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~ This report details the technical effort put forth by CSD and its

(;_. subcontractors during the four phases of this program for propellant nonlinear
S&E constitutive theory extension. This includes the Phase I preliminary study in |
:3: which the Quinlan theory was critiqued, alternate approaches were studied and
- detailed research planning accomplished. Also included are the detailed experi-
i mental evaluations of propellant during Phases II and III, the uniaxial/

'jfj isothermal investigation and the two-dimensional variable temperature

:éj ' investigation. Detailed subcontractor theoretical development and predictions

.5 « are presented along with the three-dimensional investigations.

{:ﬁ This final technical report on Contract No. FO4611-80-C~0052 consists of a

'S; summary of the phase II and III laboratory propellant evaluation for UTP-3001

R and UTP-19,360B propellants. Phase IV was a validation of the accuracy of the
ii constitutive theory in a three-dimensional state of stress and strain. The

e

e
»
-

detailed experimental results were distributed in Data Packages A through G to
all project personnel. Additional details are given in section 1.0.
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In performing the work required for the program, Chemical Systems Division
(CSD) employed under subcontract the services of five scientists of natlional rep-
utation: Drs. M. Quinlan, M. E. Gurtin, W. L. Hufferd, R. Wool, and R. A.

v, )
a0,
.

iy
5 4
~ A

.4

Schapery. The program effort combined the comprehensive experience and special-

ized test capabilities of CSD in solid propellant mechanical properties with the

<%

theoretical expertise of these scientists. In addition, Dr. J. E. Fitzgerald

a, “ ... -‘.o

-

. was retained as a consultant to participate in the periodic technical reviews of
) the program status.
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1.0 PROGRAM OBJECTIVES AND OVERVIEW

a8

. 'Q;.:;
~

v vV
A et
.

S

The objective of the Propeilant Nonlinear Constitutive Theory {(NLCT)
Program was to develop and demonstrate a nonlinear thermomechanical constitutive
law for solid rocket propellants. The goal was to achieve errors of less than
10% in stress predictions for undamaged propellant and less than 15% for

previously damaged propellant. The program was conducted in four phases:

Phase I - Preliminary Study
Phase 1I - Uniaxial Tsothermal Investigation

Phase III - Two-Dimensional and Variable Temperature Investigation
Phase IV - Three-Dimensional Investigation.

9 & o 9

Each phase had a number of tasks and subtasks. Overall program logic is shown

in Figure 1.

A number of subcontractors were employed to evaluate the several NLCT
approaches considered, and Dr. J. E. Fitzgerald, Director of the School of Civil
Engineering, Georgia Institute of Technology, was retained as a technical
advisor and consultant to the NLCT program.

The objectives of the four phases are summarized in the following
paragraphs:

1.1 PHASE I - PRELIMINARY STUDY

. The objective of phase I was to make detailed research plans for evaluating
and modifying candidate nonlinear constitutive laws. Quinlan's nonlinear
constitutive theory11 was critically reviewed and modifications to the
differential equation for the bonding parameter were proposed. In addition,

five other candidate constitutive approaches were evaluated on a preliminary
basis by subcontractors and CSD personnel:

2 » Farris Theory - W. Briggs

- e Modified Swanson Theory - D. Gutierrez-Lemini
N ® Russian Theories - W. L. Hufferd
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® Time-Dependent Bonding - R. A. Schapery
@ Softening Approach - M., E, Gurtin.

Dr. S. M. Breitling and Dr. R. P. Wool also provided information of the probability
of successfully incorporating a physically based molecular model into any of the
NLCT's considered for evaluation.

1.2 PHASE II - UNIAXIAL/ISOTHERMAL INVESTIGATION

The objectives of phase II were to continue theoretical development wors on
the candidate nonlinear constitutive theories and to evaluate their predictive
capabilities for the uniaxial isothermal response to two propellants: an HTPB v
(UTP-19,360B) and a PBAN (UTP-3001). An extensive test program was conducted on
these two propellants. Following the comparative evaluation of the constitutive

theories, successful candidates were recommended for continuation into
phase III,

1.3 PHASE III - TWO-DIMENSIONAL A'™ “ARIABLE TEMPERATURE INVESTIGATION

The objective of phase III was tc extend the theoretical development of the
candidate constitutive theories to two-dimensional and variable temperature
histories. Stress time predictions were compared with laboratory tests of
the two propellants and a decision was reached as to which theories would

be inherent within phase IV.

1.4 PHASE IV - THREE-DIMENSIONAL INVESTIGATION

The objective of the final phase was to conduct a critical validation
experiment and assess the accuracy of the constitutive theory developed under
isothermal and transient temperature conditions for a three-dimensional state of
stress and strain.
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2.0 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

al
e

.
-
-
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N 2.1 SUMMARY AND CONCLUSIONS

I

X The objective of the Propellant Nonlinear Constitutive Theory Extension
>

e e
o ¢
3

(3 A}

Program was to develop and demonstrate an accurate, usable, three-dimensional,

LA

S’

Do
‘0 e

thermomechanical constitutive theory for solid rocket propellants. The target

o
()

criteria for selection of a candidate constitutive relation were two-fold:

® Less than 10% error in stress predictions for undamaged propellant
® Less than 15% error in stress predictions for previously damaged
propellant.

The program was conducted in four phases.

The basis for the program was the limited success achieved by Quinlan in
AFRPL-TR-78-37u in modeling some of the trends typically observed of solid
propellants using a constitutive theory incorporating damage. Accordingly,

a significant effort was spent by Dr. M. Quinlan at Cork University, Ireland,
and by CSD in an attempt to extend and improve the predictive capabilities

of Quinlan's fundamental model. Though some advances were made at the theo-
retical level to increase our knowledge of the model, the model did not achieve
the desired success and was discontinued before the transition to combined

straining-cooling and three-dimensional stress states.

Similarly, Gurtin's maximum strain/stress softening approach met with only

. marginally greater success. The model evolution was capable of describing some

\ trends of solid propellant behavior, but numerical difficulties were encountered
in the curve fitting procedures. This method was also discontinued after

working with complex uniaxial test histories.

The remaining approaches (namely those of Schapery, Hufferd, and CSD's

Pyrae—

modification of Swanson's constitutive theory) all achieved greater success.

Due fo the extensive effort (in time and money) expended during phases I and II

P

with five analytical models, only CSD's modification of Swanson's theory was

carried through to actual motor stress predictions.

21

e MM ot & LR A S AT 8

R TS P

' \". » D JP ISR PO RN . LI
- P A DL P I L)

ot ESYRRATAL Y P VIR AP LI WA




LA P CL, EA A CAECEAEL I NI AL PSR 5 S COCAOUDMELCAE S WML AA SRR ARA A AL N A o

Schapery's approach is based on a micro-cracking model for damage. The
theory predicted stresses accurately for uniaxial and biaxial isothermal tests.
The approach was not continued to transient thermal nor motor stress predictions

due to limitations in time and funding.

Hufferd's modification of Il'yushin's approach to thermovisco-plasticity
provided good predictive capabilities for uniaxial isothermal test histories and
was comparable to the modified Swanson theory for isothermal biaxial and tran-
sient cooling/straining tests. The approach was not continued to motor stress

predictions due to a lack of funds.

The Swanson approach modified by CSD achieved the greatest success of all
the nonlinear analytical methods. This approach established a major milestone
in the solid propellant industry. Using the characterization data from three
simple laboratory test modes, a wide variety of very complex uniaxial test
histories were predicted to the desired accuracy levels. These successful pre-
dictions also included stress and t m¢ response ranges outside of the
characterization ranges. This was the first known accurate solid propellant
stress prediction which extended beyond the nonlinear characterized data base.
This analytical model also accurately predicted biaxial and shear test histories

which were not included in the characterization.

Because of budget and schedule limitations, this method was not completely

adapted for thermomechanical coupling and complete three-dimensional anilysis.

2.2 RECOMMENDATIONS

While predictive success was achjeved with the modified Swanson theory
predicting complex uniaxial, biaxial and shear test histories, there was only
preliminary experience with full three-dimensional stress axiality with combined
thermal mechanical loads. It is recommended that additional work with the

modified Swanson theory be conducted with emphasis on combined thermal and

mechanical loads and realistic three-dimensional loading axialities.

All four nonlinear analysis methods could be further developed and could

provide alternative methods for analysis of solid propellant structural

22
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resporse. The modified Swanson method is potentially compatible with inclusion
in a finite element analysis, but further work mentioned above is required

before this transition can be successful.
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3.0 EXPERIMENTAL PROGRAM

st

jfz Laboratory testing was divided into categories of uniaxial/isothermal,

{. two-dimensional, and variable temperature and three-dimensional investigations.

o

:t% The two propellants selected for the program were (1) a PBAN used in the

m?ﬁ first stage of the Titan missile system (UTP-3001-750/7768) and (2) a HTPB
propellant developed for the IUS motor (UTP-19,360B-400/1777). The first

Jﬂf numbers are the propellant designation; the next, the mixer size; and the

5}? . last, a batch number.

. ) - In each of the laboratory test groups a specific test of each type has

S%i been selected to show the test details.

N3

‘:E 2.1 UNIAXTAL/ISOTHERMAL INVESTIGATION

:' Testing uniaxial specimens of UTP-3001 and UTP-19,360B propellants in

fiﬁ phase II of the contract was done for the non-damaged material (as indicated in

ji Figure 2) and for damaged material (per Figures 3 and 4). Most of the tests

‘ Ef were run with 1/2- x 1/2- x 6-in. bars with redwood end tabs. The exceptions were

t the stress endurance (test 2) and constant rate (comparison to test 4) data

:;; which were obtained with JANNAF Class B specimens.1 Details of most of the

,i;{ individual test types are discussed in subsections below.

T

- Details of the other tests (which were considered in earlier work but not

i;i utilized in this report) may be obtained from AFRPL-TR-83-03432, A1l of

,:;? the tests are shown in Figures 2 to 4 with sketches of the strain-time histories.

N

= The attachment linkages on both testers were such that the specimens could

{3 - not be put into compression when the crosshead was returned to an equivalent

_:5 zero strain position. The strain measurement was done with a linear potentiome-

:;: ter attached to the crosshead; consequently, the data had to be modified to

‘!E reflect the propellant strain relaxation behavior after the stress had returned

.Si to zero (free hanging specimen).

o

4

ii
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,i", Test Test Temperature, | Pressure, | Rate, Strain, | Experimental Strain Histor
- . . . .
.:_\ No. |Description °F psig in./min % Effects y
N 4
1 Constant 70 0 0 001 To failure | Time ana rate
rate 120 0 : lemperdlule .
40 0 10 sample type _ )
L
2 Stress 70 0 — To faure | Time ang T
endurance 120 0 — iemperature P
40 il
Slraziotie e
be = LT - L
3 Multirate 70 0 0.141 12 Rate change -
10--01 12 [
L
- [
L
[
4 Stress 70 0 1 3 Temperdture
relaxanon 120 0 1 3
40 0 1 3 . '
23 0 i 3 :
Legeni
Note. Nominat tests were rur with three samples per set ' St
T i

Figure 2. Uniaxial/Isothermal Non-damaged Tests
24406R"
The uniaxial bars were machined from redwood boxes of propellant. Tne
redwood was sealed then lined in the same manner as a rocket motor. After
a partial cure of the liner, propellant was cast into the box and the system

cured to provide a good bond to the redwood end tabs. The redwood box assembly

and finished specimen are shown in Figure 5. After the specimen is mill

finished, a 1/8-in. hole is drilled on the centerline of each end tah for :
attachment to the testing machine. :
5

i

All tests were conducted on a Chemical Systems Division (CSD) manufactured ‘
six-channel tester and a modified Instron. A Hewlett-Packard computer was used .

to collect digitized data from the tests (see Appendix A details on the
automated data reduction system).

e - comma . e
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28804y
- ' Strain relaxation was measured on samples in some of the tests during final
> unload cycle. Cathetometer measurements were made periodically and strain ver-

B,
IO

sus time data were plotted. These data were used to estimate the relaxation

behavior on cyclic tests where there was insufficient time for measurements.

wla

I T

A data modification was made to estimate the peak or minimum stress and

strain points which were not recorded by the digitized data acquisition system.
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The sampling rate limited the crosshead rate that could be used and still obtain

enough points to adequately define a ramp. The available computer memory also
influenced the sampling rate in some of the longer tests.

3.1.1 Constant Rate Test No. 1
Uniaxial constant rate to failure tests wore conducted on 6-in. bars of
UTP-3001 and UTP-19,360B. The 70 F tests were at crosshead rates of

10, 1, 0.1, 0.01 and 0.001 in./min, while the 40 and 120 F tests were at
10, 1, and 0.1 in./min.

Typical stress-strain curves for the 3 rates at 120 F are shown in
Figure 6 for UTP-3001. To ensure an equivalent time data base, three samples of
each propellant were tested at the same time in the six channel testers. The

exception was the 10 in./min tests which were tested one propellant at a time

due to data sampling rate limitations.

The 6-in. bar specimens always led at strain levels below the level that
would be obtained from JANNAF specimens and always at the propellant to wooden

tab interface. Since the objective of the tests was to obtain response data art

150
6-1n. bar
B 100 constant rate
- 10 n./min
< —
= 10 /min
o
(%l
Qo
> ?A/ 01in /mn
0
0 10 20 30 Ju

Strain, %

Figure 6. Constant-Rate Tests of UTP-3001-750/7768 at 124 F with
6-in. Bar Specimens
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not failure data, the failure strain level was unimportant. The important

consideration was to avoid the continually changing effective gage length

associated with the JANNAF dogbone specimen,

3.1.2 Multirate Test No. 3

Constant rate tests in which the rate was changed during the test were
run on both propellants at 70 F. The 1.0 to 0.1 in./min rate change data
for UTP-19,360B are shown in Figure 7 and the 0.1 to 1.0 in./min data are shown in
Figure 8. The corresponding data for UTP-3001 are not shown but are similar to
the UTP-19,360B results.

3.1.3 Stress Relaxation Modulus Test No. 4
The stress relaxation modulus tests were run at a nominal 3% strain using

1/2- x 1/2- x 6-in. samples of propellant bonded to redwood end tabs for both

60
50
01in./min
40
2 /
< o
4 30
P
H
& Sample
1.0in/mmn o] 1
20 ] 2
A 3
10
0
0 5 10 15 20 25

Strain, %

Figure 7. Test No. 3 - High-Low Constant-Rate Tests of
UTP-19,360B-400/1777 at 70 F
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2 Figure 8. Test No. 3 - Low-High Constant-Rate Tests of
. UTP-19,360B-400/1777 at 70 F
x 28362
ﬂ propellants. The samples were loaded to 3% strain at a crosshead rate of .
ﬁ 1 in./min for temperatures of 20, 43, 73, and 122 F. The load was monitored o
- with the time while strain was determined from cathetometer measurements J
- on the samples. A
. ?
‘2 The master stress relaxation modulus data for UTP-3001 are presented in .
f- Figure 9 as typical. Actual data are available from the data bank. .
5 :
y A\
j 3.1.4 Constant Rate Secant Modulus .
; Constant rate modulus tests were run on the 6-in. bar samples described :

above and on JANNAF class B specimens. The 6-in. bar samples used the 4
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wood-to-wood distance as the effective gage length while the JANNAF's were
analyzed using 2.70-in. effective gage length through the test even though

it is varving. Strain was determined by the crosshead travel.

Constant rate modulus data for UTP-3001, with the curve drawn through
the small strain portion of the results, are compared to the relaxation modulus

in Figure 10. Similar data for UTP-19,360B are available in the data bank.

3.1.5 Cyclic Loading Test No. 5

The multiple loading tests on 6-in. bars of UTP-3001 and UTP-19,360B were
run in five cycles with increasing strain levels for each cycle and a rest
period between cycles. All tests were at 70 F and at crosshead rates of
5, 1, and 0.1 in./min. An attempt was made with UTP-3001 to run at 10 in./min
(i.e., planned rate instead of five), but the data sampling rate did not provide
sufficient data points to clearly define the load-time curve, particularly

on the first low strain cycle. As previously mentioned, this data had to
be reworked.

33

e T T T e T a TR TR T W e e e

w Y e e Y ..'-'- .-,\’_‘-_..:.-__:.-_ A ,.--._’.-"‘.-‘;.-.:-'.“.'. RS
\X 9.4 Ly O AR PSS ~ ."' ‘ o




G NN S A S OO ¢ AR A ST AC AR, A A S e, A AR AL AT AT MO SNE AL LA O0 OIS \.-.‘-.‘."-.'-." Rt I .

.

s
)

s 4

) ~ T T ' ”
<. ‘ \ i ] \ . | Rate. Exp
- 6.000 % ! AN ‘ i 1 Temperature °F [m smin Loy A
{ l N ‘ ‘ T 40 2 1‘73
s 3.000 } i o T e s O 75 20 0
. : Xy : O 75 2 p0mn
g ; Sasaa ‘ v 4 002 §-610
o — © Sy -
X » 1,000 — l ﬁkﬁi:\u“ ' —_ O 122z ¢ | 285 .
W © { a i . Lo : ;
- ~ 600 : 1 ki T : ' :
. § i =9, \l —- Constant rate €11}
S I U S B
v E W00 P FNarwifforT = 126°F I Ty . R
N 8 B ' ‘ Stress relaxation [E,} ¢ o
i D 100 ], . B e
“ 3 & ' T J 1— T
60 |S {' — d e
\ |
= ~ 1 b - !
2 | ' | |
o -80 - 40 R 1 ; |
o w0 Temperature, °F (122 -2 85) ! | B | . ! : ‘
107 10F 108 104 103 10°? 10 100 107 102 103 10° 10" 0 !
O Reduced time (1/A;). min
L9 i
ﬁ' Figure 0. Master Constant-Rate Secant Modulus Data for UTP-3001-750/77t%
" JANNAF Specimens
b 28394
‘ » . s .
>, The rework of the data consisted of estimating maximum and minimum stress
o
:3 and strain points that were not detected by the digitized data acquisition
[{j system. The data reduction system computed strain from crosshead travel;
= this was satisfactory except at and below zero stress. The sample linkage
N attachment was such that specimens would not be put into compression with the
:: exception of test No. 11, which was run in an Instron with rigid clamp jaws. Thr
:%: actual propellar: strain decay was estimated from other tests where strain
: recovery was monitored by cathetometer measurements for the part of the tests at
~: zero stress (i.e., no load on the samples). The 5-in./min crosshead test for
{f UTP-19,360B was selected as typical and is shown in Figure 11.
3.1.6 Cyclic Loading Test No. 7
Cyclic loading tests were run on 6-in. bars of UTP-3001 and UTP-19,360F
propellants at ambient temperature. The cycling was for 20 cycles at nominil
strain levels of U, 8, and 12% for UTP-19,360B with UTP-3001 limited to 14. A
the end of the test (after unloading to zero stress) the strain was mongtored on
the samples with a cathetometer. The test at a nominal 12% strain 1c show.
N,
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Figure 12 for UTP-19,360B as typical. These data were modified to insert the

estimated maximum stress points and the propellant strain decay while at zerc
stress.

3.1.7 Relaxation Test No. 8

Stress relaxation tests are run on 6-in. bars of UTP-3001 and UTP-19,360R
propellant for a 2U-hr period and then monitored for strain decav after being
unloaded. The tests at ambient temperature were repeated for 4, B, ani 1Z%
nominal strain levels. Thev were loaded at a crosshead rate or 20 in./min and

unloaded at 1 in./min after the 24-hr relaxation. Typical test data are shown
in Figure 13.

3.1.8 Predamaged-Relaxation Test No. 9

The predamaged-relaxation tests were run with 6-in. bars on UTP-30J1 and
UTP-19,360B propellants at ambient temperature. They were preloaded to 12%
and unloaded at a crosshead rate of 0.1 in./min allowed to rest, then reloaded
to 8 or 4% strain at 20 in./min. A7-~ relaxing 1 hr, the samples were unloaded
at 1.0 in./min and strain was monitored after unloading. These tests were
repeated for a 6% rredamage strain followed by a reload to 4 or 2% as above.
These data were modified to obtain the peak stress and strain relaxation
after the samples were unloaded. Strain was monitored with a cathetometer

after the relaxation part of the test. Typical test data are shown in Figure 14
for UTP-19,360B.

3.1.9 Complex Multiple Load Test No. 10

The complex multiple load tests were run with 6-in, bars on UTP-3001 and
UTP-19,360B propellants. Tests were run at crosshead rates of 5, 1, and
0.1 in./min. The test sequence was 12 to 8 to 12 to 4% strain, then unloaded,
reloaded to 4% strain, and unloaded (four cycles) with cathetometer monitoring
of strain decay on the last unload. The same type of sequence was repeated
with maximum strains of 8 and then 4% where the 4% maximum strain was shortened
by one cycle. The 5 in./min, 12% maximum strain test with UTP-19,360B propellant
is typical and is shown in Figure 15. The data were reworked to obtain maximum
and minimum stress values as well as strain decay for unloaded specimens.

The cathetometer strain after the final unload was incorporated into the data.
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The 5-in./min, 12% strain test for UTP-3001 was deleted because the modulus
was outside the range of the remainder of the data (i.e., carton-to-carton

difference).

3.1.10 Complex History Test No. 11

This particular test is very complex and required two full months to
complete. It was run with a single sample (one at a time) in an Instron using
single 6-in. bar specimens of UTP-3001 and UTP-19,360B propellant. The samples
were pinned through the redwood end tabs and clamped onto the pins to avoid
crushing the redwood (i.e., that would generate a compression load on the
sample) during attachment. All coupling joints were heavy and tightly pinned so

that the sample would be put into compression when returned to the zero strain

position.

Only the test on UTP-3001 is selected for presentation here, but it is very
similar to the UTP-19,360B test. Since the test is so complex, it has been
divided into three parts. Part 1 is described in Table 1. Since an actual
Instron trace of the load-time curve was obtained, the peaks and minimum
(compression) stresses were selected data reduction points. Part 1 of the test
is expanded in time scale to show some detail of the process (Figures 16 through
19). Part 2 is described in Table 2. Test sequence for Part 2 is shown in
Figures 20 through 22. Part 3 (selected cycle maximum and minimum) are given in
Table 3. ™e last figure of this part (Figure 23) is some of the cyclic loading
at the end of the test. The chart speed was set such that good definition of
the cycle could be recorded.

The latter part of the cycling represented only by the maximum and minimum
stress-strain points. Part 3 of this test (the balance of cycling to failure)
is recorded in Table 3 as maxima and minima for selected cycles sufficiently
close to describe the upper and lower bounds. A plot of the data would be
similar to Figure 22. The strain values in Table 3 are stable, while the

maximum stress shows a continual decay, and compressive (negative values)

stresses are less compressive.
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Q; TABLE 1. TEST NO. 11, PART 1 - QUINLAN COMPLEX HISTORY FOR UTP-3001
'_“:‘ T7859
. Test Rate,
" No. Cycle in./min Remarks
j: 1 to Load 2 Approximately 15-min rest after cycle
- 7 Unload 2 Approximately 15-min rest after cycle
II 8 Load 1 Approximately 15-min rest after cycle
A Unload 1
-
Y 9 Load 5 Approximately 15-min rest after cycle
Unload 5
10 Load 0.5 Approximately 15-min rest after cycle )
Unload 0.5
11 Load 10 Approximately 15-min rest after cycle
Unload 10
12 Load 0.2 Approximately 15-min rest after cycle
Unload 0.2
13 Load 2
Relax 1/2 hr
Unload 2 Approximately 30-min rest after cycle
14 Load
Relax 1 hr
Unload 2 Y-day rest after cycle
15 Load
Relax 1 hr
Unload 2 7-day rest after cycle

3.2 TWO-DIMENSIONAL AND VARIABLE TEMPERATURE INVESTIGATION

The biaxial and nonisothermal testing was conducted on specimens of
UTP-3001 and UTP-19,360B propellants as detailed in Figure 23. The biaxial
samples were cast into prelined redwood boxes with a 1.25-in. gage length

by 6-in. wide and machined flat to a 0.25-in. thickness. The response properties

> -

rather than failure properties were of interest so the discontinuity at the
redwood interface did not affect the desired behavior. The 1/0- x 1/0- x b1,

specimens were used for straining-cooling and cvelic strain tests.  Shear
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Q: TABLE 2. TEST NO. 11, PART 2 - QUINLAN COMPLEX HISTORY FOR UTP-3001
»:‘.p T8714
¥
o Test Rate,
: No. Cycle in./min Remarks
16 Load 0.02
Unload 0.02 Approximately 30-min rest after cycle
17 Load 0.02
Unload 0.02 Approximately 30-min rest after cycle
18 Load 0.05
Relax 3 hr
Unload 0.05 2-weeks rest after cycle
19 Load 0.02
Unload 0.02 Approximately 30-min rest after cycle
20 Load 0.02
Unload 0.02 Approximately 30-min rest after cycle
21 Load 0.05
Relax 3 hr
Unload 0.05 1-month rest after cycle
22 to Cycling 5 Several cycles monitored, followed
2 by several with only maximum and
ninimum recorded

relaxation tests were run with 1- x 1- x 3-in. specimens bonded directly to
steel anvils. Details are given in later sections, except for test 21 in Fig-
ure 23 which was uniaxial. The six-channel test equipment discussed in subsec-

tion 3.1 was used for this testing; however, only three biaxial specimens could

be tested at once because of space limitations in the conditioning boxes.

The biaxial specimens used in this part of the program were cast into
redwood boxes similar to that shown in Figure 5. The space between redwood
blocks was 1.25-in. instead of the 6-in. for the uniaxial bars. The mill fin-
ished geometry is shown in Figure 24. The propellant was left flat rather

than necking it down as is done with standard JANNAF biaxial specimens. The

gage length was designated as the wood-to-wood distance for strain evaluation.
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::: TABLE 3. TEST NO. 11, PART 3 - UTP-3001-750/7768 1/2-IN. BAR STRESS 1
_-\,"'. WHILE CYCLING |
D (Sheet 1 of 2) T8715
gD
Time Strain Stress Remarks
74388.0479 2.40 -6.37 End of cycle 20
74390.3479 12.17 93.23 Peak of ecycle 39
74390. 4539 2.40 -5.98 End of cycle 30
74391.3819 12.17 92.03 Peak of cycle 34
T4391.4239 2.40 -5.58 End of cycle 34
74391.9432 12.17 91.24 Peak of eycle 40
74391.9859 2.40 -5.58 End of cycle 40
) 74392.0799 12.17 89.64 Peak of cyels 50
74392.1219 2.40 -5.18 End of e¢ycle 50
T4393.0099 12.17 88.45 Peak of cycle 60
T4393.0519 2.40 -5.18 End of cycle 60
T4394.7799 12.17 84.86 Peak of cycle 80
74394 .8219 2.40 -4.78 End of cycle 80
74395.7279 12.17 80.10 Peak of cyele 102
T4395.7479 2.40 -4.78 End of cycle 102
T4418.3479 12.17 76.49 Peak of cycle 184
74418.3979 2.40 -4,78 End of cycle 16L
T4451.5979 12.17 T1.71 Peak of cycle 330
T4451.8779 2.40 -4.38 End of cycle 330
TUUTH . 2779 12.17 68.92 Peak of cycle 442
T4UTY . 3179 2.40 -3.98 End of cycle 4u2
74698.0179 12.17 62.95 Peak of cycle 980
- 2.40 -3.59 End of ecycle 980
74928.0179 12.17 60.16 Peak of cycle 1980
2.40 -3.59 End of cycle 1980
75158.0179 12.17 56.97 Peak of cycle 2980
2.40 -3.59 End of cycle 2988
75388.0179 12.17 56.18 Peak of cycle 3980
2.40 -3.59 End of cycle 3980
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TABLE 3. TEST NO. 11, PART 3 - UTP-3001-750/7768 1/2-IK. BAR STHESS

WHILE CYCLING

(Sheet 2 of 2) T8715
Time Strain Stress Remarks
75618.0179 12,17 53.39 Peak of cycle 4980
| 2.40 -3.59 End of cycle 4980
75695.5179 12.17 51.39 Pea) of cyzie 5317
2.40 ~3.59 End of cyz.e 5317*

% Sample broke

. Test
Test Description

Damage Cycle/Test

Strain Cycle

14 Biaxial
constant rate

Biaxial samples of UTP-3001 and UTP-19.3608 were ramp loaded to
failure at rates of 2. 0 2 ana 0 02 in /'min at temperalures of
41,70, and 120°F -

e

15 | Biaxial -, Biaxial samples of UTP-3001 ano U1 1).3608 were simultaneousty
straiing- strain and cooled from 120 10 40°7 ¢ e a 40 h period
cooling

16 | Biaxial Riaxial samples of UTP-3001 and UTP-19. 3608 were tun in siress
relaxation 1;1axation tests at 40, 70, ang 120°F

17 | Shear Shear samples of UTP-3001 and UTP-19.3608 were ryn e stiess
relaxation relaxation tests at 70°F

6-1n bars of UTP-3001 and UTP-19,3608 were simultanegusty strain

18 | 6-1n, bar

straining- cooling

and cooled from 120 to 40°F at three Slow rates

19 |-Biaxial Quintan
complex history

Biaxial samples of UTP-3001 and UTP-19.3608 were cycled for the
Quinian complex history tes! al 70°F.

20 | 6-in bar cyche

6-in. bars of UTP-3001 and UTP-19.3608 were run in CyCln. strdin tests

D

L

I

lest a0 1in/min and 70°F. ¢ W
]

21 | Biaxial Biaxial samples of UTP-3001 and UTP-19.3608 were tun i ramp: ﬁ:ﬁ ?'?:'m‘?'x(:‘“;‘"
thermat relaxation-ramp tests with simultaneous coohng of heating (1 ¢ . tot e
similituge’ teverse rampj ' -\ .

¢ A ) » '
Note: Nominally three samples were run for each tesl and condilion Legena

T = temperatun:
e
o ltam

Figure 23.

- Best Available Copv 52

Biaxial and Nonisothermal Phase 1II Testing
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Figure 24, Finished Biaxial Specimen

28806

Response properties rather than failure properties were of interest, sc¢ the

boundary perturbation was neglected.

“The shear samples (test No. 17) were 1- x 1- x 3-in. blocks of propecllant

‘that were bonded to the test fixture (shown in Figure 25) after being machined.

The pull rods were attached to the offset plates so that the load was trans-
mitted through the center of the sample as shown. Since strain was limited

to 5% for the shear relaxation test, the sample was assumed to be in s=imple
shear. The shear strain (Y) was calculated as the tangen£ of the displacement
angle or AL/G.L. The shear stress (T) was calculated as force/area (aren

= 3 in.2),

The data modification to insert peak and minimum stress points proeviously
discussed for uniaxial cyclic tests was also used for the biaxial and
nonigothermal tests.

53 Best P\\'
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28811
3.2.1 Biaxial Constant Rate Test No. 14
The biaxial constant rate tests to failure were run with the
1/8= x 1-1/4~ x 6-in. specimens of UTP-3001 and UTP-19,360B. The tests were
conducted at 40, 70, and 120 F at crosshead rates of 2, 0.2, and 0.02 in./min.
The typical stress-strain response is shown in Figure 26 for UTP-19,360B

at 71 F and 2 in./min. Because of the fixtures and more difficulty in adjusting
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linkage than with the 6-in. bar specimens, the three samples did not load
simultaneously. Consequently, it was necessary to adjust the data for each

sample to have a common starting point.

3.2.2 Biaxial Straining-Cooling Test No. 15

Biaxial specimens of UTP-3001 and UTP-19,360B propellants were
simultaneously strained and cooled from 115 to 40 F at a crosshead rate of
approximately 3 x 10-5 in./min over a 40-hr period. Typical test results are
shown in Figure 27 for UTP-3001. The stress-time traces for all three samples

appear to start together but spread out as the test progressed.

3.2.3 Biaxial Stress Relaxation Test No. 16

e Biaxial stress relaxation tests were run with the 1/4- x 1-1/4- x 6-in.
;& specimens of UTP-3001 and UTP-19,360B propellants at a nominal 3% strain and tem-
:} peratures of 40, 70, and 120 F. The loading ramp rate was 0.2 in./min. Typical
— relaxation data for UTP-19,360B at 40 F are shown in Figure 28.
‘i 3.2.4 Shear Relaxation Test No. 17 )
:f Shear relaxaticn tests were run on 1- x 1- x 3-in. samples of UTP-3001 and
pTP-19,3SOB prope’.ants. The samples were post-bonded to steel plates as shown :
, in Figure 25 and run one at a tim by loading them at 0.2 in./min and ambient :
f temperature with offset fixtures so the load was transmitted through the
N centerline of the sample. The three samples for each propellant were hand- :
reduced and digitized for computer storage and printout. Typical test data are ‘
3‘_ presented in Figure 29 for UTP-3001. !
v Peak stresses and strain were very close, as was the 1 hr relaxation . i
stress on each propellant, even though the samples were run separately. .
3 9
3.2.5 Uniaxial Straining-Cooling Multiple Rates Test No. 18 ;
The rate effect on the straining-cooling response was determined on UTP- 4
3001 and UTP-19,360B propellants. The 1/2- x 1/2~- x 6-in. uniaxial bar sample !
waa used so that testing could be completed in the shortest time possible. The )
-3 rate effect for the uniaxial specimens was then applied to biaxial test No. 15. ;

Cooling was from 110 to 40 F at the crosshead rates of 0.002, 0.0002, and

56
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0.0004 in./min. Typical data a~e shown in Figures 30 for UTP-3001. Good
reproducibility is shown within the set of three samples.

3.2.6 Biaxial Quinlan Complex History Test No. 19

The 1/4- x 1-1/4- x 6-in. biaxial samples of UTP-3001 and UTP-19,360B were
subjected to the complex cycling and relaxation history indicated in Figure 23.
When the tests were run, the linkage (misalignment, etc.) was such that the
samples were not loaded with an equivalent amount. The first sample to be
loaded had the correct strain determined but strain on the other samples had to
be adjusted to the time the ramp started on each. Each sample was separately
reduced and data were modified to pick up the peak and minimum stress points.
Sample 1 for UTP-3001 is shown in Figures 31 through 33 where the complex test
has been divided into segments on an expanded time scale to show test details.
The first cycle in Figure 31 shows no load and the second cycle shows very
little. By contrast sample 3 (not included here) had a first peak stress-strain
of 37 psi, 2.26% and a second peak of 76 psi and 4.97%. During the unload part
of the cycle after the stress reached zero, strain decay was estimated from

other tests in which the strain was mea' ured using a cathetometer.

3.2.7 Biaxial Ramp-Relax-Ramp Test No. 21

. Ramp-relaxation-ramp tests we.e run on UTP-3001 and UTP-19,360B propellants
with the 1/4- x 1-1/4- x 6-in. tiaxial specimens. The first test was ramped at
0.0005 in./min to 6% strain and simultaneously cooled from 120 to 70F. It was
held at 6% strain nearly 23 hr, then ramp-loaded to failure, while cooling
towards 40 F. Data for UTP-3001 are shown in Figure 34; those for UTP-19,360B
were similar. The cooling cycle did not end at the peak strain; consequently,
the relaxation of stress was not the normal type behavior. The continued
cooling increased the propellant stress so that the normal relaxation behavior

did not start until the propellant temperature stabilized.
This test was repeated starting at 110 F and taken to 6% strain with a peak

stress of T0 psi compared to 30 psi for the above test. The longer ramp time

allowed the cooling to reach 40 F at the peak stress. The samples were allowed
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d to relax overnight and then unloaded to 3% while warming the samples to room
S temperature.

3.2.8 Uniaxial, Biaxial, and Shear Comparison

e Comparisons of the different samples were made in order to show that the pro-

pellant used in each of the tests was of the same family. These comparisons
were done at ambient temperatures for selected rates and were limited to strain

- rates that were close to each other. Such testing minimized the time-

-~ temperature equivalence shifts to small changes for negligible data input
;:f errors. The adjustments made for strain levels are given in Table 4,
A \ *
,i& The comparisons between uniaxial and biaxial in the table are close to the

:ﬁ theoretical ratio of 75 to 80%. The shear to uniaxial ratios of 0.28 and 0.39

3% bracket the nominal theoretical value of 1/3. For the comparisons madc in

-
xé Table 4, the UTP-3001 and UTP-19,360B propellants have to be considered part of
;}j the same family. Any minor differences can be attributed to carton-to-carton

4|
i variations.
i
>
5 -
( Uniaxial and biaxial stress relaxation modulus data for UTP-19,3608B are

compared in Figure 35. The biaxial modulus was shifted using the uniaxial Ag
shift factor. Figure 35 also shows that excellent agreement is obtained when

; the uniaxial modulus is multiplied by the theoretical value of 4/3 to correct it

: to a 2:1 principal state of stress.
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4.0 THEORETICAL DEVELOPMENT

4.1 INTRODUCTION AND PRELIMINARY STUDY

Generally speaking, solid propellants may be considered as lightly
crosslinked long-chain polymers, highly filled with coarse solid particiles.
They respond viscoelastically to the action of external stimuli. But certain
aspects of their behavior cannot be reproduced by classical linear or nonlinear
theories of fading-memory materials. Thus, in recent years, much work has been
concerned with the development of appropriate models to predict the mechanical
response of solid propellants. A current trend is to express the observed
response in terms of some measure of "damage" at the continuum level where
damage is described as the difference between the observed response and that
predicted by a fading-theory, such as linear viscoelasticity. There is now
sufficient experimental evidence to show that damage per se is a microscopic
phenomenon associated with the initiation and growth of flaws, debonding between
matrix and solid filler particles, and molecular chain scission. Although it is
largely irreversible, damage is partially recoverable shortly after removal of
the loading system. This recovery from damage is termed as "healing." It is
clear that, depending on the propellant and service requirements, it may also

have to be accounted for in a constitutive theory for solid propellants.

In the present program, two approaches to characterizing damage have been
followed. In the first one, damage is treated as the algebraic difference
between the measured stress and that predicted by linear viscoelasticity, so
that:

(t) = alt) - og (t
Gelt? =9 20 (¥) (1)

in which o¢ and o, are the linear-viscoelastic and correction terms, respectively,
with 0, the measured stress. In the second approach, the difference between

measured and fading-memory type stresses is handled through a stress-correction
function in the following form:

0(t) = C (€pay,...) 0 p(t) (2)
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The softening function (C) is made to depend on the past maximum strain or

stress and of(t) represents an appropriate function of the fading-memory type
stresses.

Broadly speaking, the models of R. Farris, M. Gurtin and M. Quinlan are of
the type presented in equation (1) above, while those of R. Schapery, W. Hufferd

and Swanson are of the form given by equation (2).

The following section presents some experimental evidence on the types of
nonlinearities exhibited by solid propellants, and briefly discusses the

' pioneering work of Mullins and Tobin in treating the large hysteresis observed
ff in tire rubbers. During the preliminary phase a brief evaluation of the
potential of basing constitutive models on molecular dynamies considerations was
h; reviewed by Dr. S. M. Breitling, subcontractor to CSD, and Dr. R. P. Wool of the
‘! University of Illinois. Their conclusions and recommendations are discussed

E next. Subsequently, the nonlinear theory of Farris® is presented. This

i; theory was used during the first pha. . of the program to predict the

response of TP-H1011 and to compare wit. prelimipary results of the other five
constitutive laws ‘nvestigated.

Next, the theory of linear viscoelasticity is applied to predict the
response of UTP~19,360B and UTP-300i under various strain histories. The

ensuing results are the basis for comparing the propellant response as predicted

by each of the constitutive laws. This comparison is most meaningful because

each of the theories considered evolved from a set of modifications to llnear
viscoelasticity.

Finally, a detailed description is given of each of these five stress-strain
relations. These include the original concept of the models, their current

1

B

X

:

versions, comparisons of predicted and measured stresses for a variety of strain i
histories, and some pertinent guidelines for characterizing solid propellant j
according to each theory. i
4.1.1 Experimental Background ;
The complex behavior of solid propellants, as well as some attempts at E
Qeveloping usable stress-strain laws for these materials, are well documented in :
70 :
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L}; numerous studies.3-31 These studies show that a given deformation process

:ﬁ}j causes a change in the response properties of solid propellants, for instance a
! drop in the relaxation modulus. As stated bhefore, this deviation from some
R expected response is what has been called damage. It is evidenced as

phenomenological microscopic changes that are caused by undefined, tut real,

A irreversible or partially reversible microscopic changes. Polymer bond

breakage, vacuole formation in the polymer matrix, dewetting between the polymer
matrix and solid filler particles, microcracking, etc., are among the possible

microscopic causes of observed permanent-memory effects in propellants.

Studies on uniaxial solid propellant samples have indicated that thess mate=-
rials exhibit large hysteresis even at small strains. These studies have also
revealed that the state of damage in solid propellants is determined primarily

by the maximum strain or stress undergone during the loading histories.

The typical nonlinear hysteresis and permanent-memory effects exhibited by
solid propellants are illustrated in Figure 36. A series of finite-duration,
variable~-strain-level ramp pulses were used to obtain the propellant response
subsequent to a given damage history.121 13 a1 ramps had the same initial
moderate rise rate, with two exceptions to be noted later, and all ramps

had the same very slow decline rate.
Observations of the load on the specimen after returning to its original
length (zero strain) showed that it took approximately 30 min for the stress to

relax to zero.

A series of tests was run on a 1/U- x 1/U- x U-in., tab-end sample. The

:i: virgin specimen was initially strained to a level of 7.04% and allowed to relax
415 to achieve a rest-state condition. The first part of the testing is shown in

\ -.

:ﬁ the lower half of Figure 36 (curves A-H) and the last part in the upper half

P

L /] (curves H-M).

-

Eu} Curve A shows the load response to the first pulse. The specimen was then
ﬁrﬂ subjected to four successive ramp strain pulses ranging from €° = 3.8°% 1. €° =
. s

g!! 6.34%. There was a rest period allowed between each pulse. The resul‘.:

Ef: shown in Figure 36 as curves B through E.
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Figure 36. Relaxation After Damage
22019
Two aspects of the propellant's behavior are worith noting. First, during
the conatant strain rate portion of the ramp, each successive load-time curve is
essentially identical. This phenomenon indicates that the "new material" has
the same nonlinear rate-dependency under repeated strain conditions as long as
the strain levels are below the previous maximum strain of ¢°= 7.04%, Second,
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tj the relaxation portions of the curves are essentially homologous, indicating

"

‘S that a viscoelastic relaxation process is taking place.

B

v v e ¥
AL

Curves F and G present the results of two additional tests at two
successively lower strain rates where the sample was loaded to 5.64% strain each
time. A strong rate dependency is observed during the rise portion of the ramp;
hewever, curves F and G rapidly rejoin curve D indicating that the material is
behaving in a viscoelastic fading-memory fashion.

The specimen was next subjected to a ramp strain pulse reaching a higher
strain level (¢° = 9.86%) than the maximum 7.04% previously experienced (Fig-
ure 36, curve H). The first part of curve H repeats the loading ramp portion of
curves B-E to indicate the same "new material” rest-state. Note that the load-
time curve returns to the ilnitial or virgin constant strain rate curve once the

previous maximum strain (7.04%) has been passed.

Subsequently, the specimen was strained with the ramp pulse to four
different strain levels less than 9.86% (¢© = 4.26%, 5.64%, 7.04%, and 9.01%),
as shown in curves I through L. The results show that a new rate-dependency has
developed (compare the rising portions of I through L with the rising pertion of
H). Thus, another "new-material" rest-state has been produced as a result of
the second maximum strain level of 9.86%. Lastly, the specimen was strained to
another new maximum of €© = 12.68% as shown in curve M. It returned again to
the virgin undamaged curve once the 9.86% strain level was exceeded.

The above experimental evidence suggests that the form of the constitutive
equation should remain unchanged with respect to the material's current rest-
state. This condition should remain as long as the damage is unchanged (i.e.,
the €.y is unchanged during its subsequent strain histories).

Figure 37 shows a replot (curves N and O) of some of the results just
discussed. After an initial maximum strain (7.04%) the specimen was allowed

to return to a rest-state and then strained to a value of ¢® = 5.64%, with
the result shown as curve P. These three identical strain history tests

of three different material states indicate that the higher the state of damage
(primarily fmax)' the softer the material response upon subsequen‘ testing.
73
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Figure 37. Relaxation after Damage
22020
In addition, other experimental studies have pointed out the importance of -
healing effects, load duration, and initial strain rate. 2, 13, 14, 15 Finally,
it is important to note that the behavior of soclid propellant, depicted in
Figures 36 and 37, is similar to that exhibited by rubber. The nonlinear
uniaxial stress response of rubber, with or without carbon black filler and

in tha abaence of time effects, was well characterized by Mullins and T°b1n27
with equation (3).

€ez€, F

(3)
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:-:.: where:

R;: € = engineering strain. The Mullins-Tobin model is not limited to small
,\'-,.

strains.

3 &

¢ ,(0) = strain as a function of engineering stress for the polymer

Pl
(=4

. without filler and without damage. The characteristic shape of this
function is shown in Figure 38.
F= Flopay» N) = damage or softening function which depends on the maximum
stress experienced by the rubber and the number N of loading and

unloading cycles. F is not very sensitive to N, but depends strongly on
any hard filler particles that may be present.

A large amount of rubber data can be predicted by means of this equation
when the samples are not allowed to rest between cycles. Recovery or healing
occurs as a function of the rest time. Therefore, healing would have to be

considered in an accurate characterization of rubber.
Introducing the inverse of ¢, = Eu(o), equation (3) may be put in the form:

4
ez f (e/F) )

which shows that F (where F<!) is a strain-magnification factor. The ratio €/F
is interpreted by Mullins and Tobin to be the average strain in the rubber phase

Stress

()
LA

Strain

[y O W

[ 3
LN

Figure 38. Stress-Strain Curve for Rubber
22074
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of a hard particle-filled rubber. Without damage in a highly-filled rubber, F<1,

7 As the rubber is cycled between the strains €= 0 and € = ey ,, the ratio ¢/F at
i' any strain decreases, and therefore the stress decreases. The shape of the
> stress-strain curve is still as shown in Figure 38. It is similar to that

for solid propellant after first-time loading. This fact and the ability

of the model presented in equation (3) to reproduce a large amount of rubber

data explain the great influence of the Mullins-Tobin approach on the development
of nonlinear constitutive theories for solid propellants.

4.1.2 Potential Physical Parameters for Damage and Healing

A fundamental problem of continuum mechanics is the rationalization of mathe- )
matical models with a body of experimental data. As the complexity of the
physics increases it becomes progressively difficult to identify unambiguously
those theories and models which properly treat the critical mechanisms operating
in the physical process. Nowhere is this more apparent than in viscoelastlc
materials undergoing damage. Frequently, a theory is a product of years
of evaluation with layer upon layer .~ sarametric refinements that lead to
better numerical fits of given data set_. which may not elucidate the underlying
physics. It becomes very difficult to transfer the acquired experience with
4 given model to a new material system or a markedly different appiication
in the same system.

Preoccupation with chemical-physics is equally fascinating and unproductive.
The detailed investigation of molecular and chemical properties has been the

domain of many investigators for long periods of time with little information

that 1s applicable to real problems. However, several trends have been -
developing in the last decade that may prove productive if prudently implemented

and coordinated with an applied effort. Boyd and associates at the University

of Utah have successfully treated cooperative molecular motions in crystals and

in the pseudo-amorphous state. The results of this work has not been applled to

the development of continuum models.

A relevant question may be asked: "Is it possible to apply molecular
dynamic methods directly to continuum mechanics?"™ The answer is clearly "no".

Continuum theories do not consider the discrete molecular processes, just as the
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molecular dynamics neglect microscopic deformations and stresses. However, the
point of commonality between the two approaches is the treatment of energy.

Both methods must consider energy as a function of movement and dissipative
processes. Thus, it may be possible to use the molecular dynamic work done to
date to guide in the selection of mathematical continuum models by evaluation of
model functional forms and parameters based on molecular energetics. We were
unable to accomplish this goal within the resources available to this program.
Still, this is a laudable objective and should be continued in future constitu-

tive theory development programs.

The evaluation would not be of a formulation of models based on first prin-
ciples nor a calculation of model parameters. Rather, both functional
fcrm and parametric values could be judged for physical appropriateness using
the molecular dynamic information. Conversely, the experimental continuum data
could eliminate many molecular processes that do not contribute significantly to
the macroscopic viscoelastic-damage mechanism. The interplay of a more fundamen-
tal molecular viewpoint with the mathematical models and an expanded experimen-
tal data base could prove extremely useful not only in the rapid identification of

the fruitful, productive mathematical formulations, but in the elimination of poor
models.

Included in the area of molecular dynamics is rate theory applications to
macromolecular mechanical and dielectric loss experiments, cooperative polymer
motion energetics, fracture and electron microscope fracture studies. These
studies do not represent a coherent single field of study but rather a wide
range of studies conducted on many types of materials, most frequently unfilled.
The initial effort in this program was to collect and review some material
likely to be of most interest and relevance to the propellant behavior. An
evaluation should lead to the identification of a few molecular modes of motion
and associated energetics applicable to the binaer. This information can then be
interpreted in a form (e.g., energy density, surface energy) helpful to the
mathematical continuum model. Implicit in this interpretation is the descrip-

tive physical model of molecular behavior that gives rise to the macroscopic
observations.

17
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A small cooperative effort between molecular and continuum approaches was
carried out in this program to identify the compatibility of the mathematics and
physics. Only minimal molecular dynamics experimentation was conducted. The
objective of this initial effort was to capitalize on the molecular information
presently available and evaluate the productiveness of the initial approach.

Table 5 briefly outlines potential areas where molecular dynamics can be
expected to make an impact on damage-healing phenomena.

Processes occurring at the molecular and microstructural levels control the
macroscopic response of materials. Therefore, a knowledge of these events,
particularly to the extent of controlling damage, would provide guidelines for
constructing the constitutive relations for the material. The nature of
mechanically induced damage can be investigated in experiments which menitor
both the occurrence of the damage and disappearance of damage (healing). Damage
may express itself mechanically as a stress-softening effect, similar to the
"Mullin's effect™ in filled elastomer -, and may or may not involve cavitation,
crazing, or bond rupture. Damage can of' 2n occur in a time scale and manner which
crgate difficulty in evaluation or detection. However, healing studies provide
a method of reversing the process, or "turning back the clock" in a controllable
(via temperature) manner. Thus, the damage reversibility concept provides a
method of evaluating damage mechanisms. This consideration was investigated
briefly and at a preliminary level by Dr. Richard Wool of the University of
Illinois during the initial preliminary studies of the program. Available

methods for evaluating crack or damage healing are summarized in Table 6.

Damage healing studies were conducted with the intent of learning the mecha-
nism of material damage at the molecular and microstructural levels because
processes occurring at these material levels control the macroscopic response of
the material. The approach is to study the nature of mechanically induced damage
through experiments which monitor both the occurrence and disappearance (i.e.,
healing) of damage. Dr. Wool at the University of Illinois, Urbana, has con-

- ducted precent healing studies on the polymeric materials shown ip Table T,

'
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TABLE 6.

.........

METHODS OF EVALUATING CRACK HEALING

T9987

Mechanical

Tensile testing (MTS, Instron)
Dynamic mechanical (Rheovibron)

Izod impact fracture
Optical

Bright field plus stress plus
temperature

Dark field plus stress plus
temperature

Birefringence plus stress plus
temperature

Videorecording

Photometric

Small and wide angle light
scattering

Spectroscopic

Infrared with stress and tem-
perature dispersive and
Fourier transform (FTIR)
X-ray, SAXD, WAXD
NMR, broadline, pulse, magic angle
Eximer flourescence

Electron microscopy

Transmission (TEM) with stress
Scanning (SEM) with stress
Scanning-transmission (STEM)

Other

Picometry (density gradient)
Dilatometry

Visual

Neutron scattering

TABLE 7. RECENT HEALING STUDIES
T9988
Materials Studied Damage Investigated
Crystalline polymers Mierovoids <1 micron
Amorphous polymers Crazes > 1 micron
Glassy polymers Izod fracture
Block copolymers Microvoids
Filled composites Stress softening
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Studies of these materials have reached the following conclusions:

From these studies it has been concluded that the general mechanisms of
healing consist of four stages:

1.

2.

In each material, complete healing was usually observed; i.e., all cracks,
crazes, and microvoids disappear as heat in the mechanical sense.

In each case, the virgin mechanical strength was restored.

The kinetics of healing could be excellently modeled by the following

equations: _ {E}z kD0 (5)

k, n constants

D = Damage

R=1._1"R (6)
(1 + Kt)*

K = K, exp - E/KT (1)

K, aconstants

There exists a master healing curve (equation 6) for each material
which is obtained by similar WLF approach to viscoelastic materials.
The activation energy, E, is obtained from a plot of log (shift factor)
versus 1/T. The master healing curve is sigmoidal with respect to log
t, with a lower plateau at R = R, and an upper plateau at R = 1, at
long times.

Surface Rearrangement - Molecular motion on newly formed crack surfaces

may cause new configurations which affect the following stages. The
concept of damage history is therefore important. If significant
rearrangement occurs, healing can be prevented.

Wetting - The surfaces of the crack can wet and the crack disappears
optically, but only a minor fraction of the local mechanical strength

is restored.

81 1




Diffusion - The chains on contacting surfaces interdiffuse and estab-
lish the virgin configuration of interpenetrated chains with a '
subsequent increase in mechanical strength. This step is the slowest

(rate determining) and is responsible for the major fraction of mechani-
cal strength recovery.

4. Randomization - The final stage is subtle and involves long time molecu-

lar motion which completely erases the damage memory.

From these observations, it may be postulated that with mechanical loading the
mechanisms of damage consist of:

Derandomrization
Diffusional demixing
Dewetting

Surface rearrangement.

Voids or cracks appear at step 3. The majority of stress softening damage,

however, occurs at step 2. Therefore, considerable damage can occur under

conditions approximating constant volume.
)

In the present limited study, the objectives were to:

Obtain a master healing curve
Study matrix molecular mechanisms
Determine voiding processes

Investigate molecular theories which may have an impact on constitutive
applications.

Two propellants were investigated, an inert (NaCl-fill)Thiokol propellant
and a "live" PBAN propellant supplied to Dr. Wool by CSD.

ture history which was investigated is shown in Figure 39.

The strain tempera-

Reoovery data were fitted to Wool's empirical kinetic theory:

Req._ 1R (8)




with

K = K, exp (-Ea/KT) (9)
Experimental parameters are compared in Table 8.

One interesting observation was that the rate parameter, K, in equation (9)

was constant for the inert propellant, whereas it was not for CSD live propellant.

The experimental results are shown in Figures 40 to 46. It can be seen

that a master healing curve does, indeed, exist.

—
~o

Strain (€ )

T)

—_
-

Temperature (

T, = 20C

e —— — — — _————-——q—_——r
—_
-

— — — — _—-——————u—————L
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Figure 39. Strain Temperature Healing History
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. TABLE 8. HEALING RESULTS

. L Y

T9989
Inert Propellant Live Propellant
NaCl-filled (Thiokol) Ko = 18.3 x 1038
£§ K = 18.443 min -1 o= oy - 3.7 x 104 (1 - To)
i a =z 0.07 a, = 0.053
,-: R, = 0.26 Ty = 20 C
£ Ts24C R, = 0.66

EM =12% E 50 kecal/mole, K

_~ S SN 4
. et 4y by
., .
"
'

Based upon this limited study, a new theory of healing as a function
of stress level and time was proposed in the following form:

T=t
Xi d¢
R (0.t) = ot Lt (] G ) @ (10)
o0
T==00

] .
with several forms possible for ¢(t' or @(H):

- at
e

s(t) — (11) ‘
Kg U(t) j
Ky exp(~kq(t- 70)2)

Analytical solutions are obtainable for these forms; however, the "new" constitu-
tive theory, which would be based on a physical molecular model, is even more

complicated at the present time than available phenomenological continuum
models.

4.9.3 Farris Nonlinear Theory for Solid Propellants

The work of R. Farris3 was a major attempt at predicting the nonlinear
response of solid propellants in rocket motor analyses.
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§: Experience with Farris' stress-strain law at CSD showed that this theory
could not predict the response of solid propellants under strain histories
that were not included in the set used for material characterization. For
loading histories of the types included in such a set, however, the predictions
were gensrally acceptable.

Farris' nonlinear theory, in the form presented next, was considered in
the first phase of the program to compare it with the other five approaches
originally proposed.

. Based upon previous work on rubber elasticity, Farris postulated a model to
account for the permanent-memory effects exhibited by many solid propellants
under uniaxial loading. This model presumes the existence of inhomogeneities in
the local strain field between filler particles, a distribution of polymer
chain lengths between filler particles, and a uniform failure strain for each
polymer chain. This model has been successful in predicting the nonlinear perma-
nent memory response of solid propellants before dewetting when the models predict
the same response in compression as in tension. This prediction is in agreement
with experimental observations, although the molecular mechanisms contributing

to the permanent memory response in compression are clearly different from those
in tension.

Once dewetting occurs, the model is modified to account for vacuole forma-
tion and different results in compression and tension are expected. Farris
presented the constitutive equation as the sum of an essentially time independent

. bulk stress Og and a time-dependent deviatoric stress oig, so that in general

d 12
oij(t) =0B 634 +0ij (t) (12)

where 6ijis the Kronecker delta equal to unity if i = j and zer otherwise. The
form developed for the deviatoric stress is

‘ r‘.‘n'u'a'l .
AL IR AR
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d d Iy B2 4
053 (t) = e Bl a/1, | Ay egy () + Ao (—— ) ey (t)

Iyl P>
t (13)
.d I'y my t . d
. / Ay (t - ) ogy () dE + Ay (6 - B) eyy (0) db
I Iylp,
° )
XS where:
P
g I4 = volume dilatation = eyy + epp + e33 for small strains
)
1 2
I, = octahedral shear strain =—[(e11 - epp) + (epp - e33) .
3 214172
+ (e33 - eq1) ]
. eij deviatoric strain tensor
\.‘:1
¥ B, Ay, A, A3, Ay, My, My, Py, Py, = constants
".-"
o~
N and
i
0
" t 1/P4
Pj
Iyllp, = flx-,(s)l T (14)
Equation (13) has been applied to reasonably complex deformation histories using
unpressurized and pressurized uniaxial and biaxial test specimens. The
".; agreement was not as good as would have been desirable, but it was still better
j:j than with linear viscoelasticity. Time-temperature superposition was included

in equation (13) 6 introducing a time-temperature shift factor, A, and
redefining the Lp norm of equation (14) in the form:

::::‘.
o
o t ‘
o Iy (8)| P1 \1/py
I, = f — 4§
o Pi ar($) (15)
o
PARY
7'-_'1
e with |.| denoting the absolute value. Experimental data for simultaneous
"?".':"

cooling and straining have been fit using equation (13) with the introduction

! 90
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of a time-temperature shift function Ap through equation (15). The Jjustification ]

(v

o for introducing an Ap in the above manner, however, is not immediately obvious
-~ ;
j. nor adequately explained in the available literature.
.
:' To represent the response to interrupted and cyclic constant strain rate
s tests, equation (13) was modified by setting Py = oo and A3 = -Ay so that:
[
m2 "
d d Iy d
055 (t) = e Bl d/14 Ay ey (L) + A2 egy (t)
I Tylip, (16)

Iy my t d
1 - Az (t - £) ejy (§) d¢
II'y I oo

where:

= max

1 1.,(E)|, 0<i<t

o

The multiplier for the hereditary integral in equation (16) vanishes whenever

the current value of Iy is at its largest and is non-zero for all other values.

‘A a R A & &

This representation allows for viscoelastic (fading memory) response on
unloading.

The bulk stress, Opg in equation (12), was taken to be essentially time-
independent, although there is coupling between distortion and dilatation as
- indicated in the exponential multiplier in equations (13) and (16).

The first attempt to represent the bulk stress took the form of a series:

MM AL # F 4 & A A AN e & & 8. & A ASW

N
kk = % Aj 13 1:1, i Ao= 0 an i
3 i,3=0 ;
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This equation adequately predicts the bulk stress as long as it does not

vary greatly. When a hydrostatic pressure is superimposed, however, very
poor results are obtained. In an attempt to overcome this difficulty, Farris
modeled the compressibility of the gas voids caused by vacuole dilatation

by treating them as spherical voids contained in an elastic medium. Assuming
that the voids themselves offer no resistance so that all void dilatation

is caused by distortion of the surrounding elastic material, the vold content
at zero pressure may be represented as a power law in terms of the octahedral
shear strain Iy, and assuming that the bulk behavior varies linearly with
hydrostatic pressure, P, ylelds:

-3P
("") (18)
4G

Ig=CiP+CIye

for the dilatation, where Cq, C,, and n are constants, and G is the shear modulus
of the elastic matrix material.

The Farris approach to nonlinear characterization was only superficially
investigated at the start of this program, since our previous experience on the
Failure Mechanism Program had demo..strated that this approach was not useful.
However, it was felt that the Farris code could give a meaningful baseline for
comparison to the Quinlan theory, at least the predictions made in AFRPL-TR-78-
37. Consequently, the same 12 cycle test data that were reported in AFRPL-TR-
78~37 were input into the Farris nonlinear code. Results of this computation
are shown for the first two cycles in Figures 47 and 48. Note that during the
first cycle (Figure 47), the Farris fit gives much better correlation on both
the loading and unloading parts of the cycle. The second cycle shows less clear
agreement on the loading part of the cycle, similar agreement at the peak
stress, and better agreement with the measured stress on the unloading cycle.
Figure 49 shows the error in peak stress calculation for each cycle for both the
Quinlan fit and the Farris fit. This measure of error also shows that the
Farris theory fit the data quite well. The eleventh cycle data {s questionable.
This is the highest strain rate test and in fact could be erroneous as the test
rate is specified as 4.0 in./min, which is not common nor even possible on some
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. TABLE 9. FARRIS COMPUTED N-L PARAMETERS
C': l
' Quinlan Test ¢
. Farris ASPC Final Report
e Constants TPH 1011 (54 Tests) Run 21 | Run 22 Run 23 Run 24 1
e B 41 60 60% 94.0 60.0° 93.8
BNG -0.150 -0.150%( -0.150% | -0.45 -0.237 i
Bye * 1 -1.69 3.94 -3.32 8.15 -3.92
BNC + 2 -1.23 -1.23 -1.23 -1.23 -1.23 ;
BNC + 3 10.5 12.5 8.1 18.4 10.8
BrG + & 2.00 19.9 19.6 19.1 18,1 -
BNG + 5 102.0 ~44.,0 15.4 129.0 128.0 ;
BNG + 6 239.0 151 426 48.0 352.0
BNC + 7 56.5 167 90.9 17.8 32.0 . )
Average deviation -4.,1 -14.2 -4.5 -9.0 )
Standard deviation 18.9 24,1 15.3 26.3 3
® Denotes held fixed

Instron machines, whereas all other ~y»les were at the usual intervals of 1, 2,

and 5 in./min. Table 9 shows the valu(s for the Farris parameters from several

solutions to the Quinlan data. Shown for comparison in the first column are

data generated by Aerojet during the development of the Farris constitutive !
theory on the same propellant (circa 1972}, TPH 1011. Note the range in values

from the various runs. This is reminiscent of the CSD experiences with the fail-
ure mechanisms program.

a.a AERR L &

It might also be noted in passing that each of these solutions cost about
$1.50 in computer time as compared to about $100.00 for the CSD program to
evaluate the Quinlan theory. Hence, computation costs may be highly dependent
on the theory chosen and the sophistication of the techniques used to evaluate
the constitutive expressions.

¢ ¥ YEERIA *a

e

One additional test was run at the request of Dr. J. E. Fitzgerald, a con- !
sultant to CSD on this program. He requested a prediction for a test in which
a 24-hr rest period was included in the test history. The results are shown in
Figure 50 for the parameters selected from Table 10. Contrary to what was
expected, the predicted response did not show anomalous behavior on the
reloading following the rest period.
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: TABLE 10. PARAMETERS FOR FARRIS FIT
79991
¥
Contstants QEX12 GEX3A GEX3B
Is‘
~ 8
:. Byt 18 18 1
\\.
::‘ BNC -°0u9 -0027 "0161
l .
N Buc + 3 5.44 2.90 3.00
% BNC + 4 2.20 13.0 19.0
Bnc 4 6 102 360 225
Bne » 7 15 22 1

4.2 LINEAR VISCOELASTIC CONSTITUTIVE EQUATION
4.2.1 Isothermal Tests

The one-dimensional stress-strain law for a thermorheologically simple
linear viscoelastic solid may be expressed as:

i

t
o(t) f E (S, - S 9 (1) ¢r
0

(19)
where: s
o= stress
€= strain
E(t) = relaxation modulus (PRONY series representation
using a matrix solution for curve fitting data;
CSD Data Analysis Procedure No. 7.3)
8y =8, = temperature-shifted time, given by:
98
i
T R e LT L
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dr
S¢ - 8 =f ——
! ar [T (] (20)
p

and

Ap = time-temperature shift function, taken in the form:

m

At =

in which Tg is the shift reference temperature, and both T, and m are material
parameters. The material parameters were obtained using CSD Data Analysis Pro-
cedure No. 7.4, which is curve fit routine using Powell's algorithms.

The linear viscoelastic model was used to predict the response of UTP-
19,360B and UTP-3001 under several strain histories. The corresponding results
are included here as a basis against which to compare the stress predictions
obtained using the nonlinear stress-strain laws considered in the program.

4.2.2 Isothermal Stress Predictions

The measured response is compared against that predicted by linear
viscoelasticity for UTP-19,360B in the following order (Figures 51 through 76).

The results for the lowest and highest constant-rate tests (Test No. 1)
appear in Figures 51 and 52. Those for the dual-rate tests (high-to-low and
low-to-high, Test No. 3) are shown in Figures 53 and 54. Figure 55 contains the
comparisons for a saw-tooth strain history (Test No. 5) with increasing strain
peaks and rest periods between cycles. The results corresponding to complex mul-
tiple loading, 24-hour relaxation, long-duration similitude, three-step
relaxation, and predamage relaxation are presented in Figures 56 to 60. In addi-
tion, the time-temperature superposition principle is put to use with constant

(Text continued on pg. 126)
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rate tests (Test No. 1) at 70, 40, and 123 F, as shown in Figures 61 to 65,

respectively. Stress predictions for the same tests on UTP-3001 are shown in
Figures 66 through 76.

Predictions for biaxial samples were also made using equation (19). For
UTP-19,360B, it was assumed that Eyjayia) = 4/3 Eypjaxiay: This assumption is
supported by the limited biaxial modulus tests conducted on the program. Predic-

tions for UTP-3001 were made by substituting the biaxial relaxation modulus for
that of the uniaxial.

The results for UTP-19,360B are given as follow. The lowest and highest

" constant rate tests (Test No. 14) are shown in Figures 77 and 78. Figure 79

contains the comparisons for the stress relaxation history (Test No. 16). The
results for UTP-3001 for the same tests are given in Figures 80 to 82.

4,2.3 Linear Thermoviscoelasticity Analyses of UTP-19,360B Propellant
Simultaneous cooling and straining tests of uniaxial and biaxial specimens
and the complex biaxial ramp-relaxati... ramp-test while cooling and heating have
been analyzed according to linear viscce.asticity theory in order to provide a
baseline for comparison with the nonlinear theoretical predictions and to

evaluate the error between linear predictions and measured experimental results.

The one-dimensional equations are as shown in equation (19), with the
exception that € is replaced by € - aATl and AT = T,-T(t). In order to simplify
numerical calculations, the time-temperature shift function was represented by
the power law given in equation (21) .

Calculations have been made for prony series and power-law representations
of the relaxation modulus. Both types of computations give comparable results
and the computer codes have been verified with handbook type calculations.
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Using Prony series representation for the modulus and assuming a con-
stant coefflicient of linear thermal expansion, equation (19) car be written
in the form

N t
SNt - g)
] i
o(t) = (e - alAT) Ee+-t— Z j E; e dr
) i=1 0

where it is also assumed that € and AT are constant. Substituting equation (21)
into equation (20) and performing the indicated integrations leads to

N t 14
1 Z . d (22)
o(t) = (e -apAT) | Eo +— Ej e u
t i=0 0
where:
. m
1 T

a = Af (23)

0 +m \TR - T,

Equation (22) was evaluated numerically calculating the constant € and T at each
data point.

Assuming a power law representation for the modulus of the form

E(t) = Eo + E7 t-N (24)

leads to

t/AT)-N
o(t) = (€ -alT) e+E_ﬁ_iL_-1T

(25)
1-n
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Figures 83 through 85 compare the measured and predicted stresses for the
uniaxial tests and Figure 86 compares stresses for the biaxial test. The good

0

agreement with the biaxial straining and cooling test is believed to be fortui-
tous. In fact, the test data is questionable, since the linear predictions did

not agree even during the initial cooldown of the biaxial ramp-relaxation ramp
test as shown in Figure 87.

Handbook type calculations were also made to determine a thermomechanical
coupling coefficient, Ap, with the results shown in Figures 88 through 90. The
results obtained using a constant Ap agree reasonably well with experiment,
with the exception of the biaxial tests. Using an Ap calculated from uniaxial
tests, the predictions shown in Figures 91 and 92 were made. Observe that the
initial cooldown of the biaxial ramp-relaxation-ramp test is matched well, but
the cooling-only test is not, giving further credence to our contention that

these test results are invalid.

4.3 M. QUINLAN'S THEORY OF MATERIALS WITH VARIABLE BONDING
4.,3.1 Original Model

In developing a mathematical framework for his stress-strain law, Qunilan,u
reasoned that since propellants consist of minute rigid particles embedded <
in a polymer matrix, such materials would respond to a deformation process
with a change in the amount of species to species bonding. He thus proposed

PRI YR )

to correct the deficiencies of fading-memory type theories by introducing a
correction term that accounted for the changes in the state of bonding that

(Test continued on pg. 145)

134

P e _ SR e fe mtm ME A RASERE 4 & 8 8 4 8 & SSRAS

-




080LE

(F)

TEMPERRTURE

02

on

o8

0ot

o2

(gL °ON 359]) Buylo0) - BuTuleJlS Jeg *U=-g

LLLL/OOK-E09E ‘6L-dLlN JOJ SUOCTIOTPaUdd §694JS OTISBIB0DSTA JBAUTT °gg oJNITY

I[- 3 % (NIW 3WIL

R . . .« - —e = - . - - .- -

SS3ULS OWNSHIN NUIN - Q

NIN/NI 200° 'i4OLS|H JlbW QWX | SSIMLS J11SHI130ISEA WINIY - @

-1 ON

‘4 Ol 'LHOISIH NIUYWLS 3N Y IdNIL DIWNSHIN - @
4 0N Q1 020 :1HOLSIH I¥NIbYINIL . _ : : NIvYLS 03uNSuaN - @

a1

SS3uls

(ISd)

(Z) NIbWlS

135




LgoLe
0
02
i«
on
W
S
- 09
o o
[ «f
"_ 08
x
W
-
oot
o021

(gl °"ON 3s8]) BuIl00) - PuTuleJd}S JBg °UT-g
LLLL/00K-809E ‘6L -dln 40J SUOT3IDTPaJd ES8JJS OTISBTIOOSTH JBBUTT *fg IJNBTd

4 0604

'Z O TRYOLSIH NIWNLS
020 AN0ISTIH JuNIHYINIL

AN

P

w
-4
D
™
w
w
Y
w
. 0 . » 6
. - o 6 ™
SSIWLS 0IUNSYIN Nuaw - O | -
SSIMIS J1SHII0ISIA wudNIY - @ on
w
=
R
D
—
> 4
S
.u....ch..c“r..t..o..n,o- S
' 26N1B¥IdM3L OFUNSUM - @
‘ NIbuLS Ounsedw - @ |

o’ atle

o

. ..~ ."
P

"

. .(

PNCIPRIEI
Pl AN Y

RARREANL NI




r T atwmT

TATRTET

paic Nl Sk Seadl el

AW

2golLe

(F)

TEMPERATURE

001

o2l

(gL "ON 3891) Bull0o0) - Jujutedis Jeg ‘Ul-g

LLLL/00#~-909E‘6L~dlfl J0J SUOTJOTPAUd §63J43S OFISEBIB00STA Jedul] °Gg 9Jn3T 4
2~ 3 m (NIW) 3JWll
A el 4! i ot 6 ] L 9 S h E w 1 0 0

NIW/NI hDQO° :Ad0ISIH Jlbd OWX

SSINLS IS8 TI0ISIA wyiInl - @

'S6IW1S 0ILNSHIN NHIN - @

r S6

4 Oh 0! 021

- = P TS — -

2 Ol *Lu0LSIH NIBYLS ' ' ) '

JUN)BYIINI{ 0JUNSHIN - O
CAMOLSIH JuNiuwddwil : J : :

NluulS QIuNsSvan - Q

on

9 o1

21

(1Sd) SS3u6iS

{Z) N1oHisS

137

&

- S

"

CH
*a

. .-

- e e
[l

- (4

i A

o

N N P
F I PY

s T2l L S NN
RAA] IRRCCY



3 £80LE
. (9L *ON 38§91) Bupo0)y - Zujutledls [eyxelg
. LLLL/00h-809€E ‘6i~dlN JOJ SUOTIDTpaUd S6843S OFISE[B0051) JEDUT °gg 3un3d1y

¥ 2- 3 % (INIW) 3IWIL

. 92 ne 22 02 CT g1 nt 21 ot 8 9 " 4 0 0
N S
“
o1 -
m
. w
st v
3
. 0z =
. “ ‘ w | | | . Lo - lse <
A . . . SSIHIS 0IWNSYIN NUIN - O -
NIN/N{ W0000" *1H0LSIH ILUY QNN . , SSIWLS I1ISUIINISIA wuIni) - @ 08
. 114
Y on
' [T
- w
«< D
w —
z z
W 08 1 N
e x
z
[7¥]
" = oot }-
/ : 2 0 “AUOISIK NIWGLS : H . . _ WNIVYINIL 0IVNSHM - @
4 0N QL 020 *RU0ISIH JUNLBUIJNIL : i : ' . NiveLS QuNSEM - Q@
o2t ot
1
¥
\-\...- WA A AN .-..- o) -.\-\. r «r « e s 0 % e B 7 TR NN AR
" .---« AES A b Y S Y ... .. RNy - --d- -(f r. ¢ v“lc-.-.~ ettt IR
XX, ¥ AR IR RSN ) .,s......;u......!..,..ﬂ ARURIUNPT,




ngoLe

(12 *oN 1s91) dwey-uoyjexisy-dwey [eTXETd
LLLL/00R-H09E‘6L—-dlN JOJ SUOTIOTPadd S68J43S OTISBIS0OSTA JBSBUT] °Lg dJN3TJ

¥ 2- 3 m (NIW) 3WIL
¥
ﬁ.. 02 8l 91 M 21 ot
"y m ”
‘ M N
a . _ wn
. ) —
d 2
. e e ™M
g ) & w
3 w
ﬁ‘. i Pay
2 . o e L 3
-, . : : . v
. . - . o
. _ o
Y _ : SSIWIS QIUNSHIR NYIN - @
‘ NIM/NE 2000° *1WOISIH IL¥Y OWK . $S3U1S 01547303814 WIINIY - @ 0
9
v‘. 02 —+ ¢ ~+ m m w
» oh L. e .
R - : X '
~ B \ [¥]
. w . . m
g £ 09 St oo 3
e } . \ . —
— : 2
z . _ _ ‘
< 08 - Se e e - e =]
a. ' —
“ . .
= ool “ R “ “ L . ]
2 N8 TIUDLSIH NIOWLS ‘ ‘ : . uNLEHIMIL 0IUNSHIN - ©
oar L2 0L ON'D21 'A¥OLSIW IWNLudIdN3L : . _ . NILULS OJUNSHIN - @ o1




AT ARSI K e R L PP

GgotLe
(gt °"ON 3s3l) Bujyoop-Bujuted3s Jeg ‘ui-g
E LLLL/00h=-809E ‘6Ll=dln JOJ BUOIIDIPAJJ £89u3}S OTISBIL0D6TA JBAUTT °gg IJINETY
. [- 3 » (NIW] 3WIL
06 @82 92 he 22 92 @l 8l w2l ol 8 9 ) 2 o
X t bl d ——— = ¢ b - -t — -t t +— -+ B 0
- L 01
w
.... T -1 QNl u
. . ™
” . w
2 -+ 4oV
. 3
v, - . } Oh m
'
w... + 0S %
- SS3HIS 0IUNSUINBNYIN - @ i
X NIN/NT 200° :L4YOLSIH JiHY OKX- SSIHIS JMISHI1IGISIA WUIN(T - @ 09
,
a 0
2
a 02
b
X s on o
» —
1 £ b 1 ]
3 5 o 2
. .nm 4
p, « oe -
. w) ~
- ” hand A-Q
) - 001! s
fo Lo . . . . . \- {
i 02t ” : ‘ : o I A SEIEIRT ¥ 1 R
o 2 00 *1601S1H NTUYLS ! _ 3uNity 3Nl QIUASEIM ~ @ N .....A
. ont 4 Oh 0L 021 L40ISIH JuN(HY 34Nl ! * ' ' NIYHIS QASHIN - Q "M )
" 58
rd
W
-
',
-\:.
' %
Y
ve

58

PRSI S SRV WNRNEARR T e




980LE

(8l °ON 359L) Buyl00)-3utuledlg Jeg °*uf-g
LLLL/00h-H09E 6L=dLN JOJ SUOTIOTPAJd §8943S OFISBIS0OSTA JEAUTT *pg dundig

LA A

€~ 3 % INIW 3WllL

ATAC TR,

-

w L uy®

WW}*T‘

SS3YlS

(184)

1

. S$S3HLS 03uwiSulk NBIN-- Q@ s€
Niw/NL hDDO" :AHOLISIM JIBY OHX . SSIHLS DISHTINISIA WeINIY - @ on R
.t o

(Fi
1Z) Nlbvwlis

TEMPERRTURE

_ 7 00 :ABOLSIH NTHYLS ’ : ’ _ 36NLUYIINIL GIUNSH Ine~ @ .A
021 L3 Oh OL 020 *i401STH WNiIBEIdNIL ' ' © NludiS Q3unSHike- Q 21

.. S ..-.. \...‘....-.\n ' PR --S

e S




L
-

e

. X ~v

MK S A AT A o

N

Te
P

K2
-

-

.

<

.

X,

-

AN

“ s .
'- v

[
»os e
e"a a e

LgolLE

(F)

TEMPERATURE

*
P

L S A

ot

(gL °"ON
LLLL/700W-909E ‘6L-dlN 40J

ue a2 92 h2 44 0e

NIN/NT 2000° 3uOQISIN Jiyd 0K

189]) Burro0o0)-ButureRulS Jbg *ut-9

SUOTJDTPaJgd S63J]§ OTISBIA0DSTA JBaUT *06 2Jnd1g

S- 31 ™ INIW) Wil

81 91 hi 4 01 a 9 h e

—_—————

- t——¢ r— ot t -1

SS 1S QIunsydn :c,u..u. Q
. SSIULS 19U I0ISIA wuIN]Y ~ O}

0
o~ﬁ
oh
09
o8
co oo MRIRIE L e e

[*)
—-
2
m
S .
(¥.)
nmu
se (7))
(1]
ss
1]}
Ne
2
..N....n
L el
=

ot

142

AT ‘:\-_

:\;

R Y \'.'\' LS DA AN

FOSRS
P al

;grﬁ

b

YRS NS

oY



-.—‘--

.

-" - 1

g

.

- b—. -—‘

LY LWL ©

.

v

LA

'),‘j

>

\ J
-

S Al

>
-

i

-y

Y.

"
-

o

T

(AN

N

LA

ik SR AP £ A

TN R LN U YY) T T T T YR TR

)
"
oLt
88 (GL *ON 3S9L) BUIT00D - guputedis 1erxerd . b
. aJn
LLLL/00h=909E ‘6L=dLN 40 SUOT3OTPaJd B8843}Sg OTISEBTI0VETA Jesaut] L6 24nITY %
2- 3 » (INIW) 3WIL ...
.\“.
52 .x\..
-
P
w 2
| :
3 &
» ~
| - ;
w >
= 2
r -\-.1
. s =
. SSiIS 0IWNSUIN NudIN-- O . pX
NIN/NE h0000" *LW0ISIH J1ud QuK SSIY1S J11S¥I10ISIA wudwll - @ on = ..”
0e _
_ oh
= w
. 3
z 038 w
2 z
< ~
S &
=
m 00l
2 8 iHQOLSIH NIYHLS ’ ' ' WOLYNIdNIL 03d0SH INe--Q
. 3 0h 0L 021 :1W0LSTH JufiitteIgNilL . NIoYlS 03uNSHINe" O L o1
1




L R R U AN A FRELAF g e | - ar g ge gn i g gy |

680LE
(12 *oN 3s9]) dwey-uorjexelsy-duey T[eyxeig

LLLL/00h-G09E ‘6L ~dlN 40J SUOTIOTPdUd SE8U3S OTISBII0DST) JEIUTT °26 BJnI1g

- 1 = INIW 3SKWll

0e 8l 51 hi 2! el 8 9 h 2 9
—— * + v —r B — -+ — —+ 30
(%]
“.
0.
m
w-
w
=
w
. . . . =
) . . K =
-
. SSIHLS TiuisuiK NYIRe- O
NIN/NL 2000° *A4OLSIH 316y OHX ) 4 141S ILSU130IS1A wdINIY - @ 08
W 02 ' , - , . o
3 _ . .
r oh . —- .
o W ' f
f. bt ' B w
Y € S L 2
N — ' ! ! z
y T _ ‘ :
g c o8 : --t- : - N
M o H H had
! X ; .
g W ; —& :
.-. - 001 ) Lo ) : : - ; : :
N : o : : . : : g
N ‘% h°8 *Ly01SIH NIBYLS ' ! ! ' WNLYEIINIL QIUNSYIN- O
’, 4 0L°0h°021 *1u0LSIH 3uNLBuIdNIL ‘ : ; ‘NlYLS 02UNSYINe- B
,.._ (1[4] - o1
.-
o
N
S

RO .‘“r.r\-uul.. S AR AR




vy v A &g Al dues Svun BUn & S b A g A b i Al JeN N S TR A )
A A S A EICI S 2 S I e e SR AS RS Al At it it A S AU A AR A S AR ARRERSRE AL RS AL B T AT AT AT AT s

are induced by a deformation process. His constitutive model then took the

form:

9 =08 + 09 (27)

in which:
0 = current stress
0. = fading-memory type stress
op = Stress correction due to change in the state of bonding.

Motivated to some extent by reaction-rate theory, Quinlan modeled the evolution

of the bonding state through the following ordinary differential equation:

Tca é-#[1 -e”(¢'")] (28)

subject to the initial condition:

(29)
T (0) = 1

in which mrepresents the state of bonding; o ,u , and » are material parameters,
and

@ =14+€ (30)

is the stretch ratio; with €, the strain.

The unique solution of equation (27) may be readily obtained for piecewise

linear stretch histories.u

Taking a linear viscoelastic relation for Op, and considering the stress

correction term, 0,, as proportional to the state of bonding, Quinlan arrived at
the following stress-strain law:
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t
o(t) = f G(t - 7) ¢ (1) d7 + By (t)
(31)
o

with:
G(t) = E5 t™ (32)
s =a |o-n[1-e@-m] (33)

and

7(L =0) =1 (34)

The six parameters (E,, n, B, a,u and v ) needed in this theory to characterize

a propellant may be obtained by fitting the model to the observed response of

the material when subjected to a saw-tooth strain history that has increasing

peak strains and sufficiently long rest periods between cycles. Alternatively,

the studies reported in the literature on the effects of employing different

data bases for characterization show that the test history should primarily

include the maximum expected strain level, the expected range of strain rates, -
as well as rest and relaxation perlods.

The model was used to predict the response of TP-H1011 under several
loading histories, and it reproduced, somewhat accurately, the general trend of

observed solid propellant behavior. CSD developed a computer code to automate
Quinlan's constitutive equations.
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The parameters entering Qunilan's law were determined by the code through
minimization of the root-mean-square (rms) error between the observed stresses

and those predicted via the foregoing equations. This procedure may be formally
stated as follows:

Determine E, n, B, a, d. ¥ so that

- F = i (05 - oci)2Y
' . (35)

acquire a minimum value, subject to

E, B,a,M,v>0; and -1<n< D

where N, 0;, and 0.; stand, respectively, for the number of data points, the ith
measured stress, and the corresponding stress computed from the proposed law.

Such an optimization process is performed in the code with the Powell-BOTM
sequentlal-search algorithm.

4.3.1.1 Verification of Published Experiment
In reproducing Dr. Quinlan's experiment, CSD took as a basic data set the

reported values of time, measured stress, and stretch rate. The corresponding
saw-tooth stretch history was internally built by the computer code. This '
approach introduced a difference in the degree of accuracy of representation ‘
between the values contained in Dr. Quinlan's report and those used by CSD
(Table 11). Thus, small discrepancies were observed in verifying Quinlan's
L;ﬁ work. An overall measure of such deviations is given by the rms error per
i:r cycle. While Dr. Quinlan's reported value is 2.7 psi, that obtained at CSD
, was 2.98 psi.

4.3.1.2 Verification of Uniqueness of Solution
Establishing the uniqueness of parameter values for use with the nonlinear
law is of capital importance. To this end, test history number 4 of Table 12 was
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employed as the basic input data for CSD's optimization and stress prediction 1
code, with two distinct sets of initial guesses for the parameters. As shown in

Table 13, the end results of both computer runs are essentially the same.

4.3.1.3 Modifications to Damage Equation
Under the hypothesis of a piecewise linear stretch history, say,

= . (36)
¢(t) = ¢(t0) + R(t-to), t°'< t< iy

the damage-evolution equation provides the solution:

e g o

o= 7 {] _ e Mttg) [, - ce Pt (to)]}’l; (37)

: -1
or e"(¢"') = ‘a U (t-to) + e—vz(to)} ; whenever ¢ = 0

for t,<t<tgp, where the following auxiliary parameters have been used:

_ (1-0a) ;. f
c=1 +——&—“——¢1 :
Y =aurc; (38)

E(to)g ¢(to) -1!‘[ (to)]

A8 8 Bl S SERES A

Now, continuous piecewise linear stretch histories have discontinuous .
stretch-rate histories, as schematically shown in Figure 93. It does make a
difference whether the right- or the left-hand derivative stretch is employed in
computing the evolution of damage. If the right-hand derivative is used, a
Jump discontinuity in the response is obtained which propagates through the
cycle because 3 also affects the value of eV( ¢~n) through the auxiliary parameter c.
If, on the other hand, the left-hand derivative 1s consistently used, no
Jump phenomenon is observed. Additionally, since in solving the damage-evolutlon
equation, the values of ¢ and 7 at the end of the previous ramp constitute

e A e o m e o A . 4 & & A& &
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TABLE 13. UNIQUENESS-OF-SOLUTION TEST

T9993

Initial Guesses

Convergence Values

Parameters First Set Second Set First Set Second Set
E 1249 400 878.4 878.3
B 4281 1000 5767 5768
« 0.00377 0.08 0.05757 0.05757
[7 0.1146 0.01 0.01196 0.01196
4 4o2 1000 244 .24 244 .18
|
_ﬁ
R1
1 1 -
Y t
6\
R1
R,
h=====d AJ - 1
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‘Figure 93. Piecewise Linear Stretch History
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{
{

the initial condition for the present ramp, another interpretation is yet
poasible of the &value to be used, namely, to compute E(to) with the left-
hand derivative of the stretch (i.e., this corresponds to the final value
of the previous ramp), and evaluate 7 (t,) using the right-hand derivative
of the stretch. This alternative yields a jump only at the start of a cycle

{

4

i

i

)

{

and nowhere else. i

From the foregoing discussion it is apparent that the damage evolution ;

equation may be unambiguously defined as: ) l
‘e (. - - :

1(¢¢) = o 10( ) - w [1 - e"“ ")]} (39) i

1

where 6(') represents the left-hand derivative. i

{

CSD proposed a modified version of tiuc damage-evolution equation in the form i

7(4e) = u{w -»-u - e"“‘")l} (40)

which would allegedly recover the equilibrium component of the response and at
the same time would eliminate the jump phenomenon. The reduced equation (in
terms of .E z ¢ - ) corresponding to this version constitutes a differential

*atatm A a . & _semmm .-

equation with variable coefficients which may be numerically sclved. The
required subroutines to accomplish this have already been developed at CSD and ) i
the performance of the modified damage equation (either explicitly, as in equa- .
tion (39), or implicitly through ¢ , as in equation (40)) was tested modifying
the damage equation according to:

4 |
'-' - at [e\,(o_") _ 1] ( 1) :
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Use of equation (41) seriously affected time to convergence; furthermore,
stress predictions based an this equation yielded larger errors than those
based on equation (39).

Finally, it is interesting to note that even when an inconsistent form of
equation (40) was used, whereby ¥ was computed from equation (40) but 7 itself
was determined from equations (37) and (38), better stress predictions were
obtained than with Quinlan's original form. In this case, the first two
cycles of Quinlan's experiment were fitted with these two approaches starting
with the same initial values for the parameters. After the second iteration
of the optimization routine, the error corresponding to the inconsistent
form was always smaller than that for Quinlan's original equation.

The previous comments seem to indicate that equation (40) constitutes
an appropriate definition of the damage evolution. It must be tested, however,

under different types of stretch histories before it can be either accepted
or discarded.

4.,3.1.4 Effect of Data Base

Employing the stretch histories listed in Table 12, a preliminary
evaluation was carried out of the features a test should include to properly
characterize the material response. The tests described below were performed to
gain some insight into the effects of data base on stress predictions and are by
no means exhaustive for the purpose of completely ascertaining such effects.

4.3.1.5 Reducing the Data Base
History No. 1 (H.1) of Table 12 was curve-fitted and the corresponding
parameters were used to predict material response under H.2. Errors in the

predicted response seem to depend on whether or not the stretch maximum and/or
the stretch rates are included in the data base used to determine the constitu-
tive parameters. Typical plots of these results appear in Figures 94 to 97.

Based on the above observations, H.l4 was next used to determine the
parameters, and the response to H.5 was then predicted with virtually the same
rms error per cycle. It is pointed out here that the base history (H.4)
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.'- Note:

N (1) Third cycle loading ramp

. (2) ¢ = 0.0058 in./in /sec:

g € max = 4.5%

: 40

= Symbol Approach

. o Measured

~ (m] Predicted from first two

,x cycles only (¢ = 0.0058;

FQ €mnax = 3.79%) -
2 20 A Predicted with parameters .
S — from complete history
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\ - (7]
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Strain (€ ), % -

Figure 94. Effect of Jump and Strain Maximum

= 30966
S

::::: included all the stretch rates of the history employed for stress predictions
E;‘: (H.5), but did not contain the stretch maximum. The last fact introduced sig-
%! nificant errors in the response prediction along the ramp leading to the maximum

stretoh, as shown in Figure 98.
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30
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(%)
o

Stress ( 0 ). psi

Note:
t1) Seventh cycle loading ramp ,E/
p— — {21 ¢ = 00058 n sin./sec
G'n.u = 6 9%
Symbol Approach
(@ Measured
0 Predicted trom first two p,_
cycles only { © = 0.0058. /
€man = 379%) / 1
A Predicted with parameters ;
trom compiete istory /
p,
'—l
-~
/’,
o
,
4”’
P
0 1 2 3 6
Strain { € }.
Figure 95. Effect of Jump and Strain Maximum

30967

It is interesting to note that the measured response during the third

stretch plateau of H.5 corresponds to a damaged recovery relaxation; and even
though the base history ends before this phenomenon takes place, the predicted

response to H.5 actually reproduces this type of behavior, as depicted in
Figure 99.

4.,3.1.6 Extrapolating to a Different Test

History No. 2 (Table 12),

with Quinlan's reported values for the
parameters, was used to predict response to H.3 without success.

Material aging

and/or differences in stretch maxima as well as in stretch rates might have been
responsible for these bad predictions.
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| i
Note:
(1) Eighth cycle loading ramp
(2) & = 0.0029 in./in./sec:

€ = 6.9%
40 - " L
Symbal Approach
o] Measured
a Predicted from first two
30 cycles only { ¢ = 0.0058:
2 €max = 3.79%)
™ A Predicted with parameters
ot i from compiete htstory
8
20 J/

0 1 2 3 4 5 6 7
Stram (€ ). %

Figure 96. Effect of Strain Maximum and Strain Rate (¢ = 0.0029)
30366
Next, the parameters corresponding to H.4 were used to predict response
under H.3; the samples used in both tests came from the same propellant batch.
The rms error per ,:le of the predicted response to H.3 with parameters
corresponding to H.4 was approximately 13.75 psi, whereas that obtained with
parameters corresponding to H.3 was about 13.2.

Alternatively, when parameters obtained by curve-fitting H.3 were used to
predict material response under H.5, large errors resulted. These errors may be

attributed to differences in stretch maxima and stretch rates present in the two
tests.

From these preliminary observations, it appears that parameters adequate

for stress prediction purposes should be determined from tests which cover the

expected range of stretches and stretch rates.
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80 Y —
Note:
(1) Ninth cycle Loading Ramp
(2) & = 0.0115in./in./sec;
€man = 65%
60 1| symbol Approach 4
(o} Measured
P (o] Predicted from‘tirSt two
< cycles only ( & = 0.0058: P
§ 40 €max = 3.79%) ‘,O/
@ 1 A | Predicted with parameters 7“
jod from complete history A
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_—
-
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Figure 97. Effect of Strain Maximum and Strain Rate (g = 0.0115)
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[8)]
D
~

4,3.1.7 Temperature Effects
As a first step to ascertaining the effect of temperature on the constitu-

tive parameters entering Quinlan's constitutive law, isothermal tests were
performed at three different temperatures. A saw-tooth strain history with
successively higher peaks (2, 4, and 6% nominal strain) and without rest periods
between cycles was used in the tests. The corresponding computer determined

parameter values are summarized in Table 14.

These preliminary results seem to indicate monotonically decreasing

L_HAAASER
.

:'.;j behavior of the parameters with increasing temperature except for the coeffi-

:,, cients owand 4, which appear to have, respectively, a bell-shaped and a monoto-

: nically increasing type of dependence on temperature. l
T

Additional tests at different temperatures are needed to more precisely ‘
define the functional dependences previously referred to and to hopefully remove ,
:f;i part of the hidden nature of the parameters involved. 5
@
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Figure 98. Effect of Strain Maximum (€ g,y = 6.5%) 30970
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L:_:.
::v:.: TABLE 14, EFFECT OF TEMPERATURE ON CONSTITUTIVE PARAMETERS
N T9994
-...2
o5 Temperature, F
Parameters 2 70 120
E 9019 1543 965
n -0.327 -0.141 -0.142
B 547,250 40,210 15,458
a 0.00236 0.0675 0.00427
u 0.229 x 1072 0.0735 1.415
v 321 6.73 4,91
rms error/ 18.1 9.1 7.4
¢ycle, psi
§ 1
2 |
%
W
3
®
o
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Y
i; 4.3.1.8 Desirable Test Features ,
A?i Test data used to determine the constitutive parameters have a definite
ﬁa bearing on response predictions and may seriously limit the applicability of the
(‘ corresponding results.
E::

_:; From a practical standpoint, the preliminary studies on data base effects
X for streas prediction purposes indicate that it is not imperative to duplicate
- the expucted loading history; rather, the test history should primarily include
{i the meximum expected strain level, the expected range of strain rates, and, if
;: applicable, other characteristics such as rest, or relaxation periods. On the
;. . basis of these observations, it appears that a test may be so designed to
: . include, within a reasonable time span, the minimum amount of information

- necessary to properly characterize the propellant for the intended use. Two

possible stretch histories are shown in Figure 100.

4§.3.2 Current Model

The theory developed by Quinlan has undergone several changes, mainly in
the expression defining the evolution of damage. With the theory as developed,
Quinlan has not been able to satisfactorily fit stress relaxation data. One

3 d w & R 4 TN ¢
5_,‘,;\;\..'-, I . 4"'-:'.' .:rf.,‘-' ¢

4

S NAN,

IND

Y

b 1.0
| Figure 100, Stretch Histories
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possible modification here 1s to allow the relaxation modulus to depent! cn '
damage parameter, T, This modification is reasonable, as tests general.y shrw

a lowering of modulus in stress relaxation. In particular, Figure 1071 showr

four stress-relaxation tests, each corresponding to a different prestrain.
Q{ the three upper curves, the initial strain in the test 1s greater than or e

oo to the prestrain; the three curves approximately coalesce. For the lower curve.
however, the 3% strain is less than the 5% prestrain and there is consider:tis
modulus reduction. This type of strain-sensitive damage phenomerion has br~-

i
reported throughout the solid propellant 11terature.10' 12, 33, 3

The most effort however, has been spent on modifying the bonding law -
reduce the jump phenomena, to improve the curve fit to data, and te incl i ie
healing. The general form

B>
~

t .
o(t) =[ H(t-7) ¢ (1) dr + Cm(t) (
0

has been retained in all versions of Quinlan's theory, but the rate mechan or

underlying damage

[ gl GV S ik %
AN )

y ®
—
Lo
(e}

7= P(7, ¢, ¢)

|
a 4!’5«‘.‘«4:

for which

Di-“
2t

n(¢=1) =1

i~
s

—~

-4"'.‘.1:" P.' i‘

r -" LA

was assumed to contain a neutral rate, {, at which damage remain consizrt,

ia

4 ‘-l ]

P(m, 0, ¢) =0
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Figure 101. Typical Stress Relaxation Behavior for Undamaged
and Predamaged Samples

21967

This concept allows the concept that at rates higher than {, bond breakage would
take place, while at rates slower than the neutral rate, bond formation would

occur.

Equation (45) for the neutral rate, {, may be rewritten as:

{=0Q (7, ¢)
(46)
{ = 0 if and only if 7 =z ¢
which, upon expansion in Taylor series, becomes:
{z=Q (m,n -0) +3Q (n, 1 -09) (m - ¢) +Q (|7 -9]|2)

=0 9{m ~ ¢) ¢=0

The first term on the right-hand side of this equation vanishes by virtue of
equation (46), so that, neglecting the higher order terms, and defining:
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E: def aQ (1{ ’"-¢)
3 u (u7)
o(mr - 9) =0

> leads to the following first-order expression for the neutral rate:

'
'
¥ ¢z u(m - ¢) (48)

AR,

where for bond breakage

e Ay -

\ . (49)
- ¢ -5>0

% while for bond formation
(50)

4;-§<o

In addition, equation (43) may be cast in the following form:

. . (51)
mn=P (n,0,0) = R(s, u)

L g v ]

where:

s =8 (w, ¢) (52) s

and

gy

(53)

with § given by equation (48).
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Now, under the assumption that the process of bond formation is slower than
that of bond breakage, the function R defining the evolution of damage must be
of the form shown in the sketch below, in which the parameter a would represent

the maximum rate of bond formation.

Hence, R may be defined through the following differential equation:

dR(s, u)
™ = v [R(s, u) - a] (54)

where o and v are positive constants.

Integration of equation (54) yields:

R(s, u) = a(e’¥ - 1)

(55)

Finally, putting equations (48), (53}, and (55) into (51) results in:

AR
"
" i

-

Tz« {exp[V 6 +uv (® - W)] -1 } (56)

(Y
«

N
A
L AR

e
o

4 Equations (42) and (56) subject to (U44) were used by Quinlan in several
ways to characterize the response of UTP-19,360B. One such stress-strain law

took the following form:
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o(t) = Eo €(t) + [E1 +'E2 E(t)]f (t - 7)-n é(T) dr + C;r (57)

(o)

in which Eo, E. E;, n, and C are constants and € is the strain. Although some
aspects of propellant behavior were better modeled than with the original version
of the theory, others were not, and further revisions were necessary. In the
latest version of his constitutive law, Quinlan used a Prony series to represent
the relaxation function and changed strain for stretch in the original equation

of evolution for damage, so that, in summary, the current model looks as
follows:

0(t) = oy(t) + Op(t)
t

oy(t) = Ge €(t) » f G(t - 1) €(r) dr

c (58)
n
G(t) = 2 ¢y e-Tit
=1
opt) = Be (€ =) e(y)

This final version of the theory has been employed to characterize UTP-19,360B,
but has not been used by Quinlan to predict the response of the propellant
under any loading history other than a single characterization test. Its
generalization to transient thermal loadings and two- and three-dimensional

states is expected to require significant modifications, possibly including
a oomplets reformulation.
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4.4 R. SCHAPERY's NONLINEAR STRESS-STRAIN LAW
.4.1 Original Model

Dr. R. Schapery used the constitutive theory advanced by him for viscoelastic

materials with microcracking17’ 18

was taken by Dr. R. Schapery as the starting
point for predicting the response of solid propellants under general loading conditions.

The one-dimensional version of this law takes the following simple form:

s < IF (59)
TN %
. where 0, 2s the linear viscoelastic stress for a thermorheologically simple mate-
- rial:
t
de
0 = ]E(g-g')—"df, (60)
ar
o
with
t¢g = ¢ = o(T = Ty) = strain due to mechanically applied
stress
t
£ = j dt' /A7 [T(t')]
o)
Er = E(7)

E(%) = linear viscoelastic relaxation modulus

To = temperature at t = 0

Ap = Ap (T) = temperature-dependent material function

A= MN(S¢): softening function in which the damage parameter:

q

SQ = j dt
f

o)
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t
i& depends only on the strain and temperature histories, and:

:'_-'.‘ 1 for 0 € € < €y
{ B
. f = (e/eq)" for e1<€ <€)

3 :

M (e2/€1)” for e > €2

o)

. for constant threshold strains €, and €y, with g >0,
~~.w

fu The function F = F(€;) and the positive, constant exponent, g, originate
WA

oo with the equation for microcrack speed, .

) dA q :
. —_— M(KI/f')

"y dg (62)
3

Ca) where M is a positive constant and

Ia)

]

df = dt/a, (63)

%
» in which A, = A (T) is the shift factor for microcrack growth rate.
4 The functional form of the softening function, A= A(Sp), depends on the type
A
v:, of behavior that needs to be reprod.ced. The following special case was used:
mN

< /
s 7\:[1+CSQ]pq
o
)

where ¢ and p are positive constants. Note that when SQ = 0orc=20, a linear

gy
P AP

-

viscoelastic stress-strain equation is recovered from equation (59).

)

Taking AF = 1, several sets of numerical values for the constitutive parame-

.'::.-: ters corresponding to TP-H1011 were tried without success. This theory was also .
,.‘ used to predict the response of UTP-19,360 and UTP-3001. Having failed to

::} perform better than linear viscoelasticity in many cases, it has undergone sev-

, eral changes since.

-

*
LN

4,4,2 Current Model

:. The essential form of the modified uniaxial stress-strain relation 15 given

by:
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0= f (9 4 S)

(64)
where:
0 = engineering stress
o]
€pr = psuedo strain
t
d -
1 €
€0 = — E (t - 7)—dT (65)
r ER dr
(o}
¢9 = maximum value of |¢ 0| yp to the current time
S = damage parameter
t 1/q
q
S - [ o] e (66)
o
::::', ER = arbitrarily selected reference modulus,
T
e E(t) = linear viscoelastic relaxation modulus,
o
. = Eg + Ep t-0 =Ep (Ep + t7™M),
tQ E; = Eg/E2, (67)
|..N
-
Vel
= .
l! y and
-
;f q = positive constant.
] The functional form of f in equation (64) depends on the material considered.
o
f-: Studies on solid propellant to date indicate it may be taken as follows for some
t:: solid propellants:
N
v
- £: Yy Yp Y3 Prs sien (¢ (68)
4
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in which

1 if €°>0
sign (69) = { 0 if €9 =0

-1 if €0 <0

0
.......

and 915 is used to normalize function Y3 to unity, at a reference point. The

Y;'s are the following functions of damage and pseudo

1+ AqS + 8552 + A3S3
Yq = ¥4 (8) =
Ay shs

Y> = A> SO.63-SX (eg) (O’u63°MX-Lx) IEO

strain:

for S < §,

for S > 8,

™

Y3 = Co + Cyx + ng2 + C3x3 + Cz;x‘J +Csx5

where:

in which x, is the only root of the equation:

max(Sp) = Y3 (xp)

(69)

(70)

(71)

(72)

(73)

with max (S,.) representing the maximum value of S, up to the current time, and:
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(7%)

)

o SX |tm
i
P1s
N
N while A s a factor that accounts for relatively small higher order effects

possibly due to rehealing and particle interaction.

The constants entering the definitions of Y4, Y5, and Y3 depend on the mate-
rial. For UTP-19,360B they are:

So - ,42
R Sy = 0.637
My = -0.387 (73)
Lx = 0.85
and the factor A is given by:
- (76)
A= Ky Cop Cx

The resulting form of equation (64) for UTP-19,360B is thus:

Ly

€0 sign (¢9) (77)

06 = P15 Ag Yq Y3

Clearly, if L, = 1, equation (77) may be written as:

t de
0= Af ]E(t-‘r)——dr (78)
dr
o

in which Ap = Ap(€©®,e®,, S) plays the role of a softening function, remininscent
of the Mullins-Tobin approach.
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4.4.3 Stress Predictions
The current version of the nonlinear model developed by K. Schapery may be
used to predict the response of solid propellants with a rather remarkable
degree of accuracy, as may be seen in Figures 102 to 109, which are sample cases
of the isothermal tests considered in the program. The first two plots (Fig-
ures 102 and 103) correspond to the highest and lowest constant rate tests (Test
No. 1) available in the data for which the difference between theory and test is
greatest. Figure 104 shows the saw-tooth test (Test No. 5) at constant rate
with increasing strain peaks. Figures 105 and 106 pertain to the dual-rate
tests (Test No. 3). Results for the short- and long-duration similitude tests

(Test No. 12) are given in Figures 107 and 108, and Figure 109 includes a
three-step relaxation test.

Finally, it is important to mention that a complete characterization cf
UTP-19,360B was also carried out using Ly = 1 (the value leading to equation
(78)), and the ensuing response predictions were very close to those obtained

with Ly = 0.85; only the iow-to-high dual-rate test of Figure 8 was predicted
somewhat better with L, = 0.85.

4.4,4 Material Ch: acterization

In evaluating the material cor “tants and property functions, the following
observations may be valuable:

e Y,, its variation being brought about by vacuole formation, appears to

be a decreasing and concave down function of damage, as presented in

the following figure:

(Text continued or pr, 181
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,, e The function 5., which provides a certain measure of damage, increases
)_‘c'

o as a direct result of a reduction in the number of polymer chains
supporting the internal stresses; the larger the S, the higher the
!

stress on each chain.

g,.: e For UTP-19,360B, the state of damage is essentially constant during
e

}_: unloading and reloading, and the shape of the so-called backbone curve
pro resembles the stress-strain curve for rubber, which is of the form:
(WS

N

Fg

*-j:?- : v o 0.85

e 3] € (79)
BOA) )

h -:: as shown in the sketch below, in which the steepness increased with
.j-r_::: increasing S...

:f "

’A‘

il o

LS

) S

~ ::. (1) Loading portion

> = / @ {2} Unloading and reloading portion

N {backbone curve)

T d 31459
:_-.:.

N

® The selection of L, can be made by plotting unloading data in the

X ~ form suggested in the following diagram:

\ :-3 Ly = 0.85

y Y L,>0.

3::': x>0.85 Unloading from point

O on virgin curve

. N

__ L4 _a‘_L ~— e

T {er) ¥

‘.-\ L~ /A\— Lx<0.85

ChaN €

- 31460
Noting that the quantity

o

;.:-::_ o

o (€0)Lx

-
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resembles a secant modulus and that, for most tests of UTP-19,360B Ly
=z 0.85 produced a finite limiting value as €2 approached zero, it is

suggested that Ly be found in this fashion for other propellants.
® For constant-rate tests, one has:

and thus, from equation (72):

PO

Also

Sp = max (S,)

from which

Equation (77) then reduces to:

(80)

SR kA

o= 1.861 Y, g0.637 (58)0.u63

with Yy = Yy (S) given by equation (69).

For very small damage:

Y1 (s) = 1

CLTEER R A S K VKRS AL
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3o that equation (79) becomes:

o =~1.861 S0.637 (eg)o-‘"’ﬁ (81)

in which the stress increases with damage, probably because of molecular

chain stiffening due to an increase in stress per chain.

With the foregoing observations in mind, determination of the material
~roperties can be accomplished as follows:

P

(2)

(3)

(4)

(5)

(6)

(1)

The exponent, n, appearing in the relaxation function, is obtained
from relaxation-modulus data.

The normalized coefficient, Er' entering the relaxation modulus, is
determined to make unloading curve 2 in the figure above pass through
the origin.

The exponent, q {present in the definition of the damage parameter),
is evaluated using equation (80) and two constant-rate tests at small
values of damage.

The function Y, is obtained by curve-fitting equation (79) to
constant-rate tests over all strains out to failure.

Experience to date indicates that the function Y, is independent of S
and €;, and therefore equation (73) may be used instead of the more
general form of equation (80).

The backbone curve Y3 is determined using unloading and reloading data
like those available in a cyclic test whose first peak strain is the
largest.

Finally the correction factor, A, can be ascertained from a relaxation
test at a large strain level.

4.4,5 Multiaxial Generalization

A micromechanics model has been developed which predicts the form of

equation (73), but its use was not pursued on this program.
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4,5 M. GURTIN'S THEORIES FOR NONLINEAR VISCOELASTIC MATERIALS

fﬁ Four essentially different approaches have been followed by M. Gur'‘n

:3: in trying to predict the response of solid propellants that exhibit damage.
| The stress-softening theory appears to be the most accurate of the four laws

’E& as will be pointed out.

s 4.5.1 Original Model

The one-dimensional stress-strain law for materials undergoing internal
damage was based on the hypothesis that the state of damage at any time is

o

7

Lrd

completely characterized by the maximum strain, ep, that the material has
experienced:

.

€p (t) = max e(s)

(82)
0<s<t
The stress, 0, is given by a constitu.ive equation of the form:
o (t) = g[e(t), en(t)] (83)

and it depends only on the current values of strain and damage. Such an
equation 1s, of course, rate-independent.

In this theory, if the maximum strain occurs at the present time, then

[

" eq (t) = €(t), (84)
o

Wiy

- and equation (82) reduces to:

0= Gley) = glem, €n) (85)
.
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The stress-strain curve

AN
R N

(86)

o~

0 = G(ep)

v 4n '_‘.)_

is called the virgin curve and is traced out in an experiment with monotonically

')J“c'-'-

increasing strain.

..

i Using the virgin curve, equation (83) may be rewritten in the form:

(87

»

. o= F(§,€eq) Glep)

PPN

with:

'{I

”~r
(1]

- (88)

SAAFUNIUNE
B

Jop
.,
-

the relative strain, and:

.‘l
NN Y

g( €p, €m)
F(E,em) = ____:E___EL (89)
G(ep)

The function F(£, € m) is called the damage curve at the damage level €mo and 1is
such that:

T

l‘-’.l'

(90)

F(1, Em) =1

- .v‘ .u. _a‘ Al .-.

In some situations of interest F(£, em) is independent of €ms

S

¥ PN 4 )_-'4 o

F(E,eq) = FCE) (o1

-
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When this is so, F(f{) is referred to as the master damage curve, and equation
(87) reduces to

o= F(E)G(ep) (g2)

As pointed out previously, this is a rate-dependent theory, and as such, cannot
be used for loading rates that differ much from that used to determine the

damage function. This situation was remedied by changing the stress-strain law
to the one described next.

4.5.2 Nonlinear Model Based on Stress Softening

To develop a simple theory of stress softening which allows for rate
effects and which returns to Mullin's original ideas of using the past stress
maximum as the damage parameter, two fundamental ingredients are considered.
The first is the virgin stress, S, which represents the stress the material
would experience in the absence of softening. This stress is assumed governed
by a constitutive equation of the typ: encountered in linear viscoelasticity.
The second ingredient is a damage function, F, which gives the true stress, o,
when the virgin s'ress, S, and its past maximum, Sp, are known.

The one-dimensional form of the constitutive law for a classical linear
viscoelastic material is given by:

t
o (t) = fc(t-r)é(r) dr

—00

(93)

in which og(t) is the stress; €(t), the strain; and G(t), the relaxation
function. It is further assumed that €(t) = 0, prior to t = 0.
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The generalization of equation (93) is begun by defining the quantity:

t

' . (94)
S(t) = “/(}(t - 1) (1) dr

-7

which is called the virgin stress and which represents the stress that would be
present in the absence of softening. It 1s assumed that the extent of softening
is governed by a constitutive equation giving the true stress, o(t), when S(t)

and its past maximum are known:

Sp(t) = max S (1)

(95)
071 <3t

Without loss of generality, this constitutive equation is written in the form:

S
Sm

and it is assumed that the damage function, F, satisfies the following
conditions:

F(1, Sp) = 1
(s Sn) (97)
F(x, Sp)<x for x<1

These restrictions imply that:

(98)
o(t) < 8(t),
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also that:

om (t) = Sm (t), (99)

and, that the following conditions are equivalent:

i) o(t) = S(t)
i1) S(t) = Sp(t) (100)
1i1) o(t) = op (%)

where o, is the past stress maximum, defined aralogically to S;. The inequality
equation (98) asserts that the material actually softens, while equation (99)
indicates that this softening occurs when and only when S{t)<S_(t) (or
equivalently o(t) <op(t). The results of equation (98) and (99) show that

one may equally well use the true stress, o(t), as the damage parameter.
Equation (97) and the fact that _ . first relation of equation (100) implies
the third are direct consequences of the hypotheses laid down in equation (101).

To verify equation (98), note that if the maximum of S on the interval o0<T<t,

occurs at 7 = §, then:

Sp(t) = S(§) (101)
Thus using equation (100) in (95), and recalling that equation (96):

o(¥) = S(¢) F(1, Sp) = S(§) (102)

which, by virtue of (100) and the definition of S;, implies that:

a(E) = S(E) = Sp (£)>=S (M>a(N); 0« Nt (107
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proving equations (97) and (98) and the first two equations of equation (100).

To establish the third equation (100), note that if:

Sm(t) = S(t)

which implies that:

Sp(t) = o(t)

because of equation (101); then, since:

Sp =0p

one would have that:

om (t) = O(t).

Conversely, if

o(t) = og(t),

then:

S(t)>0(t) = op(t) = Sp(t)

so that:

S(t) = S5y(t).
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Returning to the constitutive equation (95), it is interesting to consider
the special case in which the damage function depends only on S/S:

F(_s_ ’ Sm) gp(s_.); (105)
Sm Sp

which is a master damage curve of the type considered in the rate-independent model
discussed previously.

When the virgin stress obeys an elastic stress-strain relation: -

(106) .
S = E¢ K
then:
(107) ]
i - EEm -
in which €y 18 the past strain-maximum, and equation (95) yields:
¢ (108) X
so that, defining: :
€ (109) -
Fe (——, em)sF(i Eem)
n €n J
N
leads to the starting assumption of Gurtin and Francis20:
0= F'(_f_, Gm) Eep (110)
€m

presented earlier as the rate-independent model.
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Although implicit in equation (95) is the assumption that the functional
form of F would be the same for unloading conditions as for reloading, it i
was found experimentally that a different damage function is needed for each
of these processes. Actually, there is more than one way of obtaining the
same damage function. For TP-H1011, for instance, the following procedure

was employed.

Considering the strain history shown in Figure 110, on the loading portion
w2 have:
t
S(t) = é/c(f) 47 for t< T 11

(o]

hence, S(t) increases monotonically and, by equation (98):

(112)
Sm(t) = S(t) = o(t)
and, upon unloading, the past maximum of S is the true stress:
(113)
om = o(T), TS t< 2T
|
€ i
I
¢ | &
| -t
1

Figure 110, Strain History Used to Characterize the Damage Function
30973
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Further, by equation (93):

[
VP >

P! T

t
S(t)=|é|{/6(t-r) ar - fG(t-T) d7= (114)
¢

T

o)

or, equivalently:

(115)

NENIAN

S(T +t) = G(t) - o(t)

with:

; t+ T ' F
2 G(t)EIHJ G (1)dr (16)
+

LI A

-‘./ s

. Letting 04(t) and 0,(t) denote the true stress during loading and unloading,
‘ respectively, with t in 05(t) me~sured from the time T at which unloading
begins, equations (95) and (110) yield the simple formula:

n a,(t) G(t) - oy(t)
A = F| ——————, 0p (117)

i Om Om
A

»
D)

-

-
. 1
L}

Thus, summarizing, the stress-softening approach to damage 1is described through
the following constitutive equation:

a o & 9 ¢
LR I RS

iy -\

s
o(t) = Sp F(—, sm) (118)
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whiere
t

de
S(t) = jG(t-T)—(T) dr

dr

o o
53
':] and in which the damage function, F, may be determined from sawtooth tests with
) increasing peak strains and with sufficiently long rest periods between cycles.
~ For conditions of reloading, F is given by:
N
S
A (119)
.: (4] 2 01 (t)
Py . —_— ’ Om

. m m

)
-

I
s F s ,

while for unloading the following form is employed:

.,
.
[ AR

g

N o, _|alt) —oy(t)
&N —_—= » O (120)
~ Om

N Om
oy ’

N Typical curves for unloading and reloading damage functions of TP-H1011 are
* included as Figures 111 and 112, respectively.

I3

l{.
o Finally, we point out that the use of this approach to predict the response
- of TP-H1011 yielded results that were far more accurate than those obtained
i with any of the other theories in their original form.

a - 4.5.3 Nonlinear Models Based on Maximum Strain

- A series of constitutive relations based on the past maximum strain have
i: been proposed by M. Gurtin. The precursor of these relations took the form:
i

t

:"f de (121)
< o(t) = G(t = 7r) — (1) dr
- dr
>
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Figure 111, Damage Function for Unloading (TP-H1011)
28896

where G represents the relaxation modulus, and the function e was expressed as

a product of the reduced damage function, F, and the virgin-response function,
gy in the following way:

e = F(i , em) g (e (122) 1
€m
with:
F(1,6p) = 1 (123)
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€n = max €(7) (124)
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o(t) = j G(t - 7)
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and, by taking

ge) = > ek

(126)

(127)

the best values for the ag's could be determined using least squares and the

data of all constant-rate tests.

and, such that:

e(t)=[J(t-")

Thus, taking the reduced damage function, F, in the form:

F (x, y) = Fq (x) Fo (x,y)

Cd
o
Cd
o

0
Xl
*

P Y
LIPS PO S T
.

To characterize the reduced damage function, F, involved the determination
of a creep function, J, solution o:-

f G (t-17)

(128)

(129)

(130)
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(131)

P - Q-1
Fo (x,y) = 1+ Z bpYP[X-XQ* Z Cq(q- Q)].(132)

p =1 qQ -2

. and equating equations (114) and (118), the coefficients entering F were to be

determined using least squares and all the saw-tooth data with increasing strain
peaks.

When this constitutive law was applied to UTP~19,360B data, it was deemed
necessary to change the form of the function e, because of the large errors
observed in the predicted response.

The last of a sequence of modifications yielded the following stress-strain
law:

. d
o(t) = f G(t - 7) [ K(em,em_. F(_e_, ‘m) €m ldr
dr €m

o (133)

where, as before, G was the relaxation modulus, and:

F (1,€m) = 1 (134)
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with:

€m = max €(7) (135)
o7t

In the present case, the virgin response was given by:

t

. de€p
a(t) = JG(t— 1) K (€, €p) — dr (136)
dr
o

while, the damage response, for which e, remains constant, took the form:

t (137)
oF

o(t) = K (e, 0) f G(t - 7) — (x,y) d7
») 9x
o

in whieh

K(€,€) = 1 + Aq (e -€,) + Ay (€ - €02 + Az (€ - €;)3 + (138

+ E(B1€ +Ba€2 + B363)

F(x,y) = a(x) [1 + (Dg y + D7 ¥2) {x - x3 +Dg (x2 - x3)} ] (139)

4
a(x)= x° + z Dy (xT - x°) (140)

m=1
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M with:

k) X Eelfm

\ (141)

and

i (142)
AR

A set of stress predictions obtained for UTP-19,360B, with the resulting

. 1 g version of the theory, is included in Figures 113 through 119. Figure 113 is

,1: for the high-to~low dual rate test, Figures 114 through 116 are segments of the
N long-duration similitude test, and Figures 117 through 119 are segments of the

- three step relaxation test.

»

A Since the dependence of the functiom K on the strain rate was felt to be
o artificial, the treatment of damage was revised in the manner explained next.

§ 4.5.4 Current Model

The latest version of M. Gurtin's nonlinear stress-strain law is based on
a strain-dependent relaxation function and has the form:

»

.
.
.

t (143)
o(t) = J- G‘ e(1), 7 I;(t - T) ar

. t‘*
1"{.:' )

s

(o]

KRR

where

e e, e

v l.‘ n: 4 ‘.
LAY

»
o |

G(e, t) = Gp (t) + G (€, t) : (144)
(145)
relaxation modulus (146)

PAEEA
[
i

o 4 .
\‘\'\l--“ ]

POSIELXXAL (P

correction modulus, defined as:

«Q
Q
n
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G (6, 8) = D> An (€) (o)
n=1
P
. p
An (€) = z Anp €
p=1
For this material, the virgin curve (¢ = €p = €) 1is:
0=0p + 0 (147

with 0., the linear viscoelastic stress

t
) . 148
op(t) = _I Gr(7) € (t - 7) d7 (The
o)
and the correctica stress, 0oy 8iven by:
t
0. (t) = G le(r), 7| €(t - 7)dT
¢ j o572 7] (149)
°

Hence, to characterize the virgin response, only constant rate tests
need be employed. In this instance, 0and 0, are known, so that form equation

(131), 0, may be computed, and equated to equation (133) using the fact that
€ is a constant; i.e.:
t

0(t) = 0p (t) = 0o (t) = -[. Gle )y, x] a\

(1)
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which, upon recalling equations (134) and (135) becomes:

N
0(t) ~0p (8) = D> ¥y (1)

n=1

where:

P t
. -A/T
Un () = D Appe jepm e | ax
p=1 0

Furthermore, since for a constant-rate test
e(\) = €A
it follows that:

t

P
Al p =M1,
‘l’n (t) = z Anpe J A e dA
p=1

o

and after integrating by parts:

(151)

(152)

(153)

(154)

(155)

-------




with

fo (X) =X

1 -e (156)

fp (%)

"

-xR e-Xx, Pfo_, (x) 3 p=1, ...P

Clearly, equations (132) and (135) to (137) may be used to determine the

coefficients an appearing in the definition of the correction modulus. The pro-
cedure suggested by M. Gurtin to accomplish this is as follows:

1.

Take N tests with constant rates 51, éz, «ve €y and set:

l...

11 = ; 1 = 1, ey N (157)
i

e

Select the degree, P, of the series expansion of the correction modu-
lus, as it appears in equation (130).
Use the €, test and the approximation:

. (158)
ge (t) =¥y (€q, t)
to find the ajp. |
Use the ¢, test and the approximation
. . (159)
oo (t) =¥y (e, t) = (€9, t)
Use the é3 test and the approximation
(160)

0o(t) =Wy (€3, t) =¥ (£3, £) = W3 (ég, t)

to find the a3p, and s0 on for the ayper+anp

209




6. Iterate this procedure if necessary; that is, define

N
Ve, t) = }: Uy (€, t) (161)
n=1

so that ¥ is known. For each ramp test, define

C=OC-E (162)

and repeat the above procedure using Ec to find constants anp* The new -

values of the anp are

(163)

(anp)new = app + 5;;

7. Repeat the process if nec -:ary.

It is important to point out here that numerical difficulties may be
encountered in applying this technique to characterizing the virgin response of
s0lid propellants. In fact, some convergence problems were faced in connection
with the UTP-19,360B data. Moreover, characterization of the damaged response
calls for a large number of cyclic tests over a wide range of rates. This
increases the convergence difficulties. The model was employed with the
constant-rate tests only for this reason. Figures 120 to 123 show the results
of the stress predictions obtained with the current version of the model. The

first two plots correspond, respectively, to the lowest and highest rates
available at ambient temperature.

So far in the program, none of the models developed by Gurtin have taken
into account the effects of temperature on propellant response. However, the
time~-tamperature superposition principle was tested with the current version of
the theory, The results appear in Figures 122 and 123 for the thermal tests at

123 and 40 F, respectively. The use of the superposition principle breaks down at
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a strain of about 39%. This was apparently due to the ambient temperature data
hase being limited to a low strain level. Also, 1t misht be necessary to allow

the relaxation fimetion (G.) to depend on the glass trans tion temperature (Tg)

Go = G, (e, Tg, t)
4.6 RUSSIAN APPROACH TO PHYSICALLY NONLINEAR VISCOELASTIC SOLIDS

The Russians have explored two approaches for characterizing damage effects
in solid propellants.7v 8 They are a general functiona: approach and a kinetic
equation of evolution for damage. Both approaches are based on intemalvariable

concepts, and either approach appears general enough tc alsc incorporate cumula-

tive damage and propellant response under multiaxial stress states. However,
the general functional approach may be of little practical engineering value
because a very extensive testing program may be required to evaluate material
parameters. This approach requires introduction of damage measures which should
reflect microstructural damage mechanisms, and a damage furctional which charac- y
terizes the accumulation of damage or defects. The damage functional is then
expanded into a series of multiple integrals in an analcgous fashion to that
followed by Green and Rivlin for nonlinear materials with fading memory. Herein
lies the difficulty. Even assuming isotropy, four to six different tyvres of
multi-axial tests are required to evaluate the required material property func-
tions for a first-order theory. Although the approach has theoretical merit and
may even have some practical application in the future, its m'rsuit was aban-

doned in favor of the kinetic approach.

The essential feature of the kinetic approach is tc introduce the degree of
" damage into the constitutive equations as a reduced-time parameter in the same
. way that temperature is introduced as a reduced-time parameter for the thermo-
rheologically simple materials in linear thermoviscoelasticitv. Damage is then
defined In terms of some strength parameter of the material, and the degree of

damage is characterized through an equation for damags, as explained subsequently.

4,6.1 Original Model

The one-dimensional constitutive equation, taken from the Russian litera-
ture by W. L. Hufferd as a means of predicting the response of physically
nonlinear viscoelastic materials, may be expressed by:
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t
de (164)
o(t) = E (t' -7') —(7) dr
ar
o
where
0 = stress
€ = strain due to mechanically applied stress
E(t) = relaxation modulus -
E(t) = Ee + Ezt-n .
and
t
f de (165)
' - | T
an [n (£)]

represents the davige-reduced time, which is arrived at in the manner described

next.

First, a normalized damage function w = w (t) is introduced through the
following kinetic equation of evolution
dw
20ty = h (@) (L) (166)
dt .
in which it is further assumed that:
t
(167)
£(t) = [ Fit = 7) 6|og(n)]ar
o
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cogether with the conditions:

1]
o

(168)

:(\_ (J(O)
l. w(t®) =

]
Y

Xy indicating that no damage exists at the initial state, and that failure occurs
g at time t¥.

o Next, equation (166) is integrated with w(o) = 0, leading to

w t
dw (169)
J _— = [ £f(7) dr7
h(w)
o o

Setting t = t*, so that (t¥®) = 1, and substituting equation (167) for f(r), it
is obtained that

” .
-:i}\) ;l‘:l‘.
.

"n'-'u 7

B~ - ‘N
‘e

585,

A e NV, TN
»

SN

%5

t £

:.:j_. [ as jv(s - 1) 6 [oo (n)]ar

. o ) (170)

' 1

s
Eh " Y

o)

a
€

o

~
£

~

et If now the function F(t) is assumed to have a power-law representation

)
S0

LA AN
'

i

F(t) = Fo t0 (171)

Pl
O
Ty &

L]

.
a
IR
.

N [ .‘A -
% ‘st AL ()
Ry [ 2 R L N L]
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Equation (170) can be written in the form

t ¢
j dEjFo(E - 1ymo|ag(r) | ar
o] [o]
=1 (172)
:
dw
h(w)

and integrating with respect to §, assuming that the order of integration may

interchanged, one arrives at

R
Fo
- .[ (¢ - )t *m¢ko(7),df
1 +m
o
= 1 (173)
1
dw
h(w)
o

which, for the case where ¢, and ¢ [00] = ¢[oo] are constant, becomes

Fo 8o (05)  (tg) 2*"
= 1
(1 +m) (2 +m 1 (174)
dw
h(w)

where t'o is the time to failure under the constant stress o,. Thus equation

(173), in this case, may be written as:

........

3 - i il e i " i at ¥
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t.
(175)
(> + m) -[- (t* -yt m -_;_31_ =1
(to)2+m

(o}

If the time to failure under a constant stress, o,, has the power-law
representation

.
oo¥ to = constant = § (176)

then equation (175) can be put in the form:

t* .
2+m
1+m , o(2+m) _B
]. (t® - 1) Os dr = e (177)

(o}

so that, motivated by equations (175) and (177), the degree of damage
accumulation may be introduced through the expression

: t
1+ m
n(t) = (2 + m) J— (¢t -7) dr
o (to)2*m (178)
in which
N(o) = 0
(1 =1 (179)

219




-~

The function n(t) can be related to the damage function, w, by

[ = A

O ¢
z|e
Tle

- 1 (180)

N

3

i This means that n represents the relative damage in the load history .
. for the power-law representation of t*, . From equations (176) and (177),

;i equation (178) may be written as:

L)

o

. t

o 2+m (181)
o n(t) = (b -r)P* D g x2em o,
S8 p2+m

. o
A

- and finally, the influence of damage is treated as a reduced variable by

N
n introducing the modified time, t', defined by:

"

“\

, dt

o dt = ———— (182)
3 anlﬂ(t)l

N

i on which equation (165) is based and where the shift function due to damage, an, :
;I depends on the material at hand.

”

ij 4.,6.2 Hufferd's Modification to Il'yushin Theory

One revised version of the Russian stress-strain law takes the form:

N t

:: t -7\ dec )
;: o(t) = J. E a. ;; (7) d7 (183)

- n

| o

" 220
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where a; is a damage~-related shift function, assumed to depend only on the
current state of strain; specifically:

ap = ap [e(t), (b (184)
Clearly, if:
E(t) = Eg + Ept™R (185)
then equation (156) becomes:
t
* -n de
O(t) = Ee f(t) + (an) E2 f (t - T) ;(T) dar (186)
o

which resembles the classical approach of the softening function used as a
stress-correction factor.

Another revised version of the Russian approach consists of retaining most

aspects of the original law, but constant strain-rate data are employed to
express the time to failure as

o
.
to =<"g'> (187)

and equation (178) is changed to

t
(2 +m T+m
N(L) = ——— (¢ - 1) (1) dr (188)
€ty
(o]
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where

~ .
Ias

o (t) = e(t) =

and
n(t* = 1

Thus, evaluation of equation (188) at t = t¥* yields

tl

(189)
j (t,' - r)“mtb(r)d‘r =1

(o)

(2 + m)

*
Eto

which, through a change of variables a'd after some algebraic manipulations, may
be integrated to

(190)
. 2+
(ty) = 3+

The solution for m, as a function of strain rate, is easy to obtain using
equations (187) and (190) (as presented in Figure 124 for UTP-300).

In much the same way, integration of equation (188) for the relative damage
function, 7M(t), leads to

t 3 +m

n(t) (—.) (191)
to
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Hence, using constant strain~-rate data to express the time to failure
does simplify things, but a major assumption would still be needed regarding
the form of the damage shift function as it was in the original set of equations.

In this context, it is important to note that the linear expression

W a1 (192)

and the exponential form

(193)

a_ = e-1

were used for the damage shift function without success. For this reason, the

modified version used to run the stress predictions included in this report,
corresponds to equation (186).

4.6.3 Stress Frediztiors

Figures 125 to 123 show the comparison between the observed response and
that calculated u-.ng the present theory. As may be seen, the predicted
response is quite accurate in al! cases considered, which include constant- and

dual-rate tests as well as a shert-duration similitude loading.

4.6.4 Material Characterization
As may be gathered from equation (186), the simplest version of this theory

requires the knowledge of only two malerial-property functions, to wit:

1. The relaxation modulus, and

2. The damage shift function:

(194)

which is determined in the following ways:

22h
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a. From constant strain-rate tests, to correct the stress response during
loading;

b. From a relaxation test at a large strain level, to account for healing;
and

¢. From a constant strain-rate cycle carried out to a large strain level,
to more adequately reproduce the hysteretic behavior of the propellant.

The damage shift functions corresponding to UTP-19,360B are shown in
Figures 130 to 134. The first three of these plots represent typical curves of
a for low, intermediate and high strain-rate tests, while Figures 133 and 134

give the correction curves for relaxation and unloading, respectively.

4.6.5 Multiaxial Formulation
The previous forms of the constitutive equation were specialized from a

three-dimensional theory. Returning now to this consideration and continuing to
treat the influence of damage as a reduced variable by introducing the modified

time t', where

t
dtre___dt and t'= dt
an'"(t)l ° anln(i),
(195)
The constitutive equations may then be written in the form
t (196
E(t) = I(t)[ Ji(t' - 7', -r)a%(u- s') dr 96)
o)
t 2
+ [ Ja(t' - ¢, T) gy S(7) dr
o)
or
t
S(t) = I(t) / Eq(t' - ¢, T) 2 E(r) dr (197)
0 or

t
+ f Ex(t' - 7', T)a-af E(7) dr
)
230
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Figure 130. Constant-Rate Test (0.001 in./min)
30974
In equations (196) and (197), Jy and Ey are, respectively, the creep and
relaxation functions in bulk and Jo and E, the creep and relaxation functions in
shear.
) Assuming, for example, that a 7 (7) has the exponential representation
8 (’7) e an ( 9 )
n
then .-
)
t' = a-l— (e ot -1
° (199)
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where
o, = —
0~ 1, (59) (200)
If we make the further assumption that the bulk response is time independent and .
choose a power law representative for J(t):
- £
J(t) = Aj+ Bt (201)
equation (196) may be rewritten in the fnrm
tr £(t) = J3(7 ) tr S {t) (202
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t
)
Eii(t) = Ay Sij(t) + B, O/ (t' - 1')6-3—75-”“) dr (203)

To characterize the dependence on the magnitude of the previous loading, and to

simplify the previous representations, stress and strain intensities defined by

(204)
;, - (,/2 . %1/2

E, = (2/3 E: E)Uz
are introduced. Equation (196) may then be written in the form:
Ol(Ee, trE) Eij =f (Se, trS) Sij(t) (205)

t
o [T ae s, w) s or
(o]

and

¢, (trE, Eg) trE = f2(Sg, trS) trS

(206)

t
o [ U 1) £(5,, tS) tS(n) ar
0

Equations (205) and (206) now include coupling between deviatoric and
dilatational behavior as well as time-dependent bulk response. Under certain

conditions, it is possible to write equations (205) and (206) in the alternate
forms’ 6

f)(Sg, trS) Sij = ¢ (Eg, trE) Eij

t
- [ R 6 [Ee, tE) E(D 7 (20m)
0
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E‘
-
and

f2(Se, trS) trS = $(Eg, trE) trE

t

208

- f V(t' -r') ¢(E., trE) trE(T) d7 (208)
o

The functions f1, £2, ¢4, and ¢, may be represented by a “rony exponential
series or the simple power law forms:

. i
fl(Se,trS) =zi Ai s,_f"I (trS) (i=0,1, ..., my

-i :
¢1(Ee,trE) = IB Eeﬁ (rE)' (1=0,1, ....n)
i

f(Se,trS) =X ¢ (tes-1 S' (i=0,1, ..., p)
1

P2ErE) = 3 D v T S Gi-0,1, L, )

where Ai' Bi' C1 and Di are constants and «w, 3, Y and § are integers. Practically

speaking, the first two or three terms should be sufficient to adequately
characterize the damage response.

4.6.5.1 Evaluation of Damage Functions from Experimental Behavior

Characterization procedures for evaluating the damage functions described
in the previous sections are discussed in the following paragraphs.

The simplest experiment is creep in pure shear. In this case there is only
one non-zero component of stress (e.g. 512) and one non-zero component of

strain (E;»). The appropriate measures of stress and strain intensity from
equation (204) are

236 )
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and

(210)
2 E12

Neull

Ee =

Since tr E = tr S = 0, equation (206) is satisfied identically and only the
non~vanishing equations of (208) by means of equation (209) has the form

2 (t) 4 o
Bo —?—2— E12(t) = A (V3 512} S1z2 6(1) (211)

7

where

t
o)1+ [ T(t'-1)ar (212)
0

If we normalize the response to the jth test, it follows that

l + &
B2y _[S12\T+5
) )
E12(V) A\ 5 (213)
2 E (t) ~1+p
o(ylep 12 C (214)
(j\iz2e
I+
S12 g
&% (215)
3 .12"_2
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The value of the ratio (1 +a)/(1 +§ ) can be determined from a cross plot of

log creep strain versus log stress.

Consider next a constant strain rate test conducted under superimposed

hydrostatic pressure. In this case,

Sll = SO - P
S22=533=-P
tr £ ~
Eyy=E., - 2T
11 o 5
522 = E}} = +Avp - ‘/EO :
Se = So

Ee= 2(l4»v)E°
3
)
0
tr S= - o
P+ 3

trE = Ove + (1-20) Eg

Here, Eo is the applied axial strain and S, is the resultant stress;Avp is the
(negative) volume change associated with applied pressure in the absence of
applied deformations. Assuming elastic volumetric response and a constant
strain rate test, Eg = Eqt, it follows that

1
Sé + V)(EO) zAk .1..'2 |4
k \3 S, .
148 p- k By \k '
= (Lev)E, 2|2 (g, 1-2p. P
° k[} ( p)] ( ’ Eo
(216)
14 B- k| !
- (1 +9) E, %Bkl% (1 ¢v)] L] R(t' - 1)
a,_\k 4
" x 1-2V+_P 148 dr
3 g "
q
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The function S, 1s determined experimentally for various strain rates and

pressures. The functions R(t) may be determined from simple relaxation tests.

Equation (216) then represents a system of linear eguations for determining
the coefficients Ay and By.

More generally, it is possible to evaluate the functions fy and ¢¢ in
equation (207) from other tests, assuming time-independent bulk response. If we

let S = tr S and E = tr E, a suitable representation may be taken in the form of
the exponential

11(Se, 8) = A 5& 13 (217)
- koE
6)(E,, E)=BE] 2 (218)
i b _ (219)
= E E =
> = KiEe 1 +7E,

wnere a, B, ..., kos kq and k> are determined experimentally. For example,

assuming linear behavior at sufficiently small strains, then B/A = 2G (i.e.,

twice the instantaneous shear modulus). The functions R(t) and V(t) represent

the creep and relaxation functions in shear.

For a creep test under constant stress So' then equation (207) gives

1 48 k .
39[2 a w)] + Eo(t)l +B kaEo (1) (1-2) . Sol +a eklso/zm) (220)
3

when » =z constant, and for two arbitrary stresses Se and Sl,

1
£, (1) 148 k21 - 29 (Eg(t) - Eg()) /5N %0 505,250 (21,
1
Eé(t) S,
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or

E k 1
1 o(t) 2 1-20 - )
°% 1 TS 7 (1-2v) (Eq(t) - Eglt)) (222

el

=51
= (1 ra )loge(EQ ).Fl(so )
1+ 8 S% 3146

Now, as noted previously, the ratio (1 + a)/(1 + ) may be d: termined from tests
in pure shear. Then, from equation (120), k(1 + 27)/(1 + &) and kq/(1 + ) may
be determined from a log-log plot of E5(t)/E,(t) versus 50/510 for several
values of creep stress and strain. Finally, the function ¢(t) may be evaluated

from equation (221).

The constants k, and 7 should be determined from pressurized tests for vari-
ous effective strain levels, Ee.

4.,6.6 Non-Isothermal Characterization
For the situation of transien ' mperature loadings, e.g., simultaneous
cooling and straining, the uniaxial .- istitutive equation was written
t .
afe(7) - anT (7)] (223)

o(t) = E(t - §") dr
o orT

with

t
- d 5
£- ] AT A TT@IT A Ol el eyl (22

T

The "damage" shift function was determined from uniaxial tests, and A was
determined from uniaxial tests at different temperatures. The possibiliiy of
the requirement of a thermomechanical coupling coefficient is permitted through
the shift function, Ag. 1In practice, Ap and Ap can be determined as a single
coefficlent from simultaneocus cooling and straining tests.

A determination of Ag was not made, since the computer code used to make
predictions was not modified to preform the integration »f equation (223) for
transient temperature loadings.

2un




AN N RCAERAIE SN

a, . v
PRERERESE
Lo

U*.L ISP

R

1]

T At A SN R AT A T LA IO NS
A AL AS GERAAILE NI ON RCALCS

4,7 THE SWANSON NONLINEAR CONSTITUTIVE LW
4.7.1 Original Model

The framework for this theory was established by t.:. . ~v 12to account some
typlcal behavior aspects of high-elongation propeliants - The prineipal
features considered were: (1) the usual viscoelastic 1. ::at:o2 of the response
on the strain rate, (2) the ability of the solid propellzis 1o sustain large

strains, (3) the marked deviation of the solid-propellzr . -.zponse from that

associated with Linear Viscoelasticity, as evidernced W ¢ irge hysteresis
exhibited under cyclie loading of many solid propellants, zven at small strains,
and (L) the dependence of the stress-strain respons: = :.-2rimpssad pressure.
Although it is not essential to have done % t*is .=, thn capability of
bhandling large strains was incorporated into the couns: ~.w.-c e7uations by using

the cauchy-stress tensor (0) as a measure of the stats -7 :"re3s at a point. Its

7

conjugate, the left Cauchy-Green deformation tenscr {(3; wsz 'ized as the measure
of straining. The Cauchy stresses, defined in terms >f [crce per unit deformed
area, are also called "true" stresses. In a principal -oos-dinate system B takes

on the diagonal form:

A8 0 o] (225)
B=| 013 0
ERY

in which the Ay's are simply the extension ratios in tue - -i-2ipal directions.

The remaining aspects of the observed response of - .~ vropeilant were mod-
eled through the use of a softening function as a sti=»: "oJrrection factor. The
major constitutive assumption in this theory relates :.. . -~ . invariants of
the deviatoric stress and deformation tensors throus:> -~ . - ¢

(226)

\]IIov = (f) (g)

2l
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N In equation (224), f is the following viscoelastic function:
o t
aVIIp'

g, f = G(t ~-1) dr (227
N dr
.H-;..

o °

3
b7
. with G being the relaxation modulus in shear, taken in this theory as one third -
{: the tensile relaxation modulus, and

o

;S g = softening function

hes

]

A oaj = 03§ - (0yK/3) 835 = deviatoric stress tensor

ot
‘jf B;j = Byy - (Byx/3)8314 = deviatoric deformation tensor (228)
o . o a2 2 Cx.1/2
i Ila = -[a11°‘22+ 22 @33 * @33 X1 |+ X2 + B23 + 733
8
-:‘.-

\‘\'

o

}3 Second invariant of tensor a= g, B
:.#
. Now, g is a function of deformation and pressure (mean stress) and can be

,ﬁ considered to be primarily a strain-softening function. It 1s defined as that
:ﬁ function of the invariant VIIB’ that will force the viscoelastic Cauchy stress to
Lo

~ coincide with the experimental results; thus, unloading hystersis as well as the
- effects of pressure may be readily incorporated into this theory, simply by -
A
&;f obtaining the corresponding forms of the softening function under such
'(i conditions.
St The softening function corresponding to virgin loading is obtained by

i

o fitting the model to uniaxial tensile tests at constant crosshead speed. Under
I.-
: - these aonditions, the deviatoric stress invariant reduces to
-

L]
bl
"'2
o 242

K2
f'
L5

.3
?ﬁ“ﬂﬁ%ﬁ%#v%ﬂﬁf“Vtﬁﬁﬁﬂﬁff““ff?V?*ﬁ*‘iﬁ““{”:ﬁﬁﬁifﬁﬁccgvﬁVVVN

This separable form has been used previously!1,29 and is motivated by the
fact that the constant strain rate tensile curves are roughly similar.
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V3
where, again 0,, is Cauchy stress.
Assuming incompressibility
(230)
A A2A3 =1
and ncting that
(231)
A2 =23
the deformation invariant becomes
(232)

1 ) 1
VIilg' = — (A - ——)
vim TNy

Taking the rate of change of the invariant as being approximately constant
results in

t (233)
f=V§xj- G (t -7) dr

(o]

so that, from equations (227), (230), and (232) the follcwing is obtained:

t
o1y (234)
.__=-8V§X-[G(t-1)df
V3
(o]
2u3

A |
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_?: from which the softening function, g, may be obtained. The assumption leading

li to equation (232), that the time-rate of change of\[TTET is approximately

l constant, need be guarded against conditions of changing strain rate. For

:ﬁ example, as in dual-rate tests, where viscoelasticity does not predict as fast
:g a response to the rate change as is experimentally observed.

Xy

The modification to linear viscoelasticity necessary to accommodate this

:a behavior is as follows. The response of the function f in :cuation (235) to a '
E: constant time rate of change of the deformation invariant is defined as f,. It ]
If can be expressed as

£ (235) .
~;

° 1-
s where £ = VII g' /ViIg' i
= .
E: The modificacion to the f function i< .one in an incremental manner through

A

- : ' ' (236)

» fmodified = £ +68| 7o - f]VH B'

5

i and the following incremental relationship is used:

.é . - + dfpog (237)

™, — dt

: t + dt t dt

X

: The parameter § governs the response of the f function under changing strain

QE rates. As f >0, the response is analogous to linear viscoelasticity.

b

i: The algorithm developed by Herrman and Peterson30 has been used to implement

EE the calculation of the convolution integral for f. In brief, let the shear

- relaxation modulus be represented by a Prony series as

q

-
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(238)

The let the f function at time t, be given by:

IIge
o7

(239)

dar

tn
-a; (tp = 7)
f( tn) = j ZGie
i

o
A recursion relation can be easily developed to compute f(tn)3°. Let

m

f (tn) = ZE In,1
i 1

(240)

-
=

and
tn

In,i EJ' Gye

o]

-ay(ty - 7) dVII g

or

(2u41)

then

-0 At
In,g = e 155 Ina N

I v — |1 - e

giving for the change in these terms:

(243)
]Gy -ajitn -0y tp
1-e ¢ Ina1,1 + e -1
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_::*- which is directly analogous to linear viscoelasticity. The modification
RO proposed above can then be implemented as
iy
b
\- . - Y
R (AIn,1)modifried = 8In,i + 6[Icn,i - Ip,4|AVIIR’ (244)
RS
ol and the I terms can be incremented according to
AV
N In,i = In-1,i + @In,i)moqified (245)
_.J'_‘.
'."-
\'.'.
‘_“ This has the effect of changing each term of the series so that it approaches )
‘,.A -
) the value it would have been if it was always at the new strain rate. Note
'3 again that (as discussed in Reference 30) varying temperatures can be
SR
::‘ incorporated into the time scale as usual.
P
_-)‘_‘.:
E:::: Unloading tests required a fu “hor refinement of the nodel. For lack of
.;' more detailed information, the paramet r B may be taken as zero for unloading
A -
o states (i.e., states in which \/IIB' is decreasing;. The large amount of hys-
‘ teresis seen in load-unload cycles is tnen modeled in part by the hysteresis
';;::' inherent within linear viscoelasiicity primarily through the g function. This
{."::: is accomplished by giving g a different value when the deformation invariant
Yol
v ' \[IIB' is less than its maximum previously achieved during the loading history.
‘ __:. Ir VHB'max is the current maximum value, the function
Y
s"P\"
X
\_.‘ g = g{y1I B:nax ) \1 - Cy 11 -ﬁl B' /VIIB;n < }\ (2u46) :
a
I~5. -
»"{f provides plasticity-like behavior.
I
-c:fl
The behavior of the g function for unloading and reloading conditions is
X illustrated in Figure 135 (taken from Reference 9).
RO
oY
5 The Swanson appr‘oach9 was used with an only limited degree of success to
S ]
a . predict the stress response of TP-H1011 and UTP-19,3608B under several strain
A histories.
o 2u6
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Figure 135. Effect of Deformation and Pressure on the Strain
Softening Function
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In the case of TP-H1011, the errors in the predictions were believed to be
due to uncertainties in the value of the changing-rate coefficient (3). There
was no data available to determined (3 directly for this propellant.

It was possible to characterize UTP-19,360B in a complete fashion. The

corresponding predictions were not any better than those obtained for TP-H1011.
This led to changing the law as discussed below.

§.7.2 Current Model

Analysis of the stress predictions, carried out for UTP-19,360B with the
original Swanson theory, revealed the importance of several inadequacies and
oversimplifications listed below.

1. The softening function (g) should depend not only on the strain and
pressure but also on the strain rate.

2. The softening function, as defined by equations (227) and (235), should
be different for unloading than for reloading.

3. The softening funection for unloading or for reloading should never
become 2ero for conditions of tensile straining only. A zero value

could occur with the softening function defined by equation (246).

2u7
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4. The healing process observed during relaxation in solid propellants
like UTP-19,360B was not taken into consideration by the original
Swanson theory.

5. The reverse-recovery observed in solid propellants during relaxation or
rest periods that follow an unloading process, only poorly modeled by
classical viscoelasticity, is not considered in the approach by
Swanson.

6. The changing-rate coefficient (B) is more a mathematical device than it
is a material property. If the softening function is made to depend on
the strain rate then 3 need not be used.

7. The use of a softening function as a stress correction factor

eliminates the need of using the Cauchy stress (0) and the nonlinear
measure of stretching (B).

All these observations were incorpcr:.ied into the original stress-strain
law but the general form of the corresponding equations remained the same,
namely

L (247)
211 = Y3 (g) J[ G (sy - sp)oVIIgy dr

fo) oT

valid for one-dimensional loading, with:

(248)
t

J‘ d¢ .
8¢ =87 = ————ATlT(E)\ .

T

representing temperature-reduced time; and where the time-temperature shift
function was taken in the power-law form

- m
-(T“ Ta) (249)
Ap = | ——

2u8
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in which Tgr is the shift reference temperature, T, and m are materjal

parameters, and T is the current temperature.

The modified version of the Swanson theory was most successfully used to

>

“~
;ﬁg predict the response of UTP-19,360B, as explained next.
§ .::}.

s 4,7.3 Stress Predictions

- The degree of accuracy of the predictions made with the current version of
'jf the Swanson approach may be realized by examining Figures 136 through 148. The
g& . first two figures correspond to the lowest and highest constant-rate tests

e available. Figures 138 and 139 present the results for the dual-rate tests
. : while Figure 140 pertains to the saw-tooth test at constant rate and increasing
is peak strains. Figures 141 to 145 show the predictions corresponding to complex
’ﬁ multiple loading, twenty-four hour relaxation, long-duration similitude, three-~
’;' step relaxation, and predamage relaxation. Finally, figures 146 to 148 show the
;, results obtained for comparable constant rate tests at 70 F, 123 F, and 40 F.

\ -

-
?3 They testify to the fact that the time-temperature superimposition prin-

- cipal may be used without sacrificing more accuracy than is already lost in
{

o fitting equation (185) to the very limited time-temperature shift data.

N
i;' 4.7.4 Material Characterization

-3 According to this theory, only the following listed properties are needed
o to characterize a solid propellant completely:

:;

:} 1. The relaxation function, G, as defined:

.*‘. .

E‘ Epe1 (t) (250)

-J. ° G (t) s ——

3: 3

A
4: where E.o1(t) is the linear viscoelastic relaxation modulus.
[
.

- (Text continued on pg. 263)
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and g is evaluated from a relaxation test at an intermediate

strain level.

In addition, for relaxation after partial unloading or during rest periods

starting at t = t,:

1
&r = (254)

Gp (t - to)

ig W
"y
AW

‘, 4

WA The aoftening function, g, defined and obtained an follown:

. a. For loading conditions:

; gL = & (e, €) (251)

\

o

'i{ and it is obtained from a sequence of constant rate tests with

\
wt
;Q at least three different rates that span the range expected in the
8)

. applications.

' b. For unloading conditions:

2 gu = g (f/emax) (252)
{:. ) where €,.. represents the maximum strain previously achieved dur-
s ing the loading history. The g is determined from the unloading
5@ portion of a loading-unloading cycle carried up to an intermediate

“m

i strain level.

;44 c. For relaxation conditions:

:'.d

ljd

..‘:‘ Er = Epr (t - to) (253)
{:‘ in which t, is the time at which the relaxation process begins
o

Also, the stress-correction function for reloading is taken as a linear
function of the relative strain. It is a straight line from the point where

N reloading starts to the point of maximum loading over the past history.
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4.7.5 Three-Dimensional Version of the Model
The (general) constitutive assumption used to relate the deviatoric compo-
nents of the stress and deformation tensors, takes the following form:

4 0‘.‘{': i~
R MRS

P g B
' .|'.-.'. ’ Q“‘If'-(
L] - [ . ] . 2 ‘l

o
e

.

]

o
'1

oYy B'yy
_ . . 255
ViI,, “viigs’ Ly=123 (255)

L. ) U
X

F AN
"r} n . B

L

L 2

together with

|
4'"' 2
2
";‘

24

6
ViIgy = (g) (D) 220) :

whoa

» .‘
e \"‘..fu‘_'-

)

or, equivalently

>

by

o SOy
"

t (257)

(
VIIO' = (g) } Wt -7) dViigr d 7
T

0

'."u" " L

VS
P

IS AP
Q.l
AR

! :j where

0 0;3 = i-J] component of the deviatoric Cauchy stress tensor
Bi’j = i-J component of the deviatoric Left Cauchy-Green deformation tensor
Q\-

i"'.: Ii,;, IIB', = second invariants of the deviatoric stress and deformation tensors

with

' 1
019 = 019 + 5 (011 + %22 + 03300443 4, 3= 1, 2,3 (55

S
‘r. -:.q.' .

def

~[o11 922 4911 933 4 955 933] + (01202 + (913)2 4 (853)2 ) (259)

8

‘N

IIa-

WA

'. ~A. 1
MRS

DR

.

~

.
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- and similarly for Bi'j and IIg'; and in which

def {1 for i = j
_ 6i5 = (260)
e 0 for i # j

also

g = softening function that depends primarily on the strain level, the strain

Lo rate, and the applied pressure.

L and

h a(t) %% E(t)/3 (261)

where E(t) represents the tensile relaxation modulus at a small strain.

o According to the constitutive assumptions (255) and (257), the distortional
behavior of the material is completely characterized through the softening

A function, g, and the relaxation function, G, which may be evaluated from

.:‘: one-dimensional tests, as explained in the previous section. Indeed, the

g stress-strain relations set forth in equation (255) and (257) reduce, as

- they should, to those employed in the one-dimensional version of the model.

To complete the theory, an assumption is still needed about volumetriec
X behavior; and although time-dependent bulk response may be important in some

2 applications, the elastic relation

’n! 265
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: 1 (262)

. *3(‘711+°22+033)=K(|?\1)\2>\3| -1)
f%

~
!
\. may be employed; in which K is the bulk modulus and the A;'s are the stretch

- .
- ratios. }
. ]
S

3 |
< For an incompressible material (and solid propellants are nearly i
" incompressible) 4
. "
E MAg2A3z = (P€3) .
< )
9 30 that equation (262) breaks down, and the stress tensor has to be considered :
! a function of the mean pressure (0yq + 0Oy, + O33)/3, as well as of the deformation K

.
s aa

tensor, leading, eventually, to a stress-strain law of the form given in
equation (255).

I ': ‘.

i)
e

4.7.6 Application of the Model to lw.o-Dimensional Problems

In order to use the stress-strain law presented in the foregoing section,
one must have av.:ilable the deformation tensor at each point of the continuum E
where the stresses are desired. This solution in terms of deformation may be

. arrived at numerically or analytically through finite elements.

The accuracy with which the present constitutive theory may predict the

S .
‘d two-dimensional response of solid propellants may be seen in Figures 149 to 154, ;
; which correspond to constant strain-rate tests of strip-biaxial samples of UTP- l
': 19,360B. The first three figures belong to tests performed at a nominal - y
o crosshead displacement rate of 0.02 in./min at 40 F, 70 F, and 120 F, respec- :

:Q' tively; while Figures 150 to 154 show the results for a crosshead displescement

. -

> rate of 0.2 in./min at the same low, intermediate, and high temperatures of 40, S

. 70, and 120 F. The plotted data refer to the direction of applied loading, which 1
& y
.4'
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1s ailso the direction of maximum principal stress and strain. The geometry of

e the strip-biaxial sample used is as presented in the following sketch:
4

- 2 2a a/b = 1.25/6 = 4.8 (264)

e . GITIIIIIIIIIOIIIIIIIIIIS 622/011 = 4;0 = 0.481

e ——— €e22/e11= . 2 0.025

1.

- The stress- and strain-axiality factors, ¢o and ¢, were taken from Refer-
u

i ence 31, and are valid at the center of the sample for small strains only.

The constitutive relations given in (255) and (257) yield:

t

{ '

' Bjj dVilipr

N 0., = — -r) =Bl dr 265
i3 (g)vﬁ? JG(t ™ 3 (265)
™ (o]

"N

- where

% , 266
e a'IIB' avIIB'aBij ( )

0t =aB;.j at '

with summation implied over repeated indices.

Now, under conditions of plane stress of an incompressible material, and

2
a%s”’

g
"

along the principal directions, one has

)

1)
-

RALANA )

273
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(20 95) 0 0

' 1
[aiJ] = — 0 (20 5 - a1) 0 (267)
3 0 0 - (09 +0))
2 .2
' 1 (2 )\1 -)\2 -)\g 2 02 p) 0
[Bij] = — 0 (2A2 - X37= A3 2 0 > 5 (268)
3 0 (2)\3 - A4 —)\2)
' ] ' 1 ! H [4 6
IIg' = -Byq By - Bqq B3z - Bpp B33 (269)

To evaluate (266), we first write it in unabridged notation, noting that in this

case, if 1+#j then Bij = 0; thus:

aVIIB' aﬁIBv aB'H aVIiip aBI22 oY IIp: BB§3

= - + - + - (270)
Jt dB11 ot 3 Bpp Dt 0B33 dt
and using (269):
ASS T 1 : 3B} ' r 3By
- (-B Ba3) —33 4+ (-Baz ~ Bqq) .
3t 2Viig' 22 ™ F337 5% LY ,
271)
833’3 ]
4 14
+ (=B - Bop) ———
" 22 3t
where, from (268) one has, for instance, that
il :.2_<2 LI v R d*s) (272)
ot 3 dt dt dt

and similarly for the derivatives of B>, and B33.
274
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‘n vhe previous derivations, the stretch ratios are computed as
ANpo= ot e €4 (0) (273) {
Moo= 1 +€(t) 21 +0, €1 (t)

>
s
i

17(AqA5)

in which ¢4(t) is the strain history imposed on the sample along coordinate 1,

and the last expression of (273) follows from the incompressibility condition,
equation (2€3).

Hence, the first component-equation of the constitutive relation (265)

yields:

t
’ .‘f'
' 1 B11 avl B'
0112 — (20 1 - 05) = (g) =— G(t - 1) dr
1 3 1 2 Sﬁ-I—B' f ar
o
or, in view of (2€&U)
, t
(2 - ¢p) (2) By ot ) d¥1lg.
—_ —_— - T7) ——
R ¢y I
o
and finally:
t (274)
o 2 B0 6 (6 - 2By,
- -7
(2 - ¢0) & VIiIig: 8T
o

Using equations (264), (268), and (271) to (274), we obtained the response of
the biaxial sample in the direction of the applied loaZing. The plots included

in this report, show the engineering stress:
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. [ 1 :01/>\1 (275)

rather than the Cauchy stress, ¢.

. 4,7.7 Application to Transient Temperature Loadings

The model in the previous section has been modified to the form

(276)
t 3
_.(. © - |) o II ' d.r
g2 \jﬁo, = Ap 9(8,8) . Ener - &) 37 Vil
"é where
Y

t (277)

and the thermomechanical coupling coefficient, Ag, has been introduced for the
S transient straining and cooling loading history. The deformation gradient, F,

AN and the Green strain tensor, B, incorporate the free thermal expansion, «AT.

Figure 155 shows that Ap, as determined from uniaxial straining ana cooling
~;ﬂ tests, is nearly constant (Ap = 1.27) for this approach. Figures 156 through

Lo 1.4

et 0 10 20 30 40 50 60 70 80
4 Temperature, F

' Figure 155, Swanson's Linear Viscoelastic Theory
£X] 30952
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1¥7 show the agreement with uniaxial and biaxial straining and cooling tests.

The biaxial ramp-relaxation-ramp test was particularly well predicted by this
approach; much better than by any other approach. The large disparity shown in
Figure 160, in contrast to the good agreement in Figure 159, lends credence to

our previous contention in section 4.2.3 that this is simply a bad test result.
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5.0 SUBSCALE MOTOR ANALYSES AND STRESS PREDICTIONS

5.1 LINEAR ELASTIC ANALYSES

Linear elastic stress analyses, following commonly accepted handbook and
industry practices, were performed to provide a basis for comparison with
the nonlinear constitutive theory predictions and to illustrate the inadequacy

of elasticity analyses for thermal cycling of solid rocket motors.
The llnear elastic analyses consisted of:

1. Handbook Calculations/Design Curves

-

2. TEXGAP 2D Finite Element Analyses.

5.1.1 Handbook Calculations

The solid propellant structural integrity handbooks3u'35 suggest the
use of the equations

2 (278)
o (b) = (A% - 1) B, E, ag AT
or
5
1.5 - 3‘5‘5
_".Er (b) = Py (279)
p 5p ;’5 + 0.9 F?E
A1 “e

for the midplane case/grain interfacial pressure (i.e., radial bond stress),
where:

A = 2b/2a = grain OD/grain ID
Ep = propellant modulus

Fe = case modulus
R = @p - 2/3 (1 + ve) ac
%p = propellant coefficlient of linear thermal expansion
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a, = case coefficient of linear thermal expansion
h = case thickness

dc = ag AT

bp = %-rapAT = ap {(TO-T°)+ AT}

T, = stress free temperature

T, = motor cure temperature

P. = finite length correctlion factor.

Equations (278) and (279) are derived from the Lame equations for a composite
cylinder assuming a thin elastic casing and an incompressible inner core. 1In
equation (278), AT is referenced to tre stress-free temperature, and in equation
(279), AT is referenced to the motor cure temperature. For the situation where
bEp/hEc<<1, equation (279) reduces to equation (278). Hence, equation (278)

was used to make elasticity stress predictions for the subscale motors.

Figures 161 and 162 compare elastic stress predictions using equation
(278) with measured radial stresses for the 0.75-in. subscale motor with
UTP-19,360B-400/1777 propellant. In ..i:se calculations:

>
]

= 5.37

5.3 x 107 in./in./F
= 6 x 1072 in./in./F
151.4 psi

= 0.83

¥o = 0.3

R
o
"

R
(2]
1]

o
<
[ "

Figure 161 shows stresses calculated from the measured strain-free tempera-
ture of 166.5 F, whereas Figure 162 is based on the measured stress-free tempera-
ture of 141 F. Not all the points are connected in these figures.

As expected, the linear elastic predictions underpredict stresses during
transient conditions, but compare favorably with the longer term equilibrium
behavior when the measured stress-free temperature is used in the ealculations.
The experimental results obtained here, as suggested in Reference 3, indicate
that it is incorrect to assume stress and strain-free temperatures as identlcal,
even at the completion of cure. Since the stiffness of the motor case is so
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Eg © . than that of the propellant, the state of deformation in a propel-
“i “ . =+ .. largely independent of the propellant modulus. Thus, the strain-
&5 1o tomperature is determined by the original geometry. In contrast, stresses
@i arr proportional to the propellant modulus, and there is no a priori Jjustifica-
f;: tivt, for aosuming that the stress-free temperature and strain-free temperature
‘:: are the same. The difference is signifiecant, and care should be exercised in

Y
» "-

making mctor stress and strain predictions.

-

?. t should be noted that the stress and strain-free temperatures can
fi‘ generally only be defined for one components of stress or strain. It is

probably not possible to make all component of stress or strain vanish at the

; . same temperature. For example, the normal procedure for determining the strain-
" free temperature in a circular port motor for example, is to make bore measure-
={T ments at the motor midplane at several temperatures near, below, and possibly
ﬁj above the cure temperature, and then extrapolating to the temperature where the
. bore strain €, goes to zero. One generally finds that the entire mandrel
:ﬁ dimensions are not obtained at the so-called strain-free temperature. The
{t reasons for this are severalfold. For one thing, propellants are not truly
,: incompressibie even though Poisson's ratio is very nearly equal to one-half.
0 Second, it is not always possible to eliminate or compensate for slump. Also,
;ﬁ the propellant is cured or polymerized under varying degrees of constraint,
:ﬂ: depending upon the location within the motor.
<
With regard to the stress-free temperature, it is normally obtained in a
.;- manner similar to that for the strain-free temperature determination only using
‘§: stress transducer data for the radial bond stress at the midplane of the motor.
) Again only one component of stress is used, and the reasons for all components
o of stress not vanishing are the same as those given in the previous paragraph
A
ﬁ: with regar-d to strain.
=
1 5.1.2 TEXGAP Finite Element Analyses
¢; Linear elastic axisymmetric finite element analyses using TEXGAP 2D were also <
Q performed on the subscale motors subjected to thermal testing. The geometry '
W) '
\“ analyzed is shown in Figure 163, and the undeformed grid is shown in Figure 164,
U
-.
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4.51-in

[

/ /— Steel case

24-in. Propellant

/

4.06-in.

Figure 163. Circular Port Motor Geometry
18524

The analyses considered a thermal load of 100 F and used the following material
properties:

Ypropellant = 0499
5 x 1072 in./in..%

@propellant
Epropellant = 151.4 psi
Veage = 0-31

Ugase = 6 x 1072 in./in./F
3 x 107 psi

Ecase

The radial component of the calculated mid plane bond stress is aiso shown in

Figures 161 and 162. As expected, these stresses agree exactly with the
handbook calculations.

5.2 APPROXIMATE VISCOELASTIC ANALYSES

-

Thermal stress analyses of solid propellant rocket motors are routinely con-
ducted using an approximate (quasi-elastic) viscoelastic analysis. The pro-
cedure involves the use of an equivalent propellant modulus which approximates
the true time and temperature behavior in conjunction with an elastic stress
analysis. The immediate objectives of the motor analyses are to determ.ne the
sophistication and the extent of realiam in the modulus approximation.
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The effective modulus is determined assuming thermorheologically simple mate-
rial (TSM) behavior or thermorheologically complex material (TCM; behavior. The

PR

decision to perform a TSM or TCM analysis is based on compar:isons of predicted
linear thermoviscoelastic stress response with the measured stress response
during simultaneous straining and cooling tests of laboratory specimens con-

AAoa

ducted at strain rates, strain levels, and over temperature ranges representa-
tive of the anticipated motor environment. If the linear predictlons agree with
the measured stresses, then a TSM analysis is conducted; if trey do nni azgree,

S .
JNY

then a thermochemical coupling coefficient is introduced auna & TOM anzlyn s

PR

conducted.

The stress, oij (X, T), at any point x (x = x,y,z, or v, £, »oin e
propellant grain at time t are calculated by the quasi-elastic mathiod un oo tie
formula o

o () % BTalt) (250"
i3 (Xk = Ky (X - 280"
W ’ EFEM FEM ATFEM

while the strains, €4 (xy,t) are calculated from

T ATt (281)
2381

€:: (Xg, t) = K;j (Xk)
W ®cem ATFEM

The subscripts FEM in equations (280) and (281) denote the values of modulus, E,
linear coefficient of thermal expansion (LCTE), &, and temperature increuwent
from the stress or strain-free temperature, AT, used in an elastic finite ele-
ment analysis. The constants Kjj(xy) and K'yj (xk) are, respectively,

the stresses and strains at the point . obtained from elastic finite element
analysis using Eppy, ®pgy and ATpgy as input. The constants K;; and K'y
incorporate the effects of motor geometry and the material properties of

the case, insulation, and liner. They also depend on the ratio of case *Q
propellant modulus. These latter properties, if taken to be an averagr of

the properties over the temperature range of inierest, introduce only smali
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A
i
‘:}: err~rs in equations (280) and (281} dus i+ their own viscoelastie behavior.
ti& Alsc, to ensure the validity of eguations (280) and (281), Poisson's ratio
b of the propellan', Vo must be time-independent; that is, the bulk response
of the propellant must be nea.ly elastic, which is the typical assumption
made in stress analysis of propellant zrains. Equations (280) and (281)
also assume that the propellant LCTE is a constant; however, they are equally
valid if ap is a function of temperature.
Four stress predictions were made for the 0.75-in. bore structural analog
. involving four different approximations to E.ps. The first involved simply
replacing the elastic modulus by the relaxation modulus at the appropriate
. time and temperature; that is,
E— Ere] (t/AT)
A comparison with measured stresses is shown in Figures 165 and 166 without
all points connected. As in the case of the elastic analyses, the results agree
well with the long term relaxation behavior, but are low by a factor of 2 to 3
o during transient temperatures.
2
;“ The next set of predictions were made using linear viscoelasticity theory:
0 d

s

t
1
E—> Epelt) = E ¢ ;J[ AE(g-¢') dr (282)

0

t
o= dx (283)
£-¢ . AT [T'xY]

Results for this prediction are shown in Figures 167 through 170. Again,
the agreement is not too discouraging during relaxation periods, and the
last temperature excursion but are low by a factor of two during the early tran-

sient thermal conditions. The agreement during the last cycling may be the

291

N P R Y |
AL R SRR N Lo
Y 'n’n"‘ SR P Y




S90LE

LLLL/00N=809E 6L=dLl 40J SUOTIOTPaJd S§3J3S OTISBIS0DSTA *G9l dJnzTd

2-3 X (Sdu) 3alL

) 91 re s 0¥ 9 9 v 2 Q.
j 88 s 0 X
, B8 &8 "] a at
i 86 &8 s s
: a_ %
: a o 2
) Puv \ CE
r3€
Y i
T5°
“ (4 PP} = Oway JS) SS2415 JLAWA[I tutd - O+ 08
{3 3p; = S«3) i5) 3S3JI5 [e1pey PPN - O 553435 [@idey DaunsSedm - O | ..
e —————tr—ae A 4
“ 18
! F——a Gd o—a
|l
_ T°
_ (=N + ot
‘ o O a T
1
@ \Avwn
J + 98
_ uNRuaded) effadoud - & 1]

0 3 x (1sd) SS3HiS

$-3 x (4) 3uNivu3dW3l

292

. -“'-. s e AL
et RAERANLGN




AR

TRITARYT YT L YRR Y T

...-.}.4\1

9901 €

LLLL/OOR=-E09E ‘61 -dLfl 4OJ SUOTIITPAUJ €60J43S OTISRTIOOSTA °99L @undi4
-3 ¢ (SJu} 3IWIL
at S H 23 b 8 9 4 4 0
—_———t +- + —— X + + ——r — — - 0
&g 3 —g s
& - ===z s ———
8 gy ol
— [
——-8 38 8 °, s
s &3 a_ 02
D o) G2
N I
1t 3€
o +0r
.ﬁnv
- (4 §°G3F = Cwal 35} $S3aJIS FuIwd[I Aaytuly - O 406
i3 33 = i :5) $S3uiS [@ITey £3IMTag - D $53435 (2322 £3.7503m - O
— - + 35
T T e I bt e v
9
F———— &Y O—
8
=)
(114
vi
9
_ e - e uNie.adua: uR([adoyd - O gt

RUYY i

-3 X (4) 36N1Vy3dW3l

0 3 x (1sd} SS341S

293

\:.'-
At

N

>

i
L“.

Ca
N
o

-

-’ " W
oNeYe

)

. e
Q50 )

e

MU S
j‘.l‘-l

.
Y

LK

..
L)
n




L90LE
(0L6=D) BuTT04A) TewJsY] JO3ON aTeOSANG
LLLL/00t-909€ ‘6L=din 40J SUOT3OTPaUd SS8J3S OT]SETO00ETA uB3UTT *Lg| BJNFTJ
h- 3 > (NIW) Wit
82 9¢ he 4 0¢ Bl 9l hi ¢l 01 8 9 h w 0
it
| & v
D
3~ m
7]
I 7]
3
7
hnd -4
o
g &
ﬁ . . SS3YLS 0IUNSHIN NHIN - O
SAUOLSIH 31BY QHX . ) ) SS3IULS JILSHI30ISIA HU3NIY - @ 0s
+ + + + + + + + -+ + + + —— 0e
—
[ T
Ca o
.ﬁ 3
2
D
4+ =
. c
! ]
s . — m
} o ; =
1 $AMOLSIH NIBYLS )
Oh 0L 4 [hl :iHOLSIH IuNLYYIdNIL

b B ]

: ¥ TR AN y b ety e Ny e ey T “r %3y ey vy R o ™ Y. » L A e
ST B R SR L e R e AL o (s

”-




890L¢ (0LG=0) BuITOA) Tewdayl JOJOW @TEOSqNg

LLLL/00R-€09E ‘6L ~dlN JOJ SUOTIOTPaJd S69J3S DFISEBTI0OSTA JBSUTT °gglL AunVT4

€- 3 % (NIW) 3IWIL

0s Sh Oh GE 0€ 14 02 Sl
C n © “ w
| ) . dvl@/ﬂ —
D ! e } W X
: ) S a
. ; . v
, _ 3
un
L w o
: _ ' - 'Y
ﬁ , | | | | | | D o1
; , _ M . SS3HLS 03HNSUAN NUIN - @
| :HUISIH 3ibY OHX “ _ , i . SS3WLS J[LSHIIOISIA HUINIT - @ 21
7 ! ; ' ' m + + 06
3 ’ m - : . M L ; 001
b . ; ; ; . . ; : ; -
¥ - . . . v . ; v ot ..nm
4 A @ : —e® o 1 o
- :
1 i « _ | _ _ ‘ | 3
b , . ; . : Pt
: : , . . . ; _ . : oer 2
3 ) ' : : : ' 2
b ! . ! ! ! . I Oht
_.. T : ' ' ' : ' : : : Qo -
2 - : : ; . ; “ : : os1 2
1
’ _
- 1LHOISIH NIBULS . A . 109!
, oL 4 Ihl t1401SIH J¥NLBEIdNIL WNIYYISNIL QWNSHIN ~ O oul




-

-,

R 2l 2K ¢

6901t

(0LG=D) BUTTOAD TEBWMBY] JO30| STRISQNG

LLLL/0ON=H09E  OL=dL 4OJ SUOTIOTPaUd S§SJ3S OT3EBTO00ST] JBIUTT

*69L 94ndTy

M|
06 S8 08 St 55 0s m.__
j.w ' ! . 10
@ + 01
, t 02
.m ; SSIULS QIUNSUIN NUIW - @
TAMOLSIH 3LHY OHX | ; . SSIWLS J[LSHII0ISIA HHINIT - @ 08
+ ' — 0
P ; 1o
; 1 oh
: -~ W 08
} ; - 08
001
“ e 021
.:::w.z NIWYLS . ST ! O
Oh 0L 4 Thi SAUGLSIN JYNLBMIJWIL : 3UNiUUIANIL OFUNSHIN - @

§S341S

(I1Sd)

{3) 3UNLIBHALWIL

296

aa

.t 'l‘ .‘.. .. ;
Y A

-




0LOLE
(01S9=D) BuiTaL) TeRWJAY] J030K| dTeOSQNS

LLLL/00h-909E ‘61 =dLN JOJ SUOTIOTPIJIJ §6343S DTISETI0IETA JedUT]

€- 3 » (NIW} 3NWIL

! oie 8a¢ 90¢ hoe {114 00¢ 861

*0LL eJn¥T4

. + t t L T T

LY

"

g

PAdOLSIH 3idd OHX

SS3HIS OIHNSHIK NU3W - Q
SS34LS J11587300S1A WYINIT - @

+

©

*AHOLSIH NIBHLS
AHOLSTH IWNLBY3IdWIL

Gt L. 4 thi

3uN1YE3IdNIL 0IUNSHIN - O

- r

b T My S Ty e S . Sy e e e AN A

L] *
<IN A .
o

o v v v 7
RN AN - \--,\\ﬁ\.yn.

01

1 st

0¢

se

0E

0s

+ 0S8

oL

08

06

F 001

o1t
021

0€1

Y SO AW

PN

AT A

SS3Y1S

(ISd)

3HUNIYY3dW3L

(4)

297




D « et
.............

...................

result of either one or a combination of two observations. First, the last tem-
perature excursion was to approximately 40 F. The motor had previously been
subjected to two temperature excursions below 40 F. Much industry work has

shown that solid propellants, when reloaded to a lower strain level after being
subjected to a prior loading history, display essentially linear viscoelastic
responses. Hence, the propellant could be in a state of near-constant damage,
and its behavior approximates that of a linear viscoelastic material. On the
other hand, the agreement could be the fortuitous result of a shift in the
stress-free temperature from 141 F to a temperature closer to 105 F. Imme-
diately prior to the last temperature excursion, the analogs had been stored at
105 F for nearly 70 days. This time is sufficient to cause a shift in the
stress-free temperature to the storage temperature. The result is that stresses :
would be lower on subsequent temperature excursions, but linear viscoelastic pre-
dictions would be incorrect since they are based on too high of a stress-free
temperature. If one corrects this probable event, then the viscoelastic stress
predictions are decreased by about 40%; which would then bring the error in line
with the error for the previous thermal excursions.

Several predictions were made using the simple modification to linear
viscoelasticity theory of incorporating a thermomechanical coupling coefficient

(Ag) into the equations for linea. viscoelasticity. The general procedure, as
described in section 4.2.3 assumes that

Ap = Ap(t)
and
t )
o(t) =f Eper (6-8) 37 {AF (""‘AT)' “ (284) '
0

Under simplifying assumptions, however, assuming that Ay = constant, equation
(284) can be written

t
o(t) = E, (e-aan) + AF_/ AE(E-E') 5% (e-an7) dr (285)
0
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Cal

N

7

._~:‘ varees on the cxneeimental resnlte diresssed in osection 4.2.3 Tor o the
:}} cLOPN iefmin a0 0000 inuSmin uniaxial straining and cooling tests, Age varied
XN

AN between 2.0 and 3.'. A constant Ae = 2.56 was used for both the transient
(. cooling-stra‘ning portion ~f the loading as well as the constant temperature
':i relaxation. This led to the results shown in Figure 171. Although the tran-
itf sient behavior is predicted reasonably well, the relaxation behavicr is over
R
i}. predicted by 50% or more. Thus, the attempt to use a constant Ap does not work
, well in this case.

e

K

W 5.3 LINEAR VISCOFELASTICITY PREDICTION PROCEDURES

e "

» Linear viscoelastic stress predictions were made using the model given in |
- . equation (19) in section 4.2.1. The material characterization for uniaxial iso-
\. .
ﬂ\, thermal test history predictions involved fitting the master relaxation and time-
'T temperature shift curves. The relaxation modulus curve was fit to the exponen-
.'i

:f tial series:

<

~ m

- -a.t

S E(t) = G__ + Z G, e i (286)
i ea 1

~ 'i=1
i

a0

}i where Ggp is the equilibrium modulus and G; and «a; are curve fit constants. The
V:} equilibrium modulus and reduced time-modulus pairs were picked from the master
o relaxation modulus curve. The series exponents, ai's, were chosen as

B .

) a, = 1/t. (287)

N i /1

R

- The constants, E; were taken as the solution to the system of simultaneous

.J- linear equations

l.‘.

-"_‘ m
% (t)-6_ =56 %t i=1,m

. ET_i'eq-Zie y ot (288)

1=1
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To = T
- (R__a
AT—(T_T> (289)

where TR was the reference temperature and Ta and m were fit constants. From tem-
perature AT pairs taken from the A curve, T, and m were determined using
Powell’'s algorithm which minimizes the error function

m

-T

R a

(TT'- T ) (290)
i a

—

n
FIT) = 30 Ay -

i=1 !

Predictions for biaxial samples were done by applying a correction to

the unlaxial modulus or utilizing the biaxial relaxation modulus. For UTP-
19,360B propellant, the biaxizl modulus was taken as

E(t) = 4/3 * E(t) (291)

biaxial uniaxial

where 4/3 is the ratio of the biaxial to uniaxial modulus. UTP-3001 propellant
biaxial samples were predicted by fitting the master biaxial relaxation curve to

the exponential series described above. In both cases the time-temperature

shift function used was the same previously utilized for uniaxial predictions.

For predictions involving transient temperature test histories, the linear
viscoelastic stress was expressed as

t m

. ~oi(t'=T') de 47 (292)

o(t) = fn Goq * Ap (AT) z; G; e po
]:
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where Ap is the thermo-mechanical coupling factor. Ag was determined from
uniaxial straining while cooling tests as

¥ "."'_._ -,

rd
o e e

(t) - Goq € (1)

i& G, e%(t'- T
o i=1 '

(293)

c
Ap (aT) = T2

The AT-Ag function was represented in a discreet point form, where values for Ap
were determined by interpolation.

5.4 MOTOR STRESS PREDICTIONS WITH SWANSON CONSTITUTIVE THEORY -
Equation (265) was applied to predicting the stress response of the 0.75-in.

bore analog. Since equation (265) is formulated in terms of the second in-

variant of the deviatoric stress and strain tensors, and since only the radial

component of the bond stress is measured, it is necessary to use analytical or

finite element analysis results either to modify the measured stress or to solve

the predicted deviatoric stress for iue radial component of stress. In this

case we have chosen to do the former.

The softening function g alsc requires special attention when determining
it for the induced motor strain history. In this case, the procedure followed
was to use a volume averaged deviatoric strain; that is,

B
F=% f av (294)

Since we treat propellant as nearly incompressible, and since the stress
state at the case wall at the midplane of a motor is nearly equal triaxial

tension, the principal components of the deviatoric strain tensor (i.e., Bq4',
Byo', 333') are zero. IIp' 1s also zero. To apply the modified Swanson's theory
correctly in this situation one must make use of a volumetric or bulk response
constitutive relation. In this application, however, a simple ad hoc approach
was used in an attempt to predict the radial bond stress in the analog motors.
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Since the stress state at the bore surface is nearly a 2:1 biaxial stress
state, TTR' was evaluated at the bore surface and used as the strain history

input. The relationship between o. at the case wall and Ilg' at the bore

r
surface was then used to calculate the predicted radial bond stress.

Predicted stresses are shown in Figures 172 and 173. While the pro-
cedures have many approximations, the resulting agreement is, perhaps, better

than should be expected.

5.5 SWANSON THEORY PREDICTION TECHNIQUES
Swanson's constitutive theory stress predictions were made using the model
given in equation (17). Characterization of the material involved defining the

softening function and viscoelastic function parameters.
The softening function, g(€, €), for virgin loading has the form:

g(e,é) = A [e] B ece (295)

where A, B, and C are fit constants. From constant strain rate uniaxial
test data, the softening function curve for individual strain rates were

determined as

°meas(t)

(296)
flt)

gle,é) =

For each curve, A, B, and C were determined using Powell's algorithm, which

minimizes the error function

303

v e W e Ra BT T R




2LoLE ~
(019=0) BUTTPAD TeWJdYL 4030l dTedsYnS
LLLL/00R=609E ‘61 -dlN JOJ SUOTIOTPBUJ §S8JIS AJOBY] UOSUBMS °Zll 9undly
h= 3% (INIW) 3WIL
21N 9. he e e vl 91 hl cl
| 9 ‘
-
o
nd
i

304

SSIHLS Q3UNSHIN NHIN- O
S534HLIS YY3INIINON 035J103ud- @

$1401SIH 31HY- OHX

0s .

+
<4
4

3HNLIUH3dNWIL

{d)

A " tAMOISIH NIBWLS :
Oh 0L 4 IhD *AUOLSIH IWNLBUIINIL : m

SBAM _ SN (XXX 0%



1
l
I
I

ro
F-.
-
; hLOLE
3 (016=0) BuTTO4) Tewday] J0j0 STEOSQNG
X 4LL1/007-409E ‘61=dln JOJ SUOTIOTPadg §68ud3S AJ40dY[ uosuemng °g¢)| eundtg
&
.
" € 3% (NIW) 3WlL
ﬁ.. S 06 Sy [oL:] Y
; o o
4 2 f——tr "
3 2
5 3 . =
! w
2/ 81nby jo w
Jed Js1y au) 1o} ajeas w
awy) papuedxa ue st siy) -
. w
;810N 8
SSIHLS OIHNSHIW NUIN- ()
SIHOISTH T1uY-(IH €S3IHIS HHINIINGN N3 1103Wd- [ 0s
+ + + t + —— + t + 02
Oh
™
08 x
—————— . - Ty -..n
: 08 3
-4
S
001 a
021 N
| , | , : C tom
PAYDISIH NIHHLS ’ : ...
Dh D4 3 Ihl $44DISIM EEDIEITERTYE ] JUNIvYIdNIl 03UNSHIN- @




For predictions made at intermediate strain rates, values for A, B, and C were
obtained by interpolation.

The softening functions for relaxation and unloading were expressed as

g (€,€) = y(at) * g(e(to),é) (298)

8(e,€) = (e o) * {;‘(e(to), €) (299)

respectively. Q(G(to)) is defined as the softening function value at the begin-
ning of relaxation or unloading. At, and €,.,; are given by

00
AL = t - to (300)

and

€ret = €(t)/e(t)) (301)

The gamma functions curves were determined from load-relaxation and
load-unload test histories as

4 B 8 A R ARl

(t) :

v - Imeas (302)

BTt )e) * F(T)

Y AR A A A A s

The curves were expressed in a discrete point manner, where values were
obtained by interpolation.
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S
N For relaxation after partial unloadiug or during rest periods, the
e softening function was expressed as

Ble(ty), €)

8le2é) = ~qrmey— (303)

The softening function for reloading was taken as a linear function of

relative strain. The relative strain is given by

) - e(t) - €min

€ P —— (304)
rel  epay €min

where €,;, is the minimum strain of unloading and €p,, is the maximum strain of
the previous loading. The softening function is expressed as

[~] A .
glese) = [7un10ad + [9 - 7un10ad] * ere]] xg (e(to) é) (305

where Yunload is the gamma function at the end of unloading and ¢ is the ratio of
reloaded to virgin stress.

The viscoelastic function is given by equation (292). The shear relaxation
modulus, G(t), is defined as

G(t) = E(t)/3 (306)

where E(t) is the uniaxial relaxation modulus. The uniaxial relaxation modulus
was expressed in the exponential series form described in section 5.3. The

time-temperature shift function, A7, was expressed and determined in the manner
described in the same section.
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Where stress predictions involved transient temperature test histories, the
thermomechanical coupling factor, Ap, was used in equation (292) as

]
ll" ':l'
.

o(t) = Ap (AT) - g (€,é) - f(t) (307)

5 Ap was determined from uniaxial straining while cooling tests as
.
-.“:
b o (t)
h Ac (aT) = Teas (308)
o F E(e.é) - £(1)
e
3
- For UTP-19,360 propellant, Ap was found to be a constant equal to 2.2¢.
by
[l
v
. 5.5.1 3D Analysis Evaluation
1% The only 3D application of the .. iified Swanson theory on this program was
. an instrumented test vehicle subjected to a complex thermal-mechanical load his-
i tory. This test wis selected because it represented the most difficult condi-
:g tion for predictive stress analysis, Other simpler 3D tests such as triaxial
’:: poker chips or tension-torsion of thin~walledtubes may have been easier to analy-
..1
N tically model but would not provide a realistic check for rocket motor applica-
! tions. The selected 3D applications highlighted some specific applicaticns prob-
-
y lems generated by the stress/strain axiality and amplitude variations between
;: the bore and bond area and the corresponding variation in strain and strain rate
i history throughout the grain. These could be automatically accounted for in a .
a nonlinear finite element code if the theory were incorporated. However, this
application had to approximate these variations using an effective stress-strain f
axiality, stress-strain amplitude, and equivalent loading history to account for f
. the material nonlinearities. Even with these approximations the modified :
f} Swanson theory followed all of the measured stress changes much better than \
- linear viscoelasticity. The predicted peak stresses were above the measured ‘
3 peaks, but the predicted values were in agreement with motor stresses during the
A hold period.

(
l
‘
1
1
|
'
'
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The measured stresses also reflected the actual thermal gradients in the
grain which had to be neglected in the predictive analysis. If the grains could
have physically changed temperature more rapidly, then the measured peak
stresses would be higher and in better agreement with the predictions. When the
analytic approximations required for the analysis are considered, the predictive

stresses are considered in reasonable agreement with the stress measurements.

These analytical limitations would be eliminated if the modified Swanson theory

were incorporated into a nonlinear viscoelastic finite element code.
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Appendix A

MULTISTATION AUTOMATED DATA REDUCTION

)
P4
A A

INTRODUCTION )

Automated handling of multistation tester data is accomplished with a )
system of interactive programs on the HP 9825 desk top computer (Figure A-176).

These programs include data acquisition, stress relaxation-master modulus,

A
[ W Y R

R
.

o
A

straining while cooling or heating, straining to faiiure, and complex histories.

’. <,

The acquisition of data and test control are functions of the data acquisition

Lot MUre Shd
L& A

L
e

. program which supply data to the data reduction programs. The reduction
rrograms reduce and output data for a particular type of test history. In
addition, terminal emulating software for the HP 9825 provide a data link for
the transfer of data to the VAX-11 mainframe computer. This makes the data
directly available to the nonlinear constitutive theory programs.

SYSTEM INSTRUMENT CONFIGURATION

The multistation data acquisition instruments are configured to provide
load, crosshead position, temperature and elapsed time data to the data
acquisition program. The system consists of a Hewlett Packard 9825 desk top 1
computer, 3455 digital voltmeter, 3495 scanner, 98035 programmable clock, and
9885 flexable disk drive (Figure A-177). 1

The HP 9825 and data acquisition program act as the system controller. The
controller processes incoming test data and crosshead information and responds

by sending instructions to other instruments in the system over an HP-IB inter-

PR,

face. Output signals from the tester's load transducers, linear potentiometer,
and analog thermometers are input into the scanner's programmable relay cards.
The scanner's relays under command of the controller can be opened independently ;
to route output data signals individually to the digital voltmeter where they
are digitized and read by the program. Crosshead control information from
output lines connected to the tester's motor-clutch assembly, is supplied to the
program through the scanner in the same way as the data output signals. These
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-

ié signals enable the controller to react to changes in crosshead movement and

-~ direction without relying on operator intervention. The programmable clock .
g: connects directly to one of the computer's 1/0 ports. It provides the program
-4
:E' with elapsed time data and a program interrupt capability for controlling the i
?: rate at which data is taken. The flexible disk drive provides a mass storage

medium where data is stored during testing for latter access by one of the data
reduction programs.
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5
ﬁ ; - ————— PROCRAMS
el v 4 Data Acquisition:
;}E‘ Lo Cocn As previously stated, the data
i PRSI 1 S — ¥ acquisition program is used to collect
E\ o 0 e | 9212 from the multistation tester.
E?§; andog Operation of the program involves steps
L:f: thermometer > —— to initialize the program, calibrate

N voltmeter the system, and collect and store test
-\: Linear St data.
\}':.: potentiometer P> Scanner

iﬁﬁ v Initialization of the program is
3 ‘ Clutch- motor S accomplished by operator entered
RN assembly information used to identify the

X Figure A-1T7 28843  particular test and define samples
»iﬁf being tested. In response to promps from the computer display, the operator
:i; inputs descriptions on test material, crosshead rates, strain levels, and
'252 temperature levels of the test history. Data input on the test samples include
EF§S their number, gage length, and individual cross sectional areas, along with
?:§: their channel locations. In addition, the operator enters pairs of crosshead
. rates and delta strains for each test interval used to compute sampling rates.
'i?: The operator also determines how data is taken during relaxation cycles by

:2:: specifying whether sampling is to be done in a fixed or log time interval.

1' Calibration of the system is done by an operator-interactive procedure to
"fk determine the tester's transducsrs and potentiometer sensitivities. This
ffg involves thre operator queuing the program to take readings from the transducers
?uﬁ at differing load conditions. By comparing the change in output signals for a
- - known change in load, the 1b/volt sensitivity of each transducer may be
3?:: determined. Similarly, by moving the linear potentiometer probe a known

E;; distance its in./volt sensitivity is determined. The analog thermometers are
:f: not calibrated at the time of testing. These units output a 10 mv/F repre-

o sentation of the test chamber and internal sample temperature. Calibration on
S:S them is done periodically by the CSD electronics laboratory. For short time and
‘;E? isothermal tests, calibration is done once before testing begins. For tests
p

o2
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lasting over a long time period, a second calibration is done when testing is
complete to enable compensation for drift in the tester's electronies. Since

the load transducers are temperature sensitive, for thermal tests two cali-
brations must be performed at differing temperatures to determine the change
in sensitivity per degree change in temperature.

When calibration is complete, the program stops operation until testing is
ready to begin. On a queue from the operator, zero load and position data is
taken and the system's instruments programmed to their initial conditions. 7he
clock interupt period is set for a sampling rate determined from the initial
crosshead rate and delta strain information. Scanner relays are also arranged
to monitor the tester's break input voltage.

The program monitors the break voltage until detecting the break has
disengaged which signifies crosshead motion. The clock's counter and interupt
units are then started. Interupt signals are output by the clock at the set
sampling rate until changed by the program at the end of the straining interval.

When interupt instructions are received from the clock, program operation
branches to a data collection subroutine. The voltmeter and scanner are set to
read output signals from each of the transducer, potentiometer, and thermometer
channels. Fifty milliseconds are required to read each channel. Elapsed time,
read from the clock counter, is taken as the mean time over which the data set

was read. The test data is retained in a memory buffer until transferred to a
disk storage file.

The program continues to monitor the crosshead break and clock information
channels throughout the test. When a change in crosshead motion is detected,
the clock interrupt is stopped. From the test description data corresponling to
the test interval, a sampling rate is determined and the clock reset. Tor log

time interval samplings, the clock interrupt unit is stopped after each reading
and the rate doubled.

318

e et et T A
- * - -

S A

LRI TS
L)




Up to 600 data sets may be retained in the computer's memory at one time.
Data is transferred to the disk either between data set samplings, if time
allows, or when testing is complete.

Data Reduction Programs:

The reduction programs reduce and output multistation data pertinent to
particular types of test histories. The programs are stress relaxation-master
modulus, straining while cooling or heating, straining to failure and complex

histories. A description of the strain and temperature histories relevant to
each is listed in Table A-15.

Test identification, calibration, load, sample extension, thermal, and time
data are supplied to the programs from the acquisition data files or entered
directly by the operator. In addition, relaxation cathetometer strain

measurements and the thermal expansion coefficient may be optionally entered.

Each program reduces stress, strain, modulus, temperature, and elapsed time
data when applicable. The method by which each is determined depends on the

test history and amount of information available to the program.

Calibration sensitivity (S) of the transducer and potentiometer are
determined in general by

S = load/(load output-zero load output)

where load is the transducer calibration weight or potentiometer probe
displacement. For tests where multiple calibrations were performed, the

sensitivities at time t are corrected for electrical drift and thermal
variations with the linear relationships

(Seinal = Sinitiall
S(t) = Sinjtial * X (t)
Xpinal = Xinitial
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U TABLE A-15
"

- Program Test Strain History Output
1. Stress relaxation Tabular - time, modulus
Graphic - modulus vs time
2. Straining while Tabular - time, strain,
cooling or heating temperature,
stress
Graphic - stress vs time
and temperature

Test History -
3. Straining to failure Tabular - time, strain and
stress

Graphic - stress vs time and
straining

Mech Properties
Tabular - initial modulus,

,,,———*"”4 maximum stress

and strain -
corrected stress
and strain -
rupture strain

4., Complex histories Combination of strain- Tabular - time, strain

ing, relaxation and temperature and

temperature intervals stress

Graphic - stress vs time
and strain and

temperature vs
time

where X is time for isothermal and temperature for nonisothermal tests.

Temperature corrections are not made on the potentiometer sensitivity since it
i8 located outside the environmental test chamber.

Zero load outputs (Z0) for the transducers are also corrected for

electrical drift and thermal variation by the same method as the sensitivities.

1
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EE; Corrections on the zero position output of the potentiometer cannot be made
E? since the crosshead can't be accurately returned to its initial position.

2

l Sample stresses (o) at time t are calculated by

;[: o(t) = [transducer output - Z0 (t)] S(t)/cross-sectional area

‘;é Sample strain (€) at time t is determined by

fg €(t) = [pot output - Z0] S(t)/gage length

?; For nonisothermal tests a strain correction may be applied using the thermal

- expansion coefficient (a). In this case, the total sample strain becomes

€(t) = mechanical strain + [T(t) = Tyn444,1] @/8age length

4’,
L

.
jl An additional correction for effective gage length may be made using cathe-
ji tometer measurements of actual sample strains. The correction factor is
N determined as the ratio of the mean intervals in the test history. For
: histories where multiple cathetometer measurements were made, the correction
y factors are linearized to measured strain between them.
7
“u
L Relaxation and secant modulus (E) at time t is determined by
E(t) = o(t) 1+ e(t) /e(t)
- where €(t) is held constant over relaxation test intervals.
o Temperature is reduced from analog thermometer readings by converting the

B4

- millivolt output to volts.

Elapsed time is calculated as the difference between when the data was
\ taken and when initial loading occurred (to) since loading times may vary from
sample to sample, t, is approximated by the time of initial straining.

Once data is reduced, a tabular and graphic summary of the test is output {
by each program. A description of the outputs is listed in Table A-15. To
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retain data for future reference and reuse, identification, calibration, and raw test

data are stored on permanent diskette data files.

Terminal Emulator

The program is used to transfer data between the HP 9825 and VAX-11, desk
top and mainframe computers.

A link is created between the computer types utilizing the VAX-11's dial-
in lines and an RS-232 interface which connects the 9825 to an acoustic coupler.
The emulator software then supplies the capability of using the 9825 as an

intelligent terminal through which data may be read from the flexible disks and
sent over phone lines to the VAX.

Data transfer is accomplished with a VAX program which reads data sent from

the terminal and retains it in storage files for access by the nonlinear theory
programs.
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SYMBOLS

microcrack growth rate shift factor
temperature-dependent material function
thermomechanical coupling factor

expansion coefficients of bulk stress in terms of
octahedral strains

constant

initial area

temperature shift factor (afy)

(AHETA) damage related shift function

half sample width, grain ID radius

softening function

constant

expansion coefficients of correction modulus
A; constants

biaxial sample width, grain ID

Cauchy-green deformation tensor

bulk modulus or a constant

volume average deviatoriec strain

deviatoric deformation tensor

constant

Farris constants

constant

constant

biaxial sample height (gage length)

grain 0D
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E(t), Eqgp(t)
e

€1y egj
E(§)

F

F

------------

EPC A Sl s .
e el N

PIRRAIA N, DN,

softening function

Chemical Systems Division

rehealing parameter

constants

constant

damage

constants

constant

modulus

relaxation function in bulk or constant
relaxation function in shear or constant
activation energy

case modulus

applied strain

propellant modulus

equilibriua modulus

effective modulus

reference modulus and normalized coefficient for
modulus

relaxation modulus
linear viscoelastic relaxation modulus

product of F and virgin response function g

deviatoric strain tensor

linear viscoelastic modulus

damage function or softening function

degrees Fahrenheit
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FE

£y, 2
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£(t)
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force

strain magnification factor

constant rate modulus

damage curve at o damage level
finite element

function

material parameter

deformation function

constant time rate of change of deformation invariant
viscoelastic type function in kinetic
shear modulus

gage length

corrected modulus

equilibrium modulus

constant

relaxation modulus

shear relaxation modulus
shear relaxation modulus

virgin response function

function of
strain softening function
softening function for loading

softening function for unloading
function of damage

case thickness

function of damage in kinetic equation of evolution

325




JANNAF

K, K1-Kq9

TNV
A AT

Sl S S e IS FhaliTN

........
L A T e A T P

hydroxyl-terminated polybutadiene
volume dilatation

contribution to stress at time t,
octahedral shear strain

Lp norm

creep function

creep function in bulk

creep functicn in shear

Joint Army Navy NASA Air Force
constants

temperature~-dependent constant
stress intensity factor

stress at point Xy

strain at point x;

rehealing parameter

constant

length

constant

linear coefficient of thermal expansion
constant

constants

constant

material parameters

number of cycles

nonlinear

nonlinear constitutive theory
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constant

terms of equation under summation
hydrostatic pressure

constants

used to normalize Y3 to 1

finite length correction factor
polybutadiene acrylonitrile
constant

terms of equation under summation
constant

function

healing

lower 1limit of R (healing)

strain maximum sensitivity

root mean square

chemical bond radius or rotation
virgin stress and damage parameter constant
damage parameter

damage parameter

maximum damage

resultant stress

constant

certain measure of damage
temperature-shifted time

constant

stress free
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temperature

peak stress time

material property and shift temperature
motor cure temperature

glass transition temperature
healing temperature

temperature at t = 0

stress-free temperature

reference temperature
thermorheologically complex material
thermorheologically simple material
time

time

healing time

modified time

time to failure under constant load
chemical bond stretching rupture
United Technologies Propellant
volume

root of Y3

=€/€,

coordinate axes

functions related to damage

=€p, maximum strain to time T
kinetic constant

coefficient of thermal expansion
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X a material parameter
)
':: a, oy constant
.
; we case coefficient of linear expansion
Y
N ap propellant coefficient of linear expansion
b.', g constant
C i parameter
B changing rate coefficient
Y constant
v shear strain
-~ ) Y softening function
% adhesive failure
: Ta
v cohesive failure
: c
Y] AE modulus change
b AL change in length
t
AT temperature change
- ATy thermal stress
- Avp negative volume change with hydrostatic pressure
* ) constant
y be case aq AT
3 5 Kronecker delta
b, ij
. 5p propellant ap AT
:: € strain
-
L .
< € strain rate
«
. € principal strain ?
3
- 2 lateral strain 3
p v
-y
. 'ln
€11y €22y €33 principal strains 3
: 4
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pseudo strain

maximum strain

strain at time t

strain of unfilled polymer

strain due to mechanical stress

bore strain

neutral rate where damage remains constant
compressibility (n= 0 is incompressibility)
related to damage function

ratio of reload virgin stress

axis

extension ratio (1 + €)

healing correction factor

softening funct ion

width to height ratio

grain OD/79D

micron

material parameter

material parameter

case Poisson's ratio

propellant Poisson's ratio

reduced time

state of bonding

rate mechanism underlying damage
second invariant of tension (a=zo0,f)

summation
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NN
LS,
W
.
{r
:.;: 0 engineering stress or stress
et
.'ﬂ". o
NG Cauchy-stress tensor
K = up bulk stress
H
A
,.;: Op stress correction due to change in state of bonding
-‘..-
_-._\: oc stress correction
I 0.d .
= ij deviatoric stress
e o deviatoric stress
<o % linear viscoelastic stress
U 3
0o constant stress
SR ) Okk bulk stress
- '< ’
S or linear viscoelastic stress
.:_‘.'
C) om.(b) case-grain radial bond stress
AW
DA
A o(t) stress at time t
."h\
LR
5% op(t) fading memory stress
\':.
- O stress
RRY) T reduced time
P
]
- o T shear stress
o

P

"

B (‘
-

shifted time

'.:3 ¢ function of loading

'.'-;. )

T ¢ extension ratio

-~ '

-, &, 02 functions

{'_‘ ¢ rate of loading function

P

4-:‘: ¥n nth component of stress correction

N

~l

w normalized damage function

s
b~ 11, second invariant of tensor (a= o, B)
LN

s
b > IIB' second invariant of deformation tensor

€« »

SRR
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Vilge second invariant of deviatoric stress

J a4 % 0 &

I} denotes absolute value
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