AD-A139 918 RUTOMATING THE TRRNSFORHRTIONRL DEVELOPNENT OF SOFTHRRE 1/3
YOLUME 2 APPEN ES(U) UNIY E OF SO
CALIFORNIA HRRINR DEL REY FOR 5. 5 F FICKRS
UNCLASSIFIED MAR 83 ISI/RR-83-189 NSF- HCS?S 18?92

A 1 -
'-:: '{:)ﬂ.f'.';\
y)

b W L, L e ‘
- o L N A e TLERI I LA 2 A e M el al o i N 7

B Bzs
! m E
= u B2 w2
_ W . -
—on s
:' T '2.0
B
— m .8
=
i s wes
= =
——— t——
MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAY U STANDARDS - 1963 A
o

3

£

5
L i

T,

| TAAIAF RIS § B

T E T T T TR TR RTAT T KA T4 &1 ATAT AR A 4T = o ia ar am e Temmme s amen ey
Wmﬂm. A 94 4

ISI/RR-83-109
5 AD A 1 39 9 1 8 March 1983

of Southern | §
§ Stephen F. Fickas California | &

3;
:
N
3
g University ,W '
4
.i
A

Automating the Transformational
Development of Software
(Appendices) Volume 2

APR 1 0\9843

2
o

- -

i “""’""“*‘-M4'v—-* YT A s e A ot i o AP S b e - ..‘
- This document has bean approved -
% for public release and sale; its .".
~ distribution is unlimited, =
.-‘

)

L n INFORMATION
" SCIENCES 23/822-1511 X
® INST. ITUTEE— 4676 Admiral i ' :f‘
Y ty Way/Marina del Rey/California 90291-6695
'-3 ,!
o 3

- REEIPRR LS,

- . e -
= S TR T - AT
e e ‘:’l"-’ VI AN A X ke el w C

U Unclassified

i -.'.}) SECURITY CLASSIFICATION OF THiS PAGE (When Date Entered)

KR T~ MEPORT NUMBER];cov'r ACCESSION NO.] 3. RECIPIENT'S CATALOG NUMBER

- :: o TITLE (and Sebiitie) $. TYPE OF REPORT & PERIOD COVERED
SIS Automating the Transformational Development of Software Research Report

:::. . (Appendices) Volume 2 6. PEAFORMING ORG. REPORT NUMBER
AT,

X

- 7. AUTHOR(a) 3. CONTRACY OR GRANT NUMBER() |

R Stephen F. Fickas MCS-7918792

N

::f“_) 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELIZMENYT.—’ROJ!C—T, TASK
ST USC/Information Sciences Institute AREA & WORK UNIT NUMBE RS

. 4676 Admiralty Way

Marina de! Rey, CA 90291

o : 11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

N Nationa! Science Foundation March 1983

) -

-;;-. - 1800 G St. N.W. 3. NUMBER OF PAGES

- Washington, D.C. 20550 280

= E T4, MONITORING AGENCY NAME & ADDRESS(i{ different from Controlling Office) 18. SECURITY CLASS. (of thie report)

W T

DU Unclassified

A N RPN

’.\j . “Tha. DECL ASSIFICATION/ DOWNGRADING
x:j f:" SCHEDULE

:::1, ~ 6. DISTRIBUTION STATEMENT fof this Report)

_é, " This document is approved for public release and sale; distribution is unlimited.

~ L]
i \' '
;: ‘-:' 17. DISTRIBUTION STATEMENT (of the sbetract entered in Block 20, If different frem Report)

v

e

-

. SUPPLEMENTARY NOTES

>~ This report was the author’s Ph.D. dissertation at the University of California, Irvine, Department of
i information and Computer Science. The author's current address is Department of Computer
Science, University of Oregon, Eugene, OR 87403.

{

a N

YH R
:- ~‘: 19. XEY WORDS (Continue on reverse side if y and (dentity by block number)
IO Y
< . .
~ . automated software development, automation and documentation of software development,
< E interactive software development system, problem solving, transformational implementation
&
-.‘: ~ 20. ABSTRACT (Centinue en reveres olde If ery and identify by bleck number)
N
%':: -
A
2@ l: (OVER)
iy "~
S .
RN
"z: s e
F DD ,',S%", 1473 eoimon oF 1 nov ¢8 13 OBsOLETR Unclassified
Y e $/N 0102-014-6601 —
;{-.' ':'. SECURITY CLASSIFICATION OF THIS PACE Daete Bnteved)
S s

b“v
A 2t - ~ N % e g . " et MNL"e ‘..'d “e \\'-.\ S T TR TR T Y WL Y2 WL WL A Y Ad
) o o, o P AN R | "o o, IS AR DT 5 - =" '.*
. AL EGCR AORCACAE O PGP C AR ACA,

5 _
" Unclassified 4
N SECURITY CLASSIFICATION OF THIS P AGE(When Dere Entored) h
£
3 ‘,\
o 20. ABSTRACT
o

>This report proposes a new model! of software development by transformation. It provides a formal) R
basis for automating and documenting the software development process. The current manual .:'
Z-*; transformation model has two major problems: 1) long ssquences of low-level transformations are

required to move from formal specification to implementation, and 2) the problem-solving used to
reach an implementation is not recorded. Left implicit (and undocumented) are the goals and L
methods that lead to transformation applications, and the criteria used to select one transformation -
over another. The new model, as incorporated in a system called Glitter, explicitly represents
transformation goals, methods, and selection criteria. Glitter achieves a user-supplied goal by
carrying out the problem-solving required to generate an appropriate sequence of transformation
applications. For example, the user asks Glitter to eliminate a data structure that would be expensive
to store or a function costly to compute. Glitter achieves this by locating all references to the
offending construct and devising an appropriate substitution for each. Glitter was able to
automatically generate 90 percent of the planning and transformation steps in the examples studied. .
This report is published in two volumes. Volume 1 contains the text of the report; Volume 2 is 8 set of jl-_
seven appendices relating to and illustrating the text in Volume 1. :

A
PP

.
.
- {8

/i
\
. R

v
\

N |

etal

% 18

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE(When Dote Batered)

AU L A AR B R A A AATAA TR N RS S S S S Rl A AN A ST A ARG ARR E RS EREILCE UL IR L L g R R L N R

s 23)

3B

A ISI/RR-83-109
4 March 1983

a

S S
o IR

University
. of Southern
Stephen F. Fickas California

Automating the Transformational
Development of Software
(Appendices) Volume 2

E—J

ks
v

-
ot

ot
a2 e 2

'-

R
R

S S N '
: i A:-ession Fer

N | =7 cRaxr *
s é RN ST .

‘ Lisi s amaed]

5 . Jaltification

LI -

' W R -

LIS

z W) P oL

o Tratertbotioe/

o E Av2ilabtility @odes

> Jhvail za}id/ox‘"

: _S. List Sractal

S

O

5

ad
g =

, 1’ INFORMATION

[L¢

(]

< . :f;%i'ﬂ 2A3/8221511
P Y- 4676 Admiralty Way/Marina del Rew California 902916695

4
'f This resesrch s supponed by the Natienal Science Foundation under Contract No. MCS-7918782. Views and conclusions contained in this
- repon are the author's and should not be inderpreed as representing the official opinion or policy of NSF, the U.S. Government, or sny
: : NBLEAN AF ANBNE Y FPARRSAIEN with them)
OO .

K ,. . ,.' '. o “ \- » _‘\ ~.' "o te p e oW '.-".-. T NN \..\ Ry \.-\..\;._‘...\. "y ” SRS \1\~ \:'\‘ \q \...\.-‘. "‘.\‘..‘.._c

“~>

]

A EO A et N i ot S tad o s DA G r L L b ialN LA C iR AU ST AR AN TR 4
g
3 E il |
. [
[= |
N e
E .
2 = Contents :
! ow
¢ 3 -
o Appendix A: Gist specification of packagerouter.......................... 189 !
q
; Appendix B: Development Goal-Structure.....................ccvviiinnen, 189
. B.1 Remove PACKAGESEVERATSOURCEcoiovvvvviiinnnnnns, 200
,: %) B.2 Remove PREVIOUS PACKAGE.ciiiiiiiieiiiiiirinennnnenns 202
. B.3 Remove LAST PACKAGEiivvriiiiiiiireierrrnannnnsssnenannns 204
v B.4 Map DIDNOT.SETSWITCHWHENHADCHANCEcconnun... 205
. B.5 Map PACKAGES DUE AT SWITCH.iiiiiiiiiiieiiiiiinnaaaens 207
q BB Map DemMONS . .. ittt ittt i it e et e 209
_ Appendix C: Package Router Development....................c.ccivvvnnnn. 21
) F“}_ C.1 Remove PACKAGES_EVER_AT_SOURCEccvveenviennnennnn. 213
* C.2 Remove PREVIOUS _PACKAGEccviviiiiiiiiininennrennnnen, 234
C3 RemOve LAST _PACKAGE0vvvtttiirirninrrinrinreerereeneens 245
y . C.4 Map DID_NOT_SET_SWITCH_ WHEN_HAD_CHANCE.................... 250
3 - C.5 Map PACKAGES _DUE_AT _SWITCHiiiiiiriiiiiierieninnnnes 268
5 CB Map D EMONS ittt it ittt it e e e 283
2 . ‘J‘ C.7 TerminationState...........ooooivnnernenn. et 314
; 13
Appendix D: Method SelectionOverlay..........................civnnnn, 319
- D.1 Remove PACKAGES_EVER_AT_SOURCEccoiiiiiininiennnn, 3
S vy D.2 Remove PREVIOUS _PACKAGEcciivtiiiiiiinienereerennnns 328
o D.3 Remove LAST PACKAGEoiviiii ittt renann, 332
i3 “ D.4 Map DID_NOT_SET_SWITCH_WHEN_HAD_CHANCE.................... 334
L X D.5 Map PACKAGES_DUE_AT_SWITCH eeeeeennerecnneennnnes, 341
DB Map DOMONS ottt it ittt it i et e e e e, 346
S
b gj: Appendix E: Goal DesCriplorsc..ovuunireeennern e, 355
2 " [T o 356
S E.2 ComputeSequentially.cooitii it 362
- E3 EQUIVAIBNCE.i ittt ittt ieiiet e naarnannrenans 365
O T T T 367
N ES Flatten e e 370
~ 2 B8 GIODANZE vttt et et e arz
y E.7 IBOIRLE. ...\ttt 374
ha BB M. ..ottt iiiiiiie it ittt it teenes e rnserateesranrannnnen. 378
- !g E.8 Maintainincrementallyttt i, 382
bl EWOPurityonnt e tr et e et i 385
. E.11 Reformulate................ PO 387
o B12 ROMOVE .. ieitii et ettt tte e te et et e eneeen e, 380
b 8 R T T 383
- E14 Simplity...........ccoiviiiiiiineen, e e et s e e, 396
ofiod
.: : .
WS A R A IO A A AR - ‘ N ST AT AR AT IR R RIS S0 SR W
2 : ' v A SRR VLR PGS 2 Y ALAGAEA SO

b

v a
$§~
R
b 3 T 3T Y TR 309
BB UNMOID. ..o oeeeeetnteite it et et e tes et e et e e et e e eae 400 -
@ Appendix F: Method Catalog. ...ttt 403
F.1 CatalogNOtaLIONottt it s ieeeananeenannenss 403)
A F.2 CaSify -...ooiniiiii i 404 s
2 F.3 CoOmpPUIESOQUENNRIY o.vvreininenennvnnerseeenanareenennns 406 =
. FA4 ConSONBALecoviiiiiii ittt ieiiinenennernnnnanas 407 ,
ot FoB EQUIVEBIBNCEo e v eeeeeeeene e eeneeeen e eneneesnasaneensenasenns 409 -
™ B FBOAOr . 1.t ettt ene e eetee e eeeeenteaneneeeieeenannnneeeerannnes 410 o
A [A o T T 1T A 411
R 1, 1 a1 <2
FiO IBOIBIE oo eeee e et e e e e e 412]
Q) F.10 Maintainincrementally oo iiiiiiiitiretiinenrreennnaraennas 412
A Ll B I T - A 413 t7
o) FA2 PURY ..ttt it ettt et e eteee e eeeaeeeaenenenns 419 .
F I3 ROlOrMUIBI®. ittt it ittt eanrerannonnnnssanrssans 419
Fold ROMOVEiiiiiiiitiivetteniineeannnrersrensassonnsnssnnns 424 g
et L T IR T 428
o R T T T 430
o3 a7 SWBD. ...ttt ittt ittt e 431 »
4 FAB URIOIE. ..o\t teetiieett it irreeearateaaaeeiereeaaeaneenneeneeens 431)
Lol
- AppendixG: Seleclion Catalogcoiiiiiiiiiiiiiiiriiiiians 433 -
RF G.1 CatalogNOIBtION.cviiit it ittt e tivetrarcanansensansanns 433 o
"t G.2 Casify........ e e ae e s et tae ettt ne s et et e 434 -
T‘j G.3 ComputeSequentially.covvverirreerieinrienenearaerennens 435 -
:;I G4 ConSOlIAIE.oiiiiii it iiiiiiei ittt 435 N
Y G.5 BQUIVAIBNCE.o ii ittt ittt ittt ettt et e e s 436 .-
- L T 439 .
) G.7 FIBIMON ...ttt ettt et 439 T
o GB Globalizecoovtiiiii i e 440 ~
20 GO IB0IBEottt ittt e 440 '
o G.10 MaintaininCrementallyouvieeirreenrirrnneneennoeneenonans 441 o
' G1T MBD .t iihit it eiiiterennretaneeeraeannsneesnarsetneansasoassanns 442 ™
- GA2 PURIY ..ottt e 448
) G.13 RETOTMUIBE\t v terereeeeeranneeeninneneeeeeaineeeneennns 448 :-:
§: G314 RBMOVEo ittt ittt irtr e ranarnnaceensetonssossssassnnsans 451 ~
2 G185 SOW L.ttt tii ettt e e 457
by G168 SIMPITY .o ettt ettt ettt e 459 =
= GAT SWAD ... vtttetit ettt e e e 459 B
$- GaB UNIOITottt it i it i e e e it e e 460
,51 G.19 Problem Solving Resource RUIeS.cvvvvnernirneenennens 460 o
. G20 GENeral RUIBSovviiiiiiiiiiiiieieieeeeeeaiaieenaas 462 N
‘.
~

‘2 AP AR A N
4

P P
i

foas

Lo i .
5%

-
-
.‘J

By

PRS-l B Rl

e 3 g
(4l

kK X
l.‘&.‘

" 1.7

A Gist specification of package router - PAGE 189

Appendix A
Gist specification of package router

In this appendix, we present the formal Gist specification of the package router problem. The
English description is given in section 3.1, page 38. An overview of the specification is given
in Chapter 4. The original router specification is due to Feather and London [London &
Feather 82]; the version here incorporates some minor improvements.

Key to font conventions and special symbols used in Gist

symbol meaning example
| of type obj|T - objectobjoftypeT
I such that (aninteger || (integer>3)) - an integer greater than 3
may be used to build names, like this_name
concatenates a type name with a suffix to form a variabie name, e.g. integer. 1
Variables with distinct suffices denote distinct objects.

fonts meaning example

underlined key word beqin, definition, jf

SMALL CAPITALS type name INTEGER

lower case italics variable x

UPPER CASE BOLDFACE action, demon, relation and constraint names SET_SWITCH
Mixed Case Boldface attribute names Destination

Package Router Specification in Gist

The network hardware

tyoe LOCATION() supertvpe of

< SOURCE(source_outlet | PIPE);
Gist commant - the above line defines s0urce 10 be a type with one attribute. source_outiet, and
only objects of type PPt may serve as such attributes. gnd comment

“asp % 3 B¢

4,

ks

R SN

"

4

e A%
2 9 s 2. A 2

e = W .

4

N LY ae s e

T T N N T T N O T N T T T V(e N T e e T u T i aP el e o F (T a T LA s e]

----------- = o]

PAGE 190 Gist specification of package router 3

PIPE(connection_to_switch_or_bin | (SWITCH ynion BIN));

SWITCH(switch_outlet | PiPE :2, switch_setting | PIPE)
where always required '
switch:switch_setting = switch:switch_outlet end;
8IN()
>;

Soac comment - of the above types and attribuls, only the SWITCH_SETTING attribute of swirck is
dynamic in this specification, the others remain fixed throughout. gnd comment

Gigt comment - by default, attributes (e.9. SOURCE_OUTLET) of types (e.9. sounce) are functional
- (.- there is one and only one pipe serving as the SWITCH_SETTING aftribute of the source). The
default may be overridden, as occurs in the SWITCH_OUTLET attribute of switck - there the ":2"
indicates that each switch has exactly 2 pipes serving as #s SWITCH_OUTLET attribute. gnd

somment

always prohibited MORE_THAN_ONE_SOURCE
@xists source. 1, source.2;

Gist comment - constraints may be stated as predicates following either giways reguired (in which
case the predicate must siways evailuste to true), or giways prohibited (in which case the predicate
must never evaluate 1o true). The usual logical connectives, quantification, stc. may be used in Gist
predicates. Distinct suffixes on type names after gxigts have the special meaning of denoting distinct

objects. gnd comment

always reguired PIPE_EMERGES_FROM_UNIQUE_SWITCH_OR_SOURCE

for all pipe ||
(exists unique switch_or_source | (SWITCH ynion SOURCE) ||
{ pipe = switch_or_source:switch_outiet or
pipe = switch_or_source:source_outiet));

Qist comment - the values of attributes can be retrieved in the following manner: it obj is an object of
type 7. where type T has an attribute ATT, then ob/:ATT denotes any object serving as ob/'s ATT

sttribute. gnd comment

alwavs required UNIQUE_PIPE_LEADS_INTO_SWITCH_OR_BIN
for all switch_or_bin | (SWITCH ynion BIN) ||
(axists unigue pipe ||

(pipe:connection_to_switch_or_bin = switch_or_bin));

AZL s BRS T

t
-;- %

<213

R
L
N

w

PR

PR -y

............

v
:
o ‘ g A Gist specification of package router ~ PAGE 191

¥ '.!.o

sSOSICN

;.:‘5 e

: relation LOCATION_ON_ROUTE_TO_BIN(LOCATION,BIN)

il gefinition

RN case LOCATION of
.f-".'i BIN => LOCATION = BIN; .

v'-:: RY PIPE => LOCATION_ON_ROUTE_TO_BIN(LOCATI/ON:connection_to_switch_or_bin,8IN);
SN SWITCH => LOCATION_ON_ROUTE_TO_BIN(LOCATION:switch_outlet,8/N);

. SOURCE => LOCATION_ON_ROUTE_TO_BIN(LOCATION:source_outlet,B8/N);
A end case;

o

! 1 i

) Develooment comment - mapped at step 5.4 end comment

53
=

Spec comment - this relation is defined 10 hold between a iocation and bin if and only if the location

7, ;' ; lies on route 10 the bin, i.e. the location is the bin, or the location is a pipe connected to a location
> 2 ‘ : leading to the bin (a recursive definition), or a switch either of the outiets of which leads to the bin, or a
2 source whose outlet leads 1o the bin. end comment
,

Gist mmgm - the predicate of a defined relation denotes those tuples of objects participating in
that reiation. For any tuple of objects of the appropriate types, that tuple (in the above relation, a
2-tuple of LOCATION and BIN) is in the defined relation it and only if the defining predicate equais true

for those objects. end comment

LAY

=
b

' ‘.""u"t-'"‘g;v X%

always reguired SOURCE_ON_ROUTE_TO_ALL_BINS
for all bin || LOCATION_ON_ROUTE_TO_BIN(the source,bin) ;

ik
A |

v
5
IN"‘: e,
e
< Packages - the objects moving through the network
oo 3l
‘ '3* <
: : fype PACKAGE(located_at | LOCATION, destination | BIN) ;
IND o
B relation MISROUTED(PACKAGE)
." m
‘-ij-' }; ~ LOCATION_ON_ROUTE_TO_BIN(PACKAGE:located_at, PACKAGE:destination) gor
. ‘\-f n SWITCH_SET_WRONG_FOR_PACKAGE(PACKAGE:located_at,PACKAGE);
L3~
E Develooment comment - mapped at step 5.5 end comment

158 Soec comment - 8 peckage is misrouted H it is at a location not on route to its destination, or in a

» switch set the wrong way. end comment

“‘aﬁ. ‘r"

-

o; "‘ V‘

y &

\r XX,

s
.

ppd- ot L P s a s d o - T e AR S A o g PRl LS R AT RN A Rl Al lale ok -v-v-ﬂ‘ _'.E.;'-

PAGE 192 Gist specification of package router

Iimplementable Portion

mw-mwﬁmwmkhuﬁnmm.wmtowm. end comment

80ent PACKAGE_ROUTER() where

relation PACKAGES_EVER_AT_SOURCE(PACKAGE_SEQ | geguence of PACKAGE)
definition PACKAGE_SEQ =
({package || (cackage:located_at = the source) asof ever)
ordered temporally by start (package:located_at = the source));

Development comment - mapped at step 1.10 end comment

Spec comment - the sequence of packages sver to have been located at the source, in the order in
which they were there. gnd comment

The source station

g |

g |

O

| {3

IR

~ar

A

bk

. .".“. .

112

PR o

v ¥ 3

A2y
s

I § N ErNN

?
¥
(sl
»
1 9y
b
b]
,
\
N
N
-

.. » L7
. ‘ a’l.fl.‘ &

AN

NS

A

N

&

€1

I

v

R

O
PO

.

&

A Gist specification of package router : PAGE 193

demon RELEASE_PACKAGE_INTO_NETWORK (package.new)
trigger package.new:located_at = the source
response
begin
it @he package.previous || (package.previous immediately < package.new
wrt PACKAGES_EVER_AT_SOURCE("))
):.destination # package.new:destination

then WAIT[];

Deveiopment comment - part of final implementation gnd comment

Spec comment - must delay release of the new package uniess the immediately preceding package
was destined for the same bin. gnd comment

update :located_at of package.new to (the source):source_outiet
end; '

Gist comment - a demon is a data-triggered process. Whenever a state change takes place in which

the vaiue of demon’s trigger predicate changes from false to true, the demon is triggered. and performs

its (paponge.
The use of a relation with & '*’ filling one of its positions denotes any object that could fill that position.

The switches

relation SWITCH_IS_EMPTY (switch)
definition ~ exists package || package:located_at = switch;

DRevelopment comment - unfolded at step 6.10 end comment

IO Ak LN AR Y e

LIRS
Ny v} "'

o
L)

SRR R A

..........
S .

Nyt T .

dbadndb ot SR S0 0 -

MR ML e P a d] Sl) i S0 Pl e g D I ahe iy D S 700 A A

PAGE 104 Gist specification of package router @

demon SET_SWITCH(switch)
trigger RANDOM()
[esponge
begin
require SWITCH_IS_EMPTY (switch);
update :switch_setting of switch 10 switch:switch_outlet
end;
Development comment - mapped at step 6.1 gnd comment

b

Spec comment - the non-determinism of when and which way to set switches is constrained by the
always prohibited that foliows shortly: gnd comment

B

relation PACKAGES_DUE_AT_SWITCH(PACKAGES_DUE | seqguence of PACKAGE, SWITCH)
definition
PACKAGES_DUE =
{ a package ||
LOCATION_ON_ROUTE_TO_BIN(SWITCH,package:destination) and
~ ((package:located_at = SWITCH) asof ever) and 5
~ MISROUTED (package) '

} ardered wrt start (package:located_at = the source)

Development comment - mapped at step 5.1 end comment

'
', 'Jﬂ

Spec comment - packages due at a switch are those packages for whom (i) the switch lies on their
route to their destinations, (ii) they have not already reached the switch, and (iii) they are not misrouted.
They are ordered by the order in which they were at the source. gnd comment

relation SWITCH_SET_WRONG_FOR_PACKAGE(SWITCH, PACKAGE)
sefiniti .
LOCATION_ON_ROUTE_TO_BIN(SWITCH,PACKAGE:destination) and -

~ LOCATION_ON_ROUTE_TO_BIN(SWITCH:switch_setting, PACKAGE destination) ;

‘s

L]
Development comment - mapped at step 5.8 end comment
Soec comment - A switch is set wrong for a package if the switch lies on the route to that package's A
destination, but the switch is set the wrong way. end comment
.
w—d

LN A
L L S Y
’ »

5 E:ﬁ:f 1‘
[} 'l

L
> J
R

<
l'.

......................................
. .

P N

»
.

i S e

Y4 avana & 4L

I e s s s

)
:

oS

N

e

LS

»
rFl

)

" T,
[e

e Y

n.s

A Gist specification of package router : PAGE 195

aiways prohibited DID_NOT_SET_SWITCH_WHEN_HAD_CHANCE

gxists package, switch ||
(package:located_at = switch

and
SWITCH_SET_WRONG_FOR_PACKAGE(switch,package)

and
((package = first(PACKAGES_DUE_AT_SWITCH(" switch)) and
SWITCH_IS_EMPTY (switch)) asof ever)

)'

Development comment - mapped at step 4.1 and comment

Spec comment - must never reach a state in which a package is in a wrongly set switch, if there has
been an opportunity to set the switch correctly for that package, i.e. at some time that package was the
”'r 3t of those due at the switch and the switch was empty. end comment

Arrival of misrouted package

demon MISROUTED_PACKAGE_REACHED_BIN(package.bin.reached,bin.intended)
trigger package:located_at = bin.reached and package.destination = bin.intended
response MISROUTED_ARRIVAL[bin.reached, bin.intended] ;

Development comment - mapped at step 6.13 end comment
action MISROUTED_ARRIVAL[bin.reached, bin.intended]

Development comment - part of implementation gnd comment

The environment

......................

PAGE 196 Gist specification of package router

f2gent ENVIRONMENT() where

Arrival of packages at source

m CREATE_PACKAGE()
trigger RANDOM()

esoponse
greate package.new || (package.new:destination = g bin and

package.new:located_at = the source);

Spec comment - for the purposes of defining the environment in which the package router is to
operste. packages arrive at random intervals at the source with random destinations, subject to the
following constraint. end comment

always prohibited MULTIPLE_PACKAGES_AT_SOURCE

~ exists package. 1, package.2 ||
package.1:located_at = the source and package.2:located_at = the source ;

Movement of packages through network

relation MOVEMENT_CONNECTION(LOCATION.1, LOCATION.2)
sefiniti
(case LOCATION.1 gf
PIPE =) LOCATION. 1:connection_to_switch_or_bin;
SWITCH = > LOCATION. 1:switch_setting
end case) = LOCATION.2;

demon MOVE_PACKAGE(package) .
trigger 3 /ocation.next || MOVEMENT_CONNECTION(pacakge:LOCATED_AT, /ocation.next)

response
update :located_at of package to MOVEMENT_CONNECTION(package:located_at, *);

Spec comment - this demon modeis the unpredictable movement of packages through the
network.lt triggers when a package has some place 1o move to (all cases except when in a bin) and at
some arbitrary time in the future moves it thers. gnd comment

o} |

.

Yy

ERE |

WG A . o a¥We We U P . P - -
¢ aWa -y d T g W Tl T T T Vo aTa e 3 ARSI WA 54 R TR B Rk e) ek O R 2 AR A5 RN R D D T

.
L

. n A Gist specification of package router : PAGE 197

o= o)
v~
4
| T o v e B ONPN N R

always prohibited PACKAGES_OVERTAKING_ONE_ANOTHER
- exists package. 1, package.2, location
. || start (package. 'located_at = /ocation) earlier than
stant (package.2:located_at = /ocation) and

s
.

. - finish (package.2:located_at = /ocation) earlier than
finish (package.1:located_at = jocation);
-: : j Spec comment - we are assured that packages do not overtake one another while they are moved

N through the network: a package which enters a location (switch, pipe, source) eralier than another
does not exit later. end comment

action WAIT[] ;

< Observable environment

Spec comment - portions of environment to be used to describe observable information available to
implementor. gng comment

AN

R Sy B N

type SENSOR() supertype of < switch(); bin() > ;

4

demon PACKAGE_ENTERING_SENSOR(package,sensor)
frigger package:located_at = sensor

response null ;

eVavals A dud
AN

-

A

Ay

demon PACKAGE_LEAVING_SENSOR(package,sensor)
trigger ~ package:located_at = sensor

response null
end

a8 02l

lr ‘-"l

l...‘.

2V L L, TN

“® e ¢

Waly ¢

LY P LR I R N e T L AR Y N I e I T I e) - - - - - - f e L mg e .
POV, S N N A N

I') - hd = -
JUT
*
R
>~ PAGE 198 Gist specification of package router ad
2
.'9
2 -
s Implementation Specification A
. -
b *n ,_-:
Iy
'f"‘,,\"; Seec comment - this section is intended to capture the requirements placed on an impiementor of -
Y the package router agent. and comment _‘.
;s umjgmgm PACKAGE_ROUTER o
- observing PN
&Y altribytes
; source_outlet, -
i connection_to_switch_or_bin, i
. switch_outlet,
i }_, package:destination when package:located_at = the source,
.: package:.located_at when package:located_at = the source; -
Y& _ .
: events v
. PACKAGE_ENTERING_SENSOR(S$,sensor), E
,_ PACKAGE_LEAVING_SENSOR($,sensor) ; ks
A . .
X effecting 2
™) attributes :
il switch_setting,
. package:located_at when package:located_at = the source; 5
< -~
] 3
)
i': ‘
z events
MISROUTED_ARRIVAL (bin.reached bin.intended)
WAIT[); .
¢ NG
4. . L
)i end jmolement:
o =
- = |
"\
o
3
cf'*
x B
¥
&
I o
; N ~
R T
v, =
f& A S B R R It LSRR R T T N R L RS IR R T cats e Cate s - R L RS .
A A A A R S S S S L S L O LS G DA SRS R SRR

]

B Development Goal-Structure ‘ PAGE 199

o e
[V

N Appendix B
- Development Goal-Structure

A

o in this appendix, we explicate the implicit goal structure of the router development of
E appendix C and further, provide a broad outline of that development. The sectioning of the
appendix follows that of appendix C. Each step takes the following form:

R 0 I B

3
R
: Level StepNum Goal <arguments>
~ . Method

The level, a positivie interger, represents the goal nesting level. This is aiso provided visually
by indentation. Goals at level 0, i.e. goals posted by the user, have no level printed. All goais
: posted by the user are underlined. A goal's arguments> are generally printed in abbreviated
) form so as to fit on a single line. The method printed below the goal is the one chosen in the

A
. l. --I

<A

development.

oy

)

«fuflala

]

<
N’y
,&ln

(1 SAS

e

P

] 9 A ‘.'-Ll L N -4 -.'n ‘l"”‘.”l‘.a

sTanae s

’.

Ly

-

- .. Y WS Tt LTty , S A YLt e e . .

- - T A Tl T R
AL T IR AN A LA CARS R A g |

~ W,

I 4

Bl PAGE 200 ' Development Goal-Structure 3

¢

£

2 --

.\’ _-:.

- B.1. Remove PACKAGES EVER AT.SOURCE

. L=

A 1.1 Removg peas from spec . O

‘. . - '

3

2 RemoveRelation -

s

a r

1 1.2 Remove reference 10 packages ever at source (peas) from spec -

: MegaMove ;:if

-.)’ L e
¥ 2 1.3/solate derived object .
'.-
0 -
. . =
_ FoldGenericintoRelation

\1. >

:3 3 1.4 Globalize derived object . "

7 e

ae GlobalizeDerivedObject .
:]

‘,_. 4 1.5 (iry) Reformulate p.new as global =

; 5 ReformulsteLocalAsLast o

» e
>

[1.6 Reformulate p.new as last(peas(")) =

F-. -

i) 2

O

[, ~2

W& 6 1.7 Manual manuai-replace(p.new last(peas)) e
A3 e

& -

manual step -

: -~

~ -
X 2 1.8 Maintainincrementally previous package .
A\l .
~ .
N SceatterMaintenanceForDerivedRelation]
-— -
> 3 1.9 Fiatten previous package .
~ -
» -
"s Flatten "
.
g 4 1.10 Map peas =

-

e 2
¢
) MaintainDerivedRelation -

= oL

(] '-‘
N [1.11 Maintainincrementally peas 3

p-2)]

- IntroduceSeqMaintenanceDemon = |
¢ Yo
5 |
¢ -

1 3 -~ i
3 =

v |

o
N 1

LSRN . R L P L '-('{ SN ‘I'.'.'ﬂ.;a N L R A

e A

s B.1 Remove PACKAGES EVER AT_SOURCE : PAGE 201
9 .-
;3
L 4 ~
. !
- j: 1 1.12 Remove reference peas from spec
)
. PositionaiMegaMove
N
2 1.13 Reformulate derived-object as positional retrieval
P
> A ReformulateDerivedObject
. < 3 1.14 Relormulate relative retrieval as equivalence relation
AN
B ReformuiateRelativeRetrievaliAsLast
_?1 ':- 4 1.15 Equivalence last(peas@p) and p
: a Anchor2
5 1.16 Reformuiate last(peas@p) as p
4l Y
x '.‘n
v :{3 ReformulateAsObject
o
. 2 1.17 Isolate last(peas)
, FoldGenericintoRelation
e 3‘ 2 1.18 Maintainincrementally |ast package
) ScatterMaintenanceForDerivedRelation
‘s .
X 1 1.18 Remove reference peas from spec v
B d *"l .
) é RemoveByObjectizingContext y
Ve 2 1.20 Reformulate last(peas@p) as object
AN
N
. ReformulateAsObject
.y
E 1 1.21 Remove update pess from spec
‘ RemovelUnusedAction :
_ :
2 1.22 Show update unnoticed -
v ShowDysteleological -

& £ 9ol I 0w = o=
-
f 6 B 7V

S

2

-

r

PAGE 202

v
-

~OONARNARA S {

Ay

..(.- R :."._" e

4 A%

TN TR S RN

W aPu Wil 0, 6,4,

B.2. Remove PREVIOUS.PACKAGE

2.1 Remove previous package

RemoveRelation

1 2.2 Remove reference previous package from spec

ReplaceRefWithValue

2.3 Show vaiue known of previous package

ShowlUpdateGivesValue

2.4 Show last package still holds at conditional

ShowNewValueStillvalid

2.5 Show last package doesn't change

MoveinterveningUpdste

2.6 ComputeSequentially update of last package after conditional

MoveOutOfAtomic

2.7 Unfold atomic

UnfoldAtomic .

2.8 (reposted) ComputeSequentially update of last packa
sfter conditional .

ConsolidateToMakeSequential

2.9 Consolidate notice new_package at source and
release_package.into_network

MergeDemons

2.10 Equivalence declaration lists

EquivalenceCompoundStructures

N

» - - -y - L. 4 - - TN - A . " T e ta *a s e ‘."l . . '..’.l - "ot et
O S TIRL o S R N SR AN, S LIV LR

. .’ o

AR
LA

;L
e ” 0

, .
8- 1)

v

PN E |

o '

4
A

- e
Cal MR }
POl PPN ¥

%H!

e e

P ARV B RE - =

LS
et

‘4

A

33 AT A R i
' s

O
b

P

<

".

T -
.

S g L)

LA

CAA]

A
-

P

(B A

U NN | -
L R

2 88 2 8 8

B.2 Remove PREVIOUS PACKAGE : PAGE 203
8 2.11 Equivaience p and p.new

Anchor2
9 2.12 Reformulate p &s p.new

RenameVar
$ 2.13 (reposted) ComputeSequentially update of last package

after conditiona)

SwapUp
6 2.14 Swap update of last_ package with conditional

SwapStatements

" . . *, P a"e te"e @ o P e e ot

> v

W AL PO P RS ORI . I R R .t . PO €t P e " m®e A et e A"
o e f-"‘- "\- \ DURCIREYS) _. ,-.;.,-.r.f ERE A AL I -_‘.-"-, PRI AR \:_-._\'\ .'.‘.')

o ., e RN N

10 [\ ¥

PAGE 204 Development Goal-Structure

o)
Y
o -,
l‘.-; h-;
9 A
.
) R Id .: “
RN B.3. Remove LAST PACKAGE o
) .
. 3.1 Remove last package o)
"y =
RemoveRelation
pra s R
‘\"‘ -:;‘
st 1 3.2 Remove reference iast package from spec .
241)
$7. MegaMove i
~ 2 3.3 /so/ste last package:destination
"y »",,
; i) *:-
A FoldGenericintoRelation 4
’\
- 2 3.4 Maintainincrementally last package destination a
n ScatterMaintenanceForDerivedRelation
‘ -
A -
'_; 1 3.5 Remove update of last package
-
RemoveUnusedAction r:
-
P
2 ‘.‘ ';{
»

- NEUXNLXYR N\ RIS
W AR

& wx oz

AN Yy
LA

-
-
. "
04
re .
).’
s
~l
>
I cpp e v A LY SR | - S Y S S SN T S S P ce e Te B Te Tttt Tatat o gT e,
.'-"‘a.ﬁd'..o'.'f Ry -P..- \q.‘l <y \4'\- \ « \‘.'n\' \° - USRI R L AL .‘"'..';.'.A'g.-'l‘._ R SUR L R DR SO, v

LR A R B RS RN GE G L R GO R M SO P A A et) S A it D At I S g rn I e e e 40

o \
<
N
H B.3 Remove LAST PACKAGE : PAGE 208
Yoo :
\1-. ‘n -
‘ » A »)
: B.4. Map DID.NOT.SET_.SWITCH_.WHEN_HAD_CHANCE
=
g 4.1 Mg did_not set switch when had chance
S MapConstraintAsDemon
Y .
<
o 1 4.2 Show body implies Q
-
< e
- ConjunctimpliesConjunctArm
2.
1 2= 1 4.3 Map set switch when_have_ chance (sswhc)
» - MapByConsolidation
. . 2 4.4 Consolidate sswhc and aet switch
VN
.« o MergeDemons
b
' ! 3 4.5 Equivalence two triggers
j‘ N Anchor2
£ :tf 4 4.6 Reformuiste random as specific
2N
Y- SpecislizeRsndom
KN 4.7 Map require ~P from ThisEvent until EverMore
¥ . -
> ,; CasifyPosConstraint

1 4.8 Casity require ~P trom ThisEvent until EverMore
CasityFromUntilEverConstraint K
é 1 4.9 Map require ~P at ThisEvent
TriggerimpliesConstraint
B 1 4.10 Map require ~P after ThisEvent

CasifyPosConstraint

2 4.11 Casity require ~P after ThisEvent

T dBARE AN A A TSN,
SR

%

AN
.

“n

-

U IS \\.
\;\.L}.'.- X

), \}'.:_\:,\;_

AR

o
A

b

4

7

2 Ay
<+ 7
A

AL
Tl
v,

2

i)

]

v

.
PR
)

4
)
b

e

o VA

o

PAGE 208

CasityAroundEvent
2 4.12 Map require ~P after ThisEvent until E
NotXUntilX
2 413Mep ~PduringE
CasifyPosConstraint
3 4.14 Casity require ~P during E
Pastinduction
3 4.15 Map require ~P at last update switch setting
MoveConstraintToAction
3 4.16 Map require ~(start ~P) between last update, E

ShowNoChange

a4 4.17 Show ~(start ~P) between last update, E

2
4.18 Map update of switch setting where P
ComputeNewValue
4.19 {nfold switch set wrong for package 8t set switch

ComputeNewVailue

Development Goal-Structure

sl

13

£_5 .

7 »
v

‘,
s

8k

S

A |}

KA

[4
ot
»

'

. ~ 8.4 Map DID NOT_SET_SWITCH WHEN HAD CHANCE : PAGE 207

-

- NN
el

o P e

B.5. Map PACKAGES_DUE AT SWITCH

/

[5.1 Map packages due_at switch (pdas)
3‘ MaintainDerivedRelation

1 5.2 Maintainincrementally pdas

Ao Al B P e 3

»
a ScatterMaintenanceForDerivedRelation

." 2 5.3 Flatten pdas

R PR PPN

Flatten

g fie iy Sy g 2
[3

o
! 3 5.4 Map location_on route to bin

StoreExplicitly :

2-avsa%2%
~
4

3 5.5 Map misrouted ;

UnfoldDerivedRelation

fl

4 5.6 Unfold misrouted at pdas :

D-’.

-
Y/

ScatterComputationOtDerivedRelation

L'y
P

Ny
N

5.7 Fiatten pdas

a'a"aa a

Flatten '

3 10

3 5.8 Map switch set wrong_for package P

S

N

UnfoldDerivedRelation

L MV A I]

[
0

4 8.9 Unfold switch set wrong for package N

ScatterComputationOfDerivedRelation

s 8 A A S
..
.
.

; 1 §.10 Purlfy loop in create package

PurifyDemon

Py

2 5.11 Remove loop from create_ package

‘.
Wy
T

A ¢

N TN o P N SR T, 4T, e O T
S LN D \-‘-.' A SO ALRI RN

(]

B SRR AN AT AT,

LA

" A ar e i e aC R VR0 Sl IS e M R AT S MM AT R AN ERACNIC Al UEA IR S5 SO EIDE S S AL RCE AL L DL P AL, |

(]

o

PAGE 208 Development Goal-Structure —

. e

3
2] '.\‘ : X
304
a0 RemoveFromDemon
! ity
.o 3 5.12 Globalize loop in create package -
-{_Z:- GlobalizeAction -,
.. . 'S
N 4 5.13 Unfold atomic =
"Ijj UnfoldAtomic -
wod
LAY 1 5.14 Furity conditional in move_package -
- s
]
: PurifyDemon
::(. :h K
e 2 5.15 Remove conditional in move package . e
‘:.‘: -
; ;:"' RemoveFromDemon
Ak h
3 5 16 Giobalize conditional in move package

.

P GlobalizeAction -
e -
- 4 5.17 Unfold atomic -
G
-] 2
> UnfoldAtomic
A
", 5.18 Casily package leaving sensor o
I- -
. CasifySuperTrigger o
'\-: 5.19 Casity package_entering sensor .
g
] :)
- =
CasitySuperTrigger -
o

oA}

r
&l

&‘.
{ ':
«°,
3 .
Y
4:|
4
e
i “d
o7,
‘o
a
o, N
o'.‘)
i |
~ -
'..
'\

<
¢
\"‘ D A S O T D0 O, T, (G G L g D i A S el N e SNt

B N

AP AL W - 00, P Y S o SOy

oo Sy Rev g JEg Y

-

PN
NSy

B.5 Map PACKAGES DUE AT SWITCH

B.6. Map Demons

8.1 Map set switch
CasifyDemon
1 6.2 Casify set switch
CasityConjunctiveTrigger
1 6.3 Map set switch when_bubble_package (sswbp)
UnfoldDemon
2 6.4 Unfoic sswbp at release package into_network
ScatterComputationOfDemon
3 6.5 Factor update of packages due at switch
FactorDBMaintenanceintoAction
1 6.6 Map set switch_on exit
MapByConsolidation

2 6.7 Consolidate set switch_on exit and package leaving switch

MergeDemons
3 €.8 Equivalence triggers

Anchori
4 6.9 Reformuiate switch is empty as expression

ReformulateDerivedRelation
s 8.10 Unfold switch is empty in trigger

ScatterComputstionOfDerivedRelation

] 6.11 (reposted) Relormuiate sxistential as universeal

PAGE 209

s iy

PR AR S

coa_eg e~

2 e a o

LIRS

RN Y - 207

oA,

- _pi

oty g 4 Ay

SR . ¢ Y ata" s

ava' s & &7

PAGE 210 Development Goal-Structure y.
s
ReformulateExistentialTrigger -
-
e 6.12 Equivaience two declarations i
Anchor2 e
6.13 Map misrouted package reached _bin - i
, .
CasityDemon S
1 6.14 Casify misrouted_package_reached_bin o
-
LI
CasifyConjunctiveTrigger
1 6.15 Map misrouted package located at bin _:'_-
MapByConsolidstion - y
2 6.16 Consolidate misrouted package located at bin and package entering_bin - K
oot
MergeDemons - :
3 6.17 Equivalence Oeclaration lists m
EquivalenceCompoundStructures
4 8.18 Equivaience bin.reached ang bin . :
Anchort >
5
4 6.19 (reposted) Equivaience declaration lists =’ '
. 2
AddNewVar w— o
-
1 6.20 Map miarouted package destination set R
.. L)
UnfoldDemon o
‘- 1
-
2 €.21 Unfolo misrouted package destination set M
- A Y
ScatterComputationOfDemon :
SN
. - \
h
-
=
)
N
— 8
N N T TN N N T A T AT g s T T N g T

- AR A, Ay XA olaja, e,
& |

\ ";"l'o\.l"

e

-~
.
R
b, O

;.
o« A

s

EN RV AR
l"l"
(]

|

A

L™

v

‘.. ‘.‘ ..b’,

B'ﬁ'.&'

’I..' A.‘. l" ’

ar:

==

Ax:

C Package Router Development - PAGE 211

Appendix C
Package Router Development

One of the largest and most interesting GIST specifications to date is that of a mechanical
package router. The English description of the router is found in section 3.1, and the formal
Gist specification in appendix A. Here we present an annotated history of the Glitter
development™. in this appendix we look at only the goals posted and methods selected;
appendix B presents the goal/subgoal structure, appendix D the selection process.

Structure and Notation:

o Development steps. We will present the development as an alternating series of
goals and methods for achieving those goals. Goals posted by the user will be
underlined and flagged with user, all other goals are generated as a byproduct of
problem solving. The goal syntax has been sweetened slightly and abbreviated
from the actual menu-driven interaction (see section 2.3.3.2). Noise words have
been added for readability. Goals which are trivially satisfied (i.e.. hold in the
posting state) will generally not be made explicit. ‘

O Program snapshots. Snapshots of the program development state will be given to
illustrate the effect of transformations on the specification. The program syntax is
described in chapter 3 and appendix A. in some cases, the program will be
annotated with »s. These will be used as a referencing aid from within the
development.

DA large part of the development process can be characterized as information-
spreading. Code is introduced by either unfolding or maintaining a particular
construct. At intervals during the development it is often useful to regroup by
applying simplification transformations which attempt to both get rid of
unnecessary buffer code and use the iocal context to optimize spread code.
Simplification is not carried out automatically, but must be explicitly invoked
through the Simplify goal. The timing of the simplification or clean-up intervals is
left to the user. They are generally chosen after major surgery has been done to
the program. For readability, we have taken some liberties with the timing and

&Fnthor and London have developed 8 portion of the package router by hand using a transformational approach
[London & Feather 82]. While looking st only a portion of the entire development, they provided a large number of
ingights into the overall deveiopment structure.

AP SN SRR L CNE NN A JAE AN A A 8 i A At T 0 AR Bk

PAGE 212 PACKAGE ROUTER DEVELOPMENT

NP
' %
L.‘ Oy

explicitness of simplification steps: we use them more frequently than is typical
and generally only mention that simplification has taken place, leaving the

Simplify goal implicit. Because we view the simplification process as below the i

planning level, we believe this type of omission will make the development easier -
to follow.

2

D Trigger/response assumption. We will assume that the response of a demon is D%

executed in the same state that the demon was triggered in. In some cases, this
puts implicit constraints on the environment, a.k.a. gravity, friction, speed of
mechanical sensors. Normally these constraints would show up explicitly as a o
development progressed; we forego them here for simplicity.

L

[| VS

A development digest: For presentation purposes, the development has been sectioned
around the user's high level development goals. Below is a synopsis of each section.

Y

1. Remove relation PACKAGES_EVER_AT_SOURCE; a moderate task. No need
for keeping track of gll of the packages that enter the router, just the last one.

2. Remove relation PREVIOUS_PACKAGE; a moderate task. Removal of

“temporary variable". -y
3. Remove relation LAST_PACKAGE; an easy task. The only information that need -
be remembered about the last package is its destination.
»
4. Map constraint DID_NOT_SET_SWITCH_WHEN_HAD_CHANCE,; a difficult
task. Decide switch setting strategy.
5. Map relation PACKAGES_DUE_AT_SWITCH; a difficult task. Find way to .
maintain the fundamental data structure of the system.
6. Map demons; a moderate task. Map the demonic structure into triggerings on :::;
observable events.
2
o~
~
L o
= |
" ~
'.'..q": (¥
10

'S
frey

| ST

b2
o

C Package Router Development : PAGE 213

C.1. Remove PACKAGES_EVER_AT_SOURCE

The package router specification provides for keeping the sequence of all packages that ever
enter the system in the relation PACKAGES_EVER_AT_SOURCE. However, the only use the
spec makes of this relation (sequence) is 10 access the last package that has entered the
system; keeping the entire sequence is wasted overhead. The development will start with the
user deciding to remove the unneeded sequence from the specification.

Before proceeding with the development, a note is in order. The process of removing
PACKAGES_EVER_AT_SOURCE was the portion of the development studied in detail by
Feather and London [London & Feather 82]. A number of the steps in the Feather and
London (F&L) development have a Eureka flavor: without an overall explicit development
plan, they appear to be pulied out of thin air to allow the development to continue. This is not
a criticism of the F&L development in particular. In fact, it was a rather masterful job. Any
development which captures only the final set of sequential steps that went into the
implementation of a particular spec will naturally be difficult to motivate. Further, a
development based on the user searching through a catalog of transformations for a "good”
one to apply generally takes the flavor of opportunistic search: 1) try applying a
transformation, 2) if it produces something interesting, continue development there, eise 3)
goto 1. Depending on the complexity of the spec and catalog (expected to be large in both
cases), this is not a good model of development. The likelihood of missing either some
important step or the right order of step application(found to be a crucial constraint in a T!
development) is great. Planning information is clearly needed. The GLITTER development
provides an explicit planning structure and succeeds in rationalizing most of the steps; ones
remaining unmotivated (i.e., up to the user) are discussed as to their resistance to future

automation.

Below is the portion of the spec that we will be working with in this section:

_.." ~ Shsbhobio b e e SA A LA S N4 LA RE RIS AL AL NN L SR N A ARANA A CERE S VARELL UL S AR AT R R SRR LSO AN LOEREY
o
> PAGE 214 PACKAGE ROUTER DEVELOPMENT 3
N ¢
e
3 %
. demon RELEASE_PACKAGE_INTO_NETWORK (package.new) —
= irigger package.new:LOCATED_AT = the source ta
) raesponse
o~ if (the package.previous || o
package.previous jmmediately before package.new e
’, wrt PACKAGES_EVER_AT_SOURCE(*)
) :DESTINATION # package.new :DESTINATION .
b9 then invoke WAIT[]: N
J RN
N
‘\':f update :LOCATED_AT of package.new 10 (the source):SOURCE_OUTLET .
WO m: ;_;
- |
§ relation PACKAGES_EVER_AT_SOURCE(package_seq | sequence of package) el
N definjtion package_seq = ' -
3 ({package || (package:LOCATED AT = the source) asof everbefore} -
Q) ordered temporally by Start (package:LOCATED_AT = Lhe source)): "
X
e The initial goal is to get rid of the sequence. :
N :
STEP 1.1(user): Remove PACKAGES_EVER_AT_SOURCE from spec™ =
o *a
o
- Y
Yy | Method RemoveRelation | N
o
(% Goa/: Remove R|relstion from spec
Action: 1) forall reference-location(R, RR,spec] ..
b+ do Remove RR from spec)
:: 2) Apply REMOVE_UNREFERENCED_RELATION(R) =
o)
[You can remove a relation if you can remove all references to 1t.] a
} | End Method | N
. * .)
X in our case, there is only one reference to the sequence: the one ’, found in the derived £
3
‘ object package.previous. "
_;. .
> STEP 1.2: Remove reference ¥, to PACKAGES_EVER_AT_SOURCE trom spec .:'-j
.
s o
-
: ""The entire specification or root of the parse tree. e
" i
1] ‘v .
v .,
o4
N

Y

)
Y
L)

0O
N

*

fli' ‘_J

>,
4

P
L]

..

"

l\. .“.l]

[Y9

.

........

C.1 Remove PACKAGES_EVER_AT_SOURCE - PAGE 215

| Method MegaMove |

Goal: Remove X|relation-reference from spec
Filter: 8) component-of[X, Y]
Action: 1) isolate Y in DR | derived-relation

2) Maintainincrementalty DR

[Remove the reiation-relerence X by moving it directly after the locations It is
assigned.}

| EndMethod |

Note that the component-of relation is transitive. Hence, a number of different bindings may
occur on Y, creating a separate method instantiation for each. The Y we have chosen is the
surrounding derived-object. We could have also chosen the more immediate context of the
positional-ratrieval. In this case, both lead to the same basic state.

STEP 1.3: Isolate

(Lhe package.previous ||
package.previous immediately before package.new
wrt PACKAGES_EVER_AT_SOURCE(*))

| Method FoldGenericIntoRelation |

Goal: Isolate X
Action: 1) Globalize X
2) Apply FOLD_NTO_RELATION(X)

[Straightiorward fold into derived-relation.)
| End Method !

STEP 1.4: Giobalize

(1he package.previous || :
package.previous immediately before package.new
wrt PACKAGES_EVER_AT_SOURCE(*))

n “ . _—_ -

(DX HINE Y N N e

) J..—-lsJ~J' d

8 &

FA S
s a

I’.."

% 'i"
Fd

\{‘-i‘- t ,

»
-

s

sl -'\f.. A

o " a" .

PAGE 216 PACKAGE ROUTER DEVELOPMENT

| Method GlobalizeDerivedObject |

Goal: Giobalize DO|derived-object

Action: 1) forall reference-location[v, §, 00]
suchthat V » local-var-of[*, DO)
do Try Reformulate V as global-expression

[Try changing all local variable references to global references.)]
| End Method)

Note the use of the Try modifier here: each Retormuiate goal may be marked as
unrealizable by the user.

STEP 1.5: Try Reformulate package.new (in derived-object package.previous) as
global-expression

} Method ReformLocalAslast |

Goal: Reformulate V|varisble as globsl-expression
Fitter: a) pattern-match|
relation name (seqigeguence of type) def;,
R, spec)
b) domain-type-of{type. V]
Action: 1) Reformulate V as last(name(*))

{H you can tind a sequence contairing the same type of objects as V then you
may be able to change V into a specitic reference to the sequence.]

| End Method |

This method looks for a sequence which is composed of the same type of objects as the
variable package.new, i.e., the type package.

STEP 1.6: Reformulate package.new as Jagt{(PACKAGES+EVER«AT«SOURCE(*))

At this point, no methods succeed in achieving the goal. The user has two options: 1) since
this is part of a try-goal, the user can ignore it and move onto the fold step, or 2) he can
manually manipulate the program to achieve the goal. If the latter is chosen, which it is in this

R A it K B R AR A

A BEh R LAl AN A N 4 S L AL B i A A AT A A A e e At C A/ R R D P A o e & e i e Lt 3

"
..................

.h
(N
LY
. [! C.1 Remove PACKAGES_EVER_AT_SOURCE : PAGE 217
! - case, the system notes the problem solving context for future (human) analysis; any manual
< steps taken by the user are assumed to be necessitated by some missing piece of
development knowledge in the system. In this case, it is lack of a theorem prover.
3 ’. ..:'
g - STEP 1.7 (user):
KRR Manual MANUAL-REPLACE(package.new, last(PACKAGES_EVER_AT_SOURCE(*))
RPN
X
:’ . This is the first operation actually carried out in the program space; in the base-line Tl system,
- . this would be the first arc of the development path (see the F&L development). Without
& motivation, i.e., the six subgoals sitting above it, it appears as a somewhat lucky or Eureka
- :f" step: fortuitously replace an expression with an equivaient value. With the subgoal hierarchy
- intact, its true purpose is illuminated: prepare the derived-object for isolation (so that it can be
- E maintained so that the reference can be removed ...). Note also the interaction between user
1Y
. and system: the system provides the focusing and motivation while the user is responsible for
* o the deep reasoning necessary to show that the two expressions are equivalent.
. '.:‘
= After replacing the local with a global expression, we have the following:
8
o (the package.previous ||
Y package.previous immediately before last(PACKAGES_EVER_AT_SOURCE(*))
VIR wrt PACKAGES_EVER_AT_SOURCE(*))
S We now have removed all reliance on local variables (package.previous will become the
. necessary *'ed parameter). If any did remain, the same two options of ignoring the
. s globilization goal (allowing them to become parameters in the newly formed derived relation)
" ‘~.
L= or finding a replacement value would be available.
:.' After applying the relation folding transformation FOLD_INTO_RELATION to produce a new
- relation PREVIOUS_PACKAGE®® b, we have the following
3 £]
.
-. «
. :.):
3 :l.‘

55When the sysiem needs a name for a new item, it asks the user to supply it. User supplied names lead to much
more readable programs. With 2 sophisticated name generating capability, the system might be able to do as well.
Currently no such capability exists.

20

x'aikt" el }- Py s
X

1

4
1

AR Y

n.(o

7PN -

M NN LY A TR G I N I O T T et v e e e e e e
ORI NS o N\ Py L *"'" WS CHAEL0 g Y ¢ e N A AN

o LAl g de s D L S R St T AL AT LA LT AN e AC AuC R Sl el i R MO IS L AT I D P

o
|.\J
ta. PAGE 218 PACKAGE ROUTER DEVELOPMENT a
| -~
=
gdemon RELEASE_PACKAGE_INTO_NETWORK (package.new) ~
trigger package.new:LOCATED_AT = the source . o
if PREVIOUS_PACKAGE(*):DESTINATION * package.new : DESTINATION oy
then invoke WAIT[]: -
. update :LOCATED_AT of package.new to (Lhe source):SOURCE_OUTLET ‘
end:
relation PACKAGES_EVER_AT_SOURCE(package_seq | sequence of package)
definition package_seq =
({package || (package:LOCATED_AT = the source) asof everbefore) o
ordered temporally by start (package:LOCATED_AT = the source)):; []
b, relation PREVIOUS_PACKAGE(prev_package | package) -2
definition prev_package =) \
(2 package.previous ||
package.previous immediately < last(PACKAGES_EVER_AT_SOURCE(*))
’, wrt PACKAGES_EVER_AT_SOURCE(*)): B
>
STEP 1.8: Maintainincrementally PREVIOUS_PACKAGE -~
o
| Method ScatterMaintenanceforDerivedRelation |
.
Goa!: Maintainincrementally DR|derived-relation -
Fitter: a) ~recursive[DR} i
Action: 1) Fiatten body-of[DR) ::‘
2) foral) reference-location[BR, §, DR} Cte
do forall rofcranco-loéltionlsa. L. spec) o
do b.gin .I\
Apply INTRODUCE_MAINTENANCE_CODE(DR L) =
Furity L :
N
end o
S
{To maintain a derived relation DR, tind everywhere the base reiations of DR {
are changed ang stick code in to maintain. Make sure that all base relations o
are simple before maintenance and that all code is pure atter.} a

| End Method |

STEP 1.9: Fiatten PREVIOUS_PACKAGE

¥ A

oFala

a

e
a a®a

VeTata s 0 8

SRR

S

LA

Kt

-

NS

&

Y %
»

e

-

>
S

2
o

L N
[

o

- a'a

N,

P
[Y

(N RN b ¢

NN 1

, R AL) PO LR T T “ T AT AT AN Tt et AT A T e et et e
.., .l_| > . “ ‘ 's . \.‘ .J$ '\ - \.-\q~ ‘\"\’\ '- .."..' } A .t a ..\ . -: e e e Y K . \'-\‘h\ \'.\':;.\ -

G AL S I e R e e S e SO D A N A A AN A AL S N AR AL R R A

LA I R R S I e I L L T e I P e i e e)

C.1 Remove PACKAGES_EVER_AT_SOURCE : PAGE 219

Flattening the relation body is a simple and inelegant way of insuring that all relations that
PREVIOUS_PACKAGE relies on are found. A more sophisticated method would attempt to
analyze the relation structure to determine the base relation set.

| Method Flatten [

Goal: Flatten OR|derived-relation
Action: 1) forall
reference-location[BR | derived-relation,$,DR)
do Map BR

{Map all derived relations found in DR into simple ones.]
| End Method |

PACKAGES_EVER_AT_SOURCE », is the only derived relation that is referenced in the
PREVIOUS_PACKAGES's definition.

STEP 1.10: Map derived-relation PACKAGES_EVER_AT_SOURCE

We have two basic choices in mapping away a derived relation: unfold it everywhere it is used
(backward inference); maintain its value at places where its base information changes
(forward inference). We have chosen the latter.

| Method MaintainDerivedRelation |

Goal: Map DR|derived-relation
Action: 1) Maintainincrementally DR

{One way of mapping a derived relation is to maintain it explicitly.)
| End Method |

STEP 1.11: Maintainincrementally PACKAGES_EVER_AT_SOURCE

o o

N AR - Yol LACAATICR S L o DA oA i ST R S Bt e ‘1

g T - . T
Sa 21 : e V. *) . AN LN . Nl SR A L]

3¢
9
i
’:", PAGE 220 PACKAGE ROUTER DEVELOPMENT 3‘
Py .
N .
._\:'
R :
Sy *
\ l
: | Method IntroduceSeqMaintenanceDemon i =
», X . -
o ’
I Goal: Maintainincrementally DR |derived-relation
E\ Filter: 8) gist-type-of[parameter-of[DR], .\::
X sequence) S
. Action: 1) Reformuiate body-of{DR))
.,:;. as temporally-ordered-set-idiom>® o
: :;;{ 2) Apply WTRODUCE_SEQ_MANTENANCE_DEMON(DR) kb
NS
;'\'_{ [One way of maintaining a derived sequence Is to first change the definition _
BN into a temporal order -- ({x[|P(x)gso! pvarbefore} proered temporally Py Pix)) -
. -- and then set up & demon with trigger P(x) to add elements.]
2 | €nd Method [
A
=) . ~
1 The relation PACKAGES_EVER_AT_SOURCE is already in the desired form, so a new g
,:J:* canon is introduced, NOTICE_NEW_PACKAGE_AT_SOURCE »,, to add packages to the o
o szquence when they arrive at the source: i
S
LS

ap

s
.

~| .‘-
s
o -
J"' f::
oy ,
s -
o -~
Y
b "
5 ey
- —
o) -
e -~
- \J L .
.. -
I
O
L B
Y
b \ (]
")
? .
* S
B \g >
L
oy
. .
-;; %Bpa:iars can be predefined and named. in this case, {{xlIP(x) 2321 gverbefors} grdered temporally by gtart P(x)).
. ". ‘:
134 S
ve ;
— -—
~ -
$ ‘.J_ -".

B R R R R R s o N T e e A e S N Y SV W N TV W N T IV IV YUY R G o A R

A
& C.1 Remove PACKAGES_EVER_AT_SOURCE ~ PAGE 221
o -
s :5,'- 1
N .
? y
- @ !
-t et demon RELEASE_PACKAGE_INTO_NETWORK (package.new) :
A trigger package.new:LOCATED_AT = the source .
o response
; if PREVIOUS_PACKAGE(®):DESTINATION # package.new : DESTINATION
then jnvoke WAIT[]:

! ;:I: update :LOCATED_AT of package.new to (Lhe source):SOURCE_OUTLET
< . relation PACKAGES_EVER_AT_SOURCE(package_seq | sequence of package);
i relation PREVIOUS_PACKAGE (prev_package | package)
_‘:: o definition prev_package =
N (& package.previous ||
‘: package.previous immediately before last(PACKAGES_EVER_AT_SOURCE(*))

. wrt PACKAGES_EVER_AT_SOURCE(*));
o H », demon NOTICE_NEW_PACKAGE_AT_SOURCE(package)
o trigger package:LOCATED_AT = the source
X :Z;E response) ~
N », ubdate package_seq in PACKAGES_EVER_AT_SOURCE(S)
"o 10 PACKAGES_EVER_AT_SOURCE(*) concat <package>:
PN
3
3 - Having flattened PREVIOUS_PACKAGE's body, we are now ready to maintain it by finding 3
; N ali the places its base information (i.e., PACKAGES_EVER_AT_SOURCE) changes. There is
@ only one place to worry about: the update of PACKAGES_EVER_AT_SOURCE b, in the
3 7 demon NOTICE_NEW_PACKAGE_AT_SOURCE. After applying the maintenance
@ v transformation m‘rnoouce_mm'rsumce_cwé, the program is as follows:
4 2 .

»
¥, s

'.'J“F .’.. :l PN
n-{\

O 2O -4

- -§ 3y

o

e 100D Tt he i Bd D IR Tt T e B W P S A SN DALY OAN L L ,-.'_-_'_-_' -,'_1_" PR A N REAREE R AR AN
E ‘
Ty PAGE 222 PACKAGE ROUTER DEVELOPMENT R |
'~ ' -
n
o 5
g -
J,-u
{ demon RELEASE_PACKAGE_INTO_NETWORK (package.new) -
e trigger package.new:LOCATED_AT = the source -
N response ~
LY i -
o if PREVIOUS_PACKAGE(*):DESTINATION # package.new : DESTINATION .
X then invoke WAIT[]: -
. update :LOCATED_AT of package.new 10 (the source):SOURCE_OUTLET
] . end;
{J i‘
-i-": relation PACKAGES_EVER_AT_SOURCE(package_seq | sequence of package):
0
A R
™, relation PREVIOUS_PACKAGE(prev_package | package): ﬁ
demon NOTICE_NEW_PACKAGE_AT_SOURCE(package)]
K trigger package:LOCATED_AT = the source o
I atomic
i update package_seq in PACKAGES_EVER_AT_SOURCE(S) !
o PACKAGES_EVER_AT_SOURCE concat <package>; Lo
- update prev_package in PREVIOUS_PACKAGE(S) -
" 10 (the package.previous || .
e package.previous immediately A
- last(PACKAGES_EVER_AT_SOURCE(*) congat <package>)
wrt PACKAGES_EVER_AT_SOURCE(*) gconcat <package>)
. end atomic ve
Ny
o
W
A S
M\ A
o Our next goal is the purification of NOTICE_NEW_PACKAGE_AT_SOURCE: if that demon is)
_) not within our portion of the development then we must move the newly introduced code out '
- of it and into our portion. In this case, we have defined the demon as part of our portion so the .
0y 4 *
N goal is trivially satisfied.
e
We have now achieved our goal of maintaining the derived relation PREVIOUS_PACKAGE. -
_ j} Further, the MegaMove method used to remove the sole reference to ;
: PACKAGES_EVER_AT_SOURCE has completed. However, the reference has not been :
Il
3% eliminated, but simply moved. As described in chapter 5, this causes the remove goal from -
. step 1.2 to be re-activated>’. The system automatically keeps track of the movement of the A
Z"-j reference in order to update the arguments of remove: .
.::: -
i “
‘ ‘:- 57This is equivalent to a recursive posting of 8 Remove goal as the last action of MegaMove. h
o) .
o)
T
"
‘2"‘ "'4"-:"\-";"4' GRS COrE (Y COARLY, ',‘,-."-."\:; WY “:»‘:-."'-;-":w:- e .}\'.'-:.*._‘_.\:_-.:._,\;,-. T e e L

AT AN

s g

g -z

AR A

L

Ve
rar i

-

L B

Ly ,‘l ,ll '."

I]

ATl alalal .,
. .'..

1

of N N)
e a

a®e
K
x

ik

LIRS § -4 ONCSOOONE |-- |

4 5%,
LA s
L

1

-

C.1 Remove PACKAGES_EVER_AT_SOURCE - PAGE 223

STEP 1.12: Remove reference of PACKAGES_EVER_AT_SOURCE in

(the package.previous ||
package.previous immediately before)
last(PACKAGES_EVER_AT_SOURCE(*) concat <package>)
wrt PACKAGES_EVER_AT_SOURCE(®*) concat <package>)

from spec

Using MegaMove again will lose: PREVIOUS_PACKAGE (under another name) will simply be
re-introduced. We will try a different approach. It is often the case that when dealing with a
sequence, it is easier to manipulate a positional retrieval (e.g., first, last, Nth) than a relative
one (e.g., (immediately) before, (immediately) after). The method we will employ involves
reformulating the relative retrieval into a positional one and then trying MegaMove on that.

| Method PositionalMegaMove |

Goal: Remove RR|relstion-reference from spec
Fiiter: a) RR component-of Y
Action: 1) Reformulate Y as PR|positional-retrievsl
2) Isolste PR in DR|derived-relation
3) Maintainincramentally DR

[One way of getting ric of a reference to a sequence is to reformulate it as part
of a positional retrieval, and then megamove it.)

| End Method |

As is usual, the binding we choose for Y is important. In this case it is the entire derived
object. The development from this point involves several iow level reformulation steps. Note
that without the rich teleology provided by Glitter,these steps in particular and low level steps
in general are hard to motivate and often appear fortuitous in a base-line development (see for
instance [London & Feather 82)).

STEP 1.13: Reformulate

(Lhe package.previous ||
package.previous immediately before
last(PACKAGES_EVER_AT_SOURCE(®) concat <package>)
wrt PACKAGES_EVER_AT_SOURCE(®) concat <package>)

as positional-retrieval

:
'’ - A MR ks s s

PAGE 224 PACKAGE ROUTER DEVELOPMENT

| Method ReformulateDerivedObject |

Goal: Reformuiste DO|derived-object as P
Action: 1) Reformulste body-of[DO)
a8 local-ver-of[®*, DO]=P
2) Apply UNFOLD_DERWED_OBJECT (DO)

[lxffx « P) = P}
| End Method I

P is bound to the abstract type positional-retrieval. Our new goal is to reformulate the body
of the derived object into a equivalence relation involving the free variable package.previous
and a (any) positional-retrieval.

STEP 1.14: Reformulate

package.previous immediately before
last(PACKAGES_EVER_AT_SOURCE(®*) concat <package>)
wrt PACKAGES_EVER_AT_SOURCE(*) concat <package>)

A
S
RN ~
AN

b‘ IS
AN

.

»
ol

aS pachkage.previous=positional-retrieval

| Method ReformulateRelativeRetrievalAsLast |

Goal/: Reformuiste RS |relative-sequence-retrieval
as "x|object=1as1(Seq|seouence)”
Action: 1) Reformulate RS as
"x immedistely befors y wri (Seq gongat 2)"
2) Equivalence y and 2
3) Apply CHANGE_TO_RETREVAL_OF LAST(RS)

Ix immediately before y wil (Seq concaty) =» x = [a5tiSeq))
| End Method A {

Note that the above method's trigger will match positional-retrieval, the more general goal
pattern, with |asi(Seq), the more specific pattern required by the method. Naturally, there will
be a competing method to the above that attempts to reformulate to first(Seq).

I The reformulation goal is trivially satisfied: the program matches in the current state.

7. However, we must equivalence y and z.

il

B2

‘s

a
"J

-

m r-a

P4

VIR

A & T,
s e e

g

..J "."'.‘

S rLLL S

Loae A Mt e

Far Ak ‘,'d‘ o
[¥ 384

i e

-

N |

il

XA

AT

.
I

LA

ORI
LIS

e ity i Rk de"Rt s (5 Mt B LD/ IOE £ L N Lsa MR O CANUSL SN LAN T K T e Tttt

C.1 Remove PACKAGES_EVER_AT_SOURCE : PAGE 225

STEP 1.15: Equivalence

last(PACKAGES_EVER_AT_SOURCE(*) concat package)
and)
package

| Method Anchor2 |

Goal: Equivalence X snd Y
Action: 1) Reformuiate X as Y

[Try changing the lirst construct into something that matches the second.]
{ End Method |

STEP 1.16: Reformulate

last(PACKAGES_EVER_AT_SOURCE(*) gconcat package)
as package

| Method ReformulateAsObject |

Goal: Reformulate SR|last-retrieval as 0|object
Action: 1) Reformulate parameter-of(®, SR] as
(S goncat 0)
2) Apply smeLry_LAST(SR)

flast(Seq concat O) =» O] .
| End Method |

The Reformulation goal is trivially satisfied. At this point, we are ready to unwind the nested
goals we have built up. After application of SIMPLIFY_LAST we have:

(1he package.previous ||
package.previous immediately before package
wrt PACKAGES_EVER_AT_SOURCE(*) concat <package>)

After application of CHANGE_TO_RETRIEVAL_OF_LAST we have:

" g " e i R e i RN A R A G N 21 " A S P L R N [y PR A S P ~ P SN S I S A L
e 3%
o |
Ny i |
103 PAGE 226 PACKAGE ROUTER DEVELOPMENT g
::::".
::" X
N -
\ . (Lhe package.previous || =
package.previous = 138st(PACKAGES_EVER_AT_SOURCE(*)))
LSRR
3:;:;'- , After applying transformation UNFOLD_DERIVED_OBJECT we have: 5;35
o _ update prev_package in PREVIOUS_PACKAGE(S) -
.-;:.: 10 last(PACKAGES_EVER_AT_SOURCE(*)) -
N .
The reformulation necessary in this portion of the development is caused by the fussiness of —
-;-::J the development methods we employ. All of the above reformulation could be eliminated if we .
o - f
) E:j wished to include a method which looks specifically for the following case: 3
AR -
o (x |} x immediately before last(s gconcat z) .
wrt (s goncat z)). N
' [
RO Such a method could directly reformulate the derived object. Of course, we would need an
g N
' :;/, infinite number of such methods to cover all of the possible cases. ,“-;:
f N j LIFS
' We are now ready to isolate the retrieval of PACKAGES_EVER_AT_SOURCE. 3
Pt ~
5"‘ STEP 1.17: Isolate last(PACKAGES_EVER_AT_SOURCE(*)) -
s i
,q | Method FoldGenericIntoRelation |
’\'
w.: Goal: Isolate X
N Action: 1) Globalize X -
— 2) Apply FOLD_NTO_RELATION(X) wa
: -. [Straighttorward fold into derived-relation.] -
A% | End Method | S
" _
ot e
There are no local variables in the action to be isolated, hence the Globalize goal is trivially i
:; satisfied. Application of FOLD_INTO_RELATION results in the introduction of a new derived .
'{. relation b, S
LS 2 -
.“f.‘
. A -
N
- ..
¥ Ry
e 7
~ v
® %
’ -,.‘ _':.
2 |
TN AN A NN N W N S AN N G N I v/ LA 'r.;-* """ L R L L S S e

, "+ "

C.1 Remove PACKAGES_EVER_AT_SOURCE : PAGE 227

“.‘4"'“!"“". -

demon RELEASE_PACKAGE_INTO_NETWORK (package.new)
trigger package.new:LOCATED_AT = the source
response
in
if PREVIOUS_PACKAGE(*):DESTINATION # package.new : DESTINATION
then invoke WAIT[];

ypdate :LOCATED_AT of package.new to (the source):SOURCE_OUTLET
end;

relation PACKAGES_EVER_AT_SOURCE(package_seq | seguence of package):
relation PREVIOUS_PACKAGE (prev_package | package);

demon NOTICE_NEW_PACKAGE_AT_SOURCE (package)
irigger package:LOCATED_AT = the source
response
atomic -
update package_seq in PACKAGES_EVER_AT_SOURCE(S)
10 PACKAGES_EVER_AT_SOURCE concat <package>;
update prev_package jn PREVIOUS_PACKAGE(S)
10 LAST_PACKAGE(*)
end atomic:

b, relation LAST_PACKAGE(/ast_package | package)
definition /ast_package = 1ast(PACKAGES_EVER_AT_SOURCE);

STEP 1.18: Maintainincrementally LAST_PACKAGE

We will use the same method here to maintain LAST_PACKAGE that we used earlier to
maintain PREVIOUS_PACKAGE:

8 W o 5 3

0 AT AN T e N T) e N T OL
AT AT S O

- PAGE 228 PACKAGE ROUTER DEVELOPMENT

| Method ScatterMaintenanceforDerivedRelation |

Goal: Maintainincrementally DR |derived-relstion
Action: 1) Fiatten body-of[DR]
2) forall reference-location[BR, S, DR)
do forall reference-location[BR, L, spec)
do begin
Apply WNTRODUCE_MAINTENANCE_CODE(DR L)
Purity L
end

[To maintain a derived relation DR, lind everywhere the base relations of DR
are changed and stick cooe in t0 maintain. Make sure that all base relations
are simple before maintenance and that all code is pure after.]

{ End Method i

The Flatten goal is trivially satisfied. After application of the INTRODUCE_MAINTENANCE_CODE
transformation at the sole place where PACKAGES_EVER_AT_SOURCE is changed »,, we

have the following state:

T
'l »

.

-

.r'} i

"7

w

E‘.
.

» "r %
AP

0} B

4

)

C.1 Remove PACKAGES_EVER_AT_SOURCE : PAGE 229

demon RELEASE_PACKAGE_INTO_NETWORK (package.new)
trigger package.new:LOCATED_AT = the source
response

if PREVIOUS_PACKAGE(®):DESTINATION ® package.new:DESTINATION

then invoke WAIT[]:

ypdate :LOCATED_AT of package.new 10 (the source):SOURCE_OUTLET
end:

relation PACKAGES_EVER_AT_SOURCE(package_seq | sequence of package):
relation PREVIOUS_PACKAGE(prev_package | package):

demon NOTICE_NEW_PACKAGE_AT_SOURCE(package)
trigger package:LOCATED_AT = the source
response
atomic
update package_seq in PACKAGES_EVER_AT_SOURCE(S)
10 PACKAGES_EVER_AT_SOURCE concat <package>:
uypdate prev_package in PREVIOUS_PACKAGE(S)
to LAST_PACKAGE(*);
update /ast_package in LAST_PACKAGE(S)
10 last(PACKAGES_EVER_AT_SOURCE(*) concat <package>)

end atomic:
relation LAST_PACKAGE(/ast_package | package):

The MegaMove method has completed and we still have not gotten rid of the reference of
PACKAGES_EVER_AT_SOURCE. However, we are fairly close now. The Remove goal is
re-activated: '

STEP 1.19: Remove reference of PACKAGES_EVER_AT_SOURCE in b, from spec

Our previous strategy has been to isolate/maintain (a.k.a. MegaMove) references of the
sequence. At this point, we have enough information to try & new tact: replace the sequence
reference by an actual object.

/

Vg

PEAE O AR AN OSSN |
PAGE 230 PACKAGE ROUTER DEVELOPMENT 3
e ’ .
2 -
4 ."' .
b3 |
. | Method RemoveByObjectizingContext { -
f_: Goai: Remove RR|relstion-reference from spec :
; ":.‘ _ Filter: a) component-of[RR, Y} o
:I:-' Action: 1) Reformulate Y as object -7
" [One way of getting rid of a relation relerence which is embedded in context Y ‘
h) is to reformuiate Y as an explicit object.] o
oo | End Method | s
29
NS i
Here we bind Y to the most immediate context of the reference, the positional retrieval last.
N) o
33 STEP 1.20: Reformulate | o
o
XA
- last(PACKAGES_EVER_AT_SOURCE(*) concat <package>)
., as object H
3 '
h N
;" Using the same method as in step 1.15, ReformulateAsObject, we get the following: .
ol
\ :\
N . k]
N
Y .
.n,’ .
s.;j ~
\. N
\‘ .
=] “
v
-
5
".\
<.
P *
N
= B
-‘7:
-
: o
3

. o
"
>
N
>

T A AL

e N S N

W

SO NN W -

-
.

4 5 & 8 8 s 2

s
-

o ‘et
AR

LR SR PURN

Y Y M A)

T

L " L g,,_l.-‘

.
PR Sl S]

-.n.‘r.. 7

b-4

-4 » ; o s -‘0‘.‘
ME

L X

-

. B
L]

o

L]

@ 7
s’

AL G IO OO I p A i - ia™ /i et o g™ Yot (il 40) R I L e S RO B i AN A S A A S

C.1 Remove PACKAGES_EVER_AT_SOURCE : PAGE 231

demon RELEASE_PACKAGE_INTO_NETWORK (package.new)
trigger package.new:LOCATED_AT = the source
response
i
if PREVIOUS_PACKAGE(*):DESTINATION # package.new:DESTINATION
then invoke WAIT[]:
update :LOCATED_AT of package.new 10 (ihe source):SOURCE_OUTLET
end;

relation PACKAGES_EVER_AT_SOURCE(package_seq | sequence of package):
relation PREVIOUS_PACKAGE (prev_package | package):

gemon NOTICE_NEW_PACKAGE_AT_SOURCE (package)
trigger package:LOCATED_AT = the source
response

atomic :
ubdate package_seq in PACKAGES_EVER_AT_SOURCE(S)

10 PACKAGES_EVER_AT_SOURCE concat <package>;
update prev_package in PREVIOUS_PACKAGE(S)
10 LAST_PACKAGE(*);
update /ast_package in LAST_PACKAGE(S)
10 package
end atomic:

relation LAST_PACKAGE(/ast_package | package);

Note that this last step is traditionally viewed as simplification steps which are automatically
applied whenever possible, e.g., |ast(S concat X) =+ X (see [Standish et al 76), [Rutter 77)).
These type of steps have the weakest connection to the rest of the development. They appear
to be independent and opportunistic. Here, we strongly tie in the "simplification" as a
necessary step in the higher level goal of removing the need for the sequence
PACKAGES_EVER_AT_SOURCE.

We have one remaining reference to PACKAGES_EVER_AT_SOURCE ’, that we must

remove:

STEP 1.21: Remove

update package_seq in PACKAGES_EVER_AT_SOURCE(S)
t0 PACKAGES_EVER_AT_SOURCE concat <package>
from spec

w2t

ST TR PR

4

Ay J}:‘-ﬁ

¢

LA

i
)"fl AU -

X

:::A. 5,8, 8

PAGE 232 PACKAGE ROUTER DEVELOPMENT

| Method RemoveUnusedAction |

Goal: Remove A|action
Action: 1) Show action_is_unnoticed(A)
2) ADDLY REMOVE-UNNOTICED-ACTION(A)

{Show that the current action is either not used or superseded by a
subsequent action.}

| End Method |

STEP 1.22: Show action_is_unnoticed(

update package_seg in PACKAGES_EVER_AT_SOURCE(S)
10 PACKAGES_EVER_AT_SOURCE concat <package>)

| Method ShowDysteleologica) |

Goal/: Show action_is_unnoticed(U|update)
Fitter: a) update-relation-of[R, U}

b) ~reference-location[R, S, spec)
Action: 1) Assert action_is_unnoticed(U)

{if you are trying to show that an update is unnoticed, show that it is never
referenced.]

| End Method |

Since there are no references to PACKAGES_EVER_AT_SOURCE, we can assert that it is
unnoticed. After removal of the update and the relation definition, we have the foliowing (in an
unstructured development, the removal here of the PACKAGES_EVER_AT_SOURCE
sequence might appear as a fortunate and opportunistic by-product of the preceding steps.
Here, it is just one step (the last) of a general plan aimed at getting rid of the sequence.):

»
P
1.

S

laTal

va g

s
2 s

.(‘:(' -' ! I " "-‘. L': . .' "'l.

alr

D ot 4
. !

Lo
0

A
~

DUt Y

PN

e a eS8 8 o

1§

% * ¢!

‘Y
5% %

A |

Y

Y

LA
LA

W

2y

s

(AN

P
vS N

P

¥

v N
DAL

~

H

C.1 Remove PACKAGES_EVER_AT_SOURCE : PAGE 233

demon RELEASE_PACKAGE_INTO_NETWORK (package.new)
trigger package.new:LOCATED_AT = the source
response

jif PREVIOUS_PACKAGE(*):DESTINATION # package.new :DESTINATION

then invoke WAIT[]:

update :LOCATED_AT of package.new 1o (ihe source):SOURCE_OUTLET
end;:

b, relation PREVIOUS_PACKAGE(prev_package | package):

b, demon NOTICE_NEW_PACKAGE_AT_SOURCE(package)
trigger package:LOCATED_AT = the source
response
atomig
update prev_package in PREVIOUS_PACKAGE(S)
10 LAST_PACKAGE(*);
update /ast_package in LAST_PACKAGE(S)
10 package
end atomic:

», relation LAST_PACKAGE (/ast_package | package);

This completes the removal of the PACKAGES_EVER_AT_SOURCE relation. However, a
new demon b, and two new relations b », have been introduced as side-effects of the
removal process. The next two sections deal with further developing and optimizing these

components.

B b

PRy

F.:-‘G‘.’-'.'-Y.‘."‘-'.'- SR TR AV ART AT ATLT o T Vo VST W Sw Khd U R DA LRI AR R

PAGE 234 PACKAGE ROUTER DEVELOPMENT "

C.2. Remove PREVIOUS_PACKAGE

Y|

The next portion of the development invoives noticing that PREVIOUS_PACKAGE is acting
as a temporary variable for LAST_PACKAGE.

demon NOTICE_NEW_PACKAGE_AT_SOURCE(package) .
irigger package:LOCATED_AT = the source
response

" update prev_package in PREVIOUS_PACKAGE(S)

to LAST_PACKAGE(*):

’, update /ast package in LAST_PACKAGE(S)

10 package
end atomic:

demon RELEASE_PACKAGE_INTO_NETWORK (package.new)
irigger package.new:LOCATED_AT = the source
response

A1
'
.

« .
.l

if PREVIOUS_PACKAGE(*):DESTINATION # package.new : DESTINATION
then jinvoke WAIT[]:
update :LOCATED_AT of package.new 1o (Lhe source):SOURCE_OUTLET
end:

relation PREVIOUS_PACKAGE(prev_package | package);

.
v

/|

~

relation LAST_PACKAGE(/ast_package | package):

L

o
2

L

The general pattern, if we wanted to do this noticing automatically is
X <~ Y;
Y <~ ¢;
E|expression using X

1y

“e e
B
oA

This matches the following code, where X is bound to PREVIOUS«PACKAGE, Y bound to
LAST~PACKAGE and E to the conditional wait .. '

7

J") el

Byt

FARA I EORE 70]

2y

APS S

GL-

AR

AR

a.} '.II .

PPIS

Cal
-
’
2
A
¢
¥

-
)
v

v -
e
.

[
.

-.....
«a e

R

C.2 Remove PREVIOUS_PACKAGE ‘ PAGE 235

tomi
" ypdate prev_package in PREVIOUS_PACKAGE(S)
10 LAST_PACKAGE(*);
’, ypdate last_package in LAST_PACKAGE(S)
10 package.new
end atomic:
’y if PREVIOUS_PACKAGE(®):DESTINATION # package.new :DESTINATION

then invoke WAIT[];

We can generally get rid of the need for X (PREVIOUS_PACKAGE) by computing
consecutively the assignment of X with its use (the conditional wait »,) and replacing X with Y
(LAST_PACKAGE).

STEP 2.1(user): Remove PREVIOUS_PACKAGE

| Method RemoveRelation |

Goal: Remove R|relstion from spec
Action: 1) forall reference-location[R,RR, spec]
do Remove RR from spec
2) Apply REMOVE_UNREFERENCED_RELATION(R)

[You can remove a relation il you can remove all references to it.]
| End Method |

STEP 2.2: Remove reference of PREVIOUS_PACKAGE in b, from spec

| Method ReplaceRefWithvalue |

Soal: Remove R|simple-relstion-reference
Action: 1) Show vaLUE_KNOWN(R, V)
2) Apply REPLACE_REF_WITH_VALUE(R V)

[One way of getting rid of a relation reference Is to replace it with its value.)
| End Method]

Note that another competing method here is MegaMove. That is, we could isolate the
reference PREVIOUS_PACKAGE(*):DESTINATION into a new derived-relation and then

PAGE 238 PACKAGE ROUTER DEVELOPMENT

maintain it. However, this has the negative effect of introducing still another temporary
variable (relation). While we can get rid of this too eventually, the process will be messier. In
general, a method which removes a reference by replacing it with a value is preferred over a
method which replaces it (or its surroundings) with another reference.

STEP 2.3: Show VALUE_KNOWN(PREVIOUS_PACKAGE(*), V)

| Method ShowUpdateGivesvValue |

Goal: Show vaLUE_xNOWN(R | re/ation-reference, V)
Filter: a) pattern-match{updste, U, spec)

b) name-of[R] = update-relation-of[*, U)
Action: 1) Show UPDATE_VALUE HOLDS(U, R)

2) Assert vaLUE_KNOWN(R, new-value-of[*, U})

[Find the last update of R and show that the new value is still valid.]
| End Method |

There is only one update of PREVIOUS_PACKAGE in the spec, the one found in
NOTICE«NEW«PACKAGE«AT«SOURCE. We now must show that the value the relation
was set 10 is still around.

STEP 2.4: Show
LAST_PACKAGE(*) (in »))

still holds at

» if PREVIOUS_PACKAGE(*):DESTINATION # package.new :DESTINATION
then invoke WAIT[];

L0 A A A R

‘
s

* o
-y

at.-

= - 4

C.2 Remove PREVIOUS_PACKAGE : PAGE 237

A‘ .-.
o | Method ShowNewvalueStillValid |
X o Goal: Show UPDATE_VALUE_HOLDS(U|update,

r‘

- R| relation reference)

Fitter: a) name-of[R] = update-relation-of[*, U]

Action: 1) Show

UNCHANGED_BETWEEN_LOCATIONS(new-value-of{*, U], U, R)
3) Assert UPDATE_VALUE WOLDS(U, R)

L3 CR X TRTREn
A
X

"
o
i H {To show that the new upoate vaiue is still around at R, show that the update
value has not been changed before R.)
- $ | End Method |
5
." STEP 2.5: Show LAST_PACKAGE doesn't change between »_ and by
! L
4
'V
Y
Lo | Method MovelnterveningUpdate |
! Goal: Show UNCHANGED_BETWEEN_LOCATIONS(V | relation reference,
. ;:_. Ujupdate,
' ’ R| relstion reference)
3 r'-: Filter: a) pattern-match{updete, L, spec)
A b) update-relation-of[V, L]
Action: 1) Show COMPUTATIONALLY-BETWEEN[L, U, R}
X] 2) ComputeSequentially R before L
X
AN
3 [!f an intervening update of V exists, move It after R.]
- | End Method ’ [
k. :1 ‘»
=]
. In this case, there does exist an intervening update », to V (LAST_PACKAGE), and hence we
Y
oY)

will try to move it after b,

STEP 2.6: ComputeSequentially

R
| ¢ §3C3

. » if PREVIOUS_PACKAGE(*):DESTINATION ng@Q package.new : DESTINATION

then invoke WAIT[]:

. before
update /ast_package in LAST_PACKAGE(S)
10 package.new

3

.'\“

NI

vy,

§ i M PR b 4

3

N

*ncpe

ML o e g ' 01T S SR L AR AT IOy

AL N ?._'-'.'?'._'-'.’_f.?'.?'._'.-_-".'-’_._t:."...r..{

PAGE 238 PACKAGE ROUTER DEVELOPMENT -
| 4
| Method MoveOutOfAtomic . |) =
RS
Goal: ComputeSequentially B|action before Ajaction -
Fitter: 8) component-of[A, C|atomic) -
Action: 1) Unfold € -
{if you are trying to move A after B and A Is in an atomic, unfok! the atomic
belore attempting to continue.}
| End Method | -
STEP 2.7: unfold —
atomic . ;:.:
update prev_package in PREVIOUS_PACKAGE(S) -
10 LAST_PACKAGE(*);
update /ast_package in LAST_PACKAGE(S) -
Yo package 1
end atomic; N
-~
“:.
| Method UnfoldAtomic |
.
Goal: Unfold A|astomic oy
Action: 1) Show SEQUENTIAL-ORDERNG(O | ordering. A)
2) Show SUPERFLUOUS ATOMIC(A) \
3) Apply uwroLp-AToMIC(A, 0) 3
[You can unfold an atomic H you can show that there exists some valid ~t
sequential ordering of the statements and that no demonic or inferencing ,-:
processes will be effected.] -
| End Method ' | B
;5
-_
Currently the user is required to show both of the properties. In the particular case at hand, it N
would not be difficult to define a method for ordering the statements using a data-dependency
graph, something Glitter presently does not have. Sh'owing that the atomic is actually
superfluous will probably remain the user’s responsibility for some time to come. +
After unfolding, the program is as follows: ';
o
=

.
.
.

A

s

2P, <
s . l'.l‘lAl.

d

[

“s

LR &

PO JAON

-

Y lrSc

«%a

.'.i ; ."

-va

Sy
>

By

-

K

<’

k3

cl';.."..

"..A‘j

rs

LA

]

e
s'a 2

.'
‘i

d 3

X

X

RO, 1

C.2 Remove PREVIOUS_PACKAGE : PAGE 239

demon NOTICE_NEW_PACKAGE_AT_SOURCE(package)
irigger package:LOCATED_AT = ihe source
response
begin
update prev_package in PREVIOUS_PACKAGE(S)
10 LAST_PACKAGE(*):
’, ypdate /ast_package jn LAST_PACKAGE(S)

10 package
end;
demon RELEASE_PACKAGE_INTO_NETWORK (package.new)
trigger package.new:LOCATED_AT = the source
response
in
’, if PREVIOUS_PACKAGE(*):DESTINATION # package.new:DESTINATION

then invoke WAIT[]:

update :LOCATED_AT of package.new to (ihe source):SOURCE_OUTLET
end: :
relgtion PREVIOUS_PACKAGE (prev_package | package):

relation LAST_PACKAGE(/ast_package | package):

STEP 2.8(reposted). ComputeSequentially

» if PREVIOUS_PACKAGE(*):DESTINATION neq package.new:DESTINATION

then invoke WAIT[]:

before

3

update /ast_package in LAST_PACKAGE(S)
10 package.new

| Method ConsolidateToMakeSegquential |

Goal: ComputeSequentisily Al|action before A2|asction
Fiter: a) cemponent-of{Al, D1|demon)
Action: 1) Consolidate D1 and D2

! is easier to move actions around i they are in the same context.]
| End Method |

STEP 2.9: Consolidate

AN AR A RN AL A R e bt A

PAGE 240 PACKAGE ROUTER DEVELOPMENT

NOTICE_NEW_PACKAGE_AT_SOURCE
and
RELEASE_PACKAGE_INTO_NETWORK

| Method MergeDemons {

Goal: Consolidate D1|demon and D2 |demon
Action: 1) Equivalence trigger-of[D1] and
trigger-of[D2)
2) Equivalence var-declaration-of[D1] and
var-declaration-of[D2]
3) Show MERGEABLE_DEMONS(D1, D2, I|ordering)
4) Apply oemon merce(D1, D2, 1)

[You can consolicate two demons if you can show that they have the same
local variables, the same triggering pattern and that they meet certain
merging conditions.)

| End Method I

STEP 2.10: Equivalence (package.new) and (package)

| Method EquivalenceCompoundStructures? |

Goal: Equivalence S1|compound-structure and
$2 | compound-structure
Fiter: a) gist-type-of[®, S1) = gist-type-of{e, S2]
b) ~fixed-structure[S1)
¢) component-correspondence(S1, S2. C|correspondence)]
Action: 1) forall correspondence-pairs{C, C1, C2)
gdo Equivalence C1 and C2

{Divide-and-conquer: make the components of two non-lixed structures
oquivalent.)

| End Method ' I

EquivalenceCompoundStructures2 will compute a correspondence between the variables in
the list (in this case only one exists) and post an ei:uivalence goal pair.

STEP 2.11: Eguivalence package and package.new

Bl Y
e

]

S

rr

.
]

k

*

._._'.,

=

A

*
]
<
4
L
i
!
<
[
L
9
1
"
|
K
B
4
A
4
¥
4
i
°
-
3
b
y
4

Feln sy

’ .

LSS

e
ataaal A’

e
-'-‘.‘l

PN A)

RRSAAAA}-

'."‘ L

LAAY BEEAA A

| A

hel
$

[k

AL

AU 4§/

1K

C.2 Remove PREVIOUS_PACKAGE

PAGE 241

We can use the brother of method Anchor2 (see step 1.15) to achieve the Equivalence goal

here.

Method Anchorl

Goal: Equivalence X and Y

Action: 1) Reformulate Y as X

[Try changing the second construct into something that matches the first.)

End Method

STEP 2.12: Reformulate package as package.new

The achievement of this goal rests on the renaming of package to package.new within

NOTICE~NEW«~PACKAGE~AT+~SOURCE.

Method Renamevar

Goal: Reformulate V1|variable-declaration as

Fitter: a) scoped-in[vl §]

V2 |variable~declaretion

Action: 1) Show INTRODUCEABLE-VAR-NAME(V2, S)
2) Apply rename var(Vi, V2, S)

[Repiace all occurrences of V1 with V2 in S after showing that V2 does not
conflict with scoped variables aiready defined within S.)

End Method

We assume that the user verifies that the introduction of package.new does ‘not conflict with

any existing variables within NOTICE-NEW«PACKAGE«AT«~SOURCE.

After the

renaming, the equivalence goal on the triggers is trivially satisfied. The application‘of

DEMON_MERGE gives us

o0

e N 2

"

SA VRN

AL -

oL

? _'; Svte

CaAE O

g v 3 a0

o e
W ' AR

e
-

AR

R S X

A.A.

. o - " . - . .
B At e e LAt e T N
i f A o K ’

N AT T T e W T O A T U U AT U AT R ST AR TN A NSRRI VST NN VU B

PAGE 242 PACKAGE ROUTER DEVELOPMENT

demon RELEASE_PACKAGE_INTO_NETWORK (package.new)
trigger package.new:LOCATED_AT = the source
response

begin
update prev_package in PREVIOUS_PACKAGE(S)

10 LAST_PACKAGE(*):

>, - update /est_package in LAST_PACKAGE(S)
1o package.new
by if PREVIOUS_PACKAGE(*):DESTINATION # package.new :DESTINATION

then invoke WAIT[]:

update :LOCATED_AT of package.new 10 (the source):SOURCE_OUTLEY
end;
relation PREVIOUS_PACKAGE(prev_package | package):

relation LAST_PACKAGE(/ast_package | package):

The ComputeSequentially goal from 2.8 is still not satisfied and hence, is reposted.

STEP 2.13(reposted): ComputeSequentially

’, 3f PREVIOUS_PACKAGE(*):DESTINATION peg package.new:DESTINATION
ihen invoke WAIT[];
before
’, update /ast_package in LAST_PACKAGE(S)

10 package.new

| Method SwapUp |

Goal: ComputeSequentially Y before X
Fitter: a) brother-of{X, Y]
Action: 1) Swap Y with predecessor of Y

[Hf you are trying to compute X after Y then move Y up.}
| End Method |

..........

'l
b C.2 Remove PREVIOUS_PACKAGE : PAGE 243
N
>
5 .‘._:
SO STEP 2.14: Swap
: ” (2 if PREVIOUS_PACKAGE(*):DESTINATION # package.new :DESTINATION :
< then invoke WAIT[]: 1
< with]
LN ’, update /ast_package in LAST_PACKAGE(S)
o 10 package.new:;
.:\
- }*
s | Method SwapStatements |

) i Goal: Swap A with B
Action: 1) Show SwappABLE(A B)
2) Apply Swap_STATEMENTS(A B)

ey
. (el
aAr s
-

[A:B =» B;A under certain conditions.]
| End Method (

>
» .
Fae’a

»

Again, with a data-dependency graph, the SWAPPABLE property might automatically be
verified. Currently, we rely on the user to verify it. Alter applying the swap transformation, we

-

Uk O B
——
F A

\‘
! have:

£ begin

; " update prev_package in PREVIOUS_PACKAGE(S)

¥ - 10 LAST_PACKAGE(*):

§ Y b, if PREVIOUS_PACKAGE(*®):DESTINATION # package.new :DESTINATION

h] then invoke WAIT[];
, ’, update /ast_package in LAST_PACKAGE(S)

o 10 package.new

8 . update :LOCATED_AT of package.new 10 (the source):SOURCE_OUTLET

. end;
i The ComputeSequentially goal has now been satisfied. After the application of the value
.'_:. replacement transformation REPLACE_REF_WITH_VALUE and the removal of the maintenance
B and definition (see steps 1.20 and 1.21) of PREVIOUS_PACKAGE, we have:

A LT A YUY L S S S Y
PORE AU FTATH ACAG W ACA AT A A AT ALY

PAGE 244 PACKAGE ROUTER DEVELOPMENT)
o

. demon RELEASE_PACKAGE_INTO_NETWORK (package.new) ~

s iriggar package.new:LOCATED_AT = the source : -

e response :

5 .

- , if LAST_PACKAGE(®):DESTINATION #* package.new : DESTINATION ~

- then invoke WAIT[]:

. update l/ast_package in LAST_PACKAGE(S)

K) 10 package.new Vs

hSn - update :LOCATED_AT of package.new 1o (the source):SOURCE_OUTLET {::

o~ end:

AT

?., relation LAST_PACKAGE(/ast_package | package); ;

i .,

) L

oo .

52N This completes the removal of PREVIOUS+PACKAGE.
“

-:\. _E

(N

N, 13

: "l-:
"'«

L

)

. N

2 :

I‘]

¥ ™

‘ 2, ::!.

'-§f v

350 LS

0 ~

S =

.

.'} :\ I

4 .[: f:‘

n"..

'}'

|"-' (.-} ‘

d B

e
.

:':'q <
*» a
N .

Ay

: -

e

VR LS

S

- N

1§ ::-j
3 ™~

N -

L Td

4

- S p QTN Te”
DU, 44 WY

[%5 D M W

A ICYA NP T . AR S L T R P BT e
D

[N M 4N o N

N ? C.2 Remove PREVIOUS_PACKAGE : PAGE245
: -e C.3. Remove LAST_PACKAGE
N B

The next portion of the development involves noticing that we don't need to remember the last
package, but only its :DESTINATION >1. We might expect an automatic usage analysis to point

PP

out such features of the program. Such an analysis is certainly state-of-the-art and should be

one of the more immediate enhancements to the T| system. 3
N :": :l
o ’
N - L

» !

) demon RELEASE_PACKAGE_INTO_NETWORK (package.new) J
. trigger package.riew:LOCATED_AT = the source l
. response .
L)
H » if LAST_PACKAGE("*):DESTINATION # package.new :DESTINATION E
3 ithen invoke WAIT[]: A
A update /ast_package in LAST_PACKAGE(S)

Q 1o package.new .
. update :LOCATED_AT of package.new 1o (the source):SOURCE_OUTLET g
T end; g

o]

o)
Y relation LAST_PACKAGE(/ast_package | package): 3

~
O R

MY
.

Note that remembering all of an objects attributes instead of the object itself may not payoft in =

' _
j 3 cases where a large number of the object's attributes are needed: we may simply be replacing
. a central "record” structure (an object and its attributes) with individual variables (the (-
} J.j isolated relations). In our case, only one field is ever needed, and hence we can perceive an .
! efficiency gain.
8 4 y
= STEP 3.1(user): Remove LAST_PACKAGE
;:'_E We will employ the same general "MegaMove" strategy as used in removing the

PACKAGES_EVER_AT_SOURCE in section C.1.

I'...lun“‘
B

~ Y
AN
-

..............

. N A VS - L S e Vet
. .‘v ’\ (%) \1\~ N ‘.\ ._- .‘-. 1..'-\ D) R . \f.~ S y

Y ..

APy Pt

SR N e SRR S |
PAGE 2486 PACKAGE ROUTER DEVELOPMENT a
s -
204 i
In 5
» _'\ R
h:-_ﬂ.
' | Method RemoveRelation ! o~
' . R
X < Goal: Remove R|relstion from spec -
'.'-',3‘ Action: 1) forall reference-location[R,RR, spec) r
U do Remove RR from spec o
- 2) Apply REMOVE_UNREFERENCED_RELATION(R) =
! :','-k : [You can remove a relation i you can remove 8l references to it.] ’_:'_
S | End Method | B
o -
N Za
. "
STEP 3.2: Remove reference of LAST_PACKAGE in b,
] =2
LSR oY
Y
XY | Method MegaMove (-
)
o Goal: Remove X|relstion-reference from spec -
‘: Fiter: &) component-ofiX, Y} “
N Action: 1) Isolate Y in DR|derived-relstion ~
,‘ 2) Maintainincrementally DR -t
‘ [Remove the relation-relerence X by moving i directly after the locations it is =.
o assigned.] b
N | End Method l
. '.:4
:; .- .
_ We choose the binding of Y as LAST_PACKAGE(*):DESTINATION. ..
49 <
<8 STEP 3.3: Iso/ate LAST_PACKAGE(*):DESTINATION
A -
R =
’ [
2 -
K. | Method FoldGenericIntoRelation |
b N .-J'
L~ S
% Goal: Isolate X
[,
L Action. 1) Globalize X w
ba, 2) Apply FOLD_INTO_RELATION(X)]
< .
A :: {Straightiorward foid into derived-relation.) .
> | End Method I -
L) R)
b ~
q

-, After applying FOLD_INTO_RELATION, we have: 5

»
-

13

- S vl

P !

aa’s

SNt I Nt N J:'.

¥ ok AL g8 SRR SR | - PN

P g

R, |

.
-t

L]
N

| X

Tl

"
S

Sl

il

%

..

A

C.3 Remove LAST_PACKAGE : PAGE 247

demon RELEASE_PACKAGE_INTO_NETWORK (package.new)
trigger package.new:LOCATED_AT = the source
response

if LAST_PACKAGE_DESTINATION(®) # package.new:DESTINATION
then invoke WAIT[]:
ypdate /ast_package in LAST_PACKAGE(S)
10 package.new
update :LOCATED_AT of package.new 1o (Lhe source):SOURCE_OUTLET

end;
relation LAST_PACKAGE(/ast_package | package):

relation LAST_PACKAGE_DESTINATION (/ast_destination | bin)
definition /ast_destination = LAST_PACKAGE(®):DESTINATION;

STEP 3.4: Maintainincrementally LAST_PACKAGE_DESTINATION

| Method ScatterMaintenanceforDerivedRelation |

Goal: Maintainincrementally DR |derived-relation
Action: 1) Fiatten body-of[DR]
2) foral) reference-location[BR, S. DR]
do forall reference-location[BR, L, spec)
do begin
Apply INTRODUCE_MAINTENANCE_CODE(DR L)
Purlty -L
end

[To maintain a derived relation DR, find everywhere the base relations of DR
are changed and stick code in to maintain. Make sure that all base relations
are simple before maintenance and that all code is pure after.)

| End Method]

The Flatten goal is trivially satisfied. After adding the necessary maintenance code b, we
have:

e o) \'\‘,"-"\.','\"\'A s O S LRI P IO L B) -.—",-.:.-_ -

W Y,

P AT, .

2
’

1y

PXNXN - $ 0330

NN o

AT

’ o

(s A

PPN AN VT nln s 2als

P

v)

a"w s a o

SRNNVS

PAGE 248 PACKAGE ROUTER DEVELOPMENT

demon RELEASE_PACKAGE_INTO_NETWORK (package.new)
trigger package.new:LOCATED_AT = the source
response
begin
if LAST_PACKAGE_DESTINATION(®) # package.new:DESTINATION
then invoke WAIT[]:

- atomig
’, update /ast_package in LAST_PACKAGE(S)
10 package.new;
’, update /ast_destination in LAST_PACKAGE_DESTINATION(S)
10 package.new:DESTINATION
end atomic

update :LOCATED_AT of package.new 1o (Lhe source):SOURCE_OUTLET
end:

relation LAST_PACKAGE(/ast_package | package);

relation LAST_PACKAGE_DESTINATION (/ast_destination | bin);

We have now achieved our goal of removing one of the references to LAST_PACKAGE. The
next reference b, is part of the maintenance/update ot LAST_PACKAGE.

STEP 3.5: Remove reference to LAST_PACKAGE from »,

We will omit the steps here of removing this reference and the relation definition. They are
completely analogous to the steps found at step 1.20-1,21. Our new state is

- .-y -
~~~~~
"

-t

3w
v

[ | 30

00

N e e N T T AT TN NN N A S e A NN T VN

A e S e e A L Y

|



' hd hd - ~ N \ ‘ \ \ \ . ..‘ ........ - - “ .\‘\ ~a - v "‘.“ - IR AN .‘J
b 3 j
3 —m; d
N C.3 Remove LAST_PACKAGE : PAGE 249 \
% ‘
YRS
1y ;
f w )
R demopn RELEASE_PACKAGE_INTO_NETWORK (package.new) J
- trigger package.new:LOCATED_AT = the source , :
o, response d
N b begin N
T if LAST_PACKAGE_DESTINATION(®) # package.new :DESTINATION :
‘ then jnvoke WAIT[]; i
.: ';\ ’3 g;gmig :‘
R update /ast_destination in LAST_PACKAGE_DESTINATION(S) Ny
N 10 package.new: DESTINATION N
B end atomic y
N e update :LOCATED_AT of package.new to (ihe source):SOURCE_OUTLET
. end:
: .:'3 relation LAST_PACKAGE_DESTINATION((/ast_destination | bin);
4
W /
. g The final step is the trivial unfold of the atomic statement '3 using the UnfoidAtomic method.
i Q At this point the user marks the OptimizePEAS goal as achieved. )
3 .
y J;
5~ :
Y :
5 :": (
¢ f::.
¥
2Ry
c
S
<4 '_- !
R -
FEEE AN
4
S A
ER
#]
. :
o, Lo
(Y o

3




------------------

....................................

PAGE 250 PACKAGE ROUTER DEVELOPMENT

C.4. Map DID_NOT_SET_SWITCH_WHEN_HAD_CHANCE ¥

H CRRE N Sa g~ 4 WEALIUN

Ld
a

- In this section, we will assume the user has turned his attention to mapping away the global
) constraints in the spec. In our portion of the router spec, there is only one:
DID_NOT_SET_SWITCH_WHEN_HAD_CHANCE.

constraint DID_NOT_SET_SWITCH_WHEN_HAD_CHANCE
always prohibit 3 package,switch || =
(package :LOCATED_AT = switch - |
and
SWITCH_SET_WRONG_FOR_PACKAGE(switch,package)
and '
((package = first(PACKAGES_DUE_AT_SWITCH(*, switch))

and .
SWITCH_IS_EMPTY (switch)) asof everbefore)): |

STEP 4.1 (user): Map DID_NOT_SET_SWITCH_WHEN_HAD_CHANCE -

| Method MapConstraintAsDemon |

Goal: Map C|constraint

Action: 1) Reformulate C as always prohibit P
2) Show wmweLieD BY(Q, P)
3) Apply REFORMULATE_CONSTRAWNT AS_DEMON(C, Q, D
4) Msp Dnow ’

nw)

[To map a prohibitive constraint, first choose some predicate Q that is always
true when the constraint is violated. and then introduce & demon whose
trigger is Q and whose body is a requirement of ~P.]

| End Method {




C.4 Map DID_NOT_SET_SWITCH_WHEN_HAD_CHANCE : PAGE 251

STEP 4.2: Show

S ' 3 package,switch ||
Ty b, (package:LOCATED_AT = switch
(N and
SN b, SWITCH_SET_WRONG_FOR_PACKAGE (switch,package)
W and
a », ((package = first(PACKAGES_DUE_AT_SWITCH(*,switch))
_ .. and
iy & SWITCH_IS_EMPTY (switch)) asof everbefore)):
"
-@ implies Q
1 T
o ﬁ
::‘. 5 | Method ConjunctimpliesConjunctArm |
'&‘.; o
v »
:& Goal: Show X|conjunction implies Y
AR . Fiter: a) unbound[Y]
P ‘ b) conjuct-arm(A|logical-expression, X)
Iy Action: 1) Assert X implies A
OO
' -
::3 .;:\ [(P,and P, and ...P ) implies PJ
Yo | End Method |
A A n“:'
} ‘.,,)] There are three possible choices for A corresponding to the three conjunct arms:
\: * .‘.
%Z ,}'g 1.9, Trigger when a package becomes located at a switch; guarantee that either
MRS the switch is set right or that there never was a chance to set it right"’a.
;'. E:‘ 2.0, Trigger when the switch is set wrong; guarantee that the package is not at the
N switch or that there never was a chance to set the switch right.
R
3 [N
A g 3.9, Trigger when there is a chance to set the switch right; guarantee that the
o package is not at the switch or that the switch is set right.
s
X _:Z; We will choose the third:
o~
i .-E;t;' (( pmage = first(PACKAGES_DUE_AT_SWITCH(*,switch))
; A ". » -
;4 SWITCH_IS_EMPTY (switch)) asof aeverbefore)
N
-.x The effect of REFORMULATE_CONSTRAINT_AS_DEMON can be characterized as follows:
~ ’ !
)
o
¥ ] g saAc:mllly. you only have to make this guarantee as long as the triggering predicate hoids. This is true for the
9 other two cases s well. '
WA
H f~, ;3‘
Y
7
e

‘. et ot L% % et % e, e e . et L e WL N LI N T A A TN et v e et et e et
: . PO NS AN o Ly - '.\ S .‘,'h N et O VS DRI \._‘:‘\“\!. .-.\'.\..\... REREASEALN O

-



-y LA eh A A L A i R A A A M A A L A e R A N A A G ALY LA RS S SRR R RS

3
PAGE 252 PACKAGE ROUTER DEVELOPMENT 5
g
N always prohibit P
! 1 =
\ demon =
N iciggec Q .
P} response require (~P from ThisEvent uptil ~Q) -
where P implies Q -
Define a demon who triggers on Q and posts a requirement that P not be true between the
. time the demon triggers (Q becomes true) and Q becomes false. \
3:: .
‘* ' After application of this transformation (and a straightforward removal of the historical
~ -
reference from the trigger and simplification of the requirement conjunction), we have the -
Z;} following: .
¢ W
oy o
) d.e.mp.n SET_SWITCH_WHEN_HAVE_CHANCE (switch, package) -
'1 trigger (package = first(PACKAGES_DUE_AT_SWITCH(®*,switch)) .
and s
T SWITCH_IS_EMPTY (switch))
...l M
‘ require (~(package:LOCATED_AT = switch ]
& and
X SWITCH_SET_WRONG_FOR_PACKAGE (switch,package)) -
& from ThisEvent®®
N ’, until ~((package = -
N first(PACKAGES_DUE_AT_SWITCH(*, switch)) "
_ and
~ SWITCH_IS_EMPTY (switch)) asof everbefors)) o
a N
..!
- The response of the new demon should be read as "require that the package not be located —
Fa at the switch when the switch is set wrong. Make sure that this is true from the time the demon
S triggers until the switch is not ready to be set, >> asof everbefore <<". The until clause is :I;
¥
i clearly faise since the trigger implies that the switch has been ready to be set in the past. A .
' simple transformation of the until clause »,, -
' ... NALL1 folse = until evermore
2y allows us to simplify (SET_SWITCH b is included for context): -

-y

a'a e "a s A a
L)
»

i.e., the triggering of this demon.

-

L 4
B




s - ¢

25

Y

l. I'

P %S
.

e

_ ™ o - . « M . S N R R N R IR IR A PRI DAL S o~
LR AN W TR TICHU NN, (Y LY, V (W N oK\ I. "A-"'" Ly L0 A ,"f. Py, ""."'.' TN NN ". s

C.4 Map DID_NOT_SET_SWITCH_WHEN_HAD_CHANCE : PAGE 253

b, demon SET_SWITCH(switch)
igger RANDOM()
response
i
require SWITCH_IS_EMPTY (switch);
update :SWITCH_SETTING of switch 10 switch:SWITCH_OUTLET
end;

demon SET_SWITCH_WHEN_HAVE_CHANCE (switch, package)
trigger (package = first(PACKAGES_DUE_AT_SWITCH(®*, switch))
SW‘I%'QCH_IS_EM PTY (switch))
reguire (~(package:LOCATED_AT = switch
SWITC#EET_WRONG_FO R_PACKAGE((switch,package))

from ThisEvent
’2 until evermore

STEP 4.3: Map SET_SWITCH_WHEN_HAVE_CHANCE

| Method MapByConsolidation |

Goal: Map D|demon

Filter: a) pattern-match[demon, D2, spec)
b) D = D2

Action: 1) Consolicate D and D2

[To map D, find some other demon D2 and consolidate.]
| End Method : |

A separate method will be triggered for each binding of D2, one for each demon in the
program. We will choose the binding to SET_SWITCH. ‘

STEP 4.4: Consolidate SET_SWITCH with SET_SWITCH_WHEN_HAVE_CHANCE

N W LRI g W VLIS

v PRI

» wre=e o e -



AR R AR
ot PAGE 254 PACKAGE ROUTER DEVELOPMENT =
e
o
e %
: | Method MergeDemons | -
% Goal: Consolidate D1]|demon and D2 |demon
:: Action: 1) Equivalence trigger-of[D1] and <.

- trigger-of{D2] __
2) Equivalence var-declaration-of[D1] and
o var-declaration-of[D2]} ’,
"_: 3) Show MERGEABLE_DEMONS(D1, D2, I|ordering) o0
3 4) Apply oEwon_veroe(Di, D2, 1)
" [You can consolidste two demons #f you can show that they have the same -i
local variables, the same triggering pattern and that they meet certain
“ X merging conditions.]
} | End Method . | ;::
x -
STEP 4.5: Equivalence '
-
: trigger RANDOM()
! and
K trigger package = first(PACKAGES_DUE_AT_SWITCH(®,switch)) i
B and
SWITCH_IS_EMPTY (switch) -
f,-: | Method Anchor2 | s
’
Goal: Equivalence X and Y ..
'’ Action: 1) Reformulate X as Y i
3 .
D {Try changing the first construct into something that matches the second.]
v | End Method | -
N B
—]
X STEP 4.6: Reformulate RANDOM() as o
‘- package = first(PACKAGES_DUE_AT_SWITCH(®*,switch)) .
b and =
N SWITCH_IS_EMPTY (switch) -
.
q
.
o = !
'.' .
¥
1% .
1y “
L' \.g
] A
‘.
o
Y \

- - o sooe A DR R SRR R C TR
Q".!" .'\~' o~ n" \f o 1.\' WO '\' v'\ \u"-.\ -\"'




C.4 Map DID_NOT_SET_SWITCH_WHEN_HAD_CHANCE : PAGE 255

| Method SpecializeRandom

Goal: Relormulate X|RANDOM as Y|expression
Action: 1) Show NON_EMPTY SPECIALIZATION(Y)
2) Apply
REPLACE_RANDOM_WITH_SPECIALIZATION( X Y)

[You can always replace RANDOM with a more specialized event i you can
show the new event does not remove all choices.]

| End Method

We rely on the user to show that a non-empty subset of triggerings remain for SET_SWITCH.

After the application of REPLACE_RANDOM_WITH_SPECIALIZATION, we have

y_qmn_ SET_SWITCH(switch, package)
trigger package = first(PACKAGES_DUE_AT_SWITCH(*,switch))

and
SWITCH_IS_EMPTY (switch)

response
begin
update :SWITCH_SETTING of switch 10 switch:SWITCH_OUTLET
where SWITCH_IS_EMPTY (switch)

end;

demon SET_SWITCH_WHEN_HAVE_CHANCE (switch, package)
trigger (package = first(PACKAGES_DUE_AT_SWITCH(*,switch))

[P R U S o

and
SWITCH_IS_EMPTY (switch))

response
reguire (~(package:LOCATED_AT = switch

SWITCH_SET_WRONG_FOR_PACKAGE (switch,package))
from ThisEvent
until evermore

s e At ) AR A

Our Equivalence goal has been achieved and we can consolidate the two demons.

..sla.a‘l.l. [

P A L

_- l. N x“ ( X “" ". % -‘ .'.';".'; L q AN,



‘.

e Vea i,

LKA

ey

7

..—.‘ - . -

iy

PLE SPL L Sl B |

§ Zoargem » b G R

B A

PAGE 256 PACKAGE ROUTER DEVELOPMENT

nmg_n SET_SWITCH (switch, package) -

trigger package * first(PACKAGES_DUE_AT_SWITCH(®,switch))
and
SWITCH_IS_EMPTY (switch)
response
begin

update :SWITCH_SETTING of switch Lo switch:SWITCH_OUTLET
where SWITCH_IS_EMPTY (switch):
2 require (~(package:LOCATED_AT = swilch

and
SWITCH_SET_WRONG_FOR_PACKAGE (switch,package))
from ThisEvent
until evermore

We have removed the global constraint DID_NOT_SET_SWITCH_WHEN_HAD_CHANCE
from the program, but are left with a residual local constraint b, within SET_SWITCH.

STEP 4.7 (user): Map

" reguire (~(package:LOCATED_AT = switch

and
SWITCH_SET_WRONG_FOR_PACKAGE (switch,package))
from ThisEvent
until evermore

| Method CasifyPosConstraint ' |

Goal: Map C| +constraint
Action: 1) Casity C
2) fora)l case-of[x, C] do Map X

[Try mapping by case analysis.]
| End Method |

The remainder of the development in this section will be based on a number of different case
analysis strategies for removing the requirements in the SET_SWITCH demon. The
interaction between the user and system during this time points out the fundamental role of

N v e T AR AT T LU A A N T A R e e
('U " l.“l#‘\\‘\. X) ,‘ vy n'l\ Ut TR L URR s (N L, RIMN AR Y .' st ¥

i

tAS S

[N S W

y !
.

SR

A

LAY |

£
l'l'l

[ 3
5%5%.

+
-

o

AAM




- I,‘I

- W ~
RANNAN

,
-8

e

& e € B8 8 s

A
-

)

e

»
.
AR

»
=R
X

C.4 Map DID_NOT_SET_SWITCH_WHEN_HAD_CHANCE : PAGE 257

each: the system suggests rather broad strategies with keystone pieces left unbound; the user
selects among the strategies based on his ability to fill in the missing pieces. The latter activity
requires what we might call the insightful or intelligent component of reasoning; we suspect
that such activity will resist automation for some time to come.

STEP 4.8: Casify

» require (~(package:LOCATED_AT = switch

1

and
SWITCH_SET_WRONG_FOR_PACKAGE((switch,package))
from ThisEvent
yntil evermore

| Method CasifyFromUntilEverConstraint |

Goal: Casity C| +constreint
Action: 1) Reformuiate C as
P from E ynti) gvermore
2) Apply CASIFY_AS_NOW_AND_AFTER(C)

[You can show that C holds from E until everafter if you can show it holds at €
ano after E.}

| End Method |

This method makes the following transformation

+constraint P from £ until evermore

=
+constraint P at E;
+constraint P after E;

In our case, this means showing that either the package is not located at the switch or that the
switch is set right at the time the demon triggered » and for all time after b, After application
of CASIFY_AS_NOW_AND_AFTER, we have®

eoNote that the reformulation goal is trivially satistied. This is because earlier we carried out the reformulation tor
clarity. Normally this would be carried out here where it is well motivated.

..................................
e

AN AN A '
St e Sy Y

.....

1
~



.T
KX
Pl

0
S

»
[

Ay
o
‘%Lz

A

Ay,

e

o v
PR,
."_“/1 d

‘I
]

R a7 e
L3 o
. 4
A

=

L8

- q"u‘ﬁ -

A

wViaVe Ve a

LA

P R R R
L, AR f‘ 4

PAGE 258 PACKAGE ROUTER DEVELOPMENT

nmn SET_SWITCH(switch, package) -
trigger package = first(PACKAGES_DUE_AT_SWITCH(®,switch))

and
SWITCH_IS_EMPTY (switch)

response

begin
update :SwiTCH SETTING Of switch 10 switch :SWITCH_OUTLET

where SWITCH_IS_EMPTY (switch);
’ require (~(package:LOCATED_AT = switch

and
SWITCH_SET_WRONG_FOR_PACKAGE (switch,package))
2t ThisEvent;
’, reguire (~(package:LOCATED_AT = switch

and
SWITCH_SET_WRONG_FOR_PACKAGE (switch,package))
after ThisEvent

STEP 4.9: Map
’, require (~(package:LOCATED_AT = switch

and
SWITCH_SET_WRONG_FOR_PACKAGE ((switch,package))
at ThisEvent

| Method TriggerimpliesConstraint |
Goal: Map R|require
Fiter: a) component-of[R, D|demon)
Action: 1) Reformulate R as Lequire P At ThisEvent
2) Show wereD 8Y(P, trigger-of[D))
3) Apply REMOVE_WMPLIED_REQUIREMENT(R)

[ a requirement is pert of a demon, try showing that It is implied by the
demon’s trigger.)

| End Method i

We rely on the user to verify that the trigger does indeed imply the constraint, i.e., & switch
being empty implies that the package is not located there. This removes the first case. We
now must tackle the more interesting second case.

oo
»h., "N

A AL LRI AT 2
S » LAy nr . 3

LMl

L. e

AR R O N A R AR R R U e IR

A

=

F-

iy

Ll

s
a

A

2"2

G G G O S T LR 5 G N S D S ORI * AT




5 (<
-

TG

A5y

- . -
s *a sl 13

il V=P

s m 8

..O.

AW AYMY

a &

...........

[ L R T WA ‘ \\ \:.\- 5.\'-’&" \-\-.\-“- "...\i.\v N \1.: ., oo , LA . ".‘-'-'.‘.'4‘ -'_-:_,- e "".-.' .." X

e P ‘pag AR Rt P z S TR Ty O T AT P T a0 " A R il A Rt

C.4 Map DID_NOT_SET_SWITCH_WHEN_HAD_CHANCE : PAGE 250

STEP 4.10: map
’, require (~(package:LOCATED_AT = swilch

and .
SWITCH_SET_WRONG_FOR_PACKAGE (switch,package))
after ThisEvent

| Method CasifyPosConstraint |

Goal: Map C| +constraint
Action: 1) Casity C
2) forall case-oflX, C] do Map X

[Try mapping by case analysis.]
| End Method !

STEP 4.11: cCasity
’, reauire (~(package:LOCATED_AT = swiich
and

SWITCH_SET_WRONG_FOR_PACKAGE (switch,package))
after ThisEvent

| Method CasifyAroundEvent |

Goal: Casity C|constraint

Action: 1) Reformulste C as constraint P gfter £
2) Show ruTuRe EvenT(F, E)
3) Apply caswy _arOUND EVENT(C, F)

[Choose some event F in the future and show that C holds before, during and
after F.}

| End Method |

This method splits a constraint into three cases: 1) before some future event F, 2) during F
and 3) after F. In this case, the difficult task is picking the right future event F. We rely on the
user to make this choice:

bind F to package:LOCATED_AT = switch

After apblication of CASIFY_AROUND_EVENT, we have our before b, during », and after s
cases:

abudhafnatn Rt




- AASKLLINE -

£,

KRS

Ve 8 &

SN RS

FLAN S ]

PAGE 260 PACKAGE ROUTER DEVELOPMENT

demon SET_SWITCH (switch, package) -
trigger package = first(PACKAGES_DUE_AT_SWITCH(®,switch))

and
SWITCH_IS_EMPTY ( switch)

response
begin
Do update :SWITCH_SETTING of switch 19 switch:SWITCH_OUTLET
where SWITCH_IS_EMPTY (switch);
b require (~(package:LOCATED_AT = switch
and
SWITCH_SET_WRONG_FOR_PACKAGE (switch,package))
after ThisEvent yntil package:LOCATED_AT = switch;
’, reguire (~(package:LOCATED_AT = swilch
and ' '
SWITCH_SET_WRONG_FOR_PACKAGE (switch,package))
during package:LOCATED_AT = switch;
’, require (~(package:LOCATED_AT = swilch

and
SWITCH_SET_WRONG_FOR_PACKAGE (switch,package))
after package:LOCATED_AT = switch;

Again, we must map each of the new cases.

STEP 4.12: Mep

’, reauire (~(package:LOCATED_AT = switch

and
SWITCH_SET_WRONG_FOR_PACKAGE (switch,package) )
after ThisEvent yntil package:LOCATED_AT = switch;

| Method NotXUntilX

Goal: Map R| ¢constreint

Action: 1) Reformulate R as <constraint P yntil E
2) Show wwrep ev(P, ~E)
3) Apply REMOVE_VACUOUS_CONSTRANT(R )

{P yntll E =» true when ~E implies P]
| End Method

YS! ';.'.\:_‘\' e e \'\__‘-‘_\‘ O ~.".‘.\ e e e
(R SRR o o° o N W - -

o'\"..' LS .‘q \- \..'l. \;‘
4

(s

ATy

OV AN AR AT,

P RN

o .
y e 8,

“red

W)

K

s

]
»
A

|/

-
s

: {\-'

»

- e e e e~

o SEIRIRTY .



W T W LT VLY. .,
A N S A

C.4 Map DID_NOT_SET_SWITCH_WHEN_HAD_CHANCE PAGE 261

We rely on the user to show that the negation of the until clause -- the package is not located
at the switch -- implies the predicate. We can thus remove the first requirement ».. By (the
user) showing that the package will never again return to the switch after it Iea_ves it, we can
similarly remove the third requirement ’a This leaves us with the second requirement » >

STEP4.13: Map
’, require (~{package:LOCATED_AT = switch
and
SWITCH_SET_WRONG_FOR_PACKAGE (switch,package))

during package:LOCATED_AT = swilch;

We can simplity this to

require ~SWITCH_SET_WRONG_FO R_PACK AGE(switch,package)

during package:LOCATED_AT = switch;

We will again use case analysis to simplify the problem.

| Method CasifyPosConstraint I

Goal: Map C| +constraint
Action: 1) Casity C
2) forall case-of{x, C] do Map X

[Try mapping by case analysis.)
| End Method |

STEP 4.14: Casify

require ~SWITCH_SET_WRONG_FOR_PACKAGE(switch,package)
during package:LOCATED_AT = swilch;




PYAvL VL SCRNDILH IV RRS B ANA RS A DA A A D RO AL AR B I Il St S R

PAGE 262 PACKAGE ROUTER DEVELOPMENT

| Method PastInduction i

Goal: Casity C| +constraint

Action: 1) Reformulate C as +constraint P gyring €
2) Show EVENT BEFORE EVENT(B, E)
3) Apply PaST WNDUCTION CAsirY(C, B)

[Use induction from some past state.}
| End Method |

This method makes the following transformation:

+constraint P dyring E

=

+constraint P at B || B before E
+constraint ~(start of ~P) between B, after E

To paraphrase, there exists some state B before E where P holds and P does not change
between B and E. The choice of B is naturally critical and is left to the user:

bind B to last update of switch:SWITCH_SETTING in SET_SWITCH (»,)

After application of PAST_INDUCTION_CASIFY, we have

demon SET_SWITCH (switch, package)
trigger package = first(PACKAGES_DUE_AT_SWITCH(®,switch))

and
SWITCH_IS_EMPTY (switch)

response
begin
update :SWITCH_SETTING Qf switch 10 switch:SWITCH_OUTLET
where SWITCH_IS_EMPTY (switch);
1 require ~SWITCH_SET_WRONG_FOR_PACKAGE(switch,package)
at last update of switch:SWITCH_SETTING;
’, Lequire .
~(start of ~SWITCH_SET_WRONG_FOR_PACKAGE (switch,package))

between last update of switch:SWITCH_SETTING,
package :LOCATED_AT = switch

and:

|_'.v. /‘]

v,
a

]

e .-

s

Ll ln'




2 iak Sl Tl 00 N \

P gl Yl 2l B ey

[

TS AR T

PP IS

-t

vAR
-~ s

Kand
Aty

»' 4
A

.« o
."\-\ .

)

e
o
>

['.._".' ‘.

e e WA T F Ve . T e T N T e T e e o T T T T W T g W T ¥ o N % et

C.4 Map DID_NOT_SET_SWITCH_WHEN_HAD_CHANCE PAGE 263

STEP 4.15: Map

’ require ~SWITCH_SET_WRONG_FOR_PACKAGE (switch,package)
at last update of switch:SWITCH_SETTING;

| Method MoveConstraintToAction |

Goal/: Map C|require
Action: 1) Reformulate C as
require P at last E|Action-event
2) Show LAST_ACTION(Ajaction, E)
3) Apply wmOVE_CONSTRAINT_TO_ACTION(C, A)

{It a constraint C is on some action event E at A, attach the constraint to A.]
| End Method |

We rely on the user to show that the update of the switch setting b, in SET_SWITCH is the
oniy update of a switch setting and hence, it must have been the last. After application of
MOVE_CONSTRAINT_TO_ACTION, we have

_d_e_m SET_SWITCH(switch, package)
trigger package = first(PACKAGES_DUE_AT_SWITCH(*,switch))

and
SWITCH_IS_EMPTY (switch)
response

begin
0 upgate :SWITCH_SETTING of switch 10 switch:SWITCH_OUTLET
where SWITCH_IS_EMPTY (switch)

and
~SWITCH_SET_WRONG_FOR_PACKAGE (switch,package) ;
’, fequire .
~(start of ~SWITCH_SET_WRONG_FOR_PACKAGE(switch,package))

between last update of switch:SWITCH_SETTING,
package:LOCATED_AT = switch

STEP 4.16: Map

ORI AP

2070 " o~ o N



—‘—ora‘ .
¥ T e

IRE
H

PAGE 264 PACKAGE ROUTER DEVELOPMENT

N
¥
o ’, require
e ~(start of ~SWITCH_SET_WRONG_FOR_PACKAGE (switch,package))
between last update of switch:SWITCH_SETTING, —
package :LOCATED_AT = switch N
| Method ShowNoChange | 9_._.
Goal: Msp C| +constraint ~(start of P) b
between E1.E2 -~
Action: 1) Show UNCHANGED BETWEEN EVENTS(P, E1, £2)
2) ADPly REMOVE_UNCHANGED_CONSTRANT(C ) i
"
[The direct approach.]
| End Method | L
\"_-
STEP 4.17: Show !
~(start of ~SWITCH_SET_WRONG_FOR_PACKAGE(switch,package)) '
between last uypdate of switch:SWITCH_SETTING, package :LOCATED_AT = switch o
Showing that the switch is never set wrong (relative to a particular package) once it is set right -
lies beyond the capabilities of the system. We rely on tne user to assert the necessary
property.
'-;;
.‘.'
After application of REMOVE_UNCHANGED_CONSTRAINT, we have -
S
D Y
demon SET_SWITCH (switch, package) &
trigger package = first(PACKAGES_DUE_AT_SWITCH(*,switch)) -
and
SWITCH_IS_EMPTY (switch) -
'o ypdate :SWITCH_SETTING Qf switch 10 switch :SWITCH_OUTLET
where SWITCH_IS_EMPTY (switch) o
and od
~SWITCH_SET_WRONG_FOR_PACKAGE ( switch,package): :
Our last task will be to map the non-deterministic choice of switch settings ’ using the -
attached constraints as a guide. o
-
N,
O N A U RS S S BRI Sty WSO R T B LA P T




i)

CENT PR
2=

W %
l"
A

oAy

WA A
A

I

P
.

"IRES
i

Ol
A

S N 2
.

YAAANSALY |-

AR N

L]

?

A i L ‘.';-.' < AA Y " Y -"

C.4 Map DID_NOT_SET_SWITCH_WHEN_HAD_CHANCE PAGE 265

STEP 4.18(user): Map

¥ update :SWITCH_SETTING of swifch 10 switch:SWITCH_OUTLET

where SWITCH_IS_EMPTY (switch)

and
~SWITCH_SET_WRONG_FOR_PACKAGE (switch,package);

| Method ComputeNewValue |

Goal/: Map U|update X of Y 3o Z where P
Action: 1) Apply
COMPUTE _DERIVED_OBJECT_FROM_CONSTRANT{U)

(Reformulate Z as derived object using P.)
| End Method ) |

The application of COMPUTE_DERIVED_OBJECT_FROM_CONSTRAINT gives us

g. g. r;ngn SET_SWITCH((switch, package)
trigger package = first(PACKAGES_DUE_AT_SWITCH(*, switch))

and
SWITCH_IS_EMPTY (switch)
response
update :SWITCH_SETTING of switch 1o
(pipe || pipe = switch:SWITCH_OUTLET

and
SWITCH_IS_EMPTY (switch)

and .
" ~SWITCH_SET_WRONG_FOR_PACKAGE (switch,package):

STEP 4.19(user): Unfold SWITCH-SET~WRONG«+FOR-PACKAGE at b,

N N e AT A R AT I T e e e

..f ..-avn ‘5“".

LX)



SRR N O S T e e S R W A L I

-------

oy PAGE 266 PACKAGE ROUTER DEVELOPMENT
by -." ‘:‘J
vk
ot g
N N
n | Method ScatterComputationOfDerivedRelation | —
'%."‘ Goal: Unfoid DR|derived-relation at L "
o Fitter: 8) reference-location[oR, L, §] s
:"-.;'.' Action 1) Apply UNFOLD_COMPUTATION_ CODE(DR L) _3
2) Purity L -
[To unfold & derived relation DR at a reference point, stick in code to compute ./-q
it and make sure L is within implementable portion of spec.) .
| End Method |
=
N
Unfolding SWITCH_SET_WRONG_FOR_PACKAGE ’, and simplifying (see example A, o
section £.14) gives us :‘4
gemon SET_SWITCH (switch, package) .
trigger package = first(PACKAGES_DUE_AT_SWITCH(®,switch)) N
and
SWITCH_IS_EMPTY (switch) e
response -~
update :SWITCH_SETTING of switch to A
(pipe || pipe = switch:SWITCH_OUTLET
and
’, SWITCH_IS_EMPTY (switch) S
and
LOCATION_ON_ROUTE_TO_BIN(pipe, -5
package : DESTINATION) ) ; o
=
Finally, we can get rid of the empty switch constraint b, under our assumption that the
response of a demon is executed in the same state as it was triggered: ;
W
\"
L
_l_l_ |
o
)
24
N

K AT R A e P, P R AT AR e ":;Y,.g'

SR R L SR NN et e R RO B L e TEUL ST B A
KT R S T N A A A I ek LRt P T R AR I YR A T TP Grt L)



e
'y

vl

\ E C.4 Map DID_NOT_SET_SWITCH_WHEN_HAD_CHANCE PAGE 267
?.: >
N~
NN
0 '_.
.V \- ‘e
-, g_q_mg_n SET_SWITCH(switch, package)

trigger package = first(PACKAGES_DUE_AT_SWITCH(*,switch))

Se s Ay A A

o and
! SWITCH_IS_EMPTY (switch)
* response

update :SWITCH_SETTING of switch 1o

b, I§ (pipe || pipe = switch:SWITCH_OUTLET
Lo and
X LOCATION_ON_ROUTE_TO_BIN(pipe,

package : DESTINATION) ) ;

o St
»

et

FLES.
-y 0
LR

J J‘- »
)

T N N L S R A R Pt Y T A

0
e T aRaS o Nt o




] i
MCRERERE Y ."‘." .

’ .

o .
Cuy

w1

e e

'1,

718 LENW 2

A

PAGE 268 PACKAGE ROUTER DEVELOPMENT

C.5. Map PACKAGES_DUE_AT_SWITCH

We will focus our attention on the derived relation PACKAGES_DUE_AT_SWITCH:

relation PACKAGES_DUE_AT_SWITCH(packages_due | seaquence of package,

switch)
definition packages_due =
{a package ||
LOCATION_ON_ROUTE_TO_BIN(switch package :DESTINATION)

and
~( (package:LOCATED_AT = switch) asof everbefore)
n

and
~MISROUTED (package)
} ordered temporally by start (package:LOCATED_AT = the source)):

Abstractly, the sequence of packages is defined in terms of

{8} ordered with respect to Event

A package is in the set of packages S if conjunctively

DLOCATION_ON_ROUTE_TO_BIN(switch, package:DESTINATION) i.e., the switch
lies on route to the package's destination.

D ~((package:LOCATED_AT = switch) asof everbefore), i.e., the package has not
already reached the switch.

O ~MISROUTED(package), i.e., the package is still expected to show up at some
future time at the switch.

STEP 5.1(user): Map PACKAGES_DUE_AT_SWITCH

As in previous sections, we have two basic strategic choices: compute on demand; compute
on change. We will choose the latter here. '

P

ar."

e A
)
JLIPE R

-t
s 8
[3ar 4

-

2P BEEEAAL * | MY VR Y

’ 0’
.




)
'
3t

2

¥

s

it A s

ChhoA Aty

NENCAEL >

oty S Y

e

Vit v

"PARE 32 2 2 ¢ Y AP 2 22024

- AN

ryTy

- e e

]

‘&

Lw 4
v

.
»

.-'-‘" -

., e

3
st

.

;‘\:“:’:

”

LA £

<,

P

SN2

;'

X,

L

vaN

<1l

A

<1 TR -«. 295 1)

C.5 Map PACKAGES_DUE_AT_SWITCH

PAGE 269

| Method MaintainDerivedRelation

Goal: Map DR|derived-relstion
Action: 1) Maintainincrementally DR

{One way of mapping a derived reistion is to maintain it explicitly.}
| End Method

STEP 5.2: Maintainincrementally PACKAGES_DUE_AT_SWITCH

| Method ScatterMaintenanceForDerivedRelation

Goal: Maintainincrementally DR
Filter: 8) gist-type-of[DR, derived-relation]
Action: 1) Fiatten body-of [DR)]
2) forall reference-location[BR, $, DR}
do forall reference-location[BR, L, spec)
do begin
Apply WNTRODUCE_MAINTENANCE_CODE(DR L)
Purity L
end

{To maintain a derived relation DR, find everywhere the base relations ol DR
are changed and stick code in to maintain. Make sure that all base relstions

are simple before maintenance and that all code is pure after.]
| End Method

STEP 5.3: Flatten PACKAGES_DUE_AT_SWITCH

| Method Flatten

Goal: Fiatten DR |derived-relstion
Action: 1) forall
reference-location[BR | derived-relation,$ ,DR)
do Map BR

[Map all derived relations found in DR into simple ones.)
| End Method

- " . .
.. ..,\. \. '\ ....

NIC S W Lt
‘%“.,-'b\ ’

I3 Y

S \.s-‘.',\,\_,s \ .

\

NN
.:.‘fs._\fsf.s Y




s
L]

N .." -

A

AN

_»

A A

L KR A

o v P N

-

§ Sap ot xud

PAGE 270 PACKAGE ROUTER DEVELOPMENT

Before maintaining, we must first get rid of any nested derived relations. There are currently
two: LOCATION_ON_ROUTE_TO_BIN and MISROUTED.

STEP 5.4: Map LOCATION_ON_ROUTE_TO_BIN

relation LOCATION_ON_ROUTE_TO_BIN(LOCATION,BIN)
definition
case LOCATION of
8IN => LOCATION = BIN;
PIPE
= LOCATION_ON_ROUTE_TO_BIN(
LOCATION: connection_to_switch_or_bin,BIN);
SWITCH
= LOCATION_ON_ROUTE_TO_BIN(LOCATION:switch_outlet,B/IN);
SOURCE
=> LOCATION_ON_ROUTE_TO_BIN(LOCATION:source_outlet,BIN) ;

eng case;

We can either choose to compute LOCATION«ON<«ROUTE«TO«BIN on demand (i.e.,
unfolding it) or maintain it explicitly. Since the relation is static, maintenance looks most

promising.

| Method StoreExplicitly |

Goal/: Map DR|derived-relation
Fiter: ) sTamic(DR)
Action: 1) Show FINITE_EXPLICATION(DR )
2) Apply WMALIZE_MEMO_RELATION(M, DR)
3) forall location-reference[DR, L. spec)
d0 Apply REPLACE-REF-WITH-MEMO(L, M)
4) Apply REMOVE UNREFERENCED_RELATION(DR)

{You can explicitly compute a static derived relation given a finite number of
resulting ob insertions.]

| End Method |

INITIALIZE_MEMO_RELATION will define a new memo relation and code to initialize it.

., IR A s e B PO I PO - I L. o .
G LY ) .l *".'b-\ \‘\u‘,‘ , 5 } .. ". -!'.I qhv r f f\(‘ q’f P -\ -.' X

.

N
g
-

Al

Y

.
%
A

18

P PMTSE, |

RPN

r e .

» ‘l,’

] C’
AR

K
-
-
g
g
v
.
J

2 »

el al ol



et e " s o g i R b (B R R SRR o PO A PR A AR RO TR S ] Bt i ' -

AR A
va YK
TalalalJER

C.5 Map PACKAGES_DUE_AT_SWITCH : PAGE 271

[
-

iR relation MEMO_LOCATION_BIN(/ocation, bin);
S denon INITIALIZE_MEMO_LOCATION_BIN()
I trigger: (start initialization _state)®?
response

8 Joop L | LOCATION do
s 100p B | BIN || LOCATION_ON_ROUTE_TO_BIN(L, B) do
¥ A insert MEMO_LOCATION_BIN(L, B);
o We can now replace references to LOCATION_ON_ROUTE_TO_BIN with corresponding
i ,;_, references to MEMO_LOCATION_BIN trivially except for the initialization above. Here, we
;I;’ . will use some loop transformations to get
s
N &
M relation MEMO_LOCATION_BIN(/ocation, bin);

! demon INITIALIZE_MEMO_LOCATION_BIN()
Wy trigger: (start initialization_state)
e response
> begin

3y loop B | BIN do insert MEMO_LOCATION_BIN(B, B):
3, 8 Joop L | LOCATION ||

MEMO_LOCATION_BIN(L, B) and

S L = L2:CONNECTION_TO_SWITCH_OR_BIN
:: E do insert MEMO_LOCATION_BIN(L2, B);
}‘n end
B '

"a_; We next have to deal with the derived-relation MISROUTED.

A

-

STEP 5.5: Map MISROUTED

< £ " >
afele" e et e

P4
[ 4

acal’

-

AT 1

614 special state procesding the start-up of a system.

% e )
[A*A

e J

d \".'i
<

. NN, \; \‘_\'

AN

- ‘.". W \- \- _\.‘\ \- ‘. \- \- \-.\1 o e L ...



PSP X

P

G
v

MR e

e -
2L

AR

) SIS

b ASACLEON |- AR ORANYY

2 AR AN

& ju . e B I S BN 1 AR A A RACE AR R,

PAGE 272 PACKAGE ROUTER DEVELOPMENT

relation MISROUTED (package)
definition :
~MEMO_LOCATION_BIN(package : LOCATED_AT, package:DESTINATION)

or
SWITCH_SET_WRONG_FOR_PACKAGE (package:c(located__at),
package):

To paraphrase, a package is misrouted if either its current location is not on the route to its
destination or if it is at a switch, the switch is set wrong.

in the case of this derived relation, we will try a backward inference strategy of computing the
relation on demand.

| Method UnfoldDerivedRelation |

Goal/: Map OR|derived-reletion
Action: 1) forall reference-location[DR, L, spec]
do Unfold DR at L

fOne way of eliminating a derived relation is to unfold it at its reterence
points.)

| End Method 1

STEP 5.6: Unfoid MISROUTED at PACKAGES_DUE_AT_SWITCH

| Method ScatterComputationOfDerivedRelation |

Goal: Unfoid DR |derived-relstion at L

Fiter: &) reference-location{DR, L, §]

Action: 1) Apply umouo,coummon_cooﬁ(bk L)
2) Purity L

[To unfoid a derived relation DR st a relerence point, stick in code to compute
It and make sure L is within implementabile portion of spec.]

| End Method |

A A
o o ™ v oy o

LRy \;_\‘_'.:_\ NS ‘.‘_.__\._'\. s

[
ol ’.J

I‘-/‘;; pr}

PPy

& N



N
&
] C.5 Map PACKAGES_DUE_AT_SWITCH ~ PAGE 273
,," a
23
“3.. \0
s
il - Telation PACKAGES_DUE_AT_SWITCH packages due | sequence of package.
o W switch)
Y i
N definition packages_due =
SO {a package ||
™ & MEMO_LOCATION_BIN(switch package : DESTINATION)
and
I ~( (package : LOCATED_AT = switch) asof everbefore)
N n
N ~(~MEMO_LOCATION_BIN( package : LOCATED_AT,
e package : DESTINATION)
Y 2 or
N o SWITCH_SET_WRONG_FOR_PACKAGE (package : LOCATED_AT,
Sy package))
23 ) ordered temporally by start (package:LOCATED_AT = the source)):
Fad A
"’a ¥.
Y
; E The Flatten method has completed, but a new derived-relation has been introduced:
_,.;;j . SWITCH_SET_WRONG_FOR_PACKAGE, i.e., the Flatten goa! has not been achieved. The
<, W .
‘j} iy goal will be re-activated.
Lo
- B STEP5.7: Fiatten PACKAGES_DUE_AT_SWITCH
vf:- f:_‘
o
ACUNS £
Cae 7
e | Method Flatten I
N -_ N Goal: Fiatten DR |derived-relation
NN Action: 1) forall
::' ; reference-location[BR | derived-relation,$ ,DR)
NN do Map BR
Ny L
T = {Map all derived relations found in DR into simple ones.)
ex | End Method : |
L% .
o o L:‘
?:.g L e
.\{

PAC[(AGES_DUE_AT_SWITCH now relies upon the derived relation
SWITCH_SET_WRONG_FOR_PACKAGE which was introduced in the unfolding of
MISROUTED.

-r A
| # P2

O
A

(]
.
. a

AN
SRR

v aas

~IX]

DRI PR P I
8 ._-‘.'4“‘}‘--

NN S T K
s e, )

PO et By e e




i PAGE 274 PACKAGE ROUTER DEVELOPMENT 5
>
5 .
! ~
¥ :
.’.-’.‘

relation SWITCH_SET_WRONG_FOR_PACKAGE (switch, package) -
39 defipition e ::-.
g_- MEMO_LOCATION_BIN(switch, package:DESTINATION) W
%8 ang
o ~MEMO_LOCATION_BIN (switch : SWITCH_SETTING, package : DESTINATION) »
!'.:[ ‘3
i . ¢
;: To paraphrase, a switch is set wrong for a package if the switch is along the route to the
N package's destination and its current setting is not. G
i n
. STEP 5.8: Map SWITCH_SET_WRONG_FOR_PACKAGE
i s
1
' | Method UnfoldDerivedRelation | .
it Goal: Map DR|derived-relation
i Action: 1) foral)l reference-location[DR, L. spec]
;‘ do Unfold DR at L :::‘\
b [One way of eliminating a derived relation is to unfoid It at its reference
" points.} ;\
b | End Method { 9
2 y
P o
‘ STEPS5.9: Unfold SWITCH_SET_WRONG_FOR_PACKAGE at ’
2 PACKAGES_DUE_AT_SWITCH -
M <
‘ | Method ScatterComputationOfDerivedRelation | é

Goal: Unfoid DR|derived-relstion at L

Fiter: a) reference-location[DR, L, §)

Action: 1) Apply unrOLO_COMP.ATION CODE(DR L)
2) Purlty L

v,

v

IA Y AR A

{To uniold a derived relation DR at a reference point. stick in code to compute
# and make sure L is within impiementable portion of spec.)

% | End Method | R
2 AR
3 m
; Unfolding SWITCH_SET_WRONG_FOR_PACKAGE in PACKAGES_DUE_AT_SWITCH we :’:"
: have
k W
s .
.
! ‘T: )
: |
. Iy AN RS ALY l-\\' S R JPR N N R CHES SRS N L N R ~ N ';\_\.‘.\_\.\ LT T R, T T A L SR j
R CREME LR 0, * [P ENRATN » Wl > a, n A 15,38, L VRO b




Pyl FXa e - FESEMNCANCS -

PR

L LS

[ttt Ayl ar

]

&

-

[Ew.3

By~ o s

A |

XX

z'd

]
-

o

<

o Yo Jo)

viZ)

P

. |

R I i 0 S et IV R TV e Uit e S AU A S A A AL O A S A AR A SN AESICSCTE SR R '-‘.".’-.‘"\.',‘.'_..'-"-‘-::--!

C.5 Map PACKAGES_DUE_AT_SWITCH : PAGE 275

relation PACKAGES_DUE_AT_SWITCH(packages_due | seauence of package,
switch)
definition packages_due =
{a package ||
MEMO_LOCATION_BIN(switch package:DESTINATION)

and
~((package:LOCATED_AT = switch) asof everbefore)

and
’, ~(~MEMO_LOCATION_BIN(package : LOCATED_AT,
package : DESTINATION)

or
3 switch.2 ||
(package : LOCATED_AT = switch.2

and
MEMO_LOCATION_BIN(switch.2, package :DESTINATION)

and
~MEMO_LOCATION_BIN (switch.2 : SWITCH_SETTING ,
package : DESTINATION) ) )
} ordered temporally by start (package:LOCATED_AT = the source)):

Distributing the negation through the third term (>1) gives us

relation PACKAGES_DUE_AT_SWITCH(packages_due | seguence of package,
switch)
definition packages_due =

{2 package ||
MEMO_LOCATION_BIN(switch package:DESTINATION)

and
~((package :LOCATED_AT = switch) asof everbefore)
and

’, (MEMC_LOCATION_BIN(package : LOCATED_AT,
packaye : DESTINATION)
and '
~3 switch.2 ||

(package : LOCATED_AT = switch.2
and '
’, MEMO_LOCATION_BIN(switch.2, package :DESTINATION)

and
~MEMO_LOCATION_BIN( suitch.2 : SWITCH_SETTING ,
package : DESTINATION) ))
} ordered temporally by start (package:LOCATED AT = the source));

Finally, we can show that the third term », implies that our current location is on route to our
destination ('3) and therefore that if we are at a switch, it is on route to our destination:

.................... -

R B e P e L e B S L A



PAGE 276 PACKAGE ROUTER DEVELOPMENT

relation PACKAGES_DUE_AT_SWITCH(packages_due | sequence of package,
. switch)
definition packages_due =
{a package ||

MEMO_LOCATION_BIN{switch package:DESTINATION)

and
~( (package : LOCATED_AT = switch) asof gverbefore)

and
(MEMO_LOCATION_BIN(package : LOCATED_AT,
package : DESTINATION)
and
~3 switch.2 ||
(package : LOCATED_AT = switch.2

and
~MEMO_LOCATION_BIN( switch.2 : SWITCH_SETTING,
' package : DESTINATION)))

} ordered temporally by start (package:LOCATED_AT = the source)):

We have now flattened the body of PACKAGES_DUE_AT_SWITCH and are ready to scatter
the maintenance code. The locations of interest are

1. where package:DESTINATION changes - CREATE_PACKAGE

2.where package:LOCATION changes, i.e., negates the second term
CREATE_PACKAGE, RELEASE_PACKAGE_INTO_NETWORK,
MOVE_PACKAGE

3. where :SWITCH_SETTING changes - SET_SWITCH

The high level view of the incremental maintenance process we will use is as follows: 1) when
- a package enters the network, for each switch S that is on the route to the package's
destination bin, append the package to the sequence of package’'s due at S, 2) when the right
conditions occur -- the package enters S or becomes misrouted before reaching S -- remove
the package from S's sequence.

Looking first at CREATE_PACKAGE, we loop ', through the free variable switch and add ’,
the newly created package.new to the sequence for all switches meeting the criteria.

|

b

mE

PR

-

"1-{1 {8

?.—/.’.4

< I




i

oy

ARKFEFPEEI IR
AN

2 F y

PN i

D
-

1

C.5 Map PACKAGES_DUE_AT_SWITCH . PAGE 277

demon CREATE_PACKAGE()
irigger RANDOM()
response
atomic
create package.new ||
package.new :DESTINATION = g bin and
package.new:LOCATED_AT = the source:
b, Joop switch ||
MEMO_LOCATION_BIN(switch package.new : DESTINATION)

and
~( (package.new : LOCATED_AT = switch) psof everbefore)
and

(MEMO_LOCATION_BIN(package.new : LOCATED_AT,
package.new : DESTINATION)
and
~3 switch.2 ||
(package.new : LOCATED_AT = switch.2

and
~MEMO_LOCATION_BIN(switch.2 : SWITCH_SETTING ,
package.new : DESTINATION) ) )
’, do update packages_due of PACKAGES_DUE_AT_SWITCH(switch,$)
1o PACKAGES_DUE_AT_SWITCH(switch,*) goncat <package.new>
end atomic;

Reasoning that package.new cannot have been at (any) switch, that it certainly must be on
the route to its bin (unless a pipe is missing) and that it is not currently located at a switch
allows us to simplify to the following:

demon CREATE_PACKAGE()
1rigger RANDOM()
response

atomic
create package.new ||
package.new:DESTINATION = 3 bin and
package.new:LOCATED_AT = the source;
3 Joop (switch || ‘
MEMO_LOCATION_BIN(switch, package.new :DESTINATION))
do update packages_due of PACKAGES_DUE_AT_SWITCH(switch,$)
1o PACKAGES_DUE_AT_SWITCH(switch,*) concat <package.new>
end atomic:

R 1T N )

ERTEEEEN. | VBN

o v 5 v 1 1 SRR,

WS, § N

DENON . I Y NINE | WA EE | Tl

4
!
y
3
’
;
.
0
.
"
A
R
N



R Y T AT M T AT R T AT T T AT AT A N AT AT TR T T T AT A T R R T A T T T ATM TR A T TN S S A e S A e e S AT e
N

,,.-.‘.}

A
e
> PAGE 278 PACKAGE ROUTER DEVELOPMENT ;
ir . ]
v CREATE_PACKAGE is outside of our portion of the development, hence the introduced
(. code b, must be moved in.
> R
f«.; STEP 5.10: Puritylgop ... do ... in CREATE_PACKAGE
o .
4‘4,\ :
| Method PurifyDemon | ‘
\‘-' .‘
A Z
> Goal: Purity A|action in D|demon
!;:5: Action: 1) Remove L from D e
N [Remove unpure statement L from D.] t
?g | End Method !
o
A
> STEP 5.11: Remove :
9 ;
Y ’, loop (switch || MEMO_LOCATION_BIN(switch,
- package.new : DESTINATION) ) .
N do update packages_due 9f PACKAGES_DUE_AT_SWITCH(switch,$) X
o 10 PACKAGES_DUE_AT_SWITCH(switch,*) concat <package.new); ~
o"’
R from CREATE_PACKAGE B

et
* .I_.'.“

:.'; | Method RemovefromDemon | ‘
., Goal: Remove A|action from D|demon -
. Action: 1) Globalize A -
" 2) forall trigger-location|D2|demon, body-of(*, D). spec)
'3 , 40 Apply MOVE_STATEMENT TO_DEMON(A, D2) g
. [Find all demons that trigger from D and move the action A there.] -
“' | End Method ' I .
i ."{' ”
2 }\ {
NS
o STEP 5.12: Globalize 5
o 100p (switch || MEMO_LOCATION_BIN(switch, &
1 . package.new : DESTINATION))
s do update packages_due of PACKAGES_DUE_AT_SWITCH(switch,$)
:::; 10 PACKAGES_DUE_AT_SWITCH(switch,*) concat <package.new);
Q‘\'
M W
;.: R
M)

o

v
N
=
0
~ L)
A

................

LR ] e e e e . L S T Y . . L .« . .
e, \'\':\'-‘\"\'.'.' NN AT N Lt e e e A e, S e e e e e e T e P, T, e W, e,
b A A e Y S , . . sals

]

'3



_AD-A139 918 AUTOMATING THE TRANSFORMATIONAL DEVELOPHENT OF SOFTHRRE
YOLUME 2 APPENDICES(CU)> UNIVERSITY OF SOUTHER
CALIFORNIA MARINA DEL REY INFORMATION S. . S F FICKRS
UNCLASSIFIED MAR 83 ISI/RR-83-189 NSF-MCS79-18792

=




RN pNIC G B It I It A

R
I-.,\
:::\
i X
i }‘1
n W s
LS &
—— 22
Bl l 2.0
= .8
B2 e s
= lli=
3
!
MICROCOPY RESOLUTION TEST CHART b
NATIONAL BUREAV OF STANDARDS ~ 1963 - A
b
. Ve
P - . -Pp~

LR TR L DU
".' .b. .- u.. --..

A -r\-"fl‘}". NN



- \
NN
. C.5 Map PACKAGES_DUE_AT_SWITCH ' PAGE 270
&%
A j N
AN
N
N
it .
SO | Method GlobalizeAction |
N ‘.:.

S\: - Goal: Globalize A|action

“~ \

SRR N Fitter: a) component-of[A, X|atomic)

Action: 1) Unfold X

‘.:~ o)
DN ;: {You can't pull something out of an atomic; jitter.]
o | End Method I
S
O

|

e STEP 5.13: Unfold atomig ... end atomic
ey
::'-;‘ ':-
i
(od o | Method UnfoldAtomic I
9 i
11’3 Goal: Unfold A)stomic
33 v Action: 1) Show SEQUENTIAL-ORDERING (O | ordering. A)
j‘-" ':: 2) Show SUPERFLUOUS_ATOMIC(A)
- 3) Apply UNFOLD-ATOMIC(A, O)
. . [You can unfold an atomic H you can show that there exists some valid
:k‘-: - sequential ordering of the statements and that no demonic or inferencing
\pd processes will e effected.]

::; RN | End Method |

)

Y s
b ‘ [ e 78] » »
4 z:, We assume that the user verifies both conditions and the atomic is replaced with a
L SR ol
: ) scoping_block.
\ ~
ps 3

s = We must now find all places where the loop must be moved, i.e., all demons which trigger
S from the execution of CREATE_PACKAGE. The single location of interest is
Vot
Cari

[#

Y RELEASE_PACKAGE_INTO_NETWORK. After moving the maintenance code to that
demon's response, we have the following:

P

“

19!
o

2y

o«
e
rAEOA
-.S' (94
%
e
' &)
-
N
A
R
AR
v ¢
2
L §
oo
o
:.:: -
o - L I PR N N L L I * e 'aYata LI SN I i Ve W T W WAt AT et W et e T e
" N By N .V -,\‘ RACAL N WIIN \~'\ .\.;\v'\'.o"'-'\ ‘\.4\ - ‘\.\‘\‘ \.'\\\\.\ -' S .‘ . ;.3.\_:'1




PAGE 280 PACKAGE ROUTER DEVELOPMENT - ]

demon RELEASE_PACKAGE_INTO_NETWORK (package.new) X
jrigger package.new:LOCATED_AT = the source :
r[esponse

. :’. .

P

loop (switch| | MEMO_LOCATION_BIN(switch,package.new : DESTINATION) )
do update packages_due of PACKAGES_DUE_AT_SWITCH(switch,$)
1o PACKAGES_DUE_AT_SWITCH(switch,®) concat <package.new>;
if LAST_PACKAGE_DESTINATION(®*) # package.new:DESTINATION -
ihen invoke WAIT[]:
update /ast_destination jn LAST_PACKAGE_DESTINATION(S)
10 package.new : DESTINATION
up_d_ug :LOCATED_AT of package.new i
1o (the source) :SOURCE_OUTLET
end:

| A

274 6

i
LN

o aga, A

We now have taken care of CREATE_PACKAGE, i.e, the initial increment of the sequences. g
We now must add code to decrement the sequences in appropriate cases. ‘

The first step would be to  maintain the  sequence  in -
RELEASE_PACKAGE_INTO_NETWORK: the u.oate of the packages location to the )
source’s outlet is a relevant change. However, since there is only one outiet pipe from the e |
source, we can show that the maintenance code is unnecessary. The actual steps will be .
similar to the simplification of the maintenance code in CREATE_PACKAGE, and will be
omitted here.
“
A
We will next look at the MOVE_PACKAGE demon since it updates the location of a package, v
and hence potentially can cause it to become misrouted or located at a switch. ;
™
demon MOVE_PACKAGE(package) A
trigger 3 /ocation.next || MOVEMENT CONNECTION(package LOCATED_AT,
location. nexr) -
response o
update :LOCATED_AT of package .
10 MOVEMENT_CONNECTION(package :LOCATED_AT,*); .
o

P |

After ingerting the necessary code P, to remove packages, we have:




- S e W
e LA™ N

h‘-.-.

Pt i A

s

S ety

FPEPOEL

o ait Aty 403

s A AL A

PN

.-

(D
ot

[

g -4

7,
»re

P
e Y

P Rl b SRl S8 TR Y PaACR AT TR T TS T T TR TR TRIETR A I A e ,J,'J_':i_',‘_'."_'o'_')_'f_'f‘}

C.5 Map PACKAGES_DUE_AT_SWITCH PAGE 281 ]
|

demon MOVE_PACKAGE(package)
trigger 3 location.next || MOVEMENT_CONNECTION (package :LOCATED AT,
location.next)

response ‘ b
atomig
update :LOCATED_AT of package i
10 MOVEMENT_CONNECTION (package :LOCATED_AT,®);

" Joop switch ||
~(MEMO_LOCATION_BIN(switch package:DESTINATION)

and
~(MOVEMENT_CONNECTION (package : LOCATED_AT,.®) = switch)
asef everbefore)

and
(MEMO_LOCATION_BIN(MOVEMENT_CONNECTION(
package :LOCATED_AT,® ) .

package : DESTINATION)
and
~3 switch.2 ||
(MOVEMENT_CONNECTION (package : LOCATED_AT,*) =
switch.2

and
~MEMO_LOCATION_BIN(switch.2 : SWITCH_SETTING ,
package : DESTINATION)) ) ))
do update packages_due of PACKAGES_DUE_AT_SWITCH(switch,$)
10 PACKAGES_DUE_AT_SWITCH(switch,*) minus <package>

end atomic;

Our only worry is if 8 package moves into a switch; if it moves to any other type of location, it
cannot effect our sequence. When it moves into a switch, we must remove it from that switch
sequence and possibly others if the switch is set wrong (because of bunching). Using a
number of simplification steps~(omitted here) we arrive at the following:




PAGE 282 PACKAGE ROUTER DEVELOPMENT

demon MOVE_PACKAGE (package)
trigger 3 location.next || MOVEMENT_CONNECTION(package :LOCATED_AT,
location.next)
response
atomic
update :LOCATED_AT of package
10 MOVEMENT_CONNECTION(package : LOCATED_AT,®);
4 it
1

3 switch.current ||
(MOVEMENT_CONNECTION (package : LOCATED_AT,®) =
switch.current

and
MEMO_LOCATION_BIN(switch.current, package:DESTINATION))

if MEMO_LOCATION_BIN(switch.current : SWITCH_SETTING ,
package : DESTINATION)
ilhen

update packages_due of PACKAGES_DUE_AT_SWITCH (switch.current,$)
1o PACKAGES_DUE_AT_SWITCH(switch.current,®) minys package
» alse
: loop (switch| |MEMO_LOCATION_BIN( switch,package : DESTINATION))
do update packages_duve of PACKAGES_DUE_AT_SWITCH(switch,$)
10 PACKAGES_DUE_AT_SWITCH(switch,*) minus package;
end atomig:
end

To paraphrase, b, if a package is moved into a switch and that switch is on the route to the
package’s destination then: b, if the switch is set right then b, remove the package from the
sequence due at the switch, eise b, if the switch is set wrong then b remove the package
from all switches along the package's destination route, including the current one.

STEP 5.14: Purityjf ... then ... in MOVE_PACKAGE

MOVE_PACKAGE is outside of our portion of the development, hence the introduced code
must be moved in.

P,

| 3

v

wh

&L,

ol

v*
s

4

5 Sy

L

". l". 11'

.
(i

" \.'_‘-'




?‘.4‘ kb A SR e a1 g, G R PRl et I e & FRA R T Bk A Al RAL N Y O R A

C.5 Map PACKAGES_DUE_AT_SWITCH PAGE 283

| Method PurifyDemon |

“
3 ¥ Goal: Purify A)ection in D|demon
; w Action: 1) Remove L from D
2T
: 2 ' [Remove unpure statement L from D.]

| End Method l

VRN
§
N STEP 5.15: Remove », i ... then ... rom MOVE_PACKAGE
T

‘LY

| Method RemoveF romDemon ) i

Goal: Remove Alsction from D|demon
Action: 1) Gilobalize A

WL PP
3

-

« 2) forall trigger-location{D2|demon. body-of[*. D], spec]
4
P 60 Apply MOVE_STATEMENT_TO_DEMON(A, D2)
e
Y] Fal
o [Find all demons that trigger from D and move the action A there.]
.‘

| End Method |

X
£ 1
7 ]

STEP 5.16: Globalize », if ... then ...

2

| Method GlobalizeAction |

Goal: Giobalize A|sction
Filter: a) component-of[A, X|atomic]
Action: 1) Unfold X

T A
?

I | LA

{You cant pull something out of an atomic; jitter.)
| End Method ' |

VT g ufals

K
&~

STEP 5.17: unfold gtomic ... end atomic

LA
&,

edd o M

- & afale L“‘ '-'-
L

& a ASERAr 5. 6 0. _° £ 0 AWRA L %A’ ‘.. RENA_ 4 2 & ¢ 5 A 5.

.I“J‘

."_"";J',"‘ ;-'.;-.;c ‘;(..4 N N ‘.-:"q'..d:.' '.‘1'.:' o '.: . .‘.' X 'b'.$'\'.'~ ‘:-.'.- . '.\':. .';.‘" \"\!-.' ..-:\»'.‘-' .-l\':.--' o0 '..-"Q-xv'\-'\xg‘\j



b LD XTI I Iy R I

PAGE 284 PACKAGE ROUTER DEVELOPMENT

| Method UnfoldAtomic |

Goal: Unfoid A|astomic

Action: 1) Show BSEQUENTIAL-ORDERING (O |ordering, A)
2) Show SUPERFLUOUS_ATOMIC(A)
3) Apply uneoLD-aTOMIC(A, 0)

[You can unfoid an atomic H you can ghow that there exists some valid
sequential ordering of the statements and that no demonic or inferencing
processes will be effected.]

| End Method |

We rely on the user to verify the two conditions. The actual unfolding uses the following
transformation:

atomic
update X:a to v;
<{expression using v>
end atomic

n 1

=

begin
update X:a to v;
<expression using X:&>

E

™~ N NS
A

W N e Y AL T L N N S I Y NS TS A . et N
R R W A A T R A\ NN N W A

1

LI
-t

v

a_ e
v s
LY

i<

RS

-
"l

. '-ﬂ'

Bt-.

'R
O]

L1 g




el Ve

]
o

RO WO

§ iloligl)

A
atate’nlatlt

YaYEXX

LA b

Xraz ALA

»

¢ a%25. %%

4 B phcai, e Ll il AL At W e el D N . At a e Vel Dt AR e A AN

C.5 Map PACKAGES_DUE_AT_SWITCH PAGE 285

demon MOVE_PACKAGE(package)

!.': trigger 3 Jocation.next || MOVEMENT_CONNECTION (package :LOCATED_AT,
s location.next)
response
'._\. . mj-ﬂ
A update :LOCATED_AT of package
o ~ 10 MOVEMENT_CONNECTION(package :LOCATED_AT,®):
. if
;: : 3 switch.current | package:LOCATED_AT = switch.current
e and
MEMO_LOCATION_BIN( switch.current, package:DESTINATION)
s ihen
u if MEMO_LOCATION_BIN(switch.current: SWITCH_SETTING ,
package : DESTINATION)
. lhen
3 update packages_due gf PACKAGES_DUE_AT_SWITCH(switch.current,$)
: 10 PACKAGES_DUE_AT_SWITCH(switch.current,*) minus package
alse
; loop (switch| |MEMO_LOCATION_BIN(switch ,package : DESTINATION) )
! do update packages_due gf PACKAGES_DUE_AT_SWITCH(switch,$)
10 PACKAGES_DUE_AT_SWITCH(switch,®) minus package:
» end;
S
hS!
(S|
’ The maintenance code is now ready to be moved out of MOVE_PACKAGE. We must find all
demons which trigger on the update of a package's location and move the unpure code to
-
';:-} each. There are four demons to consider:
DMISROUTED_PACKAGE_REACHED_BIN
A
> D SET_SWITCH
X D PACKAGE_ENTERING_SENSOR
(%=
S
OPACKAGE_LEAVING_SENSOR
_‘-
st .
. We will work on MISROUTED_PACKAGE_REACHED_BIN first.
Y
q
"
:‘E.
:
=

A PGPS PRGN AU SRR S AT AL N R AT AT A I BT A S A A S AT TENTUR IS A SR T
i - . e » . R 3 A p y .

NN e
VLA PO g

N S
e



PAGE 288 PACKAGE ROUTER DEVELOPMENT

demon MISROUTED_PACKAGE_REACHED_BIN(package, bin.reached, bin.intended)
irigger package:LOCATED_AT = bin.reached
and

package : DESTINATION = bin.intended®?

jnvoke MISROUTED_ARRIVAL(bin.reached, bin.intended)

After distributing the maintenance of PACKAGES_DUE_AT_SWITCH », into the response of
MISROUTED_PACKAGE_REACHED_BIN, we have the following:

demon MISROUTED_PACKAGE_REACHED_BIN(package, bin.reached, bin-intended)
irigger package:LOCATED_AT = bin.reached

and
package : DESTINATION = bin.intended
response
begin
’, if

3 switch.current | package:LOCATED_AT = switch.current
and
MEMO_LOCATION_BIN(switch.current, package:DESTINATION)

if MEMO_LOCATION_BIN(switch.current : SWITCH_SETTING ,
package : DESTINATION)
Lihen
update packages_due of PACKAGES_DUE_AT_SWITCH (switch.current,$)
10 PACKAGES_DUE_AT_SWITCH(switch.current,*) minus package
selse .
loop (switch| |MEMO_LOCATION_BIN(switch,package : DESTINATION))
do update packages_due of PACKAGES_DUE_AT_SWITCH(switch,$)
10 PACKAGES_DUE_AT_SWITCH(switch,*) minus package;
jnvoke MISROUTED_ARRIVAL (bin.reached, bin.intended)

and

Since we know that package is located at a bin when this demon triggers, we can simplify
away ail of the newly added code since it relies on package being located at a switch.

Next, we will look at SET_SWITCH as we have developed it so far.

“thdounmdiowhumoﬂmtouboundmmmnﬁabbs(mncﬁons).

LY

s
.i..

Al

DA TN
()

‘y
F)

»

re, f.-'l

)

BT~

- o " ~ KIS L. B T TR RS s, ~
T e T N R i N T S TR O S SRR A S A PR TP T T S Y DA ST PP S




el
’!
.
‘.a

MA

C.5 Map PACKAGES_DUE_AT_SWITCH PAGE 287

demon SET_SWITCH (switch)

irigger 3 package || :

package = first(PACKAGES_DUE_AT_SWITCH(® switch))
and

SWITCH_IS_EMPTY (switch)

rgesponse

begin
update :SWITCH_SETTING of switch 1o
(pipe || pipe = switch:SWITCH_OUTLET

and
MEMO_LOCATION_BIN(pipe package : DESTINATION))
end

Knowing that the package cannot be located at a switch when the maintenance code is
executed allows us to employ a similar simplification process as on
MISROUTED_PACKAGE_REACHED_BIN in getting rid of all of the introduced maintenance
code (the actual steps are omitted here.).

The next location of interest is PACKAGE_LEAVING_SENSOR.

demon PACKAGE_LEAVING_SENSOR(package, sensor)
trigger ~package:LOCATED_AT = sensor
response null:

After unfolding the maintenance code, we have

[
.

5
:
]
]
:
:




PAGE 288 PACKAGE ROUTER DEVELOPMENT -
.'\-'_
o
demon PACKAGE_LEAVING_SENSOR(package, sensor) .
trigger ~package:LOCATED_AT = sensor -
response
D1 if
3 switch.current | package:LOCATED_AT = switch.current o
and o
MEMO_LOCATION_BIN(switch.current, package:DESTINATION) -
if MEMO_LOCATION_BIN(switch.current : SWITCH_SETTING , %
package : DESTINATION)
ithen
update packages_due of PACKAGES_DUE_AT_SWITCH(switch.current,$) hd
1o PACKAGES_DUE_AT_SWITCH(switch.current,®) minus package
glse
loop (switch| | MEMO_LOCATION_BIN(switch,package :DESTINATION)) -
do update packages_due 9f PACKAGES_DUE_AT_SWITCH(switch,$) I~
10 PACKAGES_DUE_AT_SWITCH(switch,*) minus package: -
B
We will return to simplity b, after a few more steps. -
We have one location remaining to look at, PACKAGE_ENTERING_SENSOR. -
demon PACKAGE_ENTERING_SENSOR (package, sensor) m
irigger package:LOCATED«AT = sensor
response null: 4
After unfolding the maintenance code, we have
w3
!
o B
R
O
s
= |
P
j
A
N
A TR R R R P N ORI o N A N e R AN A AT OV NS S IVE UGN




- C.5 Map PACKAGES_DUE_AT_SWITCH PAGE 289

a e

. R :
) :
demon PACKAGE_ENTERING_SENSOR(package, sensor) )
;3 trigger package:LOCATED«AT = sensor . "
~ response - ',
’, if .
N 3 switch.current | package:LOCATED_AT = switch.current N
> and 3
~ MEMO_LOCATION_BIN(switch.current, package:DESTINATION) i
- if MEMO_LOCATION_BIN(switch.current: SWITCH_SETTING, -
e package : DESTINATION ) P
. Lthen '
ypdate packages_due of PACKAGES_DUE_AT_SWITCH(switch.current,$)
] 10 PACKAGES_DUE_AT_SWITCH(switch.current,®*) minus package
else
©os loop (switch| | MEMO_LOCATION_BIN(switch,package :DESTINATION))
. }1' gdo update packages_due of PACKAGES_DUE_AT_SWITCH(switch,§)

* 10 PACKAGES_DUE_AT_SWITCH (switch,*) minus package;

': ; We have now completed the distribution of maintenance code for
PACKAGES~DUE«AT+SWITCH. However, there are several more optimizations we can
; . perform. As a preliminary step, we wili break out the supertype sensor. In the initial
~ specification, the type sensor allowed several actions to be localized, and hence improved
o understanding. However, as a development progresses, abstractions such as sensor tend to
get in the way and certain optimizations are made easier if they are removed. Such is the case
e here. The removal of sensor from several demons will allow us to further optimize the
Q maintenance code introduced earlier. We will work on PACKAGE_LEAVING_SENSOR first.
‘5‘: STEP 5,18(user): Casify PACKAGE_LEAVING_SENSOR

| Method CasifySuperTrigger [

ool Goal: Casify D|demon
B Fitter: a) trigger-of[T, D}

b) component-of[S|supertype, T}
Action: 1) Apply CASIFY_DEMON_SUPERTYPE(T, S)

[Spawn a separate demon for every subtype X of S.]
| End Method |

L4 .‘.-'.J.*Jm A A B u'l
F 3

)
.
e P oD ottt SR Ak s o a

..‘-. e P e, Y o \-.\ "o LW \--\.‘ -*\ St e A, Ty
mt‘m{;‘&\; e T T e T T Y



bt
Nt

: A\ ‘: 'l‘ ‘l‘.“

. ‘-‘ L .' ."'.'\." ! ‘:“.' '4

[N o

. &5

'-t'fn':'

o
a4

ARSI P

e T P P A SNSRI \....- SR AR Ly N, N AT A A LN

PAGE 290 PACKAGE ROUTER DEVELOPMENT

We gain two new demons, only the first useful in the current environment®3.;

demon PACKAGE_LEAVING_SWITCH (package, switch)
irigger ~package:LOCATED_AT = switch
response
" if
3 switch.current | package :LOCATED_AT = switch.current

and ...;

demon PACKAGE_LEAVING_BIN(package, bin)
irigger ~package:LOCATED_AT = bin
response
1 if
3 switch.current | package:LOCATED_AT = switch.current

»

Since the PACKAGE_LEAVING_SWITCH demon relies on a package pot residing at a
switch, the introduced code can be simplified away. Although the second demon,
PACKAGE_LEAVING_BIN, is never triggered, we can expect that further elaboration of the
spec will change this. In that case, we can simplity away the code by showing that the
package's location after leaving a bin can never be a switch.

We next look at specializing sensor in PACKAGE_ENTERING_SENSOR.

STEP 5.19(user): Casity PACKAGE_ENTERING_SENSOR

| Method CasifySuperTrigger |

Goal: Casify D|demon
Filter: a) trigger-of{T, D)

b) component-of[S|supertype, T]
Action: 1) Apply CASIFY_DEMON_SUPERTYPE(T, S)

[Spawn a separate demon for every subtype X of S.]
| End Method |

eain the spec, a package currently never leaves a bin. Naturally, further eiaboration of the spec wili likely address

issues of infinite capacity bins and what happens to packages after they reach a bin.

»

i

;_‘\. N N




i - e e Ty - T W T L oY - K Rl I R R I T A Y ¥ L A A LA I B . .v.'.-,v:r-.‘q
o d
: | 1
= b C.5 Map PACKAGES_DUE_AT_SWITCH PAGE 291 :
L !
1 ;
P o |
N . q{
L4 P'.' q
3' £ We gain two new demons. o
, b
- s
YRIRN !
: demon PACKAGE_ENTERING_SWITCH(package, switch) :i
N trigger package:LOCATED_AT = switch {
S if
g 3 switch.current | package:LOCATED_AT = switc “.current
SR and 1
SR MEMO_LOCATION_BIN(switch.current, package :DESTINATION)
-~ n
oo if MEMO_LOCATION_BIN(switch.current: SWITCH_SETTING ,
| package : DESTINATION)
then
D oas update packages_odue of PACKAGES_DUE_AT_SWITCH((switch.current,$)
3 10 PACKAGES_DUE_AT_SWITCH(switch.current,*) minus package
* else
Joop (switch| |MEMO_LOCATION_BIN(switch,package : DESTINATION))
'! do uypdate packages_due of PACKAGES_DUE_AT_SWITCH(switch,$)
10 PACKAGES_DUE_AT_SWITCH(switch,®) minus package;
A demon PACKAGE_ENTERING_BIN(package, bin)
\ e trigger package:LOCATED_AT = bin
SO response
)1 if
] 3 switch.current | package:LOCATED_AT = switch.current
4
J
¢« "
"‘ "
I A
We can get rid of the maintenance code from PACKAGE_ENTERING_BIN by showing that a
® .
= ~ package cannot be both at a bin and a switch. )
Y,
s : !
Y3 :3 Finally, we can do some minor simplificationto PACKAGE_ENTERING_SWITCH. !
X 4
- '
s ]
Q' b
N & 1
5 i
Y ]
l': ' [
y )
= I
g W
o a
¢ o
v
L 4
v
I'..
N A B T W ST S TN A M e A R N e e e e N e e e ]




RGP SN R SR . -t.‘- ,.-'-'l}_‘:.?:..‘ st

-.:.\ . H:)'-J:'--:'T
i .
¥ PAGE 292 PACKAGE ROUTER DEVELOPMENT 5 |
NN
N
X
o
demon PACKAGE_ENTERING_SWITCH(package, switch)
irigger package:LOCATED_AT = switch
response
if )
MEMO_LOCATION_BIN(switch, package :DESTINATION) .
then -
3if MEMO_LOCATION_BIN(switch:SWITCH_SETTING,
package : DESTINATION) s
;hgn \:
update packages_due of PACKAGES_DUE_AT_SWITCH (switch,$) *
10 PACKAGES_DUE_AT_SWITCH(switch.*) minus package
glse =
Joop (switch.1 || MEMO_LOCATION_BIN(switch.1, "
package : DESTINATION) )
do update packages_due of PACKAGES_DUE_AT_SWITCH(switch.1,$) -
1o PACKAGES_DUE_AT_SWITCH(switch.1,*) minus package: he)
e
This completes the maintenance of PACKAGES_DUE_AT_SWITCH. We have introduced
code in RELEASE_PACKAGE_INTO_NETWORK to incrementally add packages to
sequences and code in PACKAGE_ENTERING_SWITCH to do the corresponding removal.
=
™)
3 |
-
R T
%
*

L TR SR
ENCP UL S L




C.5 Map PACKAGES_DUE_AT_SWITCH PAGE 293

C.6. Map Demons
At this point in the development, there are a number of demons defined in our portion of the
specification:
1. RELEASE_PACKAGE_INTO_NETWORK
2. PACKAGE_ENTERING_SWITCH
3. PACKAGE_ENTERING_BIN
4, PACKAGE_LEAVING_SWITCH
5. PACKAGE_LEAVING_BIN
6. INIT_MEMO
7. SET_SWITCH
8. MISROUTED_PACKAGE_REACHED_BIN

There is nothing we can do with the first six since each triggers on an external event (e.g.,
packages entering the router, packages tripping sensors). However, the remaining two,
SET_SWITCH and MISROUTED_PACKAGE_REACHED_BIN, need to be mapped. We will
look first at SET_SWITCH.

STEP 6.1(user): Map SET_SWITCH

demon SET_SWITCH(switch)
irigger 3 package ||
>

. package = first(PACKAGES_DUE_AT_SWITCH(® switch))
and
, SWITCH_IS_EMPTY (switch)
response :
begin

update :SWITCH_SETTING of switch 10
(pipe || pipe = switch:SWITCH_OUTLET and
MEMO_LOCATION_BIN(pipe package : DESTINATION))
end .




P ". -.‘
e
S’

PAGE 294 PACKAGE ROUTER DEVELOPMENT

72 IR

’l
‘.

| Method CasifyDemon |

.\b
>
- Goal: Map D|demon
e Action: 1) Casiy D
.; 2) forall case-of([X, D] do Map X

[Try mapping by case analysis.]
| End Method |

STEP 6.2: Casify SET_SWITCH

SET_SWITCH may trigger on either of two events: »_ a package becoming the first in some
sequence due at a switch; b, a switch becoming empty. We will split the current
SET_SWITCH demon into separate ones to trigger on each individually. Note that the
selection of the trigger splitting method here requires a fair amount of insight. One has to
notice that there are two components of the SET_SWITCH trigger, one that is under direct
mechanical observation (a switch becoming empty) and one that is not (a package becoming
the first of an internal sequence). The former may be handled by using existing sensing
information while the latter will need to be maintained explicitly; two different deve_lopment
strategies will be required.

| Method CasifyConjunctiveTrigger |

Goal: Casity Djdemon
Fitter: a) gist-type-of{T|trigger-of[D)],
conjunction)
Action: 1) Show wowviouaL_STarT(D)
2) Apply SPLIT_CONJUNCTIVE_TRIGGER(D, T)

[t may be easier to break & demon up into special cases and then trying to
map. Make sure that no new triggerings are created.]

| End Method o

Two new demons are spawned:

s
L
e

ANe

4

=l

._..,
r‘v:v

BY-

A

Al

e e 8 & A ASGEME A aa A_A R _&

“»

et

!
‘l




)
e
- Ve

.'Q ;, ’
St

]
. ~
g - )

C.6 Map Demons PAGE 205

demon SET_SWITCH_WHEN_BUBBLE_PACKAGE (switch)
trigger 3 package || :
package = first(PACKAGES_DUE_AT_SWITCH(® switch))
response

reguire SWITCH_IS_EMPTY (switch) at ThisEvent)
upgdate :SWITCH_SETTING pf switch Lo
(pipe || pipe = switch:SWITCK_OUTLET and
MEMO_LOCATION_BIN(pipe package :DESTINATION))
end

demon SET_SWITCH_ON_EXIT (switch)
trigger SWITCH_IS_EMPTY (switch)
response
begin
Lequire (3 package ||
package = first(PACKAGES_DUE_AT_SWITCH(* switch))
at ThisEvent)
update :SWITCH_SETTING of switch 10

e (pipe || pipe = switch:SWITCH_OUTLET and
Fo MEMO_LOCATION_BIN(pipe package:DESTINATION))
Y end
AU
B,
M STEP 6.3: Map SET_SWITCH_WHEN_BUBBLE_PACKAGE
'S;'..‘, ;\
YRR,
4._-.' R}
. | Method UnfoldDemon I
X f‘
:: - Goal: Map D|demon
;§~ ’ Action: 1) forall trigger-location[D, L, spec]
- do Unfoid D at L
—=
- {To Map a demon, unfold It where appropriate.]
- :_‘ | End Method |
SO
SN
Ca!
A ~
'E We must locate each place that the trigger may change, ie., that
$\2 PACKAGES_DUE_AT_SWITCH is changed. There are two such locations:
SN .
\ “' 1.the sequence is incremented ’, when a package enters the network
Y (RELEASE_PACKAGE_INTO_NETWORK)
, ';:—'. 2.the sequence is decremented when a package enters a switch
o (PACKAGE_ENTERING_SWITCH).
T
;::j j: We will look at the former first:
A “
I.s! L4
-l
x Al
X -
T R T A R R A R R N NN A I SO 15 GO ora W G s Nt X (g R G St N O N WL




o

PAGE 298 PACKAGE ROUTER DEVELOPMENT | 3
~ .
N 4
“~
N T
’ demon RELEASE_PACKAGE_INTO_NETWORK (package.new) - !
\ irigger package.new:LOCATED_AT = the source ) - 1
X response =
N 1000 (switch||MEMO_LOCATION_BIN (switch ,package.new : DESTINATION)) G
h ’, do update packages_due of PACKAGES_DUE_AT_SWITCH (switch,$) =
1o PACKAGES_DUE_AT_SWITCH(switch,*) concat <package.new);
¢ if LAST_PACKAGE_DESTINATION(®*) * package.new:DESTINATION .
J thep invoke WAIT[]: -
g update Jast_cestination in LAST_PACKAGE_DESTINATION(S) )
1o package.new :DESTINATION;
update :LOCATED_AT of package.new -
10 (the source):SOURCE_OUTLET L
“ end;
< o
”
r'd
[+
7 .
STEP 6.4: Unfold SET_SWITCH_WHEN_BUBBLE_PACKAGE at N
-
3 ’ update packages_due of PACKAGES_DUE_AT_SWITCH(switch, $)
; 10 PACKAGES_DUE_AT_SWITCH(switch, ®) concat <package.new>; N
u -
e
[ ]
| Method ScatterComputationOfDemon [ ':
{
Goal: Unfold D|demon at L -
Fiter: a) trigger-location[D, L. $) -
Action: 1) Apply UNFOLD_DEMON_CODE(D L)
2) Purity L
-: {To unfoic 8 demon D at a trigger point, stick in code to compute it and make :"
A sure L Is within implementable portion of spec.]
N | End Method I b
> o
-
. After adding the maintenance code »,, we have
K
el 3
24
" T
Y ~ :ﬁ
4 -
o 3
=
] -:. )
: 3
o ~': :.:
! Sed
-. .-!
4
e

o

A A ] A W e e P W A e TN -.‘--.‘-'4.'.'..'.. '-'--‘ .v“--'_
SN G T S G N O, C A P IR PR



X P

neld

PR

(1R

“a

¢ L2

1§83

C.6 Map Demons PAGE 297

demon RELEASE_PACKAGE_INTO_NETWORK (package.new)
trigger package.new:LOCATED_AT = the source
response

loop (switch| | MEMO_LOCATION_BIN(switch,package.new :DESTINATION) )

do
begin
» update packages_due of PACKAGES_DUE_AT_SWITCH(switch,$)
10 PACKAGES_DUE_AT_SWITCH(switch,®) concat <package.new);
if 3 package.? ||
~({(package.T = first(PACKAGES_DUE_AT_SWITCH(switch,*))
asof last update of PACKAGES_DUE_AT_SWITCH(switch,$))

2

package.1 = first(PACKAGES_DUE_AT_SWITCH(switch,*))
then
n
require SWITCH_IS_EMPTY (switch)
upgate :SWITCH _SETTING of switch 10
(pipe || pipe = switch:SWITCH_OUTLET and
MEMO_LOCATION_BIN(pipe package.?:DESTINATION))
end
end
if LAST_PACKAGE_DESTINATION(®) ® package.new:DESTINATION
then invoke WAIT[];
update /ast_destination in LAST_PACKAGE_DESTINATION(S)
10 package.new:DESTINATION
update :LOCATED_AT of package.new
1o (the source):SOURCE_OUTLET
end;

in general, the unfolding of a demon with body B and trigger T at event E takes the following

form:

<event E> =) <event E>
if ~T asof € ang T (now) then B

in our case, E is the update of PACKAGES_DUE_AT_SWITCH and T is the trigger of
SET_SWITCH_WHEN_BUBBLE_PACKAGE.

Some fairly sophisticated reasoning is needed to simplify further:

1. We know that this is the sole location where packages are added to sequences,
and hence package.new was not part of the sequence in the previous state.

2. Given the semantics of sequence appending, we can reason that the only way
that the first element of a sequence can change on an append is if the sequence
was initially smpty.

~-1EERE a2 a 4 s a

CR_e_v_e -

[ W

o




e
son PAGE 208 PACKAGE ROUTER DEVELOPMENT

We require the user to supply much of the above reasoning; the system carries out the
mundane portions (see example B, section E.14):

demon RELEASE_PACKAGE_INTO_NETWORK((package.new)
trigger package.new:LOCATED_AT = the source
LeSpONsSe

begin
loop (switch| | MEMO_LOCATION_BIN(switch,package.new : DESTINATION) )
do

begin
update packages_odue of PACKAGES_DUE_AT_SWITCH(switch,$)
10 PACKAGES_DUE_AT_SWITCH(switch,*) concat <package.new>;

it
package.new = first (PACKAGES_DUE_AT_SWITCH(switch,*))

and
SWITCH_IS_EMPTY (switch)

then
update :SWITCH_SETTING of switch 1o
(pipe || pipe = switch:SWITCH_OUTLET and
MEMO_LOCATION_BIN(pipe package.new :DESTINATION))

end
if LAST_PACKAGE_DESTINATION(®) # package.new :DESTINATION
ihen invoke WAIT[]:
update ‘ast_destination in LAST_PACKAGE_DESTINATION(S)
10 package.new : DESTINATION

update :LOCATED_AT of package.new
1o (ihe source):SOURCE_OUTLET
end:

We will look next at PACKAGE_ENTERING_SWITCH.

. R N N N I RS S PN S
s d, v WP . '.‘_'IA.-‘_'&'I.'O':fyf:f o W, e, ‘!.M-'_‘."A';‘\i f.-jﬁl L AR .."

v KL

.
/-‘

+HL




4

a0

>

LI ELRLYE ©

L v

Frd

vy

s

H
.

rAD

]

".

Fighfy

% |

.
V)

Ny

&r

% %N
LAC S

| 1)

L Ny

C.6 Map Demons PAGE 299

demon PACKAGE_ENTERING_SWITCH(package, switch)
trigger package:LOCATED_AT = swilch
response

MEMO_LOCATION_BIN(switch, package:DESTINATION)

if MEMO_LOCATION_BIN(switch:SWITCH_SETTING,
package : DESTINATION)
ihen
update packages_due of PACKAGES_DUE_AT_SWITCH(switch,$)
10 PACKAGES_DUE_AT_SWITCH(switch,*) minus package

else
loop (switch.1] | MEMO_LOCATION_BIN(switch.1,
package : DESTINATION) )
gdo update packages_due 9f PACKAGES_DUE_AT_SWITCH(switch.1,8)
1o PACKAGES_DUE_AT_SWITCH(switch.1,*) minus package;

Before preceding, we will factor the two updates of PACKAGES_DUE_AT_SWITCH acb, .},
into an procedure b, for the sake of conciseness.

STEP 6.5(user): Factor

update packages_due of PACKAGES_DUE_AT.SWITCH(#switch“. $)
1o PACKAGES_DUE_AT_SWITCH( #switch,*) minus #package
in PACKAGE_ENTERING_SWITCH

| Method FactorDBMaintenancelntoAction )

Goa!: Factor U|db-maintenance in L
Action: 1) Apply CREATE_PROCEDURE FROM_TEMPLATE(U A)
2) forall pattern-match[U, W, L]
00 Apply REPLACE_DBMAINTENACE WITH_ACTION(W A)

[{Create a new procedure A and then find all matches W in L and replace each
with a call to the new procedure A.]

| End Method |

“ln a factor template, #type.name signifies a formal parameter. The # will be removed in the procedure
definition.

ST SENTRE RN S LS



= PAGE 300 PACKAGE ROUTER DEVELOPMENT

g
'Jhl,.ll/ t

1 W]
th
: demon PACKAGE_ENTERING_SWITCH( package, switch) -
n trigger package:LOCATED_AT = switch ] : o
~ response .
AT™ |
K- MEMO_LOCATION_BIN(switch, package:DESTINATION) 3
o o
if MEMO_LOCATION_BIN( switch:SWITCH_SETTING,
N package : DESTINATION) .
< then o
» invoke TRIM_PACKAGES_DUE_AT_SWITCH (package, switch) .
28] Q.LS.Q. ;
”.‘-\ loop (switch.1| | MEMO_LOCATION_BIN(switch.1, 1
N package : DESTINATION)) 3
3 do invoke TRIM_PACKAGES_DUE_AT_SWITCH(package, switch.1) !
{';3 . “
':2 », procedure TRIM_PACKAGES_DUE_AT_SWITCH(package, switch) ‘
43 update packages due of PACKAGES_DUE_AT_SWITCH (switch,$) 3
) 1o PACKAGES_DUE_AT_SWITCH(switch,®) minus package; 5 f
*‘ i
S e ‘
N |
N :
N Now unfolding the maintenance code for SET_SWITCH_WHEN_BUBBLE_PACKAGE »
3
into the newly created procedure, we have e
3 N
> o
o
o
o -
7
&Y -’:
e
[ "]
2 >
2 o
2
e =
] “
- .




WOW S LW WL R w e . Calral A R Rt AR A SRR a R
‘ E C.6 Map Demons PAGE 301
. demon PACKAGE_ENTERING_SWITCH (package, switch)
" trigger package:LOCATED_AT = switch
: response
L. if
- MEMO_LOCATION_BIN(switch, package:DESTINATION)
N then
if MEMO_LOCATION_BIN(switch:SWITCH_SETTING,
NS, package : DESTINATION)
3 5 then jnvoke TRIM_PACKAGES_DUE_AT_SWITCH(package.
: switch.current)
. _";n m
3 . Joop (switch| | MEMO_LOCATION_BIN(switch,package : DESTINATION))
do invoke TRIM_PACKAGES_DUE_AT_SWITCH(package, switch);
.,
I~ X procedure TRIM_PACKAGES_DUE_AT_SWITCH(package, switch)
A begin
Soe update packages_due 9of PACKAGES_DUE_AT_SWITCH(switch,$)
! 10 PACKAGES_DUE_AT_SWITCH(switch,*) minus package:
= » if
Y ‘ 3 package.1 ||
VI ~((package.1 = first(PACKAGES_DUE_AT_SWITCH(switch,*))
IS mim last update of PACKAGES_DUE_AT_SWITCH(switch, $))
| N package.1 = first(PACKAGES_DUE_AT_SWITCH (switch,*))
; then

A
L]

reguire SWITCH_IS_EMPTY (switch)
update :SWITCH_SETTING of switch 1o
(pipe || pipe = switch:SWITCH_OUTLET and
MEMO_LOCATION_BIN(pipe, package.1:DESTINATION))
end

AL
sl

"upry
E

-
a

A7
1430

Note that the factoring was a mixed blessing. While it did allow us to unfold in a single place, it

Y \ prevents us from carrying out some further optimization: if the procedure is being called when
¢ the switch is set right, we can safely ignore the switch setting code (we can show that the

- switch is non-empty). To actually get rid of this unneeded case, we will eventually have to
> unfold the procedure back into the demon and simplify.

;o ‘

oo We can simplify the procedure further if we rely on the user to supply the following necessary
: . reasoning step: the only way for a new package to become the first of the sequence is by the

- ﬂ removal of the head of the sequence.

-

L P ST S
.‘-'. TAGACH - .“-... \q’\.‘ o e e

- ‘- - -
e T T e e S .
TR AU AP AP AL N



RN

228

ar->s

(3

191

R0 BN

PAGE 302 PACKAGE ROUTER DEVELOPMENT

procedure TRIM_PACKAGES_DUE_AT_SWITCH(package, switch)

if first(PACKAGES_DUE_AT_SWITCH(switch, ®) = package
lhen

begin
update packages_due of PACKAGES_DUE_AT_SWITCH(switch,$)

10 PACKAGES_DUE_AT_SWITCH(switch,*) minys package;

require SWITCH_IS_EMPTY (switch)
update :SWITCH_SETTING of switch 1o
(pipe || pipe = switch:SWITCH_OUTLET and
MEMO_LOCATION_BIN(pipe,
first (PACKAGES_DUE_AT_SWITCH(switch, *)
) : DESTINATION) )

end

end
glse
update packages_due of PACKAGES_DUE_AT_SWITCH (switch,$)
1o PACKAGES_DUE_AT_SWITCH(switch,®*) minys package;

This takes care of the SET_SWITCH_WHEN_BUBBLE_PACKAGE demon which deals with
the package sequence changing. We now must take care of setting a switch when it becomes
empty, an event captured by the SET_SWITCH_ON_EXIT demon.

demon SET_SWITCH_ON_EXIT (switch)
trigger SWITCH_IS_EMPTY (switch)
response

require (3 package ||
package = first(PACKAGES_DUE_AT_SWITCH(®* switch))
AL ThisEvent)
update :SWITCH_SETTING of switch to
(pipe || pipe = switch:SWITCH_OUTLET and
MEMO_LOCATION_BIN(pipe package:DESTINATION))
and

STEP 6.6: Map SET_SWITCH_ON_EXIT

Instead of unfolding this demon as we did with SET_SWITCH_WHEN_BUBBLE_PACKAGE,

El-

o )

~,

L
a2, a

18

v .
50
-’

%4

[l
[l
|
{
1
«



Al ’, .'

LI INIIWAS

A
s

5
I
A

At Ny

B
.

-

)

n ]
-

AR RN '-" ".n-m 4 88 0
3 4/

- AW

s

YO R G N S

...........

C.6 Map Demons

we will attempt to consolidate it with an already existing
PACKAGE_LEAVING_SWITCH.

........

PAGE 203

demon,

demon PACKAGE_LEAVING_SWITCH (package, switch)
b, Lirigger ~package:LOCATED_AT = swilch
response null:

demon SET_SWITCH_ON_EXIT(switch)
b, trigger SWITCH_IS_EMPTY (switch)
response

reqguire (3 package ||
package = first(PACKAGES_DUE_AT_SWITCH(® switch))
At ThisEvent)
update :SWITCH_SETTING of switch 1o
(pipe || pipe = switch:SWITCH_OUTLET and
MEMO_LOCATION_BIN(pipe package :DESTINATION))
end

’, relation SWITCH_IS_EMPTY (SWITCH)
definition not exists package || package:located_at = switch;

| Method MapByConsolidation

Goal: Map Djdemon

Filter: a) pattern-mstch[demon, D2, spec)
b) O = D2

Action: 1) Consolidate D-and D2

{To map D. find some other demon D2 and consolidate.]
| End Method

Naturally, the selection of the right demon to consolidate with is crucial.

STEP 6.7: Consolidate SET_SWITCH_ON_EXIT and PACKAGE_LEAVING_SWITCH

o

RN

- ....._.‘\

L I L IR R LI
SRR N AN N

U R R TR SR RGN L GO N
T -'\- \-‘ -'\(h « Yok o “c \u\ % -L -‘$\\
o »



-

P PP T T T T OV K e T TS T TS N T R R T A L T T T T e e
A
h L]
52 PAGE 304 PACKAGE ROUTER DEVELOPMENT a
|
e
Pl -
A ¥
o ¥
i”\‘
. | Method MergeDemons | —
i-." i
e Goal: Consolidate D1|demon and D2 |demon
}:C Action: 1) Equivalence trigger-of[D1] and ::
E‘-": trigger-of{D2) a
2) Equivalence var-declaration-of[D1] and
var-declaration-of([D2] -
3) Show MERGEABLE_DEMONS(D1, D2, 1|ordering) -
4) Apply pEmOn MERGE(D1, D2, 1)
[You can consolidate two demons H you can show that they have the same i
local variables, the same triggering pattern and that they meet certain
merging conditions.]
| End Method i t-..
STEP 6.8: Equivalence E
>, ;r'iggg r ~package:LOCATED_AT = switch v
’2 trigger SWITCH_IS_EMPTY (switch) :,;
.
As in step 2.3, we will anchor the first trigger and try to reformulate the second. "
-\'
| Method Anchorl |
Goal: Equivelence X and Y R
Action: 1) Reformulate Y as X (}
-
[Try changing the second construct into something that matches the first.]
-
| End Method | N
-
STEP 6.9: Reformulate SWITCH_IS_EMPTY (switch) as ]
~package : LOCATED_AT = swilch
-
cl
o
|
S
‘
{
~ |
N
N LU
o
SN
{

LA I N ) D R I N AT N e e '_'J'_'."'
B T A A T P U P Y " DY AT LR i WA Vi iy



" d . v .-V, o fa = R v - " B -
Ol ) TN A AR LIS Sl Pl A AR Pl R A R T A AR A S L L A T A R « ¥ om .

C.6 Map Demons PAGE 305

-

| Method ReformulateDerivedRelation |

Goal: Reformulate RR|relation-reference as X
Fitter: a) gist-type-ofiname-of{R. RR],

w derived-relation)

Action: 1) Unfolod R at RR

A s
o]
A

Toow,
b .M [Try reformulating the body as X.)
- | End Method [
>
q STEP 6.10: Unfoid », SWITCH_IS_EMPTY at reference b,
(]
%
o »
L
i | Method ScatterComputationOfDerivedRelation |
. Goal: Unfold DR|derived-relation at L
:'_ .. Filter: a) reference-location[DR, L, §]
D Action: 1) Apply UNFOLD_COMPUTATION_CODE(DR L)
» 2) Purify L
- [To unloid a derived relation DR at a reference point, stick in code to compute
' - it and make sure L is within impiementable portion of spec.]
- | End Method I
z
' . The unfolding of SWITCH_IS_EMPTY still does not achieve the reformulation goal in step
Ry 6.9, hence it is reposted:
- ,~ STEP 6.11(reposted). Retormulate
trigger ~3 package.0 || package.0:LOCATED AT = switch
MY as trigger ~package:LOCATED_AT = switch
N

Our goal here is to produce a more general trigger for SWITCH«IS«-EMPTY than its current

one. That is, we want to trigger whenever a package is no longer located at a switch no matter

if a new package has moved into the switch or not. The current trigger requires that a
package leave a switch and that no other switch moves in immediately behind it.

a%svavavs o A
MY

FXPp

L1V e A taa AL A
.
»

- - ..... RS ..:...- REATRLY l'.:.\-~\--\:.\u...-:.\:.x- L)

-, . LS. L] L I DT R U I o T S L A
) % AL L A LR n e et
N\~ NG o

N
Lo Kg'U

s 3 v a e =

Y 0 B Y

R LRI



N PAGE 306 PACKAGE ROUTER DEVELOPMENT
4
| Method ReformulateExistentiaiTrigger | -

:j Goal: Reformulete T|irigaer ~3 o||R(0) as R(o') "

:_ Action: 1) Show TRIGGER_GENERALIZABLE( T ) .

5 2) Apply GENERALIZE_TRIGGER(T) Ve
N -

[You can reformulate an existential trigger into a universally quantified one

K under certain conditions.] -,

% | End Method i o
o

3 .

We assume the user verifies that the trigger is generalizable. After application of L _

R GENERALIZE_TRIGGER, we have .

N 23
N demon PACKAGE_LEAVING_SWITCH (package, switch) i
X b, irigger ~package:LOCATED_AT = switch -

% response null: .

o I’$

3 demon SET_SWITCH_ON_EXIT(package.gen, switch) .

- ’z trigger ~package.gen:LOCATED_AT = switch -

P if -3 package||package:LOCATED_AT = swich “

n then begin
- require (3 package || -
> package = first(PACKAGES_DUE_AT_SWITCH(®* switch)) T
: At ThisEvent) N

~update :SWITCH_SETTING of switch 10 N

o (pipe || pipe = switch:SWITCH_OUTLET and N
" MEMO_LOCATION_BIN(pipe package:DESTINATION)) “ .

end "

2 -

o

- STEP 6.12: Equivalence (package, switch) and (package.gen, switch) -

: e
. The same renaming strategy (with the exception of using Anchor2 in place of Anchor1) used .

° in step 2.10 will be used; we omit the steps here. a0
: RN
. After consolidation, we have o

LB .

E ~

] rl
RN
™
o e A et AT e R DRI ~

CorGd L % ROy
R 7 I A e Ca e



o T p A e BRI SR S ORI e AR AT A RO Calt g e A PR AN D Pl A RO i AN A R At )

f1¢
s . C.6 Map Demons PAGE 307
R
Y - demon PACKAGE_LEAVING_SWITCH(package.gen, switch)
, ;.: trigger ~package.gen:LOCATED_AT = switch
AN response
- if ~3 package||package :LOCATED_AT = switch
SRR then begin

o require (3 package ||

. package = first (PACKAGES_DUE_AT_SWITCH(® switch))

.- at ThisEvent)
o update :SWITCH_SETTING of switch Lo
: (pipe || pipe = switch:SWITCH_OUTLET and
. MEMO_LOCATION_BIN(pipe package:DESTINATION))
b - engd

|
”
N

l"
:‘ 3 This finishes our task of mapping away SET_SWITCH.
~
~ H STEP 6.13(user): Map MISROUTED_PACKAGE_REACHED_BIN
&
N
P demon MISROUTED_PACKAGE_REACHED_BIN(package, bin.reached, bin.intended)
, q lrigger package:LOCATED_AT = bin.reached
Siling and
). package : DESTINATION = bin.intended
g response jnvoke MISROUTED_ARRIVAL (bin.reached, bin.intended)
< -_:.
;s
;
) | Method CasifyDemon 4 {

iJe _a
(13

Goal/: Map D|demon

) Action: 1) Casity D

N 2) forall case-of[X, D] do Map X

SN

‘!2 [Try mapping by case analysis.] .

ARy | End Method |
[

1

A A s AA
[ o g
A 4

STEP 6.14: Casify MISROUTED_PACKAGE_REACHED_BIN

TH. We will use the same trigger splitting strategy as used on SET_SWITCH in the previous

= R

>,

AR

R

N

b

AR

'. \Q\---v- RPN . . "‘:-‘.‘q;--;\.\.-




v p M
[ ()

DA e '
Nt S Pl A

.
e Y %)

LI

o b, "

‘a8 4
a o«

DONOMN, T

EAER

LY

PRl N

PAGE 308 PACKAGE ROUTER DEVELOPMENT

section. MISROUTED_PACKAGE_REACHED_BIN may trigger on either of two events: a
package becoming located at a bin; a package's destination being set. The selection of the
trigger splitting method here requires the same insight as in the SET_SWITCH case: one has
to notice that one of the two components of the trigger is under direct mechanical observation
(a switch entering a bin) and one is not (a package’s destination changing).

| Method CasifyConjunctiveTrigger |

Goal: Casity D|demon
Fitter: a) gist-type-of([T|trigger-of[D),
conjunction)
Action: 1) Show WOWIDUAL_START(D)
2) Apply SPLIT_CONJUNCTIVE_ TRIGGER(D, T)

{it may be easier to break a demon up into special cases and then trying to
map. Make sure that no new triggerings are created.]

| End Method |

Two new demons are spawned:

demon MISROUTED_PACKAGE_LOCATED_AT_BIN(package,bin.reached,bin-intended)
irigger package:LOCATED_AT = bin.reached
fesponse
begin
require (package:DESTINATION = bin.intended
at ThisEvent);
invoke MISROUTED_ARRIVAL(bin.reached, bin.intended)

end;

demon MISROUTED_PACKAGE_DESTINATION_SET (package,bin.reached,bin-intended)
irigger package:DESTINATION = bin.intended
response
begin
requijre (package:LOCATED_AT = bin.reached
at ThisEvent);
Jnvoke MISROUTED_ARRIVAL(bin.reached, bin.intended)

end;

STEP 6.15: Map MISROUTED_PACKAGE_LOCATED_AT_BIN

...............................

RN |

D | 4

Ly
PR A )

e

13

.




P S0 RS PR it

P PP

ol o

(5 A0 el

DO

[Ter e |- § AP

O LG V<

L

g’. -'

4

o
I

I

XY

13X}

-*.'.-.’.

o' _1

»

o

C.6 Map Demons PAGE 309

| Method MapByConsolidation |

Goal: Map D|demon

Fiter: a) pattern-matchidemon, D2, spec]
b) D » D2

Action: 1) Consolidate D and D2

{To map D, find some other demon D2 and consolidate.)]
| End Method |

STEP6.16: Consolidate MISROUTED_PACKAGE_LOCATED_AT_BIN and
PACKAGE_ENTERING_BIN

demon PACKAGE_ENTERING_BIN(package, bin)
trigger package:LOCATED_AT = bin
response null;

| Method MergeDemons |

Goal: Consolidate D1|demon and D2 |demon
Action: 1) Equivaience trigger-of[D1] and
trigger-of[D2]
2) Equivalence var-declaration-of{D1] and
var-declaration-of[D2]
3) Show MmeERGEABLE_DEMONS(D1, D2, 1|ordering)
4) Apply pemon merGe(D1, D2, I)

{You can consolicate two demons Il you can show that they have the same
local variables, the same triggering pattern and that they meet certain
merging conditions.)] '

| End Method |

STEP 6.17: Equivalence (package, bin.reached, bin.intended) and (package, bin)

4%a’a” a W ia"a" e 3 2" 2> MWL s

e T e L e P L i TP W i P

A



4T DI S P A DI B S A RN A R RO A ORI T S et R St A USRS b AR A A RN

s PAGE 310 PACKAGE ROUTER DEVELOPMENT -
- g
-
| Method EquivalenceCompoundStructures2 | =
&1 .::
j Goel: Equivalence S1|compound-structure and -
' ] $2 | compound-structure
Nt Fitter: s) gist-type-of[*, S1] = gist-type-of[*, §2) S
' b) ~fixed-structure[S1] -
« ¢) component-correspondence[S1. S2, C|correspondence)
3 Action: 1) forall correspondence-pairs[C, C1, C2)
3 gdo Equivalence C1 and C2
<
X {Divide-and-conquer: make the components of two non-fixed structures —
equivalent.} -
| End Method |
" Choosing the correct correspondence here is a little tricky. Being of the same type, the two ..
package variables are paired-off. However, bin can be paired with either bin.reached or .
>, bin.intended. We note that both bin and bin.reached occur in their respective triggers and use -
¥ this clue to make the right choice. o
) a
Y
STEP 6.18: Equivalence bin.reached and bin m
'_: As in step 2.10, we will eventually anchor the first and then rename. o
* -
' Our equivalence goal from step 6.17 is still not achieved and hence is reposted.
) | %
! RS
STEP 6.19(reposted): Equivalence (package, bin.reached, bin.intended) and (package, T
bin.reached) “
-
L -
Reapplying EquivalenceCompoundStructures2 now will gain us nothing. We try a new )
method.
;
L4
e
]
o
d

o e e " \wq-. e e
sﬂ'\l-" A TN "\m_l_‘_Ax_.L_.aJ"' .




ot TaVWe Ve

4 S RC SRR

x4

I,

[ R S R

LR

.
»
-

LS £ SRR G e i G & IS U L O P E R gr b N, < .\

C.6 Map Demons

PAGE 311

| Method AddNewVer

Goal: Equivalence L1|variable-list and L2 |varisble-list
Filter: a) TengthL1] > Yength[L2)

b) member|V|varisble-declarstion, L1}

¢) ~member[v, L2]
Action: 1) Show INTRODUCEABLE=VAR-NAME(V, L2)

2) Apply WTRODUCE-NEW-VAR(V, L2)

[Try adding a new var to make the two lists equivalent.]
| End Method

After consolidation, we have

demon PACKAGE_ENTERING_BIN(package, bin.reached, bin.intended)

trigger package:LOCATED_AT = Din.reached;

response

begin
require (package:DESTINATION = bin.intended
At ThisEvent);

i MISROUTED_ARRIVAL (bin.reached, bin.intended )
end:

We next must take care of MISROUTED_PACKAGE_DESTINATION_SET.

STEP 6.20: Map MISROUTED_PACKAGE_DESTINATION_SET

| Method UnfoldDemon

Goal: Map D|demon
Action: 1) forall trigger-location[D, L, spec)]
do Unfold D at L

[To Map a demon, unfold It where appropriate.]
| End Method

REUPOND A SO T ST T arranys, o Al Vi, 1 O VAR

R . .\- ORI ~
LA SO AT A AR

RS \-;_.‘ .;,..',‘.."_. N

L ATAL

'»)
-




A4

y * 7 2 ¢ o & I &

¢ SR APRPLINIREN |- ¢ U
R
v
H

isat CREATE_PACKAGE.

A

P

PAGE 312 PACKAGE ROUTER DEVELOPMENT

We must locate each place that a package’s destination is changed. The singie such location

demon CREATE_PACKAGE()
trigger RANDOM()
response

atomic
create package.new ||
package.new :DESTINATION = a bin and
package.new :LOCATED_AT = the source;

greate package.new ||
package.new : DESTINATION = 8 bin and

STEP 6.21: Unfold MISROUTED_PACKAGE_DESTINATION_SET at

package.new :LOCATED_AT = the source;

| Method ScatterComputation0OfDemon

Gos!: Unfoid D|demon at L

Fitter: a) trigger-location{D, L. $]

Action: 1) Apply unroLD_DEMON_COPE(D L)
2) Purify L

sure L is within implementable portion of spec.]
| End Method

{To unfold a demon D at a trigger point. stick in code to compute it and make

After adding the maintenance code, we have

----- L

R SN . ‘ - - s
DA AT g KX -%{’.i R -."q:" " L. ' ",c"_‘ 4?,1}&? A;.p - ‘.ﬂ -\ JJA:‘AEJ_\‘I:'

« h'- -'. “«_ - -
W

RS AW

R Y T, Y )

f.f.l‘
AR 1

AR AN

. .,. -
L]

TR T

.
UL



P gl ok ol - - @ P AW W W ] LA NN S e e R I AR R Rt i St e i A L i o L TR L%

C.6 Map Demons PAGE 313

N
n demon CREATE_PACKAGE()
. trigger RANDOM()
begin
create package.new ||
package.new : DESTINATION = g bin and
5 package.new :LOCATED_AT = the source:
if 3 bin.intended, bin.reached ||
. ~( (package.new : DESTINATION = bin.intended)
I asof last update of package.new :DESTINATION)
and
package.new : DESTINATION = bin.intended
. Lthen
o begin
o require package.new:LOCATED_AT = bin.reached;
. . invoke MISROUTED_ARRIVAL(bin.reached, bin.intended)
!' end
: end

By showing that the require statement is always faise, we can remove the
! MISROUTED_ARRIVAL procedure and finally the entire newly introduced conditional,
leaving CREATE_PACKAGE in its original state.




- A A A T e e T e e W Y T T e o T W T T,

2 )
L §
; PAGE 314 PACKAGE ROUTER DEVELOPMENT !
d |
X o
4
«.: . j
N C.7. Termination State S
\ _ i
- This ends our development of the package router. The state of the router at this point is given ]
'{f below. The Gist/ Tl group is currently working on an intermediate-level language called WILL X
:: which is able to impiement directly this form of program.
Portions which have not changed from the initial spec given in Appendix A are: f

' D type hierarchy, including attributes (sensor could be removed since it is no longer T
N referenced) )
" D constraints
» * MORE_THAN_ONE_SOURCE
< * PIPE_EMERGES_FROM_UNIQUE_SWITCH_OR_BIN

' * UNIQUE_PIPE_LEADS_TO_SWITCH_OR_BIN
* SOURCE_ON_ROUTE_TO_ALL_BINS
& O relations
3: * MISROUTED
>

33 * SWITCH_IS_EMPTY

o D demons

s * CREATE_PACKAGE

< *MOVE_PACKAGE

D procedure

‘3 *MISROUTED_ARRIVAL
= Portions of the specification which are new or have changed are given below.
e
- ~

1 )

7

)
L4

B I I o T N T TP . -
................ -t et NI . K ~ 3 - . .

o) t’L':S.’L(\’# '_l._"‘ o L'Ln.f- A q.!x.(_ 207 \13_'.L1L L‘l;k ;._' - n.' ';.' L' s. ;_' L' .' y ".\ :‘FL".L".}'I:!' * f:‘AL A\’:- })\~ \. u\f N

_s.{_\ PR AL el . e TR et




AN

(LA AC A e w0 i d i Sl o I SIS A B v e e e e "

C.7 Termination State PAGE 315

demon RELEASE_PACKAGE_INTO_NETWORK (package.new)
trigger package.new:LOCATED_AT = the source
response
begin
loop (switch| | MEMO_LOCATION_BIN(switch ,package.new : DESTINATION) )
do
begin
ypdate packages_due of PACKAGES_DUE_AT_SWITCH (switch,$)
10 PACKAGES_DUE_AT_SWITCH(switch,®) gconcat <package.new>;
if
package.new = first (PACKAGES_DUE_AT_SWITCH((switch,®))
and
SWITCH_IS_EMPTY (switch)
ihen
update :SWITCH_SETTING of switch 1o
(pipe || pipe = switch:SWITCH_OUTLET gnd
MEMO_LOCATION_BIN(pipe package.new:DESTINATION))

end
if LAST_PACKAGE_DESTINATION(®) * package.new:DESTINATION
ihen invoke WAIT[];
update /ast_destination in LAST_PACKAGE_DESTINATION(S)
10 package.new : DESTINATION
update :LOCATED_AT of package.new
1o (ihe source):SOURCE_OUTLET

end:

demon PACKAGE_ENTERING_SWITCH(package, switch)
irigger package:LOCATED_AT = swilch
Lesponse

MEMO_LOCATION_BIN(switch, package :DESTINATION)

if MEMO_LOCATION_BIN(switch:SWITCH_SETTING,
package : DESTINATION )
then jnvoke TRIM_PACKAGES_DUE_AT_SWITCH (package.
' switch.current)
glse

100D (switch| | MEMO_LOCATION_BIN (switch, package : DESTINATION ) )
do invoke TRIM_PACKAGES_DUE_AT_SWITCH(package, switch);

T
%
.‘\: Sl

it ]
AR

‘e

."-¢':‘\.

AL
s‘..l o o
[

A
[~

b g
5

D P LR LA P S L P I o S ] w v @ e, e _ % _=_a
SN LS \Em:\\\\ LSRR VSR \‘.'i
L] L) .. » - ) -
v L, 'L(L{L\L'.L':\.'A'\'?\', "L 1.'.\" s



------------

---------------
.............

PAGE 318 PACKAGE ROUTER DEVELOPMENT

SRS

s, !

procedure TRIM_PACKAGES_DUE_AT_SWITCH(package, switch)

L4 " L
Y

begin
. if first(PACKAGES_DUE_AT_SWITCH (switch, *®) = package
then
kegin
update packages_due of PACKAGES_DUE_AT_SWITCH(switch.$)
10 PACKAGES_DUE_AT_SWITCH (switch,*) minus package;
begin
reguire SWITCH_IS_EMPTY (switch)
update :SWITCH_SETTING of switch 1o
{pipe || pipe = switch:SWITCH_OUTLET and
MEMO_LOCATION_BIN(pipe,
first(PACKAGES_DUE_AT_SWITCH(switch, *)
) : DESTINATION) )

r

4

end
end
else
update packages_due of PACKAGES_DUE_AT_SWITCH(switch,$)

10 PACKAGES_DUE_AT_SWITCH (switch,®) minys package;
end

dempon PACKAGE_LEAVING_SWITCH (package.gen, switch)
trigger ~package.gen:LOCATED_AT = switch

response
if ~3 package||package:LOCATED_AT = switch
ihen hegin
reguire (3 package ||
package = first(PACKAGES_DUE_AT_SWITCH(* switch))
at ThisEvent)
update :SWITCH_SETTING of switch 10
(pipe || pipe = switch:SWITCH_OUTLET and
MEMO_LOCATION_BIN(pipe package:DESTINATION))
end

A

| (A

=l

R

' R

Y BERAN

¢

i

]

N

o
o CANERE..™ T F R.F & SEGE X _A

‘l /l "

&I

ROV |

Se) e

4 . . - . -y N ., - - WA - 'v'.'l ™ '.'..{‘ "ot -...!' s (-" A \' Y e e .
e e A O L R T N o R A e O e Y I AR S WS A 1 NN



L4t

PSRN e RACADEA ~ ° AU, -

it 2R w8 Qo 26

- - naata

-f KNENE L . O

LYl But Tt TN Nt T

L T,

Rd -4

Vo
[

-y
-' o

b

y ul

el

Ir.7e

C.7 Termination State PAGE 317

demon PACKAGE_ENTERING_BIN(package, bin.reached, bin.intended)
irigger package:LOCATED_AT -= bin.reached;
response
pegin
reguire (package:DESTINATION = bin.intended
at ThisEvent);
invoke MISROUTED_ARRIVAL(bin.reached, bin.intended)
end:

demon PACKAGE_LEAVING_BIN(package, bin)
triggec ~package:LOCATED_AT = bin
response null;

relation LAST_PACKAGE_DESTINATION /ast_destination} bin);

relation PACKAGES_DUE_AT_SWITCH(packages_due|sequence of package,
switch);

relation MEMO_LOCATION_BIN(location, bin);

relation MEMO_LOCATION_BIN(/ocation, bin);

demon INITIALIZE_MEMO_LOCATION_BIN()
trigger: (start initialization_state)

response _

begin
loop B | BIN do insert MEMO_LOCATION_BIN(B, B):
Joop L | LOCATION ||

MEMO_LOCATION_BIN(L, B) and
L = L2:CONNECTION_TO_SWITCH_OR_BIN
do insert MEMO_LOCATION_BIN(L2, B);

...........

B TR

"3 %y TPy 8 o




1}?‘-"0{ B

DIRY

D Method Selection Overlay PAGE 319

Appendix D
Method Selection Overlay

This appendix presents the selection information used to produce the router development in
appendix C. When overlayed with the development, the complete problem solving trace is
explicated. The sectioning foliows that of C. Each step here has the following form:

Step i.j: abbreviated development goal

Candidate Set
[<augmented method>]°
» General Rules: [<general selection rule>]°
» Method Specitic Rules: [<method specific rule>]°
» Resource Rules: [<resource ruie>]°
» Ordering Rules: [<ordering rule>]°
Method Ordering: [<ordered method list>]°
» Action Ordering Rules: [<action ordering ruled)°

Comment: Optional comments on interesting problem
solving features of the step.

An <augmented method> under the Candidate Set has the following form:

[Abrev:] MethodName [(<opinion> SelectionRule)]°
An <opinion> is either a signed weight in the case where SelectionRule is a non-ordering rule
or an ordering operator (i.e. ><) for ordering rules. In the latter case, ( Foo) says that the
current method has been ordered after sohe othe( method or set of methods by selection rule
Foo. To find the method or meohds which are ordered before this method, look for the
corresponding (> Foo).

if a candidate method contains unbound free varaibles, then a breakout of all instantiated
bindings is given under the MethodName (see for example, step 1.2). Each instantiation has
the following form:




avieh il

G 8, 00 0

.
e

.

« . , ’ ‘-- .‘-

J‘}) J\.‘ F » ‘

»

PAGE 320 METHOD SELECTION OVERLAY

[Abrev:] Binding [(<Cpinion> SelectionRule)]°
Note that opinions expressed about the general MethodName are inherited by any of its
particular bound instantiaions.

A list of the selection rules augmenting the candidate set is brokenout by type below the
Candidate Set. This is redudant information provided for convenience.

Finally, <ordered method list> is a partial ordering of the Candidate Set with the foliowing
form:
MethodSet,(Sum),..MethodSetn(Sum)

A MethodSet is either a 1) single method or 2) a group of MethodSets from the Candidate Set.
In the second case, the set is marked off by set brackets ({ }). After each single method is the
sum of all weights provided by the selection rules. If no weight-giving rules fired then a dash
appears in place of the sum. If MethodSet. occurs before MethodSetl. in the list then all
methods in MethodSet, are rated more highly than all methods of MethodSetj. Methods within
a MethodSet have the same rating.

Not all methods of the Candidate Set may appear in the ordering list. Iif a method's weighted
sum is below a certain threshold, 1 currently, it will not appear. Also, if method M1 is ordered
by a selection rule after method M2 whose sum is below the theshold, M1 will not appear, no
matter what its sum is. Currently, methods which have no ordering information associated
with them are included last in the list.

Bold facing is used in the <method order list> to mark the method actually chosen in the
router development. Bold faced methods which do not appear first in the list represent
locations where one or more alternative methods were rated more highly thatn the method
finally chosen.

The details of the Glitter selection engine are discussed more fully in chapter 7.

-4 G4

RN
[V

f'.'f. LA




Lo

LXXABA -

i~

o
a 2t ) 1 v,

e

.
-

Al At

o ",."u/{ o -

+

v }d

N 4
-

’

4% Y

AN N |-

LA A .'." o

A A e i JadC A WO M AR -.. . .‘__ o__\ RO A A S s e .". ., ‘1'_ -V r_‘.‘.' DN Sl SR ‘Vi.r:'f_ LA AN

D Method Seiection Overlay PAGE 321

D.1. Remove PACKAGES_EVER_AT_SOURCE

Step 1.1:(user) Remove peas (packages_ever at source) from spec
Candidate Set
3 RR: RemoveReiation ( + 2 BurnedOutHulk) { + 2 "RemoveRelation1)

» General Rules: BurnedOutHulk

> Method Specitic Rules. *RemoveRelationt

Method Ordering: RR(+4)

Step 1.2: Remove reference to peas from spec

Candidate Set
D BabyWithBathwater

* BWBW1: Y bound to re/ative-retrieval (-2 *BabyWithBathWater3)
* BWBW2: Y bound to derived-object (-2 *BabyWithBathWater3)

* BWBW3. Y bound to conditions! (0 *BabyWithBathWater1)

° BWBWA4: Y bound to demon (-1 *“BabyWithBathWater2)

[J MegaMove ( + 1 Fillin) > RemoveRef1)

* MM1: Y bound to re/etive-retrieval ( + 2 "MegaMove1) (< RemoveRetf2)
* MM2: Y bound to derived-object (+ 2 "MegaMove1) (> RemoveRef2)

O PositionalMegaMove ( + 1 Fillin) (¢ RemoveRef 1)

* PMM1: Y bound to relative-retrieval ( + 1 *PositionaiMegaMove) (< RemoveRef3)

* PMM2: Y bound to derived-object (+ 1 *PositionalMegaMove) > RemoveRet3)

0 RemoveByObjectizingContext i

* RBOC1: Y bound to relstive-retrieval

* RBOC2: Y bound to derived-object

> General Rules. Fillin

> Method Specilic Rules: *BabyWithBathWater, *MegaMove1, *PositionalMegaMove
¥ Oroering Rules: RemoveRef1, RemoveRet2, RemoveRef3
Method Ordering: MM2( + 3), MM1( + 3), PMM2( + 2), PMM1( + 2), (RBOC1(-), RBOC2(-)}

- - _- AR .S . atatac

Step 1.3: rso/ate derived object

]

e \_5&
AR

R g

- .-.\,\-.

Y e LY AN q - ‘e . AL P N e .
._.\s~,\\\ -'\\ -.\'.\ .,\._ Ve ,-.." \\\\,_. -




W . Wa®e
.
1)

$5
2
N
N
*
.
_—

“»
08 PAGE 322 METHOD SELECTION OVERLAY
-
& 3
22,
:§\‘; Candidate Set 7
SR g
1 O FGIR: FoidGenericintoRelation ( + 2 *FoldGenericintoRelation)
w
! ¥ Method Specilic Rules: *FoldGenericintoRelstion ',-.:
ol Method Ordering: FGIR(+2) '
{ \‘:- e
"e " . -~
N Step 1.4: Globalize derived object =
P;-_ Sandidate Set -
P e -;
}:. D GDO: GlobalizeDerivedObject { + 2 *GlobalizeDerivedObiject)
I(. .'
2N » Method Specific Rules: *GlobalizeDerivedObject N
Method Ordering: GDO -
Step 1.5: (try) Reformulate p.new as global e

Candidate Set:

D ReformulateLocalAsFirst (+ 2 ReformulateLocalAsSequenceExpression) (€ ReformLoc?2) -

* RLAF: R bound to packages ever_at source

L v
L)

O ReformulateLocalAsLast ( + 2 ReformulateLocalAsSequenceExpression) (> ReformLoc2) -t
° RLAL: R bound to packages ever_at source - |
» General Ruiss: ReformulatelocalAsSequenceExpression
> Ordering Rules: ReformLoc2 o
Method Ordering: RLAF(+2), RLAL(+2)
Step 1.6: Reformulate p.new as last(peas(*)) ;::
Candidate Set -
=1 =
no rules fired .
S
N
Step 1.7:(user) Manyal manual-replace(p.new last(peas))

e
Cangidate Set |

|

D manual step |
no rules fired f.‘:
Step 1.8: Maintainincrementally previous package _,5.
%Y
.:;
.-‘

<, - AR Tl K ATV T ST S
A e A YA e A



a0 AN Wi Al et A Aall SUDIANG SN L gL A AN

P oY

) D.1 Remove PACKAGES_EVER_AT_SOURCE PAGE 323
'8
1 -
T Candidate Set
: O SMFDR: ScatterMaintenanceForDerivedRelation (+ 2
i - “ScatterMaintenanceForDerivedReiation)
- ® Method Specilic Rules: *ScatterMaintenanceForDerivedRelation
. Method Ordering: SMFDR(+2)
K
_ Step 1.9: Fiatten previous package
4
* N ndidate Set
- O Fiatten (+ 2 *Fiatten)
W
- > Method Specitic Rules: °Flatten
o Method Ordering: Flatten(+2)
e
3%
A Step 1.10: Map peas
e .
" E Candidate Set
. [ MDR: MaintainDerivedRelation ( + 2 *MDR)
T4
S 'G D UDR: UnfoidDerivedRelation ( + 2 “UnfoidDerivedRelation1) (-2 MapSubOfRemove2)
i n » General Rules: MapSubOfRemove2
N > Methoo Specitic Rules: *MaintainDerivedRelation. *UnfoldDerivedRelationt
N Method Ordering: MDR(+2)
Ny l':.
\,’ " Comment: Normaliy.the methods for maintaining and untfolding & derived
X re/ation compete equally. However, the general rule MapSubOfRemove
recognizies certain contexts in which scattering what is currently a
global definition may lead to difficuities further along in the development,
X v".: i.e. f we are trying to remove a relation then scattering references to It
v o througout the program is a non-cooperating strategy.
. .:‘;
. Step 1.11: Maintainincrementally peas
v u Candidate Set
:\-' :: D ISMD: IntroduceSeqMaintenanceDemon (+ 1 DemonsAreGood) (+ 1 MapSubOtRemove1) ( + 1
v ReadyToGo) ( + 1 ReformUnnecessary)
a
¢ L«
E O SMFDR: ScatterMaintenanceForDerivedRelation (-2 MapSubOfRemove?2) ( + 2 “SMFDR)
b
] > General Rules: DemonsAreGood, MapSubOfRemove1, MapSubOfRemove2
. :;' » Method Specitic Rules: °ScatterMaintenanceForDerivedRelation

» Resource Rules: ReformUnnecessary, ReadyToGo

A Method Orgering: ISMD(+4)
N

AL ERIVOL A
’A

P e Nl 2t e S PI RN N AN Y VR Yy WA TCTR IR O RN A TR A :
AN SIS I 3 N SN PN Y Ty NN \..\\\,\...',\...‘-,\..:.,&, s l‘-.r.}':‘.:

SR



' g

o e !
Lo

PAGE 324 METHOD SELECTION OVERLAY

DKAAS. 7

P A}
4 e

Step 1.12: Remove reference peas from spec

! Candidate Set
-‘.:‘ D BabyWithBathWater

* BWBW1: Y bound to relative-retrieval (-2 “BabyWithBathWater3)

Y )
4
LA

* BWBW2: Y bound to derived-object (-2 *BabyWithBathWater3)

"‘

o * BWBW3: Y bound to update (-2 *BabyWithBathWater3)

:.:::‘ * BWBW4: Y bound 1o atomic (-2 "BabyWithBathwater3)

:':.": * BWBWS: Y bound to demon (-1 *BabyWithBathWater2)

“\I O MegaMove ( + 1 Fillin)

A * MM1: Y bound 10 relative-retrieval ( + 2 "MegaMove1) (< RemoveRef2)

AR

P

° MM2: Y bound to derived-object (-2 "MegaMove2) O RemoveRef2)

D PositionalMegaMove ( + 1 Fillln)

* PMM1: Y bound to relative-retrieveal ( + 1 *PositionaiMegaMove) (¢ RemoveRef3)
* PMM2: Y bound to derived-object ( + 1 “PositionatMegaMove) (> RemoveRet3)
D RemoveByObjectizingContext
* RBOC1: Y bound to rel/ative-retrieval
* RBOC2: Y bound to derived-object
D ReplaceRetwithVaiue ( + 1 Fillin) (-2 *ReplaceRefWithValue2)
> General Rules: Fillin
> Method Specific Rules: *MegaMove1, *“MegaMove2, *BabyWwithBathWater,
*PositionaiMegaMove, *ReplaceRefWithValue2
» Ordering Rules: RemoveRe!2, RemoveRef3
Meihod Qrdering: PMM2(+ 2), PMM1( +2), {RBOC1(-), RBOC2(-)}

Step 1.13: Reformulate derived-object as positional-retrieval

Candidate Set
D RDO: ReformulateDerivedObject { + 2 "ReformulateDerivedObject)

> Method Speciiic Rules: °ReformulateDerivedObject
Method Qrdering: RDO(+2)

Comment: Note that it's up 1o the user to determine "close 1o " here, l.e. he
must determine Hf the body of the derived object, a relatinal retrieval, can
be changed into a positional one.

213

s 2
A 4

A} |




ht. ORI SO N D Y PO PR RO A RO A SO A Ao AL A AN/ NS bl Eal Sl S S

.,

L
K
N D.1 Remove PACKAGES_EVER_AT_SOURCE PAGE 325 !
. '
< ¢
YN K
RS Step 1.14: Reformuiate relative retrieval as equivalence relation 4
! Candidate Set )
- : 1
S, D RRRAF: ReformulateRelativeRetrievalAsFirst ( + 1 ReformAsExtreme) "j
! . D RRRAL: ReformulateRelativeRetrievalAsLast ( + 1 ReformAsExtreme) (+ 1 by
g ReformUnnecessary) (+ 2 *ReformulateRelativeRetrievalAsL ast) 11
. J_ v
. -l
> General Rules: ReformAsExtreme
" ;: » Method Specific Rules: *ReformulateRelstiveRetrievalAsLast
v

» Resource Rules: "ReformUnnecessary

SRR Method Ordering: RRRAL(+4), RRRAF(+1)

VN Step 1.15: Equivalence last(peas@p) and p
MY .
T Candidate Set
) 0 A1: Anchort
E D A2: Anchor2 ( + 2 *Anchor2a)

> Method Specilic Rules: ®Anchor2a

Method Ordering: Anchor2(+2), Anchori()

VAR PR NS
’_ 1 _®
ShN,

-

Step 1.16: Reformulate last(peas@p) as p

Y
BN Candidate Set
:' '.A: D RAO: ReformulateAsObject ( + 1 ReformUnnecessary) ( + 1 ReadyToGo)
o~ > Resource Rules: ReformUnnecessary, ReadyToGo
: ) Method Qrdering: RAO(+2)
: -c
. r.«. Step 1.17: isolate last(peas)
Lo D FGIR: FoldGenericintoRelation ( + 2 *FGIR)

> Method Specific Rules: *FoldGenericintoRelation
Method Ordering: FGIR(+3)

13488

. Step 1.18: Maintainincrementally last package

.

LA A A A
L

Candidate Set

4
;3 0 SMFDR: ScatterMaintenanceForDerivedRelation (+ 2 *SMFDR)
i
-»
RS
iy
LN

L

o v e g o - e g
.¢_ S '.s.s A \\.

‘-“Q\".“.~.\v N \.C: ., i P



Tl SR SR PR I R P P PR PP T

PAGE 326 METHOD SELECTION OVERLAY

=
» Method Specltic Rules: *ScatterMaintenanceForDerivedRelation .
Method Ordering: SMFDR(+2)

Step 1.19: Remove reference peas from spec '
Candidate Set 3
0 BabyWithBathWater =
* BWBW1: Y bound to concat (-2 *BabyWithBathWater3) N
* BWBW2: Y bound to /ast (-2 *BabyWithBathWater3) i
* BWBW3: Y bound to update (-2 *BabyWithBathWater3) iﬂ;

* BWBW4: Y bound to sfomic (-2 *BabyWithBathWater3)
* BWBWS: Y bound to demon (-1 "BabyWithBathWater2) -

T MegaMove ( + 1 Fillin) (< RemoveRef4)

* MM1: Y bound to concat ( + 2 "MegaMove1) (< RemoveRef2) (> RemoveRef1)

N+, |

* MM2: Y bound to /ast ( + 2 "MegaMove1) O RemoveRef2) (> RemoveRef1)

>

b

D PositionalMegaMove (+ 1 Fillin) (¢ RemoveRef4) (¢ RemoveRef1) g

* PMM1: Y bound to concat ( + 1 *PositionsiMegaMove) (¢ RemoveRef3)
ra
* PMM2: Y bound to /ast ( + 1 *PositionaiMegaMove) ( + 1 ReformUnnecessary) e
RemoveRef3)
»

D RemoveByObjectizingContext ( + 1 Filiin) ;:.: ‘

S
* RBOC1: Y bound to concst - |
* RBOC2: Y bound to /as! { + 2 *RemoveByObjectizingContext) (> RemoveRet4) o

D ReplaceRefWithValue ( + 1 Fillin) (-2 *ReplaceRefWithValue) T

» General Rules: Fillin 'i
» Method Specitic Rules: *RemoveByObjectizingContext, "MegaMove1, *BabyWithBathwater, )
*PositionalMegaMove j-_Z: ]
N
> Resource Rules: RetormUnnecessary I.
» Ordering Rules: RemoveRef1, RemoveRef2, RemoveRet3, RemoveRef4 . :i: i
Method Ordering: RBOC2(+3), MM2( + 3), MM1( + 3), PMM2( + 3), PMM1( + 2), RBOC1( + 1) "

Step 1.20: Reformuiate last(peas@p) as object

Candidate Set - )
- "
O RAQ: ReformulateAsObject ( + 1 ReformUnnecessary) { + 1 ReadyToGo) OIS
.
O “
SN
MR
!
N
RN
- \




o

L — D.1 Remove PACKAGES_EVER_AT_SOURCE PAGE 327 5
P "
DR o
Q -
Ny g
[ .('_ -"
. 7 » Resource Rules: ReformUnnecessary, ReadyToGo .,"
Method Ordering: RAO(+2) g
- | 2
:‘h- 4
> Step 1.21: Remove update peas from spec 1
- 3
2 Candidate Set 4
i} A
o D BabyWithBathWater é
S * BWBW1: Y bound to afomic (-2 *BabyWithBathWater3) :
N * BWBW2: Y bound to demon (-1 *BabyWithBathWater2)
o~ : 0 RUA: RemoveUnusedAction (+ 2 "RemoveUnusedAction1)isel()

» Method Specitic Rules: *RemoveUnusedActioni

, Method Ordering: RUA(+2)
-E Step 1.22: Show update unnoticed
Cendidate Set

D SD: ShowDysteleological (+ 1 "ReadyToGo) ( + 2 *ShowDysteleological)

PRELISE M e )

> Method Specitic Rules: *ShowDysteleological
, ¥ Resource Rules: ReadyToGo
8 Method Ordering: SD(+3)

Ce e s RN L L LS LI s e e AR

it

.
L)

T TN R O L ok L L R R PR £
A A R D R R LTSN (VA CA R S G s ¥ NGRS



AT

NN

LTINS )

AL
Ol L

<

o«
»

Y,

N

'-*‘-‘vo\
e 2 0
a4 0 d

N YN
APRONG

.A "‘ lfl.jk R

v
-

&
-’ -

- SRR

P,
l\.A

)
AN

AR

.09
R

o

PAGE 328 METHOD SELECTION OVERLAY

D.2. Remove PREVIOUS_PACKAGE

Step 2.1: BRemove previous_ package
Candidate Set
O RR: RemoveRelation ( + 2 BurnedOutHulk) ( + 2 *RemoveRelation2)
» General Rules: BurnedOutHulk

» Method Specific Rules. *RemoveRelation2

Method Ordering: RR(+4)

Step 2.2: Remove reference previous package from spec

Candidate Set
D BabyWithBathWater
* BWBW1: Y bound to conditional (0 *BabyWwithBathWater1)
* BWBW2: Y bound to demon (-1 *BabyWithBathWater2)
D MegaMove ( + 2 Fillin) (¢ RemoveRef6)
* MM: Y bound to attribute-reference (+2 *MegaMove1)
D PositionaiMegaMove ( + 1 Fillin) (¢ RemoveRef8)
* PMM: Y bound to attribute-reference ( + 1 “PositionaiMegaMove)
O RemoveByObjectizingContext { + 1 Fillin)
* RBOC: Y bound to sttribute-reference
O RRWV: ReplaceRefWithValue (+ 1 Fillin) ( + 2 *ReplaceRefWithvalue1)(> RemoveRet€)
> General/ Rules: Fillln
> Method Speclfic Rules: *MegaMove1, *BabyWithBathWater, *RepiaceRefWithvaiue1

» Ordering Rules: RemoveRet6
Method Qrdering: RRWYV(+3), MM( + 3), PMM( + 2), RBOC( + 1)

Step 2.3: Show value known of previous_package

Candidats Set
0 ShowlUpdateGivesVaive

* SUGV: U bound to update in notice_new_package at source ( + 2
*ShowUpdateGivesValue)

» Method Specitic Rules. *ShowlUpdateGivesValue

R

;o\-l ".

.,s.-'.---wq--_-q-..~ LI R I
Ay .\'-\_,\ SIS LS YN EN \_..\.,\:\\ TSNS

/7

|

[ [ S

)

AR

s L




2 Licash el L e A T T T T T T (e P O T T T A T T (A T T T - T (N o=

. ﬂ D.2 Remove PREVIOUS_PACKAGE PAGE 329
X, Method Ordering: SUGV(+2)
- - Step 2.4: Show last package still holds at conditional
SR
: Candidate Set
-‘ ' O SNVSV: ShowNewValueStilivalid ( + 2 *ShowNewValueStillvalid)isel()
.
Method Ordering: SNVSV(+2)
X
“ o .
. - Step 2.5: Show last package doesn't change
s 2 Candidate Set
. O MoveinterveningUpdate
‘ ": * MIU: L bound to update in notice new_package at source ( + 1 ReadyToGo) (+2
- '_‘_ ‘ *MovelinterveningUpdate)isel()
> Method Specific Rules: *MoveinterveningUpdate
g ¥ Resource Rules: ReadyToGo
<
Method Ordering: MIU(+3)
i .:“
3
e
3 Step 2.6: ComuteSequentially conditional before update of last package
P g Candidate Set
{ 0 MOOA: MoveOutOfAtomic (+ 2 "MoveOutOfAtomic)
v .‘.'
::'C » Method Specific Rules: *MoveQutOfAtomic
Meihod Ordering: MOOA(+2)
bW o~
e .
. Step 2.7: unfold atomic
) 5 Candidate Set
= D UA: UnfoidAtomic (+ 5 *UnfoldAtomic)
:' o > Method Specllic Rules: *UnfoldAtomic ;
> Method Qrdering: UA(+5) !
£ Comment: A weight of +5 implies that there Is no other method, now or ;
.Y E foreseen. which can achieve the goal. In some sense, the goal is an
1. . abstract pointer to the method. 9
o '
A 4 Step 2.8:(reposted) ComuteSequentially conditinal before update of last package
2,
M ~ Candidate Set
g ':3
-
L
X
!
-
' -:-
S

e Tttt g L AR NS L YA e e S T\
R R GO G Y, P X A AN PR A TR D A AT S i TR TR I R WO VIV AN



,, PAGE 330 METHOD SELECTION OVERLAY

0 CTMS: ConsolidateToMakeSequential ( + 2 *ConsolidateToMakeSequential) -

> Method Specific Rules: *ConsgolidateToMakeSequential
Method Ordering: CTMS(+2) -
-
Step 2.9: Consoligate notice new_package at source -
and release package_into_network -
Gangidate Set -
D) MD: MergeDemons ( + 5 "MergeDemons)
» Method Specific Rules: *MergeDemons s
|

Methogd Ordering: MD(+5)

¥ Action Ordering Rules: TriggersAlmostEquiv

Step 2.10: Equivalence declaration lists

b

Candidate Set &
D A1: Anchor v
b
N
O A2: Anchor2 N
O ECS: EquivalenceCompoundStructures? ( « 2 *EquivalenceCampoundStructures?) "
.'_\ '
% Method Specific Rules: *EquivalenceCompoundStructures2 o
Method Ordering: ECS(+2) -
Step 2.11: Equivalence p and p.new B
Candigate Set ~,
O A1: Anchor1 ( + 2 *Anchoria) (< Equivvars1) ..
o~
D A2: Anchor2 (+ 2 *Anchor2a) (> Equivvars1) ]
¥ Method Specitic Rules: *Anchorta, *Anchor2a o
» Ordering Rules: EquivVars? e
Method Qrdering: A2(+2) -
Commaent: Until have theory of mnemonics, user relied upon 10 select E
names.

Step 2.12: Reformuiate p as p.new
-~
~
\\.

N
B e e P A A T e L T B e e e e e e



mr e aB gV T e

]l AR T -.1
d -
d -~
- ﬂ D.2 Remove PREVIOUS_PACKAGE PAGE 331 4
"’ . '
< ;%
. -J' . )
A 0 RV: RenameVar ( + 2 *RenameVar) -1
%
» Method Specific Rules: *RenameVar i
A Method Ordering: RV(+2) 11
. . R
-‘q . 3 wa K
._; Step 2.13:(reposted) ComuteSequentially conditional before update of last package j
- Candidate Set ,
AR O SU: SwapUp (+ 2 *SwapUp) ’,
N . > Method Specific Rules: *SwapUp .
By W
Method Ordering: SU(+2)
T
RN Step 2.14: swap update of last package with conditianal
Y Candidate Set
‘ i [ SS: SwapStatements ( + 5 *SwapStatements)
'.j » Method Specilic Rules: *SwapStatements
e Method Ordering: SS(+5)
N
e
o Ly
~ =)
\; ‘-:;
2
a
*, .
" .
KX
M = |
& »
™ ;
Q e
SR |
b’ \'_ K|
- _.c. a.‘

'

- q.-.-...‘-

X |
i
et S

- . * - A N » ] | P .‘ ®, - ~ * * . K > - = N u
‘.f‘ N ...“i"_' " e o '\I“\'ﬂ' e . ._‘. -..?f-.ﬂ'\fﬁ."." SO




[ )
e
—.

x4

s Wy
XA

s
a

PAGE 332

D.3. Remove LAST_PACKAGE

Step 3.1:(user) Remove last package
Candidate Sel
D RR: RemoveRelation ( + 2 BurnedOutHulk) ( + 2 *"RemoveRelation3)

> General Rules: BurnedOutHulk

» Method Specitic Ruies: *RemoveRelation3

Method Qrdering: RR(+4)

Step 3.2: Remove reference last package from spec
Candigate Set
O BabyWithBathWwater
° BWBW1: Y bound to conditional (0 *BabyWithBathWater1)
* BWBW2: Y bound to demon (-1 “BabyWwithBathwater2)

D MegaMove ( + 1 Filiin)
* MM: Y bound to attribute-reference (+ 2 "MegaMove1) O RemoveRef1)
D PositionalMegaMove ( + 1 Fillin) (¢ RemoveRef 1)
* PMM: Y bound to stiribute-reference ( + 1 *PositionaiMegaMove)
0 RemoveByObjectizingContext
* RBOC: Y bound to attribute-reference
O RRWV: ReplaceRefWithVaiue
» General Rules: Fillin
» Method Specific Rules: *MegaMove1, *BabyWithBathWater, *PositionaiMegaMove
» Ordering Rules: RemoveRef1
Method Ordering: MM(+ 3), PMM( + 2), {RBOC(-), RRWV(-)}

Step 3.3: isolate last package:destination

Candidate Set
O FGIR: FoidGenericintoRelation ( + 3 *FoidGenericintoRelation)

> Method Specitic Rules: °FoidGenericintoRelation
Method Qrdesing: FGIR(+5)

METHOD SELECTION OVERLAY

A

L ]
U]
A

[}
.

N

)

R 18

e

e v et tate . vava
IO 1, AR O N




L

e,

PN Y 2

" gt .
FR ROl B W W |

A ¥ B T

afal

n

At Ay
PPN

-

S

YR

1

AR
L R

AN Y Y
TN S N TR AT N N NN

D.3 Remove LAST_PACKAGE PAGE 333

Step 3.4: Maintainincrementally last package_destination
Condigate Set
D SMFDR: ScatterMaintenanceForDerivedRelation ( + 2 ScatterMaintenanceForDerivedRelation)

» Method Specific Rules: *ScatterMaintenanceForDerivedRelation
Method Ordering: SMFDR(+2)

Step 3.5: Remove update of last package

Candidate Set
D BabyWithBathWater

* BWBW1. Y bound to atomic (-2 *BabyWithBathWater3)
* BWBW2: Y bound to demon (-1 "BabyWithBathWater2)
D RUA: RemoveUnusedAction ( + 2 *“RemoveUnusedAction1)

> Method Specific Rules: *BabyWithBathWater2, *BabyWithBathWater3, *RemoveUnusedAction

Method Ordering: RUA(+2)

" ..-} ! \'.\ « \-.‘.-- ﬁ‘-’\-‘\- ‘, v¢ ‘*\‘*;; "¢ -.p£'~ '..‘;‘.‘;_:.:.:\_.- ‘..'.~ .-\.

«
VA

ARt

d '-l‘.‘.'.‘n); 2 J%

aameandNRA o do

S Y ﬂl ]

L)

> m @ s



- K e A e e

et St Tt By i S S VL O oL L P L Rl M NN e
BAER ERCA Tl RER R e - -_.q

PAGE 334 METHOD SELECTION OVERLAY A

)
'n'l

R
e
st

D.4. Map DID_NOT_SET_SWITCH_WHEN_HAD_CHANCE

2 RS
\ ’
I

o Step 4.1:(user) Map did_not set switch when_had_ chance y
-._';:

o~ Candidate Set
i £ MCAD: MapConstraintAsDemon ( + 1 DemonsAreGood) ( + 2 *MCAD) =
e 0O UC: UnfoldConstraint >
I )
Y » General Rules: DemonsAreGood *

‘aa

> Method Specific Rules: *MCAD
Method Ordering: MCAD(+3)

Comment: Of course the difticult decision here is determining whether 8 K
pridictive or backtracking solution is possible. The system points out the j.
need for making the decision, the user provides the answer. .

&
{4

Step 4.2: Show body implies Q
D ConjunctimpliesConjunctArm ( + 1 UseConjunctArm) ‘;:'.
* CICA1: A bound to first conjunct arm (-2 *CICA2) -
* CICA2: A bound to second conjunct arm (-2 *CICA2)
* CICA3: A bound to third conjunct arm (+ 2 *CICA1) .
> General Rules: UseConjunctArm N
> Methoo Specific Rules: *ConjunctimpliesConjunctArm1, *ConjunctimpliesConjunctArm2 .
N7,
Method Otdering: CICA3(+3) . ~3
Comment: The system points out the selection conditions which must be N
attenged to; the user determines which of the candidstes satisfies the -
conditions. |
Step 4.3: Map set switch when_have chance (sswhc) w
A
Candidate Set
-
D CD: CasityDemon { + 2 CasityCompiexConstruct) (¢ MapDemon1) E
[J MapByConsolidation
* MBC1: D2 boudn to set switch (+ 2 *MBC2) (> MapDemon1) =

* MBC2: D2 bound to release package into network { + 1 *“MBC1)

* MBC3: D2 bound to misrouted package reached bin ¥

P T TN
A AR R S B G A K, OV W

WIS, CV AL LS VX COOR CGT

‘- L) - ~
R e



D.4 Map DID_NOT_SET_SWITCH_WHEN_HAD_CHANCE PAGE 335

* MBC4: D2 bound to create package (+ 2 *MBC2) (-2 *MBC4)
* MBCS: D2 bound to move package (+ 2 *“MBC2) (-2 *MBC4)
* MBCS: D2 bound to mchqe_entering_umor (+1°MBCY1)
* MBC7: D2 bound to package leaving sensor (+ 1 "MBC1)

D UD: UntoldDemon ( + 2 *UD) (< MapDemon1)

> General Ruies: CasityComplexConstruct

» Method Specific Rules: "MapByConsolidation1, *“MapByConsolidation2, *MapByConsolidation4,
*UnfoidDemon

» Ordering Rules: MapDemon1

Method Ordering: MBC1(+2), {CD(+2), UD(+2)>, <MBC2(+ 1), MBCSE( + 1), MBCT7( + 1)}

Step 4.4: Consolidate sswhe and set switch
Condidate Set
J MD: MergeDemons ( + 5 *MergeDemons)

» Method Specific Rules: “MergeDemons
Method Ordering: MD(+5)

Step 4.5: Eguivalence two triggers
Candidate Set
0 A1: Anchor1

0 A2: Anchor2 (+ 5 "Anchor2b)

» Method Specific Rules: *Anchor2b

Method Ordering: A2(+5)

Step 4.6: Reformulate random as specific
Cendidate Set _
D SR: SpecializeRandom ( + 5 *SpecializeRandom)

» Method Specific Rules: *SpecializeRandom
Method Ordering: SR(+5)

3 ¢ o
A 3R B AN

Step 4.7:(user) Map require ~P from ThisEvent until EverMore

.-. nni“.'l.‘

" ol -yt o S S R R G S WL N TR S TAy % S, e N
11‘,|'.,‘ . ..’..‘ \’ A% ) ’ \'Qc \.,-‘,\’\ \..}._\. ._\'.\"\ AR “»



o
l':
/

1
I
’I
i

o ¢ B
o
.

5 PAGE 336 METHOD SELECTION OVERLAY ) ‘:‘_"!
~
.
D CPC: CasityPosConstraint ( + 2 CasifyComplexConstruct) (> MapConstraint1) A "
> D MCTA: MoveConstraintToAction |
E‘t D NXUX: NotXuUntilx
N O TIC: TriggerimpliesConstraint -
- D UC: UnfoldConstraint ( + 2 *L'nfoldConstraint) (< MapConstraint1) »
> General Rules: CasityComplexConstruct B
> Method Specific Rules: *UnfoldConstraint a—
» Ordering Rules: MapConstraint1 "
Method Ordering: CPC(+2), UC(+2), {MCTA(-), NXUX(-), TIC(-)} s :
Step 4.8: Casify require ~P from ThisEvent until EverMore g ‘J
Candidate Set ’
0 BS: BinarySplit ( + 1 ReadyToGo) (-2 "BinarySplit2) A
O Pi: Pastinduction :}

43
Sttt

O CFUEC: CasityFromUntilEverConstraint (+ 1 ReformUnnecessary) ( + 1

RequireReformUnnecessary) DS
D CAE: CasifyAroundEvent -
4."A.
 Method Specilic Rules: *BinarySpiit2 N
¥ Resource Rules: RetormUnnecessary, RequireRetormiinnecessary, ReadyToGo . l
e
Method Ordering: CFUEC(+2), {PI(-), CAE(-)} WY
' )
- L
Step 4.9: Map require ~P at ThisEvent Ve
=
Candidate Set .
£ CPC: CasityPosConstraint ( + 2 CasityComplexStructure) (> MapConstraint1) (< o
MapConstraint2) SN
\
D MCAC: MoveConstraimtToAction e .
3
O NXUX: NotXUntitx .
0 TiC: TriggerimplissConstraint (+ 1 ReformUnnecessary) ( + 1 RequireRetormUnnecessary) '.";-
(+ 1 ReadyToGo) O MapConstraint2) :
O UC: UnfoldConstraint ( + 2 *UnfoldConstraint) (¢ MapConastraint1) (¢ MapConstraint2) - |
» General Rules: CasifyComplexConstruct -
Y




PRI

L LAD

+
J

" r;.h_n.-l. [

- N -
P A g

-t
F

"L ) A5

‘.. .- ..

-4
RN ¢

Y
A}
g
‘=

.

2l

1%

L B
o

= 1 3TN

N

AE

D.4 Map DID_NOT_SET_SWITCH_WHEN_HAD_CHANCE PAGE 337

¥» Method Specific Rules: "UnfoldConstraint
¥ Resource Rules: ReadyToGo, ReformUnnecessary, RequireReformUnnecessary
¥ Ordering Rules: MapConatraint1, MapConstraint2

Method Ordering: TIC(+3), CPC(+2),UC(+2)

Step 4.10: Map require ~P after ThisEvent
Candidate Set

O CPC: CasityPosConstraint ( + 2 CasifyCompiexConstruct) (> MapConstraint1)
O MCTA: MoveConstraintToAction
D NXUX: NotXUntilX
O TIiC: TriggerimpliesConstraint
O UC: UnfoldConstraint { + 2 *UC) (< MapConstraint1)

» General Rules: CasityCompliexConstruct

¥ Method Specitic Rules: *UnfoldConstraint

» Ordering Rules: MapConstrainti
Method Ordering: CasifyPosConstraint(+ 2), UnfoidConstraint( + 2)

Step 4.11: Casify require ~P after ThisEvent
Cendidate Set
D BinarySpilit ( + 1 ReadyToGo) {-2 "BinarySplit2)
D Pastinduction
D CasifyFromUntilEverConstraint X

D CasifyAroundEvent ( + 1 ReformUnnecessary) (+ 1 RequireReformUnnecessary)

® Method Specliic Rules: *BinarySpliit2
» Resource Rules: ReadyToGo, ReformUnnecessary, RequirteReformUnnecessary

Method Ordering: CasifyAroundEvent(+ 2), {Pastinduction(-), CasityFromUntilEverConstraint(-)}

Step 4.12: Map require ~P after ThisEvent until E
Candidate Set
D CasityPosConstraint { + 2 CasifyComplexStructure) (> MapConstraint1) (¢ MapConstraint2)

D MoveConstraintToAction

AR SRS

RO AR G {}L.ﬂk"\. DY ‘}H :s.m-c\.' '3

~‘ -'\‘L#

‘o




R »

A A A A A IR T A R AR AR IR |

PAGE 338 METHOD SELECTION OVERLAY ) |
0 NotXUntilX { + 1 ReformUnnecessary) ( + 1 RequireReformUnnecessary) (> MapConstraint2) -
O TriggerimpliesConstraint .-

O UnfoldConstraint { + 2 *UC) (< MapConstraint1) (< MapConstraint2)

» General Aules: CasityComplexConstruct
¥ Metnod Specific Rules: ReadyToGo, ReformUnnecessary, RequireReformUnnecessary =
» Ordering Rules: MapConstraint1, MapConstraint2 .
Method Ordering: NotXUntilX( + 2), CasifyPosConstraint( + 2), UnfoldConstraint( + 2) "
Step 4.13: Map ~PduringE i
Candidate Set ,
D CasifyPosConstraint { + 2 CasityComplexStructure) O MapConstraintt) %
O MoveConstraintToAction q

D NotXUntilX "

O TriggerimpliesConstraint

D UnfoldConstraint ( + 2 *UnofidConstraint) (< MapConstraint1)

» General Rules: CasityComplexConstruct '—‘:
» Method Specitic Rules: *UnfoldConstraint ™
» Ordering Rules: MapConstraint1 ::;
Method Ordering: CasityPosConstraint(+2), UnfoldConstraint( + 2), {MoveConstraintToAction(-), -
NotXUntilX(-), TriggerimpliesConstraint(-)} ‘\
N
Step 4.14: Casify require ~P during E
-
Cangidate Set a |
O BinarySpiit (+ 1 ReadyToGo) (-2 *BinarySpiit2) .
O Pastinduction ( + 1 ReformUnnecessary) { + 1 RequireRetorminnecessary) \
D CasityFromUntilEverConstraint -
D CasityAroundEvent '
¥ Method Specllic Rules: °BinarySplit2 : )
» Resource Rules: ReadyToGo, ReformUnnecesstry, RequireReformUnnecessary ':':
Method Ordering: Pastinduction(+ 2), {CasifyFromUntilEverConstraint(-), CasityAroundEvent(-)} -
=«
T 2 T L S A N e Y e e A D e e e D e S e e




D.4 Map DID_NOT_SET_SWITCH_WHEN_HAD_CHANCE

Step 4.15: Map require ~P at last update switch setting

CACACAS
PN

2

4
(]

™ gt

o

Candidate Set
0 CasifyPosConstraint { + 2 CasifyCompiexStructure) (> MapConstraint1) (¢ MapConstraint3)

0 MoveConstraintToAction ( + 1 ReformUnnecessary) ( + 1 RequireReformUnnecessary) O
MapConstraint3)

O NotXuUntilX

D TriggerimpliesConstraint

O unfoidConstraint ( + 2 *UnfoidConstraint) (< MapConstraint1)
¥ General Rules: CasityCompiexConstruct
> Method Specitic Rules: *UnfoldConstraint

» Resource Rules: ReformUnnecessary, RequireRefomljnnecessary

¥ Ordering Rules: MapConstraintt, MapConstraint3

Method Ordering: MoveConstraintTo. ction( + 2), CasifyPosConstraint( + 2), UnfoldConstraint( + 2),

{NotXUntiIX(-), TriggerimpliesConstraint(-)}

Step 4.16: Map require ~(start of ~P) between last update, E

YN
RAR

N
‘A-&‘.

N A

l."l.-' -
LN

[

, 'l:fc _.I ." .

.

S0

e
.

LN R
LAXX. -

o Yo
P

-""J’J t ’I‘ %

Candidate Set

D CasityPosConstraint ( + 2 CasityComplexStructure) (> MapConstraint1) (< MapConstraint2)
O MoveConstraintToAction
D NotXUntilX
O ShowNoChange { + 2 *ShowNoChange) (> MapConstraint2)
D TriggerimpliesConstraint .
O UnfoldConatraint ( + 2 *UnfoldConstraint) (< MapConstraint1)

> General Rules: CasifyComplexConstruct '

¥ Method Specific Rules. *ShowNoChange

¥ Ordering Rules: MapConstraint1, MapConstraint2
Method Ordering: ShowNoChange( + 2), CasifyPosConstraint( + 2), UnfoidConstraint( + 2)

Step 4.17: Show ~(start ~P) betweer last update, E

hal

LY

l.)'."f.:"

b :-)’. N Y

F 9

22 3TS

I d

A

»

'. " ...
e

>
R 3

e o

Sandidate Set
=)/




A i

-

o L
Forir i

oy o) .
- P X

2l

"2 %"l

AT AR A

¥

‘;.~_"’.;’.'-5.. fam

A Al Ay

LS

- \ v A" N - 3 .y.- }‘v.'.-...- 23 :J_‘_E v-‘ : *-v:.:.v-‘ ‘-. 7-_\--_..1 -F?-‘?'.'.'..:’-.":‘ v} bk )—-_.':151..1__#-;' o 4
PAGE 340 METHOD SELECTION OVERLAY

Step 4.18:(user) Map update of switch setting where P

Candidate Set
0 CNV: ComputeNewValue ( + 2 *"ComputeNewValue)

> Method Specilic Rules: *ComputeNewVailue

Method Qrdering: CNV(+2)

Step 4.19: Unfold switch set wrong for package at set switch

Candidate Set
D SCODR: ScatterComputationOfDerivedRelation ( + 5 *ScatterComputationOfDerivedRelation)

> Method Specilic Rules: *ScatterComputationOfDerivedRelation

Method Qrdering: SCODR(+5)

"N q, e tets ._,.'. e -

LTS

.'\..._-._. A et v e w -yw
ok W e \.‘:\.'f;.fa'};.':g.ﬁfa‘."\‘. POALY

AR A

|
¢ 4

a

SN

| A

"..P.'I ’ '.‘

=i

)
A

. | % o

B,

. -I_.{. .

AR

~11

. .
(4

4y
"~ an



| SUPRRALMMY ) CAAA

vy -

Bl Ve Bu®. "

aved T bR, ]

‘.-.-‘_ el A &

[ 7 § )]

SR ISV

‘l“ -
Ax

AR |

P

Oh' ~ 4!

.
NS S

54

L]
-

AN

“

4

.s.ls

D3 A

A

Yy

I‘ :'J".

[ E RN

POV

.

e
9,

“s “w
» 8
as

LA m? L Rt § 0 24 e®ne LW R SRS R . R T CHdE At CARRICEL LN IO AU P 1

D.4 Map DID_NOT_SET_SWITCH_WHEN_HAD_CHANCE PAGE 341

D.5. Map PACKAGES_DUE_AT_SWITCH

Step 5.1:(user) Map packages_ due_at switch (pdas)
Candigate Set
O MDR: MaintainDerivedRelation ( + 2 “MaintainDerivedRelation) O MapDR2a)
D UDR: UnfoldDerivedRelation { + 2 *UnfoldDerivedRelation1) (< MapDR2s)
» Method Spechic Rules: °*MaintainDerivedRelation, *UnfoldDerivedRelation1
» Ordering Rules: MapDR2a
Method Qrdering: MDR(+2), UDR(+2)

Comment: Currently, the system has no mechanism for computing the
lefthandside of MapDR2, i.e. it is up to the user to determine the cost of
computing the relation.

Step 5.2: Maintainincrementally pdas
Candidate Set
0 IntroduceSeqMaintenanceDemon { + 1 DemonsAreGood) ( + 1
*IntroduceSeqMaintenanceDemon) ( + 1 ReformuUnnecessary) (¢ MaintDR1)
D ScatterMaintenanceForDerivedRelation { + 2 *SMFDR) > MaintDR 1)
» General Rules: DemonsAreGood
> Method Speciic Rules: °*introduceSeqMaintenanceDmeon, *ScatterMaintenacneForDerivedRelation
» Resource Rules: ReformUnnecessary

» Oroering Rules: MaintDR1
Method Ordering: SMFDR(+ 2), ISMD(+3)

Step 5.3: Fiatten pdas

Candidate Set
O Fiatten ( + 2 *Flatten)

> Method Specliic Rules: °*Flatten
Method Ordering: Fistten(+2)

Step 5.4: Map location_on _route_to_bin

Candidate Set
O StoreExplicitly ( + 2 "StoreExplicitly) O MapDR 1a)

> 3 % 5 p_B_¥

o .."‘-’- ) T AT AT AT IR T I AL L S Y S NP IR P s S
) RCS Y VO OO SR I R AR S L S OR TN O U A SO

KR RN



v LIt A N 0t N At e S x‘_\“:.*
IR T L R S TRt St S

PAGE 342 METHOD SELECTION OVERLAY | -
D UntoidDerivedRelation (-2 *UnfoidDerivedRelation2) (< MapDR1a) -
> Method Specilic Rules: *StoreExpiicitly, *UnfoldDerivedRelation2 -,
» Ordering Rules: MapDR1a .-
Method Ordering: StoreExplicitly(+2) e
Step 5.5: Map misrouted
Candidate Set
D) MDR: MaintainDerivedRelation ( + 2 *MaintainDerivedReiation) (< MapDR2b) i
D UDR: UnfoldDerivedRelation ( + 2 *UnfoldDerivedRelation1) O MapDR2b)
. '.:
> Method Specitic Rules: *MaintainDerivedRelation, *UnfoldDerivedRelationt e
» Ordering Rules: MapDR2b
Method Ordering: MDR(+2), UDR(+2) e
Step 5.6: Unfold misrouted at pdas N\
Sandidate Set )
D SCODR: ScatterComputationOtDerivedRelation { + 5 *ScatterComputationOfDerivedRelation) .
)
Cu
» Method Specitic Rules: °*ScatterComputationOfDerivedRelation
Mathed Orering: SCODR(+5) A\
l-:.
Step 5.7: Flatten pdas "
N
Candidate Set
O Fistten (+ 2 “Fiatten)
=
> Method Specific Rules: °Flatten
Method Qrdering: Flatten(+2) o
Step 5.8: map switch_set wrong for package = ‘l
!
Candidate Set q
0 MOR: MaintainDerivedRelation ( + 2 *MaintainDerivedRelation) (¢ MapDR2b) "
"\‘ 1
O UDR: UnfoldDerivedRelation (+ 2 *UnfoldDerivedRelation1) (> MapDR2b) o
> Method Specilic Ruies: *MaintainDerivedRelation, *UnfoldDerivedRelation - |
» Oroering Rules: MepDR2D -
Mathod Ordering: UDR(+2). MOR(+2) | -
Lo
J‘.‘

A T T o W7 T L W A AN



D.5 Map PACKAGES_DUE_AT_SWITCH PAGE 343

o A

Step 5.9: Unfoid switch set wrong_for_package

A et . &R anmmm e e

- Candidate Set
~ D SCODR: ScatterComputationOfDerivedRelation ( + 5 “ScatterComputationOfDerivedRetation)
N > Method Specific Rules: °ScatterComputationOfDerivedRelation
= Method Qrdering: SCODR(+5)
o Step 5.10: Purity loop in create package
. Candidate Set
| O PurifyDemon ( + 2 *PurifyDemon)
B3 > Method Specitic Rules: *PurityDemon
he Method Ordering: PurifyDemon(+2)
. Step 5.11: Remove loop from create package
~ Candidate Set
:.' D BabyWithBathWater
rS
* BWBW1: Y bound to atomic (-2 *BabyWithBathWater3)
g * BWBW2: Y bound to demon (-2 *BabyWithBathWater3) #
- D RFD: RemoveFromDemon ( + 2 *“RemoveFromDemon) (¢ RemAct1)
Y
N O RUA: RemoveUnusedAction ( + 2 *RemoveUnusedAction2) (> RemAct1)
", » Method Speciiic Rules: *BabyWithBathWater3, *RemoveFromDemon, “RemoveUnusedAction2 |
o » Ordering Rules: RemAct1
o Method Ordering: RUA(+2). RFD(+2) )
"y
. Comment: The system does not have the necessary knowledge to
cetermine what code can be simplified away and what must remain.
) Because of the Dig gain in problem solving costs, the system always
:."*. suggests blowing away unfoided code before moving it about. Here, the
’ introduced loop Is necessary and hence must be removed lrom the
e demon.
E Step 5.12: Gilobalize loop in create package
~ Candidate Set
- D GiobalizeAction (+ 2 *GlobalizeAction)
" ¥ Method Speciiic Rules: "GlobalizeAction
T Method Ordering: GlobalizeAction(+ 2)
e
L]
L}
-
Py
a

R T R LT TATRISIRIRY



...... oyt .VF-‘-."-'.‘:‘.‘-'.‘-V‘\':-.'-'.-‘.'.‘-':-‘T
-t
s
) —
PAGE 344 METHOD SELECTION OVERLAY nk
Ta :
e R
.y
13 . :
i Step 5.13: Unfold atomic
o Candidate Set -
N D UnfoldAtomic (+ 5 *UnfoldAtamic)
' 4 » Method Specific Rules: *UnfoldAtomic _;
Method Ordering: UnfoldAtomic(+S5)
>
Step 5.14: Purify conditional in move_package b
Candidate Set i
D PurifyDemon ( + 2 *PurityDemon)
(9.
» Method Specitic Rules: *PurityDemon -
Msthod Ordering: PurifyDemon(+2) N
Step 5.15: Remove conditional in move_package e
Candidgte Set ~
O BabyWithBathWater M
* Y bound to stomic (-2 “BabyWithBathWaterd) -
* Y bound 1o demon (-2 “BabyWithBathWater3)
T RemoveFromDemon { + 2 "RemoveFromDemon) (< RemAct2) w7
\ -
O RemoveUnusedAction ( + 2 *RemoveUnusedAction2) (> RemAct1) :
» Method Specific Rules: *BabyWithBathWater3, “RemoveUnusedAction2, *RemoveFromDemon ;}

¥ Ordering Rules: RemAct1

Method Qrdering: RUA(+2). RFD(+2) 2
=

Comment: See comments at 5.11

Step 5.16: Giobalize conditional in move_package

Candidate Set o
D GlobalizeAction ( + 2 *GlobalizeAction) ' ﬂ
» Method Specliic Rules: *GlobalizeAction -': ;
’
Mathod Ordering: GlobalizeAction(+2) »h :
s
Step 5.17: Unfold atomic a
£ \
P
A
!

~

. [ e vamat e .

- - ". LY » . . - - » - - - -
" R R R A AL A AN A

PO, Tl Pl SO M. S i, Sl WAL SRR, Y

. ‘..‘-,"-...... e
L. .



LS A SR NN g )

&

-

o

s

e &

o'\'l :lc' .q'fv'-.o

RE RASMALRACRASI B 49 ) A T b A i oA sl S A e s i LUl gl n ) (3 e 5084

D.5 Map PACKAGES_DUE_AT_SWITCH

Candidate Set
D UntoldAtomic ( + 5 *UnfoldAtomic)

» Mathod Specific Rules: *UnfoldAtomic
Method Ordering: UnfoldAtomic(+S)

Step 5.18: Casify package leaving sensor
Candidate Sei
DO CasitySuperTrigger ( + 2 *CasifySuperTrigger)

> Method Specific Rules: *CasifySuperTrigger
Method Ordaring: CasitySuperTrigger(+2)

Step 5.19: Casify package entering sensor
Candidate Set
D CasitySuperTrigger ( + 2 *CasitySuperTrigger)

» Methoo Specific Rules: *CasitySuperTrigger
Method Ordering: CasifySuperTrigger(+2)

R TR R St

\ ‘\
o *M.&.AMM.MJ Ny

:-\n-.!.. -

':nf.m'f \. \."\. \"\.‘.

TEUSY ‘_v..". i‘:T}‘T_J‘W:-'\-

PAGE 345

ﬁ ~ > L Wy
LU




AIVYE  DRZCRSRE  JAAAS

a8 .
)

»

o
P A

WY

v

S W

PAGE 346 METHOD SELECTION OVERLAY

D.6. Map Demons

Step 6.1:(user) Map set switch
Candidate Set
O CD: CasifyDemon ( + 2 CasifyComplexConstruct) ( + 2 *CasifyDsmon)
O MapByConsolidation
* MBC1: D2 bound to release package_into_network ( + 1 "MBC1)
* MBC:2 D2 bound to package entering switch (+ 1 "MBC1)
* MBC3: D2 bound to package entering bin (+ 1 "MBC1)
* MBC4: D2 bound to package leaving switch (+ 1 “MBC1)
* MBCS. D2 bound to package leaving bin (+ 1 "MBC1)
* MBCS: D2 bound to init,memo (+ 1 *MBC1)
* MBC7: D2 bound to misrouted_package reached bin
* MBCS: D2 bound 10 create package (-2 *MBC4) ( + 1 "MBC2)
* MBCS: D2 bound to move package (-2 *MBC4) ( + 1 *MBC2)
0 UD: UnfoidDemon (+ 1 *UnfoidDemon)
> General Rules: CasityComplexConstruct
> Methoo Specitic Rules: *CasifyDemon, *"MBC1, "MBC2, *MBC4, “UnfoidDemon

Method Ordering: COD(+4), {MBC1(+ 1), MBC2( + 1), MBC3( + 1), MBCA( + 1), MBCS5( + 1), MBCE( + 1),
UD(+ 1)}

Step 6.2: Casify set switch
Candidate Set
D CCT: CasifyConjunctiveTrigger ( + 2 *CasifyConjunctiveTrigger)

> Method Specific Rules: *CasityConjunctiveTrigger
Method Ordering: CCT(+2)

Step 6.3: Map set switch when bubble package (sswbp)

D CD: CasityDemon
D MapByConsolidation
o e e e e e er e e et e e e e et N e T T e T e e e T
R e T S A S AAIVE LI G L S ¥ Yo U SN SIS 3 LV o ) u.!u:‘-

i e R B e e O T T e L
S N N I T T ©

| S

LR
LB N

=t o

TNAD

2

»

-
P

oA

].
!



PRyt b ia e e Bie e SAu 20 AR ACR A Taca

OSSN Sl Ml Nt Sl RESERER LA L PN SN NI G Y St int A e et N AL b IS AR

* MBCS: D2 bound to create package (-2 *MBC4) (+ 1 *“MBC2)

N LK D.6 Map Demons PAGE 347 |
. : :
" . .1‘
' .
* MBC1: D2 bound to release package_ into network (+ 1 “MBC1) .

! L]
. * MBC:2 D2 bound to package._entering switch (+ 1 *MBC1) )
1 :: . .:
. ‘ * MBC3: D2 bound to package entering bin (+ 1 *MBC1) N
L * MBC4: D2 bound to package leaving switch (+ 1 *MBC1) §
) * MBCS: D2 bound to package leaving bin (+ 1 *MBC1) i

AN . . 3
N * MBCS: D2 bound to init memo (+1 *MBC1) b
" - "
> * MBC7: D2 bound to misrouted_package_reached_bin K
" .“‘ * MBCS: D2 bound 10 set switch_on exit ( + 1 *"MBC1) (-2 *MBCS) y
5

|

* MBC10: D2 bound to move package (-2 "MBC4) (+ 1 "MBC2)

O an g
- ‘-‘
i
ey

D UD: UnfoldDemon ( + 1 *UnfoldDemon)

.

» Method Specilic Rules: *MBC1, "MBC2, "MBC4. *"MBCS, "UnfoldDemon
Method Ordering: {MBC1{+ 1), MBC2(+ 1), MBC3( + 1), MBCA( + 1), MBCS( + 1), MBCS( + 1), UD(+ 1)}

."
LI 2
.

4

5
Yoo Comment: User determines that consolidation doesn't look promising.
:. Unfoiding a demon is a strategy that in general always works. It is often
' not a great choice because of the necessary work of opotimizing the
. . unfolded coode. Here it is about the only choice.

! ¥
‘o]
2 Step 6.4: Unfold sswbp at release_package_into_network

o

Candidate Set
- D ScatterComputationOfDemon ( + 5 *ScatterComputationOfDemon)
)

14
iy f » Method Specilic Rules: *ScatterComputationOfDemon

:: 3 Method Ordering: ScatterComputationOfDemon( +5)

! (%

. .. Step 6.5: Factor update of packages due at switch

N Condidate Set |

o . D FactorDBMaintenancelintoAction (+ 1 ReadyToGo) ( + 2 “FactorDBMaintenancelintoAction)
= E » Method Specific Rules: *FactorDBMaintenanceintoAction
A ¥ Resource Rules: ReadyToGo

) f.'; Method Ordering: FactorDBMaintenanceintoAction{+ 3)

. I Step 6.6: Map set_switch_on exit
\ ot \.
Y .'j

VI
-

q
My 7
Ko .7

v G.T\" a® a® ol 0¥ o* -\'\ A 1.-\- A G N -..- N o
AN I PAREILN ARG HEN "‘..' ISR N



- “r"r"‘g' (‘l’ I"‘P.JW‘

PAGE 348 METHOD SELECTION OVERLAY

Candidate Set
D CD: CasifyDemon

D MapByConsolidation
* MBC1: D2 bound to release package_into network (+ 1 *MBC1)

* MBC:2 D2 bound to package _entering switch ( + 1 *“MBC1)

* MBC3: D2 bound to package entering bin (+ 1 *MBC1)

* MBC4: D2 bound to package leaving switch (+ 1 *"MBC1)

* MBCS: D2 bound to package_leaving bin (+1 *MBC1)

* MBCS: D2 bound to init. memo (+ 1 "MBC1)

* MBC7: D2 bound to misrouted_package reached bin

* MBCS8: D2 bound to create package (-2 "MBC4) (+ 1 "MBC2)

* MBC9: D2 bound to move package (-2 *MBC4) (+ 1 *MBC2)
D UD: UnfoldDemon (+ 1 *UnfoldDemon)

> Method Specitic Rules: *"MBC1, *"MBC2, “MBC4, *UnfoldDemon
Method Ordering: {MBC1(+ 1), MBC2( + 1), MBC3{ + 1), MBC4( + 1), MBCS( + 1), MBCE( + 1), UD(+ 1)}

Comment: Again up to the user to find a promising consolidation demon.
in this case, a leve! of indirection is invoived vis a vis the derived relation
SWITCH IS EMPTY.

Step 6.7: Consolidate set_switch on_exit and package_leaving_switch
Candidate Set
D MergeDemons ( + 5 "MergeDemons)

> Method SpectHiic Rules: *MergeDemons
Method Ordering: MergeDemons(+5)

Step 6.8: Equivalence triggers
Candidate Set

D Anchor1 (+ 2 "Anchoric)
D Anchor2

» Method Specllic Rules: *Anchoric
Method Ordeting: Anchori(«+2), Anchor2(-)

Comment: Note that the selsction rule *Anchoric focuses the user's

'

I AN A e e L e L T et .
E.?ﬂ.a‘.‘i’.a_ et r_«m‘;(..-._ e o .:f.&}.’.:.:;J_Z-!_.'J..":"f_'..{.'afti.'_\f» AV N VO

..\ ~

AL

' e

e

el dusteniinemat

te T Y
PR
. e

v e
Pl

|

Al

=
ﬁ
"
»n
~
-
X “-1
., B
N
N
N,
O



D.6 Map Demons PAGE 349

L
s
o
< N attention in the right place, the body of SWITCH IS EMPTY. Currently,
- the user is required to carry on from here in regards to the evaluation of
promising.
»
::'«
Step 6.9: Reformulate switch _is_empty as expression
DT Candigdate Set
B D ReformulateDerivedRelation ( + 2 *ReformulateDerivedRelation)
.. |
:u: > Method Specitic Rules: *ReformulateDerivedRelation I
Method Ordering: ReformulateDerivedRelation(+ 2)
N
Step 6.10: Unfold switch is empty in trigger
b Cendidate Set
D ScatterComputationOfDerivedRelation (+ 5 *ScatterComputationOfDerivedRelation)
i > Method Specilic Rules: *ScatterComputationOfDerivedRelation
- Method Qrdering: ScatterComputationOfDerivedRelation(+5)
3 o
Ry Step 6.11: Reformulate existential as universal

Candidote Set
O ReformulateExistentiaiTrigger ( + 2 *ReformulateExistentialTrigger)

21

';.’: » Method Specitic Rules: *ReformulateExistentialTrigger
o Method Ordering: ReformulateExistentislTrigger(+2)
“‘

~ , .

oy Step 6.12: Eguivalence two declarations

~ Candidate Set (Problem Solving Abridgemem).

~

o O Anchor1 (+ 2 *Anchor1a) (€ EquivVvarsi)

- D Anchor2 ( + 2 *Anchor2a) (> EquivVars1)

I" M

'f .

ot » Method Specitic Rules: *Anchoria, *Anchor2a

o > Orgering Rules: Equivvarsit

Ae

| &} Msthod Ordering: Anchor2(+ 2), Anchori(+2)

- Step 6.13:(user) Map misrouted_package reached bin

Candidate Set
D CD: CasityDemon ( + 2 CasifyComplexConstruct) (+ 2 "CasityDemon1)




PAGE 350 METHOD SELECTION OVERLAY

O MapByConsolidation
* MBC1: D2 bound to release_package_ into network ( + 1 *“MBC1)

* MBC:2 D2 bound to package entering switch ( + 1 *MBC1)

* MBC3: D2 bound to package entering bin (+ 1 "MBC1)

* MBC4: D2 bound to package_leaving switch (+ 1 *“MBC1)

* MBCS: D2 bound to package leaving bin (+ 1 *“MBC1)

* MBC6: D2 bound to init memo (+ 1 “MBC1)

* MBC7: D2 bound to misrouted package_reached bin

* MBC8: D2 bound to create package (-2 *“MBC4) ( + 1 *MBC2)

* MBCS: D2 bound to move package (-2 "MBC4) (+ 1 *MBC2)
D UD: UnfoldDemon ( + 1 "UnfoldDemon)

¥» Methoo Speciic Rules: *CasityDemoni, *MBC1, "MBC2, *MBC4, *UntoldDemon
Method Ordering: CD(+4), (MBC1(+ 1), MBC2( + 1), MBC3( + 1), MBC4( + 1), MBC5( + 1), MBCB( + 1),
UD(+ 1)}

Step 6.14: Casity misrouted package_reached_ bin
Candidate Set
D CasityConjunctiveTrigger ( + 2 *CasityConjunctiveTrigger)
> Method Specific Rules: *CasityConjunctiveTrigger
Method Ordering: CasifyConjunctiveTrigger(+2)

Step 6.15: map misrouted package_located_at bin
Candidate Set
O CD: CasityDemon

D MapByConsolidation
¢ MBC1: D2 bound 1o release_package into network

* MBC:2 D2 bound to package_ entering switch
¢ MBC3: D2 bound 1o package_entering_bin (+ 2 *MBCS)
* MBC4: D2 bound to package_leaving switch

* MBCS: D2 bound to package_leaving bin

WO AN AN DI AT IS

LEG

NiF-|

e e
» » 3

N M,y e
}.\\‘.I.‘. Y \',.-:“:'.\..'.-1



F DL R

&I‘

Fal et

il ) -t M, A

A A A

I

8y

="

AR

4 » . N
) Eat o/ et Rt A A A St Jlar A S A gy T T L T T T T T e T e el

D.6 Map Demons PAGE 351

* MBCS6: D2 bound to init memo

* MBC7: D2 bound to misrouted package reached_bin

* MBCB: D2 bound 1o create package (-2 *MBC4) (+ 1 "MBC2)

* MBC9: D2 bound to move package (-2 *MBC4) ( + 1 “MBC2)
0 UD: UnfoidDemon (+ 1 *UnfoldDemon)

> Method Specific Rules: *MBC2, *MBC4, "MBCS, *UnfoldDemon
Method Ordering: MBC3(+ 2), UD(+ 1), {MBC1(-), MBC2(-), MBC4(-), MBCS(-), MBCS(-). MBC7(-)}

Step 6.16: Consolidate misrouted package located_at bin and
Condidate Set
O MergeDemons (+ 5 "MergeDemons)

» Method Specitic Rules: *MergeDemons

Method Ordering: MergeDemons(+S5)
» Action Ordering Rules: TriggersAimostEquiv

Step 6.17: Equivalence declaration lists
Candidate Set
D A1: Anchort
O A2: Anchor2
0O ECS: EquivalenceCompoundStructures2 (+ 2 *ECS2)

> Method Specific Rules: *ECS2
Method Ordering: ECS2(+2)

Step 6.18: Equivalence bin.reached and bin
Candidate Set
O Anchort (+ 2 *Anchor1a) O Equivvars1)
D Anchor2 ( + 2 *Anchor2a) (€ Equivvars1)

» Method Specific Rules: *Anchoria, *Anchor2a

¥ Ordering Rules: Equivvars1
Method Ordering: Anchori(+2), Anchor2(+2)

‘. .. ‘e . 'l . " s “n N T Y ) Al - - - v - . -
e L S A N e Pa e Ta ¥ < P Ry
LA YA S RS0 S "\é.n. .r_\e"'\i'“-} A R

' *p *

aA_A_ s @ 2



-, e - . K. I I L SR S A Sl \ T Y S TR S )
AN LR R G RN CORME L S S TO R AR O SR A

PAGE 352 METHOD SELECTION OVERLAY

Step 6.19:(reposted) Equivalence declaration lists
Candidate Set
0 A1: Anchort
0O A2: Anchor2
DO ECS: EquivalenceCompoundStructures2
D ANV: AddNewVar ( + 2 *AddNewVar)

> Method Specific Rules: *AddNewVar
Method Ordering: ANV(+2)

Step 6.20: Map misrouted package destination set
Candidate Set

DO CD: CasityDemon

O MapByConsolidation
* MBC1: D2 bound to release package into network (+ 1 "MBC1)
* MBC:2 D2 bound to package entering switch (+ 1 “MBC1)
* MBC3: D2 bound to package entering bin (+ 1 “MBC1)
* MBC4: D2 bound to package leaving switch (+ 1 *"MBC1)
* MBCS: D2 bound to package_leaving bin (+ 1 *MBC1)
* MBCS: D2 bound to init memo (+ 1 *MBC1)
* MBC7: D2 bound to misrouted package reached bin
* MBC8: D2 bound to create package (-2 *MBC4) (+ 1 °MBC2) ‘
* MBCS: D2 bound to move package (-2 "MBC4) ( + 1 *"MBC2)

0 UD: UnfoldDemon (+ 1 *UnfoldDemon)

> Method Specitic Rules: *MBC1, *"MBC2, *MBC4, *UnfoldDemon

Method Ordering: {MBC1(+ 1), MBC2( + 1), MBC( + 1), MBCA( + 1), MBCS( + 1), MBOS( + 1), UD(+ 1)}

Comment: See 6.3

Step 6.21: Unfold misrouted package destination set

Candidate Set
[ ScatterComputationOfDemon ( + 5 *SCOD)

u:
o

[

-~
AP AN




‘3 NN, SRS et e PR AT A A P Bt LR g e e ) Ry AR e N P A i A 2 M B

Ca A a

0.6 Map Demons PAGE 353

\

Y

j ;-_ » Method Specific Rules: *SCOD
N

Method Ordering: SCOD(+$)

-h
AJ
+

i
[} -
b
o l-‘

o
hy =%
.
]
y Y
i~
. ;'-j
. [ el
B .
I
AR
A g4
.
s \.'
AR
Ky
W
2 Py
- o
]
¢

LAY ST
-
L) ‘




N . SRR YA XA BT | OO DA XA - 25 BTSN XSRS T R PR | . NERSIR § 0)

GOAL DESCRIPTORS

PAGE 354

NN TR i i R S e T R P TRk




g y

i E Goal Descriptors | PAGE 355 :

P Y \

2 3

3 :
3

&y o .

. Appendix E

b o Goal Descriptors

A

In this Appendix, we will present the set of goal descriptors that make up Glitter's
development vocabulary. We have attempted to define a genera/ set of descriptors, distilling
the essential semantics of a development goal and avoiding special cases. For instance, one
of the goals cf the language is Remove. Thig goal takes as an argument an arbitrary program
structure. We do not define a separate goal for removing particular structures:
RemoveRelation, RemoveDemon, etc.

. el
8 e"a"s"aT
»

e

TZLEY
Froh

-

»

With each descriptor will be given a textual description followed by several examples of the

,
? f:: descriptor in use. Heading each example section is & list of the steps in the router
Ny - - development (appendix C) where the goal is explicitly used; goals trivially satisfied in the
n router development (i.e. achieved within the posting state) do not show up explicitly either
Al iy here or in the development. In some cases, we have taken examples from other developments
N .- including the following:
“a 1. Text preprocessor. The first development attempted using Glitter. The problem is
. the optimization of a procedure which cleans-up a message body before sending
e Ty it through an analyzer. Portions of the development are reported in [Balzer
* 2. 76, Wile 81a). This development will be denoted as Text Preprocessor.
§ " 2.Line drawing algorithm. This hand development of a graphics line drawing
o algorithm was reported by Sproull [Sproull 81]. it offers a slightly different view of
o several development concepts. We will denote this development as Line Draw.

a

3. Heap sort development. No research into automatic program development would
be complete without at least one sort example. This one is taken from some
unpublished notes of Tim Standish. We will denote this development as Heap
Sort.

P

‘-".'
.

We use these different examples to provide explanation variety; only the Package Router and
Text Preprocessor have been developed using Glitter.

-
o

~a

.

Nt
f\

™ Finally, we will simplify the goal posting notation to that used in Appendix B.

AT
h Yo

N S AL RIS S A e v 4 1V, g S



PAGE 358 - GOAL DESCRIPTORS

E.1. Casify

Casify(Clconstruct)

Achievement Condition: C is replaced with {C1...Cn}

Goal Description: this is the driver behind divide-and-conquer strategies. A complex
structure can often be broken out into several simpler components. However, while the case-
analysis concept is a powerful one, the real ingight comes from selecting the right partitioning
elements. The user is generally relied on to make this selection.

......................... Examples of US® cvccceccecccnaccencnenc..

Router References: 4.8, 4.11, 4.14, 5.18, 5.19, 6.2, 6.14

Example A

Router Reference: 4.11

Development context: section B.4 of the router development points out the probiem of
working with complex, temporally-modified predicates. At step 4.10, the following constraint is
marked for mapping:

reaguire (~(package:LOCATED_AT = switch

and
SWITCH_SET_WRONG_FOR_PACKAGE (switch,package))
after ThisEvent

In this example, ThisEvent can be interpreted as the current time. Abstractly, we have

require P from pow on)
Step 4.11 attempts to simplify the mapping problem by suggesting that the single constraint
be broken out into several cases. Once the Casify goal is posted, the remaining problem is
choosing the best case-analysis method. In this example, a method is chosen which casifies

around some future event E (Chosen by the user):
Lequire P from now um..u E):

a4

| F

] g

PO
.
B S,

saiodmabiondNIS o st 2 SN Bl colhnclhnll,

v v 5 .
NN

La

ot L

AP SR



]

T

KA R i Rl Il A R i ATt st et s i JRatb it it P i~ 0k - S e Ta T T IR ARSI I S J D T b St R it o SP N aPl g R
o . - - - ~ - .. .. . - -

.....

A .

E.1 Casify PAGE 357

The time requirement is split into the period before, during and after E. Of course, the
effectiveness of casifying here depends on the correct choice of E. In this case E was chosen
as the time the package was located at the switch, allowing is to straightforwardly get rid of
the first and third cases and center our attention on the second, linchpin requirefr\ent.

i
;
j

Example B

Router Reference: 5.18

Development context: while the use of abstraction may lead to a more perspicuous initial
spec, the development may require specific cases to be broken out. Such is the case in step
5.18: an abstract (a.k.a. Super) type SENSOR has been defined in the initial spec. Further, a
demon has been defined that triggers on a package leaving a sensor.

demgn PACKAGE_LEAVING_SENSOR(package, sensor)
iriggér ~package:LOCATED_AT = sensor

L]
5}3 response pwll;
)
" In section § of the development, it becomes useful to know which type of sensor (SWITCH or
! ;: BIN) a package is leaving. The case-analysis method chosen hinges on the subtypes of
=~ SENSOR, producing two new demons:
i
. demon PACKAGE_LEAVING_SWITCH (package, switch)
o trigger ~package:LOCATED_AT = switch
response pull:
' :;: gemon PACKAGE_LEAVING_BIN(package, bin)
o lrigger ~package:LOCATED_AT = bin
response null;
;":
=
-
= Example C
‘ Router Reference: 6.13
o
-y
b
¢
e
Py
s ISP TR NI N M ot a” . ‘e .- - - AN . L - "4 e T ® wm w e = . . c o r L e @ % _ e . & s
MY b L N e s e e e o 8 e LN




WL T N T WL W T (T L W Fa e e v AT AR TR N T T T < S A4 EAyn i S el A A ol et gl ~

PAGE 358 - GOAL DESCRIPTORS ) 1

Development context: the triggering of a constraint or demon may depend on the
occurrence of any one of a number of events. It is sometimes useful to break out the events
into individual cases, and treat each one separately. Such is the case in step 6.13, the

\
_\1 mapping of the demon MISROUTED_PACKAGE_REACHED_BIN (note that Gist variable
convenetions do not allow bin.reached and bin.intended to be boudn to the same physicia
bin):
o
a;':j !
% :
i~
N demon MISROUTED_PACKAGE_REACHED_BIN(package, bin.reached, bin.intended ) o
lrigger package:LOCATED_AT = bin.reached ]
) and
'f;‘i, package : DESTINATION = bin.intended -2
‘-j:.:: response invoke MISROUTED_ARRIVAL (bin.reached, bin.intended) j
SR -
s
w .
‘_, The necessary conditions for triggering this demon are either 1) a package enters a bin or b) -
.P{“ the destination of a package is set®s, Breaking the demon into these two cases facilitates o
T further development: the second case cannot be satisfied and hence only the first need be
N considered (in its now simplified form): ~
e ’
.
Y
l :" 5'
N demon MISROUTED_PACKAGE_LOCATED_AT_BIN(package,bin.reached,bin-intended) o
' Yrigger package:LOCATED_AT = bin.reached
S Lesponse
1f (package:DESTINATION = bin.intended N
y :ﬁ' at ThisEvent); ' o
ool then invoke MISROUTED_ARRIVAL (bin.reached, bin.intended) ;
LS P
B demon MISROUTED_PACKAGE_DESTINATION_SET (package,bin.reached,bin-intended) =
o trigger package:DESTINATION = bin.intended
o response
if (package:LOCATED_AT = bin.reached .
e at ThisEvent); -
o', then invoke MISROUTED_ARRIVAL(bin.reached, bin.intended) ; .
| ]
" -
Ale
\ o
€5 o0
.%5 =
i
’:q: s \“_.
-f.:- That these two events cannot happen simultangously is something that must be shown later in the development.
e ~
o N

........ . v . - - - - - - - -
A SR AL SRS R R R G L P R L e e e e h e e s
PPN A0 AT AT @HMJ?&&.‘S&;) AR T S Sl T T SRV RN R TS A LIRS |




A 'l A Pl AN AN AT i PG L N R R I e U R I A T S B ART AL AR « e Tt at. e W

P :
2 E E.1 Casify PAGE 359 a
3 i :
‘ « -‘\ :
v Example D ;
+ . " !
2 Router Reference: Text Preprocessor p
. N

¥ 5 ;
o Development context: a portion of the Text Preprocessor is given below. The following i
b - actions are performed on a sequence of characters Text: 3
. J- D », if the current character is a linefeed then replace it with a space. 5
? > 3
v ]
> ' D >2 if the current character is not an alphanumeric or space then remove it from

o Text.

, or, if the current character is redundant (i.e. a space preceded by a space) then

- e remove it from Text.

1

loop Char in Text

o gdo begin

q t}‘ ’ if lineteed(Char then invoke REPLACE(Char, space, Text);

R ’, if ~(alphanumeric(Char) or space(Char))

4 then invoke REMOVE(Char, Text);

a B ’, if redundant(Char, Text)

e then invoke REMOVE(Char, Text);

4 end ...

R

RN

A [

MRS By using the Casify goal, we can add some structure which will facilitate further optimization.
" A We can embed the body of the loop within each case of a mutually-exciusive case statement
:5 (given that the user supplies the necessary pértitioning):
".' p.*‘ .

-

“u
<y
4
N
o
‘<!
‘*A
:: ol

0t




PAGE 360

GOAL DESCRIPTORS

_'LQ_Q_Q Char in Text do
mux-case Char
linefeed: begin

<

if linefeed(Char)
then invoke REPLACE(Char, space, Text);
if ~(alphanumeric(Char) or space(Char))
then invoke REMOVE(Char, Text);
redundant(Char, Text) then invoke REMOVE(Char, Text);

oty

b
jly

space:
linefeed(Char)

then jnvoke REPLACE(Char, space, Text);
~(alphanumeric(Char) or space(Char))

then invoke REMOVE(Char, Text):
redundant(Char, Text) then invoke REMOVE(Char, Text);

Bk B HEEP

alphanumeric: begin
if linefeed(Char)
then invoke REPLACE(Char, space, Text);
if ~(alphanumeric(Char) or space(Char))
then invoke REMOVE(Char, Text):
if redundant(Char, Text) then invoke REMOVE(Char, Text);
end
otherwise: begin
if lineteed(Char)
then invoke REPLACE(Char, space, Text):
if ~(alphanumeric(Char) gr space(Char))
then invoke REMOVE(Char, Text);
if redundant(Char, Text) then invoke REMOVE(Char, Text);
and
end-mux-case:

S

I_' .l./l ‘t

After further optimization, we have

.':. . n, .',4 E 'v"-‘ : r ‘,":'.'
AR, PP T LY. "IN Y DI - | ORI

............

'-.'-‘.'..'.‘"’ DA Sl P e i PO P I I N 4 N I I e e e e
m& -:f AN _L{z‘l..(h{l\.- )—{'h':ﬁ'."‘;ﬁ '."i":. ‘s N % _L'J_'J_'A_.f:i ' et o }fg_flf AN S



. E.1 Casify PAGE 361

Y b
» '_.‘ i
A .
. i
. -
~ :'.
h)
« o°
!
{ I

N loop Char in Text do ) j
mux-case Char :
linefeed: if predecessor(space, Char, Text)
SRR then invoke REMOVE(Char, Text)
» else invoke REPLACE(Char, space, Text); )
h . space: if predecessor(space, Char, Text) i
then invoke REMOQVE(Char, Text); '

; ':;‘ : alphanumeric: ;

oo otherwise: invoke REMOVE(Char, Text)
- gng-mux-gg;g:

%

W

'I-IJ

Ca.a

LS

L. i)
—

R

4
4 .
8
.
R
N
»
., s
.

-
s 2 AGEE A

N .

\ ; s
T '-\'

\J - -

* -

. i

é . ~‘ .1

-~ \

\

\

« N

S -

: L)

‘ !

:' . «

‘. " L]

- ~

N «

- .

an

.
¢ .
T .
« ‘-.‘ -
» " -
0 -
. :
{ 14
- !
Lo, .
) .

LIPSCINCIY } LGRS S SO B MO A R ORGP 0 L I e
I S A0 \_,-.,...\__\ .Y ve Uy N WA LAS SANE S N e

AN
- ety wl




s 854 2%V

PAGE 362 *  GOAL DESCRIPTORS

E.2. ComputeSequentially

ComputeSequentially(Ci|construct, C2lconstruct) -
Achievement Condition: C1 computationally precedes C2 :::E
Goal Description: C2 is an action that has the potential of effecting C1. We want to
guarantee that C2 does not effect C1. .
......................... Examples of Us@ ----vcev-recccccncene.... > |

,;: .
Router References: 2.6 AN
Example A E

Router Reference: 2.6

Development context: -
~u
<.
demon NOTICE_NEW_PACKAGE_AT_SOURCE(package) o
trigger package:LOCATED_AT = the source Y
Lesponse )

atomic ..

" update prev_package in PREVIOUS_PACKAGE(S) AR
10 LAST_PACKAGE(*): -

’, ypdate last_package in LAST_PACKAGE(S)

10 package IS
end atomic: &
demon RELEASE_PACKAGE_INTO_NETWORK (package.new) .
irigger package.new:LOCATED_AT = the source -
respopse -
b, if PREVIOUS_PACKAGE(®):DESTINATION # package.new : DESTINATION -
then WAIT[]: H

update :LOCATED_AT of package.new 10 (ihe source):SOURCE_OUTLET -
»

Here, relation PREVIOUS_PACKAGE is updated to LAST_PACKAGE(*). We want to insure
that a subsequent reference to PREVIOUS_PACKAGE can be replaced with

—
%

-.-

.

R T T T T T iy



AN B e A I R/ R N 0 » e AT PR NS S i ol P U B ) Qe iy e e R I et e e v e D e 2

.:‘

> Li E.2 ComputeSequentially PAGE 363
.

> - LAST_PACKAGE, i.e. that the value of LAST_PACKAGE has not changed between the time

- PREVIOUS_PACKAGE was updated and the time it is referenced. If there exists an action
N¢ that changes LAST_PACKAGE between these times, we want the action executed after the
reference. Above, b, points to the update of PREVIOUS_PACKAGE, ’, points to the change

P

2 4 o'm 3 4

S 1o LAST_PACKAGE which must be moved, and b, 1o the reference.
J Example B
<!
Router Reference: Text Preprocessor
f ’_$'
i During the development of the text-preprocessor, a state is reached containing the following
>, " program fragment:
L) \J
P N
\ i
> invoke REPLACE(Char newspace Text);
! ’, if predecessor(space, Chear, Text))
2T then invoke REMOVE(Char Text)
‘o end
P .
. N
. . That is, replace the current character Char with a space (»,). If the preceding character is a
N e space then remove the current character (»,). In only some cases we will be replacing Char's
o ” value only to remove it entirely later, i.e. those cases where Char's predecessor is a space. A
A 9
5 v general method says that if you can compute two actions sequentially and show the first is
- superseded by the second then you can get rid of the first.
~ 3
< D
'.: o To achieve the ComputeSequentially goal, we must distribute the call on REPLACE within the
A conditional:
_ ‘ 'p' egin
M) E- if predecessor(space, Char, Text)
o then begin
’ b1 invoke REPLACE(Char newspace Text);
o invoke REMOVE(Char Text)
A= end
. else invoke REPLACE(Char newspace Text);

end

A

-

B e ses s ARN
»

Finally, we can remove the first call to REPLACE b

&

4 .

........
............




R Pt S T AT A T B A Y PR A - LA
PN DRI R S R A R R

‘; PAGE 364  GOAL DESCRIPTORS
.
“
o
o if predecessor(space, Char Text)
A then invoke REMOVE(Char Text)
" else invoke REPLACE(Char newspace Text);
A end
-
A
\' .
o
\'-
i

"y AIAN

. e .‘

' R )
”»»
et W

P

e

)

]

L)

.
: LA
AT SFLF A oF A |

Y G

PSR

s

BEAARAN )

X/

oy

w
L
<3

.,v
.

v v AT N N - o

L I I
’ .

A

el

G

1 174

.":.".,.".

1ar-

A

iy |

&A.f:...:\ :.af.:.: °p fJ..f-..fi,:"_"-..fn.fnZ._f\ - :.'f\':._i:l':':.'L- :&ﬁ“\‘ \?.\ NS " A J'\ , .\.‘:J'_-"_- '.q\‘-' :I.':l\‘ RO



B E.2 ComputeSequentially PAGE 365

1 - E.3.Equivalence

‘ g Equivalence( Cijconstruct, C2|construct)
N »

Achievement Condition: C1 is gtructurally equivalent to C2.

Goal Description: Equivalency here is based on structural or pattern-match semantics (see
SRR also the Lisp function equals): if C1 and C2 are two expressions in one-to-one

e
AU PN
L |
& Ly <
X0l
B
o
l‘ .
d > B AN 2 Mk s AR AL A _Bota s s A-A---;-j

S . . _ . .

s correspondence, then C1 and C2 are equivalent. Note that in achieving this goal, there is no

N N requirement that either C1 or C2 remain anchored; both may change into some new common
L form.

3

it N

BN ™ eeseececcscscssssecssnans Examples of Use --cecrceecrecccoccnnaccn.

o

s Router References: 1.15, 2.10, 2.11,4.5,6.8,6.12,6.17,6.18, 6.19

} -

R4

R S‘S Example A

W N

.. 4

Router Reference: 4.5

Development context: when attempting to consolidate two structures, generally one or

::: more of the components of each must be made equivalent. In consolidating the two demons
» , .
at step 4.4, we find we must equivalence the two triggers (b, b,‘,) of the two demons:

#

3y o

? -

L~

N '.'-:

N g:. demon SET_SWITCH (switch)

», irigger RANDOM()

:, P
3
0y demon SET_SWITCH_WHEN_HAVE_CHANCE(switch, package)
X) é », trigger (package = first(PACKAGES_DUE_AT_SWITCH(*,switch))
< and
¥ SWITCH_IS_EMPTY (switch))
$ - response . .
' *-J
Al .
" In this example, », will be held constant (anchored) and », changed to match it. This strategy

v
¥
‘&
!

P PP A i R R RS A R ey B R O R R A AR A A A R R
AT AT S T () (Y G SO NGO £ PO S A TN A N N O



e W e e i A A A A R A R A S B P S I Ao b e NP A A RS RES |

.‘_:J o ) oo

4'.,:

A PAGE 366 . GOAL DESCRIPTORS ’ d

x}.-

2

h - was chosen because of the general ease with which RANDOM can be specialized. After

A

N consolidation we have i

) <

o o)
93

aD demon SET_SWITCH (switch, package

\..'_:: trigger (package = first(PACKAGES_DUE_AT_SWITCH(®*,switch))

N and

L SWITCH_IS_EMPTY (switch))

R response ...

‘ i

s

N .

\'f

\f Example B

. Router Reference: 2.10,2.11 g

) N .

i ‘l

: : Development context: equivalencing two compound structures is a frequently occurring ..

l 3 goal. For instance, in step 2.10 we wish to make two demon argument lists equivalent: '_Z

(package.new) is the first list and (package) the second. A useful method for achieving this

-
’
.
e

-' {.j goal employs a divide-and-conquer strategy by attempting to equivalence each N

_, subcomponent in a pairwise fashion. This leads to the equivalencing of package.new and
::j package in step 2.11. Since each of these are primitive components, other methods will be ::-_‘_
employed (e.g. anchoring, renaming). h
3
=

{ -

I\I
N
-~
5 o
L -
- ]
_:7.' K

. o~
: =
o
b L]

- {
.‘. I~
b -
T
v, =~
-‘: :‘::

LAV AP N R A .
N P 0 L S R L S T SR . .
1 U -& ¥ WO n.l(‘A';A‘;!{‘_" l\l‘:j\:‘l.\l._.‘_l{ DRI BRI L A




P YA

4 AN

T
A 2 A"y
K

-y

S4HE 5

g

‘e,

LS |

Loy ala,

3
.

S

£ & &
.

(3

o

E.3 Equivalence PAGE 367

E.4. Factor

Factor(T|templiate, Clconstruct)

Achievement Condition: Factor all occurrences of T within C

Goal Description: As a development progresses, information tends to spread throughout
the program. At certain points it is organizationally useful to regroup (factor) common

structures.

The factor goal has two parameters: a tempiate and a context. The template is a pattern with a
special mechanism for marking formal parameters in the resulting definition. The context
bounds the area in which the template will be matched5®,

......................... Examples of Use@ -----cceccccecicsienccee..

Router References: 6.5

Example A

Router Reference: 6.5

Foliowing is a portion of the package router deveiopment, abstracted somewhat here for
readability.

ifp
lhen
update packages_due of PACKAGES_DUE_AT_SWITCH (switch.current,$)
10 PACKAGES_DUE_AT_SWITCH(switch.current,*) minys package

glse

Joop Q do
update packages_due of PACKAGES DUE_AT_SWITCH(switch,$)

10 PACKAGES_DUE_AT, SWITCH(sw:rch *) minuys package;

Using the template

es1’m isolate goai can be viewed as a special case of the Factor goal where the context is exactly the expression
to be factored.

--.\I P
ORI R

“~ A% R
k‘.LLfL_ a® } PV ’t‘ e *"n ‘.n L) "‘\ ‘\ \‘..\n \- ny

.\ .. .. ..

A




CARY
L)
e

ot NS
A

Y

1’ )
‘.f‘ ~

&
el
S0,

LN
. 'l.'l P
A

(L)
A

PR AL S
NSy

PAGE 388 - GOAL DESCRIPTORS

update packages_due of PACKAGES_DUE_AT_SWITCH( #switch®, $)
10 PACKAGES_DUE_AT_SWITCH( #switch,*) minus # package

we can factor the two updates into a single new procedure:

if P
then invoke TRIM_PACKAGES_DUE_AT_SWITCH(package,
switch.current)
else
loop Q@

do invoke TRIM_PACKAGES_DUE_AT_SWITCH (package, switch)

procedure TRIM_PACKAGES_DUE_AT_SWITCH(package, switch)
update packages_oue of PACKAGES_DUE_AT_SWITCH(switch,$)
to PACKAGES_DUE_AT_SWITCH(switch,*) minus package;

The usefulness of factoring here will become apparent later in the development when
maintenance code must be introduced at each change to PACKAGES_DUE_AT_SWITCH, by
before occurring in two locations, but now only one.

=

Example B o

Router Reference: Heap Sort 3

N

The following is a portion of an intermediate state in the development of a heap sort algorithm .

suggested by Tim Standish: ‘_-‘13

procedure SIfUp(i,n) s

geclare j: integer; -

begin

if 2*i>n then Exit glse j := 2%i;

if 2%i<n then if C(2*i+1)>C(j) then j := 2%j+1; w

if C(j)>C(i) shen -

invoke Exchange(C(j) C(i)): i

invoke SiftUp(j n) N
e0d:

<

Factoring 2°i gives us

"ln a factor template, # type.name signifies a forma! parameter. The # will be removed in the definition.




- (e By e g B TR - ol 9 . » v v -
R S V5 L e 2> gie JH 'y 1) g -y, A AN R YA A i ot ad Vol a¥® i ® o e e P at N aT g TR I e R e e,

E.4 Factor PAGE 389

Procedure SHtUp(i.n)
n declarg j: integer; . )

é Py relation double_i(V|integer) -
I definition V = 2%;
. begin
HERAS i *).
3 Tur if double_i(*)>n then Exit glse j := double_l.( ): ‘
12 if double_i(*)<n then if C(double_i(*)+1)>C(j) then j:=double_i(*)+1;

if C(/)>C(i) then

O invoke Exchange(C(j) C(i)):
invoke SiftUp(/ n)
end:

Py S 0 A

Further development yields

3 procedyre SitUp(i.n) !
. gdeclare j: integer; !
| i j o= 2%i;

H if j>n then Exit; ;
. if j<n then if C(j+1)>C(j) then j :=j+1; :
;o if C(j)>C(1) then .
4 ;

n
ijnvoke Exchange(C(j) C(i)):
invoke SiftUp(j n) J

end: b

e |

“ o \
S - .'Q. .
.‘ |
L. 1]
i\.. »
1o
?
LR W
. 4 Ve
[ ]
&4
; -

1]

¥ A
4 :
- L]
by % .
e wl
\ (%] N\
N
»

A ]

P

o

3

. " 3] - Y, 7 S PRV A A YA Y S
) l‘"."‘ ‘.'sl.$l |'l\ e, wWaih vl!‘o'l ALNYY L\ ‘v. .\| W .- A ".' ( v,

PP e R R AEI RP R SL P oR IE '.-\-‘
B LA « o v, e S “u s
o . e ), W A " 4 .KL&‘::{A.‘XA.A.A:{A_{A.M




!

“

) ;.:"_.\ t ,

NS

PAGE 370 GOAL DESCRIPTORS

E.5. Flatten

Flatten(C|construct)

Achievement Condition: No procedure calls or derived relation references exist in C.

Goal Description: The Fiatten goal can be used for several different purposes:

O To explicate dependencies. For example, before maintaining a derived relation R,
we must determine the set of base relations that R depends on (is defined in
terms of). A simple way to determine the base set is to make all base relations
explicit within R’'s body, i.e. Flatten any derived relations within R's body.

D To optimize. In general, optimizations cannot be carried out across definitional
boundaries. If C is shown to be crucial to the performance of the program as a
whole, then we may want to Flatten the procedure calling structure within C to
aliow local optimization to be carried out.

The methods used to flatten a context rely on either maintaining or unfolding defined objects.
Hence, Flatten could be described as one or more postings of Unfold and/or
Maintainincrementally, making Flatten a vocabulary enriching, but unnecessary goal.

......................... Examples of Use -cccoccceccccsccccancenns

Router references: 1.8, 5.3, 5.7

Example A

Router Reference: 1.8

Development context: the goal of step 1.7 is the incremental maintenance of the derived
relation PREVIOUS_PACKAGE.

o .

relation PREVIOUS_PACKAGE(prev_package | package)

definition prev_package =
(2 package.previous ||
package.previous immediately < last(PACKAGES _EVER_AT_SOURCE(*))

wrt PACKAGES_EVER_AT_SOURCE(®)):

ettt S I S

v e
Py

by e |
]
-

b4

P

N

al

Patat3

AN

Kl

1Rk

2 v
*E8 4



} E.5 Flatten PAGE 371

oo,
*s7s’,

To maintain PREVIOUS_PACKAGE, we must determine when it changes, i.e. what relations
- it depends on. In this case, there is one: PACKAGES_EVER_AT_SOURCE (b,). However,
: PACKAGES_EVER_AT_SOURCE is a derived relation itself which may be defined in terms of
still further relations. To explicate PREVIOUS_PACKAGES's base relations, a flatten goal is
A posted at step 1.8. Note that if PACKAGES_EVER_AT_SOURCE was defined in terms of still
further derived relations, these in turn would have to be flattened (see step 5.3).

,.‘
-

..

L

Al S g

b AV 3
»
»

l“-

7
ey

»

o
= hr

>3

L4
A
2.,

a8
Ny

-~
2 )

o

| 4NN |- § e
Ay

AR

W Y S AR T 6 P T R S T TR e e .
&Yy LN Lo W™ A" < ‘\ *\' ‘l o e N



PAGE 372 *  GOAL DESCRIPTORS

E.6. Globalize

Globalize(Cjconstruct)

Achievement Condition: C is to be moved out of the local context: local connections
have been snipped; C is not part of an atomic.

Goal Description: Much work in a development involves moving structures from one place
to another. In pulling some piece of code out of a particular context, we must make sure of

several things:

D Any references to locally scoped variables within C should, if possible, be
removed. If one or more variables resist removal, then C must be encapsulated
and an argument defined for each local variable remaining.

0 C cannot be part of an atomic. The statements of an atomic are treated as an
indistinguishable action and cannot be spread out individually.

Router Reference: 1.4,5.12, 5.16

Example A

Router Reference: 1.4

Development context: at step 1.3, a goal is posted to /solate a derived object (»,) found in
the demon RELEASE_PACKAGE_INTO_NETWORK. The derived object makes reference to
the variable package.n2>w, locally scoped by the demon.

-

ur-

.

"' _".

[ | 8

un)
Y




*
.

ol AL

-

‘_4.
4%t nlatas’

-
s amie A A A

poknd X ]

e

AR SRR APN -

[}

SEL NS N

-®u.V_0,

2 -

e

aae

AN

R
’ ',,

7 .

*a® a

et LSRN RN S LN NI AT T N A - Y .
A PRI N “» 4 e YA A e e TS W T AT T T e WL At et
el as ey e R AR I AT I S A S A M A A S R S CC A S LR

E.6 Globalize PAGE 373 -

demon RELEASE_PACKAGE_INTO_NETWORK (package.new)
iriggaer package.new:LOCATED_AT = the source
response
begin
if
1 (the package.previous ||
package.previous immediately before package.new
wrt PACKAGES_EVER_AT_SOURCE(*)
) : DESTINATION # package.new: DESTINATION

then WAIT[]:
update :LOCATED_AT Qof package.new 1o (ihe source):SOURCE_OUTLET

end;

It the reference to package.new is not eliminated, the resulting derived relation must include it

as an argument.

Example B

Router Reference: 5.12

Development context: in this example we are trying to move a piece of code >2 out of a
demon which is part of the environment (see Purify, section E.10).

dgemon CREATE_PACKAGE()

trigger RANDOM()
response
atomic
create package.new ||
package.new : DESTINATION = g bin gnd
package.new:LOCATED_AT = the source;
2 Joop (switch ||
MEMO_LOCATION_BIN(switch, package.new:DESTINATION))
do ypdate packages_due of PACKAGES_DUE_AT_SWITCH(switch,$)
10 PACKAGES_DUE_AT_SWITCH((switch,*) concat <package.new>

end atomic:

Although the loop makes no reference to locally scoped variables, it is part of an atomic which
prohibits it from being moved. To Globalize the loop, it must be removed from the atomic.

.-, m N e .

..............
L3R ) .

:- % .!\:-",. .

s 2 s .

A8 e T MmN, s »

e, v o



PAGE 374 ©  GOAL DESCRIPTORS

E.7. Isolate

Isolate(E|expression)

Achievement Condition: Replacement of E with reference to defined relation.

Goal Description: This goal reformulates some local embedded expression into a global
one. This is generally the first step in moving the expression to a location where it can be
further optimized. Note that the /solate goal is a special case of Factor where the template
must be a value returning expression and the context is the expression itself. In this sense, it
is equivalent to a Fold in apllicative inaguage development systems (e.g. [Darlington 81]). We
believe it occurs frequently enough as a speical case of factoring to be broken out separately.

Router References: 1.3, 1.17,3.3

Example A

Router Reference: 3.3

Development context: in section 3, we are concerned with the removal of the relation
LAST_PACKAGE: only the destination of the last package is needed. The general strategy
used is to remove all references 10 the relation, thus making the definition removable. There is

only one reference to the relation:

if LAST_PACKAGE(*):DESTINATION # package.new :DESTINATION
Lthen invoke WAIT():

By posting an /so/ate goal on the retrieva! of the last package's destination, we can make this

expression global.

o .

if LAST_PACKAGE_DESTINATION(®*) # package.new :DESTINATION
lhen invoke WAIT():

relation LAST_PACKAGE_DESTINATION(/ast_oestination| bin)
definjtiop /ast_destination = LAST_PACKAGE(®):DESTINATION;

oo

------------

[ & SRR

o« .
a%a’s

A

2 17
A
2 .




DA BEEANS

’_‘r \ -

N

x

NN HUTARIL ARG RO T N AT T e AN T G R, Ao, O o0

AN ]

E.7 Isolate PAGE 375

The global computation, in the form of a derived relation, can now be moved to a location
where further optimizations can be performed (see step 3.4).

Exampie B

Router Reference: Line Draw

Development context: Sproull presents the development of a line drawing algorithm which
attempts to minimize the reliance on costly arithmetic operations such as muiltiplication and
division. We will view the use of such operators as specification freedoms that must be
mappedse. We are given the following portion of program for drawing a "straight line"

between two points (0,0 and dx,dy) on a graphics screen®:

Joop x from 0 to oOx

do begin
y := truncate([oy/dx] * x + 1/2);
DISPLAY(x y)

end;

Our goal is to map the muitiplication operation into an acceptable operation {e.g. addition) on
the final impiementation hardware. The method we wish to use replaces the multiplication of
the ioop variable by a constant with a new expression only using addition (as residue, it leaves
another expression involving muitiplication that can be mapped later). The method expects
that the multiplication has been isolated, i.e. it cannot work on embedded expressions.

eaNote that Sproull's development is the aigorithmic optimization type that we have disassociated from. However,
the freedom mapping view makes it an illustrative examplie.

eoThe pseudo Pascal notation is Sproull's. The Gist version would replace variables with relations and
assignments with inserts and updates.




AD-A139 918

UNCLASSIFIED

ARUTOMATING THE TRRNSFORHRT!ONRL DEVELOPHENE OF SOFTHRRE 3/3

YOLUME 2 APPENDICES(U) UNIYERSITY OF SOUT

CALIFORNIA MARINA DEL REY INFORMATION S
MAR 83 ISI/RR-83-189 NSF-MCS79-18792

S F FICKRS

-




:
r e

Ry,
2

.,
E
LR

2 o
)
%z
*

\\%\
-.«.;«
~

N RN00% i \"\.ﬂﬂvl’ N

T d 8 5
RREEE
. | ]
|||| L B b=
| = .8
flizs Jlis pee
=] = =
MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU U S'MARDS-!QG!-A
b '
-

) *;i*“%(""\*\“'\"' > -‘\.;\'.-.' AR
.

AT
et L _.‘*_. A E\. .
4" B0 %" LAl

RGeS
o N

-

af
S NEA

2 Pk

AL

PO

¥ ] %

[as. A os A4




R d K o3 Madk " R TR P T PRy — . v
. o TR A i 2P (RN 4 DR A A A DR LA R R N il AR AT T A RS R Ao Ao AR REs B} AT

- PAGE 376 - GOAL DESCRIPTORS ) q

X RX.

¥ ‘g:

» A ¥
Transformation RemoveMultiplication:

P loop ¥ from c1 to c2 -

X do begin

o 2z :=c3 i

7 L)

i g

,; . => '.\.i

N !

R z := (¢l - 1) * ¢c3; ’

X3 loop i from c1 to c2

N z := 2z + ¢3;

_.':JQ ..

."$ m: -.:;‘

oo Using isolation leads us to the foliowing state in which the RemoveMultiplication -
A : transformation can be applied: i

2 e -~

i loop x from 0 fo ox N

Fads do begin &

t := [dy/dx] * x;

e y := truncate(t + 1/2); m

A DISPLAY (xy) v

s end:

2O -
243 R

" Further in the same development, we reach the following state:

3 '-:.‘ <.

o A,

:3. t := 0; -

o loop x from 0 1o ox

- do begin e
; § =1t +1/2; b

aen y := truncate(s):

5 DISPLAY (xy) ~

e t :=t + [dy/dx] -
e and;

roy N 5

‘ $:;, The goal is now the removal of the variable t. Again using isolation, in this case the reference

;:'.3 to t in the computation of s, we get T

&

YA !
~° W
w4

;:: A




3 WSS AR

3
v
r
‘l
¢ ﬂ\
YAON
2N
- -".‘
AN
. \'.
a
b
H <
2
¥
I
al, i
~
>
~ R
AR
"
-
¥
_ N
4] -.‘;
R ‘.‘J'
. e
€
5
5, .
-
o

rrs

A7

2T
ws
o

-

1A

:"‘ ':

A |

=
!

-~

a

~l

By

relation S|REAL = t + 1/2;

t := 0;
loop x from 0 to ox
do begin
y := truncate(s);
DISPLAY(xy)
t :=t + [dy/dx]
end;

Finally, after computing s at each place it changes (see the goal Maintainincrementally) we
get
rLelation s | real:
atomic
t := 0;
s := 0 + 1/2
end atomic
loop x from 0 to ox
4o -

begio
y := truncate(s);
DISPLAY(xy)

t :=t + [dy/dx];
s = s + [dy/dx]
end 1
end;

which can be simplified into
relation s | real;

s := 0+ 1/2
loop x from 0 to ox
do begin
y := truncate(s):
DISPLAY(xy)
s = s + [dy/ox]
and;

L4 . ® oo - a® gt WG NS R s S S .= . - . - . ! .~ e . -
> ﬁ\ NQ AN BTN d NN MY e \\ Q’l,l o~ l.\}\"' l‘{‘. -".} !.\f\h\ \-"."_ q'J‘ -\" ~'\ )

\‘.

A Y
-

FEES TN TS
E.7 isolate PAGE 377 ]

'



PR
0 -7 N Bt W

o,

. s
J" 4

PPl A

(3%

] \.“) a s eSS Y

YY)

)

A .y

g

'y > . o ®
AP AN NS Dl AR RO

Soniar b A ~ ‘, . ® v e el . Y. h
a¥ A TaFTa" ) B Tl S T S S S LR S Yool P .".\At .

PAGE 378 *  GOAL DESCRIPTORS

E.8. Map

Map(Clconstruct)

Achievement Condition: The freedom embodied by C has been mapped away.

Goal Description: A large part of the development of an abstract specification invoives
finding ways to remove specification freedoms which are not supported in the implementation
language. What is considered a freedom is naturally dependent on the specification language
being used and the final implementation language. The tollowing are Gist specification
freedoms: derived-relations, temporal reference, demonic computation, constraints and non-
deterministic selection (see section 5.2.1 for further discussion). Depending on the
implementation language, other freedoms might include recursi{n, paralielism, the
associative relational data base and even multiplication (see example B in section E.7).

Router References: 1.10,4.1,4.3,4.7,4.9,4.10,4.12,4.13,4.15,4.16,4.18,5.1,54,55,5.8,
6.1,6.3,6.6,6.13,6.15,6.20

Example A

Router Reference: 5.4

Development context: LOCATION_ON_ROUTE,fO_BIN is one of the derived relations
found in the specification:

R s LA
! ps .-' ...

relation LOCATION_ON_ROUTE_TO_BIN(LOCATION,BIN)

case LOCATION of
BIN = LOCATION = BIN;
pie =» LOCATION_ON_ROUTE_TO_BIN(
LOCATION: connection_to_switch_or_bin,BIN);

switcH = LOCATION_ON_ROUTE_TO_BIN(LOCATION:switch_outiet,BIN);
SOURCE =» LOCATION_ON_ROUTE_TO_BIN(LOCATION:source_outlet,BIN);

and case:

- ST T NN

SIS

vy

ll’

PR TP g PN

LA 2
laea

b |

-

L L T R & .




&4

e

‘.4;.;. 'l of )

« aNaCTaTa ¥,

A L T AT T A A A g i e, e T < . . AT LT

LR AL Al oL D SR G SN ol ot LR A A N R A et it T Bt it e W, e Lo g At A -

E.8 Map PAGE 379

Itis mapped away by remembering the router connections explicitly:

relation MEMO_LOCATION_BIN(/ocation, bin);

demon INITIALIZE_MEMO_LOCATION_BIN()
trigger: (start initialization_state)

response

beqin
Joop B8 | BIN do insert MEMO_LOCATION_BIN(B, B);
loop L | LOCATION ||

MEMO_LOCATION_BIN(L, B) and
L = L2:CONNECTION_TO_SWITCH_OR_BIN
do insert MEMO_LOCATION_BIN(L2, B):
end ’

Example B

Router Reference: 4.1

Development context: the constraint DID_NOT_SET_SWITCH_WHEN_HAD_CHANCE is
a freedom which must be mapped:

constraint DID_NOT_SET_SWITCH_WHEN_HAD_CHANCE

always prohibit 3 packageswitch ||
(package :LOCATED_AT = switch

and
SWITCH_SET_WRONG_FOR_PACKAGE (switch,package)

and
((package = first (PACKAGES_DUE_AT_SWITCH(®*,switch))

and
SWITCH_IS_EMPTY (switch)) asof everbefore)):

The method employed maps the constraint into a demon which triggers on one of the
conjunctive arms of the constraint, and requires that the other two arms not hold. The trick
here is choosing which arm to trigger on, i.e. whcich event allows the others to be avoided.
The choice is currently left ot the user. The new demon is

"
)
4d
!
|
;5‘




NLAL N AL S AE R R R .‘I

PAGE 380 . GOAL DESCRIPTORS ’ d

. 'y
a3

\Nl -

N -
A v

‘ o o » 1

)0 demon SET_SWITCH_WHEN_HAVE_CHANCE (switch, package) e

*:5 trigger ( pack;g:d = first(PACKAGES_DUE_AT_SWITCH(®,switch))

e '..’

N SWITCH_IS_EMPTY (switch)) -

; require (~(package:LOCATED_AT = switch .

% and

N SWITCH_SET_WRONG_FOR_PACKAGE (switch,package)) "

o from ThisEvent’®

% until ~((package =
N first(PACKAGES_DUE_AT_SWITCH(®*,switch)) —

. and

s SWITCH_IS_EMPTY (switch)) asof averbefore))

u.‘_‘ P

LR :

v
-‘ . i
» We now must map this demon. The general strategy will be t0 consolidate this demon with the Q

] f-.j SET_SWITCH demon which controls the setting of switches. Note that the use of demons as

2 intermediate mapping forms appears useful and is replected in the selection rule j:jf

» DemonsAreGood. '
‘ =
! Example C 2
‘l
> Router Reference: 4.18 1
.: \.:
‘ Development context: at step 4.18, the update of a switch's setting is still in non- .
o deterministic form: 04

}\“ update :SWITCH_SETTING of switch Lo switch:SWITCH_OUTLET -

N where SWIT&.:_IS_EMPTY (switch) &
. -l

o ~SWITCH_SET_WRONG_FOR_PACKAGE( switch,package) ;

o e

:Z The method employed will be to choose, deterministically, a setting that does not violate the ;:;
"

Y attached constraints:

£ a
<.

&, *.
2 .
#

» w
. =
P 70
He L.e. the triggering of this demon.

\. )

v =

=

)

AN ,‘1“‘ Y N o, {"' -.I_' q"-‘.‘q'\-'\-‘..."\'.\i . _‘-.. MR TOTARN ‘--.\~ PR ‘.\ LA \;ﬂ ~— $; » %




-

PR R

2 o )
i

i

PAL PP
Bl

- B dd A

o

Lol ¥ k¥ &

Vo8,

-

LWV VY AKX

.OJ.A;‘

E.8 Map PAGE 381

update :SWITCH_SETTING of switch to
(pipe || pipe = switch:SWITCH_OUTLET

and
LOCATION_ON_ROUTE_TO_BIN(pipe,
package : DESTINATION) ) ;

T e T e e e N TR R e e et e Ta e a Tt A e A A R s e A e e e .
N M I O N, R R AN NN SO SO - ' ._.- AN .,'- AR

> ®_ e 1



o o f ad A L Ciud W g LG AINE S AT AR CA .

S L e S A A e e A A \x1

PAGE 382 - GOAL DESCRIPTORS

-

E.9. Maintainincrementally o

o

Maintainincrementally(Ridefined-relation ) .

Achievement Condition: R recomputed eagerly (as opposed to lazy evaluation) in =

terms of the changes to the value upon which it is defined. B
Goal Description: A derived relation R is defined in terms of another expression E. We can ‘

remove the need for E by making sure that R is maintained throughout the program. That is, i

wherever the value of E changes, we introduce code to incrementally update R.
NG
s

......................... Exampies of US@ ---cccecececcccccecnscee.

Router References: 1 .8; 1.11,1.18, 3.4, 5.2

Example A
Router Reference: 1.11 =
Development context: The goal of step 1.10 is to map the derived-relation .
PACKAGES_EVER_AT_SOURCE (or PEAS). There are several general strategies we wcan ::',f

try: maintain the relation incrementalyy; unfoid the relation where ever it is used (lazy ;
evaluation). The relation PEAS is ideally suited for an incremental maintenance approach: ‘}
o

packages are added to the end of the sequence one at a time.

B

relation PACKAGES_EVER_AT_SOURCE(package_seq|sequence of package)
definition package_seq =
({package || (package:LOCATED_AT = the source) asof gverbefore)
ordered temporally Dv start (package:LOCATED AT = the source)):

Aar

3]
\n
\i
The Maintainincrementally goal posted at 1.11 triggers several competing methods. That is, T
the concept or general strategy of incremental maintenance was generalized into a goal with s
=

a set of methods or tactics for actually carrying it out. The method we will use introduces a
demon which "watches” for relevant changes (a package becoming located at the source
station) and does the necessary update to PEAS.

s 8T
s'a’ s

-
O p e e ot Bt et e g A N e e e e e et e
ol L e L N T e A e A A e A A A A A Tt A A LA e, e g T T A e e AT S VI LA RN L N AN



o

oK)

ek a.) & A

2 Uy A W I

K4 s's s d B 4§

o s

W

s A aes 8

L]

s

Ca

& o

[}

’

MR BN |
[P

b

g

L

-~

£

1‘.'
[

Lol §
s !

[Ta

I‘I
.

LAy
v

2

.
,

< AR AL GV UEL O TSRS RN A ANCA L A AC AT St A M N Dt A L KO R

E.9 Maintainincrementally PAGE 383

demon NOTICE_NEW_PACKAGE_AT_SOURCE(package.new )
triggec package.new:LOCATED_AT = Lthe source

response
ypdate package_seq in PACKAGES_EVER_AT_SOURCE(S)

1o PACKAGES_EVER_AT_SOURCE concat <package.new> ;
relation PACKAGES_EVER_AT_SOURCE(package_seq|sequence of package);

Example B

Router Reference: 1.8

In step 1.8 we wish to incrementally maintain the relation PREVIOUS_PACKAGE:

relation PREVIOUS_PACKAGE (prev_package | package)

definition prev_package =
(a package.previous ||
package.previous i < last(PACKAGES_EVER_AT_SOURCE(*))

wrt PACKAGES_EVER_AT_SOURCE(*)):

Instead of using a demon as in example A, we will employ a method which scatters
maintenance code (bz) at every location within the program where the relation may change,
i.e. where its base relation PACKAGES_EVER_AT_SOURCE changes. There is only one
such location (b 1) and that is found within NOTICE_NEW_PACKAGE_AT_SOURCE.

- .y

e W W W _w_

YN

[ U )

T Y £ R v



)
.
>y

£ Y

T,

R P PP St

il

e

| W B |

PAGE 384 - GOAL DESCRIPTORS

relation PREVIOUS_PACKAGE (prev_package | package):

demop NOTICE_NEW_PACKAGE_AT_SOURCE(package.new)
trigger package.new:LOCATED_AT = the source

response
atomic
> update package_seq in PACKAGES_EVER_AT_SOURCE(S)
10 PACKAGES_EVER_AT_SOURCE concat <package.new);
’, update prev_package in PREVIOUS_PACKAGE(S)

10 (the package.previous ||
package.previous immediately before
last (PACKAGES_EVER_AT_SOURCE(*) gconcat <package.new>)
urt PACKAGES_EVER_AT_SOURCE(*) concat <package.new>)

end atomig

LA

AERE DU A .. . . .v' L - . L., -._.- PR S PN :_ ~y . _-.{'. Y '_;. '0,'.." ' .f.'.".'.':-‘ .. .-.- MUY T
W, kN 2 » i by A" e 8 Al ) J A

'l.‘j.‘ 'I'

I “v"_'- ,

i
T a s

) M1

) |
iy
A

R

". ‘I 3 '. ‘U- ‘l
P PR
[P ORI B SURPLR ORI | | AR |

‘1‘\ .-"-'."*\.\, ‘\""r. .



EREER

-
S

v |

AL 50

KA B 7 1 3

e
- B
I).-‘

EY

e
"R

lyns

A

£

o AR ey B LA

A7

..'.'

o,

&

A AT

<
[

{X)

O

taSd

E.9 Maintainincrementally PAGE 385

E.10. Purify

Purify(Alaction)

Achievement Condition: A does not appear inside an uncontrollable portion of the
spec.

Goal Description: During a development, the unfolding and maintaining of defined
structures may lead to the introduction of code into portions of the specification which are
uncontrolable. For instance, a specification may contain a model of the environmentin which
the application program is to run. Code introduced intosuch uncontrollable portions must be
moved to parts of the spec that are under control of the application program. We Purify a
newly introduced action A by either 1) doing nothing if A is in the implementable portion of the
spec (the goal is trivially satisfied) or 2) removing A from the uncontrollable portion.

....... escssccsecccccsces Exgmples Of Us@ -ooocvcerecccnnnnnnnn....

Router reference: 5.10, 5.14

Example A

Router Reference: 6.10

Development context: in the process of maintaining PACKAGES_DUE_AT_SWITCH in
section 5 maintenance code ®,)is introduced into the demon CREATE_PACKAGE:




PAGE 3868 - GOAL DESCRIPTORS

LGRS S Rl R S S S S S SR A L A

............

demon CREATE_PACKAGE()
irigger RANDOM()
reasponse

atomic

create package.new ||
package.new:DESTINATION = a bin and

package.new :LOCATED_AT = the source;
" Joop (switch ||
MEMO_LOCATION_BIN(switch, package.new :DESTINATION))
do update packages_due of PACKAGES_DUE_AT_SWITCH(switch,$)
10 PACKAGES_DUE_AT_SWITCH(switch,*) goncat <package.new>
end atomic:

In step 5.10, we post a goal to Purify the new code. Since CREATE_PACKAGE is outside the
implementable portion of the spec -- it is a part of the model of the environment -- the
achievement of the goal rests on moving the code to an implementable part of the spec, in this
case the demon RELEASE_PACKAGE_INTO_NETWORK.

". l" 'l

| JO

=/

s

. .
3
Ly

¢

BN LAFIUNPUAIY L RN

8.



E.10 Purity PAGE 387

E.11. Reformulate

Reformulate( C{construct, Plpattern)

/7
P AP "SGR B T N D)

:;:l Achievement Condition: A state is reached where C matches P .
i a
'3 - Goal Description: Using the Reformulation goal, the user can describe a goal state as a !
o syntactic pattern. Such a general goal has great expressive power. In fact, we can express
- several other defined goals through the Reformuiate goal: Remove given the empty state as a é
ﬁ pattern; sometimes Map where the mapped state can be described by a syntactic pattern (e.g. d
derived-relations). ﬁ
]
- Over reliance on syntactic goa! descriptions loses the dévelopment abstraction we strive for, :;'
i i.e. an explicit vocabulary of goals for which specific methods can be developed. Currently, y
use of the Reformulate goal in a development is viewed as ad hoc: the pattern has not 3
; occurred enough to generalize into a new goal descriptor. As more experience is gained in ;
e

developing programs using Glitter, we expect further pattern generalization to occur.

--------------------------------------------------

Router References: 1.5, 1.13, 1.14, 1.16, 1.20, 2.12, 4.6, 6.9, 6.11

Example A

3

Router Reference: 1.6

b::'
a)

Development context: Before a derived object is folded into a derived relation (i.e. Iso/ated),
;_ an attempt is made to remove as much linkage to the local context as possible (i.e. Globalize).
™~

In step 1.5, the local variable package.new is to be reformulated into a global-expression,

one which consists solely of relations and global objects. At step 1.6, this goal has been

14X

further reduced to reformulating the wvariable into an expression on
PACKAGES~EVER«~AT+~SOURCE, namely [ast(PACKAGES_EVER_AT_SOURCE(*)).
Having gotten this far, the system does not have the necessary theorem proving capability to

a'é"'.

show that these two expressions are equivainet, and hence relies on the user to fill-in the last

step.

. ® et



~IRER

{
-‘", '{

£ 08
|

<
Al

) V4
»

PR
PR e

Joe
PP

<

<.
2.
Q.‘

" ?. ."‘"A{L

LMK ATORNR -~ ¥ OO o

PAGE 388 * GOAL DESCRIPTORS

Example B

Router Reference: 1.13, 1.14

Development context: The goal ol step 1.12 is to remove the reference to
PACKAGES_EVER_AT_SOURCE from the following context:

1 (Lhe package.previous ||
package.previous immegdiately before
last(PACKAGES_EVER_AT_SOURCE(*) concat <package.new>)
wi} PACKAGES_EVER_AT_SOURCE(®*) concat <package.new>)

The method chosen attempts to reformulate the derived object b.asa positional-retrieval on
PACKAGES_EVER_AT_SOURCE which may prove easier to work with:

goal-pattern: last(S|sequence)

A method exists for reformulating derived objects of a certain type, namely ones that do a
trivial binding:
goal pattern: (x || x = last(S|sequence))

Finally, 2 method exists for reformulating relative retrievals from a sequence into positional
ones:

goal pattern: x immediately before y wrt (S|sequence gconcat z)

This last pattern can be matched directly against the current state.

Example C

Router Reference: 4.6, 6.9

Development context: A general means of making two expressions equivalent is to hold
one steady and reformulate the other. This crops up several places within the router
development when two demon triggers need to be made equivalent. In the first, RANDOM

must be reformulated as

Rl

[

A

!

» e

.
».

IR ¢

Carrd

&1




e la

Ay
’

b

-

AR

AA'{.

y‘u.)‘

.
LS

- -
Vv

)5

-~
hl
.O

8 8 4

D3 e Tee RO i B e e A A A ol Sl BT R L e ] L I L R A O A AR A A

E.11 Reformulate PAGE 389
' |
A
rs
}
J
package = first (PACKAGES_DUE_AT_SWITCH(®*, switch) 1
and )
SWITCH_IS_EMPTY (switch) i
Here, a method which replaces a random event with a more specific event is chosen. i
In the second, we must reformulate the relation reference SWITCH_IS_EMPTY (switch) as ,
package:LOCATED_AT = switch
Here, a method which unfolds the relation at its reference point is chosen. X

G TN N Y N « ( R ST S T
Wy 2 8 A T T Tt o et A A AR T N A AN NN L v ]



S i s L~ Al L AR A gk £ A AT S e A AR PR L M e I

2k

kX

*h 12

PRAARANA LN

PAGE 390 *  GOAL DESCRIPTORS

E.12. Remove

Remove( S|construct, Clconstruct) )

Achievement Condition: Structure S is removed from context C

Goal Description: The removal of structure S from context C may be motivated by any of the
following:

1. Sis deadwood; no use is made of S within C.

2. S is a component of some larger structure X; by stripping away all components of
X, X can be removed (see 1 above).

3. C is a portion of the specification outside of which we have control.
......................... Examples of US® --ccoceerrccctccccnnaeee.

Router References: 1.1, 1.2, 1.12,1.19, 1.21, 2.1, 2.2, 3.1, 3.2, 3.5, 5.11,5.15

Example A

Router Reference: 1.1

Development context: section 1 of the router development centers on optimizing the
relation (sequence) PACKAGES_EVER_AT_SOURCE. In particular, we only reference the
last eiement of this sequence and hence, have no need for the entire history of packages ever
entering the router. in step 1.1, the user states his desire to Remove this relation®.

relation PACKAGES_EVER_AT_SOURCE(package_seq | sequence of package)
definition package_seq =
({package || (package:LOCATED_AT = the source) asof everbefore)
ordered temporally by start (package:LOCATED_AT = the source)):

After a number of development steps, the above relation is removed from the spec, and as
residue, the following two relations are left:

7INote the difference between mapping the relation and removing the relation. A mapping goal would be
achieved when we had eliminated the derivation freedom from PACKAGES_EVER_AT_SOURCE (see step 1.9). the
remove goal when the entire refation has been eliminated. in fact, the remove goal is 8 more specific case of the map
goal: removing a derived relation entirely is one way of getting rid of the fresdom. .

........

e

TN 4 BEVAVYEE |V

o

»A3

IR ]

L AR

s




TR IR LN R AT B T D B
AAE RS 2 K0 NN A RO A A T PR S ol At e A AR T A it Ml S S S St gegl e Neigr g oM see Saa mad i st mgn e ufl 200
.- - Tt e, EEL I BN PR - . Te e o % . - L A e, ., -

T
AT

4.0

E.12 Remove PAGE 391

relation PREVIOUS_PACKAGE(prev_package | package);
relation LAST_PACKAGE(/ast_package | package);

Example B

Router Reference: Text Preprocessor

Development context: in much the same way that the sequence
PACKAGES_EVER_AT_SOURCE was unused in example A above, an action may be
"unused". That is, there may be no references to its effects. In the text preprocessor
development, we reach the following state (see example B, section E.2):

begin
if predecessor(space Char Text)
then begin
" invoke REPLACE(Char newspace Text);
invoke REMOVE(Char Text)
end
else invoke REPLACE(Char newspace Text):

end

The first replace procedure ", is wasted effort since the next action is to REMOVE the
character. A goal is posted to Remove the call on REPLACE » by

Example C

Router Reference: 5.11

Development context: the above examples have deait with removing a construct
completely, i.e. from the entire spec. The Remove goal can also be used to remove a
construct from a more specific context. For example, the effect of maintaining a derived
relation is to place maintenance code anywhere in the spec where the relation might change.
Some of these locations may be outside of the portion of the spec over which we have direct
control, e.g. the portion of the spec that models the environment. Such is the case in the
maintenance of PACKAGES_DUE_AT_SWITCH in section §. Code is introduced into the
demon CREATE_PACKAGE, part of the model! of the router environment:

--------------------

.« % a

RSARTNEN T AR GO O AT IO
T e .&M‘m DAY AT TR WO R L S

e 8 eEEEmA e -

LAY Ny SOy WL W, W

PRy - a

e




PAGE 392 © GOAL DESCRIPTORS

demon CREATE_PACKAGE()

irigger RANDOM()
rLesponse
atomic

create package.new ||
package.new :DESTINATION = a bin and

package.new : LOCATED_AT = the source;
’, loop (switch ||
MEMO_LOCATION_BIN(switch, package.new:DESTINATION))
do update packages_due of PACKAGES_DUE_AT_SWITCH(switch,$)
10 PACKAGES_DUE_AT_SWITCH(switch,®*) concat <package.new>

and atomic:

The maintenance code », must be removed from CREATE_PACKAGE. While we couid
attempt to remove it from the entire spec, reasoning that this is one way of removing it here
(this method is wused in removing the same maintenance code from
RELEASE_PACKAGE_INTO_NETWORK in section 5) the actual method chosen attempts to
move the code out of CREATE_PACKAGE (and into the implementable portion), hence

satisfying the goal.

[ |} foo

'5:.‘:."

Wl




! LA P -
[ UL B W W N

diaa

-8 -
LA T N TN

b0

"

v,

AN

L]
-

/

U

1 003

RN

N

v e
.
-,

v
S

E.12 Remove PAGE 393

E.13. Show

Show(P|property)

Achievement Condition: P asserted

Goal Description: The validity of many development methods rest on showing that certain
properties hold in the current state of the program. Sometimes, one or more of the arguments
to a property may be unbound. In these cases the task is to find some binding that makes the
property hoid. Below are listed the currently defined set of properties. Following each
property is the locations in the router development where it is used as an applicability
condition for a chosen method.

ACTION_IS_UNNOTICED(A|action) (1.22, 3.5)
An action A is unnoticed if either it has no effects or its effects are not

used by any subsequent computation.

COMPUTATIONALLY_BETWEEN(E|expression, Allaction, A2laction) (2.5)
The expression E is computed after A1 is executed but before A2 is

executed.

EVENT_BEFORE_EVENT(Blevent, Ejevent) (4.14)
Event B occurs before event E.

FINITE_EXPLICATION(DR|derived relation) (5.4)
A finite number of explicit data base assertions will compute DR.

FUTURE_EVENT(F|event, Cjevent) (4.11)
Event F occurs after event C.

GENERALIZABLE_TRIGGER(T|trigger) (6.11)
The trigger (~3 x || P(x)) can be replaced by ~P(x).
IMPLIED_BY(Q|expression, Plexpression) (4.1,4.9, 4.12)
Logical implication: P => Q.

INDIVIDUAL_START(D|demon) (6.2, 6.14)
If D has a conjunctive trigger, none of the arms ever occur simuitaneously.

INTRODUCEABLE_VAR_NAME(V|variable-name, D|declarative-construct) (2.12, 6.19)
It is legal to introduce V as a variable declared in D, i.e. V does not contlict
with any existing variables declared by D.

LAST_ACTION(A|action, Elaction-event) (4.15)

o

rwe

Bias




PAGE 394 *  GOAL DESCRIPTORS

€ specifies the event of an action. Action A is the location of the last such
event relative to current location.

MERGABLE_DEMONS(B1|demon-body, B2|demon-body, l|ordering) (2.9, 4.4, 6.7, 6.16)
The value of | is an interleaving of the two demon bodies B1,B2 suchthat
valid behaviors remain.

NON_EMPTY_SPECIALIZATION(S|expression) (4.6)
E does not rule out all behaviors.

T

SEQUENTIAL_ORDERING(Olordering, X|atomic) (2.7,5.13, 5.16)
The statements of X have been ordered in O. The ordering is a valid
sequentiation of the paraliel atomic.

|19

oy

SUPERFLUOUS_ATOMIC(A|atomic) (2.7,5.13, 5.16)
The statements in A do not need to be executed as a single step, i.e. no
other construct (demon,constraint) gains or loses triggerings.

astan'y:

swaPPABLE(A1|action, A2laction) (2.14) -1
A1 does not modify any data referenced by A2. A2 does not modify any .
data referenced by A1. ;Z:
UNCHANGED_BETWEEN_EVENTS(P|expression, E1jevent, E2|event) (2.5, 4.17) -
The value of P does not change between the two events E1,E2. B

UPDATE_VALUE_HOLDS (Ulupdate, R|relation-reference) (2.4)
Given that U modifies the value of X to Y, this modification is unchanged e
(X's value is still Y) when R is computed.

VALUE_KNOWN(R|relation-reference, V|object) (2.3) :;::
The value of Ris V. : X

| $ 98

ccecscene srcccccanncaran - Examples of Us® ccccccerrcccccaceesee. .se
.:;
In some cases, methods exist for asserting needed properties, and in some cases the -
necessary reasoning is beyond the reach of the system and the user is called to verify and o=
assert the property. The examples below show both types of processes. !!
Example A S‘
Router Reference: 1.22 "

Development context: at step 1.1, a goal is posted to remove the relation




[l Tl Sl et N ot AN A A AN N0 10 SRt e e - halaae, "Rt o & ke 5 N Tt Trhe vt Tde S B A 2 Tt Tt e BACA DA B SR A B0 M-l W S,

. .‘ ------------------
s"':

R |
N a E.13 Show PAGE 395

~

el

__.:j PACKAGES~EVER«AT+SOURCE. The method chosen attempts to remove all reference to

. - the relation. At step 1.21, a subgoal is posted to remove one such reference, an update of the

: N relation.
-'3'. update package_seq in PACKAGES_EVER_AT_SOURCE(S)
Q.._ . 1o PACKAGES_EVER_AT_SOURCE concat <package>)
<
YR The method chosen to remove the update relies on showing that the update is unnoticed, i.e.
Oy

: "ic - no other subsequent expression references the new value. At step 1.22, a Show goal is posted
;5 QLAY to show that the update is inedeed unnoticed. The method chosen to assert the necessary
P "N .l

i property is ShowDysteleological. This method takes a rather unsophisticated approach,

;.‘:-. -~ asserting the property when ng references exist to the updated relation, not just ones effected
;:-g f:; by the update.
2od]
o~
‘} a ~ Example B

S; 7 Router Reference: 2.3

;-';3:1 e

] _\f - Development context: as in the previous example, at step 2.2 a reference to a particular
. relation, PREVIOUS_PACKAGE, is trying to be removed so that the relation itself can

N eventually be removed.

X
-, N LW LI AR
:-j; :«’; 3f PREVIOUS_PACKAGE(*):DESTINATION # package.new :DESTINATION
; " “‘ then invoke WAIT[];

W
SUERS relation PREVIOUS_PACKAGE (prev_package | package);

e
jfzj o The method chosen attempts to rpelace the reference with an actual value. To do this, the
et gy method posts a goal at step 2.3 to show that the value is known at the point of reference. The
e o 0 method chosen to assert the property relies on showing still another property: an update U of

N

AR the relation to value V still holds at the reference. Showing, in general, that V is the relation’s

“‘;EI .. value at the reference is beyond the reasoning power of the system; the user is called on to
L] h ]!

o E assert the necessary property. Note that while the system was required to call on the user for
ol assistance, the chosen method did a portion of the reasoning necessary to set a more specific
SOR context for the user. '

3
N ...

\ &)
A
":l L) 5
SN
"y

3 -




-----------

oy PAGE 306 ©  GOAL DESCRIPTORS

¥ ’:"’S
& ‘{)
233 .

o E.14. Simplify
A
"_; Simplify( Clconstruct)

.. “.
AV Achievement Condition: No simplification transformation firings
N
, o Goal Description: The posting of this goal causes the transformations in the simplification -4
o 3 subcatalog (see F.16) to be run until a quiescent state is reached, i.e. none of the o

4y X!

S5 transformations fire. C bounds the context in which simplification is to be carried out. .

‘ Chapter 5 discusses simplification isuues in more detail. —
A.‘g
o) .
:;"“: [N

Pof. esesseccccccsscscccccecns Examples of US® --ccorcacrcccccens covssne L.l
: i? X,
~
*
1 In the router development of appendix B, we have omitted the explicit posting of simplification i
s J =
-_;:E;e steps in favor of textual comments.
.25
(oo -
vIe.: Example A
Router Reference: 4.19, after unfold 2
-:E:w' !
)Z:: Development context: as happens in the development as a whole, simplification often
o Ay
e requires a joint effort between user and machine. The simplification of many constructs relies -
- on the user to provide sophisticated reasoning to prime the process. The simplification at step .
- »
‘Q 4.19 is one such example. We are given the following state: N
A, _

A -
me—re [ ]
%'.'

b 3
A\ -
3 .
- o
A N
2
.
~ s;
N X
A
X
“ L] g

S

a,';: ~
N o




e W W ST AATATRCI Y PLAY Y TERTE LWL L ESCANAAE O A3 AT ad ey Gy U AR ASAE AL S LI SR o '7‘.&-_;;"7-._\7; _-—';\-1_;1—. e, '__{'_-1

-"J .‘:f ,

A |

b |

3

>

A e )
)

n.,

-

.
’Q

1 44

E.14 Simplify PAGE 397

_d_m_o_n SET_SWITCH((switch, package)
trigger package = first(PACKAGES_DUE_AT_SWITCH(®,switch))

and
SWITCH_IS_EMPTY (switch)

response
update :SWITCH_SETTING of switch to
(pipe || pipe = switch:SWITCH_OUTLET

and
SWITCH_IS_EMPTY (switch)
and
1 ~(LOCATION_ON_ROUTE_TO_BIN(switch,
package : DESTINATION )

and
~LOCATION_ON_ROUTE_TO_BIN(pipe,
' package : DESTINATION) ) ;

The user can reason that switch is indeed on the route to package's destination (first term of
»,) and so can get rid of this term. However, the system currently has no indirect reasoning
machinery, and hence cannot show that the definition of PACKAGES_DUE_AT_SWITCH
requires that switch be on the route to package'’s destination. The user is required to get the

process going:

STEP 4.20(user): Manval

MANUAL_REPLACE LOCATION_ON_ROUTE_TO_BIN(switch, package:DESTINATION)
with
true

STEP 4.21(user):. Simpiity », |

The resulting simplification process takes the following form:
Applying

(... true and term) = (...term)

gives
. .~(~LOCATION_ON_ROUTE_TO_BIN(pipe, package:DESTINATION)):

Applying

~(term) =» ~term

!
%
a



e

[

l'
AN

)

%

éd .""P n‘

‘rr'
L]

S

7

FEX

v
(4

A

r g

PAGE 393 © GOAL DESCRIPTORS

gives
...~~LOCATION_ON_ROUTE_TO_BIN(pipe, package:DESTINATION):

Applying
~~teérm = term

gives

demon SET_SWITCH(switch, package)
trigger package * first(PACKAGES_DUE_AT_SWITCH(*,switch))
and
SWITCH_IS_EMPTY (switch)
response
upgate :SWITCH_SETTING of switch to
’ (pipe || pipe = switch:SWITCH_OUTLET

and
SWITCH_IS_EMPTY (switch)

and
LOCATION_ON_ROUTE_TO_BIN(pipe,
package : DESTINATION) ) ;

The same process can be carried out in removing the second conjuct arm >3: replace it with
true (again the user must provide the reasoning) and simplify the conjunction b, This gives
us

demon SET_SWITCH (switch, package)
trigger package = first(PACKAGES_DUE_AT_SWITCH(®,switch))

and
SWITCH_IS_EMPTY (switch)

response
update :SWITCH_SETTING 0f switch Lo
’, (pipe || pipe = switch:SWITCH_OUTLET

and
LOCATION_ON_ROUTE_TO_BIN(pipe.
package : DESTINATION) ) ;

{0

‘e s
«“ %

5.

)

.._w-

Il’

F e

L % 4



E.14 Simplity PAGE 399

X

‘e 9
a2 s 0
..

E.15.Swap

e
-
o
.
»

.
A

Swap( Atjaction, A2|action)

4. %%

LN R

-
.

o Achievement Condition: A1 and A2, brothers in a begin/end block, are interchanged

.

B - Goal Description: allows the exchange of one or more actions within a begin/end block.

[

Router references: 2.14

a e

DO N
L}

Example A

Router Reference: 2.14

X

‘0 :;} Development context: our goal in step 2.13 is the computation of the update to
AR
) X - LAST_PACKAGE (>1) after the reference to PREVIOUS_PACKAGE (’2)'
7
Y ::
}g ra demon RELEASE_PACKAGE_INTO_NETWORK (package.new) :
;« trigger package.new:LOCATED_AT = the source .
i response h
. begin _ q
, update prev_package in PREVIOUS_PACKAGE(S) X
y 10 LAST_PACKAGE(®); :
! ’, update Jast_package in LAST_PACKAGE(S)
S 10 package.new . \
% :,_, ’, if PREVIOUS_PACKAGE(*):DESTINATION # package.new:DESTINATION
then WAIT[]:
‘I update :LOCATED_AT of package.new to (ihe source):SOURCE_OUTLET P
iy end: y
4 F. . B
LY o
4
L.
E The method chosen attempts to Swap the two statements.
; D\.
% ~ X
S K
‘: KN
"
B! < )
0
Y
' ~
o
=

Ty o

Yy MY



PAGE 400 *  GOAL DESCRIPTORS

» .'v’.\ Tete

E.16. Unfold

P

_:C_;: Unfold(D|definition, R|reference )
LN N
FLRILS
3'_-\'-: Achievement Condition: D unfolded at reference point R
A
‘ Goal Description: Given that our specification language gives us the ability to create giobal
N 3 parameterized definitions (e.g. procedures, derived-relations, constraints, demons) and loca!
E:‘ implicit and explicit references to them, we would sometimes like to replace the local
1,
- reference with the instantiated definition. The motivation for this step can be one of
s optimization (calls may be expensive), mapping (mapping a derived relation by untolding it
::_ X everywhere it is referenced, a demon everywhere it is triggered) or catalytic (the introduction ~
oY ~
Ef;.: of the definition in the local context allows further optimizations to occur). The Unfold goal =
:‘- . eae . . . N
b requests that a particular global definition be instantiated at a particular reference point. i
2
- »
:._\E ......................... Examples of Use =-«cccomvceccconnaen coons )
\ 'u:_'q ‘\-‘
)
Router References: 2.7, 5.6, 5.9, 5.13,5.17, 6.4, 6.10, 6.21 -
P é
'g'.: Example A
N .
T Router Reference: 6.10 L
'?": Development context: One means of reformulating a derived relation is to unfold it f.;s
‘.:-‘é wherever referenced. Given the definition and use of SWITCH_IS_EMPTY below ’
P &
-
XY relation SWITCH_IS_EMPTY (switch)
Y definition ~3 package || package:LOCATED_AT = switch; Y
"J..J e -
N trigger SWITCH_IS_EMPTY (switch) g
o a L
o ~
<o -~
~'.;\-; we can unfold SWITCH_IS_EMPTY to get )
'S >
.r"j
;:‘J .
- R
' o
s "
PO 7

W e e W T - ot .« e, . L A P R TP S YR R LRI IR ) . “« . o>
P R T I AU St S B R ) . L. )
DI A I R N IR TR AP T IR TR IR SR A W



E.16 Unfold PAGE 401

a AYEER A S L

> .
> \
- b
-

= S ; ’
s trigger ~3 package || package:LOCATED_AT = switch; B
- p
e
22

From this point, one more reformulation leads to the desired state.

Example B
. Router Reference: 6.4
l:'; Development context: We can view the reference of a.demon as a location that causes a
- state change which may cause the demon to trigger. Step 6.4 requests that the demon
E SET_SWITCH_WHEN_BUBBLE_PACKAGE be unfolded at such a location »:
. demon SET_SWITCH_WHEN_BUBBLE_PACKAGE (switch)

trigger 3 package ||

. package = first(PACKAGES_DUE_AT_SWITCH(* switch))
o > update packages_due of PACKAGES_DUE_AT_SWITCH (switch.$)

10 PACKAGES_DUE_AT_SWITCH(switch,*) concat <package.new>;

. ‘\'_‘-' Ve T I P VO T e ] »
¥ !:s'_\':\.‘_\':\':i't\'t&".&“':\&



v'\:

£k
4 G 4
A

»

I8 8
D

fes
PP

ST

‘
2
2

>

TN,

PR - - By Y0 -t et e Ya",. a® nh L S f o R - . B T R R

h RO T T TR AN IR S e At Pt S SN D g ,"1
hd RN I N A P - L R

PAGE 402 : METHOD CATALOG

'I'!'a' 250

Al B

'
'y

lk“

T

.
¢
ot eta

P
.
’

12

- -.'."J"f -"., PO -(.- ',-.:‘--.\. "q.‘:'.- A .':‘..-_..:'..~'..-_, e e e e e e e e T e et




NG P DA O A A A SN LN A N R WA MMM S ELEG TR N M AR A et et A e et Tt AfChed S0 FTRTIT T T e T e NV aV T

F Method Catalog PAGE 403

_ Appendix F
B Method Catalog

,
q F.1. Catalog Notation
1

) h The presentation of the Glitter development methods will be grouped around the individual
Gold descriptors. Each method will be presented using the following format:

»

)

f Method <name>

. A Goal: [<triggering goal>]!

h Filter: [<boolean expression>]°

, Action: [<development actions>}!

5 o [ Short description of method. )

' References: 1ist of triggering steps for this method

End Method

g A method's <name> is used to give it a unique textual handlie and is intended to give a short .
description as well.

The references list points into the router development in appendix C. The items of this list are
steps where the method was competing. Steps listed in boldface are ones where the method

R N A Ny

\('.'

¥

was chosen. .

':,':_';.'

The rest of the fields conform to the description given in chapter 6.

-V A Y Y]
-

b"{)’,

I
’.
Y

(]
1%

>
YR

!‘\"'

".’z‘ ;r LR 1 -.thv--.'wxuq_--..‘--‘- " d%e " @ A" ™ - - - e~ et R R .
3505 Y X ST I BTN N Lo ‘ N ,\‘,ﬁ. . \_-. Mo, ‘ \. '_s*._.\._ TR



.
s

l'n'ff l'
N Y g
‘u'y.n.,- ¥.

AAXX
PN N A

[
P At

as

¥

NN
NP IR AR

‘s

SAPA S
(U CY

PR NN
whihr S
g L4 . L
LI N A “

e
*
.
‘e
o
e

-
,
o
Pd
(
>

ARA SCI AL b A A N

e IRRAE A O L L RN

PAGE 404 : METHOD CATALOG

F.2. Casify

| Method BinarySplit |

Goa/: Casily C| +constraint
Action: 1) Apply swary-spLT(C)

[+constraint P = +constraint Q implies P; + constraint ~Q implies P]
References: 4.8, 4.11, 4.14
| End Method |

| Method CasifyConjunctiveTrigger |

Goal/: Casity D|demon
Fiter: a) gist-type-of[T|trigger-of[D].
conjunction)
Action: 1) Show WINDIVIDUAL_START(D)
2) Apply SPLIT_CONJUNCTIVE_TRIGGER(D, T)

[it may De easier to break a demon up into specisl/ cases and then trying to map. Make sure that
no new triggerings are created.]

Retersnces: 6.2,8.14
| End Method |

| Method CasifySuperTrigger |

Goal: Casity D|demon
Fiter: a) trigger-of[T, D)

b) component-of[S|supertype, T)
Action: 1) Apply CASIFY_DEMON_SUPERTYPE(T, S)

ISpawn a separate demon for every subtype X of S.]
Relerences: 5.18,5.19
| End Method |

a7

v
‘:‘I“l'

e



ﬁ F.2 Casify PAGE 405

.
v
A A

¥
.l
P ere . L o -

: Q | Method Pastinduction |
" .
¥
Goal: Casify C|+constreint
:: & Action: 1) Reformulate C as +constreint P during E
M
JN 2) Show EVENT_BEFORE_EVENT(B, E)
3) Apply PAST_NDUCTION CASFY(C, B)
.
-
| - :}I' : [Use induction from some past state.)
; t References: 4.8, 4.11, 4.14
! o | End Method |
i
! g
3
‘ | Method CasifyFromuUntilEverConstraint |

Goeal: Casify C| +constraint
Action: 1) Reforumiate C as

-
.‘m

3 P from E ynti) evermore
-
1 O, 2) Apply CASIFY_AS_NOW_AND_AFTER(C)
e
L [You can show that C holds from E until everatter if you can show It holos at E and afte E.)
. References: 4.8, 4.11, 4.14
BN | End Method |
o
JBER
(]
v
. .- | Method CasifyAroundEvent |
-‘-

Goal: Casity C|constraint
Action: 1) Reformulate C as constraint P gfter €
2) Show FUTURE_EVENT(F, E)

LA LN
. a
A

=
L
3) Apply CASIFY_AROUND_EVENT(C, F)
': : - {Choose some event F in the future and show that C holds before, during and after F.}
b References: 4.8, 4.11, 4.14 "
| End Method ' |

e |- gl
o I 1 A

g
poe

— .

M

Al R Wl W N

LR -

’,'.‘ o~

*\ & _}‘ \- \-.\- \v\.',.\'n .'w .‘:' ~ ~ » - .,.v L] &q $1‘\|‘ n:\ﬂ‘\\’-\\.--..-
N A - { [ .

i A AL L AR SR S




o T Y W Ve Ve e e Te TR R AT Py P SN S N S T e e S N N R T .
TIW. W T me s -'\"}‘;“.‘ .T1 .‘.’—'.' .'.,' AU IR ‘-' S e et -'.A' ‘~' Lt . S ST D S

PAGE 408 * METHOD CATALOG
n
K
.J
o
| Method RefromulateAsMuxCase | ]
Goal: Casity X|action _4
-

Action: 1) Apply EMBED_WN_MUX CASE(X)

{X =» mux-caseecl:X c2:X...cn:X}
References: TextPreprocessor

| End Method |
F.3. ComputeSequentially 3]
4
| Method ConsolidateToMakeSequential | q
Goal: ComputeSequentislly Al|action before A2|action :;I
Fitter: a) component-of{Al, D1{demon) -
b) component-of[A2, D2|demon) -
Action: 1) Consolicate D1 and D2 o
e
1t is easier to move actions around if they are in the same contex!.]
References: 2.8 ':::
| End Method I A
>
| Method MoveOutOfAtomic ] = ‘
[}
Goal: ComputeSequentiaily B|ection before Alection
Fiter: a) component-offA, C|atomic) -
Action: 1) Unfolo C -
1! you are trying 1o move A after B and A is in an atomic, unfold the stomic before attempting to —
continve.) !!
References: 2.6
| End Method | .
'L.t
-
-y
.
o
-
!
'-._

o LS O
O AT ST PRI



A R e e T e R R R A G R R T R R Y e A Y T R Y I A G N TS S RS "3

-2 WP

— F.3 ComputeSequentially PAGE 407

AL 4y 8 %

" | Method SwapUp |

Goal: ComputeSequentially Y before X
. Filter: a) brother-of[X, Y)
Action: 1) Swap Y with predecessor of Y

[H you are trying to compute X after Y then move Y up.)
B A References: 2.13
2 A
'\ - | End Method |
\
)

v F.4. Consolidate

Y
! | Method MergeDemons |

Goal: Consolidate D1|demon and D2|demon
Action: 1) Equivaience trigger-of(Di) and
trigger-ot[D2]
2) Equivaience var-declaration-of[D1] and
b var-declaration-of[D2]
3) Show ™meRGABLE_ DEMONS(D1, D2, 1|ordering)
L 4) Apply oemOn MERGe(D1, D2, 1)

x

LA R b
Lot At
(S S B

L8

DNEAEMENG RS

[You can consolidate two demons H you can show that they have the same local variables. the
sarme triggering pattern anc that they meet certain merging conditions.})

References: 2.9,4.4,6.7,6.16
, N | End Method |

[ ,
A

3 A

[ 44

AL

L W Ty 8 s e W " "~ N -

~ Y SR S S LR TN L g et e e e te W e e e e e B T O N P
9 NGO, % . . BRI AT A N e N e e T e
: N "

URURDS 7SS Caat WS LAACNE AN




PAGE 408 METHOD CATALOG

| Method ConsolidateEnumerationLoops

Goal: Consolidate L1|action and L2|ection
Action: 1) Reformulste L1 as enumeration-loop
2) Reformulate L2 as enumereation-loop
3) Equivalence generator-of{*, L1] and
generator-of[*, L2)
§) Show MerGaBLE_LOOPS(L1, L2)
8) ADDRLY MERGE_ENUMERATION_ LOOPS(L1, L2)

{To consolidate two Joops, make their generators equivalent and show that they are mergabie.)
References: TextPreprocessor
| End Method

| Method ConsolidateSimpleConds1l

Goal: Consolidate C1{if P then A and
C21if Q then B
Action: 1) Equivelence P and Q
2) Show (hoare-axiom) P {A} Q
3) ADR1Y WERGE_SIMPLE_CONDS WITH_SAME_PREDICATE(C1, C2)

{if Pthen a:if Pthen b =» H P then a:b under certain conditions.}
References: unused
| End Method

| Method ConsolidateSimpleConds2

Goa/: Consolidate C1)if P shen A and
C2jif Q then B
Action: 1) Equivalence A and B
2) Show (hosre-axiom) P (A} ~Q
3) ADDly MERGE_SMPLE_CONDS Witk _SaMEACTION(C1, C2)

{¥ Pthen a;if Q then a =» [ P or Q then a under certain conditions.)
References: TextPreprocessor
| End Method

" e W
s

r

13




aA.

[t 9o

A& TN

.
1

-

-

-

< A IS A A L LA AT 1 MO A N C AL S AN SE AL S OMEA N AT WA 2 W SN DA e

F.5 Equivalence PAGE 409

F.5. Equivalence

| Method EquivalenceCompoundStructuresl |

Goal: Equivalence S1|compound-structure and
$2 | compound-structure
Fiter: a) gist-type-of[*. S1] * gist-type-of[®, S2]
b) fixed-structure[S1)
Action: 1) forall pairwise-component-of{C1,C2,51,52]
go Equivalence C1 and C2

{Divide-and-conquer: make the components of two fixed structures equivalent.}

References: unused
| End Method |

| Method EquivalenceCompoundStructures2 }

Goal: Equivaience $S1|compound-structure and
$2 | ecompound-structure
Fiter: a) gist-type-of[®, S1] = gist-type-of[®, S2]
b) ~fixed-structure[Si)
c) component-correspondence[S1, S2, C|correspondence)
Action: 1) forall correspondence-pairs(C, C1, C2)
do Equivalence C1 and C2

{Divide-ano-conguer. make the components of two non-fixed structures equivalent.}
References: 2.10,6.17
| End Method }

| Method Anchorl |

Goal: Equivalence X and Y
Action: 1) Reformulste Y as X

[Try changing the second construct into something that matches the tirst.]
References: 1.156, 2.10, 2.11, 4.5, 6.8, 6.12, 6.18
| End Method |




PAGE 410 METHOD CATALOG

| Method Anchor2 {

Goal: Equivalence X and Y
Action: 1) Reformulate X as Y

[Try changing the lirst construct into something that matches the second.]
References: 1.18, 2.10, 2.11,4.5, 6.8, 8.12, 6.18

| End Method | o

!

-—

|

", | Method AddNewvar | .;
L -~

Goal: Equivalence L1|variable-list and L2 |variable-list
Fitter: a) length[L1] > length[L2]}

b) member[V|varisble-decleration, L1]

¢c) ~member(V, L2}

LB

ot Action: 1) Show INTRODUCASLE-VAR-NAME(V, L2) 3
2) Apply WNTRODUCE-NEW-VAR(V, L2) .t"
[Try agding a new var to make the two Jists squivalenct.} !
References: 6.19 .
| End Method |
F.6. Factor
T
ay
~
| Method FactorDBMaintenancelntoAction | L
. Goal: Factor U|db-meintensnce in L -:j,‘
L
o

Action: 1) Apply CREATE_ACTION_FROM_TEMPLATE(U A)
2) forall match-patternju, W, L)
00 Apply REPLACE_DBMAINTENACE_WITH_ACTION(W A)

=t

{Create a new action A and then fino all matches W in L and replace each with a call to the new

> action A.J
.4 References: 6.5 .
; | End Method ]
-
o
;_-

N, 4"

AL G I A LI LI L . N . “_e .
"f!f\ﬁ\"'\f~'.!\'\ NN, — St et "f' o

‘ q-\-'\-‘-." . -.' -~ “’v.‘q




ol A e T T e L T L A T N e T T T A T T A T Ny I ~TANR

o F.7 Flatten PAGE 411

Y

1

] - F.7. Flatten
n -

‘ .'.'
[{

<
S | Method Flatten {

o e

- -~,':

* . Goal: Flatten DR|derived-relstion
A Action: 1) forall
: \ :; reference-location[BR|derived-reiation,S ,DR] .
; e do Map BR .
- [Map all derived relations found in DR into simpie ones.) i
References: 1.9,5.3,5.7
; . | End Method 1 ._
o :

‘
B i

4

B F.8. Globalize

« v /
N
> | Method GlobalizeAction | :
,‘, . Goal: Globalize A|action
b Fitter: &) component-of[A. X|aetomic) )
DU Action: 1) Unfold X

11 -
; [You can't pull something out of an atomic: jitter.} :
« . References: 5.12,5.16

:.:. | End Method | :
1 7% ! .
) 'Y g
o]

& | Method GlobalizeDerivedObject ' |
2o

s S Goal: Globalize DO|derived-object
¥ Action: 1) forall location-reference[V, $, DO)

-, n suchthat V = local-var-of{*, DO}
2 ~ do Try Reformuiate V as global-expression
e -

]

' \,‘_', {Try changing all local variable refsrences o giobal references.] ‘
e, ot References: 1.4 :
o | End Method | o
o
" 3 ;
by
A s
R* N *
P .

' .
4 :
-

o
4

LI W & LI R I R S
OIS S A Y N

."' LAY

M \ l‘ ‘l . - ..' \‘ - -
AL ‘-'.\L'. - "\J‘.‘-‘



PAGE 412 : METHOD CATALOG

F.9. Isolate

\7:.‘ b‘ -‘.-_ .'

| Method FoldGenericIintoRelation |

Goal: Isolate X|expression
Action: 1) Globalize X
2) Apply FOLD_INTO_RELATION(X)

{Straightforward fold into derived-relation.]
Relerences: 1.3,1.17,3.3
| End Method |

F.10. Maintainincrementally

| Method ScatterMaintenanceForDerivedRelation |

Goa!: Maintainincrementally DR|derived-relation
Fiter: a) -recursive[DR]
Action: 1) Flatten body-of[DR]
2) forall location-reference[BR, $, DR]
do forall location-reference[BR, L. spec)
do begin
Apply WNTRODUCE_MAINTENANCE_CODE(DR L)
Purify L
end
{To maintain a derived relation DR, find everywhere the base relations of DR are changeo and

stick code in to maintain. Make sure that all base relstions are simple before maintenance and
that all code is pure after.]

References: 1.8, 1.11, 1.18, 3.4, 5.2
| End Method

{l # .‘.

AN

.
”, .

I
< A

,.
V'l"
iale

Y
&

A
'

o)

37

»
-

s
)

1.

.
*
.

~




-
A

¢

L~

‘h".‘h—.‘- )

L ]
MY

S

1’-{..‘;

- - X
!f-.‘_’i.",".-l.

P
O]

LA

A

0
s
e

-’
o’y
rd

\
s
~
%

&
A\ ]

N

o

Nun

-
‘0,0,

£

a

o

3

e

£

1N

F.10 Maintainincrementally PAGE 413

| Method IntroduceSeqMaintenanceDemon |

Goal: Maintainincrementally DR|derived-reletion
Fiter: a) gist-type-of{parameter-of[DR],
sequence)
Action: 1) Reformulate body-of[DR)
as temporally-ordered-set-idiom
2) Apply INTRODUCE_SEQ_MAINTENANCE_DEMON(DR)

72

{One way of maintaining a derived sequence is to first change the definition into a temporal oroer

-- ({x[[P(x)aso! everbefore} ordered temporally by P(x)) -- and then set up a demon with trigger
P(x) to add elements.]

References: 1.11, 5.2
| End Method } !

F.11.Map

| Method ShowNoChange ]

Goa/: Map C| +constraint ~(gtart of P)
petween E1,E2
Action: 1) Show UNCHANGED_BETWEEN EVENTS(P, E1, E2)
2) Apply REMOVE_UNCHANGED CONSTRAINT(C)

[The direct approach.)
References: 4.16
| End Method . (

72p4t1erns can be predefined and named. in this case. ({x]IP(x) asci everbefore} ordered temporalty by start P{x)).




'l ’. ...““. ¢ 1 3 ._

‘{. '-

-

PAGE 414

METHOD CATALOG

| Method ChooseElementOfSet

Goal: Map C| +constraint

Fiter: a) gist-type-of[E|constraint-body[C], existentisl]

Action: 1) Show ELEMENT OF SET(X, E)
2) Apply CHOOSE_ELEMENT(X, E)

[Try replacing the existential set with one of its elements.)
References: unused
| End Metnod

| Method CasifyDemon

Goa!: Map D|demon
Action: 1) Casity D
2) forall case-of[X, D] do Map X

[Try mepping by case analysis.]
Reterences: 4.3, 6.9, 6.3, 6.6, 6.13, 5.15, 5.1%
| End Method

| Method UnfoldDemon

Goa!/: Map D|demon

Action: 1) forall trigger-location[D, L. spec)

do Unfold D at L

[To Map a demon. unfold it where appropriate.]
References: 4.3, 6.1, 6.3, 6.6, 6.13, 6.15, 6.20
| End Method

) VI

lainaca

Al

a4
.

Bk

PN
r s

ial

R
[ N

[}




-,
'
(7S
=
L,
=
.-"
R4
-
] e
¥ .
;~‘ --.‘
L['“
s__\;
"
~
IR
"N
Ny L.
N ¥
,(\ Y
ae <
o
'.“jl
A )
"’ 8
o .

h T

F.11 Map PAGE 415

| Method StoreExplicitly

Goal: Map DR |derived-relation
Fiter: a) sTaTC(DR)
Action: 1) Show FINTTE_EXPLICATION( DR )
2) Apply INITIALIZE_MEMO_RELATION(M, DR)
3) forall location-reference[DR, L, spec]
do Apply REPLACE-REF-WITH-MEMO(L, M)
4) Apply REMOVE_UNREFERENCED_RELATION(DR)

[You can explicitly compute a static derived relation given a finite number of resulting db

insertions.]
References: 1.10, 6.1, 54, 5.5, 5.8
| End Method

| Method UnfoldDerivedRelation

Goal: Map DR jderived-relstion
Action: 1) forall location-reference[DR, L, spec]
do Unfold DR at L

[{One way of eliminating a derived relation is to unfolo it at its relerence points.]
References: 1.11 5.1, 5.4, 5.5, 5.8
| End Method

| Method ComputeNewValue

Goa/: Map Uluypdate X of Y 10 2 where P
Action: 1) Apply
COMPUTE_DERIVED_OBJECT_FROM_CONSTRAINT (U)

[Reformulate Z as Oerived object using F.]
References: 4.18
| End Method

P PO SR P L TS Pl U

T AT I AT TR
| \A’.ﬁt\f‘\‘ \LL *&u‘..‘...hh

'.-.sas

‘h'\




iyl

PAGE 418

2 e, e
. ‘.
A “."; by

o
&

ST e T T TR T T N L

METHOD CATALOG

.
v | Method MoveConstraintToAction

Goal: Map C|require
Action: 1) Reformulate C as
require P gt 1ast E|ection-event
2) Show LasT ACTION(A|action, )
3) Apply MOVE_CONSTRAINT_TO_ACTION(C. A)

[If a constraint C is on some action event E at A, attach the constraint to A.]
References: 4.7, 4.9, 4.10, 4.12, 4,13, 4.15, 4.18
| End Method

| Method NotXUntiiX

Goa/: Map R| +constraint

Action: 1) Reformulate R as <+constreint P ... until ¢
2) Show wweLiep 8Y(P, ~E)
3) Apply REMOVE_VACUOUS_CONSTRAINT(R)

[P yntil E =» true when ~E implies F]
References: 4.7, 4.9, 4.10, 4.12, 4.13, 4.15, 4.16
| End Method

| Method TriggerIimpliesConstraint

Goal: Map R|require

Fiter: a) component-of(R, D|demon)

Action: 1) Reformuiate R as require P gt ThisEvent
2) Show wevep_sv(P, trigger-of(D])
3) Apply REMOVE_MPLIED_REQUIREMENT (R)

{!f a requirement is part of a demon, try showing that it is implied by the demon’s trigger.]

References: 4.7, 49, 4.10, 4,12, 4,13, 4.18, 4.18
| End Method

[ -‘J-.

8
. .

-




LAV utn

.

Ry AV Y N

PR . P

F.11 Map PAGE 417

vE

“
- | Method CasifyPosConstraint |
~ '
N Goal: Map C|+constraint
- Action: 1) Casity C
;:\ 2) forall case-of(X, C) do Map X
[Try mapping by case analysis.]
;:; : References: 4.7, 4.9, 4.10, 4.12, 4.13, 4.15, 4.16
o | End Method I
o
- | Method UnfoldConstraint . |
Goal: Map C|constraint
e Action: 1) forall location-violation{v, C] do Unfold C at V
* [Find all places constraint might be violated and unfold maintenance code.}
N References: unused
o | End Method I
[

| Method MapConstraintAsDemon |

o

K2

< Goal: Map C|constraint

. Action: 1) Reformylate C as always prohibit P

?ﬁ; 2) Show weLiED BY(Q, P)

: 3) Apply REFORMULATE_CONSTRAINT_AS_DEMON(C, Q. Do)

‘? 4) Map Dn"

;'.E {To map a prohibitive constraint, tirst choose some predicate Q that is always true when the
constraint is violsted, and then introduce a demon whose trigger is Q and whose body is a

- requirement of =F.}]

: References: 4.1 .

: | End Method . |

B

l.‘.

~

i

N

0\'

o

xd

14

g WA AN O e NN

L AU LR - LI - LI PO G R T
LSS 1w e S ATV AT A
Li Ol v TN o A A A N N N e A A AN




A

EXy
l'—‘

L4
LY

X7

kg

s
~

‘r w3
7

Py

2

TETY
1.:&.‘:
calAl

T
x
¢

'a,
s
. a

PAGE 418 : METHOD CATALOG

Sl Gl il Gafl bl "ad O o 2t B DAL THCATISNTA WA SN AT SO LY

| Method MaintainDerivedRelation |

Goal: Map DR|derived-relation
Fitter: a) ~static[DR]
Action: 1) Maintainincrementally DR

{One way of mapping a derived relation is to maintain it explicitly.}
References: 1.10,5.1, 6.4, 6.5, 6.8
| End Method |

| Method MapRandomToforwardEnum |

Goa!: Map G|rendom-element-generstor
Action: 1) Show no_successor_reliance(G)
2) ARDLY REFNE_SET_ENUM_TO_FORWARD_SEQ(G )

{You can map a random (or ND} generator to a forward generator under certain conditions.)
References: TextPreprocessor
| End Method |

| Method MapRandomToBackwardEnum |

Goal/: Map G|rendom-element-generator
Action: 1) Show no_predecessor_reliance(G)
2) ARDLY REFINE_SET_ENUM_TO_BACKWARD SEQ(G )

{You can map a random (or ND) generator 0 a backward generator under certain conditions.}
References: unused

| End Method {

a1

]

2 WA

-

]

‘e
A

ll Jl..




PAGE 419

| Method MapByConsolidation

Goal: Map D|demon
Filter: a) match-pattern[demon, D2, spec)

b) D » D2
Action: 1) Consolidate D and D2

[To map D, tind some other demon D2 and consolidate.)
References: 4.3, 6.1, 6.3, 6.6, 6.13, 6.15, 6.19

| End Method

F.12. Purify

| Method PurifyDemon

Goal: Purify Ajection in D|demon
Action: 1) Remove L from D

[Remove unpure statement L from D.}
References: 5.10,5.14
| End Method

F.13. Reformulate

. . - -
P _\._ -._\'_\ \._\ -'_\-.\‘.\..\“\ \.\

TN e v KNy -
RV Y NIy




LSO S IR R R I R T L

-

i ]

K PAGE 420 : METHOD CATALOG N

«
.

l’l.
Wy

.

:3:.5: | Method ReformLocalAsFirst | 4
e, .
S Goal: Reformulate V|varieble as global-expression
i Fiter: s) patten-match[relation name (seqlgequence of type) def;, —4
AL R, spec)
‘\:; b) domain-type-of[type, V] -‘:'_i
._-; Action: 1) Reformuiate V as first(name(®))
.:-::"- [t you can find a sequence containing the same type of objects as V then you may be able fo -~
-0 change V into a specific relerence to the sequence.] i
-~ References: 1.5
::‘.: | End Method I
‘0 2 :\:.
AN
""-\ o
o N
o | Method ReformLocalAsLast | -
Lo
_: _’: Goal: Reformulate V|varisble as global-expression :‘.:
,:::: Filter: 8) patten-match[relgtion name (seq|geguence of type) def;, .
R, spec] -
. b) domain-type-of{type, V] -
$: Action: 1) Reformulste V as last(name(*)) ‘
.‘2: {if you can tind a sequence containing the same type of objects as V then you may be able 10 '
‘ ::‘.} change Vinto 8 specific relerence to the sequence.] ot
e References: 1.5
1o | End Method | ‘.
3% *
)
\E;.' -

Kk

A | Method ReformulateEverMoreAsDuring l

s
_-::: Goal: Reformulate X as (~Y during E) :._:
:-::' Fitter: a) gist-type-of[X, predicate)

-‘,’-: Action: 1) Reformuiste X as (~Y asof gvermore) , .
O 2) Show weLeD BY(Y, E) E
R~ 3) Apply REFORM-EVERMORE.ASUNTI(X, E)

™

1

[(-Y asof evermore) =» (-Y guring E) where Y implies E]
References: unused

>5
L d.’

L3

N

3 | End Method | "
. -
bk <
Q'a.

L) & P
1) ] !:
p By ;
¥ .
A

he

7|

P R A
.
-\'\!\ .

GO SO LN O g’-;"-."\.’\"s'\ MR BTN \'\' DN v X BTN S ST AT ST AT A NI .\..\



e

'

CA Y

P

WY 7 Y

A
o?

Rl

o

N N

Lo g WL AR
.

e . -
et r

124070 7 RN

¢ Bl
LN N A

F7

-

XAl

4 NOOOLAONS | {7

&

4

R R

I3

Y

f

£
Yty !

v % N

rr P

(A

F.13 Reformulate

PAGE 421

| Method ReformulateUntilAsEvermore

Goa/: Reformulate Ujuntil P as asof gvermore
Action: 1) Show NuLL_OCCURRENCE(unti1-event[S])
2) Apply UNTW _NEVER_TO_EVERMORE(S)

[P until never =» P asof evermore)
References: unused
| End Method

| Method ReformulateAsCondByEmbedding

Goa/: Reformulate X as if True then X
Action: 1) Apply EMBED_WN_COND(X)

{Xx = jf True then X)]
References: TextPreprocessor
| End Method

| Method RenameVar

Goal: Reformuiate V1|variable-declaration as
V2| variable-deciaration
Fitter: a) scoped-in[Vl §]
Action: 1) Show INTRODUCEABLE_VAR NAME(V2, S)
2) Apply RENAME_VAR(V1, V2, 'S)

{Replace all occurrences of V1 with V2 in S atter showing that V2 does not contlict with scoped

variables aiready delined within S.)
References: 2.12
| End Method

e’ A A0 AL A A s Jar A AR A AR A AT A T A AT R S o S e e e e Aty TRV TITY )

A K. o a

AR £ s 48 5 A R T s & acB 4 A & G .-

prosr

PN PPy




PAGE 422 : METHOD CATALOG

n'(‘/-
i}
|

y :
SN AN

o n. ". '
als s

NV | Method ReformulateActionCall [ .

%
Y |

AN Goal: Reformulste AC|action-cell as P
Action: 1) ADD1Y uUNFOLD_ACTION CALL(AC)
Ny v 2) Reformuiate AC as P

“
-

i {lf trying to reformulate an action call, unfold the body and try and reformulate R.}
)."‘-‘ References: TextPreprocessor
RN | End Method I

Lt

AN | Method ReformulateDerivedObject

\,‘,.i Goa!: Reformuiate DO|derived-object as P
! Action: 1) Reformulate body-of[D0]
\3:\ as Yocal-var-of[*, DO)=P
vt 2) Apply UNFOLD_DERIVED_OBJECT(DO)

TN Ixlix « P) = P]
ﬁ e References: 1.13
End Method |

D
'8
-—

o | Method ReformulateDerivedRelation |

'h) -
..J':: Goal: Reformuiate RR|relation-reference as X ::}
;-',.:, Fiter: a) gist-type-of{name-of[R, RR], 1

St derived-relstion) R
47 bt
— Action: 1) Unfold R at RR =

I

. !
,:: :’,‘: [Try reformulating the body as X.) -:4
AT References: 6.9 ~

LA
e | End Method I ‘
AL
YA Lo
by q
S \
N .:"
09 )

A

, L |
-

oty .
;r“ e -
R I

it
.
b )

U .




< LAY RAERESE LS LA LS LSS AL S PN P AL e gt R Rkl I Jra ol 1 N T P i AU RA Sph Y mat L S Al Al 2 A

™ F.13 Reformulate PAGE 423
L
<

e
¥

\ i~
X
" N | Method ReformulateRelativeRetrievalAslast | ) .
sS : A
i
N Goal: Reformulate RS|relstive-sequence-retrieval
. -'_-j as "x|object=1ast(Seq|SEQUENCE)"
e Action: 1) Reformulate RS as
"x immediately before y wrt (Seq goncat z)"
g ﬁ-: 2) Equivalence y and 2z
o 3) Apply CHANGE_TO_RETRIEVAL_OF_LAST(RS) .
NS [x immediately before y wrt (Seq concat y) = x = [ast(Seq))
. References: 1.14
| End Method | 1
% N |
W)
H | Method ReformulateRelativeRetrievalAsFirst |

- Goal: Reformulate RS|relstive-sequence-retrieval

SR as "x|object=£irst(Seq|SEQUENCE)"
g . Action: 1) Reformulate RS as
"x immediately sfter y wrt (z goongcat Seq)”

» 5 2) Equivalence y and 2

i 3) Apply CHANGE_TO_RETRIEVAL_OF FIRST(RS)

\ Fﬁ Ix immediately atter y wrt (y goncat Seq) =» x s first(Seq)] y
'~ References: 1.14 \
.~ | End Method |

- :

. e .

Y ' :
s | Method ReformulateAsObject |

SR Goal: Reformulate SR|last-retrieval as O{object

:: Action: 1) Reformulate parameter-of[®, SR} as (S gconcat 0)

': 2) Apply smeLEY_LAST(SR)

. ._\

N B [1ast(S concat O) =» 0]

:: References: 1.16, 1.20 !

o | End Method . | .

2 X

el .

‘ .
o .
- -

v

~

5]

<

“~ .
Y

LY

a

L 4




%)

LA

s

I
T
".'.'-l-.‘-‘ﬁ‘

» -
.
Y.

.

. . C el
W TSI PRI P, RAANCARN WO NS

PAGE 424 METHOD CATALOG

| Method SpecializeRandom |

Goal: Reformuiate X|RANDOM as Y
Action: 1) Show NON_EMPTY_SPECIALZATION(Y)
2) Apply
REPLACE_RANDOM_WITH_SPECIALIZATION(X Y)

[You can always replace RANDOM with a more speicialized event if you can show the new
eventdoes not remove all choices.]

References: 4.6
| End Method |

| Method ReformulateExistentialTrigger }

Goa/: Reformulate T{irigger ~3 o||R(o) as R(o"')
Action: 1) Show TRIGGER_GENERALIZABLE(T)
2) Apply GENERALIZE_TRIGGER(T)

{You can reformulate an existential trigger into a universally quantified one under certain
conditions.)

References: 8.11

| End Method ]

F.14. Remove

| Method RemovefromDemon ]

Goal/: Remove Ajection from Djdemon
Action: 1) Globalize A
2) forall trigger-location|{D2{demon, body-of{*, D]. spec)
060 Apply MOVE _STATEMENT_TO_DEMON(A, D2)

{Find all demons that trigger from D and move the action A there.]
References: 5.11,5.18

| End Method |

e e

RN A A R N AN

o A 1A

ey

I-

s |

.
1

N

» s

1e

SEN; |




.
s &

0

P
* 2 2 8 a

A LS SN

xR

N ey

LT RE N P Y

‘mt'..‘-_n‘;}_‘.._

§ o

AL YT

B

- L 4
WA

[

|

x

’l A

-t
S
‘-

.‘l‘,

Ls
]

3
'l
r

>
'

-~

IR

¥
-

13

‘e
LY

R .
=y

-

SN

e LR Lt ARN LA\ ~

s A R O TR

F.14 Remove

PAGE 425

| Method RemoveRelation

Goal: Remove R|relation from spec
Action: 1) forall reference-location(R,RR, spec]
do Remove RR from gpec
2) Apply REMOVE_UNREFERENCED RELATION(R)

{You can remove a relation if you can remove all references to it.)
References: 1.1, 2.1, 3.1
End Method

| Method ReplaceRefWithvalue

Goa/: Remove RR|bsse-relstion-reference
Action: 1) Show VALUE_kNOWN(R, V)
2) Apply REPLACE_REF_WITH_VALUE(R V)

{One way of getting rid of @ non-derived-relation reference Is to replace it with its valve.]

References: 1.12, 1.18, 2.2, 3.2

| End Method

| Method MegaMove

Goal: Remove RR|relation-reference from spec

Fitter: a) component-of[RR. Y|expression)

Action: 1) Isolate Y in Dkldorivod-r;luion
2) Maintainincrementally DR

{Remove the reiation-reference RR by moving Il directly after the locations It is assigned.]

References: 1.2, 1.12, 1.18, 2.2, 3.2
| End Method

o~

N T T o LR T

N

PR U

atata'NP A ¢

atalts’

s .o JODNRC L2




e K a1 o DA T T T T T e e T e T T T T T T L AL e
PAGE 420 ' METHOD CATALOG
i
s | Method PostionalMegaMove “ |
R
::{j Goal: Remove RR|relation-reference from spec
:::-.‘4 Fitter: a) component-of(RR, Y|expression)
; b) gist-type-of[sequence, argument-of[®, RR]]
3 w2 Action: 1) Reformulate Y as PR|positional-retrieval
3
‘::{-\‘. 2) isolate PR in DR|derived-relstion
'-.‘:}' 3) Maintainincrementally DR
ol -
-)\'.
1' % {One way of getting rid of a reference to a sequence is 10 reformuiate it as part of a positional
retrigval, and then megamove 1.}
? References: 1.2, 1.12, 1.19, 2.2, 3.2
Wi | End Method |
S
) \i
o
,.,; | Method RemoveVariable |
N . Y
S Goal: Remove V|varisble from S|scope .»jj
DAXR ¢
‘-‘:f- Action: 1) forall reference-location{V,VR,S] °-

do Remove VR from S

N |

N 2) Apply REMOVE_UNREFERENCED_VARIABLE(V) ..
) e
5
‘.‘-t' [You can remove a variable Il you can remove all references to it.]
YL . ~
SR Relerences: TextPreprocessor N
I | End Method |
a:':'.'. :-:.
s oy
o
e | Method RemoveByObjectizingContext |
s b
- -
) Goal/: Remove RR|relstion-reference from spec
.-_'-':: Fitter: a) component-of[RR, Y|expression] 2
A
.,{-'_: Action: 1) Reformuiate Y as object N
Ca4
i: [One way of getting rid of a relation relerence which is embedded in context Y is to reformuiate Y 2a
. as an explicit object.] . u
Yy References: 1.2, 1.12, 1.19, 2.2, 3.2
20N | End Method |
;' : v"-
N -
s

k]

g
dn
~ia

.
-

4
)

. *_%
1 NS

-y '... -._:‘ -".’.'- '-_"-’

NN

et O,
oo T, 5t RSN



- M e

LA

s

-8 4%
&
-
7

ats¥atatats
4 ot 4
LY

o
’

-2 5

v
o

.'
A

« 2224 4"

| ¢ $e

S L LS
.Q [

o i
~ L
-«
o
4
YO

Sad dal S e dt ek Sate [ PRI PR SRR Rt s et T ittt it i 5~ o P A" NN A E S Al IRl S S AL SN SR _—v‘q
j‘
F.14 Remove PAGE 427 1
.i
I‘\
| Method EmptyAndRemove |

i

Goal: Remove S

Fitter: a) compound-structure S

Action: 1) forall immediate-component-of[X, §]
do Remove X
2) ADD1Y REMOVE _EMPTY_STRUCTURE(S)

{Remove a compound strucutre S by removing each of its components X.)
References: unused
| End Method |

| Method RemoveUnusedAction i

Goal: Remove A|action
Action: 1) Show action_is_unnoticed(A)
2) ADD1ly REMOVE-UNNOTICED-ACTION(A)

{Show that the current action is either not used or superseded by a subsequent action. }
References: 1.21,3.8, §.11, 5.15
| End Method (

| Method ReplacevariasbleWithvValue |

Goa/: Remove VR|variable-reference
Action: 1) Show(value_is_known(VR V|object)
2) ADD]Y REPLACE_VARIABLE WITH_VALUE(VR V)

{1 a variable’s vaiue is known lill it in.)
References: TextPreprocessor
End Method |

-

2 T

Y, - q.\,:-_._-f'-..-.,-_:‘f _:.-,:J;;.-.; o’ _.‘,_-_':




PAGE 428 METHOD CATALOG

| Method BabyWithBathwWater

Goal/: Remove X
Fiter: a) X component-of Y
Action: 1) Remove Y

{One drastic method of removing X is to remove strucutre X is embedded in.}
References: 1.2, 1.12, 1.18, 1.21, 2.2, 3.2, 3.5, §5.11, 6.15
| End Method

F.15. Show

| Method ConjunctIimpliiesConjunctArm

Goal: Show X|conjunction implies Y
Fitter: &) unbound[Y)

b) conjuct-arm[A|/ogical-expression, X)
Action: 1) Assert X implies A

I(P1 and Pz and ...Pn) implies P/
Relerences: 4.2
| End Method

| Method ShowDysteleological

Goa/: Show action_is_unnoticed(U|updste)
Fiter: a) update-relation-of[R, U}

b) ~location-reference{R, $, spec]
Action: 1) Assert action_is_unnoticed(U)

{1 you are trying to show that an update is unnoticed, show that it is never referenced.]
References: 1.22
| End Method

I.‘ l\‘ -“
PL YR N, TR AU

N N

2GS
!

AN
IR AT

&l

P

g

-
t

.
A

13

-
.

"’.l

4 I

v
*

1Ak

v
H

‘y
iy

AL |

.'.:




A b

s E F.15 Show PAGE 429
ii RN
q 4
| Method ShowUpdateGivesvalue |
Goal: Show vaLUE_kNOWN(R | relation-reference, V) ' b
e Filter: a) match-pattern[update, U, spec) i

.

b) name-of{R] = update-relation-of[*, U]
Action: 1) Show UPDATE_VALUE_WOLDS(U, R)

bl
»
>‘;. 2) Assert VALUE_KNOWN(R, new-value-of{*, U]) :
e
[Find the last update of R and show that the newvalue is still valid.] :
. .
v References: 2.3
u | End Method |
g | Method ShowNewValueStilivalid |
Goal: Show UPDATE_VALUE_HOLDS(U | update R | relation reference) }
- Filter: a) name-of[R] = update-relation-of[*, U] .
! Action: 1) Show .
UNCHANGED_BETWEEN_EVENTS( new-value-of[*, U], U, R) K
3) Assert UPDATE VALUE_HOLDS(U, R) J
e
[To show that the new upoate value is still around at R, show that the update value has not been
Ca changed before R.] D
e References: 2.4 :
< | End Method | ,
L9
L9
At

| Method MovelnterveningUpdate ! |

Goal: Show UNCHANGED _BETWEEN_LOCATIONS(V | relation reference,

. U)updste,

N R| relation reference)
Fiter: a) pattarn-match[updcto; L. spec)

-, b) update-relation-of[v, L]

b Action: 1) Show COMPUTATIONALLY-BETWEEN[L, U, R]

2) ComputeSequentially R before L

) 1 an intervening update of V exists. move it after R.] K
Relerences: 2.5

¥ | End Method |

i

v ]

'f‘ »

o

(a

N LWL SIS TR IA IS NP AP R PP P S ] ", A . . . L, P— - "' a® " . UENIERERL R
AT LN N CHRGRSAL S AW SELRY '--\‘."‘*{‘“-" - PRI N ‘.-‘ \ .\, NN AN N SN

* .f\:




PAGE 430 : METHOD CATALOG

-3

F.16. Simplify b

o)

in this section, we iis! the transtormations that make up the simplification subcatalog. For further details, see section ::J

E.14.

Simplifying a conjunction J

-

(and) = true o

(and ... faise ...) =» faise ..

o

(and p) = p ]

(and ... trve ...) => (and ...)

(and ... p ... P ...) = (and ... Pp ...) \:
(and ... (and p q ) .._.) = (and ... pqQr...)

(and ... p ... ~p ...) = (faise, i_

Simplifying a disjunction i

(or) =» True -

\l

(or ... true ...} = true -

(or p) = p <2

(or ... false ...) =» (or ...) .

(oF ... p ... P ...) = (or ... p ...) ::::

(or ... (orpgr)...) = (or ...pQT"r...) o

(or ... p ... ~p...) = (or ... trwe ...) A

e

s

Simplifying a negation =

(not (not p)) == p

=2V

(not true) =» faise

(not false) = true

AL | s

.

oS
)
~

b &

A RN T A AN O RS SN




Gt i SRR M P AT A A 40 4 M M A0S SRS A OO E AL A b Er e A AU C AR DAY S ASIE S o o

' d

F.16 Simplify PAGE 431

vilK!

PO
R

Simplifying a conditional

E (cond true —» a ...) = g

(cond) =» empty

AL ST A
.
‘t"'
L o e el Ry 2 0 A AAYT L. . ...

(cond ... false = a ...) =» (cond ...)
(cond ... true = 2 ...) =>» (cond ... true - 3)

(cond p = (cond q == a)) => (cond p and q ~ g)

e Wy e o
-

. F.17.Swap

¥ H’ | Method SwapStatements I

Goal: Swap A with B

:‘g o, Action: 1) Show SwapPABLE(A B)
SRS 2) Apply SWAP_STATEMENTS(A B)
3
[A:B =» B:A under certain conditions.]
o ! References: 2.14
A
N | End Method |
[
kY
-
bl

F.18. Unfold

N
rJ
t w
= | Method ScatterComputationOfDerivedRelation |
- - Goal: Unfold DR|derived-relation at L .'1
T Fitter: a) location-reference[DR, L, §] R
3

Action: 1) Apply UNFOLD_COMPUTATION_CODE(DR L)

1,

x \ﬁ 2) Purify L ;
[To unfoid a derived relation DR at & reference point, stick in cooe to compute it and make sure L

e is within implementable portion of spec.) :
: o References: 4.18, 5.8,5.9,6.10, 6.16 v
Y | End Method |

‘B
2By

l L4

|

SN

‘« ’
L 4

hY
RS

b

SAURSTERATERES :

R .. ne

v

L A R S S S S S A S S R R TSI P e et et e At At AT AT TRt A e e
kY A% y TTA TS TG _.,.\ N .-_,,. PN N B AT AN St




"
o
Cu |
/- .
g PAGE 432 : METHOD CATALOG a
ot
"~ ]
o
{8
!
2 by ¥ * o
u“.ﬁj (O
LY

| Method ScatterComputationOfDemon

Sty

Goal: Unfold D|demon at L |

LA AN
ALl S S

$ Fiter: a) trigger-location[D, L, S} Ce
< Action: 1) Apply UNFOLD_DEMON_CODE(D L) =
2) Purity L |

-1
» s
o

{To unioid a demon D at a trigger point, stick in code to compute it and make sure L is within
implementable portion of spec.]

References: 6.4,6.21
| End Method {

| Method UnfoldAtomic |

Gosl: Unfold A|atomic -
Action: 1) Show SEQUENTIAL-ORDERING(O | ordering, A) ..
2) Show SUPERFLUOUS_ATOMIC(A) \:.',

~

3) Apply UNFOLD-ATOMIC(A, 0) ' -

{You can unfoid an atomic if you can show that there exists some valitd sequential ordering of the ?
statements and that no demonic or inferencing processes will be effected.] :
References: 2.7,5.13,5.17

| End Method | :;‘ ‘
. ]
| Method UnfoldSimpleSB ' | -
Goa/: Unfoid SBpegin S gnd o~
Action: 1) ADD]Y UNFOLD_SMPLE_NESTED_BLOCK(SB) -
{.0eainsend. =» ...} -.

r
Pl

References: TextProeprocessor
| End Method |

2
8




b
G Selection Catalog PAGE 433 |

Appendix G
Selection Catalog

G.1. Catalog Notation

Selection rules will be presented using the following format:

Selection Rule <name>
IF: [<selection expression>]!
THEN: [<selection action>]?
[optional comments]
References: 1ist of steps where rule used in selection process
End Selection Rule

A rule's <name> is used to give it a unique textual handie and is intended to give a short
description as well.

The references list points into the router development in appendix C. The items of the list are
steps in which the rule played an active part in selecting a method.

For an explanation of the remaining fields, see chapter 7.

The selection rules are organized in the following manner:

D Method Specific Rules: grouped here as in appendix F, around the set of
development goals. Each development method in appendix F will be listed here
along with a list of steps where it was competing; bold faced steps mark steps in
which the method was the one finally selected. Following each method are the
selection rules pertaining to it (possibly none).

D Action Ordering Rules: listed after specific method.

D Method Ordering Rules: listed at the end of each goal section.

DI

DR Y \'.\‘ . . PR .
. Wt -, RN
M o o Ny RN A R A e




PAGE 434

D Problem Solving Resource Rules: listed in section G.19.

D General Rules: listed in section G.20.

G.2. Casify

BinarySplit (4.8, 4.11, 4.14)

- SELECTION CATALOG

| SelectionRule ®BinarySplitl
IF a) *BinarySplit is a cendidate
b) Good choice for Q is known
THEN 42
[Good choice if have a Q in mind.]
| End Selection Rule

| SelectionRule ®*BinarySplit2
IF ) *BinarySplit is & candidate
b) Good choice for Q 18 unknown
THEN -2
[Bad choice i don't have a Q in mingd.]
References: 4.8, 4.11, 4.14
|} End Selection Rule

CasityConjunctiveTrigger (6.2, 6.13)

CasitySuperTrigger (5.18, 5.19)

Pastinduction (4.8, 4.11, 4.14)

CasifyFromUntilEverConstraint (4.8, 4.11, 4.14)

CasityAroundEvent (4.8, 4.11, 4.14)

RefromuiateAsMuxCase (TextPreprocessor)

.

e 74

',
A

L |

4

- 2.
s




-

b8!

5

vy by Ay

2 N

£ua"al

PN

A W T T, Ve o )

i A A,

0P 1)

s

]

R

[

PSR |

.
13
4

2

e

.
> S

-
LA LT

A P P T e

G.3 ComputeSequentially

G.3. ComputeSequentially

ConsolidateToMakeSequential (2.8)

PAGE 435

| SelectionRule ®*ConsolidateToMakeSequentis)
IF a) ConsolidateToMakeSequential is s candidate
THEN  +2
References: 2.8

| End Selection Rule

MoveOutOfAtomic (2.6)

| SelectionRule *MoveOutOfAtomic
IF  a) MoveOutOfAtomic is & candidate
THEN +2
References: 2.€

| End Selection Rule

SwapUp (2.13)

| SelectionRule *SwapUp
IF a) SwapUp is a candidate
THEN +2
References: 2.13

| End Selection Rule .

G.4. Consolidate

MergeDemons (2.9, 4.4,6.7,8.15)

g \

\ X N ‘v‘"-‘,;;.'.‘.ﬂ AN R NS

A, A SR LI

D P S
O S -‘-\(......-.‘--

(il 2l Sl Sk R ¥ S £ 2t LA 3 k40 s e vy 1 e A e ;‘:\\1‘:‘.. AN Ay 1 0 A < Dt i 3t T e AR A A Ay "\‘1

J

‘5 St T8

o s e
[N



= o B i vt B+ o i et S et g« et St Tt B €l St gt R L P e AR

AN
Le
N
ﬁ PAGE 436 - SELECTION CATALOG
Y
S
4 ‘.
‘j'.-z | SelectionRule *MergeDemons |
:-?z: IF a) MergeDemons is a candidate
‘ 3:3 THEN +5
References: 2.9, 4.4, 6.7, 6.15
| End Selection Rule i
| SelectionRule TriggersAimostEquiv |
IF a) MergeDemons is selected
:;:.:j b) Triggers differ only in variable renaming
W THEN action-2 > action-1
s [The tirst goal will fall-out as side-effect of second.]
AN | End Selection Rule )
: ConsolidateEnumerationl.oops (TextPreprocessor)
ConsolidateSimpileConds1 (unused)
‘x§ ConsolidateSimpleConds2 (TextPreprocessor)
oo
h '-.-"
G.5. Equivalence
:3 EquivalenceCompoundStructurest
~
| SelectionRule ©®EquivalenceCompoundStructuresl |
IF a) EquivalenceCompoundStructuresl is a candidate
A THEN +5
¢ | End Selection Rule i

EquivalenceCompoundStructures2 (2.10,6.12,6.17)

T T SR R SIS
'\':‘"'S‘L&'I*,\)'la'-ﬂ.!‘!.!‘;h

'

-."l

N

»

-
.

o

Vs

.

2



-l A

”“q“ “

rorrryd

-
o

AN

o )

3
i

% |

s

-
[y

“

SIS

a!

2

L 'S - . .
(USRI

s_e_
“h
At

viXl

Ve

G.5 Equivalence PAGE 437

| SelectionRule *EquivalenceCompoundStructures2 )
IF a) EquivalenceCompoundStructures2 is a candidate
THEN  +2
References: 2.10, 6.12, 6.17

| End Selection Rule [

Anchor1 (1.15,2.10,2.11, 4.5, 6.8,6.12, 6.18)

| SelectionRule ®Anchoria |
IF a) Anchor1 is candidate
b) X|object
THEN +2
References: 2.4, 6.12, 6.18
| End Selection Rule i

| SelectionRule ®*Anchorib |
iIF &) Anchor1 is candidate
b) Y{RANDOM
THEN +5
| End Selection Rule i

| SelectionRule *Anchoric . I
IF a) Anchor1 is candidate
b) Y|derived-relation-reference
c) Defintion of Y reformuiatable as X
THEN  «2
References: 6.8
| End Selection Rule } |

Anchor2 (1.15,210.2.11,4.5,68,6.12,6.18)

B e B e T T e, T TR R e e T T e e e e e e T e e e et

»
\




IS g AT AT AR i 0 S NE A AN S A ST Tt R AR e T e

2
)
N

55
Fs’.

PAGE 438 * SELECTION CATALOG 1

‘.-"

.’c’-'_l
e

‘l -
.

b t“r"'
“an .
o

I'q

e
a

r

| SelectionRule °®Anchor2a J
IF a) Anchor2 is candidate
b) Y|object
THEN +2
References: 1.15, 2.11, 6.12, 6.18
| End Selection Rule ]

| SelectionRule ®Anchor2b |
IF 8) Anchor2 is candidate

b) X|RANDOM 3

THEN 5§ X
References: 4.5

| End Selection Ruie [ q

| SelectionRule ®Anchor2c |
IF a) Anchor2 is candidate
b) X|derived-relstion-reference
¢) Defintion of X reformulatable as Y
THEN .2
| End Selection Rule | ¥

AddNewVar _3

| SelectionRuie ®AddNewvar |
IF 8) AddNewVar is candidate
THEN +2

| End Selection Rule |

[ 2 N
.

o Method Ordering Rules
)
A :
o, .
1) *
b‘ L
[ . |
3 v
LSS
e R
- .




B
o
4
v
o
f
[
o
v
K
'
;
)
'
'
.
v
o
v
.
B
f
.
.
’
B
)
»
‘
"
'
Y
,
,
v
'
.
.
'
]
3
.

E G.5 Equivalence PAGE 439 .
| | \
N N

b
C
> % N
sk |
¥ j
N m | SelectionRule Equivvarsi | . '
XN IF a) Method ®Anchorl is & good candidate
e, -
Y b) Method ®*Anchor2 is a good candidate
1) . €) X and Y are variable names
AR THEN Rely on user to choose
{The manipulation of names is viewed as important and currently rests in the hands of
I the user.]
' .:.' References: 2.11, 6.12, 6.18
i | End Selection Rule |
3 ~
Y

- it correspondecne 1 has more type matches than corresp 2 then choose first

A \E, )
' : " if corresp 1 has more usage matches (trigger vars) than corresp 2 then choose first.
b
) ! if tried equivcompst before try addnewvar now eise vice versa
3
G.6. Factor

= AP

FactorDBMaintenanceintoAction (6.5)

1‘."
! | SelectionRule *FactorDBMaintenancelntoAction i
i IF a) FactorDBMaintenanceIntoAction is a candidate

THEN +2
Relerences: 6.5
| End Selection Rule |

' d

G.7. Flatten

g Fiatten (1.9, 5.3, 5.7)

[
[ 1 9]

| SelectionRuie ®*flatten
IF a) Flatten is a candidate
. THEN <2
) References: 1.9, 6.3, 5.7
| End Selection Rule |

Lot 7% % 20
e,

4

-.O‘."p" .y‘ wRY .( ‘f"" ° l.: .".‘-, et . AALRR . R R v I R L R T N T T PR T S o )
) ' il . PR C R T AT YRR S, T 0 YO S Y0, Y SCTA RN




AL DA AL A ST R ACAE S A A A A CAC A b St et S et i e

St PAGE 440 - SELECTION CATALOG

N G.8. Globalize

ASY GilobalizeAction ($.10, 5.15)
N
BN
-4
N .
.n-,-\ | SelectionRule ®GlobalizeAction |
b IF a) GlobalizeAction is & candidate
e THEN  +2 4
s. References: 6.10, 5.15 T
“~
B A | End Selection Rule |
3 :
BN, GilobalizeDerivedObject (1.4)
L ] -
Nz .h\
A, LA
DA ‘.
"{R | SelectionRule ®GlobalizeDerivedObject |
i IF a) GlobalizeDerivedObject is a candidate
, THEN 42 2
"{ References: 1.4 <
*'f-‘.“} | End Selection Rule | ::\‘
o i
oS
-
X
oy

G.9. Isolate

N

2Ly
Y A
N

FoldGenericintoRelation (1.3, 1.17, 3.3)

[

Fe

A o
.
o | SelectionRule *FoldGenericIntoRelation | Y
3 : IF a) FoldGenericintoRelation is a candidate
5 ]

’3 . THEN +2 S
— {if applicable. use it.] ]

3 References: 1.3, 1.17, 3.3

1 | End Selection Rule [ -

Y :
o

; . Y

i

"y Hipast
-

L o~
P S
ey -~
L] '

- A
o’ “d
"\

5
N h
.f L] .‘\
N -t
! o

» :
-

- w ey PRrie ok SR S R JAT S U IR T A S TN
- i '0'4' COH L LS o CyCanias oL O ER A S R TR R AL S R LT OO ULRRARR

.
R,

-




MO N A TN A e Sl Dl o S PR 3 PR AICLAC R i i e i~ i il o i e A LR ol gl Sl Sl g, -
L el L. S e e

-

G.10 Maintainincrementally PAGE 441

G.10. Maintainincrementally

ScatterMaintenanceForDerivedRelation (1.8, 1.11, 1,18, 3.4, 5.2)

| SelectionRule ®*ScatterMaintenanceforDerivedRelation {
IF a) ScatterMaintenanceForDerivedRelation is & candidate
THEN +2
References: 1.8, 1,11, 1.18, 3.4, §.2

| End Selection Rule |

. 9
1
]
5
R

hiyJ

L%

’
.

IntroduceSeqMaintenanceDemon (1.11,5.2) .

Ty

| SelectionRule *IntroduceSeqMaintenanceDemon |
IF a) IntroduceSeqMaintenanceDemon is a candidate
THEN  +1
References: 1.11, 5.2
| End Selection Rule |

L

Fhse

Method Ordering Rules g

K

| SelectionRule MaintDR1 |
I¥ a) IntroduceSegMaintenacneDemon is a good candidate

5
e ¢) ScatterMaintenanceforDerivedRelation is a good candidate
R d) DR has a complex definition
. THEN  ScatterMaintenanceforBerivedRelation
é > IntroduceSegqMaintenacneDemon
{A complex definition means a large number of new demons must be introduced.]
" References: 5.2 o
S | End Selection Rule | X
Cn : .
‘" :
y -
. .. .
LIS -
Ay
‘ -
L)
s
LS e
AR )
4
< .)
4
h

- -
L'y

CANMRE Y
1

(Y &)
A ) ' N, "

L R B N A P I e PR DRI P T N A S RS . .o - I ) ca®a " -t
J Ly 2Ny V . \ . \ at, ‘P!- e .:-‘.'c.-_u ,-\{\._.. " o _.-:..- R f__.‘__. e oo . X ~‘~--':-\ \ ._'.‘\. .“.\'-\. \‘.



. At aTa®e?®
P R e

PAGE 442 - SELECTION CATALOG
G.11.Map
o
ShowNoChange (4.16) T
=

| SelectionRule *ShowNOChange |
IF a) ShowNoChange is a candidate )
THEN  +2 -
Reterences: 4.16

| End Seiection Rule |

&k

ChooseElementOfSet (unused)

5y

P
.

CasityDemon (4.3, 6.1,6.3,66,6.13,6.15,6.19)

»
oo
‘.

| SelectionRule *CasifyDemon | .
IF 8) CasifyDemon is & candidate S
b) D has a conjunctive trigger

¢) One or more arms of the trigger are observable events =
d) One or more arms of the trigger are unobservable events '.-:‘
THEN +2 a
[Ditterent strategies for each so break out.] e
References: 6.1, 6.13 "

| End Selection Rule |
2
UntolidDemon (4.3.8.1. 8.3, 6.6. 6.13, 6.15, 6.19) .

| SelectionRule °*UnfoldDemon ] .
IF a) UnfoldDemon is s candidate

p THEN  +1

[Try # nothing eise looks good.]

References: 4.3, 6.1, 6.3, 6.6, 6.13, 6.15, 6.1¢

.

«
-

.
T}

.
' ¥
-

et et

R

| End Selection Rule |
~
StoreExpilicitly (8.4)
"o
T
‘\-'
l\:
.:\
., . Ay
Y P e T Ty T, . T et e e ettt At e et
s SRR RO S L (N T IR A Y A e T T




N )
- )
) E G.11 Map PAGE 443 i
\ ‘q‘. -.
3] a
- #
3 e g
A ‘¢
Al o 'J
d
_ ._ | SelectionRule ®*StoreExplicitly | !
SR IF a) StoreExplicitly is candidate N
‘
o THEN  +2 5
KIS References: 5.4 j
P ¢ L .
PRI | End Selection Rule | :
' b
e >
3 MapByConsolidation (4.3, 6.1,6.3,6.6,6.13, 6.15) K
. | SelectionRule °MapByConsolidationi } q
q :: IF a) MapByConsolidation is a candidate
AU b) D does not trigger on an observable event
i c) D2 triggers on an observable event
s THEN  +1 ]
E References: 4.3, 6.1, 6.3, 6.6, 6.13 q
d | End Selection Rule | ]
B
\
Y .
]
§ 3 . | SelectionRule *MapByConsolidation? [
\‘, - IF a) MapByConsolidation is a candidate
2 b b) D2 triggers randomly
T THEN  +2
L]
- References: 4.3, 6.1, 6.3, 6.6, 6.13, 6.15
~ d | End Selection Rule |
N
0
»
<
.y -
— | SelectionRule ©*MapByConsolidation4 |
. IF a) MapByConsolidation is a candidate
:"; b) D2 is not within implementable portion
"1 THEN -2 :
" References: 4.3, 6.1, 6.3, 6.6, 6.13, 6.15
| End Selection Rule |
..
vie
v
e
=
=
"

:.:_\' “ \:_\}‘.:_\‘ SR

NI R R ) -
. S RN T AN IR S

W




Wm

B <+
‘s
»

00
Ay

S ’.l

44

N

N
2 é

)
% «Tu
“4.“ § ‘-.'l,p A X

" = d Al e A S A R N T e N A R R A AR AR S
o0

PAGE 444

- SELECTION CATALOG

| SelectionRule *MapByConsolidations
IF a) MapByConsolidation 43 a candidate
b) D1 and D2 are case-brothers
THEN .2
[Unlikely will want to re-join previously spiit cases.]
References: 6.3
| End Selection Ruie

| SelectionRule *MapByConsolidationé
IF a) MapByConsolidation is a candidate
b) D1 and D2 triggers are "trivially" different
THEN +2
fi.e. # only difer in variable naming]
References: 6.15
| End Selection Rule

UnfoidDerivedRelation (1.10, 5.1, 5.4, 5.5, 5.8)

| SelsctionRule *UnfoldDerivedRelationl
IF 8) UnfoidDerivedRelation is candidate
b) DR is not recursive
THEN  +2
References:
| End Selection Rule

1.10, 6.1, 5.5, 6.8

| SelectionRuie ®*UnfoldDerivedRelation2
IF 3) UnfoldDerivedRelation is candidate
b) DR is recursive
THEN -2
References: 5.4
| €nd Selection Rule

A -1¢

ComputeNewValue (4.18)

-

L N, v, W, R
-ht:‘r-f\-y U
P 7 WU P e,

o
(Y

o,
¥
A4,

P

12

‘A




e m O A A SRS LA S A LML A A DAL AL EEIC A AT AT U A /A N - Pl i e oM~ - A e )

G.11 Map PAGE 445

o - ¢

N
]
b MoveConstraintToAction (4.7, 4.9, 4.10, 4.12, 4.13, 4.15, 4.16) -
g NotXUntilX (4.7, 4.8, 4.10, 4.12, 4.13, 4.15, 4.16)
-~
TriggerimpliesCoanstraint (4.7, 4.9, 4.10, 4.12, 4.13, 4.15, 4.16)
3
o CasityPosConstraint (4.7,4.9,4.10,4.12, 4.13, 4.15, 4.16)
*
b
UntoldConstraint (4.1)
<4
| SelectionRule ®*UnfoldConstraint
t‘. IF 8) UnfoldConstraint is s candidate
LY b) Backtracking solution is possible
THEN +2
E | End Selection Rule
-4
:'-: MapConstraintAsDemon (4.1)
! | SelectionRule *MapConstraintAsDemon
IF a) MapConstraintAsDemon is a candidate
'.:3 b) A predictive solution is possible
N THEN  +2
References: 4.1
-~ | End Selection Rule
A
]
- .
7s MaintainDerivedRelation (1.10, 5.1, 5.5. 5.8)
o
~‘ | SelectionRule °*MaintainDerivedRelation
- IF a) MaintainDerivedRelation is candidate
- THEN  +2
. Reterences: 1.10, 5.1, 6.5, 5.8
| End Selection Rule
]
%
} "
»
MapRandomToF orwardEnum (TextPreprocessor)
g .
MapRandomToBaciwardEnum (unused)
b v
E L
1 0..:

YAt AN A Ve A T W . e,
AL YA
W AT N N



W-mmmr-ﬁ W T N B s s e T e T e e T e e T e e e T T
\

PAGE 446 - SELECTION CATALOG
Method Ordering Rules
| SelectionRule MapDR1a i

IF a) StoreExplicitly is a good candidate
b) Number of refs ® recompute cost is more costly than
number of explicit insertions
THEN StoreExplicitly > UnfoldDerivedRelation
References: 5.4 K
| End Selection Rule |

,‘
P

.

[

| SelectionRule MapDR1bd I
IF a) StoreExplicitly is a good candidate
b) Number of refs ® recompute cost is less costly than
number of explicit insertions
THEN  UntoidDerivedRelation > StoreExplicitly
| End Selection Rule | Ry

~ N

| SelectionRule MapDR2a |
IF a) MasintainDerivedRelation is & good candidate

b) UnfoidDerivedRelation is & gocd candidate g

t) Number of references * recompute cost is high

THEN  MaintainDerivedRelation > UnfoldDerivedRelation J

References: 5.1 N

| End Selection Rule i *

| SelectionRule MapDR2b
IF  a) MsintainDerivedRelation is » good candidate
b) UnfoidDerivedRelation is a good candidate
¢) Number of references * recompute cost is low
THEN  UnfoldDerivedRelation > MsintainDerivedRelation
References: 6.5, 5.8
| End Selection Rule |

at

I

e
e I Y

AP aF 4

£} |

~
N
D




R R T s L R G R G R G N VR Y Y I sV I P YA Y VTG

i G.11 Map PAGE 447 :
o :
» | SelectionRule MapDemoni | . o
N IF a) MapByConsolidation is a good candidate 5
' THEN  MapByConsolidation > (CasifyDemon, UnfoldDemon) .‘
‘o References: 4.3 ' Y
‘ .?‘ | End Selection Rule |

@

-

- | SelectionRule MapConstraintl |
4‘: IF a) CaisfyConstraint is a good candidate

- THEN CaisfyConstraint > UnfoldConstraint

Relerences: 4.7, 4.9, 4.10, 4.12, 4.13, 4.15, 4.16

X! | End Selection Rule |
e

| SelectionRule MapConstraint2 |
:: IF a) Goal is Map R|require
A b) M1|method is a good candidate

c) M2|method is & good candidate

! d) M1 eliminates R
o e) M2 does not eliminate R
. THEN M1 > M2
.' [Don’t muck around with R i it can be directly eliminated.]
References: 4.9, 4.12, 4.16
- | End Selection Rule ]
l".
R
o

| SelectionRule Maplonstraint3 |
IF 8) Goal is Map R|require
! b) M1|method is a good candidate
c) M2|method is a good candidate

"t ¢) M1 moves R closer to & non-deterministic choice point
¢) M2 does not eliminate or move R
THEN M1 > M2

-.: . [Moving a requirement towards a.nd choice point is 9oood.)
:' :E: References: 4.15
)
w o | End Selection Rule I

ke
i
‘.
y 3
E.

-

¥ §

e e

.
B I




PAGE 448

SELECTION CATALOG

| SelectionRule Msp1l
IF &a) Goal is Map X
b) Ml|method is a non-negative candidate
c) M1 casifies X
d) ~3 a good candidate
THEN Select M1
{!t nothing looks very good, try casitying.]
| End Selection Ruie

G.12. Purify

PurityDemon (5.10, 5.14)

| SelectionRule ®PurifyDemon
IF a) PurifyDemon is s candidate
THEN +2
References: 6.10, 5.14

| End Selection Rule

G.13. Reformulate

ReformulateLocalAsFirst (1.5)
Reformuiatel.ocalAsLast (1.5)
ReformulateEverMoreAsDuring (unused)
ReformulateAsCondByEmbedding (unused)

RenameVar (2.12,6.7,6.14)

N ARG AN

23

LA AN

“~

.\ 'l\

| NN

oL

rS 8l Ly
A Aol Lo

;.l.‘lv_n

.
G

LA
ala

({6
v
s 4 .

)

1ar

13

Al {'4'

" a



WYY

Al s

-
"
,

™ .

—

~o re
PRI P, 708 & Fied- iy

"'_‘-:~. A

a0 o B L e A s e me A ke
J).‘.“ .*a.c-.. YoV

(5"

b IO i

5 v
A

N

F g

o

G.13 Reformulate

PAGE 449

| SelectionRule *RenameVar
IF a) Renamevar is a candidate
THEN +2
Relerences: 2.12, 6.7, 6.14

| End Selection Rule

ReformulateActionCall (TextPreprocessor)

RetormulateDerivedObject (1.13)

| SelectionRule *ReformulateDerivedObject
IF a) ReformulateDerivedObject is a candidate
b) Definition of DO reformulatable as P
THEN  +2

[If the body of the derived relation looks like it can be made to match the reformulation

pattern then give method a try.]
References: 1.13
| End Selection Rule

ReformutateDerivedRelation (6.9)

| SeilsctionRule ®ReformulateDerivedRelstion
IF a) ReformulateDerivedRelation is a candidate
THEN +2
References: 6.9

| End Selection Rule

ReformulateRelativeRetrievalAsLast (1.14)

| SelectionRule *ReformulateRelativeRetrievalAsLast

IF a) ReformulateRelativeRetrievalAsLast is candidate
b) yrt sequence of RS s constructed by appending

THEN +2
References: 1.14
| End Selection Rule

R LA A A o

K
o
|

o Mol bl

2 e

Aa ol "




S LA LR SR R
LAY L {4t 4.9 o

PAGE 450 - SELECTION CATALOG

ReformuiateRelativeRetrievalAsFirst (1.14)

4

| SelectionRule °*ReformulateRelativeRetrievalAsFirst
IF a) ReformuisteRelativeRetrievalAsFirst is candidate
b) wrt sequence of RS is constructed by prepending
THEN +2
| End Selection Rule

~h A,

s

| ]

f.x

AR o

ReformulateAsObject (1.16, 1.20)

SpecializeRandom (4.6)

.
*.

2=

-

!

| SelectionRule *SpecializeRandom
IF a) SpecializeRandom is a candidate
THEN +5
References: 4.6

| End Selection Ruie

4y
] 3

ReformulateExistentialTrigger (6.1 1)

| SelectionRule *ReformulateExistentialTrigger
IF a) ReformulateExistentialTrigger is a candidate
THEN  +2
References: €.11

| End Selection Rule

Method Ordering Rules

| SelectionRule ReformbLocl
IF @8) ReformulateLocalAsFirst 15 8 candidate
b) R|derived-relstion is ordered historically by start E|event
THEN ReformulateLocalAsFirst > ReformulatelocalAsLast
| End Selection Rule

AL LTSS, q'.‘

el

]

SIONOPRISLAIS AR W R L A S S T Y AR AR TR A A
n . . - »



4 4 o in ik LRt LT A E AR AN £ I e o gog A T VL S T T T .t X AT T T T (L. . .Y

’f\-'

E G.13 Reformulate : PAGE 451

et aoEEm I N P

SOl N Wi e
[y

™ | SelectionRule Reformloc2 |
IF a) ReformulateLocealAslast is a candidate
b) R|derived-relstion is ordered temporally by start E|event
THEN ReformulatelLocalAsLast > ReformulateLocalAsfirst
References: 1.5
| End Selection Rule i

D DO

fs

| SelectionRule ReformLoc3 |
IF a) ReformulatelLocalAsFirst is a candidate
b) R|base-reiation is maintained by simple prepending

«
b
.
‘I

Rla as e s UGB 2 _d4_a A SJENAE 2 w_®_n

s

a2

.;' " THEN  ReformulatelocalAsFirst > ReformulateLocalAslast
i | End Selection Rule |
¥ .
L
i .
o \:: | SelectionRule ReformLoc4 |
SR IF a) ReformulatelLocalAsLast is a candidate
g b) R|base-relation is maintained by simpie appending
" . THEN ReformulateLocalAsLast > ReformulatelocalAsFirst
! "~ | End Selsction Rule |
’ ’
M N
oA G.14. Remove
-
=
: RemoveFromDemon (5.11, 5.15)
s 3

| SelectionRule *RemoveFromDemon |
IF  a) RemoveFromDemon is & candidate
THEN +2
References: 5.11, §5.15

| End Selection Rule . |

RemoveRelation (1.1,2.1, 3.1)

RO ST NN




B A T T A s e N A A e R S T T
»
i |
] ,
“o e
u‘. h'.‘

PAGE 452 SELECTION CATALOG

5"

4

A
A ~
5
N
- | SelectionRule *RemoveRelationi | .
»:':-: IF a) RemoveRelation is being considered
I"::": b) R's argument 1s a sequence S
;-. ':' €) Only one element of S is referenced
o

e THEN +2
[May be able to replace sequence with single object.]
References: 1.1

| End Selection Rule |

| SelectionRule *RemoveRelation2 |

IF a) RemoveRelation is being considered ’ N
b) R is acting as a temporary variable
THEN *2
{Can get rid of temporary variables) 4
References: 2.1
| End Selection Rule | '\j
bod
3
| SelectionRule °*RemoveRelstion3 | -
IF a) RemoveRe!ation is being considered ~a
b) Only use of R is in attribute expressions -
THEN  +2 -
{Can repiace R with various attributes.]
:‘ References: 3.1 "
| End Selection Rule |
3o .
4 e
) v
i ]
E ReplaceRefWithValue (1.12, 1.19, 2.2,3.2) )
2 S
= "
Foh | SelectionRule *ReplaceRefWithValuel : |
Ao

,
s

AR

IF a) ReplaceRefWithValue is being considered
b) Can find a change to the relatin before its use
THEN  +2

k-1

¢

:‘-2* References: 2.2
T | End Selection Rule I *
o

'y -
L] 3
R 3
f=3

o o
< R
ey AL

A A A A A s



PAGE 453

G.14 Remove

| SelectionRule ®ReplaceRefWithValue2 | :
IF ) ReplaceRefWithValue is being considered . :
b) RR's argument is a sequence '
THEN -2
[Unlikely that the entire sequence can be unfolded.)
References: 1.12
| End Selection Rule |

MegaMove (1.2, 1.12, 1.19, 2.2, 3.2)

| SelectionRule *MegaMovel }
IF a) MegaMove is being considered
b) ~3 derived relation with defintion Y
THEN  +2
References: 1.2, 1.12, 1.19, 2.2, 3.2
| End Selection Rule |

| SelectionRule °*MegaMove2 |
IF  3) MegaMove is being considered
b) 3 derived relation with defintion Y
THEN -2
References: 1.12
| End Selection Rule |

PostionaMegaMove (1.2, 1.12,1.18, 2.2, 3.2)

| SelectionRule *PositionaiMegaMove |
IF a) PositionaiMegsMove 13 being considered
THEN +1
References: 1.2, 1.12, 1.19, 2.2, 3.2

| End Seiection Rule |

RemoveVariable (TextPreprocessor)




ey

o

2 AP

"‘ 1 IR

3\
N
¢

PAGE 454

RemoveByObijectizingContext (1.2, 1.12, 1.19, 2.2, 3.2)

A oy S S tANES A AURJRLI L e R S

SELECTION CATALOG

| SelectionRule *RemoveByObjectizingContext
iF a) RemoveByObjectizingContext is a candidate
b) Y|positional-retrievel
THEN  +2
References: 1.18
| End Selection Rule

RemoveUnusedAction (1.21, 3.5, 5.11, 5.15)

| SelectionRule °*RemoveUnusedActionl
IF a) RemoveUnusedAction is 2 candidate
b) Ajlupdate
t) Supergoal is Remove updated relation
THEN good candidate

[To remove a realtion you generally have to show update is unused.]

References: 1.21, 3.5
| End Selection Rule

| SelectionRule ®RemoveUnusedAction?
IF a) RemoveUnusedAction is a candidate
b) Supergoal 4is Purity
THEN .2
[in many cases, unfoided code can be simplfied away.]
References: 5.11, 5.15
| End Selection Rule

ReplaceVarigbleWithVailue (TextPreprocessor)

BabyWithBathWater (1.2, 1.12, 1.18, 1.21, 2.2, 3.2, 3.5, 5.1, 5.15)

BN

Sz

7

!
-

TSR LE ML L PG K,




2.8t

M

)

pIC A, A, By

LA e

Lo g 2L

bt b

1y

1 1

L - ]

‘ﬂl

.
fl
e

4

a

. -

Ky

.

-
s

S OSSO s

>
'

v f;_‘;‘,‘

£54]

X2

v

L
N

oz

2

X

vy
o

By %
™

WINPT
A ¥

)

G.14 Remove

PAGE 455

| SelectionRuie *BabyWithBathWater]
IF a) BabyWithBathWater is being considered
b) Y|conditional
THEN +0
References: 1.2, 1.10, 2.2, 3.2
| End Selection Rule

| SelectionRuie ®*BabyWithBathWater2
IF a) BabyWithBathWater is being considered
b) Yjdemon
c) Y in implementable portion
THEN -1
References: 1.2, 1.12, 1.19, 1,21, 2.2, 3.2, 3.5
| End Selection Rule

| SelectionRule *BabyWithBathWater3
IF a) BabyWithBathWater is being considered
b) Y|~{conditional,demon}
THEN -2
References: 1.2, 1.12, 1.18, 1.21, 3.5, 5.11, 5.16
| End Selection Rule

Method Ordering Rules

.,
. ®

SR AN

| SelectionRule RemoveRef1
IF a) MegaMove good candidate
THEN MegaMove > PositionaiMegaMove
References: 1.2, 1.19, 3.2

| End Selection Rule

- . ., R B LT R L .. - 'l ‘- - - - - -
f~*. '..‘f g .'0’..- ..!'-'n CRAL Ry .’- “ \."i (8 ‘._ - .-" o\ \-\..~.J.‘ +»
X 2 g " : 8

| AR

" e

rJ

OIS

L R e e YR T S



)
X
X

* .
TNt

o, -’1"\ ¢
IS

' ,li
AR

oy

T

- o
.
W

(4
r 4

Sl 2
NS

)

A,

|

PAGE 456

v e %
\

SELECTION CATALOG

| SelectionRule RemoveRef2 i

IF  a) M1{MegaMove is candidate
b) M2|MegaMove is good candidate
¢) component-of[Y of M2, Y of Mi)
THEN M1 > M2
[Usually better to take as much context with you 8s possible.]
References: 1.2, 1.12, 1.19

End Selection Rule |

| SelectionRule RemoveRef3 |

IF a) M1|PositionalMegaMove is candidate
b) M2|PositionsiMegaMove is candidate
c) component-of[Y of M2, Y of Mi)
THEN M1 > M2
[Usually better to take as much context with you as possibie.)
References: 1.2, 1.12, 1.19

| End Selection Rule |

| SelectionRule RemoveRef4 |

IF a) RemoveByObjectizingContext is a good candidate
THEN  RemoveByObjectizingContext > (MegaMove, PositionalMegaMove)
References: 1.19

| End Selection Rule ]

| SelectionRuie RemoveRefS |

IF  a) BabyWithBathwater is a good candidate
THEN  BabywithBathWater > (MegaMove, PositionalMegaMove)

| End Selection Rule : |

e

.‘.‘.‘.. LT NN et N e N L R \..\ e
-

o -\.\.‘-.,: »

w

gl

.
» s

v’
/]

o

1

R
a2 a

»,

13

‘s«




b N M MM NS A L EL RSO S RO LRSS A A I e WA, g S A It b) A4 T HIPacha spes S 3 e Bie. e Je e e S radr s
' . A
-

4 G.14 Remove : PAGE 457

¢

A

¥ .-‘l
: - | SelectionRule RemoveRef6 |
) o IF a) ReplaceRefWithValue is a good candidate

7 THEN ReplaceRefWithValue > (MegaMove, PositionalMegaMove)
.‘ - References: 2.2

ol LIS

: .'_; | End Selection Rule |
N

.
A ""u

LY )
:;’ . | SelectionRule RemAct1l |
- IF  a) RemoveUnusedAction is a good candidate
. THEN RemoveUnusedAction > RemovefromDemon

N lit's worth a try.]

) ;"_- References: 5.11, 5.15

A - | End Selection Rule |

[]
RS - G.15. Show

LR

. e
! ShowNoChange (4.16)

| !

: oo ConjunctimpliesConjunctArm (4.2) :
- f
- \:: :
. - | SelectionRule *ConjunctImpliesConjunctArmi | :

b IF  8) ConjunctimpliesConjunctArm 1is a candidate

IS

! -;\ b) Supergoal is Map C|prohibitive-constraint ‘

e c) The conjunct arm A is a good predictor .‘
- THEN +2 .
N Relerences: 4.2 .

- | End Selection Rule I ‘

4 1
-: ::;
ry -

-

]

oL [
Yy bR

y)

[ ]

T

]

0 o :
' LI [
\‘i '
- !
5 g {
* (~ '
:’ .
S G 5 A A S G (LG E 5T Yy SRR . .
B oY, AN ‘\ \}m.mm Pa \. \‘ '\‘\‘C\ LN “.\’\'Q’Z\‘::f{f:‘::‘::‘5\.‘:-:‘1:‘:: "




% 9 - FATITETETR TR L)Y T
S TH T T AT T T e e e B T P R ‘...' -'}-':-‘..‘.: -\: PR ’
. B . - -

PAGE 458 SELECTION CATALOG

. | SelectionRule *ConjunctimpliesConjunctArm2 |

-':_:'f IF a) ConjunctImp)iesConjunctArm is a candidate

i{-\ b) Supergoal is Map C|prohibitive-constraint

A ¢) The conjunct arm A is a bad predictor

MOAN THEN .2

[o.g. A Is bad If It acts as idiot light: telis you when something is wrong, but no way to

2 backtrack and make It right.] .
"’_:f, References: 4.2 >
_-.‘:'.: | End Selection Rule |

PN

3 ShowDysteleological (1.22, 2.14, 3.6)
Hes
S N
"oy | SelectionRuie *ShowDysteleological |
. 4 iIF a) ShowDysteleological is a candidate ’
e THEN  +2 .
A{.: References: 1.22, 2.14, 3.6 .
:$h | End Selection Rule I ‘o
A s
-
Z:;:'; ShowUpdateGivesValue (2.3) e
b y
e | SelectionRule *ShowUpdateGivesvValue I -
IF  a) ShowUpdateGivesvalue 1s a candidate
b THEN 2 >
._:.: References: 2.3 R
.\‘e:: | End Selection Rule . |
A% re
B |
X ShowNewValueStitvalid (2.4) .
- ’ :'.‘
A\ g
o, .
') -
W | SelectionRule ®*ShowNewValueSti11valid ] — i
o IF ) ShowNewValueSti11Valid s & candidate i
e THEN  +2 ‘
o References: 2.4 -
oy | End Selection Rule |
> -
5

¢
-4

k (5 MoveinterveningUpdate (2.5)




SRS SRS AR RN Do LA BREE RGN R SRl phl (48 A S e e vk a0 Lo i s ettt gt R et Ad s A R et AR R R A s

B G.15 Show : PAGE 489 s
Dt "
:
N .
w | SelectionRule °*MovelnterveningUpdate | . i
;.!3 IF a) MovelnterveningUpdate is a candidate K
THEN  +2 o
o~ References: 2.5 :f
2 | End Selection Rule | R
& . ]
o :
o Method Ordering Rules 3
“
\‘
] N
. | SelectionRule Showvall i
_ IF &) M1|°ShowlpdsteGivesValue
< b) M2|*ShowUpdateGivesVaive

c) M1 computationally closer to R than M2
THEN M1 > M2
B | End Selection Rule |

G.16. Simplify

! No rules.

§: G.17. Swap

E" SwapStatements (2.9)

o

;\

~ | SelectionRule *SwapStatements |
- IF a) SwapStatements is a candidate

. THEN  +5

.' N References: 2.9

| End Selection Rule




- { BELE
b “}:l

aX

A

AN
Airk

D L a Ve e Valo " L LN “ - -~

PAGE 460 SELECTION CATALOG

G.18. Unfold

ScatterComputationOfDerivedRelation (3.19, 4.18, 5.8, 5.9, 6.10, 6.19)

| SelectionRule *ScatterComputationOfDerivedRelation |
IF a) ScatterComputationOfDerivedRelation is a candidate
THEN +§
References: 3.19, 4.18, 5.6, 5.9, 6.10, 6.19

| End Selection Ruie !

ScatterComputationOfDemon (6.4, 6.20)

| SelectionRule ®*ScatterComputationOfDemon i
IF a) ScatterComputationOfDemon is a candidate q
THEN +5
References: 6.4, 6.20 .
| End Selection Rule | 1
.
-
UnfoldAtomic (2.7,5.13, 5.16) -]
;-2
| SelectionRule ®UnfoldAtomic | o~
IF ) UnfoloAtomic is a candidate
THEN  +8 ::]
References: 2.7, 5.13, 5.16 )
| End Selection Rule . | !
.
-,
UnfoldSimpleSB (TextPreprocessor) -

G.19. Problem Solving Resource Rules

. A 'f $.‘ ~ﬂ'\ ..-f'.. q".."..f O RN \ _.--1:._: . \: " \;’\ NINTLRLN NS ~\ \}._‘.\‘-.\._* o,



)
g
~
'

E G.19 Problem Solving Resource Rules PAGE 461

n.(. .‘

2

- | SelectionRule ReformUnnecessary | !

W IF  a) M|method is candidate Y

b) M contains a reformulate action A :

\? , €) A is achieved trivially 5

o THEN  +1 P
References: 1.11, 1.14, 1.16, 1.19, 1.20, 4.8, 4.9, 4.11, 4.14, i

53 4.15, 6.2 4

= | End Selection Rule | X

. .

r | SelectionRule RequireReformUnnecessary |

N IF a) Goal is {Map, Casity} R|require

b) M|method is candidate

c) M contains a reformulate action A

D d) A is achieved trivially

THEN +1

- [Give & bonus to methods which don't need to reformulate a require statement.}
References: 4.8, 4.9, 4.11, 4.14, 4.15

| End Selection Rule |

1

g o
)
v s

I
'

r:’; | SelectionRule EquivUnnecessary |
- IF a) M{method is candidate
b) M contains an equivalence action A

e c) A is achieved trivially

= THEN +1

.- | End Selection Rule ' I
"

k | SelectionRule ReadyToGo ' i
IF a) M|method is candidate
E b) forall actions A of M either 1) A is an Apply,
or 2) A is achfeved trivially

- THEN +1 .
::: {if only apply goais left then cheap choice]
't References: 1.11, 1.16, 1.17, 1.22, 2.5, 4.8, 4.9, 4,11, 4.14, 8.5

| End Selection Rule |
~
=
¥

N T PN G U N
LTS s SN Ot ¥ Lr s HANCRA T L HTNAN



"ty
* S v'.
'

RAFF 34

oV

T
Yt
)

)

N

T

YN
oy
/o

oS

b
r s

v
.

v 'r:‘l‘:r'_'
" o

LA

I_t't X

&,

PAGE 482 * SELECTION CATALOG

| SelectionRule *ShowUnnecessary [
IF &) M| method s candidate
b) M contains a Show action A
c) A is achieved trivially
THEN  +1
| End Seiection Rule |

G.20. General Rules

| SelectionRule BurnedOutHulk !
IF a) Goal is Remove X from spec
b) X is & defined strucutre
t) Method M removes the need for X
THEN  +2
References: 1.1, 2.1, 3.1%
| End Selection Rule |

| SelectionRule Fillln |
IF a) Goal is Remove RR|relation-reference from spec
THEN Try fi1ling in vealues within RR'S context
References: 1.2, 1.12, 1.19, 2.2, 3.2

| End Selection Rule ' |

| SelectionRule MapSubOfRemovel |
IF a) Goal/Supergoal G is Map X
b) Supergoal of G is Remove X from spec
THEN  +1 .
{A method which keeps X localized facilitates the higher leve! of goal of removing X.)
References: 1.10, 1.11
| End Selection Rute |

~ o> 3

Ry

* J'.‘.' PSP N ,'.’:.‘_-- '.f‘ $r_‘\'”s...h- '\f\-'\f‘_‘q ~" \q' RS \1\\ \-'\w,\q‘\a\r.‘- ..". .-_'.;_‘- N ,'-'._- ~<'_.. AR TRES

ot

‘I'('. II.: a vl o

AR

[ | 0

o vy
« s’ s

A 12

A8

*
s

Q\'



s i e 7 AL L E N

N A

Tale?

T R RT.Y.

& e o Nl i W

- "5 N

.
L™

(&

I

| | 0K

[ A X
A

Wy EW

X

-
‘e

a

KA |

G.20 General Rules

PAGE 483

SelectionRule MapSubOfRemove2
IF &) Goal/Supergoal 6 is Map X
b) Supergoal of G is Remove X from spec
THEN -2
[A method which spreads X out when trying to remove It Is counterproductive.]
References: 1.11
End Selection Rule

SelectionRule DemonsAreGood
IF a) Goal/Supergoal is Map X
b) Method M changes X to & demon
THEN +1
[Demons are generally easy to work with.]
References: 1.11, 4.1, 5.2
End Selection Rule

SelectionRule SubComponent
IF a) Goal is Reformulate X as P
b) pattern-match[Y, P, X}
c) Method M extracts Y from X
THEN  +2
End Selection Rule

SelectionRule ReformAsExtreme

IF a) Goal is Reformulate R|relstive-retrieval as XsP|positionsl-retrieval

b) Method M reforms R as extreme
THEN  +1 '
References: 1.14
End Selection Rule

-y

e N P S LA o T T Lo € o T

N

-—

T | R IAN

Ao

. _v 2 _® 8 _0_ 2
y 7



B N R Y AT M R e AN e T T AT TR AT AT, TR TR T T AR TE NN TR TR TR A A TSI S AL, A S ,f.r{
PAGE 464 - SELECTION CATALOG
L
o
v -
’°
-": ‘t-
\ | SelectionRule UseConjunctArm | -~
: IF a) Goal is Show X|conjunction implies Y|unbound . -2
::‘- b) Supergoal is Map C|prohibitive-constraint T
- %
;-, c) Method M binds Y to arm of X -
> THEN 2 A
References: 4.2 -
- | End Selection Rule [ .
p :\ U
) >
-~ )
¥ E:_‘
s | SelectionRule CasifyComplexConstruct | [
-\.( IF a) Goal is Map X
:\_: b) X 1is complex ‘
:3; ¢) Method M splits X into simpler cases
o THEN +2
N References: 4.4, 4.7, 4.9, 4,10, 4.12, 4.13, 4.15, 4.16, 6.1 g
,,-; | End Selection Rule ]
ﬁl
&
*.5 -~
: | SelectionRuie CheapRemove | ll
> IF a) Goal 1is Remove ~
f‘_ b) M|method is candidate
::J' c) forall actions A of M either 1) A is an Apply, :__
or 2) A is schieved trivially
THEN +2
:'{ 1 you can get rid of something cheaply, 0o 1.]
| End Selection Rule | e
ol
)
- .
-.l .q“
k- ~
: -]
A
Y
.‘..: K
) =
>
"q
N m
™ N
5
A -~
*ﬂ ‘N
fn :.‘\
Ca

At S T R T IR . . e e AL ety te
WA A -.“ \" -\"\G\-.-. N \',‘. Lt TR e e q,.-._.__-. e



T




