

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS - 1963 - A

*

NAVAL POSTGRADUATE SCHOOL Monterey, California

AD A1 3995

3

THESIS

OPERATIONAL PERFORMANCE CHARACTERISTICS OF A MULTIPLY-SHROUDED, ANGLED-DIFFUSER STACK GAS EDUCTOR IN TURUBLENT CROSS-FLOW

by

Ralph Eugene Staples, Jr.

TTC FILE COPY

PR 1 0 198 September 1983 Thesis Advisor: P. F. Pucci Approved for public release; distribution unlimited. 04 09 199 84 A A

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

PEPOPT DOCINE	INTATION PAGE	READ INSTRUCTIONS
I. AFFORT NUMBER	2. GOVT ACCESSION NO.	BEFORE COMPLETING FORM 3. RECIPIENT'S CATALOG NUMBER
	<u>AD-H137753</u>	5. TYPE OF REPORT & PERIOD COVERED
o. Hite (and submite) Operation	al Periormance	Mactor's Thesis:
Angled-Diffuser Star	k Gas Eductor in	September 1983
Turbulent Cross-Flow		6. PERFORMING ORG. REPORT NUMBER
Turbuzene orobo rzow		
7. AUTHOR(a)		5. CONTRACT OR GRANT NUMBER(*)
Ralph Eugene Staples	, Jr.	
. PERFORMING ORGANIZATION NAME	AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK
Novel Bestereducto	abaal	AREA & WORK UNIT NUMBERS
Naval Postgraduate S Monterey California	93943	
Monterey, California		
11. CONTROLLING OFFICE NAME AND A	DDRESS	12. REPORT DATE
Naval Postgraduate S	chool 020/3	September 1985
Monterey, California	93943	13. NUMBER OF PAGES
14. MONITORING AGENCY NAME & ADDR	ESS(II different from Controlling Office)	15. SECURITY CLASS. (of this report)
		Unclassified
		154. DECLASSIFICATION/ DOWNGRADING SCHEDULE
IS. DISTRIBUTION STATEMENT (OF THIS P	(opert)	
	malaana. diatributia	n unlimited
Approved for public	release; distributio	n uniimiteu.
		•
17. DISTRIBUTION STATEMENT (of the a	betract entered in Block 20, if different in	m Report)
18. SUPPLEMENTARY NOTES		<u> </u>
Gas Eductor	Diffuser Rings	Cooling
Multiple Nozzle	Hot Flow	Secondary Flow
Mixing Stack	Hot Primary Flow	Tertiary Flow
Shroud	Exhaust	Turbulent Cross-Flow
20. ABSTRACT (Continue on reverse aide i	I necessary and identify by block number)	
Performance chan	racteristics of two m	ultiple-ring diffuser
eductors were determ	nined from collected	data. The performance
characteristics of a	a five ring diffuser	model were compared
with a geometrically	y similar model teste	d in cold flow. Model
similarity for compa	arison was maintained	through the mach number.
00 . FORM 1471 . ERITION OF 1 40		ling i age i figd
S/N 0102+ LP- 01	4- 6601	UILLASSLIAG
	SECURITY CLA	BRITSATIUR OF THIS FAGE (SHER Data shimme

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

Both models were tested in a turbulent cross-flow simulating a 29.5 knot relative wind. Minor improvement in the pumping coefficient was seen to occur when cross-flow was introduced.

External surface temperature measurements along the model assembly were recorded by two methods for comparative analysis. The effect of cross-flow is seen in a significant surface temperature reduction in the shroud assembly while apparent degradation of film cooling effectiveness at the diffuser rings resulted in minimal temperature change.

Accession For NTIS BROAT X DITC TYP Unrab Corad Justification_ By____ · mr/ District DTIC Available to Codes COPY Avenu and/or INSPECTED 1 Dist (Special

S-N 0102- LF- 014- 6601

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (Then Date Entered)

2

and the second sec

Approved for public release; distribution unlimited.

Operational Performance Characteristics of a Multiply-Shrouded, Angled-Diffuser Stack Gas Eductor in Turbulent Cross-Flow

by

Ralph E. Staples, Jr. Lieutenant Commander, United States Navy B.S. Mar.Eng., Maine Maritime Academy, 1971

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL September 1983

Author

same in a series and

Approved by: Thesis Advisor Chairman, Mechanical Engineering tmeht of M

Science and Engineering ٥f

3

.....

ABSTRACT

Performance characteristics of two multiple-ring diffuser eductors were determined from collected data. The performance characteristics of a five ring diffuser model were compared with a geometrically similar model tested in cold flow. Model similarity for comparison was maintained through the Mach number.

Both models were tested in a turbulent cross-flow simulating a 29.5 knot relative wind. Minor improvement in the pumping coefficient was seen to occur when cross-flow was introduced.

External surface temperature measurements along the model assembly were recorded by two methods for comparative analysis. The effect of cross-flow is seen in a significant surface temperature reduction in the shroud assembly while apparent degradation of film cooling effectiveness at the diffuser rings resulted in minimal temperature change.

4

121.50

TABLE OF CONTENTS

I.	INT	RODUCTION 20)
II.	BAC	KGROUND 22	?
	Α.	THE TEST FACILITIES 22	?
	в.	INITIAL INVESTIGATIONS AT NPS 23	}
	с.	IMPROVEMENTS IN MIXING STACK CONFIGURATION 24	ł
	D.	CURRENT OBJECTIVES 24	ŀ
111.	THE	ORY AND MODELING 26	;
	A.	MODELING TECHNIQUE 26	>
	в.	ONE-DIMENSIONAL ANALYSIS OF A SIMPLE EDUCTOR 27	,
	c.	NON-DIMENSIONAL FORM OF THE SIMPLE EDUCTOR EQUATION 34	ŀ
	D.	EXPERIMENTAL CORRELATION 37	,
	Ε.	PUMPING COEFFICIENT 38	}
IV.	EXP	ERIMENTAL APPARATUS 40)
	A.	COMBUSTOR AIR PATH 40)
	в.	FUEL SYSTEM 42	!
		1. System Arrangement 42	!
		2. Fuel System Flow Rate Measurement and Control 43	3
	c.	THE MEASUREMENT PLENUM 45	;
		1. The Rear Seal 45	,
		2. The Forward Seal 45	\$
		3. Model Installation and Alignment 45	i

۰.

	D.	INS	TRUMENTATION	46
		1.	Temperature Measurement	46
		2.	Pressure Measurement	47
	E.	THE	MODELS	47
		1.	Model A	48
		2.	Model A Modified	49
	F.	THE	CROSS-FLOW CENTRIFUGAL FAN	49
		1.	Installation and Configuration	49
		2.	Performance Capabilities	50
v.	EXP	ERIM	ENTAL RESULTS	52
	Α.	MOD	EL A RESULTS	52
		1.	Pumping Performance	52
		2.	Mixing Stack Temperatures	52
		3.	Mixing Stack Pressures	54
		4.	Shroud and Diffuser Temperatures	54
		5.	Exit Plane Temperatures	57
	В.	MOD	EL A MODIFIED RESULTS	58
		1.	Pumping Performance	58
		2.	Mixing Stack Temperatures	59
		3.	Mixing Stack Pressures	59
		4.	Shroud and Diffuser Temperatures	59
		5.	Exit Plane Temperatures	60
VI.	CON	CLUS	10NS	61
VII.	REC	OMME	NDATIONS	62
FIGUR	ES -			63
TABLE	s		1	.62

and the second second

•••

1

1

 $\left\{ 1, 1 \right\}$

APPENDIX	CA:	GAS GEI	NERATOR	OPERATI	ON	 	19	1
APPENDIX	К В:	CALIBRA	ATION -			 	21	0
APPENDIX	с:	UNCERTA	AINTY A	NALYSIS	~~~~	 	21	2
LIST OF	REFE	RENCES -			·	 	21	4
INITIAL	DIST	RIBUTIO	N LIST	*		 	21	6

LIST OF TABLES

ł

ł.

1

I.	Rotameter Calibration Data162
II.	Thermocouple Display Channel Assignments, Type K163
111.	Thermocouple Display Channel Assignments, Type T164
IV.	Model Characteristics165
ν.	Pumping Coeff. Data, Model A (175 F) - No Cross-Flow166
VI.	Pumping Coeff. Data, Model A (650 F) - No Cross-Flow167
VII.	Pumping Coeff. Data, Model A (850 F) - No Cross-Flow168
VIII.	Pumping Coeff. Data, Model A (850 F) - Cross-Flow169
IX.	Pumping Coeff. Data, Model A (950 F) - No Cross-Flow170
х.	Pumping Coeff. Data, Model A (950 F) - Cross-Flow171
XI.	Pumping Coeff. Data, Model A Mod (850 F) - No Cross-Flow172
XII.	Pumping Coeff. Data, Model A Mod (850 F) - Cross-Flow173
XIII.	Pumping Coeff. Data, Model A Mod (950 F) - No Cross-Flow174
XIV.	Pumping Coeff. Data, Model A Mod (950 F) - Cross-Flow175
XV.	Mixing Stack Pressure Data, Model A176
XVI.	Mixing Stack Pressure Data, Model A Modified177

8

.

٠.

٩

XVII. Mixing Stack Temperature Data, Model A -----178 XVIII. Mixing Stack Temperature Data, Model A Mod -----179 Shroud and Diffuser Temp. Data, Model A -----180 XIX. XX. Shroud and Diffuser Temp. Data, Model A Mod -----181 Exit Plane Temperature Data, Model A -----182 XXI. Exit Plane Temperature Data, Model A Mod ------183 XXII. XXIII. Exit Plane Horiz. Pitot Traverse Data ------184 24 in. Standoff - Pitot Horiz. Traverse ------185 XXIV. XXV. 24 in. Standoff - Pitot Vertical Traverse ------186 24 in. Standoff - 4.5 in PItot Vert. Traverse ----187 XXVI. XXVII. Pumping Coefficient Results ------188 XXVIII. Air Mass Flow Calibration Data ------189 XXIX. Air Mass Flow vs. Pressure Product Data ------190

9

and sufficients

LIST OF FIGURES

1.	Simple Nozzle Eductor System	63
2.	Plan of Uptake, Model, and Measurement Plenum	64
3.	Dimensional Diagram of Slotted Mixing Stack	65
4.	Schematic of Model A - Shroud and Diffuser Rings	66
5.	Schematic of Model A Modified - Shroud and Diffuser Rings	67
6.	Characteristic Eductor Dimensions	68
7.	Gas Generator Arrangement	69
8.	Schematic Diagram of Pressure Measurement System	70
9.	Schematic Diagram of Temperature Measurement System	71
10.	Gas Generator Electrical System	72
11.	Gas Generator Fuel System	73
12.	Gas Generator Control Station	74
13.	Main Power Supply and Control Panel	75
14.	Manometer Installation	76
15.	Hot Flow Test Facility	77
16.	Air Supply Standpipe and Valving	78
17.	Combustor Air Piping	79
18.	Uptake Section	80
19.	Carrier Air Compressor	81
20.	Air Compressor Suction Valve	82
21.	Air Cooling Bank and Bypass Discharge	83
22.	Cooling Water Pump and Tower Fan Controllers	84

10

23.	Auxiliary Oil Pump Control	85
24.	Fuel Pump Installation	86
25.	H. P. Fuel Piping and Valves	87
26.	Model Installation	88
27.	Model Alignment	89
28.	Model A	90
29.	Model A Entrance	91
30.	Model A Exit	92
31.	Model A Installed	93
32.	Cross-Flow Fan with Model A Installed	94
33.	Exit Plane Temperature Measurement	95
34.	Tilted-Angled Nozzle Plate	96
35.	Tilted Nozzle Geometry	97
36.	External Temperature Measurement Poincs, Model A	98
37.	External Temperature Measurement Points, Model A Mod	99
38.	Schematic of Cross-Flow Fan Pitot Tube Traverses	100
39.	Cross-Flow Fan Nozzle Geometry	101
40.	Rotameter Calibration Curve	102
41.	Air Mass Flow Rate Calibration Curve	103
42.	Sample Pumping Coefficient Plot	104
43.	Pumping Coefficient, Model A (175 F) - No Cross-Flow	105
44.	Pumping Coefficient, Model A (650 F) - No Cross-Flow	106
45.	Pumping Coefficient, Model A (850 F) - No Cross-Flow	107

46.	Pumping Coefficient, Model A (850 F) - Cross-Flow 108
47.	Pumping Coefficient, Model A (950 F) - No Cross-Flow 109
48.	Pumping Coefficient, Model A (950 F) - Cross-Flow 110
49.	Pumping Coefficient, Model A Mod (850 F) - No Cross-Flow 111
50.	Pumping Coefficient, Model A Mod (850 F) - Cross-Flow 112
51.	Pumping Coefficient, Model A Mod (950 F) - No Cross-Flow 113
52.	Pumping Coefficient, Model A Mod (950 F) - Cross-Flow 114
53.	Mixing Stack Temp., Model A (650 F) - No Cross-Flow 115
54.	Mixing Stack Temp., Model A (850 F) - No Cross-Flow 116
55.	Mixing Stack Temp., Model A (850 F) - Cross-Flow 117
56.	Mixing Stack Temp., Model A (950 F) - No Cross-Flow 118
57.	Mixing Stack Temp., Model A (950 F) - Cross-Flow 119
58.	Mixing Stack Temp., Model A Mod (850 F) - No Cross-Flow 120
59.	Mixing Stack Temp., Model A Mod (850 F) - Cross-Flow121
60.	Mixing Stack Temp., Model A Mod (950 F) - No Cross-Flow 122
61.	Mixing Stack Temp., Model A Mod (950 F) - Cross-Flow 123
62.	Mixing Stack Press., Model A (650 F) - No Cross-Flow 124
63.	Mixing Stack Press., Model A (850 F) - No Cross-Flow 125

San D

• •

64.	Mixing	Stack	Press.,	Model A	(850 F)	- Cross-Flow 126
65.	Mixing Cross-F	Stack Now -	Press.,	Model A	(950 F)	- No 127
66.	Mixing	Stack	Press.,	Model A	(950 F)	- Cross-Flow 128
67.	Mixing No Cros	Stack ss-Flo	Press., w	Model A	. Mod (850	0 F) - 129
68.	Mixing Cross-F	Stack 10w -	Press.,	Model A	Mod (850	0 F) - 130
69.	Mixing No Cros	Stack s-Flo	Press., w	Model A	Mod (950	0 F) - 131
70.	Mixing Cross-F	Stack Slow -	Press.,	Model A	Mod (950	0 F) - 132
71.	Type T Cross-F	Exter 10w -	nal Temp	., Model	A (650 B	F) - No 133
72.	Type T Cross-F	Exter Now -	nal Temp	., Mode1	A (850 H	F) - No 134
73.	Туре Т	Exter	nal Temp	., Model	. A (850 H	F) - Cross-Flow-135
74.	Type T Cross-F	Exter Slow -	nal Temp	., Model	A (950 B	F) - No 136
75.	Type T	Exter	nal Temp	., Model	. A (950 H	F) - Cross-Flow-137
76.	Type T Cross-F	Ext. Now -	Temp., M	odel A M	lod (850 H	F) - No 138
77.	Type T	Ext.	Temp., M	odel A M	lod (850 H	F) - Cross-Flow-139
78.	Type T Cross-F	Ext. Now -	Temp., M	odel A M	lod (950 B	F) - No 140
79.	Type T	Ext.	Temp., M	odel A M	lod (950 H	F) - Cross-Flow-141
80.	Omega E Cross-E	xtern low -	al Temp.	, Model	A (650 F)) - No 142
81.	Omega E Cross-F	Xtern 10w -	al Temp.	, Model	A (850 F)) - No 143
82.	Omega E	Extern	al Temp.	, Model	A (850 F)) - Cross-Flow144

83.	Omega Exter Cross-Flow	cnal Temp., Model A (950 F) - No 145
84.	Omega Exter	cnal Temp., Model A (950 F) - Cross-Flow146
85.	Omega Ext. Cross-Flow	Temp., Model A Mod (850 F) - No 147
86.	Omega Ext.	Temp., Model A Mod (850 F) - Cross-Flow148
87.	Omega Ext. Cross-Flow	Temp., Model A Mod (950 F) - No
88.	Omega Ext.	Temp., Model & Mod (950 F) - Cross-Flow150
89.	Exit Plane	Temp., Model A (650 F) - No Cross-Flow151
90.	Exit Plane	Temp., Model A (850 F) - No Cross-Flow152
91.	Exit Plane	Temp., Model A (850 F) - Cross-Flow153
92.	Exit Plane	Temp., Model A (950 F) - No Cross-Flow154
93.	Exit Plane	Temp., Model A (950 F) - Cross-Flow155
94.	Exit Plane Cross-Flow	Temp., Model A Mod (850 F) - No
95.	Exit Plane	Temp., Model A Mod (850 F) - Cross-Flow157
96.	Exit Plane Cross-Flow	Temp., Model A Mod (950 F) - No
97.	Exit Plane	Temp., Model A Mod (950 F) - Cross-Flow159
98.	Exit Plane	Temp. Comparison, Model A (950 F)160
99.	Exit Plane	Temp. Comparison, Model A Mod (950 F)161

-.

TABLE OF SYMBOLS

ENGLISH LETTER SYMBOLS

1

A	-	Area, in ² , ft ²
в	-	Atmospheric pressure, in Hg
с	-	Sonic velocity, ft/sec
с	-	Coefficient of discharge
D	-	Diameter, in (as a reference quantity, refers to
		the inside diameter of the mixing stack)
DELPN	-	Pressure drop across the entrance reducing
		section, in H ₂ O
DELPU	-	Pressure drop across the burner U-tube, in H_2^0
f	-	Friction factor
Ffr	-	Wall skin-friction force, 1bf
g	-	Proportionality factor in Newton's Second Law
		$g = 32.174 \ lbm-ft/lbf-sec^2$
h	-	Enthalpy, Btu/lbm
1	-	Arbitrary length, in
L	-	Length of the mixing stack assembly, in
P	-	Pressure, in H ₂ O
PMS	-	Static pressure in the mixing stack, referenced
		to atmospheric, in H ₂ O
PNH	-	Inlet air pressure upstream of the reducing
		section, in Hg
PPLN	-	Pressure differential across the measurement plenum
		secondary flow nozzles, in H ₂ O

ł

all the lo

ļ

- Pressure in the uptake, in H_2O PUPT - Radial distance from the axis of the mixing r stack, in - Gas Constant, for air = 53.34 ft-lbf/lbm- $^{\circ}$ R R - Fuel mass flow rotameter reading ROTA - Interior radius of the mixing stack, in Rms - Entropy, Btu/lbm-R s - Standoff, distance between the discharge plane S of the primary nozzles and the entrance plane of the mixing stack, in - Temperature, ^oF, ^oR т - Ambient temperature, ^OF TAMB - Ambient temperature, ^OR TAMBR - Burner temperature, ^oF TBURN - Exit plane temperature, ^OF TEP - Mixing stack wall temperature, ^oF TMS - Inlet air temperature, ^OF TNH - Inlet air temperature, ^OR TNHR - Surface temperature of shroud and diffusers, ^OF TSURF - Uptake temperature, ^oF TUPT - Uptake temperature, ^OR TUPTR u - Internal Energy (Btu/lbm) U - Velocity, ft/sec - Average velocity in the mixing stack, ft/sec UM UP - Primary flow velocity at nozzle exit, ft/sec - Primary flow velocity in uptake, ft/sec បប - Specific volume (ft³/lbm)

W	-	Mass flow rate, lbm/sec
WF	-	Mass flow rate of fuel, lbm/sec
WP	-	Primary mass flow rate, lbm/sec
WS	-	Secondary mass flow rate, lbm/sec
WPA	-	Mass flow rate of primary air, lbm/sec
x	-	Axial distance from mixing stack entrance, in
DIMENSI	DNI	LESS GROUPINGS
A*	-	Secondary flow area to primary flow area ratio
A *	-	Tertiary flow area to primary flow area ratio
ĸ _e	-	Kinetic energy correction factor
ĸ	-	Momentum correction factor at mixing stack exit
ĸp	-	Momentum correction factor at primary nozzle exit
M,UMACH	-	Mach number
P*	-	Pressure Coefficient for secondary flow
P *	-	Pressure coefficient for tertiary flow
PMS*	-	Pressure coefficient for mixing stack pressures
Re	-	Reynolds number
Т*	-	Secondary flow absolute temperature to primary
		flow absolute temperature ratio
^T t [*]	-	Tertiary flow absolute temperature to primary
		flow absolute temperature ratio
W *	-	Secondary mass flow rate to primary mass flow
		rate ratio
Wt*	-	Tertiary mass flow rate to primary mass flow
		rate ratio

. /

ρ *	- Secondary flow density to primary flow
	density ratio
ρ*	- Tertiary flow density to primary flow
	density ratio
GREEK LETTER SYMBOLS	
β	- K + (f/2)*(A /A)
β	- Ratio of ASME long radius metering nozzle
	throat diameter to inlet diameter
Y	- Ratio of specific heats for air
μ	- Absolute viscosity, lbf-sec/ft ²
Q	- density, lbm/ft ³
φ	- "Function of"
SUBSCRIPTS	
0	- Section within the measurement plenum
1	- Section at primary nozzle exit
2	- Section at mixing stack exit
a	- Atmospheric
Ъ	- Burner
m	- Mixed flow
ns	- Mixing stack
or	- orifice
Р	- Primary
S	- Secondary
t	- Tertiary
u	- Uptake
w	- Mixing stack wall

- Sala

ACKNOWLEDGEMENTS

Completion of the research contained in this thesis is owed in a large part to the advice, assistance and support of a number of other people. In particular, I would like to express my sincere appreciation to the following:

Professor Paul F. Pucci, of the Mechanical Engineering Department, my thesis advisor, whose support and guidance made this such a worthwhile experience. Mr. John Moulton, modelmaker and craftsman, whose detailed work provided the foundation of this research. Mr. Ron Longueira, laboratory technician, whose hard work and good humor provided much support in the accomplishment of this work.

Lieutenant Steve Daughety, USN, a friend and classmate, who, in spite of his own duties, was always ready to lend a hand.

And, most importantly, my wife, Danna, whose support, patience, and incredible flexibility have meant so much to me during my career.

19

S and the set

I. INTRODUCTION

The increased introduction of marine gas turbines into naval ship propulsion plants has presented several problems associated with the attendant high mass flow rates and escalating operating temperatures presented by these units. Exhaust gas temperatures above 900 degrees Fahrenheit develop an exhaust plume with an intense infrared signature providing a target source for heat seeking offensive weapons. Additionally, these high temperatures can significantly degrade the performance of mast mounted electronic equipments, and provide an undesirable environment for helicopter operations.

Investigations conducted at the Naval Postgraduate School have shown considerable promise in alleviation of these problems by reducing the exhaust gas temperatures through the use of multiply-shrouded eductor systems which induce both secondary and tertiary air into the primary flow stream under turbulent conditions. Significant temperature reductions have been realized with this relatively simple apparatus with latest developments resulting in both size and weight reductions. It is important to note that these temperature reductions have been achieved without an unacceptable degradation of engine performance.

20

A Inc. States

The gas eductor system has proven more feasible than the alternatives of water injection or energy recovery systems (when specifically utilized with the main propulsion engines). It should be noted however that significant promise exists for an energy recovery system such as RACER (Rankine Cycle Energy Recovery) which is currently receiving some interest for installation in the follow-on ships of the DDG-51 class.

The mixing process under the turbulent conditions encountered in the gas eductor is complex and not well understood although significant research efforts are being directed at a better understanding of the phenomenon. Dividing operation of gas eductors into three regimes on the basis of Mach number, the first regime $(M \ge 1.0)$ becomes of interest in applications such as thrust augmentation for aircraft and rocket engines, the second regime $(0.4 \le M \ge 0.6)$ is especially relevant to thrust enhancement in Vertical Takeoff or Landing (VTOL) aircraft, and the last regime $(M \le 0.2)$ is the range of interest in dilution cooling of engine exhaust glows. This latter regime is of direct interest to this research and that of ongoing research at the Naval Postgraduate School.

21

1 Yellin

II. BACKGROUND

Naval combatant vessels having marine gas turbine propulsion units currently utilize simple gas eductor systems. The design of gas eductors for destroyers of the DD-963 class was guided by Charwat [Ref. 1] at the University of California at Los Angeles and uses a solid wall mixing stack which reffes on the length of the mixing stack to provide complete mixing. Initial investigations at the Naval Postgraduate School, which began in 1976, involved determination of the effects of various parameters on the pumping and mixing performance of gas eductors. The ultimate objectives of both past and present research is to effect reductions in the size and weight of the fabricated eductor structure while optimizing eductor performance specifically in terms of plume temperature and stack surface temperature.

A. THE TEST FACILITIES

To carry out the aforementioned research objectives, two test facilities have been constructed. The first facility, the "cold flow" facility, readily permits rapid evaluation of a wide variety of eductor configurations. Its primary benefit is the expediency of data collection resulting from easily fabricated models which to not undergo high temperatures in the testing cycle. Additionally, inexpensive

materials afford evaluation of numerous models at minimal cost. The second test facility, the "hot flow" facility, is designed to test models at actual operating temperatures. In addition to confirming the pumping characteristics of geometrically similar models tested in cold flow, it provides the needed data on exhaust temperatures and stack surface temperatures.

B. INITIAL INVESTIGATIONS AT NPS

The initial investigation of gas eductor performance at the Naval Postgraduate School was undertaken by Ellin [Ref. 2]. This work was based on a simple one dimensional gas eductor model developed by Pucci [Ref. 3]. Testing three basic eductor geometries, Ellin attempted to determine the effects of varying the area of the primary jet with respect to the area of the mixing stack. Ellin verified a correlation between dimensionless parameters representing the pressure depression in and the induced flow from a secondary environment by the eductor. These parameters were suggested by a one dimensional analytic model. Ellin's work was followed by Moss [Ref. 4], and Harrell [Ref. 5].

The work of Ellin, Moss, and Harrell was conducted exclusively in the cold flow facility, and it was considered essential that actual operating conditions be investigated to verify these results. Ross [Ref. 6] undertook the actual construction, calibration, and test verification of the hot

flow test facilty. Under the recommendations of the previous researchers, Welch [Ref. 7] conducted the initial hot flow testing using a four nozzle, solid walled mixing stack eductor.

C. IMPROVEMENTS IN MIXING STACK CONFIGURATION

Reports of significant pressure depression throughout the length of the original straight, solid walled mixing stacks suggested that additional, or tertiary flow could be induced into the mixing stack along its length. Additionally, it was considered that this flow could be used to reduce externally detectable surface temperatures by means of film cooling. Staehli and Lemke [Ref. 8] investigated the use of cooling ports in the mixing stack at the cold flow facility to determine its potential.

Hill [Ref. 9] followed Welch in hot flow testing and considered the performance of a slotted mixing stack under actual operating parameters. Eick [Ref. 10] and Kavalis [Ref. 11] conducted follow-on research in the hot flow test facility using the slotted mixing stack with multiply-shrouded eductors and observed excellent results confirming the cold flow analysis.

D. CURRENT OBJECTIVES

The objectives of this investigation were to verify the high temperature performance of an eductor configuration

24

1.1

tested by Pritchard [Ref. 12] in the cold flow facility, conduct calibration of the entrance nozzle for more accurate determination of air mass flow rates, and determine the effects of turbulent cross-flow on eductor performance.

III. THEORY AND MODELING

Eductors are relatively simple devices in which a jet of fluid (primary jet) is directed into a co-axial mixing chamber in such a manner that a volume of secondary fluid becomes entrained in the flow and a pumping action occurs. The fluids may be in liquid or gaseous form, or a combination.

The eductor described in this research is used to pump gases at relatively low velocities. Of specific consideration is the ability of a relatively hot primary gas jet to entrain and mix with a cooler ambient fluid (air) to produce a uniform flow at some desirable intermediate temperature. Mach number similarity has been chosen as the link in dynamic similarity between the primary gas flow rates of the models and the prototype. Dimensionless parameters controlling the flow are used throughout the analysis. These parameters were derived from a one-dimensional analysis of a simple eductor.

A. MODELING TECHNIQUE

Based on the average flow properties of the eductor prototype, the air flow in the mixing stack eductor system is turbulent ($Re>10^5$). As a consequence of this turbulence, momentum exchange is predominant over shear interaction, and the kinetic and internal energy terms are more influential on the flow than are viscous forces. It can be shown that

26

. .

the Mach number is a more significant parameter than Reynolds number in describing this turbulent flow; therefore, as stated previously, it is the Mach number which has been maintained to more accurately represent the primary flow relationship between prototype and model.

B. ONE-DIMENSIONAL ANALYSIS OF A SIMPLE EDUCTOR

The theoretical analysis of an eductor may be approached in two ways. One method attempts to analyze the details of the mixing process of the primary and secondary air streams as it takes place inside the mixing stack. This requires an interpretation of the mixing phenomenon which, when applied to a multiple nozzle system, becomes extremely complex. The other method, which was chosen here, analyzes the overall performance of the eductor system and is not concerned with the actual mixing process. To avoid repetition of previous reports only the main parameters and assumptions will be presented here. A complete derivation of the analysis used can be found in [Ref. 2] and [Ref. 3]. The one-dimensional flow analysis of the simple eductor system (Fig. 1) described depends on the simultaneous solution of the continuity, momentum, and energy equations coupled with the equation of state, all compatible with specific boundary conditions.

The idealizations made for simplifying the analysis are as follows:

1) The flow is steady state and incompressible.

2) Adiabatic flow exits throughout the eductor with isentropic flow of the secondary stream from the plenum (at section 0) to the throat of entrance of the mixing stack (at section 1) and irreversible adiabatic mixing of the primary and secondary streams occurs in the mixing stack (between sections 1 and 2).

3) Isentropic flow of the tertiary flow exists from the tertiary plenum to the minimum area at Section 2, with irreversible adiabatic mixing of the flows between Sections 2 and 3.

4) The static pressure across the flow at the entrance and exit planes of the mixing-tube (at sections 1 and 2) is uniform.

5) At the mixing stack entrance (section 1) the primary flow velocity U_p and temperature T_p are uniform across the primary stream, and the secondary flow velocity U_g and temperature T_g are uniform across the secondary stream, but U_p does not equal U_g , and T_p does not equal T_g .

6) At Section 2, the mixing of primary and secondary air has an average velocity, U_x , and an average temperature, T_x .

7) Incomplete mixing of the primary, secondary, and tertiary streams in the mixing stack is accounted for by the use of a non-dimensional momentum correction factor K_m which relates the actual momentum rate to the pseudo-rate based on the bulk-average velocity and density and by the

use of a non-dimensional kinetic energy correction factor K_{a} which relates the actual kinetic energy rate to the pseudorate based on the bulk-average velocity and density.

8) Both gas flows behave as perfect gases.

9) Changes in gravitational potential energy are negligible.

10) Pressure changes P_{05} to P_1 , P_{01} to P_2 , P_1 to P_2 and P_2 to P_3 (= P_a) are small relative to the static pressure, so that the gas density is essentially dependent upon temperature and atmospheric pressure.

11) Wall friction in the mixing stack is accounted for with the conventional pipe friction factor term based on the bulk-average flow velocity U_m and the mixing stack wall area A....

The following parameters, defined here for clarity, will be used in the following development.

ratio of primary flow area to mixing stack cross section area ratio of wall friction area to mixing stack cross sectional area momentum correction factor for primary mixing K p momentum correction factor mixed flow K_M wall friction factor

29

f

Based on the continuity equation, the conservation of mass principle for steady flow yields

$$W_{M} = W_{P} + W_{S} + W_{T} \qquad (eqn 3.1)$$

where

$$W_{p} = \rho_{p} U_{p} A_{p}$$

$$W_{S} = \rho_{S} U_{S} A_{S}$$

$$W_{T} = \rho_{T} U_{T} A_{T}$$

$$W_{M} = \rho_{M} U_{M} A_{M}$$
(eqn 3.2)

All of the above velocity and density terms, with the exception of $\rho_{\rm M}$ and $U_{\rm M}$, are defined without ambiguity by virtue of idealizations (4) and (5) above. Combining equations (3.1) and (3.2) above, the bulk average velocity at the exit plane of the mixing stack becomes

$$U_{M} = \frac{W_{s} + W_{t} + W_{p}}{\rho_{M}A_{M}} \qquad (eqn 3.3)$$

where A_{M} is fixed by the geometric configuration and

$$\rho_{\rm M} = \frac{P_{\rm a}}{RT_{\rm M}} \qquad (eqn \ 3.4)$$

ich 2

where T_{M} is calculated as the bulk average temperature from the energy equation (3.11) below. The momentum equation

stems from Newton's second and third laws of motion and is the conventional force and momentum-rate balance in fluid mechanics.

$$K_{p}(\frac{W_{p}U_{p}}{g_{c}}) + (\frac{W_{s}U_{s}}{g_{c}}) + (\frac{W_{t}U_{t}}{g_{c}}) + P_{1}A_{1} = K_{M}(\frac{W_{m}U_{m}}{g_{c}}) + P_{2}A_{2} + F_{fr}$$
(eqn 3.5)

Note the introduction of idealizations (4) and (7). To account for a possible non-uniform velocity profile across the primary nozzle exit, the momentum correction factor K_p is introduced here. It is defined in a manner similar to that of K_M and by idealization (5), supported by work conducted by Moss, it is set equal to unity. K_p is carried through this analysis only to illustrate its effect on the final result. The momentum correction factor for the mixing stack is defined by the relation

$$K_{M} = \frac{1}{W_{m}U_{m}} \int_{0}^{A_{m}} U_{3}^{2} \rho_{3} dA$$
 (eqn 3.6)

where U is evaluated as the bulk-average velocity from equation (3.3). The wall skin friction force F can be related to the flow stream velocity by

$$F_{fr} = fA_{w} \left(\frac{U_{m}^{2}\rho_{m}}{2g_{c}}\right) \qquad (eqn 3.7)$$

15 1 2

using idealization (11). As a reasonably good approximation for turbulent flow, the friction factor may be calculated from the Reynolds number

$$F = 0.046 (Re_m)^{-0.2}$$
 (eqn 3.8)

Applying the conservation of energy principle to the steady flow system in the mixing stack between the entrance and exit plane,

$$W_{p}(h_{p} + \frac{U_{p}^{2}}{2g_{c}}) + W_{s}(h_{s} + \frac{U_{s}^{2}}{2g_{c}}) + W_{t}(h_{t} + \frac{U_{t}^{2}}{2g_{c}})$$

= $W_{m}(h_{m} + Ke \frac{U_{m}^{2}}{2g_{c}})$ (eqn 3.9)

neglecting potential energy of position changes (idealization 9). Note the introduction of the kinetic energy correction factor K_e , which is defined by the relation

$$Ke = \frac{1}{W_{m}U_{m}^{2}} \int_{0}^{A_{m}} U_{3}^{2} \rho_{3} dA \qquad (eqn \ 3.10)$$

It may be demonstrated that for the purpose of evaluating the mixed mean flow temperature T_m , the kinetic energy terms may be neglected to yield

$$h_{m} = \frac{W_{p}}{W_{m}} h_{p} + \frac{W_{s}}{W_{m}} h_{s} + \frac{W_{t}}{W_{m}} h_{t} \qquad (eqn 3.11)$$

where $T_m = \emptyset(h_m)$ only, with the idealization (8).

The energy equation for the isentropic flow of the secondary air flow from the plenum to the entrance of the mixing stack may be shown to reduce to

$$\frac{P_{os} - P_{s}}{\rho_{s}} = \frac{U_{s}^{2}}{2g_{c}} \qquad (eqn \ 3.12)$$

similarly, the energy equation for the tertiary air flow reduces to

$$\frac{P_{0} - P_{t}}{\rho_{t}} = \frac{U_{t}^{2}}{2g_{c}}$$
 (eqn 3.13)

The previous equations may be combined to yield the vacuum produced by the eductor action in either secondary or tertiary air plenums. Letting $P_3 = P_m = P_a$ and assuming that $A_3 = A_m \approx A_2 \approx A_1$ and assuming the friction between sections 2 and 3 is negligible, the vacuum produced for the secondary air plenum is

$$P_{a} - P_{os} = \frac{1}{g_{c}A_{m}} \left[K_{p} \frac{W_{p}^{2}}{A_{p}\rho_{p}} + \frac{W_{s}^{2}}{A_{s}\rho_{s}} (1 - 1/2 \frac{A_{m}}{A_{s}}) + \frac{W_{t}^{2}}{A_{t}\rho_{t}} - \frac{W_{m}}{A_{m}\rho_{m}} (K_{m} + \frac{f}{2} - \frac{A_{m}}{A_{m}}) \right]$$
 (eqn 3.14)

where it is understood that A_p and ρ_p apply to the primary flow at the entrance to the mixing stack, A_s and ρ_s apply to the secondary flow at this same section, and A_m and ρ_m apply
to mixed flow at the exit of the mixing stack system. $\mathbf{P}_{\!\!\mathbf{a}}$ is atmospheric pressure, and is equal to the pressure at the exit of the mixing stack. ${\bf A}_{{\bf w}}$ is the area of the inside wall of the mixing stack.

For the tertiary air plenum, the vacuum produced is

$$P_{a} - P_{ot} = \frac{1}{g_{c}A_{m}} \left[K_{2} \left(\frac{W_{p} + W_{s}}{\rho_{2}A_{m}} \right)^{2} + \frac{W_{t}^{2}}{\rho_{t}A_{m}} \left(1 - 1/2 \frac{A_{m}}{A_{t}} \right) - K_{m} \frac{W_{m}^{2}}{\rho_{m}A_{m}} \right]$$
 (eqn 3.15)

where the primary flow now consists of both the primary and secondary air flows, and where K_2 is the momentum correction factor at section 2.

C. NON-DIMENSIONAL FORM OF THE SIMPLE EDUCTOR EQUATION

In order to satisfy the criteria of geometrically similar flows, the non-dimensional parameters which govern the flow must be determined. The neans chosen for determining these parameters was to normalize equations (3.14) and (3.15) with the following dimensionless groupings.

$$\frac{P_{a}-P_{os}}{\rho_{s}}$$
 a pressure coefficient which compares the

$$= \frac{V_{p}^{2}}{\frac{V_{p}}{2g_{c}}}$$
 pumped head $(P_{a}-P_{os})$ for the secondary flucture
to the driving head $(U_{p}^{2}/2g_{c})$ of the prime

P*

 $\frac{\frac{P_a - P_{ot}}{\rho_t}}{\frac{U_p}{2g_o}}$ a pressure coefficient which compares the pumped head $(P_a - P_{ot})$ for the tertiary flow to the driving head $(U^2/2g_c)$ of the primary flow

ondary flow the primary

$$\begin{split} & \texttt{W}^{\star} = \frac{W_{a}}{W_{p}} & \texttt{a flow rate ratio, secondary to primary} \\ & \texttt{mass flow rate} & \texttt{...} \\ & \texttt{WT}^{\star} = \frac{W_{t}}{W_{p}} & \texttt{a flow rate ratio, tertiary to primary} \\ & \texttt{mass flow rate, } W_{t}^{\star} \\ & \texttt{T}^{\star} = \frac{T_{s}}{T_{p}} & \texttt{an absolute temperature ratio, secondary} \\ & \texttt{TT}^{\star} = \frac{T_{t}}{T_{p}} & \texttt{an absolute temperature ratio, tertiary} \\ & \texttt{TT}^{\star} = \frac{T_{t}}{T_{t}} & \texttt{an absolute temperature ratio, tertiary} \\ & \texttt{TT}^{\star} = \frac{T_{t}}{T_{t}} & \texttt{an absolute temperature ratio, tertiary} \\ & \texttt{to primary, } T_{t}^{\star} \\ & \texttt{P}_{s}^{\star} = \frac{P_{s}}{P_{p}} & \texttt{a flow density ratio of the secondary to} \\ & \texttt{primary flow. Note that since the fluids} \\ & \texttt{are considered perfect gases,} \\ & \texttt{P}_{s}^{\star} = \frac{T_{p}}{T_{s}} = \frac{T_{r}}{T_{s}^{\star}}; \ & \texttt{P}_{s} \ & \texttt{P}_{p} \ & \texttt{an flow density ratio of the tertiary or film} \\ & \texttt{cooling flow to primary flows. (Note that since the fluids are considered perfect gases) \\ & \texttt{P}_{t}^{\star} = \frac{P_{t}}{P_{p}} & \texttt{a flow density ratio of the tertiary or film} \\ & \texttt{cooling flow to primary flows. (Note that since the fluids are considered perfect gases) \\ & \texttt{P}_{t}^{\star} = \frac{T_{p}}{T_{t}} = \frac{1}{T_{s}^{\star}} \\ & \texttt{A}_{s}^{\star} = \frac{A_{s}}{A_{p}} & \texttt{a ratio of secondary flow area to primary} \\ & \texttt{flow area} \\ & \texttt{A}_{t}^{\star} = \frac{A_{t}}{A_{p}} & \texttt{a ratio of tertiary flow area to primary} \\ & \texttt{flow area} \\ & \texttt{A}_{t}^{\star} = \frac{A_{t}}{A_{p}} & \texttt{a ratio of tertiary flow area to primary} \\ & \texttt{flow area} \\$$

With these non-dimensional groupings, equations (3.14) and (3.15) can be rewritten in dimensionless form.

$$\frac{P \star}{T \star} = 2 \frac{A_p}{A_m} \{ (K_p - \frac{A_p}{A_m} \beta) - W \star (1 + T \star) \frac{A_p}{A_m} \beta + \frac{W_t \star T_t \star}{A_t \star} + W \star^2 T \star (\frac{1}{A \star} (1 - \frac{A_m}{2A \star A_p}) - \frac{A_p}{A_m} \beta) \}$$
 (eqn 3.16)

where

$$\beta = K_{m} + f_{2} \frac{A_{w}}{A_{m}} \qquad (eqn \ 3.17)$$

This may be rewritten as

$$\frac{P^*}{T^*} = C_1 + C_2 W^*(T^{*+1}) + C_3 W^* T + C_4 W_t^* T_t^* \qquad (eqn 3.18)$$

where

$$C_{1} = 2\frac{A_{p}}{A_{m}} (K_{p} - \frac{A_{p}}{A_{m}} \beta), \qquad (eqn \ 3.19)$$

$$C_{2} = -2(\frac{A_{p}}{A_{m}})^{2} \beta, \qquad (eqn \ 3.20)$$

$$C_3 = 2\frac{A_p}{A_m} \{ \frac{1}{A} \star (1 - \frac{A_m}{2A \star A_p}) \ \beta - \frac{A_p}{A_m} \ \beta \},$$
 (eqn 3.21)

and $C_4 = \frac{1}{A_t} \star$ (eqn 3.22)

The additional dimensionless quantities listed below have been used in past research to correlate the static pressure distribution down the length of the mixing stack.

36

ratio of the axial distance from the mixing stack entrance to the diameter of the mixing stack

D. EXPERIMENTAL CORRELATION

<u>X</u> D

For the geometries and flow rates investigated, it was confirmed by Ellin [Ref. 2] and Moss [Ref. 4] that a satisfactory correlation of the variable P*, T* and W* takes the from

 $\frac{P^{*}}{T^{*}} = \emptyset (W^{*}T^{*n})$ (eqn 3.23)

where the exponent "n" was determined to be equal to 0.44. The details of the determination of n = 0.44 as the correlating exponent for the geometric parameters of the gas eductor model being tested is given by Ellin. To obtain a gas eductor model's pumping characteristic curve, the experimental data is correlated and analyzed by using equation (3.23), that is, P*/T* is plotted as a function of W*T*^{0.44}. This correlation is used to predict the open to the environment operating point for the gas eductor model. Variations in the model's geometry will change the pumping ability,

37

and a second second second

. **۲**. .

which can be evaluated from the plot of equation (3.23). The value of parameter $W*T*^{0.44}$ when P*/T* = 0 is referred to as the pumping coefficient. Since the tertiary flow is much less than the secondary flow, it has been demonstrated by Lemke and Staehli [Ref. 8], and Drucker [Ref. 13] that the pumping characteristic is relatively insensitive to tertiary flow.

E. PUMPING COEFFICIENT

The pumping coefficient derived from non-dimensional parameters provides a basis for analyzing the eductor's pumping capability. Changes in stack geometries such as L/D ratio, slotting, shrouding, diffuser rings, and spacing between stack and shroud, and between shroud and diffuser rings will alter the eductor's pumping performance and the pumping coefficient. The pumping coefficients for the model should correspond to the coefficients for the shipboard eductor system. At the shipboard operating point, the eductor is exposed to no restrictions in the secondary or tertiary air flows. In the model, this is simulated by completely opening the air plenums which provides an open-tothe-environment simulation. Unfortunately, at this condition and secondary and/or tertiary air flow rates cannot be measured. The eductor model's characteristics are first established over the measurable flow range and then extrapolated to the desired operation point.

The data for this extrapolation is established by varying the associated induced air flow rate, either secondary or tertiary, from zero to its maximum measurable rate. These rates are determined by sequentially opening the ASME flow nozzles mounted to the plenum and recording the pressure drop across the nozzles. Values for nozzle cross sectional areas, pressure drops, induced flow are temperatures, and barometric pressure are then used to calculate the dimensionless parameters P^*/T^* , and $W^*T^*^{0.44}$. The dimensionless parameters are then plotted as illustrated in Figure 42. Data point (1) is the maximum vacuum which is produced by the eductor with no secondary flow, obtained by closing all ASME flow nozzles. Data points in region (2) correspond to opening most of the ASME flow nozzles and the final point corresponds to opening all flow nozzles. Although the data points in region 2 appear to be zero or nearly so, they do have a small finite value. The uncertainty associated with these points is relatively high with the data collected in this research considered qualitively accurate to within +0.05 of the reported value which was obtained via linear regression. The data points in region (3) provide the most consistent and accurate data. Extrapolation of the pumping characteristic curve to intersect with the abscissa at P*/T*=0 locates the appropriate operating point for the eductor model configuration.

IV. EXPERIMENTAL APPARATUS

The test facility apparatus currently in use was designed, fabricated, and installed by Ross [Ref. 6] and used by all follow-on researchers for hot primary flow analysis. A Boeing 502 gas turbine engine combustor section and turbine nozzle were used to construct the gas generator. Various components of the engine's fuel system were modified by Ross to support a simplified combustor layout. Air for combustion is supplied by a Carrier centrifugal air compressor (three stage) which is located in building 230 of the Naval Postgraduate School Annex. The actual model testing and gas generator operation is controlled from the hot test facility, building 249. Appendix A provides detailed instructions for safe and proper operation of the gas generator.

A. COMBUSTOR AIR PATH

Combustion air and cooling air supplied by the centrifugal air compressor pass from the compressor discharge via underground pipe between buildings 230 and 249. Air enters the test facility through a vertical standpipe containing an eight inch butterfly valve in parallel with a remote-manual bypass globe valve (Figure 16). This butterfly valve is normally closed with flow through the bypass valve being of sufficient volume to operate the gas generator. Figure 7 is the layout of the gas generator. At the top of the standpipe is a "T"

connection. In one direction flow passes through an eight inch butterfly valve and enters a short section of piping which is used by the Aeronautical Engineering Department to supply various experiments. The second arm of the "T" supplies the combustion gas generator through an eight inch to four inch reducing section (entrance nozzle). The flow characteristics of this entrance nozzle were determined from calibration data collected by this researcher and are presented in Appendix B. The pressure drop across this section is used to determine the mass flow rate of air through the gas generator assembly. A linear curve was fit to the data of Table XXIX for use in data reduction programs. The correlation is presented in Figure 41. Air flow next passes through a manual isolation valve and enters a splitter section.

In the splitter section, a portion of the air flow is directed through the motor operated burner air control valve and the U-tube to the combustor section. The flow characteristics of this section as determined by Ross are presented in [Ref. 6]. The remaining air passes through the motor operated cooling air bypass valve and enters the mixing section. The mixing section was fabricated by Ross from the nozzle box of the Boeing engine. A device was installed in the nozzle box to introduce a swirl into the cooling air which is counter to that produced by the nozzles. Hot gases from the combustion section enter the mixing section through

41

.t. ..

the nozzles and the effect of the counter-rotating flow is to produce rapid and thorough mixing. Downstream of the mixing section is a flow straightener which is followed by an uptake section which delivers the gas flow to the primary nozzles.

B. FUEL SYSTEM

1. System Arrangement

Service fuel is stored in a 55 gallon drum mounted on an elevated stand adjacent to the building. Fuel flows from the storage tank through a tank isolation valve to a bulkhead isolation valve located inside building 249. A tank stripping and drain connection is located in the supply line outside the building. Adjacent to the interior bulkhead valve is a thermocouple connection for measuring fuel temperature. Fuel then passes through the flow measuring rotameter to a fuel filter. Taking suction on the filter is a 24V DC motor driven fuel supply pump. This positive displacement pump contains an internal bypass and pressure regulating feature. Normal pump discharge pressure is 14-16 PSIG.

The supply pump provides positive suction head for the high pressure pump. This pump has no internal bypass and must be provided with an external recirculation loop when in operation. Valves placed in the recirculation are used to control the pump discharge pressure and thus, the

42

flow of fuel to the burner nozzle. Downstream of the recirculation connection is a system drain value and a manually operated discharge value, Figure 25. From the discharge value, fuel is piped to an electrically operated solenoid value located at the entrance to the combustor.

2. Fuel System Flow Rate Measurement and Control

A Fischer Porter Model 10A3565A rotameter is installed to monitor fuel flow rate. Calibration was performed in place by Eick using the fuel supply pump to discharge fuel into a container for a fixed period of time. The quantity of fuel discharged was weighed on a gram scale and the mass determined. Flow rate was controlled using a needle valve at the pump outlet. Rotameter calibration data is given in Table I. Figure 40 plots fuel mass flow against rotameter reading. A linear curve fit to the data results in the expression

WF = -3.076 + 0.4048 * ROTA (eqn 4.1)

Hill [Ref. 9] had recommended that the system's fuel control value be replaced with a needle value to improve sensitivity and control. The existing arrangement used a ball value mounted on the pump table as a fuel control value. A long mechanical linkage extended across the building to the control station. Not only did this linkage seriously impede access around the gas generator, but this arrangement made accurate adjustment of the fuel flow difficult; therefore,

a 3/8 inch stainless steel tubing was used to extend the high pressure pump recirculation line to the control station. The ball valve was retained as the control valve and mounted on the bench at the control station. This valve permits the operator to rapidly select any desired operating pressure in a single motion.

To increase the sensitivity of the fuel control valve, a needle valve was installed in parallel with it close to the high pressure pump, Figure 25. This valve, which is always partially open, permits flow through the recirculation line even when the fuel control valve is fully closed. Thus flow through the pump is assured even when both the fuel control and the pump discharge valves are closed.

This needle valve ("trimmer" valve) is used to establish the range of control for the fuel control valve. When properly adjusted this system provides smooth operation over a range of high pressure pump discharge pressures from 80 to 350 psig. Since the high pressure pump's maximum output pressure is specified to be 375 psig, control is obtained over most of the pump's useful range. Fuel pressure is easily adjusted to within 5 psig of a desired setpoint and with some care can accurately be varied in increments as small as 2 psig.

C. THE MEASUREMENT PLENUM

1. The Rear Seal

A flexible seal is installed at the rear wall. This diaphragm seal is formed from a rubberized fabric. The fabric is bedded in a layer of silicone sealant and clamped to the uptake with a band clamp. A similar layer of sealant is applied to the plenum rear wall and the seal attached with a split clamping ring. Figure 18 is a view of the plenum interior showing the finished uptake and the diaphragm seal. The rear seal provides uniformity in uptake gas temperature, with temperatures between the uptake mid-section and the primary nozzle now varying less than two degrees F.

2. The Forward Seal

The forward seal bulkhead is within the plenum and seal plates are provided to clamp to the entrance section of the mixing stack. A double 0-ring assembly is utilized on the outer circumference of the inlet to the mixing stack to provide proper sealing.

3. Model Installation and Alignment

An adjustable support stand was designed and constructed to support the mixing stack assembly independently of the seal plates. This stand facilitates model installation and alignment. Alignment is accomplished by mounting the model on the stand, installing centering plates in each end of the mixing stack and in the open of the uptake pipe, and adjusting the stand until the alignment bar passes

45

78 A 54

freely through holes in the centering plates. The alignment apparatus can be seen in Figure 27. Standoff distance is then set by installing the straight primary nozzles on the uptake and measuring the required distance from the nozzle exit plane to the mixing stack entrance plane (the termination of the entrance radius -- 0.5 inch) using a combination square. This adjustment normally requires no more than 0.125 inch movement of the model when a 0.5 standoff distance is desired.

Due to the longitudinal expansion observed by Eick, the installed standoff distance was modified from 3.5610 inches to 3.6875 inches to compensate accordingly.

D. INSTRUMENTATION

1. Temperature Measurement

Two types of thermocouple displays are installed with each having the capability to accept eighteen (18) channels. A type K display provides data on combustion temperatures, uptake temperatures and mixing stack wall temperatures. Table II gives the current channel assignments. The type T display is used to measure inlet air, ambient air, fuel, and shroud and diffuser temperatures. Table III gives the current channel assignments. The display installation is shown in Figure 12.

46

2. Pressure Measurement

Five manometers, shown in Figure 14, are installed for gas generator operation and data collection. They include a 20 inch water manometer for measurement of differential pressure across the inlet reducing section (DELPN), an oil manometer (range 0-17 inches water) for measuring uptake pressure (PUPT), a 20 inch mercury manometer for measuring inlet air pressure (PNH), a 2 inch inclined water manometer used to measure the differential pressure across the burner U-tube (DELPU), and a 6 inch inclined water manometer connected to a distribution manifold. Five individual manifolds located in the main control panel (Figure 13) are interconnected to permit measurement of plenum and mixing stack pressures with respect to atmospheric pressure. Mixing stack

E. THE MODELS

Two eductor models were tested. Both models were tested with and without a cross-flow. Each model consisted of a primary nozzle plate mounted on the end of the uptake piping and a mixing stack, shroud and diffuser assembly. Characteristic eductor dimensions are given in Figure 6. In both models tested the mixing stack interior diameter "D", was 7.122 inches. This dimension is the same as used in previous hot primary flow testing and is 0.6087 scale of the cold flow models. Both models tested employed a standoff ratio, "S/D", of 0.5. Table IV provides a comparison of the key model characteristics.

1. Model A

28c

flow

Model A is shown in the test installation apparatus in Figure 31. This configuration includes a primary nozzle plate with four (15/20) tilted and angled nozzles. The configuration of the nozzles refers to the characteristic angles. The tilt of the nozzle is 15 degrees from the vertical with the nozzle being rotated or "angled in" 20 degrees from the tangential direction. Figure 35 details these angles for clarification. The ratio of the mixing stack area to primary nozzle area is 2.5. 1

ł

T

34

The mixing stack is enclosed in a low carbon, cold rolled sheet steel shroud extending from X/D = 0.15 to X/D = 1.125. Five sheet steel diffuser rings 0.375 diameters long are installed to bring the overall length of the assembly to 1.5 diameters. Film cooling clearance between the stack and the shroud varies along the length of the model while the film cooling clearance between the diffuser rings is 0.188 inches. The dimensions of this model are shown in Figure 4. One row of thermocouples was installed along the length of the shroud and diffusers oriented ninety degrees from a horizontal plane passing through the model's centerline axis. These twelve (12) type T thermocouple readouts were used as a comparison to external readings obtained from an Omega Engineering 871 digital thermocouple with fully remote probing capability.

2. Model A Modified

The second model tested was a modified version of the first in that an extra diffuser ring was located outside the fifth ring of Model A. This ring was of the same thickness, material and length, and was geometrically concentric to diffuser ring number five of model A. The annular clearance between diffuser rings five and six was 0.188 inches. The dimensions of the modified model are shown in Figure 5.

F. THE CROSS-FLOW CENTRIFUGAL FAN

1. Installation and Configuration

The fan used to model the relative wind (cross-flow) was of the centrifugal type. It was manufactured by the Joy Manufacturing Company, General Products Division, New Philadelphia, Ohio.

The centrifugal fan was installed at the experimental site to be as mobile and portable as practicable considering its weight. To afford mobility for proper standoff positioning in relation to the model and facilitate certain data collection, the fan was mounted on a platform having heavy duty ball bearing casters. The lower section of the platform facilitated installation of a "step-up" transformer and provided adequate stowage of the power cable when the fan was not in service.

A converging nozzle was attached to the fan exit volute to provide directional stability to the air discharge,

49

-

and additionally to provide a datum for theoretical determination of discharge velocity. The fan nozzle exit area was chosen arbitrarily to provide a nozzle discharge area to model discharge area ratio of 3:1.

The fan is driven by a Reliance Duty Master AC motor. The motor is a 440V, 3 phase, 4.8 amp, 60 Hz unit designed for continuous duty at 1755 RPM when connected to the high speed windings as was the case for this research.

Since the test facility, Bldg 249, does not have 440V power available, it was necessary to utilize 220V power provided to a step-up transformer to provide the necessary voltage. Once proper electrical connection and grounding was made, starting the stopping of the fan was facilitated safely by utilizing a five amp circuit breaker specifically installed for the fan 220V supply circuit. A picture of the cross-flow fan is shown in Figure 32.

2. Performance Capabilities

The cross-flow fan utilized has a nominal air flow rate of 3000 CFM at a total pressure of 3.0 inches of water. Maximum air flow rate is established at 4200 CFM at or below 1.0 inches of water total pressure. Since the total pressure developed by the installed convergent nozzle was not known, it was necessary to determine the fan's discharge velocity profile experimentally, and thereby determine a quasi-optimum nozzle to model standoff distance to provide a relatively

uniform flow field. Based upon theoretical calculations, discounting any losses, the maximum velocity achievable from the fan was estimated at thirty-five (35) knots.

To determine the actual velocity distribution at the exit plane of the fan nozzle and to determine a suitable standoff distance (nozzle to model), a flow measurement experiment using a pitot tube to measure total pressure was devised. The basic equation for estimation of the velocity in the flow stream is given by equation (7-53) of [Ref. 14].

$$p_{0} - p_{\infty} = 1/2 \rho U_{\infty}$$
 (eqn 4.1)

Four sets of data were collected. One data set was collected for each of the following pitot traverses: horizontal traverse at the nozzle exit plane, horizontal traverse at a standoff distance of twenty-four inches, vertical traverse at a twenty-four inch standoff, and a 4.5 inch vertical traverse at the bottom of the model (diffuser ring 5 on the model centerline) to a horizontal plane coincident with the model support and alignment base. This data is presented in Tables XXIII through XXVI.

Based upon the collected data the standoff distance of twenty-four inches (nozzle exit plane to model centerline) was determined suitable in representing an average flow field velocity of 29.5 knots.

V. EXPERIMENTAL RESULTS

A. MODEL A RESULTS

1. Pumping Performance

The pumping performance of Model A is shown in Figures 43 through 48 with supporting data presented in Tables V through X. Using the correlation previously developed in section (d) of Chapter III, a linear regression technique was utilized to determine the pumping coefficient for the specific uptake test temperature and cross-flow condition. Given the inherent uncertainty of the linear fit, specifically considering the uncertainty and data scatter present in the lower plenum pressure differential regime, the data presented for pumping coefficients is considered qualitively accurate to within ± 0.05 . The pumping coefficient comparison to a geometrically similar model tested by Pritchard [Ref. 12] at the cold flow facility is considered valid.

A table of comparative results is presented in Table XXVII.

2. Mixing Stack Temperatures

Figures 53 through 57 graphically present the data obtained from this model. Tabular results of the collected data are contained in Table XVII.

This model is equipped with twelve (12) type "K" thermocouples imbedded in the stack walls at various locations

to measure the film cooling effectiveness of the mixing stack slotted ports. The mixing stack thermocouple numbering system is referenced to a specific type "K" channel in Table II. Determination of film cooling effectiveness is achieved by referencing the appropriate temperature of thermocouples imbedded both upstream and downstream of the two selected cooling ports. An noted by Kavalis, [Ref. 11], it is suspected that due to the tilted angle of the nozzles, the flow is not uniform across the mixing stack and the sector between consecutive nozzles exhibit lower temperatures.

The data collected appears relatively consistent throughout when corrections for variation in ambient temperature are considered. The data reported has consistently higher temperatures than those reported by Eick [Ref. 10] and Kavalis [Ref. 11] who both used the tilted and angled primary nozzles with the slotted mixing stack but whose models used straight vice angled shrouds and diffusers. Since the entrance nozzle calibration conducted preliminary to actual model testing resulted in a lower air mass flow rate correlation, it is theorized that the lower temperatures observed by Eick and Kavalis were a result of the larger cooling effect from the induced tertiary air flow of the higher mixing stack air mass flow rates under which their investigations were conducted. The maximum wall temperatures reported by Eick and Kavalis are 306°F and 320°F respectively. This research resulted in a maximum wall temperature for Model A of 357°F.

53

A Ser.

Relative to cross-flow effects, no depression in temperature was noticeable throughout the data when correction for the effect of ambient temperature is considered.

3. Mixing Stack Pressures

The data obtained for mixing stack pressure is presented in Figures 62 through 66 and in Table XV.

As noted by Eick, due to the small size of the pressure tap and extremely long run of tubing (over 20 feet) to the manometer, a substantial period of time was required for the manometer reading to reach its final value. No oscillations were noticeable once a final value was reached. The data collection was found to be consistently stable and repeatable.

Comparison of the data is remarkably consistent throughout the range of uptake temperatures. This model compared to the straight shroud and diffuser models tested by Eick and Kavalis tends to show an increase in mixing stack pressure which might account for the increased wall temperatures noted. The effect of cross-flow appears to be an improvement in the mixing stack pressure profile. An average increase of 15% was noted.

4. Shroud and Diffuser Temperatures

Shroud and diffuser temperatures were obtained utilizing two methods. A type "T" thermocouple system having a digital output servicing twelve channels of interest was used in conjunction with a fully remote Omega Engineering model 871

thermocouple probe. The Omega remote reading thermocouple was a portable battery operated device with a hand-held surface probe and was of the type "K". Comparison between these two temperature monitoring devices in an equilibrium condition resulted in a mean temperature differential of +0.5^oF. This differential is acceptable under steady state conditions; however, the transient effects observed during the experimental data collection lead this researcher to believe that the type "T" thermocouple readings were more accurate. During data collection, and particularly during cross-flow data collection, significant oscillations in temperature were noticed with the remote probe device. When the Omega probe was used to determine shroud and diffuser external temperatures, an equilibrium condition did not appear achievable for recording of a discrete temperature. Initially, oscillation in the sensed temperature occurred rapidly and then damped somewhat although oscillation did continue. This necessitated that the recorded temperature be an average value with inherent error introduced as a function of the data recorder. Despite this drawback the surface probe did provide comparative data and it was decided to continue data collection with this device for a qualitative comparison with the type "T" data.

Using the "A" model for comparative analysis of the noted differential in shroud and diffuser temperature between the type "T" thermocouples and the Omega portable thermocouple

55

A. 5

external probe readings, an uptake temperature of 950 degrees F was selected. In a no cross-flow condition (qualitively normalizing the data to account for a difference in ambient temperature) relative to shroud temperatures, only a minimal differential is observed with exception of the far end of the shroud which exhibits approximately a 20 degree difference. The maximum difference noted in diffuser ring temperature occurs for rings three and five. This difference is ten (10) degrees F. When cross-flow was introduced, the difference in shroud temperatures was minimal with the exception of the shroud end closest to the diffusers which showed an approximately ten (10) degrees F difference. Diffuser ring temperature differential was more pronounced in the cross-flow relative to the two temperature sensors with a maximum deviation of 25 degrees F for diffuser ring five and a mean diffuser ring temperature differential of 15 degrees F.

The surface probe temperature measurements were taken along the model's length starting at diffuser ring five and working rearward toward the after section of the shroud. The point of each measurement was taken along the surface of the model coincident with the model's centerline and oriented 180 degrees from the cross-flow. The sequence of the temperature measurements and relative distance from the mixing stack entrance are given by the X/D parameter values as shown in Figure 36.

56

- **1** -

Figures 71 through 75 present the shroud and diffuser temperatures obtained via the type "T" thermocouples while Figures 80 through 84 present the external surface probe data.

Data collected for the shroud in the no cross-flow condition show a consistently increasing temperature with the most notable increase being at the X/D = 1.068 position. When cross-flow was introduced the slope of the temperature profile appeared to flatten somewhat but again the X/D =1.068 position showed a sharp increase in temperature. Crossflow did result in a significant reduction in this high temperature reducing it approximately fifty degrees.

The five diffuser rings showed good temperature reduction potential until the fourth ring was reached when the effects of film cooling appeared to be dissipating and a continued increase of diffuser ring temperature was noticeable.

The effects of cross-flow resulted in an overall increase in diffuser ring temperature and resulted in an erratic although predictable temperature profile. The ultimate effect of the cross-flow appeared to be an overall shroud and diffuser assembly temperature reduction with some distortion of film cooling effects being induced by the cross-flow.

5. Exit Plane Temperatures

Figures 89 through 93 display the exit plane temperature data. Table XXI is a compilation of the data points presented in these figures.

A comparison of exit plane temperatue profiles, with and without cross-flow, is presented for the maximum uptake temperature of 950 degrees F. Good symmetry is observed in those profiles displayed with no cross-flow introduced with the exception of the 850° F uptake profile. It is considered that this asymmetry was caused by an inadvertent movement of the traversing mechanism which was noted during the data collection process.

Upon introduction of cross-flow it is noted that a depression of profile temperature takes place resulting in an average temperature reduction of greater than 50 degrees F. At the same time some increase in downstream profile temperature was noted in Model A.

The peak temperatures observed in Model A at uptake temperatures of 850° F and 950° F were 531° F (with cross-flow) and 586° F (no cross-flow) respectively.

B. MODEL A MODIFIED RESULTS

1. Pumping Performance

The pumping performance characteristics for the modified model were extremely close in comparison to those of Model A. A comparative summary is provided in Table XXVII.

Pumping coefficient plots are shown in Figures 49 through 52. Supporting tabular data is contained in Table XI.

2. Mixing Stack Temperatures

As anticipated, the modification of adding an additional diffuser ring to this model had little effect to change the mixing stack temperatures.

The temperature reduction noted upon introduction of cross-flow with Model A was also consistently noted for the data collected. It should be noted that any comparative analysis in this regard should be normalized to account for ambient temperature conditions.

Data collected for this model is presented in Figures 58 through 61 and Table XVIII.

3. Mixing Stack Pressures

This data which is presented in Figures 67 through 70 and Table XVI is consistent with the findings of Model A. The only minor exception being a slight reduction noted in the average pressure increase reported with the model under crossflow conditions.

4. Shroud and Diffuser Temperatures

A reduction in temperature of approximately 20°F was noted for diffuser ring five (5) which directly received the effects of the film cooling resulting from the addition of an extra diffuser ring. This temperature reduction effect was present both with and without the cross-flow introduced.

Without cross-flow no appreciable modification in shroud and diffuser temperatures was noticeable when normalization for ambient temperature is considered with the exception

of ring five as noted above. In a cross-flow condition the added film cooling effect of the additional diffuser ring resulted in an overall reduction in diffuser ring temperatures.

5. Exit Plane Temperatures

Figures 94 through 97 present the exit plane temperature for the modified model. Table XXII is a compilation of this data.

No appreciable change in peak temperature was observed for the modified model in comparison with Model A. The temperature depression effect induced by the cross-flow noted in Model A was also evident. In contrast with Model A, however, no increase in downstream profile temperature was noted. This is shown in Figure 99.

60

1.

VI. CONCLUSIONS

This investigation studied the thermal and pumping performance of two multiply-shrouded, angled-diffuser stack gas eductors with five and six diffuser rings and how crossflow at a mean velocity of 29.5 knots affected such performance. Based on the data presented the following conclusions are drawn:

 Pumping coefficient data obtained in this investigation correlates with that of a geometrically similar model tested in the cold facility.

2) Introduction of cross-flow results in a slight improvement in eductor pumping performance.

3) Cross-flow effects in the mean velocity range studied in this investigation (29.5 knots) result in an overall temperature reduction at the surface of the assembly but tend to result in some distortion or degradation of the desired diffuser film cooling effects.

4) Cross-flow did not appear to have any significant effect upon a modification of the peak exit plane temperature.

5) The modified model produced superior film cooling effects in comparison to Model A.

6) Improvements in overall eductor performance and reduction in exit plane temperature appear feasible by optimization of the angled diffuser design to account for maximum film cooling effectiveness.

VII. RECOMMENDATIONS

Considering the experience gained in the conduct of this research and specifically in view of the results obtained, the following research recommendations are offered for future investigations.

1) Diffuser ring number one should be extended to a length approximately twice the current length to attempt to reduce the high temperature noted at the end of the shroud.

2) The cross-flow fan should be modified for two speed operations and other nozzle designs should be tested to provide a range of cross-flow velocities for model evaluation.

3) Further investigation of the flow phenomenon at end around the model's shroud and diffuser assembly should be conducted to explain the noted intermittent degradation of film cooling effectiveness.

4) Additional research should be performed to determine the variation in induced tertiary air flow resulting from a modification in air mass flow rate.

62

63

••

•

Figure 2. Plan of Uptake, Hodel, and Heasurement Plenum.

ł

Figure 3. Dimensional Diagram of Slotted Mixing Stack.

•••

Schematic of Model A - Shroud and Diffuser Rings. Pigura 4.

18 4 2

1

Schematic of Model A Modified - Shroud and Diffuser Rings. Pigure 5.

.

1000

Figure 6. Characteristic Eductor Dimensions.

Figure 7. Gas Generator Arrangement.

A DESCRIPTION OF THE OWNER OWNER OF THE OWNER OWNER OF THE OWNER OWNE

∎ . ..••;

69

ţ

Figure 8. Schemetic Diagram of Pressure Heasurement System.

land tan

. :

• -

.

70

I

ł

Schematic Diagram of Temperature Measurement System. Figure 9.

. .

. . .

5

ううたいどう

١

Þ

1

Figure 10. Gas Generator Blectrical System.

,1

-

Figure 11. Gas Generator Fuel System.

ł

149 80

AL NO.

•

•

73

Figure 12. Gas Generator Control Station.

A SPACE AND DE

112

÷

Figure 13. Hain Power Supply and Control Panel.

ŧ

1

75

÷

1

ţ

ایا راد ر

•

76

,

ì

i

1

,.**`**)

•

••

,

•

Figure 16. Air Supply Standpipe and Valving.

į

.

-

ŧ

ist of

Figure 17. Combustor Air Piping.

•

į

Figure 18. Uptake Section.

1

!

. .

Figure 19. Carrier Air Compressor.

i

ł

and the second

343-

-

81

.

Figure 20. Air Compressor Suction Valve.

ge wars in

A.

Figure 21. Air Cooling Bank and Bypass Discharge.

!

 $|\mathbf{f}|$

int in

83

1

ł

Figure 22. Cooling Water Pump and Tower Pan Controllers.

1.1

. .

Figure 23. Auxiliary Oil Pump Control.

85

.....

,W j

• •

The state of the second second second

1

ł

 Figure 24. Fuel Pump Installation.

ज़

.

••••

. .

ł

18

Figure 25. H. P. Fuel Piping and Valves.

Figure 26. Model Installation.

Figure 27. Model Alignment.

The st

Figure 29. Model A Entrance.

त ||

.

91

,

Figure 30. Model A Exit.

Ł

Figure 31. Model A Installed.

Pigure 32. Crossflow Fan with Model A Installed.

· n- A - 3 --

Figure 33. Exit Plane Temperature Measurement.

¢.,

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS - 1963 - A

بس

......

Figure 34. Tilted-Angled Nozzle Plate.

State.

ł

Figure 35. Tilted Nozzle Geometry.

97

.

External Temperature Measurement Points, Model Figure 36.

.

•

.

1

i

小川のないのない

•

-

•

Figure 40. Rotameter Calibration Curve.

AND THE R. P. LEWISCON

Figure 41. Air Mass Flow Rate Calibration Curve.

103

,

••••

Pumping Coefficient, Hodel A (175 P) - No Crossflow. Figure 43.

1.1

1 - U 2000

100 -

• •

. .

106

1

-

T L

Pumping Coefficient, Model A (950 P) - No Crossflow. Figure 47.

いたまでは東京の時代の政治のないというであると

.

Pumping Coefficient, Model A Mod (850 P) - No Crossflow.

Pumping Coefficient, Model A Mod (850 F) - Crossflow. Figure 50.

ł

Pumping Coefficient, Model A Mod (950 P) - No Crossflow. Pigure 51.

113

,E

ł

114

.

ŝ

記録の

Ł

÷

ł

۱

ŧ

|

į

١

ļ

i

ni.

,*'

C. C. C.

j.C

1

İ

i

Hiring Stack Temp., Model A Mod (850 F) - No Crossflow. Pigure 58. ł

ŧ

120

İ

.

ŝ

1.6

ł

İ

126

.

1_27

į

15

- And -

ł

ţ

1

j£

ŧ

ł

ŧ

١

ł

131

ŧ

,.

.

- ISA -

...

, • ¹1

ŧ

ł

.A.

134

.

Type T External Temp., Model A (850 F) - Crossflow. Pigure 73.

3

4

.

. . • •)

•

) Then the

.

ł

į

ų?

143

ł

•

ŧ

• • •

1

l

ŧ

.....

2845

18

ļ

ł

.

4

;

Omega Ext. Temp., Model A Mod (850 F) - No Crossflow. Pigure 85.

- 210

Ł

L

i.

l

I.

t

È

ie)

shit.

İ.

L

150

-

jS.

.....

.

ŧ

ļ,

.

ł

Į

1

ł

ł.

ł

Exit Plane Temp. Comparison, Model A Mod (950 F). Figure 99.

161

Í

TABLE I Rotameter Calibration Data

Rotometer	Weight	Weight	Net	line	Mass	Flow
Reading	Eapty	Full	Reight_		Flow	Rate
	_ (gI-)	_ (gI-)	(gI.)_	(sec.)_	1bm/sec	GPH
08	67.0	29.5	37.5	120	0.689	0.345
09	84.0	30.7	53.3	120	0.979	0.490
10	103.3	31.8	71.5	120	1.314	0.657
15	173.1	31.1	142.0	120	2.609	1.306
20	256.7	31.6	225.1	120	4.136	2.070
25	381.4	31.9	349.5	120	6.421	3.214
30	520.0	31.8	488.2	120	8.696	4.489
35	342.9	32.4	310.5	60	11.41	5.710
40	397.8	32.1	365.7	60	13.44	6.725
43	423.3	32.1	391.2	60	14.37	7.194
40	757.7	32.4	725.3	120	13.33	6.659
35	651.5	31.5	620.0	120	11.39	5.701
34	629.3	32.1	597.2	120	10.97	5.491
33	603.2	32.8	570.4	120	10.48	5.245
32	582.5	32.4	550.1	120	10.11	5.058
31	558.8	32.3	526.5	120	9.613	4.841
30	530.0	32.0	498.0	120	9.149	4.579
29	500.8	32.3	468.5	120	8.607	4.308
28	475.4	32.2	443.2	120	8.142	4.075
27	450.5	31.4	419.1	120	7.700	3.854
26	426.5	32-4	394.1	120	7.240	3.624
25	395.9	31.2	364.7	120	6.700	3.353
20	267.1	32.2	234.9	120	4.316	2.160
15	169.0	31.9	137.1	120	2.519	1.261
10	104-6	31.9	72.7	120	1.336	0.669
08	72.1	316	40 5	120	0.744	0.372

NOTES 1) Average fuel temperature 61.7° P 2) Fuel: Number two diesel; specific gravity = 0.862

TABLE II

Thermocouple Display Channel Assignments, Type K

<u>Channel</u>

<u>Assignment</u>

1	Exit Plane (IEP)	
2	Plenum Ambient Temp.	
3	Uptake (TUPI)	
4	Burner (TBURN)	
5	Nozzle box at the position	
	of the removed burner	
6	Mixing Stack, Thermocouple (10)
7	Mixing Stack, Thermocouple (S	5)
8	Mixing Stack, Thermocouple (9	9)
9	Mixing Stack, Thermocouple (8	B)
10	Mixing Stack, Thermocouple (*	12)
11	Mixing Stack, Thermocouple (7)
12	Mixing Stack, Thermocouple (4	4)
13	Mixing Stack, Thermocouple (*	1)
14	Mixing Stack, Thermocouple (6	5)
15	Mixing Stack, Thermocouple (3	3)
16	Mixing Stack, Thermocouple (*	11)
17	Mixing Stack, Thermocouple (2	2)
18	UNUSED	

163

ų(

Å

TABLE III

Thermocouple Display Channel Assignments, Type T

<u>Channel</u>

1

ł

<u>Assignment</u>

1	Fuel Supply
2	Ambient Air (TAMB)
3	Inlet Air Supply (TNH)
4	UNUSED
5	Model A, Diffuser Ring 2
6	Model A, Diffuser Ring 3
7	Model A Shroud, X/D=0.625
8	Model A, Diffuser Ring 5
9	Model A Shroud, X/D=0.750
10	Model A, Diffuser Ring 5A
11	Model A, Diffuser Ring 5B
12	Model A, Diffuser Ring 1
13	Model A Shroud, X/D=1.068
14	Model A Shroud, X/D=0.125
15	Model A Shroud, X/D=0.375
16	UNUSED
17	Model A, Diffuser Ring 4
18	UNUSED

M.

TABLE IV

Model Characteristi	CS
---------------------	----

1.5 7.122 1.0 1.0	1.5 7.122 1.0
7.122 1.0 4	7.122 1.0
	•
0.15	0.15
0.101 10	0.101
0.188	0.188
0.5	0.5
4 tilted-angled (15/20) 2.5	4 tilted-angled (15/20) 2.5
	0.15 0.101 0.188 0.5 tilted-angled (15/20) 2.5

TABLE V

Pumping Coeff. Data, Model A (175 F) - No Crossflow

HUT RIG PERFORMAALE 000 5 Hing Diffusen

1141 : 174

UAIE: 10 56P 83

EST 4 INCHES 1 2.25 INCHES 1 INCHES NUMBER OF PRIMARY NOIZLES: Primary Noizle Diameten: UPIAAA Diameten: Ame artio: Aviau: 2:50 Camas: 1:3941

WIXING STACK LEAGTH: 7.42 INCHES WIXING STACK DIAMETER: 7.122 INCHES WIXING STACK L/D: 1.50 STANDUF MATIO: 0.50 AMBIENT PHESSURE: 29.68 INCHES NG DATA TAKEN BY R.E. STAPLES

9	JI I	024 M20 10 M20	111 Deg F	MDIA	TBUEN DEG F	1041 DFC F	TAWU Deg F	PUPT 14 M20	PPL N 1 N H20	SEC AREA So In		
-	1.00	12.50	147.1	0.0	186.0	1.4.0	1.01	5.30	2.90	000.0		
N	1.00	12.50	167.1	0.0	191.0	1 85.0	11.4	5.60	2.55	1.167		
-	3.10	12.40	147.4	0.0	101.0	0.691	2.12	96.5	21.2	463.L		
•	91.6	12.40	187.4	0.0	181.0	185.0	70.d	6.20	1.45	106.4		
ø	91.6	12.40	127.9	0.0	181.0	0.681	1.17	6.55	1.55	[• • • 0		
٠	01.1	12.30	1 4 6 . 0	0.0	182.0	1 86.0	11.4	6-9Q	1.25	282.11		
•	1.10	12.30	1.841	0.0	182.0	196.0	10.4	7.10	1.00	14.126		
•	1.10	12-30	148.0	0.0	181.0	184.0	2.1.5	7.50	04.0	51.293		
•	91.6	12.30	188.4	0.0	182.0	1.06.0	13	1.70	00	928 - 45		
0	3.10	12.30	168.5	0.0	102.0	1 86.0	1.17	7.80	07.0	52+425		
=	02.1	12.30	148.5	0.0	182.0	186.0	11.4	26.1	01.0	294.43		
2	3.20	12.30	149.4	0.0	1 2 . 0	187.0	71.4	A.00	00	000000		
Ţ	L RV/S	#F L ⊡M/S	LRP/S	LUN/S	u 3	4 2	1¢	61/64	40.00 e 4	UP F 1/5	115	ru 175
-	1.494	0.000	1.184	0.000	0.00	0.266	0.624	121.0	000.0	222.8	86.9	74.4
~	1.489	0.000	1.489	560.0	••)•0	165.0	6.62.0	0.244	0.054	6.525	1.69	74.4
-	454.1	0.040	1.484	0.170	0-120	0.207	1.423	242.0	0110	1.225	5.19	2.81
•	1.484	0.000	1.484	0.2.9	0 . 168	0.160	6.423	0.214	0.154	2.22 .0	1 00 . 9	1.01
n	1.434	0.000	1.484	0.354	9E 2 • 0	0.143	0.623	•/1.0	612.0	221.7	105.9	18.0
٠	1.474	000-0	4.478	0.4.0	605.0	0.116	1.42.0	0.1.1	112.0	5.0.5	9-601	17.0
•	1.477	000-000	1 17	0.440	0-236	640.0	0.472	611.0	0- 104	220.7	112.4	11.7
£	1.474	0,000	1.47U	0.649	0+40	0.047	0.422	1 50 * 0	[0**0	220.5	8.911	17.6
•	1.417	0.000	1 1	367.0	104.0	₩70°0	0.422	*F0*0	0.456	1.022	4.651	11.6
0	1.471	0.000	1 1	0.769	0.534	610-0	0.623	0.023	00**0	2.0.2	124.6	17.5

160.0

0.0628 0.0628

0.0630

UPACH

9.0621

0.0624 0.0424 6.0623 0.0623 0.0623

17.5 17.6

126.6 6-121 1-98

2.0.2 5.015

0.023 110.0 0.000

0.623 0.023 0.421

610.0 0.049

45340 0.458 0.600

0.789 0.642 0.000

0.000 000.0

1.479 11 - 1 1

1.476

0.000

11 1.474

0.00.0

l

•

ų,

0.0623 0.0023

1..1

220.7

0.+29 000-0

TABLE VI

Pumping Coeff. Data, Model A (650 F) - No Crossflow

est 1101 Afg 116 DHMANCE 600 5 Hing Ulffusta

0c4 :19U1

								A SAKFN U	Y R.E. STAF	LE S		
5	16: 30 A	Uc 43						ING STACK	LENGIN: DIANE TEN:	1 . 22 1 MC	HES INCHES	
255	MELH OF P 1944RY NOL 14KE DIAM	4 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1224555 2.	22 INCH	s s		73%4 5 ****2	INC STACK	10: 0-50 5041: 30-50	0 11 11 11	J I	
13		1								F.C. AREA		
			14	4014	TUUEN	1001	TAMI DEG F	14 H20	11 1120	41 D5		
æ	94 N 1	UEL 1120	DEGF		DE 6 P		50.00	5.00	2.48	0.000		
	0071	0.20	9.251	25.0	0-3611			5.30	2.20	1.167		
		6.70	165.7	0°57	0.2811	651.0		6 . NO	62.1	463.6		
N		0 C . V	1 46.0	25.0	0.3911	05J.U	1.00		1.47	101.2		
m			1 4 5 4 9	0.25	0-2011	454.4			<u> </u>	644.8		
•	7.10			0.42	0.4911	454.4	40.7	11.4		585.11		
'n	3.10	6.20			0.192.0	0.440	8.44	6 - 30	87.1			
4	1.10	6.20	1 = 6 . 4				1.04	4.50	64.0	14.120		
	1.10	6.20	1 46 - 2	25.0	119:-0			6.90	0.4.0	27.293		
•		6.20	146.5	25.0	0.4911	0.000		7.10	62.0	450.46		
•			146.2	0.55	0.5911	0,550	2.30		7 T T	52.425		
ø	02.2	0. ° 0			0191.0	0.969	66.0	1.20		C 011		
0	1.20	6.20	146.6			65640	60.2	7.20	0.12			
	92.40	6.20	146.3	52.0			47.54	7.30	0.00	\$ \$ \$ \$ \$ \$ \$		
. !		6.20	146.9	25.0	0.2911							
N	-								44.901au	رو	I.	n n
			,	•	*	•	•1	*1/ ad		F1/5	5114	
4		af 1 114/5	184/5	LUN/5				0.127	00000	205.6	100-0	63.7
			440.1	0.000	003.0	0-124			0.061	205.2	110.1	5-55
-				0.040	4.685	0.137	0.474	062.0		205.0	9.611	43.6
N	1.044	100.0			9 . 154	0-1-0	5	4c.2.0			1-211	9.1.6
-	1.1.50	0.007	1.001			0.104	6.4.0	0.220	0.1.0			41.5
	050-1 1	0.007	100.1	cf2.0			1.473	•/1/0	0.220	2.542		3.10
•	020-1 1	100.0	1.457	0.112				0.142	182.0	265.0		
		0.047	1 - US 7	1.1 . 0	167 * 0	90.0		0.116	1.122	204.9	120.1	••••
-		100.0	1.057	61410	944-0	~<0.0 ł			1.402	204.8	9.151	93.4
			150-1	0.542	U. tot	\$70.0 (214-0			205.1	1 10 . 1	43.5
	n50.1 B			0.663	0-645	410-0 5	0.172			202.2	8-0+1	41.6
•	4 1-452	170-0			101.2	110.0 0	11 ** 0	0.022	cnc*0		6.241	43.6
4	100-1 0	0.007	840.1		10.12	100.0	11 4.0	010.0	•25.0			6.19
-	2001 1	0.007	1.054			9000	1 0.172	0.00.0	0000			
•	150.1 -	1001	P50-1	100.0		7						

1120.0 1720.0 4120.0

1.007

120.1 51

•- --

#140.0 1740.0 4740.0 4740.0 1740.0 1740.0 3740.0

UPACH

TABLE VII

} ,

ţ

Pumping Coeff. Data, Model A (850 F) - No Crossflow

MUT RIG PLAFONWANCE 444 5 RING UIFFUSLR 6 **6** 9

11411 850

(1446):1153 2.25 INCHES 7.510 INCHES 1.250 PRIMARY MOZLESS 222LE DIAMETEN: METEN: 7.510 IN NUMBER OF PRIMARY NUMBER OF PRIMARY NUMBER OF PRIMARY NO.2215 DIAM UPIAKE DIAMETEM: 7 Are a watio. Am/am: UATE: 31 AUG 83

WIXING STACK LENGIN: 7:22 INCMES WIXING STACK DAMLER: 7:122 INCMES WIXING STACK DAMLER: 7:122 INCMES WIXING STACK LUC: 1:50 AMLIENT PHESSLAR: 30.47 INCMES MG DATA TAKEN UV R.E. STAPLES

3	APAI 1.	1014										
g	N N N	10FLPA	1 A M D L G F	¥10H	TULAN Dt G F	1007 UEC F	1 AMU De G F	07H N1	024 11 14 420	SEC AREA		
			144.1	2.05	0.3211	0.1.0	6.43	6.70	2.85	007.0		
- •			163.9	2.9.5	0.1211	846.U	68.7	1.00	2.55	1.767		
•		5.30	144.2	29.5	0.1211	840.0	64.4	7. 30	o2•7	1.5.6		
•			9-641	29.5	1152.0	0.144	44.1	7.60	54. I	101.4		
• •		91.5	164.2	29.5	0-3511	847.0	64-3	1.90	1.57	6.44.3		
•		11.1	1.4.1	24.5	1147-0	844.0	4.4.4	H.20	1.27	11.585		
•			144.3	29.5	0-2511	d4a.D	64.1	8.00	50-1	14.726		
•		01.40	9.691	29.5	1151.0	847.0	4.64	A.40	0.55	27.295		
		97.5	[]	29.5	1145.0	0.944	64.3	01.0	0,.0	94.45		
• •			144.1	2.91	0-1+11	0 • 5 • A	61.9	02.0	0110	54.425		
				5.9%	0.3211	0.248	67.4	02.0	51.4	204-40		
		95.5	4.4P	202	1152.0	851.0	61.0	9.30	0.00			
2	4	u,	9	#5 24.44	;	8 1	¢ 1	61/0d	10100.44	UP F1/5	UN 175	5175
	5/W2 1				007.0	0.146	C04.U	0.101	000-0	243.5	117.2	101.0
-	6 NY - O	600°0			10,10	1110	40 0	0. 124	0.045	1.125	121.6	102.8
~		0.00	****				404-0	0.240	0-121	8.245	125.4	102.7
-	f 87 • 0	0.009	765.0					0.248	1110	9.245	124.0	102.5
•	0.483	0.004	266.0	fc2*0		010.0		0.149	0.144	0.1.45	14.2	102.6
4 1	566.0	600.0				540.40		0.161	101.0	243.0	1 36.2	1.12.0
٠	587.0	0.044			0.520			0.111	0.349	8.542		102.8
•	*87 * 3	600*0				0.020	0.404	010.0	10400	242.3	144.6	102.6
¢		670°8			0- 751	0.015	00	n. o .M	4U5.U	2.245	152.2	102.7
•		600.0				010-0	0.40.0	\$70.0	0+0	242.9	454.9	102.5
2	0.480	600.0				0-00W	0.404	0.014	0+2+0	8.542	1.121	102.8
-	0.440	0.009	C65.0					010-0	00000	243.2	117.0	107.9
12	496 - A	0.009	504.0	0.000	0,000	~~~~			, , , , , , , , , , , , , , , , , , ,	1		

0.0584

0.0540

の方法の通知

,1°)

•

0.0540

0.0587

1820.0

9450.0 0.05A6

9950·0 2420.0

UPALH

0.0558 0.0584 44CD.0

TABLE VIII

Pumping Coeff. Data, Model A (850 F) - Crossflow

MUT RIG PERFORMANCE 5 RING UTFFUSER

028 :1401

IN CROSS-FLD.

DATA TAKEN UY R.E. STAPLES

MUMMER OF PRIMARY MOZZLES: 4 Primary Mozzle Diameter: 2.25 inches Primary Mozzle Diameter: 2.25 inches Leibares: 7.510 inches Lara Anito: 40/Api 2.50 Lamma: 1.5010 UATE: BS SEP #3

0.1.0 9.101 101.5 1.01.7 101.6 107.8 0.101 [.[0] 103.5 103.7 101.7 F1.5 WIXING STACK LENGTH: 7.22 INCMES WIXING STACK UTAMETER: 7.122 INCMES WIXING STACK UTAMETER: 7.122 INCMES WIXING STACK LUD: 1.50 STANDOF MATU2: 0.90.59 INCMES HG AMPIENT PRESSURL: 29.59 INCMES HG 136.4 1-251 154.3 120.5 0-0+1 130-4 1 30 - 0 1 . . . 1 117.8 122.3 1.5 2.5 99.459 2.515 1.4.4 1..120 192.15 245.3 245.6 SEC AREA 000-0 1.167 462.6 101-5 11.595 52++25 594.492 *** 245.0 244.3 244.9 245.4 8.445 245.1 245.5 5175 5175 #0100.44 58C.J 8-1-0 121.0 0.260 0.120 0.460 225.0 245.4 225.0 000.0 9.0.0 PHL N 11 H20 1.16 14.0 9. 32 02.0 ¢1.15 00.00 21.15 1.75 1.42 3.05 2.12 2442 0.025 0.041 0.150 0.278 0.226 0.345 (¢(. 0 416.0 0.104 91/0d PUPT IN HEO 7.70 8.50 0. 40 1.90 8.40 A. 70 9.90 0 • • Q 7.00 7.40 6.10 6.64 504-0 10**0 904-0 104.0 60..0 50413 804-0 +0+-0 804.0 104-0 . 74.0 74.6 TAVU DEG F 74.5 2.4.2 75.6 70.0 75.4 78.5 1.... 14.0 7 . . 7 75.4 0.128 0.11.3 0.092 0.075 1.061 10.0 010-0 010.0 0.1.4 0.161 860.0 653.0 855.0 0-150 0-045 9-958 0-924 0.128 9-958 850.0 0-848 9-1-68 ĩ 1 up 1 Lf 6 1 0.474 543-0 0.711 4- 284 0.612 1194.0 191.0 0- 26¥ 192.0 101 -0 1191.0 0-2611 0.3915 1184.0 0.+11 003.4 0-5211 1105.0 1194.0 0.5.11 1186.0 1175.0 . THUFN DLG F 0.756 0.746 L 84/5 0.0.0 870.0 0.184 0.240 0.374 544.0 115.0 0.647 0.11 0-42 28.0 28+0 0.15 21.0 0-65 21.0 48.0 0-61 **NOIA** 28.0 21.5 1 45.3 145.5 0.291 [.24] 1.441 195.0 1.521 195.2 1-201 0.467 191.10 9.467 102.0 996.0 TAH Dec F 5.491 Ter's 944.0 005.0 102.0 0.566 4.401 204-0 UFLPA IN N20 5.30 5.30 5.30 5.30 5.34 5.30 0.048 5.30 5,30 5.30 0.048 5.30 5.30 5.30 0.00A 0.006 0.008 0.000 800°0 0.048 Lue/5 0.000 0.000 . . 3.40 9.40 3.45 3.40 J. 40 3.40 ••• 0.454 957.0 •••• 0.460 9.8.5 944.0 959-3 8.2.0 3.5 1.457 157.3 0. 154 Ĩ 9 0 ÿ 2 N

1920.0

1920-0

1920-0

A.101

114.0

007.0

010.0

C04-0

9-245 245.5

610.0

• • • • • •

0.008 0,040

0.472 4.504

......

895 ° 0 897.0

0.000 0.048

044.0 144-1

= 2

010.0

Į

Ţ

1. 198

1920.0

1920.0

1920.0 UFACH

7650-0 2650.0 2920.0 140.0.0 1640.0 1220.0 TABLE XI

ŧ

Ì

•

Pumping Coeff. Data, Model A (950 F) - No Crossflow

.

066 :1401

MUT HIG PERFONDANCE 988 5 RING DIFFUSER ...

DATA FAKEN LY P.E. STAPLES

							5			7.22 146	HE S	
L V I		CP 43	LES:				, 2 :		DIAMETER:	0 1.122	וערענ ז	
233	MANY NO.	216 01446 6164: 7.	2.50 1.CT	25 INCH			3 40 4		1101 0.50 550461 30.	SU INCHES	, h6	
Ĩ		556							1	FC AREA		
			1	A 1 DB	TUUEN	TUPT	TANU Dec F	PUPT 14 420	11 120	V1 05		
Ţ	H H	UELPA In H20	046 F	7	DEGF			6.84	1.00	0.404		
		2.00	104.2	5.16	1255.4	951.0		7.10	50-2	1.767		
. 1		2.00	4.4bi	5-17	1255.0	0.064		7.40	2.10	1.514		
• •		10.2	144.7	5.11	021	0.944		D7 . 7	2.45	100.2		
•	01.4	5.00	184.6	5.16	1257.0	0.345		00.4	1.61	8.44]		
• •		1.00	1419	511.5	1257.0	954.0		. 3u	56.1	C84.11		
n •		00.5	9.441	5.16	1255.0	0.026		0 - 5 U	1.08	14.120		
q '		5.00	144.9	31.5	1.252.0	951.0		0.0	24.0	295.55		
		5.00	8.481	5.16	1.255.0	453.0		9, 10	0-25	34.454		
		1.00	1-241	2.15	1255.0	954.0			9.20	5225		
•			1.5.1	31.5	1.56.0	954.4	11.0	0 * * F	6.15	294.48		
•			165.3	5.16	1256-0	451.0	e.L/		01-0	*****		
: :	07.4	00.6	146.0	5.16	0-5521	151.0	13.4	94.6	2			
2								•		d) d)	H I	3
		,	4	5	4 F	¢ d	4	21/04		F1/5	F1/5	
4	4/10 1/10	LUV/S	LBY/S	184/5			0.17	7 0.37+	00000	1.705	122 P	
•		01010	0.405	0.040	0. 604			111.0 4	440.0	346.5	127.1	c•/01
• •		0.010		840.0	a. 102	671-0		H 0.24A	+~1=0	300.0	6.01	101.4
. "		0.010	444.0	0.143	C. 140		11.0	142.0 8	541-0	305.9	535.6	101.5
•	6.435	010.0	0.464	0.244			11.0	+02.0 B	0.248	345.7	1 34.0	
	. 65 . 0	010-0	446.0	0.167	187.0			11 0.102	105.0	145.7	1.2.1	
• •		010.0	0.55*	0.454	01			211-0 R	1.152	304.0	1 • / • 1	
•	0.50	6.010	0.950	0.522	5 · · · ·		6.0	0.005	6.4.9	306.9	154.1	
	0.450	010.0	9.466	0.6/2	0. (96	210-0		10.0 11	0.1.0	0.406		
	454.0	010.0	u. 965	9.4.0			0.5	,70 0 11	5 0.539	305.8	1 - 0 - 1	
ä	9.456	010-0	845	671 0		0.007	()	10.0 11		305-0	6.24t	107.5
Ξ	0.56	010-0	6 9 9 9		0.10	0.000	6.0 0	11 0.00	0.000	31001	•• > > •	•
2	255.20 1	010-0	596.0	· · · ·	5							

1920.0 2420.0 2920.0 2920.0 2920.0

Ņ

•

the second second

...

£ 920,0 \$920,0 \$920,0

6940**.0** 1920.0

UPACH

TABLE X

÷

į

Pumping Coeff. Data, Model A (950 F) - Crossflow

HUT RIG PLHFOHMANCE 5 HING UIFFUSER • * •

...

026 :1401

IN CHOSS-FLOB

WIXING STACK LENGIN: 7.22 INCHES WIXING STACK DIAMLIER: 7.122 INCHES WIXING STACK LIU: 1.50 DATA TAKEN UY R.E. STAPLES

1 V C	E: 04 5	EP 43						ING SIACE	LENGIN:	7.22 IN	CHE S INCHES	
	THE OF T	REMARY NO	1224555 1642 2.	25 INCI	if S		11	UNC STAT				
	ANE DIAN	15 16 H: 7.	1041 05.7	ŕ s			15	LENT PHE	110: C.30	68 INCHE	5 НС	
Y		944								A 404 Y		
			HAT	ADIA	Venut	Lant	1 AMUS DEC F	1404 14 M20	641 N 20	50 IA		
7	N NC	1N H20	04.6		066 F			7.20	52.1	000-0		
-	05.4	4.90	182.5	31 •5	1197.0	a • r c .		7.50	2.45	1.167		
N	00.4		147.6	5.16	1196.0			7.80	4.60	AE2.2		
-	04.4		102.8	31.5	1195.0	0.545			1.10	4.401		
•	05.4		1.691	5.16	1201.0	950.0	72.2		0.8.1	144.8		
<u>د</u>	0, •	76.4	1.631	31.5	1 206.0	0.124	0,27		05-1	686.11		
•	4.50		163.3	31.5	1204-0	9-156	1.17		57.1	14.720		
, •	94.4	4 . AQ	103.5	31.5	1206.4	9-756	12.0		24-0	195.15		
•	04	4.80	1.83.7	ĉ. (L	121210	454-0	1.21			958.96		
, e		4.60	163.2	5,11	1215.0	950.0	2.17		6	52.425		
			183.5	2.16	1212.0	957.0	71.5	10.01	91 0	200-44		
			E-161	5.12	1216.9	458-V	71.6	10.04				
-	00.4			5.11	1 4 1 6 . 0	9.144	21.5	10.19	0010			
21	••••											
		1	ł	5	;	ф d	10	Po/12	we Too. 4 +	175 5175	r 1 5	515
ž	LBM/S	LUM/S	LAN/S	L.BW/S				0.405	000.0	9.116	5.451	109.1
-	0.934	010.0	944.0	0.000	0, (00	0.153			170.0	107.4	8-121	9.741
~	0.424	010.0	9.439	0.102	C. 104	0.142			0.133	307.1	132.0	107.5
-	929.0	010.0	6.93	0.142	0, 0	0.125			0.1.0	0.7.00	134.0	107.4
•	4.428	010.0	0.434	0.245	102.4	0.111			0.268	306.9	6. I 1 I	101.4
•	0.428	010.0	969-0	0.146	412	690.0			111.0	306.6	145.3	[.70]
•	0.428	010.0	0.438	9.477	0.504	610.0			445-0	106.6	144.0	107.3
•	825-0	010-0	U.438	0.554	0.540	0.060			104.0	906.9	150.0	147.5
•	0.428	010.0	0.430	9.723	0.171	0.010	0.5.0		844.0	1.1.1	161.7	8.701
•	0.450	010.0	0.439	0.744	C = F = D	10.0		0.020	0.572	101.3	163.2	107.6
61	0:430	010.0	5.434	0.427	0.671	110.0		610-0	282.0	307.5	164.2	107.7
	014.0	010.0	0.934		0. 501			0.000	00000	8.706	122.5	107.8
12	924.0	010-0	0.939	0.0.0	U. COU	0.000						

2920-0

2650-0

£920.0 1920.0

2920.0

1920.0 1940.0

*650*0 .0.044

0.0002 UPACH

1.0.04

1940.0

<u>.</u>

TABLE XI

4

•

Pumping Coeff. Data, Model A Mod (850 F) - No Crossflow

1001: 850

+++ 111 ALC PLAFOHMANCE +++ 6 41NU UIFFUSER

							VQ	IA LAKFN U	Y R.E. 51A	PLF5		
140	161 01 S	64 83 101889 NO	777ES\$				22	KING STACK	DIANGINI DIANGTER:	1.22 IN	LHES INCHES	
	10144 V0144	E 15 M 14 M	1642 24 510 1854 2.50					XING STAC	5046 : U 50	67 INCH	5 HG	
		1151.04	HAT.	ALON	MUUN	1001	1 AMU DE G F	1404 1 HZO	1 H20	50 14 ARLA		
4	1 N N N	1N 420	046 F		1 130		1.1.1	04.4	1.10	000.0		
	01.4	5.40	144.3	2.67	1 2020			00.00	2.70	1.107		
	4.10	5.40	169.5	5.95	1202-0	0.100		. 20	56.02	.5.5.6		
		5.40	9.441	2.95	1206.0	850.0	2.47		00-0	104.5		
7			150.2	20°2	1204.0	0.128	1.4.4					
•	••••			5.01	0.2121	8-258	1.1.4	DA. 1	1.01			
ŵ	• • • 0	5.40			0	9 - 74, 8	74.2	8.10	51.1	CPC. 11		
4		5.40	1.051				19.00	e. 10	01-1	14.124		
•	4.10	3++6	0-0-1	5.67	1201-0			A. 80	\$4.0	102.15		
	0/14	5.40	190.5	29.5	1207.0	0-+55			04.00	458.45		
¢			140.6	24.5	1215-0	9.458	15.4					
ð	4.24			. Q.	0.1021	0-458	15.4	9.10				
10	4.20	5.34				M51.0	74.1	9.70	0.15	201.00		
:	4.20	5.34	5-071	5.62				9.30	00			
-		5. 30	6.021	2.92	0.3611							
•										a	N	27
		1	2	,	ÿ	42	e 3	Pc/14		F1/5	+1/5	F1/5
E 1		104/5	L R V / S	1 : 4/5				0. Jub	0000	300.6	120.0	1 05.4
•	0.477	0.049	6 . 4 G S	9.000	0.00	151.0			0.051	2.006	1	105.3
•		0.0.0	201-0	0.047	0.699	161.0	104.9			9.900	124.6	1.05.1
N		000	0.985	0.182	C. 185	0-1-0	U.+04	0, 244		4.905	5.2EI	105.0
•				0.262	0.266	0.100	104.0	0.02.0			4-264	105.0
•	417.0			94F 6	276.0	0.045	001	0.209	4.250			0.501
ø	414	0.009				0.009	10.0	0.169	405.0	21912	8.14	
٩	0,470	0,049	587.0	24.0			104.0	0.1.40	455.0	** 662	1-0-1	0.co)
•	274.0	0.009	+U5-0	0.518	0.520	660°0		0-049	0.46J	299.5	153.0	105.1
	119.0	0.009	002.0	0.6/9	0. 684	u?n•0			005.0	249.5	1.551	105.1
: 6	110.0	0.009	0.480	561.0	0. 742	0.015				246.3	1.101	1 0
	202.0	0.004	0.470	0.746	ć03.U	010-0			582.0	245.9	1 - 4 - 7	101.8
		600-0	919.0	0.A45	0.605	0.00.8				9-295	110.1	103.8
-		000	0.470	0.00.0	0.000	0.00.0	0 * 0	000110				

6660.0

107-0 11 12-0-45 12-0-45

,eÀ

1900.0

0.000

0 . 0 0 0 2 0 . 0 0 0 1 0.0000 0.0000 0.0000 0.0600

0.0602 HJVAN

1920.0 0,0404

TABLE XII

1 ;

,

.

i

•

•

Pumping Coeff. Data, Model A Mod (850 F) - Crossflow

... HUT RIG PERFORMANCE 6 RIN ULFFUSEN ...

1071: 850

DATA TAKEN BY N.E. STAPLES 1N CHUSS-FLD#

> MUMMER OF PHIMAWY NOZZES: 4 Mumer of Phimers: 2,25 Incmes uptake Diamers: 2,510 Incles damar: 1,3610. Am/apt. 2,50 Cammar: 1,3610. Am/apt. UAIE: 05 26P 83

МІЖІМЬ STACK LFNGIM: 7.22 INCMES Mixing Stack Ulanter: 7.122 Incmes Mixing Stack LU3 1.50 Mixing Stack: 0.50 Amhifmi Phi Ssure: 29-01 Incmes NG

g	91 1 4 1	011 PA	TAF Deg F	4104	TUUEN DEG F	1011	1 AMU Dec F	PUPT 1N N20	PPLA 11 1120	SEC AREA SC IN			
-	03 °T	5.40	148.0	29.5	0.1911	84/.0	9.67	Q.4.A	2.45	000-0			
•	J. 40	5.40	149.0	5.95	0-1011	0.128	1-67	6.AU	01.2	1.767			
•	00.4	5.40	148.1	2.92	1414.0	851.0	72.6	6.90	2.40	3.534			
•	•••0	5.30	146.5	2.95	1194.0	846.0	72.6	7.20	61.2	105.02			
e î		5.30	146.8	29.5	1204-0	0.748	٤.٤٢	1.50	1.72	8++3			
٠	• • 00	5.30	144.8	29.5	1206.0	0.748	73.6	7.80	04.1	242.11			
۴	4.00	5.30	169.0	24.5	1201.0	854.0	7.67	90-8	1.15	14.126			
•	•. 00	5.30	148.6	29.5	0.6121	850.U	•• • • •	9.64	84.0	612.75			
•	4.00	5.34	149.0	20.5	1212.0	d52.0	74.6	H. AQ	25.0	39.459			
2	• • 00	5.30	1.941	2-02	1214.0	455.Q	4.61	A. 90	0.20	52-425			
Ξ		5.30	169.4	29.5	1.114.0	0.456	1.67	0°*6	0.15	294.43			
2	• • • •	5.30	1.941	2.95	0*5121	856.0	72.5	9. 10	00	00000			
۲ ۲	LRM/S	LUM/S	LAVIS	L64/5	u 3	÷	4	61/\$d	44.00.48	uP F 1 / S	511	5175 5175	HJ44N
-	414.0	0.009	E84.0	0.000	0 . 0 00	141.0	80+°0	0.170	000.0	249.2	2.411	0.101	0.0001
~	1.474	0.049	.98.0	140.0	0.694	161.0	000	0.345	1 40.0	0.00E	124.0	105.3	0.0601
-	214.0	0.049	• 46 • 0	0.144	9- 187	0.122	0.400	0. 100	0.176	300.2	126.4	105.3	0.0002
٠	C • 465	0.004		0.260	U• 267	0.111	104.0	0.212	0.180	246.3	1.111	1	2920.0
e	597 ° 0	0.009	419.0	1/1.0	0.381	0+0+0	100	0-240	4.25.0	246.2	1 30.0	101.9	4640.0
•	644-0	0.049	0.474	0.440	0. 172	0.073	101.0	6110	0.118	245.9	140.9	101.9	4440.0
•	299 - D	0.049	.47.0	0,5.0	0.544	0 • 0 • 0	0.407	0.147	0.160	245.9	[]	9.601	•640.0
•	1.465 u	0.009	414.0	0.647	0.716	050.0	101-0	A10.0	544.0	245.5	152.4	101.7	1920.0
¢	496 ° N	0.049	.47.0	0.755	4.176	110-0	101.0	0.041	1.22	245.8	155.4	101.8	1.920.0
9	596-0	0.049	.47.0	0.746	0.607	0.010	0.400	0.026	644.0	246.3	1.121	104.0	.920.0
:	997 - 0	0.049	514.0	0.844	Q. ŁÓO	0,008	0.400	610.0	584.0	246.4	160.0	1.4.1	0.0594
4	0.466	0.049	619.0	0.000	9.500	0,000	••••	0.040	000-0	246.9	110.5	104.2	•Pd0.0

1

i

1

1

i

1

- . • .

1.5

TABLE XIII

Pumping Coeff. Data, Model A Mod (950 F) - No Crossflow

HUT RIG PERFORMANCE 444 & RING ULFFUSER

1020 11401

1

DATA TAKEN UV N.E. STAPLES

NUMBER OF PRIMARY NOZZLES: 4 Primary Nozzle Diametek: 2.25 inches Primarten: 2.510 inches Auta Ratio. Am/Art: 2.50 Lamma: 1.3550 DATE: 04 SEP 03

WIXING STAFK LENGIN: 7.22 INCMES WIXING STAFK LUIAWETEN: 7.127 INCMES WIXING STAFK LUI2: 1.50 STANDUFF MATLUI: 0.50 AMBLENT PHE SSUR: 29.67 INCHES HG

Ŧ	PWH N HL	UELPH UELPH	INH Dec F	¥10H	TBUAN DEG F	1001 0FC 5	TANU DEG F	141141 14 H20	PFLN 18 H2G	50 1 P		
•			9.4.1	5.16	1226.0	0-25A	73.0	7.10	1.15	0.000		
			0	31.5	1224.0	451.0	12.1	7.40		1.167		
•				21.5	1225.0	453.0	13.4	7.80	2.4]	*62.6		
				5.11	1223.0	952.0	•.61	A. 10	2.13	108.4		
• •				5.15	1224.0	452.0	73.0	8.40	1.70	[
			144.4	2.16	1225.4	452.4	13.4	A. 7U	82.1	242.11		
•				2.16	1226.0	452.0	13.4	8.44	1.12	14.126		
•			2.491	5.11	1226-0	9-674	2.67	94,50	85 . 0	27.293		
• •	97		5.461	2.12	1236.0	0.554	1.1.1	9.70	05.0	34.454		
			154.2	5.15	0-3621	450.0	13.2	9. AU	0.20	624.75		
: :			5.421	5.16	1436.0	956.0	9.27	9.80	0.15	266-44		
2	0/		1.4.1	5.16	1236.0	150.0	2.25	10-00	00			
E Z			ar Ar/s	• 5 L 0 1 / 5	;	5 4	:	01/6d	#0100 . 44	UP F 1 / S	1/5	F175
•			0.124	000-0	001.0	0.155	112.0	0.411	00000	904.9	121.7	1.05.1
- (121	070-0	0.107	761.0	112.0	0.101	0.069	304.5	124.5	106.6
N I	A 1 A 1				0, 194	0-1-0	111.0	111.0	0.1.0	304.6	1 30 . 7	106.6
-				20 C T C	1.55.0	0.145	976.0	0.278	0.165	344.7	5.661	1.06.1
•				0.120	0-194	0.044	0.178	0.222	0.259	E. 40E	1.461	106.4
n 1				764.0	104 0	0.068	916.0	0.1.0	0.120	0.406	5.661	106.1
•			0.910	0.523	0.563	240.0	916.0	4*1-0	1.15.0	303.8	1.7.1	106.
•	0.000	010	0[2.0	0.040	161.0	0.027	176.0	0.072	0.470	1.105	1:451	106.4
	1.69.0	010-0	0.125	167.0	592 *0	510°0	116.0	0.033	[[:	9.1.8	F•151	901
	0 - A - A	01010	0.9.0	0.747	0.647	010-0	016.0	920.0	150.0	304.0	1.601	. 901
2	0.431	010-0	16.0	9+8-0	0.508	0.007	0.170	0-020	105*0	\$04.4	1.631	105.
				0000	0. 000	0.000	0.570	0.000	00000	304.8	121.7	106.
2	129.0	212.2	~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~									

ł

0.05B4 2020.0

P840.0 9-0585

UPACH

9950°0

9940.0 1960.0 1920.0 1850.0

9-9-C D = O ¥840.0

106.8 105.7

•

Stand Standard

ļ

...

1850.0

174

.

TABLE XIV

ł

į

ļ

•

Pumping Coeff. Data, Model A Mod (950 F) - Crossflow

... HUT RIG PERFORMANCE & Ring Ulffustr

1001: 950

1N CK055-FLOW

							٩a	TA TAKEN I	JY H.E. 51A	PLES		
3 21343	абя: 05 Umber 05 Burart 05 Firart 0180. Are 110. Are 110.	560 83 Primary NG 2716 01ame Mg 164: 7, Mg 164: 7, 3556 3556	72265: 2164: 2 2.50 Inci		ME S		11101	ALNC STAT	LFNGM: UIAMETER: L/D: 1-5 10: 0.50 550AE: 29	7-22 IN 7-122 61 Inché	ILME S INCHES 5 NG	
2	NAG	Neten	184 184 19	4104	THUFN DEG F	1041 014	TANG DLG F	PUPT 1N H20	PPLN 1N H2U	SFC AREA 50 IN		
	5 X X		9.191	3,16	1217.0	9.124	4.61	06.1	51°F	0.000		
- (91101	5.16	1231.0	4.624	1.01	7.64	08.2	1.167		
N 1			0 - 0 - 1	6. 1L	1226.0	955.0	76.4	8.00	2.45	1.514		
•			8.241	31.5	0,1231,0	954.0	17.0	8.20	2.15	109.4		
•				2.11	1236.0	451.0	70.0	8.60	1.72	1.44.5		
n -				5.1L	0.1231.0	474.0	76.1	4.90	0 • • 1	484 . 11		
•				5-11	1242.0	454.0	6.67	4.10	1.15	14.726		
•	• •			5-11	1242.0	0.146	70.0	9.60	6.53	CU5.15		
•	• • •			5.11	1.442.0	0,144	70.6	90.90	55.0	39.854		
æ	• • •				1213-0	450.0	17.0	9.90	02.0	52++25		
2	0	04.4		0 11	1217.0		11.6	10.00	\$1 • 0	766.44		
= 3	o		9-561	0.16	1215.0	0.842	17.4	10.00	0.00	\$ \$ \$ \$ \$		
	3	ia B	1 3	и: *	;	•	a 1	Po/10		UP F1/5	UM F 1/5	
2	L Rm / S	LUNIS	14475	LBW/S			678.0	0.401	000.0	9.99.0	4.651	1.401
-	0.430	010-0	56.7 " "	0000			0.174	0. 156	0.069	309.2	124.4	109.2
•	0.4.0	010-0	0.439	640°0			0.174	116.0	0.128	1.005	1 32 .9	108-4
n	162.0	010-0	343-3	CB1.0		0.10	046.0	0.273	0.163	C.90F	5.261	105.3
•	169.0	0.010	105.0	011-0		1 AU.0	0.174	0.214	122.0	309.5	1.2.1	100.3
ŝ	0.431	010-0			1.94	0,049	0.178	0.141	156.0	106.4	1.4+1	107.2
•	0.420	010-0	0.530	9.529	0.568	940.0	116.0	0.144	0.170	1.000	• • • • •	107.2
	0.5.0		0.430	0.617	0.126	0.027	0.377	0.071	0.474	106.1	8.c/l	107.2
L				0.754	0.410	0.016	0.171	0.041	0,524	306. 3	1.24.1	107.3
	125.0	010.0	. e 11	0.744	G. £ 4 2	010*0	0. 381	0.026	0.551	30.1.8	164.2	101.
0	0.421			en o		0.007	U. 34 L	0*0*0	190.0	30 1.4	4-241	1.00.1
-	126.0	500.0	1.5.10		0.00	0000	1.592	000	000.0	0.1.0	121.0	1 Uh . 2
2	127.0 .	670.0	>			1						

!

1

ł

1820.0 1820.0

0920.0 4820.0

1820.0

1920.0 0,0597

1920.0 UPACH

0920.0 0.0594
TABLE XV

Mixing Stack Pressure Data, Model A

	Axial Position	Mixinc (in. wat	Stack Press ter ref. to a	sufe atmos.)
Uptake Temperature	(F)		(N) CROSS	5FLJW)
Position A	0.00 0.25 0.50 0.75	-0.95 -0.50 -0.15 -0.05	-1.05 -0.55 -0.10 -0.65	-1.05 -3.52 -0.05 -0.10
Position B	0.00 0.25 0.50 0.75	-0.90 -0.25 -0.55 -0.40	-1.05 -0.30 -0.55 -0.25	-1.00 -3.30 -0.55 -3.28
**************************************		((CROSSF LOW)	- 4 () () () () () () () () () () () () ()
Position A			-1.10 -0.60 -0.15 -0.35	-1.15 -0.60 -0.15 -0.35
Position B			-1.10 -0.32 -0.72 -0.55	-1.15 -0.35 -0.67 -0.50

176

بيعاية برواحروته بالمراجع المنافع

法 ,))

Section 1. Seco

TABLE XVI

Ì

ł

,¹¹

3

Mixing Stack Pressure Data, Model A Modified

.

	Axial Position	Mixing Stack Pressure (in. water ref. to atmos.)
Temperature	(F)	(NO CROSSFLOW)
Position A	0.00 0.25 0.50 0.75	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Position B	0.00 0.25 0.50 0.75	-1.02 -0.28 -0.55 -0.53 -0.25 -0.24
	ومی رواند اور با ای مراد او ای ای ای ای ای ای ای ای ای ای ای ای ای	(CROSSFLOW)
Position A		$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Position B		$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

.

TABLE XVII

t

j. S

• •

Mixing Stack Temperature Data, Model A

Thermocouple Number	Position	MIXII	degro	es F)	peratu	e	
Temperature		NCF	850 NCF	850	950 NCF	-950 CF	-
6 7 10 9 16 11 12 14 15 8 17 13	0.00 0.41 0.41 0.36 0.46 0.61 0.76 0.89 0.89 0.89 0.89 0.94	101 106 67 195 158 74 198 226 230 258	1359 13658 2539 2014 3054 3074 3074 3074 30745	110 115 79 231 189 87 290 308 283 301 103 314	150 163 77 297 258 342 357 301 3457 345 87 347	123 1295 2631 100 324 3431 336 340 340	-
Ambient		65	67	75	75	69	

NCF - NO CROSSFLOW CF - CROSSFLOW

TABLE XVIII

Mixing Stack Temperature Data, Model A Mod

Thermocouple Number	Axial Position	MIXI	degro	CK Temj ees F)	peratura	3
Uptake Temperature		850 NCF		950- NCF	950 CF	
6 7 10 9 16 11 12 14 15 8 17 13	0.00 0.41 0.41 0.46 0.46 0.46 0.46 0.46 0.89 0.89 0.89 0.89 0.94	142 146 76 263 237 88 306 321 272 311 84 312	108 113 77 230 192 899 3098 3098 3099 312	162 1682 2992 2982 343 3586 3488 348 83 342	127 133 77 263 235 91 324 342 299 333 119 336	
Ambiant		73	69	73	76	

NCF - NO CROSSFLOW CF - CROSSFLOW

TABLE XIX Shroud and Diffuser Temp. Data, Hodel A

	POSITION	1	EVPERA	TURE		(F)
UPTAKE TEMPERATURE	(x/0)	NCF	NCF	CF	NCF	950 CF
<u>587600</u>	0.125 0.375 0.625 0.750 1.068	73.8 81.1 97.4 97.2 125.4	78.0 88.5 98.0 108.2 143.9	81.8 86.5 86.3 91.5 108.4	90.3 101.9 111.7 124.5 160.3	36.0 96.9 92.9 95.3 111.7
DIFFUSER						
RING	 2 3 4 5 5 5 5 5 8	80.6 80.7 76.5 82.9 87.9 84.6 92.7	83.0 83.5 78.7 85.2 87.3 90.9 103.5	96.2 104.1 94.8 101.2 99.3 96.9 92.0	96.3 96.5 90.0 97.0 193.0 102.8 114.5	95.3 107.3 100.1 107.7 106.3 102.6 102.0
AMBIENT		66	67	75	75	c 9

NCF - NG CROSSFLOW CF - CROSSFLOW

180

		T	ABLE X	K				
Shroud	a nd	Diffuser	Teap.	Data,	Model	A	Mod	

	PUSITION	TENPERA	TURE		(F)
UPTAKE TEMPERATURE	(x70)	850 NCF	350 CF	S50 NCF	7950 CF
575000	0.125 0.375 0.625 0.750 1.068	87.5 98.1 106.1 114.1 151.9	77.7 86.J 97.5 104.0 198.4	97.4 95.9 108.5 118.3 16c.2	32.7 93.9 92.1 90.2 115.7
DIFFUSER RING	1 2 3 4 5 5 4 5 8	91.8 93.0 68.4 94.7 95.3 95.3 99.7	106.0 106.9 99.0 10d.2 90.1 92.2 93.2	90.0 91.4 95.0 93.0 94.5 94.1 90.2	93.3 105.2 99.2 104.5 101.4 95.5 91.2
ANGLENT		73	69	73	76

NCF - NC CRCSSFLOW CF - CRCSSFLOW

181

:

.....

		TABLE XXI			
Exit	Plane	Temperature	Data.	Model	

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	هيد هو من من يو هي بي يي ها هو هو بي	POSITION	RIRMS		TENP	ERATU	RE	(F)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TEMPERATURE			650 NCF	1850 NCF	-350 CF	950 NCF	950 CF	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1.171	-177-	175	102	107	-119	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.25	1.101	210	259	144	258	165	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.50	1.031	247	312	201	330	215	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0.75	0.961	271	347	250	372	263	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1.00	0.890	302	388	299	417	323	
1.50 0.750 333 458 365 406 401 2.00 0.660 352 473 390 $4d9$ 431 2.00 0.610 365 $4d2$ 412 438 455 2.25 0.539 381 496 433 515 481 2.50 0.469 395 504 454 511 496 2.75 0.339 415 520 480 554 534 3.00 0.329 415 520 480 554 534 3.25 0.259 423 523 499 506 550 3.50 0.118 432 520 524 579 581 4.00 0.048 434 513 528 584 581 4.00 0.048 434 513 528 584 584 4.00 0.047 434 521 530 584 584 3.75 0.118 432 515 527 575 581 3.50 0.148 427 502 575 581 3.50 0.148 427 502 519 572 573 3.50 0.149 434 513 556 566 3.00 0.229 421 497 513 556 566 3.00 0.229 410 463 495 522 573 3.25 0.259 421 497 513 556		1.25	0.920	325	415	332	450	364	
$1 \cdot 75$ $0 \cdot 660$ 362 473 390 $4d9$ 431 $2 \cdot 00$ $0 \cdot 610$ 364 $4d2$ 412 498 455 $2 \cdot 25$ $0 \cdot 539$ 381 496 514 472 542 $2 \cdot 75$ $0 \cdot 399$ 416 514 472 542 515 $3 \cdot 00$ $0 \cdot 259$ 423 523 499 506 550 $3 \cdot 50$ $0 \cdot 259$ 423 523 499 506 550 $3 \cdot 50$ $0 \cdot 148$ 423 524 511 574 574 $3 \cdot 75$ $0 \cdot 118$ 432 524 579 581 $4 \cdot 00$ $0 \cdot 048$ 434 513 528 584 $4 \cdot 25$ $0 \cdot 000$ 434 505 527 575 $4 \cdot 25$ $0 \cdot 000$ 434 521 530 584 $4 \cdot 00$ $0 \cdot 048$ 432 521 530 584 $3 \cdot 75$ $0 \cdot 118$ 432 515 527 575 $3 \cdot 25$ $0 \cdot 259$ 421 497 513 556 $3 \cdot 00$ $0 \cdot 329$ 404 477 503 549 $2 \cdot 75$ $0 \cdot 339$ 404 475 494 536 $2 \cdot 25$ $0 \cdot 339$ 404 476 494 536 $2 \cdot 250$ $0 \cdot 649$ 370 463 495 522 $2 \cdot 00$ $0 \cdot 640$ 343 425 456 $4d0$ $2 \cdot 250$ $0 \cdot 640$ <td></td> <td>1.50</td> <td>0.750</td> <td>339</td> <td>458</td> <td>365</td> <td>406</td> <td>404</td> <td></td>		1.50	0.750	339	458	365	406	404	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1.75	0.680	352	473	390	489	431	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2.00	0.617	369	402	412	498	455	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2.25	0.539	381	495	433	515	481	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2.50	0.469	395	504	454	531	496	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2.75	0.399	406	514	472	542	515	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3.00	0.329	415	520	480	554	534	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3.25	0.259	42.3	523	499	50.6	550	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3.50	0.148	424	524	511	574	574	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3.75	0.118	432	520	524	579	581	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		4.00	0.048	474	513	528	544	581	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		4.25	0.000	434	505	524	542	576	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		4.25	0.000	475	523	531	546	584	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		4.00	0.048	434	521	530	584	584	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3.75	0.118	412	515	527	575	581	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1.50	0.148	427	Sce	519	572	573	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3.25	0.259	421	437	514	556	566	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3.00	0.320	410	447	503	5.0	554	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2.75	0.309	404	478	404	536	547	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2.50	0.469	300	463	495	520	54.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2.25	0 5 1 9	377	450	476	500	632	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2.00	0.610	36.0	440	464	445	522	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1.76	0.620	14 1	475	456	440	510	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0.750	191	425	400	400	505	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1 26	0 820	2014	103	472	40) 440		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1.00	0.000	274	372	423	443	460	
0.50 1.031 197 273 262 316 343		1.00	0 041	2 r V 3 7 7	303	174	412	409	
		0.75	0.901	231	329	220	301	419	
		V. DU	1+431	147	213	202	210	J 4J JEJ	
		0.00	1.171	100	200	103	242	233	

TABLE XXII Exit Plane Temperature Data, Model A Mod

	POSITION		TE MI	PERA	TURE	(F)	
TEMPERATURE			85C NCF	950 CF	950 NCF	-950 CF	
	0.00	1.171	168	-97	135	<u>9</u> 8	
	0.25	1.101	223	141	201	134	
	0.50	1.031	270	229	279	185	
	0.75	0.961	325	275	345	243	
	1.00	0.890	355	317	391	301	
	1.25	0.820	394	348	416	350	
	1.50	9.750	405	378	441	381	
	1.75	0.630	421	402	461	413	
	2.00	0.610	443 (420	477	440	
	2.25	0.539	457 4	444	493	404	
	2.50	0.469	470	401	507	437	
	2.75	0.349	48E -	475	52 I	503	
	3.00	0.329	50C -	494	536	520	
	3.25	0.259	510	509	545	535	
	3.50	0.188	516	519	557	554	
	3.75	0.119	525	528	571	564	
	4. ೧ い	0.049	535 9	529	573	573	
	4.25	0.000	535	529	583	580	
	4.25	0.000	535	533	590	552	
	4.00	0.048	532	532	595	579	
	3.75	0.119	525	527	590	575	
	3.50	0.138	524	519	571	506	
	3.25	0.259	515 1	512	564	555	
	3.00	0.329	51C	502	556	547	
	2.75	0.399	495	498	543	539	
	2.50	0.469	470	486	534	527	
	2.25	0.539	481	475	521	517	
	2.00	0.610	472	409	515	512	
	1.75	0.680	464	455	505	499	
	1.50	0.750	456	450	494	439	
	1.25	0.820	445	431	473	402	
	1.00	0.990	405	385	440	408	
	0.75	0.901	36 2	325	386	338	
	0.50	1.031	291	236	284	243	
	0.25	1.101	21 Č	155	198	142	
	0.00	1.171	101	92	103	101	

TABLE XXIII

ł

Exit Plane Horiz. Pitot Traverse Data

	JYNAMIC	VELCCITY
POSITION	PRESSURE	
(IN.)	(IN. H2C)	(KND IS)
••••••		
0.000	0.100	12.53
0.500	0.850	36.52
1.000	0.750	34.30
1.500	0.700	33.14
2.000	0.650	31.54
2.500	0.650	31.54
3.000	0.650	31.54
1.500	0.650	31.54
4.000	0.675	32.65
4.500	0.675	32.45
5-000	0.650	32.44
5.500	0.625	31, 12
5-000	0.675	31, 32
0-500	0.675	72,45
7 - 000	0.675	12.65
7 5000	0 6 7 5	70 65
3 000	0.650	
8.000	0.635	21024
0.500	0.625	31.52
9.000	0.600	30.64
9.500	0.075	32.55
10.000	0.675	32.55
10.500	0.700	33.14
11.000	0.675	32.55
11.500	0.625	31.32
11.625	0.000	00.00

TA BLE	XXIV
--------	------

24 In. Standoll -Pitot Horiz, Tra	raverse
-----------------------------------	---------

PITOT	DYNAMIC	VELOC ITY
POSITION	PHESSURE	
(IN.)	(IN. H2C)	(KNO IS)
	<u>5.400</u>	25.(6
0.500	0.400	25.6
1.000	0.400	25.6
1.500	0.380	24.42
2.000	0.360	23.77
2.500	0.350	21.44
3.000	0.350	23.44
3.500	0.350	23.44
4-000	0.350	23.44
4.500	0.150	23.44
5.000	0 400	23.44
5.000	0.450	23.63
5.500	0.450	20.15
0.000	0.520	20.27
0.500	0.550	29.18
7.000	0.600	30.69
7.500	0.640	31+69
a.000	0.640	31+69
3.500	0.650	31.54
9.000	0.640	31.69
9.500	0.600	30.69
10.000	0.600	30.69
10.500	0.600	30.69
11.000	0.600	30.69
11.500	0.550	29.38
11.625	0.550	29.38

TABLE XXV

24 in. Standoff - Pitot Vertical Traverse

10119	DYNAMIC	VELOCITY
POSITION	PRESSURE	
(10.1	(IN. H20)	LEND IS L
		• • • • • •
J.000	0.150	15.43
0.00	0.170	16.42
1.000	0.200	17.61
1.500	0.250	19.51
2.000	0.275	20.69
2.500	0.275	20.29
3.000	0.350	23.56
3.500	0.350	23.56
4.000	0.350	23.55
4.500	0.450	26.72
5.000	0.500	20.15
5.500	0.500	28.16
0.000	0.600	30. 25
6.500	0.600	30.65
7.000	0.620	31.36
7.500	0.620	31.26
000.6	0.620	31.26
8.500	0.620	31 • 36
9.000	0.500	30.85
9.500	0.600	30. é5
10.000	0.600	30.65
10.500	0.600	30.65
11.000	0.600	30+85
11.500	0.600	30.65
12.000	0.570	30+67
12.500	0.570	30 • 67
13.000	0.500	28.15
13.500	0+450	20.72
14.000	0.370	24.23
14.250	0.370	-24.23

			TA BI	LE	XXVI		
24	in.	Standoff	-4.5	in	Pitot	Vert.	Travers

PITOT	DYNANIC	VELCCITY
DOCTION	DUESCIDE	
PUSITION	FREDUCRE	
(IN+)	(IN. H2C)	(KNUTS)
0.000	0.300	21.70
0.250	0.300	21.70
0.200	0 2 2 0	
0.500	0.230	19.00
0.750	0.325	22.58
1.000	0.40	27.45
1.250	0.550	29.38
1.500	0.600	30.69
1.750	0.610	30-54
2.000	0.610	30.54
2.000	0.510	30 64
2.200	0.010	30 + 94
2.500	0.610	30.54
2.750	0.590	30 • 43
3.000	0.540	30 - 17
3.250	0.560	29.65
3.500	0.550	29.38
3.750	0.530	24- 54
5.730		
4.000	0.510	20+24
4.250	0.500	28+01
4.500	0.470	27.16

÷,

TABLE XXVII Pumping Coefficient Results

#PRITCHARD FROM COLD FLOW TEST

1.4.2

. . .

and the second state of the second states of the second states of the second states of the second states of the

TABLE INVIII

Air Mass Flow Calibration Data

PNH+8	∆ PN	[PNH+81. APN 10.5	Ма
(IN. HG)	(IN. H2C)		(LaM7SEC)
31.15	2.0	0.319	0.554
31.15	2.0	0.316	0.555
31.15	2.0	0.319	0.591
32.05	4.0	0.459	0.933
32.05	4.0	0.4c2	0.838
33.05	4.0	0.435	0.952
34.75	5.0	0.582	1.025
35.05	5.0	0.579	1.051
38.05	6.0	0.606	1.126
38.55	8.0	0.706	1.295
39.15	8.0	0.705	1.300
47.05	8.0	0.774	1.477
51.55	9.5	0.927	1.595
41.95	10.0	0.875	1.634
40.75	10.0	0.877	1.643

189

TABLE XXIX

Air Mass Flow vs. Pressure Product Data

mg (LBM/SEC)

PRESSURE PRODUCT

0.554	0.319
0.555	0.316
0.591	0.319
0.833	0.459
0.438	0.462
0.852	0.435
1.020	0.582
1.051	0.579
1.120	0.506
1.295	0.706
1.300	0.705
1.477	0.774
1.595	0.827
1.034	0.875
1.043	0.877

APPENDIX A

GAS GENERATION OPERATION

I. <u>PRIMARY AIR COMPRESSOR OPERATION</u> The primary air flow for the gas generator is supplied by a Carrier Model 18P352 three stage centrifugal air compressor located in Building 230. The compressor is driven through a Western Gear Model 95HSA speed increasing gearbox by a 300 horsepower General Electric induction motor. The compressor serves various other experiments both in building 230 and 249. Figure (14) is a schematic of the compressor system layout. The cooling water system serves both the Carrier compressor and the Sullivan compressor for the supersonic wind tunnel in building 230.

Lube oil for the compressor and speed increaser bearings is supplied from an external sump by either an attached pump or an electrically driven auxiliary pump. The lube oil is cooled in a closed loop oil to fresh water heater exchanger. Cooling water circulates within its own loop and is cooled in an evaporative cooling tower which stands between buildings 230 and 249. Makup is automatically provided to the fresh water loop by a float operated value in the cooling tower.

It is recommended that the lube oil system for the compressor be started approximately one hour prior to

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

compressor lightoff. This ensures adequate pre-lubrication and warms the oil to some degree, decreasing starting loads. This is critical, as the compressor operates at near the capacity of the breaker in the supplying substation. Should this breaker trip out during the starting sequence it will be necessary to call the trouble desk and have base electricians reset it.

During periods when operations are being conducted daily or when it is desired to operate early in the morning, it is permissable to leave the auxiliary oil pump running overnight with the cooling water system secured. This will maintain the lube oil at a temperature suitable for lightoff and eliminate this delay.

When fully warmed up the compressor supplies air to the gas generator at $170-190^{\circ}F$. It normally takes the compressor about one hour to reach stable operation at this temperature. Although it is possible to obtain a gas generator lightoff with a lower air supply temperature, stable operation enhances data taking and reduces the number of control adjustments required during data runs. It is, therefore, desirable to allow the system to fully stabilize prior to lighting off the gas generator or collecting data. The following lightoff sequence is recommended:

192

- A) Check the oil level in the compressor's external sump. Oil should be within four inches of the top of the sight glass.
- B) Start the auxiliary oil pump by positioning the "hand-off automatic" switch (Figure 15) in the "hand" position. The electric pump will start and oil pressure should register approximately 30 PSIG. Inspect the system for leaks and note the level in the external sump.
- C) Wait 45 minutes to one hour. During this period the compressor bearing temperatures should rise to approximately 70° F.
- D) Line up the combustion gas generator for operation.
 - Open the two manometer isolation valves at the pressure taps on either side of the inlet reducing section (Figure 5). Reconnect manometer tubing at the manometers if it has previously been disconnected.
 - Ensure the main air supply butterfly valve is fully closed (Figure 6).
 - Open the air supply bypass globe valve two and one quarter turns (Figure 6).
 - Open the manually operated 4 inch butterfly isolation valve (Figure 5).

- 5) Energize the main power panel (Figure 9) and open the electrically operated burner air supply and cooling air bypass valves fully.
- 6) Ensure the gas generator exhaust area is clear.
- E) Start the air compressor fresh water cooling system:
 - Check the water level in the cooling tower it should be at the level of the inlet line.
 - 2) Vent the cooling water pump casing. Open the petcock on the suction side of the pump casing until all air in the suction line is expelled.
 - Ensure valve "A" to the Sullivan compressor is closed.
 - 4) Open valve "B" to the Carrier compressor.
 - 5) Start the cooling water pump and cooling tower fan (Figure 17). The fan is interlocked with the pump and will not start unless the pump is running.
 - Inspect the cooling tower drip lattice to ensure water is circulating.
- F) Open the drain on the air compressor air cooling bank (Figure 19).

G) Ensure the compressor air suction valve is fully closed (indicator vertical) (Figure 20).

WARNING When in operation the compressor produces hazardous noise. Ensure all personnel in the vicinity are wearing adequate hearing protection prior to starting the compressor.

- H) Start the air compressor motor (Figure 13), the controller uses an automatic two stage start circuit.
- I) When the compressor is fully up to speed, switch the auxiliary lube oil pump to the "automatic" position. Lube oil pressure should remain about 24-30 PSIG. Oil is now being supplied by the attached pump driven by the speed increasing gearbox. If the oil pressure should fall to 12 PSIG, the auxiliary pump will start automatically.
- J) When compressor operation has stabilized, slowly open the suction valve until the indicator is in

the full open (horizontal) position. Air is now being supplied to the gas generator. Bypass air from the supply to other experiments will also be discharged outside the rear of building 230. Normally it is not necessary to secure this bypass flow, but in unusual circumstances it may be stopped by closing the isolation valve on the cooling bank (Figure 19).

- K) Operation of the air compressor should be monitored periodically.
 - Normal oil pressure from the attached pump is 24 PSIG. Specified bearing pressure are 20-25 PSIG.
 - Normal oil pressure from the auxiliary electric pump is 30 PSIG.
 - 3) Normal oil temperature at the outlet of the lube oil cooler is $100-105^{\circ}F$ (135°F maximum).
 - 4) Normal Bearing temperatures for the compressor are 140-160°F. Speed increaser oil temperature is normally 120-130°F.
- 5) Do not allow any bearing temperature to exceed 200°F. In the event bearing temperatures rise above 180°F during normal operation, the oil cooler should be inspected for proper water temperature and flow rate.

II. <u>GAS GENERATOR LIGHT OFF</u> Allow the air compressor to operate for approximately one hour in order for air inlet temperature to the gas generator to stabilize.

- A) Approximately 15 minutes prior to gas generator light off, line up the fuel system and place it in operation.
 - Open the fuel tank suction valve (Figure 22) and bulkhead isolation valve (Figure 21).
 - Ensure the solenoid operated emergency fuel cutoff valve is closed and close the HP pump manual discharge valve.
 - 3) Open the nozzle box drain valve.
 - 4) If this is the first time the system is being placed in operation, open both the fuel control valve (Figure 8) and the needle trimmer valve
 (Figure 24) fully. If the trimmer valve is known to be properly set, it need not be adjusted as described in this and following steps.
 - 5) Start the fuel supply pump. Fuel supply pressure will be 14-16 PSIG.
 - 6) Start the HP pump. With both trimmer and fuel control valves fully open the discharge pressure

will be 25-30 PSIG. With the trimmer valve properly set and the fuel control valve fully open, the HP pump discharge pressure will be 80 PSIG.

- 7) If the trimmer value is to be adjusted, close the fuel control value with the trimmer value fully open. Observing the HP pump discharge pressure, slowly close the trimmer value until the HP pump pressure reaches 350 PSIG. The trimmer value is now set and the fuel control value should provide smooth control over a range of 80-350 PSIG HP pump discharge pressure. All subsequent fuel control adjustments will be made using the fuel control value.
- 8) Using the fuel control valve, set the HP pump discharge pressure at 200 PSIG and allow the system to recirculate for 10-15 minutes to warm the fuel. This facilitates combustion and ensures a clean lightoff.
- B) When the inlet air temperature reaches $170-180^{\circ}$ F, the gas generator may be lighted off.
 - Adjust inlet air bypass valve to obtain a pressure of approximately 4.0 in Hg at the upstream side of the inlet reducing section (PNH).

- 2) Ensure the burner air value is fully open. Adjust the bypass cooling air value to obtain a pressure drop across the U-tube of 1.60 inches H_2O . In some cases it may be necessary to leave the cooling air bypass value fully open and reduce the inlet air pressure (PNH) slightly to obtain this setting. The pressure drop across the inlet reducing section (DELPN) will be about 15 inches H_2O . This provides the recommended lightoff air fuel ratio of 20.
- 3) Open the HP pump manual discharge valve fully.
- 4) Set the high temperature (Type K) readout to monitor burner temperature (TBURN). Set the low temperature (Type T) readout to monitor air inlet temperature (TNH).
- 5) Ensure the gas generator exhaust area is clear.
- Adjust the HP pump discharge pressure to 150
 PSIG.
- Depress and hold down the spring loaded ignitor switch for 10 seconds.
- 8) While continuing to hold the ignitor switch depressed, open the solenoid operated emergency fuel cutoff valve. Ignition should be observed in 6-12 seconds. If the gas generator fails to light, close the emergency fuel cutoff valve

and release the ignitor switch. Allow the system to purge for 5 minutes or until no raw fuel is being expelled from the primary nozzle. If the gas generator fails to light, raw fuel will be expelled from the primary nozzles and will collect in the base of the secondary plenum. This should be wiped up prior to continuing.

- 9) When ignition is observed, release the ignitor switch.
- 10) Observe the burner temperature. When the burner temperature reaches 1000°F begin reducing fuel pressure toward minimum (70-75 PSIG at the burner nozzle, (PNOZ)) to stabilize burner temperature between 1000 and 1300°F.

WARNING Do not allow burner temperature to exceed 1500⁰F.

It will be necessary to close the cooling air bypass value to about 50 percent open to achieve stable operation at the desired burner temperature. CAUTION Do not allow burner temperature to fall below 1000°F. The gas generator will begin to emit white smoke when the burner temperature falls to about 950°F and combustion will cease at a burner temperature of about 800°F. If combustion ceases there will be a noticable change in sound intensity accompanied by quantities of white smoke and rapidly falling burner temperature; immediately close the emergency fuel cutoff valve. Readjust fuel and air controls to lightoff settings and reinitiate the lightoff sequence.

The prescribed lightoff sequence usually leads to stable operation with an uptake temperature of 400-500°F and an uptake Mach number of about 0.07.

WARNING Do not allow uptake temperature to exceed 1200[°]F at any time.

11) When stable operation has been established, close the nozzle box drain valve prior to attempting to adjust the uptake Mach number.

III. TEMPERATURE/MACH NUMBER CONTROL

The control process consists of a iterative sequence of adjustments in the uptake temperature (TUPT), inlet air pressure (PNH), and bypass cooling air mass flow. Some practice is necessary to achieve reasonable accuracy in the adjustment process. It must be kept in mind that effect of the bypass cooling air valve varies depending on the valve's initial position. When the bypass valve is more than 50 percent open, opening the valve reduces air flow through the burner, increasing burner temperature (TBURN), however, the increase in the proportion of cool bypass air mixing with the combustion gas results in a lower uptake temperature. When a majority of the air flow is already passing through the combustion chamber, that is, when the bypass valve is less than 50 percent open,

and particularly when it is less than 25 percent open, the increase in burner temperature resulting from opening the bypass valve more than offsets the increased proportion of cooling air and the uptake temperature will raise when the bypass valve is opened. With these cautions in mind, the following adjustment procedure is recommended:

- A) Adjust the fuel control valve to obtain the desired uptake temperature. Do not allow burner temperature to fall below 1000°F or to exceed 1300°F during this process.
- B) As burner temperature approaches one of the limits, change air flow through the burner either by adjusting the bypass valve or the inlet globe valve. Choice of control device depends on the prior operating state. If the system has been stabilized at the desired Mach number it is usually best to control burner temperature during transitions by using the inlet globe valve. The key operating parameters are uptake temperature (TUPT) and uptake pressure (PUPT). Burner temperature is monitored to ensure safe combustion is maintained. For operation with uptake an Mach number of approximately 0.065, the values in Table XXII are recommended:

Recommended Initial Control Settings

 ! !	TUPT	PUPT	1
1	(°F)	(inches H O)	1
ł	950	13.3	1
1	850	11.1	1
1	750	10.5	1
1	650	9.6	
1	550	9.0	1
1	175	8.8	l
1			1

C) Compute the uptake Mach number (UMACH) using the formula:

```
UMACH = 1.037 \times 10^{-1} (TUPTR/Y) <sup>0.5</sup> x ((((PNH - B) x DELPN
/ TNHR)<sup>0.5</sup> - (2.318 x 10^{-4} x ROTA) - 2.085 x 10^{-1})
/ (B + (PUPT / 13.5717)))
```

(eqn A.1)

where:

UMACH = Uptake Mach number TUPTR = Absolute uptake temperature (R) γ = Ratio of specific heats for air

Values of the Ratio of Specific Heats for Air

175 1.3991 550 1.3805 650 1.3741 750 1.3677 850 1.3614 950 1.3556	TUPT (°F)	Ŷ	
550 1.3805 650 1.3741 750 1.3677 850 1.3614 950 1.3556	175	1.3991	
650 1.3741 750 1.3677 850 1.3614 950 1.3556	550	1.3805	
750 1.3677 850 1.3614 950 1.3556	650	1.3741	
850 1.3614 950 1.3556	750	1.3677	
950 1 3556	850	1.3614	
	950	1.3556	1

PNH	=	Air	press	sure	befo	ore	the	inlet	
		redu	icing	sect	ion	(ir	nches	Hg)	

В	=	Corrected	atmospheric	pressure
		(inches Ho	j)	

- DELPN = Pressure drop across the inlet reducing section (inches H_2O)
- TNHR = Absolute air temperature before the inlet reducing section (R)
- ROTA = Fuel mass flow rotameter reading
- PUPT = Gas pressure in the uptake section (inches H_2O)

- D) Adjust the uptake temperature and pressure as necessary using a combination of inlet globe valve, cooling air bypass valve, and fuel control valve changes until the desired test Mach number is obtained.
- E) If inlet air temperature has been allowed to stabilize prior to gas generator operation, it will be found that, once the desired uptake temperature and Mach number have been set, no adjustments to the system will be required during data runs. Uptake temperature will be maintained within plus or minus four degrees and uptake Mach number will vary less than 0.001 under most circumstances. The largest variations in uptake Mach number observed have been during pumping coefficient runs when changes in secondary flow induce large changes in uptake pressure. If the gas generator is at the operating point prior to closing the plenum, it will be unnecessary to make adjustments for the slight increase (0.0005 to 0.0010) in Mach number which occurs when secondary flow is shut off.

IV. SECURING THE SYSTEM

- A) When data runs are complete, shut down the gas generator by reducing the fuel pressure to minimum and immediately closing the solenoid operated emergency fuel cutoff value.
 - 1) Shut off the high pressure fuel pump.
 - 2) Shut off the fuel supply pump.
 - 3) Open the cooling air bypass valve fully.
 - 4) Open the inner bypass glove valve until an inlet pressure (PNH) of 4.0-5.0 inches Hg is obtained.
 - 5) Allow the gas generator to run in this manner until the uptake temperature drops to approximately the inlet air temperature.
 - 6) Close the fuel system bulkhead and tank isolation valves. It is good practice to refill the fuel service tank at the end of each operating period. Keeping the tank full of fuel reduces moisture buildup from condensation. Any water or sediment which might enter the tank during filling will have time to settle out and can be removed through the stripping connection prior to the next lightoff.

- B) When the gas generator has cooled sufficiently, the air compressor may be shut down.
 - 1) Close the compressor suction butterfly valve.
 - 2) Stop the electric motor.
 - 3) When the compressor oil pressur falls below 20 PSIG, switch the auxiliary oil pump control from the "automatic" to the "hand" position.
 - Allow the lube oil system to run for one hour or until the compressor bearing temperatures are less than 80°F.
 - 5) Stop the auxiliary lube oil pump.
 - 6) Stop the cooling tower fan and cooling water pump.
- C) Close the 4 inch butterfly manual isolation valve.
- D) Close the inlet bypass globe valve.
- E) Open the nozzle box drain valve.
- F) Close the manometer isolation valves. It is also good practice to disconnect the inlet air pressure (PNH) and reducing section pressure drop (DELPN) manometers at the manometer. Other users of the compressor operate at pressures sufficient to overpressurize these instruments. Over-pressurization

of the mercury manometer which measures the inlet pressure could result in a hazardous mercury spill.

G) De-energize the main power panel and shut off the thermocouple readouts.

.
APPENDIX B

CALIBRATION

The use of pressure drop data across nonstandard metering devices requires that the flow restrictor be calibrated to a known or well defined measuring standard. In the case of the experimental apparatus used in the conduct of this experimental work, calibration of the entrance nozzle was essential in effective determination of the air mass flow rate.

The entrance nozzle calibration arrangements utilized was that of Ross [Ref. 6]. An ASME standard Hershel-type Venturi was used as the primary flow measuring device. Data was recorded over a range of inlet pressure drop values from 2.0 in. water to a maximum nominal pressure drop of 10.0 in. water. This data is shown in Table XXVIII.

For the Hershel-type Venturi the mass flow rate is given by equation II-III-15C of [Ref. 15]

 $\dot{m}_{a} = 0.099702 C_{d} Y_{d}^{2} F (1-\beta^{4})$ (ρh_{w}) (1bm/sec) (eqn B.1)

where " C_d " is the discharge coefficient of the venturi, "Y" is the expansion factor, "d" is the throat diameter (in.), F is the area thermal expansion factor, " β " is the ratio of throat diameter to entrance diameter, " ρ " is the density of the fluid and "h_" is the differential pressure (in. water). After analyzing the data recorded in Table XXIX, it was decided that a linear curve fit in the range of mass flow rates most commonly encountered in previous experimental work would provide the best predictor of the actual mass flow conditions. The range of mass flow rates selected was approximately 0.875-1.740 lbm/sec of air which is considered to effectively bracket the range of experimentally encountered mass flows.

The entrance nozzle calibration is shown in Figure 42 with the data utilized being contained in Table XXIX.

The entrance nozzle was modeled as a venturi using the functional relationship

$$\hat{\mathbf{m}}_{air} = f \left(P \cdot \Delta P / T \right)^{0.5}$$

which is given by equation II-III-15C of [Ref. 15]. Detailed entrance nozzle mass flow calibration calculations are contained in [Ref. 6], Appendix A.

APPENDIX C

UNCERTAINTY ANALYSIS

The determination of the uncertainties in the experimentally determined pressure coefficients and pumping coefficients was made using the methods described by previous researchers. The basic uncertainty analysis for the cold flow eductor model test facility was conducted by Ellin [Ref. 2] and Hill [Ref. 9] follows this development in analysis of the hot flow facility. Hill's analysis has been corrected for changes in the measured uncertainties resulting from the installation of new fuel flow measuring equipment. The uncertainties obtained using the second order equation were applicable to the experimental work conducted during the present research and are listed here.

UNCERTAINTY IN MEASURED VALUES

Parameter	Value	Uncertainty
TAMB	537 R	<u>+</u> 1
TUPT	1415 R	<u>+</u> 1
B	29.83 in Hg	<u>+</u> 0.005
DELPN	6.20 in H ₂ O	<u>+</u> 0.05
PUPT	13.6 in H ₂ O	<u>+</u> 0.05
ROTA	28.0	<u>+0.2</u>
рин	5.9 in Hg	<u>+</u> 0.05
TNH	649 R	<u>+0.2</u>
PPLN	5.18 in H ₂ 0	<u>+</u> 0.01

UNCERTAINTY IN CALCULATED VALUES

P*/T*	1.78
W*T*0.44	1.4%

and the same

LIST OF REFERENCES

- Charwat, Andrew, "DD-963 Exhaust Stack Studied," University of California at Los Angeles, July 10, 1971.
- Ellin, C. R., <u>Model Test of Multiple Nozzle Exhaust</u> <u>Gas Eductor Systems for Gas Turbine Powered Ships</u>, Engineer's Thesis, Naval Postgraduate School, June 1977.
- 3. Pucci, P. F., <u>Simple Eductor Design Parameters</u>, Ph.D. Thesis, Stanford University, September 1954.
- Moss, C. M., <u>Effects of Several Geometric Parameters</u> on the Performance of Multiple Nozzle Eductor System, Master's Thesis, Naval Postgraduate School, September 1977.
- 5. Harrell, J. P., Jr., <u>Experimentally Determined Effects</u> of Eductor Geometry on the Performance of Exhaust Gas Eductors for Gas Turbine Powered Ships, Engineer's Thesis, Naval Postgraduate School, September 1981.
- 6. Ross, P. D., <u>Combustion Gas Generator for Gas Turbine</u> <u>Exhaust Systems Modelling</u>, Master's Thesis, Naval Postgraduate School, December 1977.
- 7. Welch, D. R., <u>Hot Flow Testing of Multiple Nozzle</u> <u>Exhaust Eductor Systems</u>, Engineer's Thesis, Naval Postgraduate School, September 1978.
- 8. Lemke, R. J. and Staehli, C. P., <u>Performance of Multiple</u> <u>Nozzle Eductor Systems</u>, Master's Thesis, Naval Postgraduate School, September 1977.
- 9. Hill, J. A., <u>Hot Flow Testing of Multiple Nozzle Exhaust</u> <u>Eductor Systems</u>, Master's Thesis, Naval Postgraduate School, September 1979.
- Eick, I. J., <u>Testing of a Shrouded, Short Mixing Stack</u> <u>Gas Eductor Model Using High Temperature Primary Flow</u>, <u>Master's Thesis</u>, Naval Postgraduate School, October 1982.
- 11. Kavalis, A. E., <u>Effect of Shroud Geometry on the Effec-</u> <u>tiveness of a Short Mixing Stack Gas Eductor Model</u>, <u>Master's Thesis</u>, Naval Postgraduate School, June 1983.

- 12. Pritchard, N. D., Jr., <u>Characteristics of a Four Nozzle,</u> <u>Slotting Mixing Stack with Slanted Shroud, Gas Eductor</u> <u>System</u>, Master's Thesis, Naval Postgraduate School, June 1983.
- 13. Drucker, C. J., <u>Characteristics of a Four-Nozzle, Slotted</u> Short Mixing Stack with Shroud, Gas Eductor System, Master's Thesis, Naval Postgraduate School, March 1982.
- 14. Holman, J. P., <u>Experimental Methods for Engineers</u>, Third Edition, pp. 253-258, McGraw-Hill, 1978.
- 15. American Society of Mechanical Engineers Interim Supplement 19.5 of Instrumentation and Apparatus, <u>Fluid Meters</u>, Sixth Edition, 1971.

INITIAL DISTRIBUTION LIST

		NO.	cohrea
1.	Defense Technical Information Center Cameron Station Alexandria, Virginia 22314		2
2.	Library, Code 0142 Naval Postgraduate School Monterey, California 93943		2
3.	Department Chairman, Code 69 Department of Mechanical Engineering Naval Postgraduate School Monterey, California 93943		2
4.	Professor Paul F. Pucci, Code 69Pc Department of Mechanical Engineering Naval Postgraduate School Monterey, California 93943		2
5.	Dean of Research, Code 012 Naval Postgraduate School Monterey, California 93943		1
6.	Commander ATTN: NAVSEA, Code 0331 Naval Sea Systems Command Washington, DC 20362		1
7.	Mr. Olin M. Pearcy NSRDC, Code 2833 Naval Ship Research and Development Center Annapolis, Maryland 21402		1
8.	Mr. Mark Goldberg NSRDC, 2033 Naval Ship Research and Development Center Annapolis, Maryland 21402		1
9.	Mr. Eugene P. Wienert Head, Combined Power and Gas Turbine Branch Naval Surface Ship Engineering Station Philadelphia, Pennsylvania 19112		1
10.	Mr. Donald N. McCallum NAVSEC Code 6136 Naval Ship Engineering Center Washington, DC 21362		1

216

.

No. Copies	;
------------	---

ł

11.	LCDR Ira J. Eick, USN P.O. Box 248 Lebanon, New Jersey 08833	1
12.	LT Carl J. Drucker, USN 1032 Marlborough Street Philadelphia, Pennsylvania 19125	1
13.	LCDR C. M. Moss, USN 625 Midway Road Powder Springs, Georgia 30073	1
14.	LCDR J. P. Harrell, Jr., USNR 1600 Stanley Ardmore, Oklahoma 73401	1
15.	LCDR J. A. Hill, USN RFD 2, Box 116B Elizabeth Lane York, Maine 03909	1
16.	CDR R. J. Lemke, USN 2902 No. Cheyenne Tacoma, Washington 98407	1
17.	LCDR C. P. Staehli, USN 2808 39th St., N.W. Gig Harbor, Washington 98335	1
18.	LT R. S. Shaw, USN 147 Wampee Curve Summerville, South Carolina 29843	1
19.	LCDR D. L. Ryan, USN 6393 Caminito Luisito San Diego, California 92111	1
20.	LCDR C. C. Davis, USN 1608 Linden Drive Florence, South Carolina 29501	1
21.	LCDR D. Welch, USN 1036 Brestwick Commons Virginia Beach, Virginia 23464	1
22.	Department Chairman Department of Marine Engineering Maine Maritime Academy Castine, Maine 04421	1

217

No. Copies

1

23. LCDR R. E. Staples, Jr., USN 2440 Broomsedge Trail Virginia Beach, Virginia 23456

218

