 OO 9 OO E OO S OO S PO OO OO PO O OO RPCESE O OB OCEIOIOE 142
Cataloged Obj ect Table. e ® 0 0 006000000 0 0 % 09 OV S eSO OO O 112 f 115
cat_LOORUPo ® 9 6 00 00 0 00 0 900 ST O OO N OO0 O QR OO0 SR PR S SO OSSO EES SO 167
Cat_LOOKUPWild. @ 0 0 09 S0 0 00 O OO0 OO S GO OO0 PO OO O O ONL OSSOSO OREC 1"8
Change Process DeSCriptOlceeccecscceccsccesccscsaccessasenss 50
ChangeEnt:y.".‘QQ.....Q.DO... 2 92 0 0 & & 00 00 0 000 O OB OO0 e S e 0 e 168
ChangeObj eCtEntries. ® 6 0 & 0 6 0 0 0 00 00 OO0 OO P OO OGSO QO N OSSO PN OOS 19
Change_Process_DeSCriptOreeecceeiccccccssesscscsssscscees 48
Change_state. 8 O 0 & 0 8 5 00 C 0 5SS OO TSSO T SO TE T OO0 O OO OSSO SISTS 53
CharaCte: strings. ® 0 0 00 @ 0 00 0 OB O OO OO0 OSSO PO GO OO 0N OCN OSSO PSS 61

child. @ O 2 800 000000000000 OLOOS PN O IOOOIT OO IOSOOLOEOIOGEOESIAEIETOTSODS 55
CHP' ® 0 0 0000 0088000000 O OO ST O OT B OO OESEO 000 OSSO OSSP OIOTOIOSOITES 45
chps- L I B AN BB BN R AR B B BN B BN BN BN BN BN BN U RN BU RN BN BN RN B BN B BN N Y RN B RN R BN N B R B RN N NN 33
class. LU B B B K 2 20 N 2N BN 2R BN BN IR BN BN BN BN BE BN BN BN BE RN BN BN B NN BN BN BN BN B RN R BN BN RN N R R BN R BN N Y 154
class A. ® 0 & 0800000 000 0000 00O EO O LOE NS00 RS OIIOLEIIOIEOEBTOIOOCORNDS 156
Class B' ® 0 0 60000 0000 00860 OG OO O OO OSSOSO ONOOIOSOEBSOSEOOONDS 9' 156
CIeanupc G 8 ¢ 00000000 OO0 O S OO OO L OO GO T OO EOEN OO NSICEOESIOEOSIEOETPIDS 94

clear..'.'.............'...."...l..‘O......"........... 54

Clear_Program. ® 0 0 ¢ 0 0 5000 00009 SOOI NP OO OGO OO OSSO ROOQOROEOI SO TCOTPOTRYS 52
Clearvpnapl € 0 0 0 0 000 00 % OO SO OO OO0 OO0 O R RO OGO ONS S OCSIOCEOSOROTOTODN 162
close."...l.'......'...’..'.'.'I....l..l....'.-......... 91
Close.....l'......l...'...............'.................l 96

close...Q.lI......Q..I....'....'......'............-.... 167

CloseAllProcessOpenFileS.cccceccceccscsccscscocsccsssccssne 98
ClosePIOCessopenFileQ G 0 ¢ 0 00 0 00 0 0 0 0008 OGO OO NSO OE OO OSSO GOS O O 98
CMOS..I...."......'l‘.OO.Q.........I........O.'...O.'.. 164
coherence.l....'....0'.........0..................l..' 3' 11
coherent...l.........O............'...l........"...'.'.. 22
cclli Sion enforCement ® 0 @ 9O 00 0 O PO OO OO GO OO SN O E S OO O O PSS E OO 162
command interface. 0 0 000 0 00 09 O OO S OO T O OO O PO OGN SO O OO OSSO SPOES 126
communication. 9 6 O 0 00 0 000 PO OO I S OO GO E D OO OGO O OO AN GOEOOSOSPOPEDN 33
communiCations. ® 0 & ¢ 0 9 00 O F S 0D OO OO PO OO0 B OO 0L OO EQ N SeOOGCETQASTS TSN 5
compatibility- L IR B BN BN BN BN BN RN BN B B RN BE B BN RN R BE BN BN BN RN NN RN NN BN NN B RN BN NN N B BN ) 2 ' 157
Compatibility. & ® 0 6 0 0 0 O 0 0O O OO OO O OO T OO OO OO OO OSSO O OO OGCEE PSS 151
complex objeCts. @ 0 0 0 O 000 0 ¢ O T O OO OO OO O PO OO OO OP OO SO OGCOCOEETETSTCOCTDSE 14
coanCted directory. 0 O 8 0 0 68 0 9 00 OB 00 OGO OO OO OD OO OO OSSOSO ODN 100
constituent host ProCesS.c.cceessecccccsccsscascecsecsss 33, 45
Constituent Operation System COS..ecsvevsocesesvscnnceses 129
continuous..........’....I..‘I....Ol....Ql..'.....'...l.. 176
continuously. 9 0 & 0 0 0 00 0050 00O O OO OGO O OO OO L OT OO O OSSOSO TSIOES 177
control.....l.l'.0........l..O..Q.........Q.....'.l. 19’ 129
COntrol information‘ LR B I B B BN R T R R I B B Y B B B B R R NN BN RN IR B N B Y RN ) 57
contIOI message. ® 0 0 0 0 5 9 4 00 P OO SO GO OO OB D OO OO OO0 O E OO SO OO SO OOS sa
contrOJ- station. B 0 0 0 0 000 00 000 C O OO PO OO OP T OO0 OO OO OPNGEDR O COCECE 146
conttOI traffiCOol..0..0.....'.0"....000.0‘..‘.......... 58

Bolt Beranek and Newman

N T e 8 I

b
b

AN
(e L
LA

‘l"’ ._u‘

‘s

oA
Pl d
[

Coe
ol
SADA
y -
SR
Y
R
- & -,

o ¥



Report No. 5261 - Part 2 Bolt Beranek and Newman

Destroy.'.Oll....O.....‘..0‘0'...l.0.'0.00..0...'.....0.. 47
destroy..‘..Q...l'......Q....l..0..0.0.0.....0....0..0.0. 48
:dev..l.......Q...'.Q......l..........l..l......l.l..l'. 124
development machine. ® 9 6 0 & 0 P O OB 9 0O 0O O OSSOSO S S OO ST SO0 e P e 148
device..l'..iitOO.Q'.'.'.'.0.0...0...'.'.0....0.0'.'.... 100
deVice ojeCts. S & 6 5 0 9% 8 50 0 0 & G E T 8 W QA QT QBT OO 0N S OT R O S eeE e eSS 16
devices..'l..l......l..Q...Ol'...0.l............l.ll.l... 18
device-specific oOperationS.ccescecssccccccsccsssceseoees 124
:deV:lpt'.........o-...................o-.....-.-n-.-... 124
Digital Equiment Corp. ® ® 0 0 & ¢ O B O O OO O PO O OO O S OO PSSO OO e e 157
directory.....0.0..'..'..0........‘....l....... 99' lga’ 112
directory oObjectS.icerscccocosasoscossccssscsscscssscscsce 16
dispersal cut. ® O 5 0 200 0000 00O OO P OO O 0B O C OO OO PP EES OSSN OORDS 114
dispersal SuUbtre€.ccceeeeceesensassvssccccasscnascesasnss 114
dispersed file. S 9 9 €& % 5 0 60 0T T OO ST O OT OP OO IO S SOOI TETES 90
distributed operating sSySteM..v.ceseesceccevesscccccccsss 1l
distribution. 0 8 0 00 0 0 00 00 0O L QO SO PO OB O OO0 GO S E NSO OO 112, 114
DOD IP......Q!..'0.l....l'....'...l!.....l.......l'.‘.!' 158
download. ® 0 0 0 0 00000000 C OO S O OO LN N OO OO L OO e OOCEEOIAOIEBNIBOSPOSOORTSTS * 134
elective keys. ® 0 0 0 5 0 0 90 00 0 0O OO G OO S OO OGO OO O ORE O RSSO EQOE OISO OE 48
encapsulated. ® 0 0 9 ¢ 0 5 000 00O L OO O PO WO S QN E OO OO O P GO SO OELTEODREDNE 157
end Of the file. @ 0 O 0 0 ¢ P SO R OO O O OO OO DD OECOPOON N OO RSOSSN EEPRPOOEES 97
Enter...........'.ll...Q'O.'Q'l....0.......0.0..00.0.... 1”7
Bnte[axternalLinkage- ® 0 4 5 0 0000 00 900 00 QOO O OO S PO P OC NS OO RGO 110
EnterLink....l ® 5 8 0 0 0 000 08 00000 P OSSN S OO OO OE R OO O SO OEOS PRSNGSRS 11
Entriesof.OOQO.QO....l'...l...........l.!.'..'.‘0...'... 109
entry name. ® 0 8 5 0 00 00 05 00 00O E O PP O G OO OO L P OO O RN OGO TOT SRRSO E 99
error recoveIYC G 8 0 0 0 6 008 0 00O T OO PG PO PO 00O E O GO NN SOOI POSECEEEEOOOTN 56
error-detecting COdeo ® O 0 8 0 00 &0 00500 00O GO OSSOSO O SN OO R OIS ETOTODS 157
Ethernet.......0.......I..Q......‘..C......O....O..'.C..OO 7
ethernet...l..O..'Q'.'........O.....00......'.."I'.l...' 20
Ethernet...t....l.....l.......'...'..'...l......Ol. 157' 165
Ethernet host address EHA....evecesceosvscecsccasveceseceas 158
exception....l.....0..ll..I.l...............'...!...Q.... 58
eXCIUSiveo LU BN AR B BN BN BN Y K BN AR BN NN Y SN BN BN RN N I I N RN A B BN NN N I N N R S Y N I R RN RN N ) 162
executable file. ® 0 0 0 00 & 085000 0 09000 C BP0 E S OO SN L EE SIS OCEOCCE 144
executedl ® 0 0 000080 000500 0000 ¢ 0000 SO OO OO PIT O OSSO SCEET OSSR TSESE 144
extensible. L K B B B B R BN BN B BN BN BN BE K BN NN BN R BN R NN RN BNRE I Y IR B R N B B Y B BN B RS I NI 15
external linkage. ® © 0 006000 0000 5 0800 ° 8 OO0 O QS E0COEP OSSO SOCEOSIE 15“
file descriptor ® 9 0 00 0 000 ¢ O OO NG OB GO SO OO RO OO N OO O SS eeNe e 91
file objeCtSQ ® € 0 8 000 00 00 0 85O0 S VT PO SO OO OO SO P e RSOSSN OEPOPTOOS 15
FileID Table. ® 0 5 0009 000008 006005060 090000000090 sEP O OIS EEN DN 168
PileIDs‘.'.ll...l.....l.....OQ'.I.............I.Q...Q'.. 166
FilesopenBy. ® 0 6 00 0 09 0000 0 008 000 OO OO0 OO NS L LN EL OIS SN e et E 98
filler bIOCko G & 0 0 0 0 % 00 0 0 0 0000 8P OGO OO OO SO P e OO OO OO SEDPNTPSTOOON 172
Flexible Intraconnect....ceceeeevecsssosscosvceccssosesss 157
fragmentation. L B B B B B N I I R BN BN B NE B I N I R I B B B I N I Y I R I RN N 117 r 154

frame....'..l....'.............I......'..............'.. 157

r
'y % Y
D)

KPR

WPy -«
e .

w s ‘e
i.l‘

PR
A
LA A

LI Y
s 0y
4
[

(SRS
f
[ 4
18 %y %y

¥
Ukl SRR R

[y

,*\. :r )

F%}Z@?
N

L4

et Ay
AN

Pl




:: "-:':\
- Moty
o T
o c el
ﬂs Report No. 5261 - Part A Bolt Beranek and Newman e
] g::
2 Frame Check SequUenCe....cceeeveecenccesossosscescscscsse 162 A
"P:" free tead.o..o-oott.lo-ooooooooo...oo.oo.ooooc.oaooo.ooo. 92 ‘-'_;-'.
—': free write. L B I I RN T B I I B B I Y Y RN RN B R RN A A I A I I A A N I I N NN X X 92 ':."-:;'
f”~ FreeDiskBlOCk.........-........-........................ 168 _'.‘::."
oy ftozen..................-......oo-....................... 92 "h:
Frozen. LR AN AR 20 B 2 B BN 2N N BN BN N BN IR BN BN IR BN BN BN K BE B B BN BN I NN BN N BN I RY BN I R I N N N NN N R N N ) 96 ,'.j,,w_,_

o functional decomposition..cceicecccsesseccccsssssncssasss 130 o

;ﬁ functional design.ceceesesceccsccrsescsososccsssssncssaces 11
; functionality....l.............'........'....."........ 136 _'v;'~.,.
% gateway.-ooooooooooQQ'ooooooocon-'...................... 126 --;:
gateway MONitoringe..ceceecececoccnsccnsscevsesnscsacacse 133 .
GenetateuNo'.'.'.....................'.........'.'...'.. 176
- QGREIiC...-.................-...--....................... 28 EJ."
T Generic Computing Element GCE..vetveececccsencsoosccosees 164 :5§
ig Generic Computing Elements GCE.veseeeecocooeccooscnsacesee 6 N7
gIObalouoc--o-ooooooooc-o-o---oo-o.o.oocooo.ooooun-oooo.o 18 -'::.
.n\'. glObal performanceo.ooo.o..oooo...o'ooooc.oouooocoolo.ooco 4 :‘:-:'qx
glObal SymbOliC name spaceoooocOO.ooooooo.oooooc000.0-'.0 99 ‘-"

fi gOOdaddreSShint.........-....o--o-....................... 44 iﬁ‘j
\:& has hi ng LI I B B B N BN BN I BN A BN R I A N A I A A A N N N N N N N N N NN ) 1 5 8 ':-: .:::~.
\- 1 HERE IAM ® 5 6 0 9 3 00002000 OO RSO PO OO0 PP LI O OO OGSO OO eOOEDN 1 3 5 :-:.:-...:

L~ heterogeneouS.cceceeeeccsescsscsssssssscacsscscssassesce 5, 45 R
\:<‘ hierarchical.l.....l.l'........C..‘Ol.‘...'..'..l.......' 18 g .
i hieraIChically sttuctured. ® 00 000 % 0 00000000 095 0CEEPSOOIEESTSIPOTE 99
high-bandwidth. L0 B I B B BB R I B RN ST B R Y R S B N R N R R N N R A N R ) 157

a\ hint......l........‘..O..........l..!.......'..'....l..'. 13 ""\::
), .‘ Hints‘.'..l'..l.............0'.....'...'.'....Ql..'...... 44 !-::'l.;‘;
:§ host dependent role designator......eeececeeecccssscccses 51 RSN
3 \d host monitoring. ® 0 © 00600 0000000 OET O L O COOOO OO OINELROIEBIOESTPIEOIEES 136 :;'::.‘.

hOSt ptObe............-..-o...ooo..............--....... 132
BOStAddreSS..........-...oo.--ooo....................-.. 177 - -

%ﬁ hOSt‘dependent.........-oo-...-oo.......-............... 151 b*:'
N

‘.-, hosthumbero.oooocooooo0.00-.000000......0.....ocooo-ncooo 27 '\\

ﬁh hostincarnationo-oooco.ootnonoool-ooo.ooctao'o.oocccoo'co 27 :-:\"
:“ Hostlncatnationoooﬁoo.oo....ooc'too-ocolco..o..-.co.'ooo 177 ':::-:‘l
IgnoteMAddress...........-.............................- 163 ,..‘:,'.'-

index...l..'....0...l........."..!l'....l........'..... 171 ":"1

‘-.-.' inhetit..ccooooooooocoooooc.oooo.oo-oco.oooo.ootooooo 23' 55 '.:‘.'-_'~‘
::': initial direCtorYoooo.oouonooooooo.oo.ocooo-o-oonloooo.o lgg ._:’_:.:_‘.;
.':p initial pl'OCQBS 1°adoooc00'000.00....00'000-o-.-oooco-oo 146 ~:':~:'T‘t'
:':: initialization.uo.ooc0000000uo.ooouooocoococ.oooooo--oon 134 :-:',:

Initscano'.oOucoooc.ooo.ono..oo.coo..oooo.ooncoooo.ocooo lﬂe ::‘Lt\
integers..oo0..0....0000..00.00oooooocoooooooooocouo'ooon 61 Ty
integtation-....oooocoooo.oooo.'c..oooo.oo'.ooloolooo 17’ 46
1‘-‘ integf&tion costooa.ooooooo.onoooo,oooccoloooo-oo'looool 175
':' integrity.oooc.oooonolooloooooooocnoooooonoccooooncooo 4, 14

: : Intel Cotp. ® 00 58 000000000 O0E OSSO LA NP OO0 RO QBN POEENEOEBSOEOEOTS 1 57 :.:'..:.‘:::
).- 1nte ract ® 8 0 5 00 0000000006000 0080000 00900000000 ¢ 0 86090 00 0 000800 126 -‘:‘:'::
1
:i: Y,
s A-186 TR
v '-': ~.f
. i
3 RN




e e
0
'P
:.n; s
54 s
‘%1 Report No. 5261 - Part A Bolt Beranek and Newman i
A el
g}__‘.a
o interactive section...ceeecceccrcrcetossrrscerossccecesss 131 NOE
‘:'? internal structureo.ooococoooooool'to0000..-0000000..0.-o 14 :'-'
{3 Intetnet..........................-.................. 5, 126 i
:.: internet address..l............C".'...Q'..."..'.. 154' 177 .-:'-
Internet QdAreSSES.ceecscccvccscrroveccsccssssssnsscasosasse 7 ey
— internet datagram..ccccececscecscscovsoocccssscscscscsvrsses 165 S
‘ * internet datagrams. ® 0 0 0 5 8 000 0 800 0000 SO O OO O OSSO SOSGETS 153 :-:.:.:.
‘:; internet gateways............"..I.....O...Q..'.l......' 152 ':\‘;‘:
-\. intel’net header.-......-..........--.-.................. 154 -:.‘-‘.\-
‘ intetnet protOCOliooioi.....0'...'..'......l...l...'..'.l 20 . _'-

Internet ProtOCOl IPQ......0...‘....0..........Q..l.' 9’ 151 "

INterpProCesSS.cceccosseecssescncscosososssssssccssosncsscsose 33 il
interprocess COMMUNICALiON.eceeeerevocooococncanoeves 22, 29 e
Interprocess Communication IPC....ceocescscecsccscsccccscse D &ﬁi

b interprocess communication IPC....essceescecsscossces 13, 58 ﬁf‘
A% interprocess communication/coordinationN...cccecceccccscs. 164 ,i:
I.\ ; Interrupt.. L B I B BN B B BN BN BN R B B B B Y RN B N RN B B R Y Y R BE N BE R SR N N N NN S N WY 45 ‘.'..\
" A iHViSible- ® 0 0 0 ¢ 8 0 0 PP OO OB OO SO O OO O OO OO OO T e ES OSSNSO NS 127 - 4
4y invocation. ® 0 0 0 0 0 0 ¢ 0 0 00T O C OO OO G PO OO LSO PO R LN OO0 OO E OGSO OCEOEON 3 8 .":-:':
:'.: inVOke ® 0 © 00 06 00 0 000 08 O E GO S IO PO LSOO O PO O SO L OO0 O SOOEEOSCE OSSN 33 :N:.-\.v
b * invokemode 9 @ © 0 0 0 0000 OB O OO P C QO S S OO SO O OO0 000G OO N PO OO OOOEBTSEOSOE LN 2 42 ’::"
*’s invokeonhost ® 0 0 & 6 00 8 0 N OSSO OO NGO OO O OO OO I CO NS E TSSOSO PSPOE 31 ’ 42 ::.;.":
.‘ InVOKeonHOSt ® ® 0 0 8 00 0000 00 ¢ 0O O SO PO OE OO0 L PP OO NS PO OSSOSO POPEEOEOCIOOOEODN 58 - =

I/O devices..........O..........I......I.IQCQ..."..‘... 123 “"
IPC facility......................o-o................... 179 ‘~\~_\

. M
:'}-': IPCEnabled. ® 0 0 00 0 000 00T D0 OO OO0 E O NP O QOO OO PO GO OO PO OO O OOOOSS 49 '.:‘: '.‘
{’a ipreceive. ® O 0 06 00000000 50O SO GO TGO O L OOV OO SN E OSSNSO DSTPSPOEODS 39 ‘; ....
p ': ipsend. ® 0 9 00 0 0 0 9 VS PO QOO TP OO GO LON OSSOSO OO NN PSS ENSESOIOIEPOSEPOEEOEES 39 :'\:: \
’N jam...........'O........C...l..l.........‘...'0'...'.... 162 - ~
~ kernel'...'......‘........'.0...‘.‘I'.l..l..."’..‘.'.... 12 »
'.-‘ key. ® 0 0 0000 P 0 00T OB PGSO OO LN OO P00 OSSOSO NSNS INOETEEERIOIECERAESESESTIYTESE 47 .-. "-
"::.-: key-value. ® 0 5000600000000 009 00000000500 00O SOOI OSEECEOIOIEOIOIESIOIOEOCEEOEITS 63 :-. -:-
:-'::n key-value mir ® @ 0000000 0000800 PO DO OSSOSO O OO0 SOOI OSISIPLIIOEES 15 ‘:'-\‘i
;'-: key-val ue wi r s ® 0 0 0 0000 0 000G SO O C OO T OO OO OO OO0 e 0NN OO LESEOEEOTOSEDS 4 8 :.:.:‘;.
":‘ kill."..'........'......................'.l......'..lll. 48 .:;‘:.:
- 1abelled atc. ® 9 0 000 0000 000000000000 P GO OO NS EOOISIONLOESEIPREIOIETOSETES 99 - -
. Language Integration...ccccceecceesccccoccecoscosvocsscsnees 60 e
-.._-. : Largestepper LA 20 B B 2 BN BN BN BN X BECEK BN X BN SN BN RN BN RE B R R RN A A A A A A A N N N NN N NN R E] 175 :::‘-'.-‘
::‘;_’ layersi ® 0 @ 98 5 50 0000000 O LSOO PN EOOORO OO LECLELEPINOOPOIOEETOIETOIEOES 151 ~:\-.:-\‘
.:.“: Line printer G 0 @ 0 &0 0 0005 0000 C P OB OO ST 00O SO TOEI O OGSO ELIPOTSOE 123 :.:.:-:.
o line pPrinter MaNAGErZ....veieeeeeeosescorncosensnssennees 124 RRRRY
. 1 link.‘...t'........Ol..C'.C.C.....‘l'......'...'.0. 10”' 154 ;.;,
link tatget. ® G 8 0 000000 P OO0 E LN OO S OO SOOI BEIBIOEBTOEOEOES 1” | 104 t_‘:‘;.
:-.:l: lists....l.l.......Q...I.l'.....ll.'l.l...l....‘.....D..O 61
‘;:':- load. LA B B IR I B AL B BN AN B BN BN B I B I R I B I R I I N N I A N A R N R e N N N NN RN NN NN 52
(.\:': load image. LA L I B B B BN BN I I Y I B B B B R B R I B R RN R R A N A Y A A A A A A N I NI X 17 9
:':'.; LO&d_P!Ogl'am-...........o-........-----.................. 53 ':

)., local addre‘....'.....l.l.....'l.........'..l.'......... 154

P d

& -
ro AN
:.- A-187




M A b bR R L SRt ah vl Sl e L O Lk G o a-tp g g ST ANE AR A0 AR A A e e Bt Ul R I PR e SR I T A e
. " n‘

Report No. 5261 - Part A Bolt Beranek and Newman

local address field....ceeeevceeeccessenssocasosscvsseasses 155
local area NetWOILK.ceeceoseaasvosscccoseasconsscansssane D9 1
local lletwork.....l.C..l..l....lll.0.....0..0...... 126' 157
local networks.l.l..'l.....0......'..0"..."........... 151
lOCate..lI.I....00....'.’!.'...0‘..........0...'.......0. 31
Locate...‘....l".....l...tl..".......'l.“..‘.......... 47
10gical NAME.veceeeosssoscsssscsessanssasssaccnsencae 27, 28
login...‘.......’.......l......l..'.....Q..l....’....... 139
lookup...lﬂt.l’.'...l.l...l.'."..'.00...0..'......l...I lgl
MGSEGE........I.I........'...l....I..l....l............' 148
mainframe......O....ll‘........l.'....l.l..00......‘.....' 6
Mapping Updatell....'..Ql’......l.l...'.'l....-.......'. 160
memory allocationlc..l.'.‘..OI".C...O....'.Q....ll..l.. 164
MESSATCesoereerssosssososostsssssosssssssssssssssssscscsssnses D8
message oriented.cicecccscssvcsscsscssesasnssessesssasses 33
MESSAGEe SEIVIiCEeveeecerosarsssssscassssansonsssossscsasesses 39
Message Structure Pacility..cececseescesccnscsscossenses 179
message structure facility MSF...c.evevecocncnscscanssossaes 15
Message Structure Facility MSF...cccecoecovosascascecsases 98
Message Structure Library MSL..cceceeeeccessscosascsacsese 58
messages-.'l.0'.......l....l..'....l.l'll...".......'... 39
migratory file.l...........'...0....."‘COQ'....C.O..Q... 9”
migratory objectSececeeseeersecsescscnnsccsenasasssascesess 14
missing bloCKkS.eeeeessecesssesonccccoscccsassccsssncensse 172
monitoring........Q.....0......0"."'..'..'.0...... 19’ 129
monitoring and control station MCS....ccvevvecnsscsseess 129
Monitoring and Control System MCS....cceeceseseceesecsss 129
Multibus..;.....'l....l...l....'.l........l.l"'..... 8’ 148
multicast‘....................‘............l.. 154' 156' 178
multicast addresSSeS.ceevccecscvsescrssvseccrscsssascssccse 163
multicast-host address MHA...vecceoecvoscscccavasesssasas 158
Multicast__Registeted...l..Cl.......l.....l.l.........l.' 161
multiple proceSSO.ll0.......'!Ql.‘-.!0......00.0.....'00 164
multi-window.".Q...'.Ol...l.'...l..'...l'..l'...'l....' 132
mUtual exClUSiON.icsceeaececnsvssvasscsscssccssssccssscnss 178

MYAGS..I.D.'.I...'.."ll....Q.............l..‘.l......ll. 49

MYUID....‘..00...‘...0.l...............O......Q....I'l..' 49

Mvab‘Address ® 8 0 6 & 0 8 ¢ 0 050 & 00 00 OB O O QOGO OSSP N O OO E S OO0 S0 e 163
name space........l.‘.....l ® ® 9 8 06 & 0000 98O B e 00 e N 13’ 99’ lﬂg
name treel LR B I B I B I B Y I IR I B BN B Y T R B I B R B R BN B BRI B R BN B B AN I Y Y BN N Y lﬂl
nametotype ® O 0 & O O 0 O 8 0 O P OO0 S SO S O N PO B SO NE O SN OEO NS eSS NDS 27
netwo!k monitoring. ® 0 8 0 0 0 00 OO U O BTSS0S OO SO0 OSSN SO SO e e 129
network number ® ® 9 0 8 6 0 00 0T 0B O S P OO 0T QOSSO OO OO SOOI SN 154
network traffic.... ® 6 8 0 5 2 000 0 90000 E OO0 OO RO OO OOL RO N e 134
new users..'.'.....ll’..‘.....ll....l................Qi. 138
NextBlock pointer..ccceececescesocascscesccancssnsesnsasess 168

node...o.'oCt.-.O.c'.'0.0.0...00......0..0...loo..o.....o 99

non-migratory objectS..cecseesrectcsccsncsccssssscsssssse 13

A-188




Report No. 5261 - Part A Bolt Beranek and Newman

non’terminal node-...........................-........... 99 ;~:3
non_volatile. ® 0 09 00 8 00 0SB O LS SO RN O NS ENSSON S S s e eE s 176
Normal file. ® 6 0 0 8 @ 0 5 0 0P 0 080 0PSSO e E OO 0RO OO E SN ST YOS CETEDS 168
Null values.. ® 9 60 0 & O O S PSS OO N0 SO LR OD 0RO OSSO SIS SN ee O E NS 63
ObjeCt MANAgerS.ccceacccsssncsoossssassscssasnsacssees 12, 24 -

object model....cicsiiticnnecrttstsesssessstsecnnancnnnss 22 _’3
object orientationNe.ccesceesccseccscccrssosscssscascscrascnse 22 %
object types. ® 0 8 @ 00 0 000 S0 O PR OO0 SO0 N OO SO0 eSS0 Ee s e 12 :-.-:
ObjeCt typing..........-...--...........-................ 12 ".:'
octet.................‘...'............'..l.'......... 39' 67 a
octet ordering. 4 6 0 0 ¢ 0 0% 0O 0PSSO G E N OO SO0 00 PO O E eSS EEE e 158
octets.'.................'..........".............. 63' 154

openuco.oo.toooathDOQC..onotno.tcocoioooto-.....unclcco. 91

opennoloo.t.'l.o‘co..o...o-.-c.-.o.co...-0000..0.00.0-'.0 96

open.ooooaooo.oolcol...Ovnoottcoto.llcootl.o...ooo'olo.o 167

open operating SySteM..cecescecacacsssvososocscaccscscocss 164
openstatusof ® O © 0 O % O 8 P OO OO PP E O OO EEE OO PO SN eSS TSSO NES 98
operating system. ® O 0 0 00 0 00O ST U P OO C OO0 P L OO O OO O ON e NN et e e 3
Operation..cceeciecrsescceonsesssnrossssscscosassnscsonsesssese 31
operation SWitch- ® & 8 00 0 0 0 0 5 0 O O O S P S T OGP E O OO O OGN S OO E 0 13' 22
operations..'..‘ll...'..."l.......l...‘.‘.....l...'. 22, 58
operator's CONSO0le€...cceccoscencoessonososcscscsasccacses 129
optional key..'..'O'C..'......Cl.l.........'...'I.O0.0'.. 48
orderofUNos- LA B BN BN 2 L B BE BN IR 2 2 BN BN O BN IR B B BN BN I BN NN NN R N R N R N I I R R R BN R R I A ) 177
originofUNo. LR R B B I I B I R Y T I Y R B R I I R R N R Y B R BRI I N I I ) 176 ’ 177
9verf1°w blocks. ® ® 00 8 9 5000000 0O OO PR SO S E C O O P OO OO SO SO O oo 171 -
packet size. ® 0 6 86 8 0 0 0 00 00 00 0 0 S O I PO OO O E OO OB C G OSSO S E OO OGS 36 :--.‘:J
pad OCtets....Oiil.‘..l.'...'.....QQ......I.........l.'.l 64 3 ]
parent....0........'..............‘.....I.I....0....0".. 55
Partid@l NAME...cccescacscssscnsososrsccsscsscsasssscssoces 100
partial symboliC NamMe..scseececesosvscscsossosssssscecees 104
pattern....'........0................‘.'.'.Q..l.....'.‘. 101
peer"to-peet.......-..............o.................o.--. 39
wrformancetl'l.’..........0...0....l.......l....l.....l 136
permanently bound....cccceecceccsccccncassscscssossescssss 13

phases.o......o....o.‘D..Q.l..o'.oocc.-o..ocoooo...ot..o 136

thSical local networkloocooatooltll.c.o.t'c....otlo 2”’ 152

PLN..O...'l..l.l..l...‘.l.Q.C....Q‘.....‘.l...!.l.c‘...l 157

wlled messaged. ® 0 0 05 000 0 0 0 0P O 0P OB 0T O ST S O OO PO O OESODRTPRES 131 “:.:':'
Pottability.oacttnco.oooooooo‘-oo.-o.o.ocnno.o.-...oooooo 59 :;':-:'.
wrtable......'ll'........ClOl.Ol.l.ll.....l....l.'llll. 164 e
PPMIC..!....'.0'00.'.0.0'0.0.00.00..Il.c'...c...l...‘.... 50
primal file....OIOCO..O..l..‘..l....t..ol....o..l 13' 16’ 9”
Primal File Manager. @ 0 0 0 00 00 O 0 8OOSO O SN I SO e R O E N OO R e e a0 46 X
Ptimal File UID Tablel ® 0 0 0 00 0 63 008 OO A E QA O B B G U ST AR TN EN e 91 h -!‘
Primal ProCeSS..cceecsveccocscccccssscsscsccscscessse 33, 46 -
Primal Process Manager....ceecceveccoccscsscscsoscoss 46, 50
ptimal processeSU @ 8 © 0 00 00 0 OO PO O SO OG O SO E B SO E SO E S OGO OO E 17

s

-
T

H
a
'/‘

s
v *r %

................................................
...........................................................
.........................................
..............................
............................................
..........................
................

- LY
------
---------



...........

‘(
%
o Report No. 5261 - Part A Bolt Beranek and Newman

A

A

:fj primary symbolic access path..cecceeecoccrececscscscseee 119
‘\‘:ﬂ prinCipals.‘...-..’I.D..'...lll.....l.....‘........l...'. 19
:‘:"1 Proceed.‘......t.‘.'.l‘..'.'....".ll..'."l.'.'...C...‘. 53
e

--“:“ process.l...Cl..l.C.....l....0..l.....’..'C..l..’.l....'. 45

process CONErol..ccscssscccsccccasescsccocsasscnssoscascs 45
pProcess desCriptoOrecescceccscesoccosasscsosssscosscssccsss 48
process environment.cccccoeccccccossnscscsccascosscscscsease 139
';' ptocess objects.lllIO....lQ....lI..'...............O...l. 16
Process Support Library PSL...cectccscosccccsscsscsacscnss 179
Process_LiSt.ccceccsececssscccccososssscccscscsseasssossoasesss D1
PrOQram CALri@l.veseeecveestsoscssscescsossosacascsccsecss 17, 46
Program Carrier MAna8ger..cseceecscescccscsossscsccsescssccs 46

S Program Carrier Manager OperatioOnS....cccceeecsceccscccsss 55
-:":~: program image.............Q..............‘l.......l...'. 145
i program SUPPOrt librarY.eececceccecsscoessceecsesvecsnccee 19
-d.:.n Program_Load_File...l.....'........".............l...... 55
= Program_NamE......-..-......................-.....-.-.... 54
‘x‘, Program_version.."......".........................'.... 55
?r Pronet.‘....l...........""......'........'....'.....'. 157
ﬂ; prOtOCOl hierarchy..............-o-...-.-............... 151
:} PutgeMAddresseS.........................--.....-..-.---. 163
:\ tandom read...'......'........‘.'.....l'.....’...‘...I.. 174
’- random write..........'.............'................... 174
A Read...'.O."."'..I............"...."......... 92, 96’ 97
bc’ ReadACL..............o...........--....oo......-.....-... 97
W ReadDesCriptOr.cceececcacsecscscsccscaosrssossssccacnnnnsss 97
;? ReadDirectory...................-....-.-o......o........ llg
5\: ReadEFSFileBlOCk.......................-........... 167' 173 J
';\ ReadEntry................o.-...........-.............-o. 1”8 h
) reader-writer........-..........-......--...........-.-.. 91 ﬁ
N ReadRandomEFSFileDataBlocKk..cseeseccesosscosoncennssaees 174 oA
\.,:( Readwriteocooooocco-.c.ooocc.'noloocioooooooonooonooo 92' 96 ::'h::\.
t*& ReadYTOStatt.....--.............-........................ 54 f;{
s::. real-timec.ocoo.o.nt.oooocoonoc...noo..oco.o.o...o.o.oc' 131 ::‘-.\.
iy reassembly........................-...................-. 154 fﬁ:.
- teceive..............................................-... 33 -

Receive.....I..Qll.'......Q....Q......I.l...'......l. 47' 58
ReceivevLNDatagramoool.Oll..0.00.0.oo.ool..c.0....0..‘.. 163
reconfiguration.oooo....00..0o....otn..C.c....'..c.o.... 131

records..‘...‘.l...ll'..'.....'.."l.l..'...........'.0‘. 61

L Y

"'l“". g ', gl

recovery. ® 0 8 0 0 0 ¢ 0% ¢ 0 00 0 VOO B LY DO E DU OO OSSO OB O OSSN B L eSO 9 93
registerl ® ® & 8 0 0 00 6 0 00 0P PO O T OO N OO PO G OE O PO O PP SO0 eeNe R 163
relative name. ® 0 @ 6 0 003 &0 05 O OO OSSR T T OO O S OO PO L GO E OO 000N 0N 10
relative symbolicC NaM@.ccecevseveescoscrssosssssssecnecnses 140
teliability. @ & O 06 0 0 5 60 56 05 00 06 OO O VO ST eSO e e 118' 136' 175
reliable delivery‘ ® 0 @ 0 5 & 8 0 5 OO S S 0O DS P SO O OO G 0 9 E S S Qe e e 00 e g 156
Remove. ® 8 @ 6 0 00 ¢ 0 080 QOO PR PSSO N O PO LI E PN OO OO SY SO 107

la::' RemovepromA(‘Lolccc..l.'t..o-'-lo.t'.ocot.c..ct!‘.o'.....o 98

e,

e

AR

,'.r,.rvf.rrr
LAY e
P

«H A-lgo




a0,

'-‘i-,(

)

Report No. 5261 - Part A

replicated objects...vveeeeeencserecccscesssrssnsacssanees 14
replication. ® & & 0 6 0 2 % ¢ OO PO 0 S O 0P E E S SO PP OSSOSO E S e S e e o 117
teplY'..l.CQQOQIQQI...'!..Q....‘l....l..l.l..."'ll.. 31’ 58
Report_Process_DesCriptOr.ecccceecscccocsncacnccsacess 47, 49
Report_state. ® 6 0 0 0 00 O 0O OB G P VBT OO OO T OO P G OO0 LN OSSN eN o 53
request-reply paradigmMececcccesesscsscsscassscoscsssocecsee 31
required featuUresS...ccveeecertsesssvrcsscoscosscscssosocsscscsee 22
required KeyS...ceoeeseeccessesnssessssscnsososasssscccncs 48
ResetvLNInterfaCe. ® & O 5 99 0 5O 000 P e OB O L GG B 0 NES OSSO E N e e 162
resident..‘.l.l...'.‘Q...'Q..l.l’l........I...'......... 135
resource MaNAGeMENt.cecesccoscoscssososssssaoscancscsscscace &
resource=SharinNg.cccecsccoscesscessosccrsscsacscsacsssneasss 11
ResourCe_.Testl ® & 6 0 0 O & 0 ¢ OO O S O OO O PO OO N S0 SN eSS OGS SN 55
restart...cieceieccacccescocorsccatssrsssscccnascecssscccss 134
restarts...O'.....'..'.l'..ll...'l.."....l'........l..' 176
Resume.....'.....0'0....'.....0.‘......'l.l...l...'...'l' 45
Retainwrites. ® & B & 9 0% O 08 90 E GO OO PSP OO NE BSOS NS eSO OESS PSS 96
revision..l.l..'I..Qll..........I......'.".......IG.l.. 1”1
role designatoOr.cceecsesseosessaneccnsessscosossacssesaasse D1
ROM.......".IO......0.0..."........l...l...“........l 135

rootooou..Ql..lOot..o...o.lct'n.oo.oolo.ooo...ooot-u.o.o. 99

[OOt directory.ov.o..vco‘ct..'.c.'l.ooclionoucuuolll.ol. 101
rOOt portioncoco.oo.looo.o'.'n..oo..'.c..ol.oloooo..c.oo 114

Running-ccc.OQOOQQQQ"."."..t.......o..oo.'.ououoo't.lc 54
SlGIII...I.Q...'..0.'0.l..l."....'.l"'......l.I......'. 67

S321............l0..'.0.0.l..lI.Q...0...'00'00.000....000 67

salvager...‘t.."'........C.Il‘l.'..I..'Q...'....'C...‘. 172
SCalability..l....l....l.'l.l..'.Q....'0'.2.‘.'.'....0.0.. 4
ScanDirecCtOryY.eeceeacesesescsacssssesoscncsosscscsssscsccscs 108
Search_All DeSCriptOrS.cecescsosevssscessassosscesscees 55, 56
secondary symbolic access path...cceecesccccacesecocecees 119
Self-describingl' ® 0 & 0 0 0 2 O 0 08 B O O S LSOO 00T O OO S OO e GO L0 e e Gﬂ
SendToHost ® % 8 ¢ 8 8 ¢ 5 ¢ ST O POt O OO O E O L S SE PP e 00800 ? e ® o 0 0 00 47 r 58
sendtohot...'.."l......l...l....".C...'.....l...l.....' 33
SendeNDatagram. ¢ @ 0 0 0 & 0 ¢ P OB OO OO SN PO RO R ST OO NP SO E OSSP 163
SequenCe.I....."'..Q...I".l...I.'....l.'l‘.'..l.....'. 154
SeQUENCEeNUMbDEer . . ccverserrsensorscsosessesscascascscssscsscs 27
sequenceNumbet. ® 8 6 2 % 5 S S O T H T O OO O SO N OO L NO OSSN OE SN S O NSNS 177
Sequencing guaranteeS...cceceseseesrcescscecscsscscscsss 157
Sequencing PropPerty.c.eccceecescrscscescsscrsscrsesosscesassecs 156
sequential.l..l..-...'O.lll'.......l.'....'......I..O..l 166
serializable..cciieeesrteseisesosnceescosssonsacenencacsnee 92
service..'.......0.'..'....‘.l.......I'..C.Ql......l..l‘. 27
service MONitoOr...eeeeereoseeescasossscscscososcssnsecsoes 130
Service probe.c.ceciecccieteescesssccsrscsrsssrsossansosasss 133
Service probesS...ccccececccscsossescscssescsnssascs 133, 136
serviCe_ListoiC * 0 8 0 0 0 8 8 5 0 0 5 6 00 0T B OO OO N POV T OO ST NSO e SCE N PSTODS 51

Session..c.o.oov'QoOﬁotﬁotoool"'u!...clbo..onnoolcoooo'o 54

A-191

Bolt Beranek and Newman




.‘W":.lr. LSl AT R GO S § SN A ngl vty s g0l "M e Yt - S e et A A et St S e i B Lieir e NI N e o on gu it ) A G e e e S ad
. - . - hd M . . - - .

s T T e e R R R e T T e e e P NI~
- R
A .

Report No. 5261 - Part A Bolt Beranek and Newman

SeSSion........o.-...........---o.....-..............--- 138 e

SESSiOl‘l agent..-..........-.....-....................... 126 -‘;-'.
session Controller......eeeveeneceaonnoosssssosssscessses 138 o
session identifier.....cieeeeeneeceeecosececensncnsanseas 139 o
Set Access RightsS...ceieveereecrernnesrescrenscsocanncase 45 i

Set Priority.eccececececerecaoscscssncscscccscnnocnsoncsce 45
Short file...eeeeeceeorssescsnssescoosoescsocecsosanscncnese 168
Sinktnnoottll.l....‘.'..l"."..'."..ll..'......l...".. 72
site~based decompoSitioN.ceeceeesceseececsccesccccosacas 130
SMAl) St PPel ceecavencreecssnososssaccssnsssosassascasssse 175
SOULCE.cecesosccesossosnscsssssossancssssassccscnnsansssscans 12
SPeCific NameS....cvieeeeeeensoseseessccsssnocssosccacseas 28 (2] |
specific Uid NaAME...eieeveseeceseranacscnseasasneascasceas 28 e
SpOOler........-.....-.....................o.-.......... 124 .4:‘_:-:"
Standard External Representation SER....cccevsovensococseas 58 =
standard typPeS.ececceecrsosossersostcccsossscssscscasoccacss 61 iy
startup......Q...QQ.‘.......I.l.C.....I.IO.......C.'.'.. 176
StatUS_PIObe..---.o...q-.......--....-.....o-.......-.... 51
Stopl.....Ql....l'...l...........QQ.'Q..QO.'....C..Q..... 53
stream..t..0.0.li.......l..l..'.‘..I...'.l...'.'.'..'.... 54

streams'-nooto'--onoo..o'ocnoo.tc.ou..ooonoo.oco.coc.".l 56

structural deSigN.eeesecvecrocronsecrossscccnsvsnasossannes 11
structured objeCtS.ieeeereeceecsovsencconosscsssasososnseses 14
substitutability....o".I.O.l...l....'....'.C....'.... 4' 2”
Substitutability.ceee . veeseceeconeeoccscccscasscscsoncsa 151
substitutabilityttlll....l....0.l.'.'......'.l..l..‘.... 157
SUDSErate.eeeereereceescoecscssenaseosccssassvesssasccsnee D
SUthpG*SUpertype....................-................... 24
SUIVIvability.eeeeereeteeeeseacesenvecescsooocsneascnneancasne &
suspend-ll....."l......‘Q...C......'..‘l..'......l.. 45, 53
Suspended..cericrcoscsescoacccescosssnascsscsssscessccscesse 54
symbolic catalog.'.l‘l'....'.Ol.l.O.'..........I..'.l..... 29
SYmMDOlicC 1inKSeeeereeeeoceeesosoeneensescascrsenccsnacecses 104
symbolic name'...l......'....'...'....'!......0'......... 25
SYmMbOliC NAME SPACE...ceesceosssesrsassnessessccsscssncase 99
SYMDOliC NAMES.cceeevesseecsoceoeasssssnsasssssassassnsase 18
synchronization....eeieeesrooesocsoecovesscssasnsscssnssss 91
SYStem CloCK.ceeeeeseteesoseosoeosnososnsaevsocescscsseasesss 164
system decompPOSitioN.sesecescscseeeossveccoscscnascssnacss 12
table-driven.................-........................... 36
tape drive..ceeccececversecossoocasessoscacacseacsosssanesss 123
tape Arive MaNAger....ceveseesesoscecsoscsvesosescnnosnss 124
TCP...Ol0'.0'..'l...'!.....l...'..l.l.ll.'...l.'.l....... 72
TCP stream.........C..lll..l'......'.'0................' 165
Telnetolc..I.I...00.....l".C."Q'...Q.Q.........l.l‘ 6' 165
terminal access computers TAC.....eeessvecesscccasccococas 126
terminal concentator.cieeecesesoceesscncenscacssoncaccascns B
terminal devicCe...sserrsscacsesescessessconscacsoscnnsess 138

s
2

A-ZJI'”"'a-’T

A
AN

Y

'};”L
L




Report No. 5261 - Part A

Terminateoolooolcnoocﬁloococooooo.lOloon..oo.aoll.o....-c
thawed..looocctcoul.n.o.oo.l..o'.ooc.olo....oloo'c..o....

Thawed.oo'loo.O.c...t.loo..ot...oootono..o.oolQoiloocooco

transaction identifierS.ccececesecescecscccccocssocscsnnns
transation ProtoCOl..cceeeccccscesoscssscscscssocscanscnns
Transmission Control ProtoCOl..cceecescecssaccccossccsocsa
Transmission Control ProtoCO0l TCP.cceccecscesssossscccancsnse
transparent'. ® 8 0 8 8 8 0 ¢ 0 0 06O O G0 O S S QT O 0O SO O G O AT E O Qe e e
transport‘. ® 0 0 8 O O 9 0 O O P OO T OO I PO SO OO ET EO OSSO 0P G e o
trap loggingto ® ® @ % 0 0 6 & 90 O O PO OO OGO O OB T GO OO SO O OO SRS e
traps"...'..l.............l........l...l ® 5 @& o8 0 0" 0 e 0 8 0
type tag... T e 0 0 8 ¢ 9 4B 9T T SO O P O SO SN OO EE SO SO eNE e
TYPEOL ACCESS s veeeesscosrsssccsssnosscsssoansssosasssssssosns
TypeOfSynchronization.c.eceeceesescscsescscscossosscncscnne
typetoname. @ € ¢ 6 @ 8 0 0 0 B O O O F O OO OO O S 9 C S OO QL OO L OO OSSO S E SO OOPRENYESE
UlGl.......'l...l.......l.....'..'l...O.C'I....'...'.....
U321.....‘.'.".Il'l.'...l...!l..'.....l"..‘......l.....
uid...l..l.l...ll..!.................l.............ll 25'
UID."....OQ...I'OQ......'.‘...Q.O.......'...0........"0
Uid NAaMinNg.eeevececessssecasaceosavetsassccscsscessssocnacsns
uid table‘. ® 0 0 & 0 0 00 ¢ 00 0 0V e 9O o 'l" ® ® 0 6 8 00 O 00 OO0 W OO OO G O O
unattended. @ 9 ® 9 0 @ ¢ 9 0 0 O 0 O S S O S O OO S QPO O O PO OO O OO O L O N Gt 0o
uniform...'...v...‘l.-.0.'...'Il.......!l...l.'..... 22’
uniformity. ® O & 08 6 0 0 & S P O O OO OO G S C S WO O OO SO E OO OO O e S EY T 3'
unique identifier‘ ® 0 @ 9 0 0 0 50O P O O OO O T OO0 OGS OO O C OO G SO S et eV
unique identifier UID.. ® ¢ O 0 0 0 0 0 0 8 08 PO OO QO SO OO RO O e OO RO e e
unique numbers * ® 0 9 & 0 ¢ & 8 O 0 O OB O E D O E OB O N SO0 9O SE ST RO ST SOOTS
UNIX.Q..CQ...l'..’.."..l...l'.......'....'..l...... 72’
UNO. S O & 8 0 0 0.8 9 0 0 P OO O PSS OO LGOS OGO LSOO N OO E OO EN TSNS S
UNO generator ® @ & @ 0 ¢ & 0 0 5 ¢ 0 P OO O G OO OO T OO e VOO S OO PO S O e e 0o
UNO size.. ® 9 @ & 95 0 0 0 00 T B G O C VS OO NS SN OO SO RS RS e A eSS e A SseS
user identity..eceescececssrecacacscoscssosscscossssncansaes
USer interfacCe..cececsecesscososvsosssscssscscesess 12, 19,
user session'. @ ® 0 ¢ & 0 5 0 0 O S 0 S S OO O C OB O D OO OO C PP E O LN S O S S E e e NS
User_EnVironment. ® 0 & ¢ @ 8 4 8 8 00 T OB O OO ST OO OO DN EL TN OGN e
users.l.l.Q.O..UCC...'..O.ll...ll't.....'...'...l..l..‘..
Utility hosts.. ® 0 0 @ 8 8 0 0 0 0 0 OO0 O G 6P GO OGO OO E S e ® 0 & 600 0 00
VAX ll/?sg.l ® 06 € 0 0 0 O 0 O F 0 F OO 0P U O OO 8OO O C RS E OSSR eSS ECCEDN
version..'.. ® 5 0 0 ¢ 0 0 09 O O O G OO S G O PO PO T E O SO SO OGO N E S E OO DEE NS
Virtual LoCal Net.eeeeeooesesosssssoscsasonsosssesonssossoses
virtual 1ocal NetWOIK...oeeosooceoscscsanscccssoncnces 20,
Virtual Local NetWwork VIN..cceeseceaocstssccensavesonsanas
VLN...’..'...'............'.....'.'....'..........I......
VMSI ® @ & 0 & 0 O O 0 0 O PO G B O S PO OSSO S OO OO T PSR SE OO eSO S eSS SN OOE
VPMapc..... ® 8 9 0 P & 0 0 6 PO C 0O OSSO O O L O OGO PSR OO O ST SN EESSET SO
well-knownl ® & ® 9 ) 0 0 8 9 00 % QO 00O O OE O PE NS A SR eYE RSSO
well-known UNOSI @ 0 ¢ 0 0 8 0 0 0 0 0 O 0 B O 0O OO R 0O S OSSPSR SO
WOorking directory.eeeeecsoeersoseacsosassnssosscsssossnscss

A-193

Bolt Beranek and Newman

45
92
96
175
15
151
. 9
127
152
132
131
62
96
96
27
67
67

38

67
22
25
54
127
11
25
13
175
148
175
178
176
16
126
54
55
19
. 8
148
101
. 17
31
151
L] 7
148
158
177
177
100



X
g

-

k ?'
8
Lol

¢f
, ’

a e

|
g
o
~
t
>

]

Report No. 5261

Wl
)

—~—
.0
v
Py

workstationN.ceceeeeeeosascscenansnsne
WOrksStationSeioevevssssossoescnnoscnse
"tite........Ql'...l.ll'll.ll.'...l.
WriteDesSCriptoOr.cveevneesnconsccacns
WriteDireCtorY.eeeeesoencescvseoscnss
WriteEFSFileBloCK.eeeeserseesoovesoces
WriteRandomEFSFileBloCK.eeeseveeoocese
xetox Corp.......0.'.....'..'.......

xMDQOOOOu'l.."..0....0000...0‘0.:00

NN
e

. "l.: -_' ..'

)
o
..

3

¥

LA
. ...{.'..-.

. " l.. .

"‘l

[ )

AR

.
o
(]

.
a5 %% %s's

AL
220000

?.}?.

A-194

Bolt

Beranek and Newman

126

173
174
157
164

's
f
o
—
..
..

*d

L

AR
.

- ..l:. Y

.
1]
Y
€
L5

i

4
Py
e 4

._‘.

v 'y

v

L} I' l.'1/ "a"'

L I I
[ I

|

. ‘e Yo h
P
D

. e e e



g R IR AR RS D e e A T e SATMAL AL S S SERACRACHISD ARG A IS AL A MA RGN A A M

Report 5261

PART B

Cronus, A Distributed Operating System:
Interim Technical Report No. 2

txﬂ R. Schantz, B. Woznick, G. Bono, E. Burke, S. Geyer
2‘5 M. Hoffman, W. MacGregor, R. Sands, R. Thomas and S. Toner

-
3%

PRI

.l“
A
S

“V l. .{ l.
>

= NN
v

et Prepared for:

+
PRI

P

Rome Air Development Center
Griffiss Air Force Base

X
® e -
Vot et |"r’ P P
ORI

s 2 2
PP

L4

QR A
Yy

*
e’
Ve

{ia



e Report No. 5261 - Part B Bolt Beranek and Newman

i Table of Contents
™

I~
X B-
:‘: 1 Inttoduction.l..l.....ll........l...l.......'Il...!..' 1
2 GCE Network SOftwar@....cceeeeescecsscccccoscnsssessccnae 2
~'.- 3 GCE Disk Software.l...Q"l..l'.l...l...'.......l...... 7
.".":: 4 C/70 Network FaCiliCieS.............-....-............ 8
:-\:l 5 VAX/VMS Network Software.....'......0..0..O....'l....' 9
RN 6 Cronus Network PerfOrmancCe....ccececeseccccescccescss 10
o 6.1 Introduction.cceeccececescsscscecsssscscscecscaccss 10
- 6.2 Explanation of TeIMS...eceoesveccossccsrsssacccsscece 10
6.3 RESULtS.seeeececeossnsesssscsasssesssssananassscocnss 13
':": 6-3.1 GO-Bit-Test-..cccoo..ooooo--ouoocooouooo.cconoooo 13
R 6.3.2 Datagram COPY TeSt..ceeeeesocscescescssccscssosse 14
.-.:’-: 6.303 Raw Ethetnet BaCK-TO-BaCk Testo.oaocoo-onoo.ooo.o 15
AN 6.3.4 Raw Ethernet Round Trip TeSt.cecececoccesccsceese 16
.".‘ 6.3.5 IP BaCK-To-BaCk Test...l...lQt.‘.....‘....‘.l".' 17
\4 6-3-6 IP Round Trip Test-.............-.....-.......... 18
:\.: 6.4 Discussion.....0....'0'..0.0................l'...'. 18
jﬁ- 6.4.1 Performance Enhancements Suggested By The
::\:: Tests
'::“. ® ® & 0. 0 0 00 0 00 e O 0 P S G SO O L T OO OO GBSO O T 9GO S L OSSNSO 18

Message Structures..oo...0‘0..0..'lQolocnl.v.ocoooooo 24
Purwse and SCOpehutootcoonocoolot.i'a...t.-oocoo.n 24

L

L
NN NN
e o e

-.‘. Design Issues. ® #8500 O 0 0N OO0 O et OO D G SO OO O S OSSP SO Oe eSS 25
:. . objectives. ® & 0 8 O 0 % 0 5O O O OO PO BB O OO OO SN SN O e S e SN 25
N . A Taxonomy of Message Structure

oy onventions

4-"...' ® O 6 5 6 0 0 O 0 OO OGP O P OSSO A OSSP C SO ST OO C OB OO NS Pe PSSO 27

Four Existing ConventionB..cseevsccecvaccrssccsace 30
01 NSWBBOQODOOC...OQCOOIIQQC....0.....0.“.'...0.. 3”
.2 The Internet Message ProtocOl.....esceecesessss 31
.3
.4

o b
.

The NBS Message FOrmat..cceceevescorescsccacsss 33

Courier...l‘..‘l....ll.....l....."....Ql.....' 35
ronus System LibrarieS..cceceececcsscsscccscscscscss 38
Configquration Management...ceseeeceocccococecssccecsses 39
A 10 Standards, Po’‘cies, and ProceduresS.....cceevsecescs. 40
. 11 system Docur’&' tion..."l.....'...l'.‘.’.l......... 41
.'.'_‘ 11.1 User hlanl 9 0 0 0 0 0 0 0 0 00 O F OSSO S S EO ST L O eSS E ‘1
-‘:. 11.2 OperatiO".S . R R R I I R N A S S R N S R S 41
R 11.3 Program k. .« @ MaNUal..ccsecescccvocnosscsoos 42

S

AL AN
e o o o @

4
SN SR SN SN N aNvNp O

"

o
a

»
» &
O~~~

L
LA
‘et et

S

g ¢

e ®

XXE P

O

4

o,
‘.l
-,




) Report No. 5261 - Part B Bolt Beranek and Newman

1 Introduction

This part of Interim Techinal Report #2 consists of a series of
short notes and reports of activities performed during the
period. Principal among these are discussions of the various
activities supporting the development of the system, and of the
progress on the components of the system support environment:
gce, network, C78 constituent operating system modifications.

The following accomplishments during the preceding period
are described in this section:

(o] completed the integration of the Ethernet local area
network into the GCE, the VAX/VMS and the C/7@0 UNIX hosts

0 completed the integration of IP and TCP protocols into
the GCE, VAX/VMS and the C/78 UNIX and interfaced this
software to the Ethernet layers using the Virtual Local
Network concepts

o completed a CMOS-based Telnet program to support
interactive access to other cluster hosts from the GCE

o completed the integration of a disk subsystem into the
GCE CMOS System

0 completed the design and part of the implementation for a
elementary file system for the GCE, which is to serve as
the base implementation for tng Cronus file system.

o) completed a set of performance tests to evaluate the
Ethernet hardware and software, as well as IP and TCP
implementations

o developed and installed a system configuration management
plan for source code and documentation

o developed code for and assembled library functions needed
to support the development of Cronus system components

o] established standards and approaches to achieve the high
degree of program portability required by our system
implementation approach

-~ . \ .
RN



L -l
"’ e
e Report No. 5261 - Part B Bolt Beranek and Newman ;;g
. ‘.. :. '.n;'
{' 2 GCE Network Software &}f
Sﬁ: A Generic Computing Element (GCE) is a multi-purpose g;x
R microcomputer system which is custom configured for a variety of S
ﬁk special purpose host roles in the Cronus architecture. It is S
o) based on M680@0 processor technology in a Multibus chassis. The R
; operating system for the GCE hosts is named CMOS. e
3 o
T Work has been completed in all the following areas of
o network protocols on the GCE under CMOS.
“1.
1) Ethernet Protocols agics
s &::'\.:_
RS 2) Virtual Local Net e
o \:_‘.
o 3) Internet Protocols }ﬁ;
~ - \-'
i 4) TCP
N s
N 5) Telnet T
S8y e
S AR
7 The objective of this work is to implement the communication o
N protocols as a base for the Cronus communication and control e
systems. o
oyt ,?:‘r *
A The initial plan for bringing up network software on the s
o GCEs was to adapt the BBN-UNIX version. Subsequently., it was )
4 brought to our attention that there was, at MITRE, an IP - TCP NN
e implementation based on an older version of the CMOS operating .};n
system. Although the BBN-UNIX IP - TCP was more complete (the IP el
o e layer supported ICMP and UDP), the MITRE implementation was used Sy
o because it would be easier to bring up on the current version of ﬁ:t‘
b e CMOS. S0y
) N
' The MITRE IP -TCP was encapsulated, to minimize the number i
of changes necessary to run on the new version of CMOS. The f,x
encapsulation was soon completedr and was followed by the i
integration with the Ethernet software. A TCP test program was RN
written, and the debugging phase. e
e
Figures 1 and 2 indicate the test configurations used to NG

demonstrate IP and TCP. Test 1 demonstrated character-at-a-time
functionality between two GCEs on the Ethernet using TCP ki 3
protocol. Test 2 showed the same functionality Between a GCE and R
the C70 UNIX (using its ARPANET 1822 interface) with the Cronus S
gateway interposed. 1In order to get IP to work with the Cronus -
gateway, the VLN address mapping scheme was added to the local

network code. After this was done, test 2 was performed DU




~ Bela &)
AOR APl S A A R AR IR0 STar e T e e T e et Tt LU R AT A ] AR AT ) S AR

. Report No. 5261 - Part B Bolt Beranek and Newman

: successfully. Test 3 demonstrates the functionality of Test 2
but directly through the Ethernet.

v
PR

Figure 1
TCP FUNCTIONAL DEMONSTRATIONS

e e G e

Test 1:
§ e ———— —————— et D L S
\ | GCE | | GCE |
) | | Ethernet | !
‘ | TCP Test R el ]| TCP Test |
| | I |
3 $mm—mm ———————— tomm e —————¢
|
o
- Test 2:
N dmmm—————— ———————— T T
& i GCE | | |
2 I | Ethernet | |
X ] TCP Test R e et Gateway |
¥ I | | I
tm———— —————————¢ T Y
% -
|
. [
. v
Ty
- | c78 |
. | |
4 | TCP Test |
. | |
- e T e
-
L
0y
it
)
L)
=~
\

-, 4
w
|
w

»




________ LR S AN S RO L R AU B T A S A TR S AT ORI A

Report No. 5261 - Part B Bolt Beranek and Newman

Figure 2

TCP FUNCTIONAL DEMONSTRATIONS (Continued)

Tests 1, 2 and 3 have all been successfully completed.

Finally. we developed a simplified GCE user Telnet program.
This is a prototype implementation that is a modification and
extension of the TCP test program. In the course of debugging
Telnet, a number of bugs were found and fixed in the Cronus
gateway. The GCE Telnet has been used to login to Arpanet hosts
from a Cronus network GCE, to perform various commands on these
hosts (such as listing directories), to logout, to disconnect., to
re-connect, and to login again. The following are the Telnet
test configurations.



O m w:')

Ty

AN )

0 e a¥a"a" 0 0

[}

2l

"n'.l'lf

LA
-+

AN :'l'& £

'd

“aud" M
[

> P

b

',l ... ’

'. *

e %5 "

!’

@

- :' :. :‘ A.. l.'

‘.u
£ a,

Report No. 5261 - Part & Bolt Beranek and Newman

. qute )

TELMELY FUNCTICNAL DERONSTRATIONS

Test 1:

P e me--m.----- * L i Y etk 5

| GCE { ] GCE |
| | Ethernet | |

] Telnet User |(==mmemermcccaa --=-=>| Telnet Server |
| ) | |

fermcc e e r——————¢ tPommr e ————t

Test 2:

e nr—c e n e ———— D T S AT §

I GCE | [ I

I ] Ethernet | |
| Telnet User |(m=rmmmmmcc e aaay | Gateway ]

e e —————¢ terme e ————

I
I
|

v

torme e}
I c70 [
| |
; Telnet User :

D S R

L I I S

-



i IO N S S I AL A el IR ARSI A e . ees.v.v av.v," BRI MR RS DR AR o

Report No. 5261 - Part B Bolt Beranek and Newman

Figure 4

TELNET FUNCTIONAL DEMONSTRATIONS (Continued)

Test 3:

e ————— ————————— + tommmm——c——————— ——
I GCE | | Cc70 |
I I Ethernet | |
| Telnet User |{=mm=u —————— -=~===~=>| Telnet Server |
| | | |
b ————— ————————— + e ———————

Test 1 was a trivial Telnet to Telnet connection between
GCEs. Test 2 showed the GCE capability for logging in to a remote
host through the Cronus gateway. Test 3 demonstrates the
compatibility for the C76 of the implementation with other host
types over the Ethernet.

Ve

LHuh

v

i

-
AR
L R AN

B~-6

L L
2
%

.
Y
N




teviey,

ﬂi Report No. 5261 - Part B Bolt Beranek and Newman
:"-.
-
3 GCE Disk software
?Q The Interphase SMD 2181 Storage Module Controller was chosen

as the disk controller for the Cronus GCEs. Production problems
delayed delivery of this controller, so we initially used an SMD
2180 disk controller (with which the SMD 2181 was advertised to
be upward-compatible) and began implementing the elementary File
System. We constructed a CMOS device driver, Elementary File
System Initialization program and the CreateEFSFile,
DeleteEFSFile, and sequential read and write routines for the SMD
2180. (See Section 14 of Part B for the description of the
Elementary File System).

When the SMD 2181 controller arrived, we found that it was
not completely compatible with the SMD 2188, so we converted our
code to run on the new controller. There were a number of other
problems we encountered in integrating the new controller,
causing extremely high error rates. After trying new firmware
for the controller, which did not fix the problem, we shipped one
of our controllers and disk drives back to Interphase. so that
they could find and fix the problem, which turned out to be a
byte order incompatibility in accessing Multibus memory.

Another problem occurred in which some random bytes would at
times be overwritten with the wrong data when reading a block of
data from the disk. This problem was traced to bus contention
occurring when the controller transferred the data from its on-
board buffer into its Multibus memory. Interphase provided us
with a patch to correct this, which we have installed. The board
now seems to run with very few problems, although some advertised
features of the board (such as error correction) are not
implemented in the current version of the microcode.

The GCE implementation of the Elementary File System, which

is now largely implemented, is being tested using the SMD 2181
controller.




)

<&

L]
.

g
0
_

L)
~

.

»

-

o2

L P
LI"I\I\.‘ ‘I

Report No. 5261 - Part B Bolt Beranek and Newman

4 C/70 Network Facilities

The task to connect the C/78 UNIX to the Cronus Ethernet is
broken up into three pieces. The first piece is building
hardware interface (called MIENI) to connect the C/78 to the:
Interlan NM10 Ethernet controller. The second is writing and
debugging C/78 microcode to drive the hardware. Last is the UNIX
driver connecting hardware to the UNIX operating system.

The hardware was debugged in the fall of 1982. Since that
time, two bugs were found while debugging the software. The
first bug was a bad interaction between the NM1@ and the MIENI
board which caused the microcode to read the status byte twice
instead of once. The second bug caused the interface to stop
transmitting when it was highly loaded. There was a timing
problem in the MIENI causing it to occasionally send a bad
command.

During this time. the second MIENI board was brought up and
is now operational. We also received new NM1l@ boards from
Interlan which fixed some minor problems in the hardware.

The microcode has been stable for four months. While
debugging the C driver, one bug was discovered. During some
interrupts, the microcode neglected to change the memory maps to
be in UNIX kernel space, which caused the microcode to fetch data
from the wrong address.

The UNIX driver is still being debugged. At this moment one
known bug remains that causes the network software to add random
data to the good data. It is being attacked with the help of the
network software group. We expect this bug to soon be found and
corrected.




Bl NNl S TS w e e e W
REAUAVUAOMUN L A G, et S EAVA AL DAL DA MLRAIRLISSINEI S G A S S MO R S e R

DDA ST bt ;
E:} Report No. 5261 - Part B Bolt Beranek and Newman

.-\..:

’ 5 VAX/VMS Network Software

IP and TCP for the VAX/VMS have recently been installed in
our test configuration. After dealing with a number of
operational difficulties and deficiencies in handling Ethernet
address translations, we now have the software running. We have
added the Virtual Local network software to the 3Com Ethernet
device driver, and are now in the process of testing and
evaluating the IP and TCP implementations.,

S
A

PR N

. PRl
5,0 YWt

AR

4

-
AP

;',"l',' A
A
t

Ay

T

L.
a'ala’a,

r'

[l
P R

Ry

o

'
L A P
v,

aa ata a

7 o
"\-'\f:f -u'..r{ v »
AN

L
.-

1
e

Fras
R

R I

M
et

.'f"l‘n'."

NSV T

B-9




Report No. 5261 - Part B Bolt Beranek and Newman

6 Cronus Network Performance
6.1 1Introduction

Over the past several months, performance measurements have
been made on the Ethernet local area network. These tests were
designed to give us concrete information on the performance
limits of the Ethernet and of IP.

The three most important characteristics of the Cronus
network are throughput, delay, and reliability. Throughput is
the rate at which data can be sent from one host to another.
Delay is the time from initiation of transmission of a single
datagram. until the datagram is available to the receiving
process. Reliability is measured by determining the percentage of
datagrams which do not reach the receiving process; datagrams are
lost because of hardware errors or because the receiver can't
keep up (overspeeding). These three characteristics are a
function of the size of datagrams. Other interesting
dependencies include the Ethernet addressing mode, and the
buffering and synchronization techniques.

The tests measure the characteristics between two MC68008-
based GCEs on an otherwise unloaded network. The reported
results are the average values for 2000 datagrams. The
measurement programs run under the CMOS operating system, and use
standard CMOS i/o and synchronization techniques.

6.2 Explanation of Terms
1) Datagram size

Datagram size is the number of octets in the data field of a
datagram. It does not include header or trailer information
used by various protocols. For example, an Ethernet datagram
(referred to as a 'frame' By the standard) consists of a 14
octet header which includes addresses and a type field, 46 to
1500 octets of data, and a 4 octet CRC. The smallest Ethernet
datagram is 64 octets, and the largest is 1518 octets
including protocol overhead. Since datagram size refers to
the data field only, for the Ethernet it may range from 46
octets to 1500 octets. IP datagrams add another 20 overhead
octets, and may range in size from 280 octets (no data) to the
maximum allowed by the underlying protocols, which in the case
of Ethernet is 1500 octets. Subtracting the header size, the
datagram size for IP may range from 1 octet to 1480 octets.
Note that IP datagrams with a datagram size of 26 octets or
less are transparently padded when encapsulated in an Ethernet

~~~~~~~~
D)
. '_- -

o

oo ".. -
TS o .\ -
LIPS T Y

Report No. 5261 - Part B Bolt Beranek and Newman

{ datagram., because minimum Ethernet datagram size is 46 octets.
y This definition of datagram size is chosen as the throughput
or delay measurement depends on the amount of data sent.

2) Throughput

Throughput. is the rate at which data can be transferred
between hosts by sending datagrams back to back as quickly as
possible. If the transmitting host can send data faster than
the receiving host can accept it, a condition known as
overspeeding results. Datagrams will be lost if the receiver
is not ready to accept them. Throughput is measured in bits

s per second (Mbps = megabits/second, Kbps = kilobits/second)
3¢ and datagrams per second.

3) Bandwidth Utilization

h >
K f‘ 4" L

Assuming that the Ethernet's raw bandwidth is 12.6 Mbps,
bandwidth utilization value is the percentage of the raw
bandwidth used in transmission. The usable bandwidth is less
than 10.0 Mbps., if one takes into account the overhead of
protocol headers. This usable bandwidth varies according to
the datagram size; it seemed a dubious complication to compu+-
the percentage of usable bandwidth utilization.

) .I .l 'l 8, 8 ll
NI SIS
x

F

PRI
a A A

4) Errors

MO
.

O All datagrams for which errors are detected in either the

- Ethernet or IP layers are discarded. Statistics are kept by

' the Ethernet driver and the IP protccol handler. and are
accessable to the test programs. Ethernet transmission errcrs
that are detected by the controller or driver include 1) too
many collisions encountered in attempting transmission, ard 2)
controller errors. Ethernet receive errors include 1) CRC

P errors, 2) framing errors, 3) controller errors, and 4) no
receive request outstanding for the data link type of the
received datagram. The controller also detects the lack of
receive buffer space on the controllers but this error is not
counted because these datagrams are discarded with no

L .
AN

s
¢

;{j indication to the driver. Lost datagrams not accounted for in
RS other statistics are assumed to have been discarded due to
0! lack of controller buffers.

IP errors which are detected include 1) datagrams received on
the Ethernet but not addressed to the host, 2) lack of IP
buffer space, 3) incompatable version number, 4) datagram

o received with a protocol field for which there is no open
® stream, and bad IP checksum.

"

o B-11

- Report No. 5261 - Part B Bolt Beranek and Newman

0f all these errors which can be detected, the only error ever
detected was the Ethernet 'no receive request outstanding for
data link type'. This is not an error of the Ethernet itself, e
but is a consequence of the decision to have the CMOS Ethernet Iy
device driver discard datagrams for which no outstanding ~
receives have been queued. Other strategies might have e
included buffering of datagrams in the driver itself, waiting
for receives to be queued, This approach was not taken
because higher-level protocols are better equipped to make
buffering decisions. No datagrams were discarded for any
other reason, including lack of controller buffers.

5) Received Datagrams

A datagram is counted as received when it reaches the
destination with no errors detected.

6) Dropped Datagrams

A datagram is counted as dropped if it is received properly by
the hardware, but discarded because there was no receive
request outstanding for the data link type.

7) Overspeeding

If the receiver cannot keep up with the transmission rate, a
condition known as overspeeding occurs. Though buffering can
absorb bursts of datagrams coming in at high speeds, it cannot
prevent overspeeding if the transmitter consistently transmits
datagrams faster than the receiver can accept them. Buffering
occurs in the controller, with room for two datagrams, and in
the user process. User buffers are queued to receive
datagrams of a certain data link type, are returned to the
receiver process when received datagrams have been placed in
them. Overspeeding occurs if either of these two buffer
resources is exhausted. 1IP adds an extra level of buffering,
with IP buffers being passed down to the Ethernet layer to be
used as Ethernet buffers. Overspeeding can also occur if the
pool of IP buffers is used up. During the course of the tests,
the only type of overspeeding observed was caused by Ethernet
user buffers not being queued fast enough.

8) Delay

The round trip delay is the time to send a datagram of a
certain size and to receive a datagram of the same size as an
acknowledgement. The one-way dealy is one-half of the round
trip delay. Delay is measured in milliseconds/datagram.

IO O S A R L

n Report No. 5261 - Part B Bolt Beranek and Newman

9) Go Bit Test

In the go-bit test, the controller repeatedly transmits the
same datagram, with no copying of data. When a transmit
complete interrupt occurs, the program restarts the
transmission. This measures the speed of the controller
hardware. The test does not implement the portions of the
Ethernet Data Link protocol implemented in software for the
3Com Controller

19) Datagram Copy Test

This test is run as a stand-alone program without CMOS or the
CMOS Ethernet device driver. A maximum size datagram is
copied into the controller's transmit buffer and transmitted.
When the controller interrupts, signalling completion of the
transmit, the datagram is copied again and the operation
repeats. This test measures the overhead that CMOS and the
Ethernet device driver introduce. As with the go-bit test,
the software portions of the Ethernet Data Link Protocol are
not implemented.

11) Back To Back Test

The back to back test measures the speed at which a GCE can
transmit data with no acknowledgements. The transmitting
machine sits in a loop, sending datagrams as quickly as
possible, and the receiver tries to keep up. This test was run
for both raw Ethernet, and IP.

12) Round Trip Test.

The round trip test measures the speed at which a pair of GCEs
can transfer data with acknowledgements. The acknowledgement
datagrams are the same size as the message datagrams to permit
the calculation of one way delay. The test does not implement
a reliable channel with sequence numbers, timeouts, and the
like.

e
.'l.

)

6.3 Results

The Go-Bit Test indicated that the 3Com Ethernet controller
meets the Ethernet specifications, It helps verify the timing of
the other tests, since the results were predictable from the
specification.

........

Report No. 5261 - Part B Bolt Beranek and Newman

The clock rate on this Ethernet is 10.8 Mhz, which means
that one bit-time is 100 nsec. No controller can sustain a data
rate of 10 Mbps, since the protocol requires a 9.6 microsecond
interdatagram spacing and a 64-tit preamble for hardware
synchronization. The maximum size of an Ethernet datagram not
including header and trailer, is 1500 octets, or 12000 bits.
Each datagram also includes 144 bits of header and trailer., and
requires the 64 bit preamble, making the number of bit times per
datagram 12208. 1In addition, 96 bit times are required for the "
interdatagram spacing delay, making the total number of bit times R
to transmit a single, maximum size datagram 12304. The maximum SN
usable bandwidth of the Ethernet is thus g

e,
e ..

1
S
4

e
R TR
Y

190 Mbps * 12000/123094 = 9.75 Mbps. o

The measured maximum usable bandwidth is 9.6 Mbps, close enough o
to be confident that the hardware is functioning normally, and X
that the timing of the performance measurements is accurate. The
slight reduction in usable bandwidth is attributable to the
interrupt latency of the MC68080, execution time of the interrupt
handler. and the occasional preemption of the interrupt handler
by a memory refresh interrupt.

6.3.2 Datagram Copy Test

. . - .
s "r] Pt s w4 . e .
SRR e s e,
. . C e . B
22 ."-“.‘ AL 3 AR

P
.

.l.l
-

< i
LN P
e

Any real data transfer using the Ethernet must encapsulate
the data to be transmitted, and then copy the data into the
controller's buffer. The CMOS Ethernet device driver performs
these operations, as well as handling the portions of the data
link protocol not handled in hardware. A stand-alone program
which copies a datagram to the controller's buffer before
transmitting it provides a useful point of comparison to the
Ethernet device driver, since such a program would give a upper
bound on performance of simple data transfer. The maximum
throughput in the Datagram Copy Test was 3.2 Mbps for 1580 octets
of data per datagram. This is nearly 1/3 of the bandwidth of the
network.

I A
S

%«
e 'y Ty
ol

In performing other tests, it was found that datagrams with
an odd number of octets require substantially more time to
process than do datagrams with an even number of octets. For
example, the throughput for the Datagram Copy Test for datagrams
with 1499 octets of data was 2.86 Mbps, only 64% of the
throughput for datagrams with 1500 octets of data. The
difference was caused by the data movement routine, and is the
result of interactions between the architecture of the MC68600
and the 3Com Multibus Ethernet Controller. The cpu must copy the

A O
AR L L B
e "t a*wYa ' "

Report No. 5261 -~ Part B Bolt Beranek and Newman

Ethernet datagram from its local memory into the controller's
buffer in multibus memory space. To save complexity in the
controller, the datagram is aligned with the end of the buffer.
rather than the beginning. The controller is given an offecet to
the start of the datagram, and stops transmitting when it gets to
the end of the buffer. This eliminates the need for a counter in
the controller; however, it does introduce the odd-even
disparity. The M6800# has a 16-bit external data bus, which

e means that a copy algorithm can move the data in 16-bit chunks,
;F;j but the data transfer must be aligned on an even-byte for both
D address source and destination. It is thus impossible to use
NG 16-bit move instructions to transfer a data block from an even-
- aligned address to an odd aligned address, or vice-versa. This

case occurs when a datagram has an odd number of octets in it,
since the start will be an odd number of bytes before the end of
the even-aligned controller buffer. 1In the even-size case, data
is copied using the more efficient word-sized instructions, but
must be copied using byte moves for odd-sized datagrams.

6.3.3 Raw Ethernet Back-To-Back Test

The Ethernet back-to-back test was run over a range of
datagram sizes from 50 to 1508 octets, with separate tests for
specific, broadcast. and multicast addressing modes. The
differences in throughput modes and delay for different
addressing modes were negligible, Even for multicast addressing,
which uses a lookup table in the driver to perform address
recognition, an increase in processing time was seen. The time
spent copying the datagram to the controller's buffer and in
process synchronization is a high percentage of the overall time
spent in the Ethernet driver, and small changes in the rest of

A the processing are thus insignificant. The results given here
oo are for the specific addressing mode.

Raw Ethernet throughput ranged from 98 Kbps for 58 octet

S W] datagrams, up to 1.39 Mbps for 1500 octet datagrams (see Figure
QJQQL 5). A single GCE can utilize about 14% of the available

\;’: bandwidth of the network under idealized circumstances. The
SRR relationship between datagram size and throughput is fairly

: smooth., with some bumps in the curve for small datagrams. The
e curve inexplicably takes a small dip between 1300 and 1350

) octets. The datagram sizes ranged from 50 octets to 1588 octets
KRR by 50, so all of the test points are for even-sized datagrams.
e Datagram throughput ranged from 227.8 datagrams/second for 5@

RN octet datagrams, to 115.7 datagrams/second for the maximum-sized
- 1500 octet datagrams (see Figure 6). The shape of the datagram
throughput curve for small datagrams is difficult to explain. It

."ll .
e

'l.‘
20

XX

’ PO PO
NS #0)

2

AR -
:o _‘v .
v -

2 .

. "- .‘~ "4 .’l

P LW WV Wa P T . Ve T T T T T T, LAEN A AR Sl A AN AN N 2

Report No. 5261 - Part B Bolt Beranek and Newman

is probably related to the slight non-linearity through the same
range of datagram sizes seen in the throughput curve.

Buffering and synchronization decisions in the receiver
played a substantial role in determining whether it could keep up
with the transmitter, avoiding overspeeding. The simplest
scheme uses a single receive buffer and one outstanding receive
request. The receiver process enters a wait state after
resubmitting the buffer and request. Receiving a datagram t#us
entails the following: 1) copying the datagram to the supplied
buffer from the controller, 2) signalling the waiting receiver
process, 3) rescheduling of the receiver process, 4) the
switching into the process, and the 5) resubmissing of the buffer
and receive request. There is queue management overhead for
signalling and scheduling, as well as in the scheduler overhead
and the context switching time. This simple technique resulted in
severe overspeeding for small datagrams, because the fixed
overhead of CMOS synchronization is a relatively high percentage
of the total overhead. (See Figure 7.)

A somewhat more sophisticated method uses multiple receive
buffers and outstanding receive requests. When several datagrams
come in back to back, the device driver is able to buffer them at
interrupt level if several receive requests are outstanding.

Each buffered datagram causes a signal to be queued for the
receiver process. When the receiver process is rescheduled, it
is able to handle a number of completed receives without the
overhead of CMOS rescheduling and context switching for each
received datagram. This scheme was much more successful than the
simple scheme described above. With only two buffers, the
receiver was able to keep up with the transmitter completely,
resulting in no dropped datagrams (see figure 3).

6.3.4 Raw Ethernet Round Trip Test

The Ethernet Round Trip Test was run over the same range of
datagram sizes as the Back-To-Back Test; 58 octets through 1500
octets, The transmitter sends a datagram and waits to receive an
acknowledgment datagram from the receiver. The receiver, after
receiving a datagram, sends an acknowledgement back which is the
same size as the test datagram. Since both the receiver and
transmitter use the same technigques for transmitting and
receiving datagrams, and the datagrams going in both directions
are the same size, dividing the round trip time by two gives the
time from starting transmission until the datagram is available
to the receiving process. This time is the one-way delay. The
one-way delay ranged from 7.38 milliseconds/datagram for a

Report No. 5261 - Part B Bolt Beranek and Newman

datagram size of 58 octets, through 13.28 milliseconds/datagram
for a datagram size of 1500 octets. The relationship between
datagram size and delay is exactly linear (see Figure 8).

6.3.5 IP Back-To-Back Test

The IP Back-To-Back Test was run for datagram sizes ranging
from 50 to 1450 octets, so as to be directly comparable to the
Ethernet test. The largest IP datagram which can be encapsulated
in an Ethernet datagram is 1488 octets. The throughput ranged
from 40 Kbps for a datagram size of 58 octets, through 8380 Kbps
for a datagram size of 1450 octets (see Figure 5). Comparing
these figures to those for raw Ethernet, IP throughput ranges
from 44% to 60% of Ethernet throughput for the same datagram
size. The IP throughput curve is smoother than the corresponding
Ethernet curve. All datagram size test points are even numbers.
Datagram throughput ranged from 89.8 datagrams/second for 50
octet datagrams, through 71.4 datagrams/second for 1450 octet
datagrams. Unlike the Ethernet datagram throughput curve, the IP
datagram throughput curve is smooth.

Though IP uses multiple receive buffers, the IP receiver
program could not keep up with the transmitter, even for large
datagrams. This suggests that the fixed overhead of the IP
protocol and the CMOS synchronization, scheduling, and context
switching outweighs the per octet overhead of data copying (see
Figure 9). The increase in dropped datagrams from 58 octet
datagrams through 450 octet datagrams, and the subsequent sharp
reduction can be explained by examining the buffering algorithm..
For datagrams up through 450 octets, IP allocates a buffer which
is the exact size of the datagram, copies the data from the
receive buffer into this buffer, and gives the buffer to the
receiving process. The receive buffer is then reused. For
larger datagrams, the receive buffer is passed to the receiving
process with no data copying, and a new receive buffer is
allocated to take its place. This algorithm is motivated by the
desire not to waste a full-sized buffer on small datagrams. The
extra overhead of the copy operation for small datagrams causes
the number dropped datagrams to increase through a datagram size
of 450 octets. The sharp drop shows where IP switches to the
alternate buffer management scheme. Datagrams are dropped
because there are no outstanding Ethernet receive requests when a
datagram comes in. Because the multiple buffer scheme for raw
Ethernet avoids some of the the fixed overhead of CMOS, it
provides an increase in the basic receive rate sustainable by the
program. No such reduction in overhead is achieved by the
multiple buffering scheme in IP, so no improvement in the dropped

AR

~

lt‘ Tt et
o 0
¢

gy x
A L

L iy

'l ..l "A "

e
g By -y 88

* A'_p,' D'M' [N
A

Q
AN

X

2

”

'l
L4

AR
P A T e
Loy ata) et
PAACARS ~ MM

1
&Nt

el
Pl

(27
S,

o) e
PN -

R

‘l
A

LR
L |
ERAER

B

AN
IRARR RSN

O ’
« 8w
ORI

A4
‘.’. e b
s v g

]

Report No. 5261 - Part B Bolt Beranek and Newman

datagram rate is seen.

6.3.6 IP Round Trip Test

The one-way delay for IP datagrams ranges from 19.1

milliseconds/datagram for 50 octet datagrams, through 24.8
milliseconds/datagram for 450 octet datagrams, in which IP is

using the copy buffer management algorithm, and then from 20.9

milliseconds/datagram for 500 octet datagrams through 23.1
milliseconds/datagram for 1450 octet datagrams, using the no copy

buffer management algorithm (see Figure 8). Within these two
ranges, the curve is linear.

6.4 Discussion
6.4.1 Performance Enhancements Suggested By The Tests

As was seen before, IP throughput is between 44% and 60% of
raw Ethernet throughput for the same size datagrams.
Encapsulating data in an IP datagram is not inherently more
complex than encapsulating it in an Ethernet datagram. The
performance penalty is mostly a result of not having tuned the
implementation of IP. Upon examination of the test results,
several areas for improvement suggest themselves.

1) Encapsulation Of 0dd-Sized Ip Datagrams

Because there is such a disparity in performance between odd-
and even-sized datagrams that is inherent in the interaction
between the controller and cpu. a substantial gain can be
achieved for odd-sized datagrams by transparently padding them
to an even length.

2) IP Buffer Management Algorithms And CMOS

The current implementation of IP does multiple buffering of
receives at the IP level, rather than at the Ethernet level.
The process that handles Ethernet receives merely signals IP
that a datagram has arrived, passing the buffer up. IP either
copies the data to a small buffer and passes this buffer to
the client process, or passes the receive buffer directly. It
then queues a buffer indirectly by passing it to the Ethernet
level, which then actually requeues the receive request.
Separating the Ethernet and IP levels is probably a good idea,

Report No. 5261 - Part B Bolt Beranek and Newman

since it allows easier implementation of the VLN, But CMOS
process management overhead is high enough so that running
different protocol levels as separate processes and buffering
in a higher-level protocol causes an unacceptable dropped-
datagram rate. These tests measure only pairwise
communication on an unloaded network. 1In actual operation, if
multiple transmitters address the same receiver
simultaneously, burst receive data rates may far exceed the
rates measured in these simple tests, causing even worse
performance. It is important that resubmission of receive
requests occur as quickly as possible. There are two possible
solutions to this problem: either buffer incoming data as
close as possible to the device driver and use a more
sophisticated buffering algorithm, and/or find the bottlenecks
in CMOS process management and eliminate them.

I AT e
o b Lt

S
S P

S

v
L SN

Bolt Beranek and Newman

- Part B

5261

Report No.

Figure 1

Comparison 0f Ethernet And IP
Throughput

LIPRALAARS

v

-+
1228 1100 1200 1300 1408 1580

v

MRS JEEE Sums REme sty SuEn Sum 2

v

r—r—r—r—r-rTr

L
198 200 300 400 SO0 629 790 620 9ve

>

21
5
1
s

VCOOOO\OoanomOE ut andyBnoay]

Datagram Size in cotets

s..-\.o‘so\ﬁe.- . -.--.,-n.,‘-\l.. s PARNENES WA i

- R R DL LS A, T e I . « ot
y i WA . 4 RN -!o. - -<-~.-¢ -wcnt.\-.\-.ﬂ. ﬁ\-n -l,fl-t % !

»
s 0. N . '

B-20

TN NV LON G oY Te e s
R - A D) .

“

-
0y

>
AL

.fﬂ

Report No. 5261 - Part B Bolt Beranek and Newman

.
¢

T P ey NN
PN AR AL

[

P EAL

. .
»

Figure 2
Comparison Of Etherret And IP
Dctcgram Throughput

Be s S
l“ l“ "‘y} J

F
-'."- .

. L)
Pas

4, % ‘e Nty ac

Throughput in datagrame/eecond

UL AR

-
o
wn
0
J
a.

D
3

- W
P {
e
[
v

+—r+—T 7T T T T T T T T T T 1T+ CTTTTTTT -
2PR 300 400 S0 SCB 790 BCP 839 1828 (188 1282 1382 1428 1532
Datagrem Size in ootets

)
S
-
e
1 ~

b2

&

e % % 4, 8
afa"e7a’

IS A A A A

b

..n L DR A

qnﬂ‘d - T
o e

o> e L.
.

£
[SR AN

L) v L] h 1

Bolt Beranek and Newman

s

1600 1109 1200 1308 1480 1500

02 S20 603 720 Ov0 909
Batagram Size {n ootete

T

1

Figure 3

Part B
——r—r—

Ly

5261

o]
0
0.
o.
0
L

a
0
E
0
L
(o)
0

+
Y

(@]

Q-

o
0
(8)]
o

+
C
o
0
L
0

o

T v 3 v ¢ vV rvr1rvy Uy

§ R B8 B 2 R N
peddouq ewouboing jg ebojuecuey

Report No.
For Various Ethernet Symcronization Methods

hadd 1 W a ¥ . v N , ¥ - ¥ - - - B . -
AN AT A U S G S AL AT 2% A TSN ;l_'_f“:b_'_[' F_'-‘_'-‘_‘S,‘.‘A Ll AU I g T T e It e Rt « e "

Report No. 5261 - Part B Bolt Beranek and Newman

Figere 4
Comparison Of Ethernet And IP
Delay

W
N
A\
P \ SUUREE e
; .-"] .._.--.,..-.—--
-] -
- -
i 3 o

- P | I

\ P

Celay in milliseconde/datogram
B,
O K VT A

vyt + -
[120 23 2B 4N S5 A T30 M0 GN 1080 1180 1799 138 1488 19
am Size in ocotets

Figure §
Percentoge Of Datagrams Dropped
For IP

s]]]
Y A 'S - o J

Percentoge Of Datagrame Dropped

T T

T Y ——r—v—y
NS TID G0 QN 1900 1180 1288 1308 1400 1NN
Datagrom Size in ootete

i
¥
|
i
|

Report No. 5261 - Part B Bolt Beranek and Newman

7 Message Structures
7.1 Purpose and Scope

The message structure selected for the Cronus system is
describted in Section 6 of Part B. The discussion in this section
is an analysis of alternatives considered in making these
decisions.

Communicating processes in a distributed operating system
will not usually have access to shared memory or common state
information at primary memory speeds, for two reasons: 1) two
processes may be on different processors which do not share
physical memory; 2) even when processes are on the same host and
could interleave accesses to the host's primary memory., it may be
impractical or undesirable to do so. Shared memory may be
impractical because of its complex interactions with virtual
memory support, for example; it may be undesirable because of the
importance of the programming paradigm that allows processes to
communicate only through messages.

Without system-wide conventions for message structure Cronus
components would find it very difficult to talk to one another.
Programs c¢ould make pair-wise agreements, but this approach
becomes cumbersome and eventually unmanageable as the number of
correspondents increases. More in keeping with the primary
project objective of coherence and uniformity is a system-wide
convention for message structure.

Conventions for message structure vary widely in their goals
and scope of application. We assume here that the dominant goal
is the regularization of control traffic in the Cronus
system. Control traffic includes, among other things, requests
for orerations to be performed on objects, replies generated by
operations, exception notices, and messages needed to coordinate
édistributed object managers. Control messages are usually short
(tens to a few hundred oc;ets) and are bounded by the maximum
datagram size (a few hundred to a few thousand octets). Because
control messages are often in the critical path to completicn of
an interactive command, perfcrmance is a major issue--messages
should be compact, and efficiently composed and parsed.

Electronic mail an important example of structured messages
which are not control messages. Conventions for the structure of
mail messages meet very different goals than those for control
traffic. Since the delivery of mail occurs as a background
activity, relatively large space and time overheads can bte
tolerated. Mail messages are often large (tens of thousands of
octets) and rarely smaller than a large control message (an

........

Report No. 5261 - Part B Bolt Beranek and Newman

ARPANET mail message containing one sentence of text is about 3860
octets long). Mail messages can be very highly structured, and
fields such as "Date" and "Sender's Phone Number" that have
immediate significance to human readers; thus there is a natural
tendency to use English keywords as structural markers. Often
the prccesses that send, receive, forward, or file mail need to
interpret only a few fields in a header, passing or storing the
remainder for human interpretation. Standardization of message
structure is extremely important in electronic mail systems that
extend through the internet and link mail programs, operating
systems, and hosts provided by diverse vendors. Two mail
standards are surveyed below. Finally, because mail messages are
mostly text, they can be composed, altered, and examined by word
processing tools such as text editors and formatters. The
maximum benefit from electronic mail is obtained in systems which
smoothly integrate mail and word processing tools.

Standards for the structure of electronic mail messages will
be applied to mail in Cronus, but it should not be surprising
that these standards are not suitable for Cronus control
messages.

7.2 Design Issues

7.2.1 Objectives

The Cronus message structure conventions will be realized by R
a group of software components collectively called the Message Coa

Structure Facility (MSF). The Message Structure Library (MSL) is rove g
the realization of an MSF component, a library of functions or e
procedures which are available to processes on any Cronus host. LSRN
Messages are composed by passing information to the MSL N
procedures; the result of a sequence of such calls is a data SN

structure, This data structure can be transmitted from one :
process to another, and subsequently parsed by MSL procedures at e
the receiving process. T

The objectives for the MSF relate to the MSL and the data 5Qif
representation; in approximate order of importance, they are: "

1. LOSSLESS STORAGE. A process should be able to extract all St
of the information inserted into a message structure by the -
process which created it. The specification of the MSL -
interface should precisely define the data structures RIS
passed into and out of MSL procedures, so that this SO
property has a clear and simple meaning to MSF clients. o

Report No. 5261 - Part B Bolt Beranek and Newman

2. EXPRESSIVE POWER. The message structure should capture
enough of its clients' semantics (e.g., the size and type
of data fields) for its use to be natural and convenient.
Stated differently, clients of the MSF should not usually
communicate and retain information relevant to message
structure, except through the agency of the MSF.

3. PERFORMANCE. The data structures should be compact
relative to the data they contain (e.g., less than 100%
overhead for messages of 1f octets, and less than 25%
overhead for messages of 100 octets or more). The MSL
algorithms should be simple and have execution time linear
in the message size.

4., PORTABILITY. The MSF concept should be portable to
different language environments, e.g., the MSL could be
coded easily in C, Pascal, or Ada. The C implementation in
particular should be portable among all of the hosts in the
Cronus ADM.

Attaining Objective (1) assures us that the MSF can be used
to move an arbitrary data structure (viewed as a bit- or octet-
vector) from one Cronus host to another. The representations of
the data structures may differ at the sending and receiving
hosts, but no information will be lost. For example, on the VAX
a message may be stored as a consecutive seguence of 8-bit bytes,
while on the C/78 the same message is storeé as a sequence of
10-bit bytes.

Whether or not the MSF meets Objective (2) is unavoidably a
subjective judgement. The potential uses of the MSF are diverse
and unspecified. Because the MSF is accessible to application
programmers, even a complete specification of the system
requirements would not be sufficient to understand all of the
implications of the design.

Objective (3) implies that efficient composition and parsing
of very large messages (thousands of octets) is not a
requirement. For small messages, it is acceptable for the MSL to
locate fields by linear search and move fields by block
transfers, operations which require time proportional to the
message size., A structuring facility for large messages might
well find these costs too high, and thus rule out the most
straightforward implementation based on contiguous octet vectors.
Further, if message fields were known to be large on the average
(e.g., hundreds of octets for a paragraph of text or tens of
thousands of octets for a bitmap graphics image), the message
structure could use large field descriptors without increasing
the percentage of storage devoted to overhead; this woulé open

.........
......

..............

Sy T

PR
> s . 4 ¢ .
It RN

-
Pl
2 &
y
272"

'L. y

..-.
2 el

L N

IR
by
ale 50
4 B

o
S,
A

Aoy
‘:‘. s

: Report No. 5261 - Part B Bolt Beranek and Newman
{« many possibilities for more complex and efficient structure
e encodings. The small message assumption requires structural

e information to be small in absolute volume, for example, a
ja& message with 108 octets of client-supplied information should be
{E. smaller than 125 octets.
--.h‘
- Portability, Objective (4), reduces the cost of the

-~ implementation on the eight or more hosts in the ADM. Large
N portions of the MSL will be portable among all of the ADM hosts
AN supporting the C language. The host-dependent procedures must be
e recoded for each machine type (e.g., C/78, 680080, LSI-11) in the
~ ADM, but the implementations will be very similar.
gy We did not make compatibility with any existing standard for
‘3;- message structure a goal because we know of no such standard that
O adequately complies with these four objectives.

\f-'.'
N 7.2.2 A Taxonomy of Message Structure Conventions
e
Lo
:{{ A standard for message structure can be described as a point
— in a design space. Self-description, language integration, data
{ type support, and performance are proposed in this section as
oYy useful axes in this spate. These aspects and their significance
.&jk to the MSF are described individually below.
L
e A message is self-describing if it contains information
o about itself--about its own structure, or about the structure or
! type of its components. If we adopt such a convention, a
e receiver can depend upon the presence of this information, and
e need not rely upon higher-level protocols for its inclusion.
-i{ For example, a receiver might expect a message containing a
o timestamp; a timestamp might be represented either as a birary
ca integer of 32 or 64 bits, or as a fixed length ASCII string. 1If
S messages contain no self-descriptive information, the receiver
A must make prior arrangement with the sender to either: 1) place
Ny exactly one of the possible formats (e.g., 32-bit binary) in
RO every message; 2) indicate in each message which variety of
A timestamp was included. 1In case (2) the question of self-
- description recurs, over the representation of the indicator

AR field.

.l The conventions for message structure considered in this
R note contain self-descriptive informaticn which applies to the
8 position, size, data type, and symbolic name of a message field,
although not all of these are present in each convention.

»

3y
N s
St

»
5 ¢
N

«

N I

(AN

()
»
.

.h
WA
s

284

SIS
ll..l.l
N l".
RV N

T
]
[y

Q.00
PO S

”

l;lg'f.-' e

f?

2

I.l
s
II'I’

Report No. 5261 - Part B Bolt Beranek and Newman

Conventions for message structure can be influenced to a
greater or lesser extent by the programming languages used to
implement them. Tight integration might be achieved by
developing a standard representation for a linguistic structure
such as a Pascal record or C structure; weak integration is
achieved by packages which strive for portability, and must be
compiler or even language independent to a large degree.

Tight integration tends to improve performance. because the
compiler's ability to optimize references to messages using
structure-like objects defined in the language can be exploited.
Such conventions may be convenient to use, because they blend
well with features of the language; for example, expressions
involving messages might be written in the language's standard
syntax for structure accesses.

Tight integration has costs as well as benefits. It implies
a strong dependence on a single language. Alternately, one must
be willing to modify compilers to force message structures to
conform to a standard representation. Certain concepts natural
to message structures may be foreign to the data structuring
facilities of the host language (e.g., inclusion of self-
descriptive information), and these may be difficult to
implement.

The weakest form of integration implies reliance on only a
few language features, that are present in many languages. For
example, a message structure library of might use procedure calls
as the only form of invocation, arrays of integers as the only
data structure, and only stack-oriented storage allocation at
procedure entry time. A library which obeys these constraints
could be implemented in Pascal, C, PL/l, and most other block-
structured languages. Furthermore, if portability is an
important goal, the implementation for each language can be made
portable across a range of compilers and host machines. Thus
weak integration allows structure conventions to be implemented
uniformly on many systems, at reasonable cost,

A library that is language-, compiler-, and host-independent g
imposes the burdens of integration on its users. For example, an '
application program may be forced to convert internal structures
to message structures through a lengthy series of procedure
calls, one field at a time. Programs will be more complex and
execution slower if this approach is followed.

SERRR |- ATt
- e ...l.:J.i..l .

The conventions described in this note are language
independent, in general. 1In order to mitigate the costs of the
interface between message structures and data structures within a
program. it is suggested that local data cbjects should sometimes
be stored in the message format, i.e., the MSF can be viewed, to

Li Report No. 5261 - Part B Bolt Beranek and Newman

“u
(some extent, as an alternative to the record or structure data
- types in the host language,

) The degree to which the convention incorporates data tyre
- concepts is related to language integration. A language-based

convention permits messages to contain some or all of the
standard types defined in the language.

.
> In the simplest case, a convention may consider messages to
i‘ be composed only of bit- or byte-strings. The responsibility for
Y interpreting the message fields as integers, character strings,
etc., is left to higher-level software. A somewhat more complex
v convention may define the representations of basic data tyges
(e.g., integers, booleans, and strings) in a language- or host-
independent way. These data types may or may not include
composite tyres (e.g., lists, records, arrays).

[N -l. _-. -l' :; ." _.‘.

A convention may explicitly support the definition of new
types, to be treated like the predefired types. There may ke an
administrative authority which guarantees the uniform
interpretation of the types which evolve after the convention has
been established.

1 a Plae? .
l.l ...5!

)
..;

If the application domain of the convention is well
understood, data types especially important to that domain, may
= be included. Electronic mail systems are an important example;
% data types such as "phone number" and "network address" can be
b helpful here. Control traffic in a DOS might utilize a different
e set of conventional types, for example, Universal Identifiers,

b . Transaction Identifiers, and timestamps in various formats.

" o g

.l

Specification of data type representations is separable from
the issue of self-description. A convention which specifies the
representation of a 32-bit, two's complement integer, for
example, may or may not include a type tag on elements of this
type when they are embedded in a message structure.

LA
LAWY Ser Ty S S

.'-"ll'n

-

3

Small and simple structures are easier to parse than large
and complex ones. More complex conventions imply, in general,

more complex and costly software packages to assemble and
disassemble messages.

“l 'i " .l ‘I ..

TR R T S B]

Execution time costs associated with message structures can
be roughly divided into three categories:

Ed

1. The cost of transmission is an increasing function of
message size,

n"n":‘:':'-" o

2. The cost of composing and accessing the message is a

B
e
et

D)
w
]
N
o

?,

AR

.
-
A
e

PR Y

)
]
]

.C
-
-

@
=8

wi i &0
.

A A g St S AL M N S, A T I

Bolt Beranek and Newman

Report No. 5261 - Part B

function of the complexity of the convention.

3. There is a cost borne by the clients for encoding higher-
level concepts in those known to the convention.

If a convention is insufficiently rich in concept, (3) may be the
dominant cost of use. If it is too complex, (2) may dominate.
The most desirable situation is one in which (1) dominates, and
furthermore most of the information content of messages is useful
to the recipients.

The Cronus conventions selected have the following
characteristics: 1) most operations on data structures are
octet-oriented, and octet-oriented machine operations are
efficient; 2) small data fields (e.g., an enumerated type with a
few values) are represented very compactly, usually in one or two
octets; 3) a key is stored with each data value to indicate its
meaning or purpose--keys can be as short as one octet, or many
octets (e.g., some keys may be symbolic names). The message
structure routines are simplified because they contain no
inherent knowledge of the keys.

7.2.3 Four Existing Conventions
7.2.3.1 NSWBS

The NSWB8 protocol [l] defines the structure of NSW control
messages, thus its intended use is similar to that of the Cronus
MSF. NSWB8 does not define a uniform client interface, but only
the data structure.

An NSWB8 message is a string of octets; all fields of the
ressage are octet-aligned. Each field is preceded by an octet
designating the type of the field (i.e., one of empty¥, boolean,
index, integer, bitstring, charstr, list, or pad); the length of
a field can be inferred from the field's type. The primitive
types empty, boolean. index, integer, and pad are fixed length,
and occupy from 1 to 5 octets, including the type octet. The
types bitstring and charstr contain a count (a 16 bit unsigned
integer), followed by "count" bits (in ("count"+7)/8 octets) or
"count" octets, respectively.

The type list permits NSWB8 messages to be recursively
structured. A list begins with a type octet and a count, as for
bitstring and charstr, but is followed by "count" fields of
arbitrary type; some of these may again be of type list. NSWBS
is not closely tied to any programming language or host

KRS A A D S T L A A L S el S RS

Report MNo. 5261 - Part B Bolt Beranek and Newman

architecture; the set of defined types is minimal, and does not
include types (such as floating point) that are quite machine
specific.

The most important deficiency of NSWB8 is the absence of a
client interface specification to a standard library for
manipulating NSWB8 structures. This interface is a necessary
prerequisite for the construction of a portable MSL. Two further
problems are 1) the amount of overhead for some fields (e.g., a
variable length field has a 3-octet descriptor), and 2) the
requirement that every receiver have knowledge of all defined
types in order to parse an NSWB8 message because the size of a
field is not explicitly coded in the field descriptor.

Finally. the NSWBS8 protocol draws a sharp line between types
defined in the protocol (e.g., integer, boolean, charstr) and
new, client-defined types (e.g., an enumeration type); it does
not suggest how the latter should be represented. In this
respect the expressive power of NSWB8 is limited.

7.2.3.2 The Internet Message Protocol

The Internet Message Protocol (IMP) [2] is intended to be
used for the transmission of electronic mail messages in the ARPA
internet environment. The protocol includes conventions for
multi-media messages as well as conventional ASCII text. Multi-
media messages may contain digitized speech and video
information; these fields tend to be extremely large (tens to
hundreds of thousands of octets). 1In the ARPA internet, messages
constructed are transmitted on TCP connections, and the
transmission protocol imposes no limit on the size of messages.

IMP defines twelve basic data elements. A data element is a
sequence of octets beginning with a type tag, which is an
unsigned integer between 8 and 11. Nine of the data (No
Operation, Padding, Boolean. Index, Integer, Extended Precision
Integer, Bit String, Name String, and Text String) refer to
atomic data elements without substructure visible to IMP. Three
types (List. Proplist, End of List) are used to build composite
structures, Composite structures may be recursive, e.g., a List

may be an element of another List. The variable length elements 371%.
(Padding, Extended Precision Integer, Bit String, Text String, PR
List, and Proplist) contain a three-octet count immediately e
following the type octet. The Name String type has a one-octet RN
count following the tyre octet, to reduce the overhead in the e
representation of short strings. Y

Report No. 5261 - Part B Bolt Beranek and Newman

A simple example is the representation of the key-value pair

ol

COLOR:blue. Using IMP to represent this rair as the single ,_
element of a property list, the encoding would be: xp
1 2 3 4 5 6 7 8 9 18 11 12 S
-- e
|16 | et 113 71 5] ¢} ol | ol R| 71 LA
Proplist | | l Name N
| | | String Ny

Count Name |

String |

|

Count

—— - — - —— — — - — G = G - W = -

—— e e ey S —— — —— — . = - =

Count End List

A key always has type Name String, and the IMP defines a large
set of well known key names significant in the electronic mail
application domain, e.g., "NET", "OPERATION", "TYPE-OF-SERVICE".
"DATE", "TRANSACTION".

Lists and property lists are powerful and convenient
structuring concepts. The primary deficiency of the IMP, from
the viewpoint of the Cronus MSF requirements, is the large
overhead implied for small messages. An empty property list is
five octets long; the smallest meaningful property list has a
minimum of eight octets of structural information, The Cronus
MSF is a descendant of the IMP, but is optimized for the compact
representation of small structures.

-
-
P

“

=

< .
.
I-..
N

N -GN
BN LI

IR)

D B

RO < b,

Report No. 5261 - Part B Bolt Beranek and Newman

7.2.3.3 The NBS Message Format

The National Bureau of Standards "Specification for Message
Format for Computer Based Message Systems" [3], like the Internet
Message Protocol, is intended as a standard for the format of
electronic mail messages. These two standards have comparable
domains of application, but two philosophical differences are
apparent: 1) the Internet Message Protocol addresses the
requirements of multi-media messages more directly; and 2) the
NBS Message Format addresses broader issues, for example, the
allocation of certain variable values for vendor-defined
purposes.

A message conforming to the NBS Message Format is composed
of data elements; there are 19 defined data types., 7 primitive
types and 12 constructor that are used to combine elements and
other data types:

Brimitives Copnstructors

ASCII-String Compressed
Bit-String Date
Boolean Encrypted
End-@f-Constructor Extension
Integer Field
No-Op Message
Padding Property-List
Property
Sequence
Set
Unique-ID

Vendor-Defined

In its most general form, a data element is structured
containing five fields:
1. 1Identifier Octet
2. Length Field
3. Qualifier Field
4. Property-List
4, Element Contents

The Identifier Octet specifies one of the defined data types, and

A R R A W e S e : =~ .= .q". ST RNSCIAL I SO A i i Al A A v L) :‘. E.- =_:u_‘.-'~- Tete ’} b ‘_-‘_-7"- "-“.r‘.' LA

Report No. 5261 - Part B Bolt Beranek and Newman

whether or not a particular instance has a Property-List (e.g.,

one instance of Integer may have a Property-List, while another o
does not). The Length field specifies the number of octets in ®
the data element, after the Length Field. The Qualifier is]
present only for six data types (Bit-String, Field, Property, 2
Compressed, Encrypted, Message), and is used to encode data- e
element-specific information, for example, the encryption O
algorithm for an Encrypted data element. The Property List binds o

properties to a data element; the only properties defined in the ™y

NBS Message Format are "Printing-Name" and "Comment". The

Contents field contains the actual data represented by the data .

element. J
A representation of the property "COLOR" with the value o

"blue"” in a Property-List data element, assuming that COLOR is a =@

vendor-defined property, is:

3

1 2 3 4 5 6 7 8 9 18 11 12 e
-- @
| 36 1151691131134 61 ¢} ol L| ol RI 2| 3

i —— . . S - — — P —— S - Gms W . S S G Ghn Gas Gun G e THe G v G G s - D Ghe = YL Y G G G SO B G S G

Seadadd

Property- | | I | Vendor- ASCII- A
List | | Length | Defined String RS
Length | | b)

| Qualifier e

Property SR

{

- — > G e S P G G S S S G P G Fae G - Gy e G S S= =

The amount of structural information (Identifier Octets, RSN
Length fields, Qualifier headers) in a message conforming to the b
NBS Message Format is comparable to that in a similar Internet RE
Message Protocol message. One difference is that the NBS Message
Format encodes many message field names as well known binary
numbers (e.g., From=l, To=5, Reply-To=3), while the Internet -
Message Protocol represents the analogous field names as ASCII SN
text. Thus messages in the NBS Message Format are potentially o
more compact, at the expense of greater static context in SNt

Report No. 5261 - Part B Bolt Beranek and Newman

programs that display messages to humans. From the viewpoint of
Cronus control traffic, the difference is minimal., because the o
few field names are common to the domains of electronic mail and S
system control messages. R

Like the Internet Message Protocol, the NBS Message Format
is tailored to the electronic mail application, is oriented
towards large messages, and defines only a class of
representations. It does not define a client interface for
manipulating data structures in the standard representation.

7.2.3.4 Courier

The Courier protocol [4], developed at Xerox Corp., is quite e
different from NSWB8, the Internet Message Protocol, and the NBS b @
Message Format. The Courier definition says that it "facilitates 1
the construction of distributed systems by defining a single
request/reply or transaction discipline for an open-ended set of
higher-level application protocols." Layer Two of Courier defines
the atomic and structured data objects or messages which can be .
built in accord with the standard. ?%i

Courier data objects carry very little self-descriptive
information, instead relying upon global context for successful
communication. The Layer Two aof Courier defines 14 canonical
external types, 7 predefined or atomic types, and 7 constructed
types. Only the String and Sequence types include self-
descriptive information. Sending and receiving processes must
possess a common understanding of the message structure,
including the type and length of each message field. For
example, Courier encodes an Integer value in the range
-32,768..32,767 in a 16-bit data object field, in two's
complement representation. The encoding contains no explicit
indication of type or length of the data object; a recipient must

be aware that an Integer field begins at a particular 16-bit
boundary within a message to extract in Network Unreachable
formation from it. The 14 data object types specified in
Courier are:

2

P Report No. 5261 - Part B Bolt Beranek and Newman
-

i

"'*C': Predefined Constructed
3

D Integer Enumeration
ol Long integer Array

) Boolean Sequence
sy Cardinal Record

A Long cardinal Choice

S String Procedure
‘\}: Unspecified Error

A
)
“r

The origins of Courier data tyres are rooted in the concepts cf

A programming languages rather than the context of electronic mail.
RS The approach suggests a model of distributed programming in which
. the global context for message interpreting phase. A

<2
SR Courier message could be described by a type template which
N automatically drives the composition and parsing of messages. 1In
N fact, Courier specifies a grammar that could be used to define
T, the class of templates, represented as ASCII character strings.
}:: The Courier standard talks about templates being created at

" "documentation time" for a software module. An example of a

:{ template for an enumeration type from the standard is:
e
z" Mode: TYPE = {readPage{@),writePage(l),readAndOrWritePage(2)};
L where a message of type Mode has three possible values, readPage,
W writePage, and readAndOrWritePage, which will be represented in a

16~bit field by the integers 6, 1, and 2, respectively.

Courier provides no direct encoding of key-value lists. The
COLOR:blue example above could be encoded as a record composed of
Ry two String fields, using the Courier template grammar:

r

Fitd

3 Al
’gl)

8"
)
v

.
r o)

s . ",.'_ "

-2 , ;
o RECORD|[Key,Value: String]

The corresponding representation of the pair COLOR:blue as a
sequence of octets would be:

F '--_
Ao

.
s

D
L F

'-‘.'

4

o« ~ 4
o i
" -
N e
.. ’- ..
s :
{ '\n’. o
ol -
..- '.l
" oo
o D
.7 T
.-El B-36
I RS
Ao N
1 ,-$ " . .

Faf a2) g (1_,-{ r..r\' “v xf“f‘-'.l'--‘.'.'. -l'. =~ _V-‘T_‘}-.) _'E._‘ T'{

Report No. 5261 - Part B Bolt Reranek and Newman

o Length | Length

S End-of-String L

1)
[
w
bt
-9
—
[$,]
N ! i‘ ," . / ". .'» . ..' ‘ * v ‘e e e <

o | ul e] 0| ;ﬁfj
L mmeeemmeeeemeeee e
RSN -~ AR 4
T e .
NG End-of-String N
A Courier messages can be extremely compact, since they
s contain little self-descriptive information, but proper
AU interpretation of the messages depends upon pre-established
SN context. This is true of any message but Courier would require
AN more externally-supplied context in the domain of electronic mail
R applications, for example, than the Internet Message Protocol or
o the NBS Message Format. 1In general, a protocol which includes
gt more self-descriptive information is a better choice for the
o Cronus project., because it reduces the mechanism supporting
el process-to~process communication.

¥
N
K
T
-.'J.-_‘

N
A
¥

LA
I DA

af
PN
« .

8,5, o 8,
R

PO
‘l

\
)

]
K
N
C]

4
“n
i B S

‘
Ly

P A
L

RS0 R R N KNS SO

oWy saw, . « Vet v . e DR A SN R R

Report Nec. 5261 - Part B Bolt Beranek and Newman

8 Cronus System Libraries

The Process Support Library (PSL) is a collection of
functions, that may be bound into the load image of a Cronus
process, Only those routines actually needed by a process will
be included in the load image. The data structures implemented
by the PSL are within the address space of the process.

The PSL contains two important classes of function entry
points. One class is widely used directly in application program
development. The other class corresponds more or less to system
calls in ordinary operating systems. These generally invoke a
single operation on a particular type of object; the first class
is generally implemented from components in this class.

During the period covered by this report, the general
outline of the library has been prepared. Documentation of the
principal object operation functions has been develored, and is
currently being revised. Certain service routines, in
particular. a portable i/o library, string, message structure,
and data table manipulation functions have been written.

There are two packages available for data table
initialization and maintenance. These insert, delete, and find
key buffers and their associated value buffers. They are
intended to be used in applications requiring many fast data
retrievals.

The first of these, the LQH table maintenance package,
creates an open address table, which is statically allocated by
the calling program. It uses a linear quotient hashing scheme
(i.e. double hashing if a collision occurs). These routines work
fastest in a relatively unpopulated table.

The second, the BKH table maintenance package, gets storage
as it needs it. It uses a bucket hashing algorithm, storing its
values in linked lists. The linked list structure makes this
package very effective for applications requiring many insertions
or deletions.

"n" Y .‘\""
PRSI NN

. v

L, ‘l . . ’ B
@ o
LS. " S R R

.
. .
L AN
(]
PR

S)

‘e
-
'

SN

-
al
RE
o]
o

Report No. 5261 - Part B Bolt BReranek and Newman

9 Configuration Management

A configquration management plan for Cronus has been
developed, and tools developed and acquired to automate aspects
of this plan. The general principle of configuration management
in the Cronus system is based on saving an audit trail of
modifications to all source files (both program and English
text), and of archiving obsolete program object files. The
source file modifications, except those in the user manuals, are
saved using the Revision Control System, which was obtained from
Walter Tichy of Purdue. The manual revisions use the standard
BEBN-UNIX manual subsystem. Program objects are automatically
saved by the install command.

The basic commands in the Revision Control system are as
follows:

ci checkin a file

co checkout a file

rcsident identify a version

rcsdiff diff the current version
with the RCS version

rcs modify the rcs control and commentary
rlog show selected portions of the file history
B-39

e N S }!' N T AT e T T e
IO RO R A DK AE A I A 'A:‘ o« MA- 'h'-‘..-*'-‘. .-g_ R \.. R I . ‘,;T: JOUMRA

%

1
1°a

b

[‘."‘

Report No. 5261 - Part B Bolt Beranek and Newman

-

19 Standards, Policies, and Procedures

A Standards, Practices, and Policies Manual has been
prepared for the Cronus Distributed Operating Project. Since the
Cronus Advanced Development Model (ADM) is only the first
instance of the Cronus DOS, the standards and practices descrikbed
- herein are designed to support the substitutability and
.)_ portability goals of the project as well as to enhance the
RN overall maintainability of the system.

The Cronus System is implemented on a heterogeneous
collection of machines and constructed from & number of
constituent cperating systems.

o

»®
-

-

Ay

R

[RENR S N

I,
R SN

ot
o

XX
22
[
[-8
o

RS

4

ST A A S A N R D e b e A e AL A P A I S S S N o

Report No. 5261 - Part B Bolt Beranek and Newman

11 System Documentation
11.1 User Manual

Documentation is an important aspect of Cronus development.
We will be preparing a User Manual, an Operations Manual and
Program Maintenance Manual describing the system from these
various viewpoints. We have formulated jnitial plans for the
development of these manuals.

The User Manual (UM) consists of those documents required to
make effective use of the system. Many users will require only
documents which describe the terminal interface to the system,
others will need a description of the programming interface,
while other users will require more cdetailed information. The
complete UM is compiled from numerous documents from several
sources. The following are components of the UM:

0 The basic user manual is a series of separate documents
organized into sections which describe the manner in
which commands may be invoked directly by a user, and the
programming interface for standard library functions.
This manual exists in online and hardcopy forms.

0 A Cronus Glossary ¢f terms used in the various documents,
particularly the User Manual, System/Subsystem
Definition. Program Maintenance Manual, and Manual will
be compiled.

0 There are reference manuals for the more complex commands
and subsystems. These documents generally exist in
hardcopy only. although the text generally exists in
machine readable form as well.

o User manuals for certain parts of the Constituent
Operating systems may be included in the Cronus UM,

The online user manual will be maintained throughout the life of
the project.

11.2 Operations Manual

The Operations Manual (OM) consists of a series of
documents, including:

0 The Cronus Operations manual which describes procedures
for operating the Cronus System, including startup,
shutdown, crash recovery, and the interpretation of

-;: Report No. 5261 - Part B Bolt Beranek and Newman
(: console messages and other similar status and exception
X3 information,

s

}: 0 The Operations manuals for each of the COSs.

..‘

o The COperations manuals for other system components, for
example, for the the internet gateway.

- 11.3 Program Maintenance Manual

A The Program Maintenance Manual (PMM) consists of the

g information which is needed to understand and modify the various

:} programs which comprise the Cronus DOS. Information contained in

-2 the Functional DPescription and in the System/Subsystem

- Description is essential to the comprehensive understanding of

L the system. can be considered part of the PMM. The Program

5 Maintenance Manual is made up of a number of other documents,

e including:

‘:j o The Cronus Standards, Procedures and Poclicies document

}; defines the methods used in coding and documenting

- programs, establishes standard practices for the use of

{ program libraries, and describes the configuration

o management used in the Cronus Project.

.‘.

! o Manuals for the Constituent Operating Systems,

o specialized software packages used in the Cronus System,

- and for the hardware components in the Cronus systems.
These are generally supplied by the vendors from whom the

. hardware or software was obtained.

o o Manuals, drawings, and other documentation as -

Ij appropriate, fc-r all hardware developed by BBN

specifically for the Cronus project.

0 The Program Maintenance Tools are described in the PMM
section devoted to the analysis of code.

0 The Program Code Analysis contains the results of
applying the Program Maintenance Tools to the code, and
also contains listings of the delivered version of the
code, which provicdes unambiguous documentation of the
system.

0 The System Notebook contains the series of informal
documents, known as DOS Notes, accumulated during the
life of the project.

k-

-
-«
[}
L]
4

e

B-42

Cm

. -
o
'l »

Report No. 5261 - Part B Bolt Beranek and Newman

REFERENCES

Postel., J., "NSW Data Representation (NSwWBB),"
USC/Information Sciences Institute, IEN 39, May 1978.

Postel, J., "Internet Message Protocol,"™ USC/Information
Sciences Institute, RFC 759, August 1988,

Deutesch, D., Resnick, Vittal. & Walker, "Specification
for Message Format for Computer Based Message Systems,"
Bolt Beranek and Newman, Report Mo. 4486, August 1981,

n_s_ ny
RS
14 ,'
.

"Courier, the Netwocrk System Remote Procedure Call
Protocol,” Integration Standard, Xerox Corporation, 1981.

s

it

LA

g

S J"l“:
. v
o .n'."
s .
PR AN)
LN
PP it 4

B oWy ¥ WLE WS BN (Ve e TS NTRIRTS ARy ol .-.r-.‘r:'r‘.-r(vg;' RAR R I "R Tl T Tt Jage Fadh
) - R R e R A MRS R L e B B St e v -

v

-

~

Report No. 5261 - Part B Bolt Beranek and Newman

INDEX

aKChivecncl.......cOOQ.o'vo..o...oQ.o...ocooo'.cl..oh...o 39

audit trail-...l.l..l.0.0Q....l...0“....'..‘..0..0.....0 39
load image.’..'.'.l....0!...Q.....l.........‘........‘... 38
Process SUPPOrt Library...ecieeeceeecereeeoceooosseecnsess 38
PSL.....I....Q.'........QI.C..I'..'.................'.... 38

SOUICeaoo.oo.ot0...'.0.0.o..ol....'."l'.ol...!'.....oo.o 39

system call.....o...no0.'0'.0'l.oo...OD."..'.QQ‘O.....O. 38

B-45

............
[g -y EIAS YIRS . ~

-r Mg T ~ 2 Rfaciniarii St i S S A N
Fﬁ' .-r.'y..“-r(r..‘-:,‘f M an bt 0 o S 4 3 -..-—5 ':" re % v‘\\';{tlv“v-'_ W, Ve _-;\~' Paint i Sl s Bafl Aol D Ay .$. A ‘\.1-.W._‘ B RACCIRCIA A AN

. L
. P
Sl A iatas

.

MISSION
of
Rome Avr Development Center

RADC plans and executes neseanch, development, test and o
delected acquisition programs in Support of Command, Controf S
Communications and Intelligence (C31) activities. Technical T
and engineering suppont within areas of technical competence o
48 provided to ESD Program 0ffices {(POs) and other ESD o
elements. The principal technical mission areas are X T
communications, electromagnetic guidance and control, sur- 0, N
velllance of ground and aerospace objects, intelligence data S
coLlection and handling, ingormation system technology, Ty
Lonospheric propagation, solid state sciences, microwave L
physics and electronic neliability, maintainability and T

compatibility.

L. tel
Lata s el et A‘BL!‘

:
2
3

A S A IS IR IS JUAF IS U A IS S S A9

2t a’s" 2 aimma

&

.
.........................

- . - - - .7 . .- * N . .t - -
: .t . . R A R T YR N e T T
taa'a®a &' 2’ a'ps'‘;a' 8" 2" " n®. tatal 2" g oa USSP UP I S Y Uil Tt W S S X NP e G | — SBSa N

~'—--l"~'l

.

s s ..-.--.c-. ..-. w, . ' w [N K
. . .
- ORI Lpp . aaa b e d (DY Y VB) S B

s

