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Abstract-Many researchers have proposed that ensembles of processing elements be organized

as trees. This paper explores how large tree machines (.rin be assembled efficiently from smaller
components. A principal constraint considered is the limited number of external connetions

from an integrated circuit chip. We also explore the emerging capability of restructurablc VLSI
which allows a chip to be customized after fabrication.
-W " give a linear-area chip or rn processors and only four off-chip connections which can be

used as the sole building block to construct an arbitrarily large complete binary tree. We also
present a restructurable linear-area layout or rn processors with O(Igm) pins that can realize
an arbitrary binary tree of any size. This layout is based on a solution to the graph-theoretic

problem: Given a tree in which each vertex is either black or white, determine how many edges

need be cut in order to bisect the tree into equal-size components, each containing exactly half
the black and half the white vertices.

These ideas extend to more general graphs using separator theorems or bifurcators.
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1. Introduction

A tree may not. be the best multiprocessor organization, but. it ha. boon proposed by may re-
searchers for a variety of rea.sons. For example, a complete binary tree of pro sing clewents can

be the major .omponent or a priority queue resource 15] and of a sntartnientory. raster graphics

system Io. A complete binary tree can also serve as a hardware st.ructure for searching 12], for

datalbases 1'291, or for direct excCution of applicative programming languages [21]. Browning 16)

proposes a compleLe binary tree ror general-purpose multiprocessing.
Attention is also directed to binary trees which are not complete. Floyd and human [8] show

that. strings described by a regular expression can be recognized by processing eleunents organized

as the parse tree of the regular expression. Foster and Kung [9] have a similar scheme based on
the simple conligurable layout or Section 3 (first presented in [17]). There are other proposals,
For example (27], or niachine organizations which, though not trees, are nevertheless tree-like.

We %hall not debate the merits of the various tree machine architectures here, but shall

conline ourselves to understanding their physical organization. In this regard, one attraction of
trees is that they can be laid out efficiently. Figure 1 shows the familiar If-tree layout originally

proposed by Mead and Rtemi 122). This layout of a complete binary tree requires linear area, as
opposed to the O(n Ign) area standard layout shown in Figure 2. Leiserson 116] and Valiant 1301
independently discovered that arbitrary binary trees could be laid out in linear area. In fact,
Valiant proved that no crossovers were necessary in a linear-area layout. Based on ideas from
Paterson, Ruzzo, and Snyder [23] and Bhatt and Leiserson [4], planar embeddings of arbitrary
trees that minimize the maximum edge length were given by Ruzzo and Snyder [26].

Heretofore, the theoretical work on layouts has assumed that the entire tree fits on a chip.
But the tree machines discussed above might be much larger. Whenever any system is larger than
a single chip, it becomes necessary to partition it among separate chips which can .be assembled
at the circuit board (or chip carrier) level. What is the most effective way to partition a large

tree among chips?
This question is pressing because although integrated circuit technology has been advancing

at a breathtaking pace, one sector of that technology has been crawling in comparison. The

technology for packaging chips severely limits the number of external connections to an integrated
circuit, and whereas some enthusiastic technologists project an eye-opening 108 components per
chip, two hundred pins per chip seems a large number to most. A chip that requires many more
is unlikely to be realizable for quite some time.

Most of the theoretical work on tree layout has also implicitly assumed that a given tree, after
masks have been made of the layout, will be replicated many times. This assumption is implicit
because of the economics of integrated circuit fabrication technology: it is expensive to make one
chip, but cheap to make many copies. For this economic reason, manufacturers of custom chips
have been encouraged to make configurable designs such as gate-arrays, ROM's, and PLA's. The
entire chip is manufactured except for one mask. The customer to whom the chip will be sold
specifies a configuration of the chip, and the final layer of metalization connects up the circuitry

in that particular way. Thus most of the design and fabrication costs are factored over many
custom chip-. Nevertheless, many copies must be made of the same custom chip for it to be
economical.

Reatructurable integrated circuits provide a means for the interconnections on a chip to be

2



Figure 1: The linear area "H1-tree" layout of a complete binary tree.

Figure 2t An 0(n ig n) layout of a complete binary tree.

con figured after fabrication. The most common example is a PROM (programmable read-only
memory) in which diodes, which normally pass current, can be busted so that a connection is
no longer made. More recent and exciting is the work on restructurable VLSI at 111M 1201 and
MIT Lincoln Laboratory [24). Connections between two metal layers are produced reliably and
efficiently by laser welding. Connections can also be broken by using the laser to cut wires in the
circuit. Figure 3 shows a scanning electron microscope photograph of laser welds and cuts on a
chip at MIT Lincoln Laboratory.

Restructurable VLS9I chips have the advantaxge that the cost of quantity-of-one designs can still
be factored over many chips, but, some propose systems that. included dynamrically restructurable
interconnectionis. F~or example, the proposed (Alil' project at Purdue (Snyder (281) is a dynami-

3



Figure 3: Laser welds and cuts on a rcstructurabe integrated circuit
chip (courtesy of MIT Lincoln Laboratory).

cally restructurable multiprocessor. It has not yet been demonstrated that large scale dynami-
cally restructurable interconnections are economically feasible due to overheads in reliability,
area, performance, and fabrication sophistication, but our results do indeed apply to dynamically
restructurable layouts.

The rest of this paper addresses packaging constraints and restructurable VLSI with regard
to tree layouts. Section 2 gives a chip with four pins that can be used as the sole building block
for arbitrarily large, complete binary trees. A simple, but nonoptimal, restructurable layout that
can implement any binary tree is given in Section 3. Section 4 proves a two-color bisector theorem
for trees which is the main technical tool for producing the restructurable chip given in Section
5. This chip of M vertices has linear area and O(Ig M) pins, and it can be used in quantity to
assemble any binary tree of any size. Section 6 contains extensions and conclusions.

2. Packaging a complete binary tree

This section studies the problem of packaging complete binary trees, and presents the design of
a single chip with four pins that can be used to bulid arbitrarily large complete binary trees. This
chip, originally proposed in (171, has since been used (at the circuit board level) in tree-machine
projects at Caltech and Bell laboratories [7].

We begin, however, by examining the inefficient partitioning ora complete binary tree proposed
in 1151 and elsewhere (for example, 16]). Each of the squares in Figure 4 is a Type A chip and is
packed as full as possible with processors in the ll-tree layout of Figure 1. The rectangle above is
a Type B chip which contains the standard O(n log n) area layout of Figure 2, but with each lear
connected off-chip. The Type B chip can be used repeatedly to combine several smaller complete
binary trees into a larger one.

4l
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Figure 4: An incfficient partitioning of a complete binary tree into Type

A and Tpe B chips.

Theorem 1. Suppose Type A chips each contain P - 2P - I vertices, and Type B chips
each contain Q = 29 - I vertices. Then a complete binary tree with at least N 2 2" - I
vertices can be assembled from

* T ~ Type A chips and

I Type B chips.

Proof. The complete binary tree can be assembled using the scheme from Figure 4.1

We can do better, however. Figure 5 shows a Type C chip with only four off-chip connections.
Arbitrarily large complete binary trees can be assembled from this one kind of chip. Each chip
contains one internal node of the tree, and the remainder of the chip is packed as full as possible
with an lH-tree layout. The internal node requires three off-chip connections (denoted F, R, and
L in the figure) for its father, right son, and left son. The ll-tree requires only one off-chip
connection (denoted T) to its father.

Theorem 2. Suppose Type C chips each contain M = 2 ' vertices. Then a complete binary

tree with at least N = 2" - I vertices can be assembled from (N + I)/M Type C chips.

Proof. We show how arbitrarily large complete binary trees can be built up. To interconnect
two chips, the unconnected internal node of one of the two chips is selected as the father or the
two 11-trees. In Figure 6 the internal node on the left has been chosen for this purpose. The R
pin on this chip is connected to its own T pin, and the L pin is connected to the T pin on the

other chip. Considered as a unit, the combined two chips now have the same structure as a single
chip -- three connections to an internal node and one to the root of a complete binary tree. The

pair or chips can be similarly combined with another pair to produce a quadruple of chips, which

can in turn be combined, and so forth inductively, as is shown in Figure 7.1

5
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Ilhe o,,e-lp mllh d has iiaIly :I dl,:, igte1. (Over 014. I ,,-h', i ,,h . to.t h,,, .y lhe
('ii"e'clil,( ie IINi .uses 4l1l1Y oIH" kindl or .hil). W Ima.mul'aruri', Itwo kinlds whm o', i sill do7
S ,'onil, inly four data paths go ol chip. Third, th( Type C (lii-j it p:rk.t ruil.whihi' thi 'ry1w II
(-hill i. a lmiiost emply beenti.A, it, is pin homid. liially,, thIearea ,,l..Ihe asimbly aI c .'ircuit board
ror examplhe) is linear in the number Type C chips ,,.d41. The Lwo-rhip solution gives an O(n log n)
area cirvuit layout.. Althoug h the east, is ilot. particularly strong for asymptoti' analysis or circuit
lavout., the constant factors give a clear prerrence I) the more regular, linear area layout. ir
eirclTstanCCs permit, the wires connecting the chips can in fact be routed undern~eathi the chips
themselves, thereby requiring no more area onL the circuit board than tLhe chips themselves.

3. A restructurable chip for packaging arbitrary trees

'This secton presents a siml e (lut suhotimlmal) schene rot packaging arbitrary trees using a
single restruc.turable chip. The solution is suggeste d by a te'emique or lentley and loeiserson 1171
for producing collinear layouts ror arbitrary trees. The strategy for producing collinear layouts
is, in turn, based on the observation that trees have a small separator theorem. This section
defines separator theorems, describes the strategy for producing collinear layouts, and proposes
a simple packaging scheme. Although the solution is asymtotically suboptinal, the results are
crucial to the optimal scheme presented in the next section.

Separator theorems 119) have been applied to solve a variety of graph-theoretic problems
including graph layout (for example, [3, 14, 16, 17, 30]). Formally, let * be a family of graphs
closed under the subgraph relation, and let a < 1/2 and P be positive constants. If every graph
on n vertices in * can he separated into two disconnected components, each having at least Lan]
vertices, by removing no more than Pf(n) edges, then * has an f(n)-separator theorem.

By removing a single edge, any n-vertex binary tree can be separated into two components,
each with no more than LNNJ + I vertices [181. (The worst-case occurs for the four-vertex tree
in which one vertex is adjacent to three others.) Either of the two components may be a forest,
but since the same result applies to forests, the binary tree can be split recursively. Since each
of the recursively generated subgraphs can be split by removing a single edge, the class of binary
trees has a one-separator theorem.

Bentley and Leiserson 1161 used the one-separator theorem for trees to produce collineor
layouts for binary trees. In a collinear layout all the vertices are placed along a common baseline,
and tree edges are routed along horizontal and vertical tracks on one side of the baseline, as seen
in Figure 8. The height of a collinear layout is defined as the number of distinct horizontal tracks
used for -outing the edges. As shown in the following theorem, efficient collinear layouts can be
produced using the one-separator theorem for binary trees. (In fact, Yannakakis 1311 has shown
that a minimum height layout can be obtained for a given N-vertex tree in O(N Ig N) time.)

Lemma 3. Every N-vertez binary tree he a collinear !ayout with height no treater than
Ig N.

Proof. Using the one-separator theorem, first separate the tree. If either component contains
more than N/2 vertices, separate it into two smaller components using the one-separator theorem
again. Next, recursively construct collinear layouts for each subforest, and place these layouts

7
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Figure 8: The construction of a collincar layouL.

side-by-side along the baseline. Finally, as shown in F'igure 8, connect the two (Ur thrm,) %ubforests
by routing the separator edges on distinct vertical tracks and along a common horizontal track.
(For two components this is trivial since only edge is routed; for three components, place the
subtorest connected to both other subforests in the middle as shown.) For each node there are
three vertical tracks to accomodate edges incident to that node.

The height of the layout is determined by a simple recurrence relation. Let h(N) be the height
of the layout, so that h(l) = 0, and in general,

h(N) <_ h(tN/2j) + 1.

A straightforward calculation yields h(N) :_ IgN. I

Corollty 4. Any binary tree with N vertices can be biected into components of sizes
LN/2J and [N/21 by removing at most Ig N edges.

Proof. Consider the vertical line that passes midway through the collinear layout. It bisects
the N vertices and the number of edges it cuts is no more than Ig N, the height of the layout.I

The collinear layout can also be used to make a configurable chip of N vertices which can
realize any N-vertex binary tree. The chip consists of N collinear vertices, with three vertical
wires connected to each vertex, and Ig N contacts along each vertical wire. Every N-vertex
binary tree can be configured on this chip by specifying one extra custom layer. The custom
layer consists of the portions of the wires in the collinear layout that run horizontally. The
horizontal wires run between the rows of contacts, and spurs to the contacts make connections.

An unattractive feature of the configurable chip is that a different mask must be designed ror
each tree. Not surprisingly, the same idea can be used to design a restructurable chip for trees,
where the chip is customized (for example, by lawer) after fabrication. Once again, the collinear
layout ierves as the 1 wis ror the design. The restructurable chip consists of vertical wires running
the height or the layout on one layer, and horizontal wires running the width of the layout on

r
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Figure 9: A Type D re structurable chip whirh can be used to assemblt

large binary trees by making and breaking connections.

another. Bly using laser welds to connect various horizontal wires to approprialc vertical wires,
and laser trimming to break horizontal wires, any tree can be realized in accordance with its
collinear layout. The number of connections made or broken is O(N).

This restructurable layout also suggests a method of packaging arbitrary binary trees using a
single Type D restructurable chip, which is shown in Figure 9. From each of the collinear vertices,
three vertical wires are run. At every intersection of a horizontal and vertical wire is a weld point
which can be programmed after fabrication. Each horizontal wire is connected to pins at either
end.

Theorem 5. Suppose Type D chips each contain M vertices and n horizontal wires. Then
any binary tree with N = 2" vertices can be realized with [N/Mi Type D chips.

Proof. Take the [N/Mi chips and place them side by side in the natural way hooking up
adjacent pins. Following Lemma 3, draw a collinear layout of height at most Ig N for the N-vertex
tree. Map the layout onto the assembly in the obvious manner. Make and break connections on
each chip to realize the layout.§

Unfortunately, if a tree with more than 2" vertices were required, this chip might not be
able to configure it. In the next section a better packaging scheme is developed whereby one
restructurable chip containing M vertices in linear area and O(ig M) pins, can be used to package
arbitrarily large binary trees.

Some restructurable technologies do not allow connections to be broken, and thus the scheme
of Theorem 5 will not work. A naive alternative is to break every horizontal wire into M unit
length segments. Each segment can be connected to vertical wires and to its neighboring segments
on the same horizontal track. Unfortunately, programming the interconnect requires a large
number of welds to be made on an edge connecting two vertices. The scheme from Theorem 5
requires only two welds for each edge.

Figure 10 shows a Type E restructurable chip which can realize any tree by making, but not
breaking, connections such that only two welds are required per edge. The chip has M - 2"
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Figure 10: A Type E restructurable chip which can be used to assemble

large binary trees without breaking connections.

vertices and n horizontal tracks which arc divided into groups. rte first group contains one
horizontal track which consists of M/2 unit length wire segments. The second group contains
two horizontal tracks, each with M/14 wire segments or length 2. In general, for i = 1,2,..., m,
the ith group contains i tracks, each with M /2i wire segments of length 2'. The remainder of the
horizontal tracks are in group m + 1. Each of these tracks has one wire of length M connected
off chip.

Theorem 6. Suppose Type E chips each contain M = 2 ' vertices and n horizontal track.
Then any binary tree with N = c2",f2 vertices can be realized with [N/Al Type E chips,
where c io a constant (c ~iV)

Proof. Lay the fN/M1 chips side by side, and connect the pins to continue the on-chip
grouping scheme such that for i = 1, 2, ... , Ig N, group i contains i tracks, each with N/2i wire
segments of length 2'. The total number of horizontal tracks is

h(N) I +2+.+lgN

2- ~N(lg N +1)

2~~~ IJ[!1 -

for c =10, and thus n 1 tracks are sufficient.

Observe that this assembly without its top group of Ig N horizontal wires forms two smaller
versions or itsel. To realize a given tree, remove the ig N bisector edges as in Corollary 4,
and recurively lay out the equal size components within the two smaller layouts. Combine the
sublayouts y rout rig the bisector edges along the top group of wires that run across the layout.
Since two connections are iored for each tree edge, the total number of welds is 2N - 2.1

10
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Figure 11: At some point, a window of size n/2 slid along the base of

the two-color collinear layout must contain half the white and half the black

vertices.

4. Two-color bisector theorems

Although the Type D restructurable chip with M vertices and 2n pin connections provides
one way to package large trees, it suffers two disadvantages. First, it cannot be used to assemble
trees with more than 2" vertices. Second, and more important, the chip is wasteful in area. In
fact, although every N-vertex tree can be laid out in O(N) area 116, 30], a collinear layout for the
complete binary tree requires at least 1(N Ig N) area 15, 16). Thus we are led to ask: Does there
exist a restructurable chip with Al vertices, occupying 0(M) area, and having few pins which can
realize every binary tree, no matter how large?

In the next section we answer this question affirmatively. The question is fairly subtle,
however, and does not follow as a straightforward application of the separator theorem. While we
can effectively use the separator theorem to recursively bisect a tree into equal size components (as
in Theorem 6), there is nothing to bound the number of external edges that connect a component

to the rest of the tree. Thus for example, suppose we designed a chip with M vertices and P pins
for packaging arbitrarily large trees. How can we guarantee that every tree can be decomposed

into subgraphs of size at most M such that each component has no more than P external edges?

In this section we introduce the notion of two-color bisector theorems which can be used to
recursively bisect a graph while also bounding the number of external edges into each component.

Moreover, trees have small two-color bisector theorems, so that the number of external edges into
a component is also small. These results use arguments from the previous section. In the next

section, we apply two-color bisector theorems to design an optimal packaging scheme for binary

trees.

Definition. Suppose that an N-vertez graph G has b black ertices and w white vertices. A
two-color bisector for G is a set of edges whose removal bisects G into two subgraphs each of
size at least [N/2J, and such that each contains at leust Lb/2J black and [w/2J white vertices.

111
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Figure 12: To keep the number of external connections to all subcom-
ponents small when a romponrnt is bisected, the eztrrnal connections must
be evenli divided between the subcomponents.

Theorem 7. Every N-vertex forest of binary trees has a two.color bisector of size 2 Ig N.

Proof. Following Lemma 3, construct a collinear layout of height at most Ig N. Suppose
there are b black vertices and N - b white vertices. Consider a "window" which overlaps LN/2J
consecutive vertices, and place it over the leftmost [N/2J vertices. If more than rb/21 black
vertices fall within the window, slide the window one position to the right. Observe that by
sliding the window one position, the number of black vertices within the window changes by at
most one. Furthermore, by sliding the window all the way to the right, less than Lb/2J black
vertices would fall within the window. Consequently, there must be an intermediate placement
of the window (see Figure 11) in which at least Lb/2J black vertices and at least [(N-b)/2J white
vertices are contained within the window. (Such a placement can be obtained in linear time.)

Draw vert'cal lines through the endpoints of the window in the position obtained above. The
edges of the forest intersecting these lines form a two-color bisector of the forest. The size of this
two-color bisector is no more than twice the height of the layout. Thus the size of the two-color
bisector is'no more than 2 Ig N.1

For our purposes the following variant of two-color bisectors is more suitable. Suppose each
vertex of an N-vertex forest is assigned a weight from a bounded set (1, 2,..., k) of weights. We
wish to bisect the forest into two subforests, each of size at least JN/2J, whose total weights
differ by at most k. flow many edges need be cut? Adapting the argument for two-color bisectors
to this variant in a straightforward manner shows again that 2 Ig N cuts suffice.

Having obtained bounds on the size of two-color bisectors for forests, we wish to use them
for partitioning an arbitrarily large binary tree into subforests of size at most M so that every
sublorest has few edges connected to vertices in other subforests. This result is established in
the following theorem.

Theorem 6. Every N-vertez binary tree can be partitioned into rN/M1 Iubforeata, each of
size at moat M, such that no subjoreat has more than 41gM + 8 edges connected to vertices
in other suabor",ta.

12
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I'roof. W4, irove tlic tlieoremi ror the cas.t When A - "' AL. The geiimral ram- m,:e. ,li. Iri ..d
sinilarly, bIti I we omit I he tedious detail s or the aaly. sis. At iii lhorei i. bisvect I fie I rev iitAi iwo

su ,r(,ts. eah or sir., at least. [N/2j, bly cutting no ,more I hai Ig N elge.. Split .ach sulirrwest
recursively as rollows. For each vertex in a recursively split conponent or size it assig a wight
equalI to tipe umler or edges incident to that vertex and which were cut at a previous level. Since
the degree or a vertex is at. niost three, 1he weight assigned to a vertex is at most 2. Froiui fihe
argutient rollowing Theorem 7, there is a weighted bisector of size, no greater that, 2 Igy for the
Couuipouient. This weighted bisector divides the number or external connLctionS amRIost equ:ly
(Ili dillerenre is at most two) between the sulbcomponents of sies jtn/2J and [,n/21. As seen in
Figure 12, the number or external coniections into either or the new subconlponents is no more
than the size or the weighted bisector plus one-hair the number of external connections into the
component just split. (plus two). This recursive (lecomlosition terminates when each compornent
has siZe at Iost Al. Let Iting t(rn) be the niufmlber or ext.ern:l conlreCtiOns ilitO any (.oin imaVen of
siz, in, we have F(N) = 0, and

6(m) <_ jE(21n)+ 2Ig(2m)+ 2.

A little calculation shows that £(m) < 4 Ig 7n+8. This means that every subforest of size m in the
recursive decomposition has at most 4 Igm + 8 external edges to other subforests. Substituting

M for m, the result follows. l

13
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Figure 13: A k-by-k restrueturable permuter can realize any set of one-
to-one connections between the terminals on the two sides.

5. An optimal packaging scheme

The recursive decomposition of Theorem 8 leads directly to the design or an efficient restruc-
turable chip which can be used in quantity to assemble any tree. This Type F restructurable
chip has M vertices, O(ig M) pins, and an O(M) area layout. This packaging scheme is the best
possible when all vertices on the chips are utilized.

The design or the Type F chip uses restructurabe permuters. A permuter Pk has k terminals
on each side of a rectangle and can realize any one-to-one connection between the terminals. The
switch shown in Figure 13 implements a permuter. It has dimensions 2k X k, with the terminals
along the longer sides.

The construction of the Type F restructurable chip is recursive and follows the recursive
decomposition of Theorem 8. We shall use Rm to denote a level of the recursive layout with m
vertices, and let RM denote the restructurable Type F chip or M vertices itself. Figure 14 shows
how the Type F chip RMr is constructed from four copies of RM/4, four copies of P4 1sM, and
two copies of P4 Is M+4. Letting S(M) be the length of the side of the layout, we have S(1) = I
and,

S(M) - 2S(M/4) + O(gM),

which yields S(M) = O(,/-), so that the area is linear in M. The number of pins on RM is
4 Ig M + 8. We now show that every large tree can be assembled using RM.

Theorem 9. Suppose T7jpe F chips each contain M vertices. Then any N-vertez binary
tree can be usembed wing rN/Mi Tlype F chips, the minimum possible.

Proof. As before, we assume that N = 24M, although the result extends in a straightforward
mannicr to the r.neral case. Following Theorem 8, decompose the tree into rN/M1 components,
each of size at mos M and having no more than 4 Ig M + 8 external edges to other components.
Each of the rN/M1 tomponents can be realized on a single Type F chip RM. To see this, use
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Figure 14: The Type F restructurable chip Rm which can be used to

Asemble arbitrarily large binary trees.

Theorem 8 to recursively decompose each component into single vertices. In this decomposition
each subforest of size m, has at most 4 Igm + 8 external edges. This decomposition may now
be mapped directly onto the chip, using the permuters to route edges between different subcom-
poncnts. Since the number of external edges at any level is no greater than the size of the
permuters at that level, the permuters can realize the desired routing. Vertices of the tree are
embedded at fixed positions in the lowest level permuters P',. Finally, each chip has enough pin
connections so that the assembly can be completed off-chip by connecting the chips together as
required by the original decomposition. (Permuters are not needed off chip because wires can be
routed direetly.)l

The constant factors on area can be improved if one uses the smaller restructurable permuter
Ph with dimensions (kl+o(vfk)) X (k+O(Afk)) that follows from the channel routing algorithm of
[I]. Whereas the simpler permuter from Figure 13 requires only two welds to make a connection,
the more'dense layout might require as many as k welds for each connection. Although the total
number of welds required by either scheme is O(M), the number per wire is O(lg M) if the simpler
switch is used and O(Ig 2 M) if the channel-routing permuter is used.

In related work, Rosenberg 125] has also considered perinuters to obtain a degree of configu-
rability in layouts.

6. Extensions and conclusions

All the layout techniques presented here extend to more general classes of graphs. In par-
ticular, the techniques extend to classes of graphs not closed under the subgraph relation by
extending the definition or separator theorems as in 16 or 14 to apply recursively to graphs
generated by the separator. For example, graphs with n*-separator theorems have linear-area
restructurable layouts if a < 1/2. When a = 1/2, the area is O(n Ig 2 n), and if a > 1/2, the area

is Q(nl*). These area bounds match the layout areas of 16 and 30 while requiring the layouts to
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be" restructurable. In each eCas' the numler or ii on (iip is ot( ,-) ir, ( > o, aiil ((g i ) ir
t = 0.

Thest Iounds are obtained by recursively usitig the ,eparator theorrrn I)O produce a collinar
layout and then chopping the layout with two 4ut., to yirkt L Lwf"-olor bisecter. There is ooe

technical detail in using the extended notion. or se parator theoremu in 16i and 14 to accomplish
the cuts of the collincar layouts since we must make sure that the two-color bisector theoren
applies recursively to the two halves or the graph. Rather than just. cutting tie edges incident to

the two vertical lines, one must in addition cut a constant factor more edges in order that each or

the subgraphs generated by the two-color bisector is the union or disjoint subgraphs genierated by
the separator theorem. A more general divide-and-conquer frattiework for this problem is given

ill (3].
The methods for tree assembly considered in this paper have all assumed that the overall

utilization or the chips is 100 percent Sj),Ti[icadly, only [N/Al] chip.s are used to a.seinble

an N-vertex tree with chips that hold M vertices. Not surprisaingly, if the as.sumption or rull
utilization is relaxed, fewer pins are needed. In particular, we can guarantee 50 percent utilization
with six-pin chips using an idea due to Tom Leighton.

The assembly is generated recursively as in Section 5. At each step of the divide-and-conquer
construction, there is a subforest A with at most six external connections. This subforest can
always be split into two components, each containing at least one-sixth of the nodes and at most
six external connections. We first use the standard separator theorem to remove one edge that
splits A into two components B and C with at worst a I : I ratio. The only case to worry about
is if all the original external connections are incident to B (or to C) because the newly removed
edge will now give B seven external connections. If this bad split indeed occurs, we split B further
into BI and B2 so that the seven connections are divided 3:4. (There is no constraint on the
ratio of the size of BI to B2.) Finally, we take whichever of Bn and 112 is smaller and combine it
with C. Of the two remaining components, neither has more than six external connections, and
each has at least LIAIJ/ vertices.

The recursion terminates when any subforest has M or fewer vertices, in which case the
subforest is embedded on a Type F chip. Of course, only six of the O(Ig M) connections are
actually used. The assembly method will never require more than 2fN/(M + I)1 chips. The
worst case occurs when every branch of the recursion terminates with the splitting of a subforest
of size M + 1. Higher utilization can be attained at the expense of more pins by generalizing this
technique.

Since our discovery of two-color bisectors and their relation to restructurable layouts, they
have been used in other VLSI layout problems. Based on partial knowledge of our work, Leighton
12 showed independently that any graph that has a ,Fn-separator theorem can be embedded in his
"tree of meshes," which is similar to the restructurable layout obtained when f(n) = VA. He and
Rosenberg 13 have also used three-color bisector theorems to obtain optimal three-dimensional
VLSI layouts.

The use of the collinear layout for obtaining a two-color bisector theorem from a separator
theorem is combinatorially appealing, and can be recast as a necklace problem. Given a necklace
of blacx and '.- pearls, how many cuts are necessary ill order to divide the necklace into
two pieces such tha, each of the pieces has the same (to within one) number or pearls of each

16
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ctltr,' "li (lvimis exltcnsimn is I) ask how ;any cuts are nei.c.es:try to divide a l.e or k
coidtrs. I ldrortuntat.ly, ti naive idea r slidling a wimlow across tl1e rollinear layout. rails IA) work
il" k > :. Iecently, (oldberg and West I I at l'rinceton, hearing or our opwn prolblemi, developed
an elegant topological argumllent to show that k cuts sullice, whi'lc is Light in that k cuts are
necessary iii some cases. This result implies, ror example, that tre.s with k colors have O(k Ig n)
k-rolor bisectors and planar graphs with k colors have O(kV'n) k-color bisr tors.
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