
ARD-R139 918 AUTOMlRTING THE TRRNSFORMRTIONRL DEVELOPMENT OF SOFTNRRE 1/3
VOLUME 2 RPPENDICES(U) UNIVERSITY OF SOUTHERN
CALIFORNIA MARINA DEL REY INFORMATION S. S F FICKAS

UNCLASSIFIED MAR 93 ISI/RR-93-109 NSF-MCS79-19792 F/G 912 NL

~~1=8

/U

4.*5

ti

a. -
111 5II ____

MICROCOPY RESOLUTION TEST CHART

..? .. / ? .; . % .. * 5 " ." . . . -. ... - . -. .- *

***_]*.i-,-. -, . W-1 2m" . " 'W 5
'-. . 4

'
i
'

.:,,&°, - .. ° . -. - - °

IS IRR-83-J 09
1 AD Al 39918 25 A ,rc 13H

__

Universily
of Southem "1

Stephen F. Fickas C0t0ria

,

-------------------- Automating the Transformational
Development of Software

(Appendices) Volume 2

-TIC'

"C...)

~~~~~~~~~~This dcmn u e~ ~poe[]-

'for 
P

i :d to ublic relese 2nd soe; its "

qINFOR ON
SCIECES 21"22-15.1

INS M 7 d

H'=" ' ' ' .% O .' =." ,'/.. ."""". -% * ..%-. ., = ... -....-. .':," ' ..0 1 10£d. J- - -



Unclassified
SECURITY CLASSIFICATION OF THIS PAGE f"Won Dase Enltoro)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
'EFORE COMPLETING FORM

!. REPORT NUM§ER 12. GOVT ACCESSION NO. S. RECIPIENT'S CATALOG NUMBIER

P ISI/RR-83.109I___ _ _

4. TITLE (and Subettle) S. TYPE O
r 

REPORT a PERIOD COVERED

" Automating the Transformational Development of Software Research Report
.. (Appendices) Volume 2

" , (. PERFORMING ORG. REPORT NUMSeR

AL 7. AuTHOR(e) 1. CONTRACT OR GRANT NUMUER(e)

Stephen F. Fickas MCS-7918792

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

USC/Information Sciences Institute AREA & WORK UNIT NUMBERS

"" 4676 Admiralty Way
Marina del Rey, CA 90291

I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

t National Science Foundation March 1983
1800 G St. N.W. IS. NUMBER OF PAGES

Washington, D.C. 20550 280
14 MONITORING AGENCY NAME b ADDRESS I1 diffeetlf from Cotroltnj Office) IS. SECURITY CLASS. (of thle repol)

.... Unclassified

,So. DECL ASSI FIC ATION/DOWN GRADING
SCNEDULE

1S. DISTRIBUTION STATEMENT (of Ohie Report)

.,q

This document is approved for public release and sale; distribution is unlimited.

17. DISTRIBUTION STATEMENT (of the abotrct entered In ock 20, It different tm Re)

IS. SUPPLEMENTARY NOTES

This report was the author's Ph.D. dissertation at the University of California, Irvine, Department of
Information and Computer Science. The author's current address is Department of Computer
Science, University of Oregon, Eugene, OR 97403.

-• IS. KEY WORDS (Continue an roeee eside It necesar yed Idenltfy block number)

automated software development, automation and documentation of software development,
interactive software development system, problem solving, transformational implementation

.4 20. ABSTRACT (Cimue en reveree elde If neceeey mdin Identft, by Week amraM)

iN1 H(OVER)

DIDIFOR "1 1473 EoITION OfI NOV S* iS OUSOLETE Unclassified
I JAN?) S/N 0102-014-6401

%S 8CURITY CLASSIFICATIO OF TWIS PAGE (When D.e ter)

,,, .-- ,- , - -. , . , - . .~- N. ,. -



• ___,._.._.__,_.__,,_,_,'________ .__ ,,______ ,______,...- _- _.- • "-... . -* .

-" Unclassfied 
•%

ECmI €CLASSIFICATIONOF THIS PAGEtah.. Doe Entere

20. ABSTRACT

This report proposes a new model of software development by transformation. It provides a formal
basis for automating and documenting the software development process. The current manual
transformation model has two major problems: 1) long sequences of low-level transformations are
required to move from formal specification to implementation, and 2) the problem-solving used to
reach an implementation is not recorded. Left implicit (and undocumented) are the goals and
methods that lead to transformation applications, and the criteria used to select one transformationover another. The new model, as incorporated in a system called Glitter, explicitly represents

transformation goals, methods, and selection criteria. Glitter achieves a user-supplied goal by
carrying out the problem-solving required to generate an appropriate sequence of transformation
applications. For example, the user asks Glitter to eliminate a data structure that would be expensive
to store or a function costly to compute. Glitter achieves this by locating all references to the
offending construct and devising an appropriate substitution for each. Glitter was able to
automatically generate 90 percent of the planning and transformation steps in the examples studied.
This report is published in two volumes. Volume 1 contains the text of the report; Volume 2 is a set of
seven appendices relating to and illustrating the text in Volume 1.

~Unclassified

|IBCuNITV CL.ASS$IFICATION Oir THIS PAMMOrfl DANO ftft*

, .., ., .. .-, .... .. ..-, ; .: : .. . -o -4 ' .' , ' . ..  .., -.., , ; - ./ . .; , , , - . . ; -, ., -" ,; . ., : . . ., K"
. . . . , - , . . . . . . .. . ..€ ,J



ISIIRR-83-109
A larh 1983

Univrity -

of Southen
- ~ Stephen F. Fickas Califimia

--------------------- Automating the Transformational
Development of Software

(Appendices) Volume 2

9' . A 'ePsslon Per

903

AV1~~:'ty odes

Col.

INFORMATION
SCIENCES214211

INSTITUTE 46 76 Admnd,1 WWadvrn del Rrji/Ck~oil 90291-6695

ThW M06erch A SuPPona by Whe Natfnl Science Foundation 1nerCotact No. MCS.751S732 viem Wn concluion contwied in t
rePOv .'We the Wauto and showi not be interpree a repromning t official Opinion oW Poicy of NS. the U.S. Gwoem. or any9' rr.non PW AIIII rer~NnniiI "WI



_9 iii

.

Contents

Appendix A: Gist specification of package router .......................... 189

* Appendix B: Development Goal-Structure ................................. 199
B.1 Remove PACKAGES.EVER.AT.SOURCE .............................. 200
B, B.2 Remove PREVIOUS.PACKAGE ....................................... 202
B.3 Remove LASTYACKAGE ..................... 204
B.4 Map DID.NOT.SET.SWITCH.WHEN.HAD.CHANCE ...................... 205

B.5 Map PACKAGES.DUE.AT.SWITCH .................................... 207
B.6 Map Demons...................................................... 209

Appendix C: Package Router Development ................................ 211
C.1 Remove PACKAGESEVERATSOURCE ......................... 213
C.2 Remove PREVIOUS.PACKAGE ...................................... 234

C.3 Remove LASTPACKAGE ........................................... 245
C.4 Map DID_NOTSETSWITCH.WHEN_HADCHANCE .................... 250
C.5 Map PACKAGESDUEATSWITCH .................................. 268
C.6 Map Demons ...................................................... 293
C.7 Termination State ......................... %. ....................... 314

Appendix D: Method Selection Overlay .................................... 319
D.1 Remove PACKAGESEVERATSOURCE ............................. 321
D.2 Remove PREVIOUSPACKAGE ...................................... 328
D.3 Remove LASTPACKAGE ........................................... 332
D.4 Map DIDNOTSETSWITCH_- WHENHADCHANCE .................... 334
D.5 Map PACKAGESDUEATSWITCH .................................. 341
D.6 M ap Demons ...................................................... 346

Appendix E: Goal Descriptors ............................................ 355
E.1 C asify ............................................................ 356
E.2 ComputeSequentially ............................................... 362
E.3 Equivalence ....................................................... 365
E.4 Factor ............................................................ 367
E.5 Flatten ........................................................... 370
E.6 Globalize ............................................... 372
E.7 Isolate. ................................................. 374
E.8 M ap . ....... .................................................. 378
E.9 MaintainIncrementally.. ...................................... 32
E.10 P ...........Pr y................................................ 385
E.11 Reform ulate ...................................................... 387
E.12 Rem ove ......................................................... 390
E.13 Show ............................................................ 393
E.14 Sim plify .......................................................... 396

*1 , r ''r ' ' " " ', ', , ' ,,# Z e ," , * , " . " - - , . " " _" " ' '. . . . y, , . • . - .. ,



E.15 Swap .......................................................... 399
E.16 Unfold ........................................................... 400

Appendix F: Method Catalog .............................................. 403
F.1 Catalog Notation ................................................... 403
F.2 Casify ............................................................ 404
F.3 ComputeSequentially ............................................... 406
F.4 Consolidate ....................................................... 407
F.5 Equivalence ....................................................... 409F.6 Factor ............................................................ 410
F.7 Flatten ............................................................ 411
F.3 Globalize ......................................................... 411.
F.9 Isolate ............................................................ 412

F.10 Maintain ncremenlly ............................................. 412
F.10 M ap ............................................................. 413
F.12 Purify ........................................................... 419
F.13 Reformula te ...................................................... 419
F.14 Rem ove ......................................................... 424
F.15 Show ............................................................ 428

F.16 Sim plih .......................................................... 430
F.17 Swap ............................................................ 431
F.18 Unfold ........................................................... 43 1

Appendix 0: Selection Catalog ........................................... 433
G.1 Catalog Notation ................................................... 433
G .2 Casify ............................................................. 434
G.3 ComputeSequentially ............................................... 435
G.4 Consolidate ....................................................... 435
G .5 Equivalence ....................................................... 436
G .6 Factor ............................................................ 439
G .7 Flatten ........................................................... 439

5- G .8 Globalize ......................................................... 440

G .9 Isolate ........................................................... 440
G.10 Maintainincrementally ............................................. 441G1 Map...................................................442
G .12 uri ........................................................... 448
G.13 Reformulate ..................................................... 448
G .14 Rem ove .. .... ............................................... 451
G .15 Sh o .........S o................................................ 457
G .16 Sim plify .......... ............................................... 459

G .17 Sw ap ........................................................... 45 9
G .18 Unfold .......................................................... 460
G.19 Problem Solving Resource Rules .................................... 460
G.20 General Rules ........................................... 462

4,

.* .5..

.%

.4 'S'

r.* .. **,..



. . .-. .in ,,- ww. V ,4 a. , 1r.1 " ..

A Gist specifioation of package router PACE 1O

Appendix A
Gist specification of package router

In this appendix, we present the formal Gist specification of the package router problem. The

English description is given in section 3.1, page 38. An overview of the specification is given

in Chapter 4. The original router specification is due to Feather and London [London &

Feather 82]; the version here incorporates some minor improvements.

Key to font conventions and special symbols used In Gist

symbol meanin examnle
i of type obj I T - object obj of type T
II such that (An integer II (integer > 3)) - an integer greater than 3

may be used to build names, like thisname
* concatenates a type name with a suffix to form a variable name, e.g. integer. 1

Variables with distinct suffices denote distinct objects.

&n monts o example

uderid key word beoi, definition , if
SMALL CAPITALS type name INTEGER

C. lower case italics variable x
UPPER CASE BOLDFACE action, demon, relation and constraint names SETSWITCH
Mixed Case Boldface attribute names Destination

Package Router Specification in Gist

The network hardware

%P b=e LOCATIONO SUDerV 9f

<SOURCE(sourceoutlet I PIPE);

2 omment . the above line defines s ac to be a te with one attribute, sou rceoutlet, and
Ponly objects of tyae pt ny erve U such attributes. n

44
• o



PAGE 190 Gist Specification of package router

PIPE(con'nctionljo..swltch..or..bln I(SWITCH MDI~a 91N))

SWITCH(SWItCh.outlet I PIPE :2, switch~eetting I PIPE)

switch:sw ltch~settlIng a switchmawtch~outlot Ed;
* BINO

I=m men - of the above types and attribute, only the SWITCHSETTING attribute of swrrc4 Is
dynamic in this specif ication, the others remain fixed throughout. WA commen

fiMcomen - y efaftattributes (e.g. SOREOTMof " eg ow)vsfntoa
* (e.g. thee is one and only one pipa servng as the SWITCHJETTING attute of tesommc).Th

default may be overridden, as occurs in the SWITCMOUTLET attribute of swrrcm. - thee the ".2"
indicates that each switch has exactly 2 pipes serving s 111s SWITCHOUTLET attribute. Ed

alwy prhbie MORETHANONE..SOURCE
uima source. 1, source.2;

*~f comment - constrainis may be stated as predicates following e ahr~lays remnired (in which
case the predicate must always evaluate to true), or aMm prohbied (in which case the predicate
must neve evaluat to true). The usual logical connectives, quantification, etc. may be used in Gist
predicates. Distinct suffixes on type names after Ma have the special meaning of denoting distinct
objects. Ed comment

always repirzad P1 PEEMERGESFROMUNIOUE.S WITCH_.OR..SOU RCE
fa nAD pipe 11

(ggia~ £nigue switch..or,.aource I(SWITCH uflDn SOURCE) I
(pipe a switch~or~source:9wtch~outlet 2E~

pipe a switCh..or..aource*S*urCO.outlet));

fti commnt - the values of attributes can be retriee'in the following manner: if obi isan object of
type T. wher type T has an attribute ATT, theni obJ:.ATT denotes any object serving as obre ATr G

attribute. Ed coen

na~ recuired UNIOUEPI PE..LEA DSJNTOSWITCHOR..BIN
nIM ewifCh..or..pin I (SWITCH iMikn SIN) I

(21ts unicu pipe~
(pipe-connotlonjo.swth-or.bln s wtch~or..,in));



i . . ... . . .

A Gist specification of package router PAGE 191
*,-

reaion LOCATIONONROUTETOBIN(LOCATION,BIN)
definition
g= LOCATION of
BIN =>LOCATION a BIN;
PIPE => LOCATIONONROUTETOBIN(LOCATON:connection_to_swltch_or._bin,BIN);

-%.. SWITCH -> LOCATIONONROUTE.TOBIN(LOCATION:switchoutlet,B1N);
SOURCE a> LOCATIONONROUTETOBIN(LOCA TION:sou rceoutet,BIN);

, " end mae

Development comment - mapped at step 5.4 Ed coment

fiM& cormn this relation is defined to hold between a location and bin If arid only If the location
ls on route to the bin, I.e. the location is the bin, or the location is a pipe connected to a location

leading to the bin (a recursive definition), or a switch either of the outlets of which leads to the bin, or a
source whose outlet leads to the bin. ng comment

Mt comment- the predicate of a defined relation denotes those tuples of objects participating in
that relation. For any tuple of objects of the appropriate types, that tuple (in the above relation, a

~ 2-tuple of LOCATION and BIN) is in the defined relation If and only If the defining predicate equals true
for those objects. MW comment

a xw nmuse SOU RCE_0N_ROUTETOALLBINS
f all bin II LOCATIONONROUTETO..BIN(th source,bin);

Packages - the objects moving through the network

iflf PACKAGE(Iocatedat I LOCATION, destination I BIN);

relo MISROUTED(PACKAGE)

-LOCATION ON ROUTETO BIN(PACKAGE:ocated _at, PACKAGE:destination) 2r
• . ". SWITCH-SETWRONGFORPACKAGE(PACKAGE:Iocatedat,PACKAGE);

Development c .mapped at step 5.5 d comn

Msn comen t a peckage is isrouted t is at a location not on route to ts destination, or in a
switch se the wrong way. Mg omment

comen

% -.

*...- q



PAGE 192 Gist specification of package router

Implementable Portion

AM 1mm vnenthe portion over which we have control, and awe to IMplement. Od cgmin

A=I~ PACKAGEROUTERO WbMf

roeahion PACK AGES-.EVERATSOU RCE(PACKAGE..$EQ I amunuaoe Qt PACKAGE)
definiinPACKAGE_.SEQ a

((package 11 (package:Iocated..at a IM source) Wgt &X)c
ordered temporall by &War (package:ocated~at afti source));

~iDeln commtU3 -mapped at step 1.10 Mg comment

fi= comment - the sequence of packages ever to have been located at the source. In the order in
which they were there. IMcmmn

The sou rce station

MIS

40

b: 9



A Gist specification of package router PAGE 193

* cq

demon RELEASEP AC K AGE_INTONETWOR K (package. new)
. iae package.new:locatedat - t source

resoonsq

' if (te package.previous II ( package.previous immeiatel < package.new
Mg PACKAGESEVERATSOURCE())

):destination 0 package.new:destination

then WAITD;

Develooment comment part of final implementation nd comment

kecomment - must delay release of the new package unles the immediately preceding package

was destined for the same bin. Md comment

update :oc ated at of package. new 12 (t source):sou rceoutlet

QWcmmn a demonis a daetigrdpoes.Wow tt change takes place in which
the value of demon's trigger predicate changes from false to true. th demon is triggered, and performs

The use of a relation with a ' filling one of its positions denotes any object that could fill that position.
Thus R(..,* . ..) for relation R is equivalent to V. obj 0 R(..,obj..) Md commen

01- The switches

4.

ration SWITCH_ISEMPTY (switch)
definition - eiAst package II package:locatedat , switch;

Devalomnt comment, unfolded at step 6.10 Ed commnt

S.:

.4,



PAGE 194 Gist specification of package router

demon SETSWITCH(switch)
trigger RANDOM()

reouir SWITCHISEMPTY(switch);
udate :switch settlng gf switch IQ switch:switchoutlet

Develoment comment, mapped 0 step 6.1 VA comment

I=ec comment - the non-determinism of when and which way to Met switches is constrained by the
always prohibited that follows shortly: nd comment

relation PACKAGESDUE_ ATSWITCH(PACKAGES DUE i seouence Qf PACKAGE, SWITCH)
definition

PACKAGESDUE =

{a package II
LOCATIONONROUTETOBIN(SWITCH,package:destination) ad

- ((package:locatedat z SWITCH) ao eveO nd

- MISROUTED(package)
bordered wt 1= (packagelocated_at source)

Development comment -mapped at step 5.1 ed comment

Snec comment packages due at a switch are those packages for whom (i) the switch lies on their
route to their destinations, (ii) they have not already reached the switch, and (iii) they are not misrouted.
They are ordered by the order in which they were at the source. tod commnt

reation SWITCHSETWRONGFO RPACKAGE(S WITCH, PACKAGE)

LOCATION ONROUTE_ TO_ BIN(S WITCH,PACKAGE:destination) and
- LOCATION_ON_RO UTE_TO_BIN(S WITCH:swtchsetting,PACKAGE:destination);

Deloment comment. mapped at step 5.8 Ed comm

fiM comment. A switch is set wrong for a package if the switch lies on the route to that package's
destination, but the switch is met the wrong way. 3nd comment

%"



-. F - -. . .11 - - - -

A Gist specification of package router PAGE 195

alway prohibited DID NOTSET...SWITCH-.WHENHA D.CHANCE
gxjI.& package, Switch 11

* *'.*(package:Iocated.at - switch
ADA

* ~SWITCHSET_.WRONG_.FORPAC KAGE(switchpackage)

((package z fir 1(PACKAGES...DUE..AT S WITCH(,switch)) n
SWITCHjS_EMPTY (switch) ) Uq~fn nM)

Development comment - mapped at step 4.1 jiW comment

comen -~narl must never reach a state in which a package is in a wrongly set switch, If there has
I ,.~*been an opportunity to set the switch correctly for that package, iLe. at some time that package was the

p r it of those due at the switch and the switch was empty. Kacmmn

Arrival of mis routed package

deo M I SRO UTED-.PAC K A GE..REA CHED_.BIN(package ,bin. reached,bin. intended)
t riagegr package:Iocated.at - bin.reached andpackage:destination bi= ntne

* *response MIS ROUTED..ARRIV AL[ bin. reached, bin. intended];

-*Develooment comment - mapped at step 6.13 edcmnn

AQWi~n MISROUTEDARRIVAL[ bin.reached, bin.intended]

Deveoomnt comment - part of implementation 219crmn

The environment

*%N



PAGE 196 Gist specification of package router

SMW ENVIRoNmENTO where
-S

Arrival of packages at source

demon CREATE_PACKAGE0)
triage rRANDOM()
respnse

create package.new II (package.new:destination a A bin n
package.new:locatedat a t source);

fi=ecomment • for the purposes of defining the environment in which the package router is to
operate. packages arrive at random Intervals at the source with random destinations, subject to the

following constraint. Mg comment

way prohibi MULTI PLE_PACKAGESATSOURCE
23ist package. 1, package.2

package. 1:locatedat a the source And package.2:locatedat J t source;

Movement of packages through network

rain MOVEMENTCONNECTION(LOCATION. 1, LOCATION.2)
definition .

( casg= LOCATION. 1 of "

PIPE = >LOCATION. 1:connectiontoswitchorbin;
swITcH •> LOCATION. 1:switchsetting

.*.ed a) - LOCATION.2;

demon MOVEPACKAGE(package)
Vigo4r 3 location.next I1 MOVEMENT.CONNECTION(pacakge:LOCATEDAT, location.next)
resoonse .

u.dat: locatedat 2f package t MOVEMENTCONNECTION(package:loc ated.at, ");

- this demon models the unpredictable movement of packages through the
*, network.It triggers when a package has some place to move to (al cases except when in a bin) and at

some srbirary time In the future moves It there. Ed cogmment

'S
SI..

,.-



A Gist specification of package router PAGE 197

alway prohibited PACK AGESOVERTA KINGONEANOTHER
teij package. 1, package.2, location

MII st (package. ':located-at = location ) earlierI=
sar= (package.2:locatedat a location) an

,finh (package.2:locatedat - location ) earlier InM
finish (package. 7:Iocatedat - location);

*,.'j SoeB comment we are assured that packages do not overtake one another while they are moved

through the network: a package which enters a location (switch, pipe. source) eralier than another

does not exit later. end comment

aGion WAIT[];

Observable environment

f"ae comment[ portions of environment to be used to describe observable information available to

implementor. eng comment

tVMe SENSOR() supeye of < switcho; bino >;

demon PACK AGEENTERINGSENSOR(package,sensor)

- trigger package:locatedat . sensor

demon PACK AGE-LEAVINGSENSOR(package,sensor)
trigger - package:locatedat = sensor

a

-a

4l



71,

PAGE 198 Gist qecification of package router

A.

Implementation Specification

*tc comment,- this section is intended to capture the requirements placed on an Implementor of

the package router agent. eWd comment ,

implement PACKAGEROUTER

sou rceoutlet,
connection tosw Itch_o r_bin,
switchoutlet,
package:destination when package:locatedat , the source,
package:locatedat when package:located at - the source;

PACK AGEENTERING_ SENSOR($,sensor),
PACK AGELEAVINGSENSOR($,sensor);

effectino

attributes
switch_setting,
package:locatedat when package:locatedat - the source; __

MIS ROUTEDA R RIVAL (bin. reached,bin.intended)
WAITI;

.,

jLad imolZ:

iii

-U2

em..



a Development Goal-Structure PAGE 199

Appendix B
Development Goal-Structure

In this appendix, we explicate the Implicit goal structure of the router development of

appendix C and further, provide a broad outline of that development. The sectioning of the

appendix follows that of appendix C. Each step takes the following form:

Level StepNum Goal <arguments>
Method

The level, a positivie interger, represents the goal nesting level. This is also provided visually

by indentation. Goals at level 0, i.e. goals posted by the user, have no level printed. All goals

posted by the user are underlined. A goal's <arguments> are generally printed in abbreviated

form so as to fit on a single line. The method printed below the goal is the one chosen in the

., development.

",1* " 4''-: ;,P;-: , , ;. -,-, .". ,:-?; .,. .. ,. .... . ? ' Z'- ". -:-.'' ""... ... ' .. ".;. . .. ..



PAGE 200 Development Goal-Structure

B.1. Remove PACK AGES.EVER-AT-SOU RCE

-~ RemoveRelation

1 1.2 Remove reference to psckoges~ever~stsource (ipeas) from Owe

MogaMOV&

2 1.3lIsolate derived object

FoldGene rio intoRelation

*3 1.4 Globallze derived object

* GloballzeDe rivodObject

-4 1.5 (try) Reformulate p.new as global

Ref ormu late Local AsLost

5 1.6 Reformulate P.Mew s last(peas())

0 .

6 1.7 Maua manual-replace(p.new las(peas))

manual step

2 1.8 Malntalnlncromentally prevlouspackage

Scott*erMuintensnceFo toe rlvedRelat Ion

3 1.9 Flatten previousasckage

1% Flatten 9

*4 1.10 Map Pas

MaintainDerivedlielatlon -

5 1.11 Afalntalnlncrementaly Pas

IntroducoeeqM@IntensncoDemonH

%1



7 7 T

, . B.1 Remove PACKAGES.EVER.AT.SOURCE PAGE 201

1 1.12 Remove reference peas from spec

PositionalMegaMove

2 1.13 Reformulate derived.object as positional retrieval

Refo rmulateDenvedObject

.. 3 1.14 Reformulate relative retrieval as equivalence relation

ReformulateRelativeRet rievalAsLast

4 1.15 Equivalence last(peas@p) and p

Anchor2

5 1.16 Reformulate last(peas@p) as p

i.5. ReformulateAsObject

2 1.17 Isolate last(peas)

, Fold~ene riclntoRelation

2 1.18 Minfainlncrementally last package

Semite rMaintenanceFor>e rivedRelation

* -1 1.19 Remove reference peas from spec

* .s RemoveByObjectizingContext

2 1.20 Reformulate laht(peas@p) as object

Refo rmulateAsObject

1 1.21 Remove update peas from spec

RemoveUnusedAction

2 1.22 Show update unnoticed

ShowDysteleological

*5
-

:;''



PACE 202 D~vopnt Gol-Stucture

B.2. Remove PREVIOUS-PACKAGE

VV

1 2.2 Remov* reference previouespeckage from spe

Replacetefflith Value

2 2.3 Show value known of previouspeckae

N *howUpdateQiv**Vslue

2 2.4 Show laajackage still holds at conditional

ShowkewVsluelltilfelid

3 2.5 Show astpackage doesn't change -.

MovointervenlngUpdate-

4 2.6 ComputeSoquentlly update of Iast~ackage after conditional -

Moveoutof Atomic

J5 2.7 Untold atomic

UnfoldAtomic

5 2.8 (reposted) Corn puteSequentially update of laatpackage
after conditional

4*J Consolldat*loMakeSequentlal

6 2.9 Consolidate notice~newpackage~at~source and
rekeaa.package.intojetwork3

Me rgeDemons

7 2.10 Equivalence declaration lbbt

.4 EqulvaloneeCompoundSt ructu res



- p

B.2 Remove PREVIOUS.PACKAGE PAGE 203

a 2.11 Equivalence pand p.new

Z I.

N AnchoY2

9 2.12 Reformulate p Ms p.new

RenamneVar

5 2.13 (reposted) ComputeSequontally update of lat.package
after conditional

SwapUp

6 2.14 Swap update of last.package with conditional

SwapStatements

.,

i

A A i.0

,9.

,%:



*~w 7-. --. 7

1 ZPACE 204 Development Goal- Structure

Zl
B.3. Remove LASTPACKAGE

3.1 Rgm Iaspackage

RemoveRelation

1 3.2 Remov* reference last~package from spec

megamove

2 3.3 Isolate, lastpaekage~destination

FoldGenericintoRelation

2 3.4 Maintalnincrementally las1.package~destination

Scatte rMaintenance Fo r~e rivedRelation

1 3.5 Remove update of last~package

Remov*UnusedAction

a~1



B-3 Remove LAST.PACKAGE PAGE 205

BA4 Map DID..NOT..SET..SWITCH..WHEN..HAD..CHANCE

- 4.1 MW2 did not~set switch when had chance

* - MapConst ralntAsbaemon

1 4.2 Show body implies 0

ConjunctlmpliesConjunctA rmn

?. ~-1 4.3 Map se.switch~when.have.chancie (gswhc)

Map~yConsolidation

U 2 4.4 Consolidate aswhc and set witch

4 * We rqDemons

3 4.5 Equivalence two triggers n h r

4 4.6 Reformulate random s specific

SpeclalizeRandom

*-4.7 &a~ require -P from ThisEvent until EverMore

~ *~ CasifyPosConstraint

1 4.8 Gasify require -P from ThisEvent until EverMore

CaslfyFromUntillve rConstralnt

1 4.9 M~ap require -P at ThisEvent

irigge rlmpliesConht rant

~. *~ I 4.10 Map require -P after ThisEvent

CasifyPosConst raint

2 4.11 Gasify require -P after ThisEvent



PAGE 200 Development Goal-Structure

CasifyAroundEvent

*.:.. * 2 4.12 Map require -P aiter Thisvent until E

" , NotXUntilX

2 4.13 Map -P during E

CasifyPosConstraint

3 4.14 Casity require -P during E

PastinductiOn

3 4.15 Map require -P at last update switchsetting -

MoveConst raintToAction

3 4.16 Map require -(start -P) between last update, E

ShowNoChango

4 4.17 Show -(start -P) between lt update, E

0 '

4.1 Ma update of switch.setting where P

ComputeNewValue

4.19 Unfold switch.setwrongjforpackage at set.switch

ComputeNewVslue
ad

Tr

* .0

1*

"Sm



6.4 Map DID*NOT.SET.SWITCH.,WHEN.HAD..CHANCE PAGE 207

B.5. Map PACK AGES..DUE.A.SW ITCH

5.1 ma~ packages.duekatswitch (pdaS)

MaintainDorivedRelatiofl

1 5.2 maintainincrementally pdas

seatto rmaintenance ForDo rivedRel at ion

2 5.3 Flatten Pdas

Flatten

3 5.4 Map locationpnrroutetobin

- Stor*ExplicitlY

3 5.5 Map misrouted

Unfold DorivedRelation

4 5.6 Unfold misrouted at pdas

Scat to rComputat ionOt DerivedR*lation

2 5.7 Flatten Wa

Flatten

3 5.8 Map switchksetwrongjorpackage

* . Unfold~orivedRelation

* 4 5.9 Unfold swilhsWt~wrong~for pflCkage

Scatte rComputation~f DerivedRislation

* . 1 5.10 Purify loop in createopackage

Purif yDemon

2 5.11 Remove loop f romf createpackage



PAGE 208 Development Goal-Structure

RemoveFromDemon

3 5.12 Globelie loop in createjiackage

GlobalizeAction

4 5.13 Untold atomic

UnfoldAtomic

'.1 1 5.14 Purify conditional in move~package

Purifyoemon

*2 5.15 Remove conditional in move~package

Remov*From~emon

*3 5.16 Globalize conditional in movepackage

GlobalizeAction

4 5.17 Untold atomic

UnfoldAtomnic

5.18 Captv packageleaving~sensor

CasifySuperTrigger

5.19 fdf package~enteringusensor

CasifySupearluigger

4-..



V *

B.5 Map PACKAGES.DUE.AT.SWITCH PAGE 200

'C

4 B.6. Map Demons

6.1 MAft setswftch

CasifyDemon

O..
1 6.2 Casity set~switch

j CaslfyConjunctiveTrigger

1 6.3 Map set~switCh~when~bubble.package (nwbP)

UnfoidDemon

2 6.4 Untold sswbp at release.packgito.ntwork

4, Scott*erComputatlon~f Demon

4 3 6.5 Factr update of packagesfdue.at~awftch

1 6. Mapeetswfthpn~x't Facto rDBMaintenancelntoAction

Map~yConsolidetion

2 6.7 Consolidate set~mwitch~onoexit and packageleaving~switch

Me rge Demons

3 6.8 Equivalence triggers

Anchorl

NP4 6.9 Reformulate awltch~is~empty a expression

Reo0rmulateDe rived Relation

5 6.10 Unfold switch*Isempty in trigger

Scatt* rComputation0f De rivedRelation

*5 6.11 (reposted) Reformulate existential a universal

-1 :-W ,
i%



PAGE 210 Develaprmnt GoaI.Stcture

RoformulatoExitntlalTrlgger

6 6.12 Equivalence two declarations

Anchor2

6.13 MWg misrouted~package.reached.bin

CasifyDemnon

j 1 6.14 Gasify misroutedpackage~rsached~bin
:U

CosifyConjunctiv*Trigger

1 6.15 Map misroutedpackage.located~Afbin

I MapSyConsolidatlon

2 6.16 Consolidate misroutedpackage~located.atbin and package~entering.bin

MergeDemons

3 6. 17 Equivalence declaration lists

EquivalencoCompoundSt ructu re

4 6.18 Equivalence bin reached and bin

* Anchorl

4 6.19 (reposled) Equivalence declaration lists

AddNewVa r

1 6.20 Map mwaoulsdjuckagefiestinaion~a

* UnfoldDemon

2 6.21 Unfold miisroifld~package*esination..est

Scatte rComputation0f Demon

e~ V

2-



F C Package Router Development PAGE 211

Appendix C
Package Router Development

One of the largest and most interesting GIST specifications to date is that of a mechanical

package router. The English description of the router is found in section 3.1, and the formal

Gist specification in appendix A. Here we present an annotated history of the Glitter

development53 . In this appendix we look at only the goals posted and methods selected;

appendix B presents the goal/subgoal structure, appendix D the selection process.

Structure and Notation:

, •Development steps. We will present the development as an alternating series of
,.._ goals and methods for achieving those goals. Goals posted by the user will be

underlined and flagged with user, all other goals are generated as a byproduct of
IN problem solving. The goal syntax has been sweetened slightly and abbreviated

" . from the actual menu-driven interaction (see section 2.3.3.2). Noise words have
been added for readability. Goals which are trivially satisfied (i.e., hold in the
posting state) will generally not be made explicit.

D Program snapshots. Snapshots of the program development state will be given to
* .,-. illustrate the effect of transformations on the specification. The program syntax is
"- *,described in chapter 3 and appendix A. In some cases, the program will be

annotated with bis. These will be used as a referencing aid from within the
development.

o A large part of the development process can be characterized as information.
spreading. Code is introduced by either unfolding or maintaining a particular

.--. construct. At intervals during the development it is often useful to regroup by
applying simplification transformations which attempt to both get rid of
unnecessary buffer code and use the local context to optimize spread code.
Simplification is not carried out automatically, but must be explicitly invoked
through the Simplify goal. The timing of the simplification or clean-Up intervals is
left to the user. They are generally chosen after major surgery has been done to
the program. For readability, we have taken some liberties with the timing and

53FMe and London hove developed a portion of the package router by hand using a transformational approach

[London & Feather 62]. While looking at only a portion of the entire development, they provided a large number of
insights into the overall development structure.

= Z



4..

PAGE 212 PACKAGE ROUTER DEVELOPMENT

explicitness of simplification steps: we use them more frequently than is typical
and generally only mention that simplification has taken place, leaving the
Simplify goal implicit. Because we view the simplification process as below the
planning level, we believe this type of omission will make the development easier

to follow.

cD Trigger/response assumption. We will assume that the response of a demon is
executed in the same state that the demon was triggered in. In some cases, this
puts implicit constraints on the environment, a.k.a. gravity, friction, speed of
mechanical sensors. Normally these constraints would show up explicitly as a
development progressed; we forego them here for simplicity,

A development digest: For presentation purposes, the development has been sectioned

around the user's high level development goals. Below is a synopsis of each section.

1. Remove relation PACKAGESEVERAT.SOURCE; a moderate task. No need
for keeping track of AL of the packages that enter the router, just the last one.

*' ' 2. Remove relation PREVIOUS-PACKAGE; a moderate task. Removal of
"temporary variable".

A 3. Remove relation LAST_PACKAGE; an easy task. The only information that need
be remembered about the last package is its destination.

4. Map constraint DID_NOT_SET_SWITCH_WHEN_HAD_CHANCE; a difficult
task. Decide switch setting strategy.

5. Map relation PACKAGESDUEATSWITCH; a difficult task. Find way to
maintain the fundamental data structure of the system.

6. Map demons; a moderate task. Map the demonic structure into triggerings on
observable events.

p'-

...

- . ' . ......................... -.... ,....o



C Package Router Development PAGE 213

C.1. Remove PACKAGESEVER_ATSOURCE

The package router specification provides for keeping the sequence of Al pckages that ever

enter the system in the relation PACKAGESEVERATSOURCE. However, the only use the

spec makes of this relation (sequence) is to access the IM package that has entered the

., system; keeping the entire sequence is wasted overhead. The development will start with theI " •user deciding to remove the unneeded sequence from the specification.

Before proceeding with the development, a note is in order. The process of removing

PACKAGESEVERATSOURCE was the portion of the development studied in detail by

S-' Feather and London [London & Feather 82]. A number of the steps in the Feather and

", "London (F&L) development have a Eureka flavor: without an overall explicit development

plan, they appear to be pulled out of thin air to allow the development to continue. This is not

- a criticism of the F&L development in particular. In fact, it was a rather masterful job. Any

development which captures only the final set of sequential steps that went into the

1 4- implementation of a particular spec will naturally be difficult to motivate. Further, a

u development based on the user searching through a catalog of transformations for a "good"

one to apply generally takes the flavor of opportunistic search: 1) try applying a

transformation. 2) if it produces something interesting, continue development there, else 3)

goto 1. Depending on the complexity of the spec and catalog (expected to be large in both

cases), this is not a good model of development. The likelihood of missing either some

,..- :.important step or the right order of step application(found to be a crucial constraint in a TI

".. de'elopment) is great. Planning information is clearly needed. The GLITTER development

provides an explicit planning structure and succeeds in rationalizing most of the steps; ones
-" remaining unmotivated (i.e., up to the user) are discussed as to their resistance to future

automation.
.".

.. Below is the portion of the spec that we will be working with in this section:

'.4

N

4II 

-

se 
4P-



PAGE 214 PACKAGE ROUTER DEVELOPMENT

demon RELEASEPAC KAGE_INTONETWOR K (package. new)
* 1ggrioge.r package.new: LOCATEDAT • Ihe source

begin
.11. (Ihe package.previous II

package.previous A d iathi before package.new
j1 PACKAGES_EVERATSOURCE(-)

) :DESTINATION 0 package.new: DESTINATION

then invoke WAIT[];
4..

update :LOCATEDAT 2J package.new I& (It Source) :SOURCE.OUTLET

laion PACKAGES_EVERATSOURCE(packageseq LeuL nce Lt package)
definition, packageseq a

({package I I (package: LOCATEDAT th source) A£of evarbefora)"
ordgred temporally by start (package:LOCATED.AT z thJ source)).

The ;nitial goal is to get rid of the sequence.

STEPJ.(user): Remove PACKAGES_EVERATSOURCE from spec54  .

.,-

I Method RemoveRelatlon I

Goal: Remove RI relation from ae

Action: 1) forall reference-loctiontRRR,sp*c-

do Remove RR from spec
2) Apply PmovE.~Fuanecam~ATI~m( N)

[You can remove a relation Nf you can remove all references to ft.] m

I End Method

In our case, there is only one reference to the sequence: the one 0, found in the derived

object package.previous.

STEP 1.2: Remove reference to PACKAGES-EVERAT-SOURCE from spec

4 5 The entire specification or root of the parse tree.

* .5%



C.1 Remove PACKAGESEVERATSOURCE PAGE 215

I Method MegaMove

Goal: Remove X I relation-reference from spoc
" *.q Filter: a) component-ofIX. Y]

Action: 1) Isolate Y in DRIderived-relation

2) Maintainlncrementally DR

,J [Remove the relation-relerence X by moving It directly aster the locations Ift Is
- assigned.)

N I End Method

,* Note that the component-of relation is transitive. Hence, a number of different bindings may

occur on Y, creating a separate method instantiation for each. The Y we have chosen is the

surrounding derived-object. We could have also chosen the more immediate context of the

positional-retrieval. In this case, both lead to the same basic state.

STEP 1.3: Isolate

" ° " (the package.previous I
package.previous immediately before package.new

wr PACKAGESEVERAT_SOURCE('))
.

~.., %*

I Method FoldGenericlntoRelstton

Goal: Isolate X
Jo Action: 1) Globalize X

2) Apply FOLDINTORELATION(X)

-.). '4,

S. IStralghtorward told into derived-relation.]

I End Method

STEP 1.4: Globalize

r. (th package.previous jI
package.previous immedately beore package.new

wrt PACKAGESEVERATSOURCE( ))

:. .

-." *--

d o,



L. -PAGE 216 PACKAGE ROUTER DEVELOPMENT

I Method GlobaltzeDertvedObject I

Goal: Globalize DO I derived-object
Action: 1) foral1 reference-location(v. S. DO]

suchthat V 0 local-var-of[. DO]
do Try Reformulate V as global-oxpression

[Try changing all local variable references to global references.]

End Method

Note the use of the Try modifier here: each Reformulate goal may be marked as

unrealizable by the user. %I

STEP 1.5: Try Reformulate package.new (in derived-object package.previous) as p
global-expression

I Method ReformLocalAsLast

Goal: Reformulate VI variable as global-expression
Filter: A) pattern-match[

relation name (seqlseauence .. type) def;.

R. Spec]
b) domain-type-of [type. VI

ACtion: 1) Reformulate V as =lsi(name(*))

fi you can find a sequence containing the same type of objects as V then you
may be able to change V into a specific reference to the sequence.]

,* I End Method

This method looks for a sequence which is composed of the same type of objects as the

variable package.new, i.e., the type package.

i

STEP 1.6: Reformulate package.new as Iust(PACKAGES..EVER4-AT-SOURCE(*))

At this point, no methods succeed in achieving the goal. The user has two options: 1) since

this is part of a try-goal, the user can ignore it and move onto the fold step, or 2) he can

manually manipulate the program to achieve the goal. If the latter is chosen, which it is in this

-7-

..

• .""6 . " " "'' '"" ; "" - ""'"' ' . " " e" . ° . . - - .. " ./ , " ." , . . • , . ,.,



_W16- IL- 4NZr- _VALV~ ; 1.77,77 e-7 -7 7%..

C.1 Remove PACKAGESEVERATSOURCE PAGE 217

Rcase, the system notes the problem solving context for future (human) analysis; any manual
: -steps taken by the user are assumed to be necessitated by some missing piece of

development knowledge in the system. In this case, it is lack of a theorem prover.

STEP-1.7Juser):

Manual MANUAL.REPLACE(package. new, las(PACKAGESEVERATSOURCE(*))

This is the first operation actually carried out in the program space; in the base-line TI system,

this would be the first arc of the development path (see the F&L development). Without

motivation, i.e., the six subgoals sitting above It, it appears as a somewhat lucky or Eureka

" . step: fortuitously replace an expression with an equivalent value. With the subgoal hierarchy
intact, its true purpose is illuminated: prepare the derived-object for isolation (so that it can be

maintained so that the reference can be removed ...). Note also the interaction between user

* and system: the system provides the focusing and motivation while the user is responsible for

.. ,the deep reasoning necessary to show that the two expressions are equivalent.

After replacing the local with a global expression, we have the following:

(the package.previous II
package.previous immed i atel v before .1.=(PACKAGESEVERATSOURCE( )

wrt PACKAGES EVER ATSOURCE(*))

We now have removed all reliance on local variables (package.previous will become the

* necessary "'ed parameter). If any did remain, the same two options of ignoring the

globilization goal (allowing them to become parameters in the newly formed derived relation)

or finding a replacement value would be available.

After applying the relation folding transformation FOLD-INTO RELATION to produce a new

relation PREVIOUSPACKAGES , we have the following

• • n the sysem need a n am e for a new item , it asks the user to spply t. U sr supplied n a mes lad to muh

more readable programs. With a sophisticated name generating capability, the system might be abole to do as well.:.';:Currently no such capability exists.

0- .



PAGE 218 PACKAGE ROUTER DEVELOPMENT

demon RELEASEPAC KAGE_INTONETWORK (package.new)
Lrigger package.new: LOCATED.AT * t source
response .-

begin
if PREVIOUSPACKAGE(*): DESTINATION 0 package.new: DESTINATION

then invoke WAIT[]:
update :LOCATEDAT Of package.new I& (he source): SOURCE OUTLET

relation PACK AGES_EVERATSOU RCE (packageseq I seouence of package)
definition packageseq

({package II (package: LOCATEDAT a the source) asf everbefore)-
ordered temporally hy start (package:LOCATEDAT * the source)): 

1 relation PREVIOUS_PACKAGE(prev..package I package)
definition 'prey_package ="-

(A package.previous I I
package.previous immediately < ]LLs(PACKAGESEVERAT_SOURCE(*))

2 virt PACI(AGESEVERATSOURCE( e));

.w

STEP 1.8: MaintainIncrementally PREVIOUSPACKAGE

4H

I Method ScatterMaintmnanc.ForDorlvedRelation

Goal: Maintainlncrementally DR I derived-elation

Filter: a) -rocurstve[DR]
Action: 1) Flatten body-of[DR]

2) forall reforence-locatlon[BR. S. DR]
do forall roftranco-locationlR. L. spec)

L'. do beg in

Apply IThODUCEMAINTENANCECOtDE(DR L)

Purity L
end .-

,2

-', [To maintain a derived relation DR, find everywhere the base relations of DR
are changed and stick code in to maintain. Make sure that all base relations
are simple before maintenance and that all code is pure after.)

I End Method

STEP 1.9: Flatten PREVIOUS_PACKAGE

4-.

4.

)2t .... *



C.1 Remove PACKAGESEVERATSOURCE WAGE 219

Flattening the relation body is a simple and inelegant way of insuring that all relations that

IN PREVIOUSPACKAGE relies on are found. A more sophisticated method would attempt to
o analyze the relation structure to determine the base relation set.

I Method Flatten

Goal: Flaffen ORIderived-relation
Action: 1) fora11

reference-location[BR I derived-relation.S .DR]

i do Map BR

, .. (Map all derived relations found in DR into simple ones.]

- End Method

PACKAGESEVERAT SOURCE 02 is the only derived relation that is referenced in the

PREVIOUS_PACKAGES's definition.
S 6.

STEP 1.10: Map derived-relation PACKAGESEVERATSOURCE

We have two basic choices in mapping away a derived relation: unfold it everywhere it is used

(backward inference); maintain its value at places where its base information changes

4 (forward inference). We have chosen the latter.

I Method MaintatnDertvedRelatlon

Goal: Map DR I derived-relation
Action: 1) Mainfainlncrementally DR

[One way of mapping a derived relation is to maintain it explicitly.)

I End Method

STEP 1.11: Maintainlncrementally PACKAGESEVERATSOURCE

9 -.

I

q 2 .: - .. .. - . ) ..... '.,.... ... '','-'''-'.''','':,..,,.. ,-'-".'



PAGE 220 PACKAGE ROUTER DEVELOPMENT

-'p.,

I Method lntroduceSeqMatntenanceDemon I

Goal: Maintainlncrementally DR I derived-,elotion
Fiter: a) glst-type-o[parameter-of[DR].

sequence]
Action: 1) Reformulate body-Of[DR]

as temporally-ordered-set.idiom
56

2) Apply H'RoDUCEaEoAIwENANCAOEMON(DR)

[One way of maintaining a derived sequence Is to first change the definition
into a temporal order .- (fx//P(x)J.f everbeforet ordered temporallv I& P(x))
-- and then set up a demon with trigger P(x) to add elements.]

, nd Method .

The rolatior PACKAGESEVERATSOURCE is already in the desired form, so a new

c i: nvo ij iitroduced, rJOTICE...NEWPACKAGEATSOURCE 1, to add packages to the

s-quonce when they arrive at the source:

.-.

664

a...

-%

"Pa13rns can be predefined and named. In this case. ({xllPx) n2 everbeforel ordered temporally by start P(x)).

N-N

* 4.,



C.1 Remove PACKAGESEVERATSOURCE PAGE 221

demon RELEA SEPAC K A GEINTONETWOR K (package.new)
° ""triger package.new:LOCATEDAT x It source

" responsebgin

if PREVIOUSPACKAGE() : DESTINATION # package.new: DESTINATION
then invoke WAIT[]:

.."-: L&.udate :LOCATEDAT of package.new t (the source) :SOURCE.OUTLET

relation PACKAGESEVERATSOURCE(packageseq I seouence 2L package);

relation PREVIOUSPACKAGE(prev.package I package)
definition prev..package *

9.' .4 (a package.previous II
package.previous immediately. before =n.j (PACKAGES _EVERATSOU RCE(O))

iU PACKAGESEVERATSOURCE( ));

S1 demon NOTICENEWPACKAGE,_ATSOU RCE (package)
i.g trigger package:LOCATED.AT s the source
respoAft

2 update packageseq in PACKAGESEVERATSOURCE(S)
* to PACKAGES_EVERATSOURCE(*) concat <package>:

Having flattened PREVIOUSPACKAGE's body, we are now ready to maintain it by finding

all the places its base information (i.e., PACKAGESEVERATSOURCE) changes. There is

only one place to worry about: the update of PACKAGESEVERATSOURCE 2 in the

demon NOTICE_NEW_PACKAGEATSOURCE. After applying the maintenance

transformation INTRODUCEMAINTENANCECODE, the program is as follows:

4,

!-

,%



PAGE 222 PACKAGE ROUTER DEVELOPMENT

demon RELEASE_PAC KAGE_INTO_ NETWORK (package. new)
trigger package. new: LOCATED.AT * *th source

.,- .rasponse

.i! PREVIOUSPACKAGE( ) :DESTINATION 0 package.new: DESTINATION
"hen invoke WAIT[];
update :LOCATEDAT Of package.new I& (the source):SOURCEOUTLET

,.t.

relation PACKAGESEVERATSOURCE(packageseq I seguence of package);

relation PREVIOUSPACKAGE(prev..package I package);

demon NOTICENEW_PACK AGEATSOURCE (package)
trigger package:LOCATED-AT jfthesource
respoane.

atomic
u.a=t packageseq in PACK AGESEVERATSOU RCE (S)

o PACKAGESEVERATSOURCE concat <package>;
udate prev._package ._n PREVIOUSPACKAGE(S)

1o (the package.previous II
package.previous immediatelX beuore

1est(PACKAGESEVERATSOURCE(") concat <package>)
wrt PACKAGESEVERATSOURCE(") concat <package>)

Our next goal is the purification of NOTICENEWPACKAGEATSOURCE: if that demon is

not within our portion of the development then we must move the newly introduced code out

of it and into out portion. In this case, we have defined the demon as part of our portion so the

goal is trivially satisfied.

We have now achieved our goal of maintaining the derived relation PREVIOUS_PACKAGE.

Further, the MegaMove method used to remove the sole reference to

PACKAGESEVERATSOURCE has completed. However, the reference has not been

eliminated, but simply moved. As described in chapter 5, this causes the remove goal from

step 1.2 to be re-activated 7 . The system automatically keeps track of the movement of the

reference In order to update the arguments of remove:

57This is equivalent to a recursive posting of a Remove goal as the lIst action of MaglMove.
% %

VV9~/J2.~. ****..%..**~*---%**.



C.1 Remove PACKAGESEVER_AT_SOURCE PAGE 223

STEP 1 .12: Remove reference of PACKAGrESEVERATSOURCE in

(the package.previous II
package.previous immediately before

4 last(PACKAGESEVERAT_SOURCE(") concat <package>)
wrt PAC KAGES.EVERATSOU RCE (*) concat <package>)

. from spec

-.:. Using MegaMove again will lose: PREVIOUSPACKAGE (under another name) will simply be

re-introduced. We will try a different approach. It is often the case that when dealing with a

sequence, it is easier to manipulate a positional retrieval (e.g., first, last, Nth) than a relative

one (e.g., (immediately) before, (immediately) after). The method we will employ involves

reformulating the relative retrieval into a positional one and then trying MegaMove on that.

* I Method Positionalmegamave

Goal: Remove RRI lation-reference from spec
Filter: a) RR component-of Y

* Action: 1) Reformulate Y as PR I positional-retrievel

*. 2) Isolate PR in DR I derived-reltion
3) Maintainlncrementally DR

[One way of getting rid of 8 reference to a sequence Is to reformulate it as part
of a positional retrieval, and then megamove it.)

I End Method

As is usual, the binding we choose for Y is important. In this case it is the entire derived

object. The development from this point involves several low level reformulation steps. Note

that without the rich teleology provided by Glitter,these steps in particular and low level steps

in general are hard to motivate and often appear fortuitous in a base-line development (see for

instance [London & Feather 82]).

STEP 1 .13: Reformulate

(IM~f package.previousII
package.previous .i i.y..1 before

last( PACK AGESEVERATSOU RCE ( ) concat <package>)
,la PACKAGESEVERATSOURCE(e) c <package>)

as positional-retrieval

.

'p



PAGE 224 PACKAGE ROUrER DEVELOPMENT

I Method ReformulateDertvedObject I

Goal: Reformulate DO I derived-object as P
Action: 1) Reformulate body-of[DO

an local-ver-oft(. DOJP

2) Apply U.0Lov.wmbn.OmaCT(DO)

I End Method

U

P is bound to the abstract type positional-retrieval. Our new goal Is to reformulate the body

of the derived object into a equivalence relation involving the free variable package.previous

and a (any) positional-retrieval.

STEP 1.14: Reformulate

package.previous imediately befonre
lost(PACKAGESEVERATSOU RCE(0) cancer <package>)

wNI PACK AGESEVERATSOU RCE(o) cancer <package>)

as package.previousupositional-retrievaI

., • I Method ReformulateRelatveRetrlevalAsLast

Goal: Reformulate RS I reltive-sequence-retrieval

as "xJobjectalftaJ(SeqQUENCE)"
Action: 1) Reformulate RS as

"x Jj*ditJi before y =rt (Seq concat z)"

2) Equivalence y and z

* 3) Apply cwA o..RvALC.ojAs( RS)

fxa Immdatl ALQRM y &a (Seq conat y) noxc a(Seq))
J End Method

Note that the above method's trigger will match positional- retrieval, the more general goal

pattern, with Iaat(Seq), the more specific pattern required by the method. Naturally, there will -'-

be a competing method to the above that attempts to reformulate to fjrst(Seq).

The reformulation goal Is trivially satisfied: the program matches in the current state.

However, we must equivalence y and z. .

..,.. *......., Sq .. , , .t .. . t.. , . .t.....- .. . . . b. .. .. -. .. .. • . .a .



C.1 Remove PACKAGESEVERATSOURCE PAGE 225

STEP 1.15: Equivalence

5.- lnast(PACKAGESEVERATSOURCE(o) concat package)
and

* *.. package

I Method Anchor2

Goal: Equivalence X and Y
Action: 1) Reformulate X as Y

[Try changing the first construct into something that matches the second.]
I End Method

STEP 1.16: Reformulate

as last( PACK AGES_EVERATSOU RCE( concat package)
" '-,as package

I Method ReformulateAsObject

Goal: Reformulate SR I I.st-retrievel as 01 object
Action: 1) Reformulate para.mtor-of[. SRI as

(s concat 0)

*. 2) Apply S wey.LASr(SR)

"l [(LaSeq2ncatO) 0) o0
I End Method

The Reformulation goal is trivially satisfied. At this point, we are ready to unwind the nested

goals we have built up. After application of SIMPLIFYLAST we have:

(th. package. previous II

package. previous invnej.a±LX before package
,. ,-wr]I~t= PACKAGESEVERATSOURCE(*) concat <package>)

After application of CHANGETORETRIEVAL.OF.LAST we have:

.9

d

*€ *. *:,,' ,. *. ..:':,€, ' ".. .. .,, _,.'..,.'*. ..'' ... '. -.W . ... . .. .2. .. .. . . .....- ..-.. .€ • .,.... ,.. .
S. .. . . . . . i. . . . IS ... . " - " " ' " " .' , " " " " - ' " " " " " ' , , ' , "" " .



PAGE 226 PACKAGE ROUTER DEVELOPMENT :.

(Ih package.previous II
package.previous a last( PACKAGESEVERATSOURCE( ))

After applying transformation UNFOLDDERIVEDOBJECT we have:

udate prevpackage in PREVIOUSPACKAGE(S)
I& lat( PACKAGESEVERATSOURCE( ))

The reformulation necessary in this portion of the development is caused by the fussiness of

the development methods we employ. All of the above reformulation could be eliminated if we

wished to include a method which looks specifically for the following case:

(x II x im .diately before (.U.1(s z)
w:A (s concat z)).

-V
Such a method could directly reformulate the derived object. Of course, we would need an

-" infinite number of such methods to cover all of the possible cases.

We are now ready to isolate the retrieval of PACKAGESEVERATSOURCE.

STEP 1.17: Isolate Iat(PACKAGESEVER.ATSOURCE(*))

I Method FoldenericlntoRelatlon

Goal: Isolate X
Action: 1) Globalize X

2) Apply roiDw0_ETmjh.~o( )

tStrelghttorwaro' told Into derlvdofrulatlon.)

I End Method

There are no local variables in the action to be isolated, hence the Globalize goal is trivially II

satisfied. Application of FOLD.INTORELATION results In the introduction of a new derived

relation

V2

, %'•

-. * , ! 2 .mt'.a*a*.h.* . .



C.A Remove PACKAGESEVERATSOURCE PAGE 227

ademon RELEASEPACK AGEINTONETWORK (package.new)
trigger package.new:LOCATED.AT • The source

. response

Sbegin
" " .f. PREVIOUS_PACKAGE(*): DESTINATION 0 package.new: DESTINATION

then invoke WAIT[];

- U~kai~fte :LOCATEDAT OL package.new I& (tJ SOurCe):SOURCEOUTLET
. .:.lad;

Srelation PACKAGESEVERATSOURCE(packageseq I seguence oL package);

relation PREVIOUSPACKAGE(prev.pckage I package);

* . demon NOTICENEWPAC K AGEATSOURCE (package)
trigger package: LOCATED-AT • the source"! . response

,, 0 update packageseq i. PACKAGESEVERATSOURCE(S)
-, t PACKAGESEVERAT.SOURCE concat <package>;

,update prev_package in PREVIOUSPACKAGE(S)
•2 LASTPACKAGE(*)

edatomic;
0 2 relation LASTPACKAGE(ast.package I package)

definition /astpackage a 1asU(PACKAGESEVERAT_SOURCE);

STEP 1.18: Maintainlncrementally LASTPACKAGE

We will use the same method here to maintain LAST-PACKAGE that we used earlier to

maintain PREVIOUS-PACKAGE:

'a'

I.*,,

< ' . ,...:.*. .: : -. . . .."- '. .''. ..... .' .. ' .. . . . ., .'.. .', ... ..-'.''''• :.; -, , .4 ' ', .



PAGE 228 PACKAGE ROUTER DEVELOPMENT

®R

I Method ScatterNaintenanceForDerivedRelation -7

., -, . Goal: Maintalnlncremenally DR I derived-efation
V. Action: 1) Flatten body-of[DR]

2) ftoral1 roterence-IocotionlBR. S. DR) ed

do forae1 reference-location[BR. L. pec)

do begin

Apply WM MOUCEMAWTENANC COOE(DR L)

Purity L
end

[To maintain a derived relation DR. find everywhere the base relations of DR
are changed and stick code in to maintain. Make sure that all base relations
are simple before maintenance and that all code is pure after.]

I End Method

H

The Flatten goal is trivially satisfied. After application of the INTRODUCEMAINTENANCECODE

transformation at the sole place where PACKAGESEVERATSOURCE is changed '2' we
have the following state:

,N

.~ .V

1.,'

,_ ".1"* " 'r 'l • " " . • . o . . . . . , , ,- - , - - - . * , - - - - - o , . , - .



4

4

C.A Remove PACKAGESEVERAT.SOURCE PAGE 229

demon RELEASEPAC K AGE_INTONETWOR K (package.now)
"- 1rggOr package.new:LOATED.AT • thL Source

response

I PREVIOUSPACKAGE() : DESTINATION 0 package.new: DESTINATION
thjn nvoke WAIT[];

update :LOCATEDAT Of package.new I& (Mh source):SOURCE.OUTLET

relation PACKAGESEVERATSOURCE(packageseq I segujnj of package);

rlto PREVIOUSPACKAGE(prev.package I package);

, .- demon NOTICENEWA C K AGEATSOU RCE (package)
' trigger package:LOCATED-AT , the source

~response
atomic

uggaJe packageseq jn PACKAGESEVERATSOURCE(S)
I& PACKAGESEVERATSOURCE cnc t <package>;

update prevpackage .. PREVIOUS_PACKAGE(S)
I& LASTPACKAGE(');

update Iast.package in LASTPACKAGE(S)S 12 esJt(PACKAGESEVERATSOURCE(*) cancer <package>)
1Un atomic;

reaion LASTPACKAGE(last ._ackage I package).
-5

The MegaMove method has completed and we still have not gotten rid of the reference of

PACKAGESEVERATSOURCE. However, we are fairly close now. The Remove goal is

re-activated:

STEP 1.19: Remove reference of PACKAGESEVER_AT_SOURCE in 01 from spec

* .5 Our previous strategy has been to isolate/maintain (a.k.a. MegaMove) references of the

sequence. At this point, we have enough information to try a new tact: replace the sequence

j reference by an actual object.

..

*4%-.

'ml

5,"-"'. .';, '''',.",,. ,-, . , . ."' ""' '"'.. '.." ,".' , . , , . . ''., ,.,..,,"_' " " '_. ."., ".",'.



PAGE 230 PACKAGE ROUTER DEVELOPMENT

I Method RemoveBy0bJ ctlzIngContext I

Goal: Remove RRItolaeion-rlefrence from spec

Filter: a) component-of[RR, YJ
Action: 1) Reformulate Y as object

lone way of geting rid of a relation reference which is embedded In context Y
is to reformulate Y a an explicit object.)

I End Method I

Here we bind Y to the most immediate context of the reference, the positional retrieval iit.

STEP 1.20: Reformulate 6

last.(PACKAGESEVERATSOURCE(*) concat <package>)
as object

Using the same method as in step 1.15, ReformulateAsObject, we get the following:

S.%



C.1 Remove PACKAGESEVERAT.SOURCE PAGE 231

,d1. RELEA SEPACKAGE_INTONETWOR K (package.new)
jtr ggegr package.new: LOCATED-AT * h source

response

ifV PREVIOUSPACKAGE(-): DESTINATION 0 package.new: DESTINATION
then invoke WAIT[);

update :LOCATEDAT Of package.new 12 (=h source):SOURCEOUTLET

relation PACKAGESEVERATSOURCE(packageseq I seguence oi package):

relation PREVIOUS_PACKAGE(prev..packege I package);

demon NOTICE_NEWPACKAGEAT_SOURCE(package)
trigger package:LOCATEDAT * the source
response

* atomic
update packageseq j. PACKAGESEVERATSOURCE(S)j PACKAGESEVERATSOURCE concat <package>;
ugdate prev.Jackage jn PREVIOUS_PACKAGE(S)

,2 LASTPACKAGE(-);
uwdate lastpackage .n LAST PACKAGE(S)

to package

ltion LAST_PACKAGE(last..package I package);

Note that this last step is traditionally viewed as simplification steps which are automatically

applied whenever possible, e.g., IMt(S concat X) - X (see [Standish et al 76), [Rutter 77]).

These type of steps have the weakest connection to the rest of the development. They appear

to be independent and opportunistic. Here, we strongly tie in the "simplification" as a

necessary step in the higher level goal of removing the need for the sequence

PACK AGES_EVERATSOU RCE.

We have one remaining reference to PACKAGESEVERATSOURCE ,2 that we must

remove:

STEP 1.21: Remove

update packageaseq in PACKAGESEVERAT_SOURCE(S)
frm pe ~PACKAGES_EVER AT SOURCE conct <package>
f rom spec

mA

~Eg
il-QN N -m I 

h

l 1| l :i i ! * 1 • |



PAGE 232 PACKAGE ROUTER DEVELOPMENT 2

I Method RemoveUnusodAction I

Goal: Remove A I action
Action: 1) Show acttonis.unnoticed(A)

2) A& 1 REmOE-uwWOC8-AcTrO.(A)

(Show that the current action Is ether not used or superseded by a
subsequent action.)

I End Method

U

STEP 1.22: Show action-isunnotIced(

UgAde packageseq .Ja PACKAGESEVER._AT.SOURCE( S)
I& PACKAGESEVERATSOURCE concat <package>)

I Method ShowDystelsologlcal

Goal: Show action is unnotlced(UI ulupdate)
Fiter: a) update-rolation-of[R. U)

b) -reference-locston[R. S. sptc]
Action: 1) Assert actionisunnoticed(U)

[if you are trying to show that an update Is unnoticed, Show that it is never
referenced.]

I End Method

Since there are no references to PACKAGESEVER_ATSOURCE, we can assert that it is

unnoticed. After removal of the update and the relation definition, we have the following (in an

unstructured development, the removal here of the PACKAGESEVERATSOURCE

sequence might appear as a fortunate and opportunistic by-product of the preceding steps.

Here, it is just one step (the last) of a general plan aimed at getting rid of the sequence.):

'.

%I

4.CN4.
°*,-.v - . . - --* " " o- .. ... -. ,.• . . * . . '. . -. -. -... •.. -. .-..-.- .. .- . . - . -. , . . . ,o,' . t ...,,' ': ,o. . , ,.. ., . . 4....... . .*... .. *.,**..,..... .;:.-.. ........ .. ..,.. .., ...- -. :.



* -. ,- - - --.,- - --,- - - - --.,- -. .-- -, ,, i~ -j , --- p , . , , . .. a , .a.. ,j .. . P. .

C.1 Remove PACKAGESEVER_AT_SOURCE PAGE 233

.demon RELEASE-PACKAGE_INTO_NETWOR K (package.new)
trigger package.new:LOCATEDAT * the source
rfesponse

IL PREVIOUSPACKAGE(*) : DESTINATION * package. new: DESTINATION
then invoke WAIT[]:

Seupdate :LOCATEDAT 21 package.new I& (Jhe source): SOURCE_ OUTLET

relation PREVIOUSPACKAGE(prevpackage I package);

12 demon NOTICENEWPACK AGEAT_SOU RCE (package)
trigger package: LOCATEDAT j h source
response

atomic
. ~update prevpackage j_n PREVIOUSPACKAGE(S)

I& LASTPACKAGE(*);
update lastpackage .j LAST_PACKAGE(S)

t package
I" atomic:

3 relation LAST-PACKAGE(last-package I package);

This completes the removal of the PACKAGESEVERATSOURCE relation. However, a

new demon 12 and two new relations 01' 3 have been introduced as side-effects of the

removal process. The next two sections deal with further developing and optimizing these

, components.

P.

" a



PAGE 234 PACKAGE ROUTER DEVELOPMENT

C.2. Remove PREVIOUSPACKAGE

The next portion of the development involves noticing that PREVIOUSPACKAGE is acting

as a temporary variable for LASTPACKAGE.

demon NOTICENEW_PACKAGEATSOURCE(package)
trige.r package:LOCATEDAT the source
response

atomic
* U24= prevpackage Jn PREVIOUS-PACKAGE(S) "

to LASTPACKAGE( );
'2 update lastpackage jin LASTPACKAGE(S)

I& package
datomic;

demon RELEASE_PAC K AGE_INTONETWORK (package.new)
trig0eg. package.new: LOCATEDAT - th source
responsel

begin
103 if PREVIOUS_PACKAGE(-):DESTINATION 0 package.new:DESTINATION

the invoke WAIT[];
update :LOCATED_AT of package.new 1& (1he source):SOURCE.OUTLET

rlto PREVIOUS_PACKAGE(prev.package I package);

relation LAST-PACKAGE(lastpackage I package);

.1

The general pattern, if we wanted to do this noticing automatically is

X (- Y;
Y(- c;
Elexpression using X

This matches the following code, where X is bound to PREVIOUS,-PACKAGE, Y bound to

LAST-PACKAGE and E to the conditional wait I3"

t.'



- .-- ,

C.2 Remove PREVIOUS_PACKAGE PAGE 235

?. u~atet~re_packageLATPCEin PREVIOUS_PACKAGE(S)

02 uJpatJ last.package .jn LASTPACKAGE(S)
A. I package.new," endatomic;

". ..

k 3  _tf PREVIOUS_PACKAGE ( ): DESTINATION 0 package.new: DESTINATION
-..e invoke WAIT[];

We can generally get rid of the need for X (PREVIOUSPACKAGE) by computing

consecutively the assignment of X with its use (the conditional wait b3) and replacing X with Y

(LAST_PACKAGE).

FSTEP2. 1 (user): Remove PREVIOUS-PACKAGE

I Method RemoveRelation

Goal: Remove RI relation from Spec
5% Action: 1) forall reference-locatlon[R.RR.spsc]

do Remove RR from sp"

,",. 2) Apply REMOVEU NREFENENCEOELATtON( R)

.' '9 (You can remove a relation If you can remove all references to It.]

• j *, I End Method

- STEP 2.2: Remove reference of PREVIOUSPACKAGE in k3 from spec

10;

I Method ReplaceReflWlthValue

,: Goal: Remove R I simple-reolaion-reference
Action: 1) Show VALUaEKNOWN(R. V)

"' 2) Apply Et.PLACE NEF .WrTh.VALLE( R V)

[One way of getting rid of a relation reference Is to replace If with Its value.]

I End Method

• I ,Note that another competing method here is MegaMove. That is, we could isolate the

-. 'reference PREVIOUSPACKAGE(*):DESTINATION into a new derived-relation and then-%
,,%.S ".P



i T-. TT -2

PAGE 236 PACKAGE ROUTER DEVELOPMENT

maintain it. However, this has the negative effect of introducing still another temporary

variable (relation). While we can get rid of this too eventually, the process will be messier. In

general, a method which removes a reference by replacing it with a value is preferred over a

method which replaces it (or its surroundings) with another reference.

STEP 2.3: Show VALUEKNOWNPREVIOUS_PACKAGE(-), V)

I Method ShowUpdat- e;vesValue

Goal: Show vALu.KNowN(R I ,olation-refoeonce, V)

Filter: a)pattern-match[upders, U. Speal

b) name-of[R] - update-relation-of[P. U]
Action: 1) Show uPoAT.v.vALuEmLs(U, R)

2) Asert VALUKNOwN(R, new-value-of[*. U])

[Find the lost update of R and show that the new value is still valid.]

I End Method

There is only one update of PREVIOUSPACKAGE in the spec, the one found in

NOTICE*-NEW4-PACKAGE-AT4-SOURCE. We now must show that the value the relation

was set to is still around.

STEP 2.4: Show

LASTPACKAGE(o) (in )

"" still holds at

" I'3 PREVIOUSPACKAGE( ): DESTINATION 0 package.new: DESTINATION .th3n invoke WAIT[);

% 4

I7*

""q

:a.

. ..

.. ,., .,.., -.. ,. ; .- ... ,* ., -..- .,+,,., -.. '4.. ..- ..... %4 .. . -. . .. .. ,_ * - .%... N ,, .<.V 'v



- 6

C.2 Remove PREVIOUS._PACKAGE PAGE 237

LA

I Method ShowNewValueStillValld

Goal: Show uLPDATE.yALuEHos(U I update.
R I relation reference)

Filter: a) name-of[R] x update-relation-of[*. U)

Action: 1) Show
UNCHANGED.BETWEENLOCATOS(neOw-VUe-Of[*, U]. U. R)

3) Asser uPoATiEALuEmOos(U. R)

[To show that the new update value is still around at R. show that the update
value has not been changed before R.1

I End Method

STEP 2.5: Show LAST_PACKAGE doesn't change between .1 and 3"

* I Method MovelntervenngUpate

Goal: Show UNCHANGED*E1wEENLOCATIOSN(VI relation reference,

U I update.
R I relation reference)

Filter: a) pattern-match[update, L. spec]

b) update-relation-of[V. L]

Action: 1) Show COmURATONALLY-KrTWEEN[L. U. R

i 'J 2) ComputeSequentially R before L

[If an Intervening update of V exists, move It after R.]

I End Method

"1 In this case, there does exist an intervening update 02 to V (LAST_PACKAGE), and hence we

-...0 will try to move it after 1s'

STEP 2.6: ComputeSequentially

-3 .11 PREVIOUS_PACKAGE(*): DESTINATION n"g package.new: DESTINATION
-thn invoke WAIT[];

before
02 update last_peckage ..1 LASTPACKAGE(S)

I& package.new

- S.. o. . .



PAGE 238 PACKAGE ROUTER DEVELOPMENT

K..%
I Method NoveiutOfAtomic Iw

Goal: CornputeSequentially ElaCtion before Alection
Filter: a) conponent-of[A. Clato]iaJ

Action: 1) Untold C

IfN you are trying to move A after B and A is in an atomic, unfold the atomic
before attempting to continue.]

I End Method ,

STEP 2.7: Unfold

atomic
update prev.package J1 PREVIOUSPACKAGE(S)

%I LAST-PACKAGE(');
update lastpackage .i LASTPACKAGE(S)

I& packageend atomi C,

'S I Method UnfoldAtomic I

Goal: Unfold A I atomic
Action: 1) Show aEOueN iAL.omMoke(lorcdering. A)

2) Show umRPLuous.,ATomC(A)

* 3) Apply uNpoLDxromic(A, 0)

[You can unfold an atomic If you can show that there exists some valid
sequential ordering of the statements and that no demonic or inferencing r%
processes will be affected.]

I End Method

Currently the user is required to show both of the properties. In the particular case at hand, It

would not be difficult to define a method for ordering the statements using a data-dependency

graph, something Glitter presently does not have. Showing that the atomic is actually

superfluous will probably remain the user's responsibility for some time to come.

After unfolding, the program is as follows:

l
,,,,



C.2 Remove PRE VIOUSPACKAGE PAGE 230

demn NOTICE..NEW_.PACKAGE..ATSOU RCE (package)
trigger package: LOCATED_AT *tj SOUrCS

PN I upate prev..package ja PREVIOUSPACKAGE(S)
I& LAST_.PACKAGE():

2 updatej Iast..package j2n LAST_.PACKAGE(S)
I& package

demon RELEA SE-PA C KAGE-NTO-NETWO R K (package. new)
trigger package. new:LOCATED_AT a1.tsource
reU~onse

d begin
0 if PREVIOUSPACKAGE ( ) DESTINATION 0 package. new: DESTINATION

then invoke WAIT[);
- upldte : LOCATEDAT 2-f package.new I& (Tha source) : SOURCE-OUTLETS tRAM

relation PREVIOUS..PACKAGE(prev..package I package);

reatX~ionD LAST-.PACKAGE(last..package I package);

STE P 2.8 (reposted): ComputeSequentially

S3 if PREVIOUSPACK AGE(*) : DESTINATION MM~f package. new: DESTINATION
Than invo~ke WAIT[];

before

S2 UkgAhi& last...oackage jA LASTPACKAGE(S)
I& package.new

IMethod Consol ldatoToMakeSequential

WGoal: CornputeSequontally All ection before A21Iaction
j Filter: a) component -of JAI. D11demon)

Action: 1) Consolidate III and D2

% [it i easier to move actions around It they are In the "ame context.]

IEnd Method

R
%: STEP 2.9: Consolidate



PAGE 240 PACKAGE ROUTER DEVELOPMENT

NOTICE_NEW.PAC K AGE_ATSOU RCE

and
RELEASEPACKAGEINTONETWORK

I Method NergeDemons ,

Goal: Consolidate DIldemon and D21demon
Action: 1) Equivalence trigger-of[DI] and

trigger-ofD2
2) Equivalence vat-declaration-of[DIt and

var-declaraton-orD2 5
3) Show MmEzQm.E.DEMNO(Di. 02, JIordering)
4) Apply b.op.mE(D. 02. 1)

[You can conbolidate two demons If you can show that they have the same
local variables, the same triggering pattern and that they meet certain
merging conditions.]

I End Method
.4.

STEP 2.10: Equivalence (package.new) and (package)

I Method EquivalenceCompoundStructures

Goal: Equivalence I Scompound-structure and

S2 1 compound-structu'e
Filter: a) gist-type-of[. Si1 a gist-type-orf[. S2]

b) -f ixed-structure[S1J -',

c) componnt-corresponqence[Sl. S2. Clcorrespondence]
Action: 1) forali correspondence-palrs[C. C2. C21

gg Equivalence CI and C2 -

(Divide.and-conquer: make In components of two non-fixed structures

equivalent.)

I End Method

EquivalenceCompoundStructures2 will compute a correspondence between the variables in

4 the list (in this case only one exists) and post an equivalence goal pair.

STEP 2.11: Equivalence package and package.new

'%
4I

!:"-,'"'"" ""."' " "". . , , , , , €"""""""" " , " 0" - " " " "" - "" '"" ""''"" ""' ''."'.''



W* W J 7. 0J -1 -A. . .

C.2 Remove PREVIOUS_PACKAGE PAGE 241

4

We can use the brother of method Anchor2 (see step 1.15) to achieve the Equivalence goal

here.

!%.4

I Method Anchorl

.- Goal: Equivalence X and Y

Action: 1) Reformulate Y as X

, .. Try changing the second construct Into something that matches the first.]

I End Method

,.

- .STEP 2.1 2: Reformulate package as package.new
.1

The achievement of this goal rests on the renaming of package to package.new within

NOTICE-NEW*-PACKAGE*-AT*-SOURCE.

Method RenamnVar

Goal: Reformulate VI I vorieble-declaration as

ilrace-( V21 varieble-declaration
F..iler: a) scopod-in[Vi S]

Action: 1) Show HrhoOucEABLE-VA-NAME(V2, S)

:;2) Apply nENAE.YAR(V1, V2, S)

6 fReplace all occurrences of V1 with V2 in S after showing that V2 does not
conflict with &coped variables already defined within S.)

I End Method

We assume that the user verifies that the introduction of package.new does not conflict with

any existing variables within NOTICE4-NEW-PACKAGE,-AT4-SOURCE. After the

renaming, the equivalence goal on the triggers is trivially satisfied. The application of

DEMON.MERGE gives us

..:

.. ,

,%

.,4 ,", - ,%, "- - . ' X "a;r -.
, .

- -; ' ..-. ,-"-"•"•'.•-"- , - " - " . .



PAGE 242 PACKAGE ROUTER DEVELOPMENT

demon RELEA SE_P AC K AGE_INTONETWORK (package.new) 07
trigger package.new: LOCATED.AT " thi source

begin
1 update prev.package j.1 PREVIOUSPACKAGE(S)

I& LASTPACKAGE(O):
02 " uaL Iast.package .J1 LASTPACKAGE(S)

I& peckage.new
3 .if. PREVIOU S_PACKAGE(): DESTINATION 0 package.new: DESTINATION

jthe nvoke WAIT[];
ujdfLI :LOCATED-AT IL package.new 12 (J source):SOURCE-OUTLET

dA;

relation PREVIOUSPACKAGE(prevpackage I package);

relation LASTPACKAGE(Iast..package I package);

The ComputeSequentially goal from 2.8 is still not satisfied and hence, is reposted.

STEP 2.13(reposted): ComputeSequentially

S J.1 PREVIOUSPACKAGE(O):DESTINATION n package.new: DESTINATION
M ithnnvoke WAIT[];

before

S2 update lastpackage ina LASTPACKAGE(S)
I& package.new

I Method SwapUp I

Goal: ComPutoSequentially Y before X
Fler: a) brother-of[X. Y] "r
Action: 1) Swap Y with predecessor of Y

IN you ore trying to compute X aler Y then move Y up.]

1 En~d Method

,%

N

"-

..
I ;,.:,. o'i-3" ,'3, ;,, ",.'.".'.i.-. .''.'.'..".-':'/'; .',--'.';' '." " ' "".",'2 :; % 'i.';.",%"-"- .". ",. '- ,i~ ",2.,''-'" .." '. ." '-' ":" " "?



C.2 Remove PREVIOUS_PACKAGE PAGE 243

STEP 2.14: Swap

It PREVIOUS_PACKAGE(*):DESTINATION 0 package.new:DESTINATION
* "then tjinvoke WAIT[];

with

_undaet Iast.package ;in LAST_PACKAGE(S)
I&. package.new;

I Method SwapStantents

Goal: Swap A with B
Action: 1) Show SWAPPALE(A B)

2) Apply SWAP STATMENIS(A B)

[A;B o B;A under certain conditions.]

I End Method

Again, with a data-dependency graph, the SWAPPABLE property might automatically be

verified. Currently, we rely on the user to verify it. After applying the swap transformation, we

have:

1 update prev.package ja PREVIOUSPACKAGE(S)
t LASTPACKAGE(O);

1 3 f PREVIOUSPACKAGE(*):DESTINATION : package.new:DESTINATION3then invoke WAIT[];
12 Udae last.package jin LASTPACKAGE(S)

I&t package.new
' '.. - update :LOCATEDAT gi package.new I& (tha source): SOURCE.OUTLET
-AD;

The ComputeSequentially goal has now been satisfied. After the application of the value

replacement transformation REPLACE.REF WITHVALUE and the removal of the maintenance
a . .. .... and definition (see steps 1.20 and 1.21) of PREVIOUSPACKAGE, we have:

.9.

°,

• * .t %* - f



PAGE 244 PACKAGE ROUTER DEVELOPMENT

. •

demon RELEA SEPACK AGEINTONETWORK (package.new)
S.rtrijg(ger package.new: LOCATED-AT M M source

beoin
.L LASTPACKAGE( ): DESTINATION 0 package.new: DESTINATION

the.a invoke WAIT[];
ugdate lasfpackage ija LASTPACKAGE(S)

I& package.new

update :LOCATEDAT gL package.new & (MM soUrCe):SOURCEOUTLET

relation LASTPACKAGE(iastpackage I package);

Tlrf.
a/a."

This completes the removal of PREVIOUSs-PACKAGE.

a%



C.2 Remove PREVIOUSPACKAGE PAGE 245

C.3. Remove LASTPACKAGE

The next portion of the development involves noticing that we don't need to remember the last

package, but only its :DESTINATION We might expect an automatic usage analysis to point

out such features of the program. Such an analysis is certainly state-of-the-art and should be

, .one of the more immediate enhancements to the TI system.

demon RELEASEPACKAGEINTONETWOR K (package.new)
trigger package.new:LOCATEDAT * the source

if LAST_PACKAGE() : DESTINATION 0 package.new:DESTINATIONthen invoke WAIT(3;

1ugdate last_package in LAST_PACKAGE(S)
I& package.new

update :LOCATEDAT Of package.new I& (te source) SOURCE-OUTLET

relation LASTPACKAGE(Iastpackage I package);

Note that remembering all of an objects attributes instead of the object itself may not payoff in

cases where a large number of the object's attributes are needed: we may simply be replacing

a central "record" structure (an object and its attributes) with individual variables (the

isolated relations). In our case, only one field is ever needed, and hence we can perceive an
.,,.

efficiency gain.

STEP31(user): Remove LASTPACKAGE

We will employ the same general "MegaMove" strategy as used in removing the

PACKAGES_EVERATSOURCE in section C.1.

-,,
op



PAGE 240 PACKAGE ROUTER DEVELOPMENT

I Method RemoveReflaton

Goal: Remove R I roeation from spe
Action: 1) forae1 reference-location[R.RR.spec

do Remove RR from spoc

2) M Apl Pu uPENCUOEqLAMioN( )

[You can remove a relation if you can remove all references to It.)
I End Method

STEP 3.2: Remove reference of LASTPACKAGE in

4:4

I Method NegaMove I

Goal: Remove X I relation-reference from spec
Filter: a) component-of [X. Y]

Action: 1) Isolate Y in DRIderived-reolaion
2) Malintainlncrementally DR

lMemove the relation-reerence X by moving ft directly after the locations It is
assigned.)

I End Method

We choose the binding of Y as LASTPACKAGE(*):DESTINATION.

STEP 3.3: Isolate LASTPACKAGE(*):DESTINATION

I Method FoldGenerlcintoRel&tlon

Goal: Isolate X

Action. 1) Gobal/ze X

2) Apply F0W.ow. ELAT(X)

IStralghtforard told Into derved-relion.]
E End Method -

After applying FOLDodTO_.RELATIO, we have:

1 hVI-



C.3 Remove LAST_PACKAGE PAGE 247

. demon RELEASEPACKAGE_INTONETWOR K (package.new)
trigger package.new:LOCATEDAT , the source

lponse
begi~n

-" LASTPACKAGEDESTINATION () 0 package.new: DESTINATION
then invoke WAIT[];
I update last.package in LASTPACKAGE(S)

I& package.new
update :LOCATEDAT 2L package.new j2 (IhM source) :SOURCEOUTLET

relation LASTPACKAGE(lastpackage I package);

CI relation LASTPACKAGEDESTINATION(last destination I bin)
definition lastdestination a LASTPACKAGE(*):DESTINATION;

STEP 3.4: MaintainIncrementally LASTPACKAGEDESTINATION

I Method ScattetrMlntenanceForDerivedRelation

*Goal: MAaintainlncrementally DR I derived-reletion

4 , Action: 1) Flatten body-of[DR]
-.9.2) orall reference-location[BR. S. DR]

do forall reference-locaton[BR, L. spe)

do begin

Apply WRmOOUCMAWlMNANCECOOE(DR L)

Purify • L
I%

end

To maintain a derived relation DR, find everywhere the base relations of DR
are changed and stick code In to maintain. Make sure that all base relations
are simple before maintenance and that all code is pure after.]

I-End Method

The Flatten goal is trivially satisfied. After adding the necessary maintenance code k2' we

% .have:

, 1

.. 4' -

..R.
41|

, - --p-.4 - - - .'': ''' t : ' .- - " - o" - ., , . . . ". ."" . " " . . . . ... -. . " . - r,_ . .' ' ." ' r" ''.. ." '. '. ,." ,



~~0 -; . - - -. - .- - . . . . ... - -

PAGE 248 PACKAGE ROUTER DEVELOPMENT

demon RELEA SEPACK AGE_INTONETWORK (package.new) -

t r igger package.new:LOCATED.AT * lhe source
resDonse

jIL LAST PACKAGEDESTINATION (O) * package new: DESTINATION
thin invoke WAIT[];

atomic
* >update last.package in LASTPACKAGE(S)

,t package.new;
t update lasldestination in LASTPACKAGEDESTINATION(S)2; 1& package.new: DESTINATIONI_ atomic

update : LOCATEDAT Oi package.new Uo (he source) SOURCEOUTLET

relation LASTPACKAGE(Iast..package I package);

relation LAST_PACKAGEDESTINATION(last-destination I bin);

We have now achieved our goal of removing one of the references to LASTPACKAGE. The

next reference I, is part of the maintenance/update of LAST_PACK AGE.

STEP 3.5: Remove reference to LAST_PACKAGE from 0

We will omit the steps here of removing this reference and the relation definition. They are

completely analogous to the steps found at step 1.20.1,21. Our new state is.

* 0 ,

"'i!

~ 4*%~~0' -. 'V V V. V % '. ']-



C.3 Remove LAST_PACKAGE PAGE 249

, , .'"

demon RELEASE_PACKAGE_INTONETWOR K (package.new)
, trigger package.new:LOCATEDAT • th source

response
begin 7f

it LASTPACKAGEDESTINATION(*) 0 package.new: DESTINATION
then invoke WAIT[];

P atomic3
" "a e lastdestination in LASTPACKAGEDESTINATION(S)

I& package.new: DESTINATION

updle :LOCATEDAT j. package.new 12 (t source): SOURCE-OUTLET

relation LASTPACKAGEDESTINATION(astdesinaion I bin);

The final step is the trivial unfold of the atomic statement 3 using the UnfoldAtomic method.

At this point the user marks the OptimizePEAS goal as achieved.

.°

4,

lb

. '

4.:-...

4;. -. ' ' ' ,.,, 'o ; 5 , ., , .. .. . . . . % , ... _.." ' . . . . J .. '.,... . . .. -" -" "



PAGE 250 PACKAGE ROUTER DEVELOPMENT

.

C.4. Map DID_NOTSETSWITCH_WHENHAD_CHANCE

In this section, we will assume the user has -turned his attention to mapping away the global .-

constraints in the spec. In our portion of the router spec, there is only one:

DID.NOTSET_SWITCHWHENHADCHANCE.

I _!

constraint IDNOT SET SWITCHWHEN_HADCHANCE
always orohibit 3 package,switch I

(package: LOCATED-AT = switch
ADA

SWITCH.SET_WRONGFORPACKAGE(switch,package)

((package . f i rs t( PACKAGES_DUEAT_SWITCH (*,switch))
ADI

SWITCH_IS_EMPTY(switch)) Asoi everbefore));

STEP 4.1 (user): Map DID_NOTSETSWITCHWHENHADCHANCE

I Method MapConstralntAsDemon

Goal: Map C I constraint

Action: 1) Reformulate C as lways prohibit P

2) Show IML.UEoY(Q. P)

3) Apply REFORMULATECONSTAHrASDEON(C, 0. new), ,

4) Map D 
now

[To map a prohibitive constraint. first choose some predicate 0 that is always -
true when the constraint Is violated, and then Introduce a demon whose
trigger is 0 and whose body is a requirement of -P.]

I End Method

:

*51

......-,,;..-.. .:,- ,: , -.., .,, ,-n. .,, ,:.',,, , ,-4-,.,,.; , , . . o. .,...-..: ........ , ,-. ,o;.:



C.4 Map DIDNOTSETSWITCHWHENHADCHANCE PAGE 251

STEP 4.2: Show

3 package,switch II
' (package: LOCATEDAT N switch

% ** SWITCHSETWRONGFORPACKAGE(switch,package)

-3 ((package - first(PACKAGESDUE._ATSWITCH (*,switch))nd

- 'SWITCHISEMPTY (switch)) ASO-f everbefore)):

implies Q

" , 'I Method ConjunctImpltesConjunctArm

Goal: Show X l conjunction implies Y
Filter: a) unbound[Y]

. b) conjuct-am(AIloglcal-xpr*slon. X)
Action: 1) Assert X implies A

((P1 and P2 and ...Pn) Implies Pi
. End Method

There are three possible choices for A corresponding to the three conjunct arms:

1. 1 Trigger when a package becomes located at a switch; guarantee that either
the switch is set right or that there never was a chance to set it rightil.

4I2. 2 Trigger when the switch is set wrong; guarantee that the package is not at the
switch or that there never was a chance to set the switch right.

3. k3 Trigger when there is a chance to set the switch right; guarantee that the

package is not at the switch or that the switch is set right.

We will choose the third:

((package - first.( PACKAGESDUEAT_SWITCH (*,switch))

SWITCHiS_EMPTY(switch)) ALo everbefore)

SThe effect of REFORMULATE.CONSTRAINT.AS.DEMON can be characterized as follows:

65Actually, you only have to make this guarantee n long as the triggering predicate holds. This is true tor the

oher two cam s well.

*Z - -Z,



WUMh %-. I X1 -- 1

PAGE 252 PACKAGE ROUTER DEVELOPMENT

.

"l.t1s prohibit P

triger., Q

runsgenl reauire (-P from ThisEvent unti1 -)

where P implies Q

Define a demon who triggers on 0 and posts a requirement that P not be true between the

time the demon triggers (0 becomes true) and 0 becomes false.

After application of this transformation (and a straightforward removal of the historical

reference from the trigger and simplification of the requirement conjunction), we have the U

following:

damon SETSWITCHWHEN_HAVECHANCE(switch. package)
trigaer (package - firs t(PACKAGESDUEATSWITCH(*.switch))

SWITCH_IS_EMPTY (switch))

reguire (-(package: LOCATEDAT a switch

SWITCHSETWRONGFOR-PAC K AGE (switchpackage))
from ThisEvent

5 o

until -((packagefirst( PACKAGESDUEATSWITCH (0, switch))
Aad

SWITCHISEMPTY (switch)) Algo everbofor.e))

The response of the new demon should be read as "require that the package nWt be located

at the switch when the switch is set wrong. Make sure that this is true fom the time the demon

.5 triggers until the switch is not ready to be set, > asof everbefore <<". The until clause is

clearly false since the trigger implies that the switch has been ready to be set in the past. A

simple transformation of the until clause ,

... uni1 false no unti1 ever.more

allows us to simplify (SETSWITCH , Is included for context):

114

4so
I~e.. t "WL of Of demm



CA Map DIDNOTSET_SWITCHWHENHADCHANCE PAGE 253

q

' ademon SET.SWITCH(switch)
trigger RANDOM()

ktiA
reuuire SWITCH_IS_EMPTY (switch);
update :SWITCHSETTING 2L switch 12 switch: SWITCHOUTLET

4,. ,Je d

demon SETSWITCHWHENHAVE_CHANCE (switch, package)
trigaer (package - f irst.(PACKAGESDUEATSWITCH(*,switch))

and
- SWITCH_IS_EMPTY (switch)):i ' ' " response

* - reaguire (-(package: LOCATEDAT s switch
ADA

SWITCHSETWRONG_FOR_PACKAGE(switch,package))
f rom ThisEvent

0 2  until evermore

q STEP 4.3: Map SETSWITCH_WHENHAVE_CHANCE

.I Method MapByConsolidaton

V Goal: Map Didemon
Filter: a) pattern.match[demon. D2. spec]

4 b) D* D2
4 .Action: 1) Consolidate D and D2

/To map D. find some other demon 02 and consolidate.]
I End Method

A separate method will be triggered for each binding of D2, one for each demon in the

program. We will choose the binding to SETSWITCH.

STEP 4.4: Consolidate SETSWITCH with SETSWITCHWHENHAVECHANCE

4'

to .



PAGE 254 PACKAGE ROUTER DEVELOPMENT

I Method MergeDemons I

Goal: Consolidate D1Idemon and 021demon
Action: 2) Equivalence trigger-of[DI] and

treggor-of.D2-

2) Equivalence var-declaration-of[DI] and

var-docl ration-of[D2] r.

3) Show uERe ..oeMONS(01. D2, lordering)
4) Apply oM0Nd.MEoI(DI. D2. 1)

[You can consolidate two demons i you can show that they have the same
local variables, the same triggering pattern and that they meet certain
merging conditions.]

I End Method

STEP 4.5: Equivalence S
-p

triaoer RANDOM()
and

jtrggoer package - f! st.(PACKAGESDUEATSWITCH (* ,switch))

AnD
SWITCHISEMPTY (switch)

I Method Anchor2

Goal: Equivalence X and Y
Action: 2) Reformulate X as Y

iTry changing the "irst construct into something that matches the second.]

I End Method

STEP 4.6: Reformulate RANDOMO as

package - f irs t( PACKAGESDUEAT_SWITCH (*,switch))
* ADA

SWITCHISEMPTY (switch)

NN

*. ..'

S.I

t ", • VT



C.4 Map DID_NOT..SETSWITCHWHENHADCHANCE PAGE 255

.4! I Method SpecialzeRandom

Goal: Reformulate XlRANDOM as Ylexpression
Action: 1) Show ,,,o,.U,,PECALZAT,o,(Y)

2) Apply
REACE.ANOuwfm,.SPECIALZATIO( X Y)

[You can always replace RANDOM with a more specialized event if you can
show the new event does not remove all choices.]

I End Method

We rely on the user to show that a non.empty subset of triggerings remain for SETSWITCH.

After the application of REPLACERANDOM.WITHSPECIALIZATION, we have

idemon SETSWITCH(switch, package)
. gtrigger package - f rjt(PACKAGESDUEAT_SWITCH ( ,switch))

SWITCH_IS_EMPTY (switch)

update :SWITCH SErTTING Oi switch I& switch SWITCH.OUTLET
where SWITCHIS_EMPTY (switch)

demon SETSWITCHWHEN_HAVECHANCE (switch, package)
LN tr~g~gr (package a f ist(PACKAGESDUE,_ATSWITCH(0,switch))

ADA
SWITCH_ISEMPTY (switch))

. response

regui re (-(package: LOCATEDAT - switch

SWITCHSETWRONGF0 R_PA C K AGE (switch,package))
Lrm ThisEvent

. until evermore

4" Our Equivalence goal has been achieved and we can consolidate the two demons.



PAGE 256 PACKAGE ROUTER DEVELOPMENT

dmn~ SET_SWITCH (switch, package)
trigger package a .fi rt(PACKAGESDUEATSWITCH( ,switch))

and
SWITCHISEMPTY(switch)

:-,.

rLstonsaL

udat.i :SWITCH.SETTING Of switch I& switch SWITCH-OUTLET
where SWITCH_IS_EMPTY (switch);

0 reauire (-(package:LOCATEDAT S switch
IA

SWITCHSETWRONGFORPA C K AGE (switchpackage)) j
fr ThisEvent
until evermore

We have removed the global constraint DIDNOTSETSWITCHWHENHADCHANCE

from the program, but are left with a residual local constraint 01 within SET_SWITCH.
-,p

STEP 4l(user): Map

S01 jguire (-(package:LOCATEAT a switch
ADA

SWITCH JOSETWRONGORPACKAGE (switch,package))

fLrM ThisEvent
utlevermore

I Method CastfyPosConstralnt ,

Goal: Map C I +constraint -

Action: 1) Casify C
2) toral case-of(X C do Map X

[Try mapping by case analysis.]
I End Method

The remainder of the development in this section will be based on a number of different case

analysis strategies for removing the requirements in the SETSWITCH demon. The

interaction between the user and system during this time points out the fundamental role of

% P .1

YZ7.



-.." *% ... 4"..

C.4 Map DIDNOT_SETSWITCHWHEN_HADCHANCE PAGE 257

*each: the system suggests rather broad strategies with keystone pieces left unbound; the user

selects among the strategies based on his ability to fill in the missing pieces. The latter activity

, requires what we might call the insightful or intelligent component of reasoning; we suspect

S ._* that such activity will resist automation for some time to come.

STEP 4.8: Casify

reauire (-(package:LOCATED_AT - switch
and

SWITCHSETWRONG_FO R_PAC K AGE (switchpackage))
from ThisEvent
until evermore

I Method CastfyFromUntllEverConstralnt

Goal: Casity C I .Constraint
Action: 1) Reformulate C as

P from E until evermore
2) Apply CASY.ASNOWANODAmER(C)

[You can show that C holds from E until everafter f you can show it holds at E
and after E.)

I End Method

This method makes the following transformation

+constraint P from E until evermore

+constraint P Al E;
,- +constraint P after E;

In our case, this means showing that either the package is not located at the switch or that the

switch is set right at the time the demon triggered ,1 and for all time after 1,2. After application

of CASIFY_ASNOW.ANDAFTER, we have 0

.4)Not* that the reformulation goal is trivially satisfied. This is because earlier we carried out the reformulation for

clarity. Normally this would be carried out hero where it is well motivated.



,.1 WA a" WW-

PAGE 25 PACKAGE ROUTER DEVELOPMENT

.deon SET.SWITCH(Switch, package)
igger package a first (PACKAGESDUEATSWITCH (*.switch))

AUt
SWITCH_IS_EMPTY (switch)

£Uflonse

update :SWITCSETTING gf switch Ig switch: SWITCHOUTLET
where SWITCH_IS_EMPTY (switch);

01 .reujre (-(package:LOCATED.AT a switch

SWITCHSETWRONG_FOR_PACKAGE(switch,package))
al ThisEvent;

02 reuire (-(packge:LOCATE.AT a switch

SWITCHSETWRONGFORPACKAGE(switch.package))
aftor ThisEvent

STEP 4.9: Map

01 reaujre (-(package: LOCATED.AT switch

* SWITCHSET_WRONGFORPACKAGE(switch,package)) 
a ThisEvent

I Method TriggerlmpliesConstraint I
oV

Goal: Map R if Quire

Filter: a) component-oVIR. Dldeinon)
Action: 1) Reformulate R as reuitre P &I Th lEvent

2) Show . .PO~ay(P. trigger-o[D))

3) Apply RImovw.a..EouPmENT(R)

IN a requirement is part of a demon. try showing that I Is Implied by the
demon's trigger.]

I End Method

We rely on the user to verify that the trigger does indeed Imply the constraint, i.e., a switch

being empty implies that the package Is not located there. This removes the first case. We

k ,now must tackle the more interesting second case.

-A,

" A -02-



_... ... ;- .1 -. - . 7.7.. . . , , -7

C.4 Map DIDNOTSETSWITCHWHENHADCHANCE PAGE 259

%

STEP 4.10: Map

* . 2 reuire (-(package: LOCATEDAT a switch

SWITCHSET_WRONGFOR_PACK AGE (switch,package))
after ThisEvent

i ,'

I Method CasityPosConstraint

Goal: Map C I . constraint
Action: 1) Casiy C

2) foralI case-of[X. C do Map X

*1. [Try mapping by case analysis.]

I End Method

STEP 4.11: Casiy

0 2 rguira (-(package: LOCATED_A a switch
ADA

SWITCHSETWRONGFO RPAC K AGE (switchpackage))
af ter ThisEvent

I Method CasifyAroundEvent

_Goal: Casily CI constraint
" Action: 1) Reformulate C as constraint P AL.r E

2) Show ,,uftkvENr(F. E)

3) Apply cAsIFY.AmRUNDJENT( C, F)

[Choose some event F in the future and show that C holds before, during and
after F.)

I End Method

This method splits a constraint into three cases: 1) before some future event F, 2) during F

and 3) after F. In this case, the difficult task is picking the right future event F. We rely on the
user to make this choice:

: bind F to package:LOCATEDAT a switch

After application of CASIFY.AROUND.EVENT, we have our before ), during P0 and after 0

cases:

'.

, S .... .- . _ , . ,- -.,, , ,, ; : . ,. . . -_ . .



- • , ' .b . .. % ,, .,- - . . .-. . . . , , . . . -' .: / .. . :..? ..

PAGE 260 PACKAGE ROUTER DEVELOPMENT

4...

demon SETSWITCH (switch, package)
triaer package a f i.rs t (PACKAGESDUEAT_SWITCH (*,switch))

SWITCH_IS_EMPTY (switch)

responrse

1 0  undate :SWITCH.SETTING Of Switch Io SWitch:SWITCI.OUTLET
where SWITCH_IS_EMPTY (switch);

0 2 reguire (-(package:LOCATED.,AT a switch

SWITCH_SETWRONGJOR. PAC K AGE( switchpackage))
after ThisEvent until package:LOCATEDAT - Switch;

2 reguire (-(package:LOCATEAT a switch

SWITCHSETWRONGFOR_PACKAGE (switch,package))
during package: LOCATED-AT a switch;

3  reouire (-(package:LOCATED.AT - switch

SW ITCHSETWRONG_FOR.PAC K AGE (switch,package))
after package: LOCATED.AT a Switch;

Again, we must map each of the new cases.

STEP 4.12: Map

'! ruouire (-(package:LOCATED.AT switch

SWITCHSETWRONG.FOR_ ACK AGE (switchpackage))
aI..te ThisEvent until package: LOCATED.AT * switch;

I Method totXUntllX

Goal: Map R I +onstraint
Action: 1) Reformulate R as #constraint P unEl E

2) Show wao.v(P, -E)

3) Apply mmovACUOWCONSThAffT(R)

IP go E me true when -E implies PI

I End Method IN

T.

%-



C.4 Map DIDNOTSETSWITCHWHEN_HADCHANCE PAGE 261

We rely on the user to show that the negation of the until clause -- the package is not located I
at the switch -- implies the predicate. We can thus remove the first requirement sO. By (the

user) showing that the package will -never again return to the switch after it leaves it, we can

A similarly remove the third requirement I 3. This leaves us with the second requirement 2'

STEP 4.13: Map

* 2  reguire (-(package: LOCATED AT a switch

SWITCHSETWRONGFOR_PACKAGE(switch,package))
durin package: LOCATEDAT a Switch;

We can simplify this to

re u ire -SWITCH_SETWRONG.FO RPACK AGE (switch,package)
Sduring package: LOCATEDAT a switch;

We will again use case analysis to simplify the problem.

I Method CaslfyPosConstraint

Goal: Map C I +constraint

Action: 1) Caslty C
2) forall case-of[X. C] do Map X

[Try mapping by case analysis.]

SI End Method

STEP4.14: Casify

reguiire -SWITCHSET_WRONGFORPACKAGE(switchpackage)
duin package : LOCATEDAT Switch;

it-

i p.

*' :

*, ,',



~1

PAGE 262 PACKAGE ROUTER DEVELOPMENT

Method PastInduction

Goal: Costly CI #onstraint
Action: 1) Reformulate C as #constraint P durina E

2) Show EvoNT.FOn.zv wT(B. E)

3) Apply PAS UCTIOWCASIFY(C. 6)

IUse induction from some past state.]

I End Method

This method makes the following transformation:

+constraint P .dlurDg E

+constraint P .21 B IB before E
+constraint -(start of -P) between B, after E

To paraphrase, there exists some state B before E where P holds and P does not change

* between B and E. The choice of B is naturally critical and is left to the user:

bind B to last. update 2L switch:SWITC.SETTING in SETSWITCH (0)

1'..-, After application of PAST_INDUCTIONCASIFY, we have

•,.

_.deaon SETSWITCH (switch, package)
.riger package s tirjst (PACKAGESDUEAT_SWITCH ( *,switch))

ADA
SWITCH_IS_EMPTY (switch)

1"0 update :SWITCH.SETTING of switch I& switch: SWITCH.OUTLET
,.where SWITCH_IS_EMPTY (switch);

1 rauire -SWlTCH_SET.WRONGFOR_ PACKAGE(switch,package)
Al ls Update 2L switch:SWITCHSETTING;

02 reauire

-( start oL -SWITCHSETWRONGFOR_PACKAGE (switchpackage))
between JLL. kdAa Lt switch:SWITCH.SETTING,

package: LOCATED.AT switch

.

r -

" ,N,". .* ',." '..*-*--. a - - . -." ; *'c' ; .'.." ..,- .,. ,.-....• •' 2** ' ' ...-... -'



C.4 Map DIDNOT_SETSWITCHWHENHADCHANCE PAGE 263

4 _.

STEP 4.15: Map

-m) rj~ejuire -SWITCHSETWRONGFOR_PACKAGE(switch,package)
.l las. update 21 switch :SWITCHSETTING;

I Method MoveConstraintToAction., ! o, .. , .o.
Goal: Map ci require
Action: 1) Reformulate C asrequire P 1i Jit E I Action-ovent

2) Show LA r TC'"(A action. E)
3) Apply MOVE.COW t41SNTr.ACTON(C. A)

: End Il a constraint C is on some action event E at A. attach the constraint to A.]
I End Method

We rely on the user to show that the update of the switch setting 0 in SET-SWITCH is the

I only update of a switch setting and hence, it must have been the last. After application of

MOVECONSTRAINT_TO_ACTION, we have

demon SETSWITCH(switch, package)
trigger package a f irst(PACKAGESDUEATSWITCH (*,switch))

ADUO
SWITCH_IS_EMPTY (switch)' ° respornse

F0  update :SWITCH_SETTING oLf switCh I& switch: SWITCH_OUTLET0 where SWITCH_IS_EMPTY (switch)
La"

-SWITCHSETWRONGFOR_PACKAGE(switch,package);
S2 reaui re

-(start 2L -SWITCHSETWRONGFOR_PACKAGE (switch,package))
between ljs update 2f switch:SWITCHSETTING,

package:LOCATEDAT * switch

STEP 4.16: Map

'~ :*V

I
A . , , , . . . . . . . . ' , , , , , . . , ,, . . . . . . . - . , .. . , ,, , , ,, , . ,- ,. '



PAGE 264 PACKAGE ROUTER DEVELOPMENT

reauire-(start of -SWITCH_ SETWRONG_FOR.PACKAGE(switch,package))

between liji uite 2L switch: SWITC".SETTING,
package: LOCATEDAT switch

I Method ShowidoChange .

Goal: Map C I +constraint -(Last ar P)
between EL.E2

Action: 1) Show UNcHAt4 . EM..IwEw..Ea5Ts(P, El. E2)

2) Apply RMaovE..uWoa,,o.coNrMAT(C) a
[The direct approach.)

I End Method .

STEP 4.17: Show

-(start 9f -SWITCHSETWRONG_FOR_PAC K AGE (switch,package))
between jMj= upate1 f switch :SWITCH_SETTING, package LOCATEDAT switch

Showing that the switch is never set wrong (relative to a particular package) once it is set right

lies beyond the capabilities of the system. We rely on tne user to assert the necessary

- property.

,f.,

After application of REMOVE.UNCHANGEDCONSTRAINT, we have

% ".'4

demon SETSWITCH(switch, package)
t.ri gee r package - f irst( PACKAGESDUEAT_SWITCH (*,switch))~AD

SWITCH_ISEMPTY (switch)
reSaonst
" update :SWITCH.SETTING O1 switch I& switch:SWITCHOUTLET

-> ~where SWITCH_IS_EMPTY (switch)
ADA

-SWITCHSETWRONG.FOR_PACKAGE(switch,package);

Our last task will be to map the non-deterministic choice of switch settings 0 using the

attached constraints as a guide.

..ft

' ." .°g . .- . •.."0.. -"-.- . - ' ',L,'' ' '' '"''' ' ,; '' %-



C.4 Map DID..NOT..SETSWITCHWHENyHADCHANCE PAGE 265

STEP4A18fuse): map

qF 0 update :SWITCI4SETTING 2L Switch I& switch: SWITCH-OUTLET
where SWITCHJSEMPTY (switch)

A"~
-SWITCHSET..WRONGFORPACK AGE ( switch,package);

-, ~ IMethod ComputeNtwValu*

CGoal: Map Ugjupa X g~ Y Ig Z whr P
Action: 1) Apply

COMPUERiVo.OUMCTROO CONSTRAUW( U)

1Retormulate Z as derived object using P.)
IEnd Method

UA
Th pliatoeo :SICMUTDIVEOCROCNTA give ustcI

Seo SE.SIC~ WITCH ST package) KAE sith pcag)

STEPIAJI~sWITCH.foSETI~ wtch -E-RNGFRPCKGa



PAGE 266 PACKAGE ROUTER DEVELOPMENT

I Method ScatterComputatlonOfDlrlvedRelation

Goal: Untold DRIderivd-lreltion at L
Filter a) reoference-locationDR. L. S1
Action 1) Apply UFOLD.COmPUTAT0COOOE(DR L) .'

2) Purify L

[To untold a derived relation DR at a reference point, stick In code to compute"
it and make sure L Is within implementable portion of spec.)

I End Method

Unfolding SWITCHSETWRONG_FOR_PACKAGE 0l and simplifying (see example A,

section E.14) gives us

demon SET_SWITCH(switch. package)
trigger package z 11irst(PACKAGESDUE.ATSWITCH( ,switch))

A.d
SWITCHIS_EMPTY (switch)

r resipone,,
update :SWITCHSETTING 2L Switch 12

(pipe j pipe a switch: SWITCH OUTLET

0 2 SWITCHIS_EMPTY (switch)
Ad

LOCATIONONROUTETOBIN (pipe,
package: DESTINATION));

Finally, we can get rid of the empty switch constraint 02 under our assumption that the

response of a demon is executed in the same state as it was triggered: %

-.ii

,-"'

. . . . . . .. . . . . . .. . . -,.. "...". , ." .. .. ". -. . ,, , " ,, -



4.!

W C.4 Map DIDNOTSETSWTCHWHEN_.HADCHANCE PAGE 267

'dmon SETSWITCH(switch. package)
trigger package z i rs(PACKAGESDUE AT_SWITCH (*,switch))

SWITCHISEMPTY (switch)
response

update SWITCHSETTING Of switch I&
(pipe I I pipe a switch: SWITCH-OUTLET

LOCATIONONROUTE_TO_BIN (pipe,
*..= - package: DESTINATION));

i,

-PA

16o

-99



PAGE 268 PACKAGE ROUTER DEVELOPMENT

C.5. Map PACKAGESDUE_AT_SWITCH

We will focus our attention on the derived relation PACKAGESDUEATSWITCH:

relation PACKAGESDUEATSWITCH(packagesdue I seguence of package.
switch)

definition packagesdue
(A package II

LOCATION_ON_ROUTE_TO_BIN (switch package: DESTINATION)-((package: LOCATED-AT switch) AsoL everbefore) Ai

-MIS ROUTED (package)
ordered temporally a tat (package:LOCATED.AT " h source)):

Abstractly, the sequence of packages is defined in terms of

{S) ordered with respect to Event

A package is in the set of packages S if conjunctively

" LOCATIONONROUTETOBIN(switch, package:DESTINATION) i.e., the switch

lies on route to the package's destination.

D -((package:LOCATEDAT a switch) asof ey.rbeforjj, i.e., the package has not
already reached the switch.

r -MISROUTED(package), i.e., the package is still expected to show up at some
future time at the switch.

STEPL(user): Map PACKAGESDUEATSWITCH N

'pN
As in previous sections, we have two basic strategic choices: compute on demand; compute

on change. We will choose the latter here.

4-7

4'..

a~g



C.5 Map PACKAGES.D.UEAT.SWITCH PAGE 269

IMethod MalintalnDerlvedftglation

Goal: Map DR I dlaived-,.ietlon
Action: 1) Maintalnlncrementally DR

tOne way of mapping a derived relation is to maintain Nt explicitly.)
I End Method

STE P 5.2: Maintainlncrementally PACK AGES_.DUE..ATS WITCH

I Method Scattermal ntenanceForDerlvedol atlion

Goal: Malntalnlncrementally DR
Filter: a) glst-type-offDR, derived-relation]
Action: 1) Flatten body-of(DR)

2) forall Wefrence-locatlon[BR. S. DR]
do forall reference-location[SR. L. spec)

do begin
Apply WThODUcE.MAIPEINANCECoOE(DR L)
Purity L

end

/To maintain a derived relation DR, find everywhere the base relations of DR
or* changed and stick code in to maintain. M~ake sure that all base relations

V are simple before maintenance and that all code is pure alter.)
IEnd Method

STEP 5.3: Flatten PAC KAGES-.DUEAT-S WITCH

IMethod Flatten

Goal: Flatten DR Iderlvod-roletion
Action: 1) forall

5'refe9rence- Iocat ion [OR I derived-rolatlon.S. .DR)
* do Map OR

[Map all derived relations found In DR into simple ones.]
Fa ~I End MethodI

% %

IM q* ZII



PAGE 270 PACKAGE ROUTER DEVELOPMENT

Before maintaining, we must first get rid of any nested derived relations. There are currently

two: LOCATIONONROUTEJO_BIN and MISROUTED.

STEP 5.4: Map LOCATIONON_ROUTE_TOBIN

relatio LOCATION_ONROUTETOBIN (LOCATIONBIN)
definition

case LOCATION g"
SIN * LOCATION - BIN;

S PIPE

- LOCATIONONROUTETOBIN(
LOCATION: connectiontoswltchorbin, BIN);

SWITCH
LOCATIONONROUTETOBIN (LOCATION: switchoutlet, BIN);

SOURCE
LOCATIONONROUTETOBIN (LOCAT/ON: sou rcooutlet, BIN);

We can either choose to compute LOCATION*-ON'-ROUTE-TO-BIN on demand (i.e.,

unfolding it) or maintain it explicitly. Since the relation is static, maintenance looks most

promising.

I Method StoroExplicitly I

Goal: MaDR derived-relation

Filter: a) sTArIc(DR)

Action: 1) Show FINrrE.EXPUAIOAT(DR)

2) Apply NrMAL1ZE.MEMO RELATION(M, DR)

3) foral1 location-reforence[DR. L. spec]

do Apply REPLACE-REF.WrrHMM0(L, 14)-

4) Apply PIEMOVE.uMUMEERNCED.RELATION(DR) I

fYou can explicitly compute a stalic derived relation given a finite number of * "

resulting db insertions.]

INITIALIZE.MEMO.RELATION will define a new memo relation and code to initialize it.

I
.* * ' ~ * * ~ ~ -°-



C.5 Map PACKAGES_DUEATSWITCH PAGE 271

-p

- £flujat on MEMOLOCATIONBIN(location, bin);

.. demon INITIALIZEyEMOLOCATIONBIN()
• ; trigger: (start initialization_state)" !

resDonse
j=g.O L I LOCATION i2

,-ooB I BIN I LOCATIONONROUTETOBIN(L. B) A2
.nsert MEMO_.LOCATIONBIN(L, B);

We can now replace references to LOCATIONONROUTE_TOBIN with corresponding

references to MEMOLOCATIONBIN trivially except for the initialization above. Here, we

will use some loop transformations to get

o.,
- o1ation MEMOLOCATION_BIN(location, bin);

* fdemon INITIALIZEMEMOLOCATIONBIN()
.trigger: (start initialization_state)

, resp~onse

.]J= B I BIN A2 insert lMEMOLOCATION_BIN(B, B);
1=.o L I LOCATION II

MEMOLOCATION_BIN(L, B) ADA
L = L2 :CONNECTIONTOSWITCH.ORBIN

A2 insert. MEMO._LOCATIONBIN(L2, B);

We next have to deal with the derived-relation MISROUTED.

STEP 5.5: Map MISROUTED

1A.special state proceeing the start-up of a system. ,

aW



PAGE 272 PACKAGE ROUTER DEVELOPMENT

relation MISROUTED (package)definition .

-MEMOLOCATIONBIN (package: LOCATEDAT, package: DESTINATION)

SWITCHSET_WRONGFORPACKAGE (package: c( 1 ocat ed_at).package) ;

To paraphrase, a package is misrouted If either its current location is not on the route to its

destination or if it is at a switch, the switch is set wrong.

In the case of this derived relation, we will try a backward inference strategy of computing the

relation on demand.

I Method UnfoldDerivedRelatlon

Goal: Map DR Iderivedt-relation
Action: 1) ftorah retence-location[DR. L. spec}

do Untold DR at L
.4'o

[One way of eliminating a derived relation is to untold It at its reference
points.)

End Method I
.4.

STEP 5.6: Unfold MISROUTED at PACKAGESDUEATSWITCH

I Method ScatterComputatlonOfDertvedRelatlon

Goal: Untold DR I derived-relation at L

Filter: a) reference-location[oR. L,. S]

Action: 1) Apply UwFOW.cOmIJurATION.cooE(DR L) -

2) Purify L

[To untold a derived relation DR at a reference point. stick In code to compute
It and make sure L is within Implementable portion of pec.]

I End Method I

-
4 

.



.... , -. 7t tv C-1 ' M I. 7 7 T 775.7- b ./ - - .37- . , V . '- .- -' ' N.% -.77k_

C.5 Map PACKAGESDUEATSWITCH PAGE 273

relIat ion PACKAGESDUEATSWITCH(packagesdue I seguonce of package,
6 *switch)
definit~ion packages_due•

.,, (A package 11

MEM OLOCATIONBIN (switch package: DESTINATION)
A"t

-((package: LOCATED-AT a Switch) AL. everbefo re)

-( -MEMO_LOCATIONBIN (package: LOCATED-AT.

package: DESTINATION)

SWITCHSETWRONGFO R_PAC K AGE (package: LOCATEDAT,
package))

Srdered temporally bv start (package:LOCATED.AT j the source));

The Flatten method has completed, but a new derived-relation has been introduced:

SWITCHSETWRONG FORPACKAGE, i.e., the Flatten goal has not been achieved. The

goal will be re.activated.

U : STEP 5.7: Fiatlen PACK AGESDUEAT_SWITCH

I Method Flatten

% .* Goal: Flatten DR I derivod-reletion
ACtion: 1) forall

refe rence- I ocat ion [BR I derived-reiation. $.DR

do Map BR

[Map all derived rolations found In DR into simple ones.]

I End Method

PACKAGESDUEAT_SWITCH now relies upon the derived relation

SWITCHSETWRONGFORPACKAGE which was introduced in the unfolding of

MISROUTED.

I "

-.,. '
S..



PACE 274 PACKAGE ROUTER DEVELOPMENT

relaionf SWITCH..SET_.WRONGFORPACKAGE (switch, package)

MEMO..LOCATION..IN (switch. package: DESTINATION)

-MEMO-LOCATIONBIN (switch: SWITCHSETTING, package: DESTINATION)

To paraphrase, a switch is set wrong for a package if the switch is along the route to the

package's destination and its current setting is not.

STEP 5.8: Map SWITCH_.SET..WRONGJ F ..PACK AGE

I Method UnfoldDerlvedRolation g
Goal: Mafp DR Iderivod-'eiation
Action: 1) foralI reference-location[DR. L. ape")

do Unfold DR at L

(One way of eliminating a drved relation Is to untold NIf at f reference
points.]

I End Method I

STEP 5.9: Untold SWITCHSETWRONGFOR. PACK AGE at

* PACK AGES_.DUE.ATSWITCH

I Method ScattwroaiputationOf Do rivdR. at ionI

Goal: Unfold DR derlvod-relatlon at L
Filter: a) reforence-locatlon[DR. L. Si
Action: 1) Apply uWoLo.C0Me~rATio.poE( DR L)

1) Purify L

ITo unfold a derived relation DR of a reference point. stick in code to compute
It and make sure L Is within implementable portion of apec.

IEnd Method

Unfolding SWITCHSETWRONGFO R-PAC K AGE In PAC K AGES..DUE_.AT_.S WITCH we

have



C.5 Map PACKAGESDUEATSWITCH PAGE 275

~.

relation PACKAGESDUE_AT_SWITCH(packages-due I seunce of package,
* switch)

definition packagesdue z
(A package II

MEMO_LOCATIONBIN (switch package: DESTINATION)
ADA

-((package:LOCATEDAT x switch) Ajqsf everbefore)
Aad

-(-MEMOLOCATIONBIN (package: LOCATED-AT,
package: DESTINATION)

3 switch.2 II
(package: LOCATED_AT - switch.2

ADA
MEMOLOCATIONBIN(switch.2, package: DESTINATION)

-MEMOLOCATIONBIN (switch.2: SWITCH_SETTING,
package: DESTINATION)))

f ) ordered temporally by start (package:LOCATED-AT * the source));

Distributing the negation through the third term (0) gives us

,reAtion PACKAGESDUEATSWITCH(packages-due seguence of package,

switch)
definition packagesdue *

{A package I I
MEMOLOCATIONBIN (switch package: DESTINATION)

-((package: LOCATED.AT * switch) Asot eyerbefo re)

02 (MEMOLOCATIONBIN (package: LOCATEDAT,
package : DESTINATION)

-3 switch.2
(package: LOCATEDAT a switch.2

3 MEMOLOCATIONBIN (switch.2, package: DESTINATION)

-MEMOLOCATIONBIN (switch.2: SWITCHSETTING,
package: DESTINATION)))

) ordered temporally 11 unr (package:LOCATED.AT • I source));

4 ,Finally, we can show that the third term 02 implies that our current location is on route to our

destination (P3) and therefore that If we are at a switch, it is on route to our destination:

41 ,



PAGE 276 PACKAGE ROUTER DEVELOPMENT

%'p.

reation. PACKAGESDUEAT SWITCH(packagesdue I euence of package.
switch )".

definition packagesdue " wc
(A package II

MEMO_LOCATIONBIN (switch package: DESTINATION)

-((package:LOCATED-AT z switch) Ajof everbefore)
anD

(MEMOLOCATIONBIN (package: LOCATED.AT,
package: DESTINATION)

-3 switch.2 II
(package LOCATEDAT a switch.2 U

ad
-MEMOLOCATIONBI N (switch.2: SWITCH.SETTING,

• package: DESTINATION)))

orded .temorall v start (package:LOCATEDAT * the source));

We have now flattened the body of PACKAGESDUEATSWITCH and are ready to scatter

the maintenance code. The locations of interest are

1. where packageDESTINATION changes- CREATE-PACKAGE

2. where package:LOCATION changes, i.e., negates the second term
* CREATE_PACKAGE, RELEASE_PACKAGEjNTO_NETWORK,
MOVE_PACKAGE

3. where :SWITCH_SETTING changes- SETSWITCH

The high level view of the incremental maintenance process we will use is as follows: 1) when

4a package enters the network, for each switch S that is on the route to the package's

destination bin, append the package to the sequence of package's due at S, 2) when the right

conditions occur - the package enters S or becomes misrouted before reaching S -- remove

the package from S's sequence.

Looking first at CREATEPACK AGE, we loop 01 through the free variable switch and add 2

the newly created package.new to the sequence for all switches meeting the criteria.

-. 4-

"9

& 4l



C.5 Map PACKAGES DUEATSWITCH PAGE 277

! demon CREATE_PACKAGE()
* ";- trigger RANDOM()

J., response
atomic

9 ~j~create package.new II
package.new: DESTINATION = a bin AU
package.new: LOCATEDAT = Ihe source;

:. . 1=tD switch 11I

MEMOLOCATIONBIN (switch package.new: DESTINATION)
AUt

-((package.new:LOCATEDAT switch) Aoj everbefore)

(MEM OLOCATI ON_BI N (package. new: LOCATEDAT,
package.new: DESTINATION)

nd
4 ' -3 switch.2 I

(package.new: LOCATED.AT a switch.2

-MEM OLOCATION_BIN ( switch.2 :SWITCHSETTING,
package.new: DESTINATION)))

-,_02 do update packagesdue of PACKAGESDUEATSWITCH(switch,$)
1 2 PACK AGESDUE_ATSWITCH (switch,*) concat <package.new>., end atomic;

Reasoning that package.new cannot have been at (any) switch, that it certainly must be on

.,,*." the route to its bin (unless a pipe is missing) and that it is not currently located at a switch

allows us to simplify to the following:

demon CREATEPACKAGE()
trigger RANDOM()

• response

% crete~f packag *-new I
.

package.new: DFSTINATION A A bin And
package.new: LOCATEDAT a thj source;

03 J1= (switch I II
MEMOLOCATIONBIN (switch, package.new: DESTINATION))
A2o update packages-due o PACKAGES_DUE.AT_SWITCH (switch,$)

"' jo PACKAGESDUEATSWITCH (switch,*) concat <package.new>
UA atmic;

* " '

,e



PAGE 278 PACKAGE ROUTER DEVELOPMENT

CREATEPACKAGE is outside of our portion of the development, hence the introduced

code 03must be moved in.

STEP 5.10: Purify= g... Co ... in CREATEPACKAGE

I Method PurityDemon

Goal: Purify A I action i n D I demon

Action: 1) Remove L f rom D

[Remove unpure statement L from D.]

i End Method

STEP 5.11: Remove

S3 =O (switch II MEMOLOCATIONBIN(switch,
package. new: DESTINATION))

A2 update packagesdue oj PACKAGESDUEATSWITCH(switch,S)
, PACKAGESDUEATSWITCH(switch,*) concat <package.new>;

from CREATE-PACKAGE

I Method RemoveFromDemon

Goal: Remove A I action f rom D I demon
Action: 1) Globalize A

2) forall trigger-locationlD2idemon. body-of[*, D], spec)
do Apply MovE.WST mENTTOoEmoN(A, D2)

[Find all demons that trigger from D and move the action A there.]

End Method I

N-5 STEP 5.12: GIobalize

j=.go (switch II MEMOLOCATION.BIN(switch,
package. new: DESTINATION))

A2.d udate packagesdue 2L PACKAGESDUEATSWITCH(switchS)
J.t PACKAGESDUE,_AT_SWITCH(switch,*) concat <package.new>;

, U, , '- - : "., ',: ' . . , ... ? -..- . -- '-'-'-'-' ..C 'x , ' . 4 '.'.'.'..-.-, ' ." '



AD-A39 918 AUTOMATING THE TRANSFORMATIONAL DEVELOPMENT OF SOFTWARE 2/3

VOLUME 2 APPENDICES(U) UNIVERSITY OF SOUTHERN
CALIFORNIA MARINA DEL REY INFORMATION S.. S F FICKAS

UNCLRSSIFIED MAR 83 ISI/RR-83-i9 NSF-MCS79-i8792 F/G 9/2 N

IEEEIIEEIIIIEI
IIIIIIIIIIIIIIl..l~f
lElllllllllllE
EEIIEIIEIIIIEE
IIIIIIEIIIIIEE
IIIIIIIIIIIIIIfllflfl



L-• 02.0.

1.2511 4 11.6

MICRfOCOPY RESOLUTION TEST CHiART
NAhTIONAL OuRCAJ OF STUANARS - -0A

~ . Me~g C~j*~ ~ V.o ,,- .

IIIII.t. * q |

% % %

!L



7TT- T T

C.5 Map PACKAGES_DUEATSWITCH PAGE 279

I Method GlobaltzeAction

Goal: Globallze Al action
Filer: a) component-of[A. X Ietomic]

Action: 1) Unfold X

rYou can t pull something out of an atomic; litter.)

I End Method

STEP 5.13: Untoid a ... And atomic

, Method UnfoldAtomic

( Goal: Unfold A I atomic

' Action: 1) Show sEouENTIAL-ORDEnwo(O ordering. A)

2) Show SWUKRLuou.ATOmC( A)

3) Apply UNFO.D-ATOMiC(A. 0)

[You can unfold an atomic If you can show that there exists some valid
sequential ordering of the statements and that no demonic or Inferencing
processes will be effected.)

S.'; *q I End Method

%e We assume that the user verifies both conditions and the atomic is replaced with a

scopingblock.

We must now find all places where the loop must be moved, i.e., all demons which trigger

. *., from the execution of CREATE_PACKAGE. The single location of interest is

- .- RELEASEPACKAGE_INTONETWORK. After moving the maintenance code to that

demon's response, we have the following:

t? ep

r3

k-

~%



PAGE 280 PACKAGE ROUTER DEVELOPMENT

demon RELEASEPAC K AGEINTONETWORK (Package.new)

t.rigger package. new: LOCATED.AT S the sourceresponse

12M (switch II MEMOLOCATIONBIN (switch, package. new: DESTINATION))
9" do aL packagesdue oL PACKAGES_ DUEATSWITCH(switch, $)

1o PACKAGESDUEATSWITCH (switch,*) concat <package.new>;
IL LASTPACKAGEIDESTINATION(0) 0 package.new: DESTINATION

then invoke WAIT[I;
update Iastdestination ii LASTPACKAGEDESTINATION(S)

I& package.new: DESTINATION
at : LOCATED.AT Of package.new

I& (the source):SOURCOUTLET

Idw.

We now have taken care of CREATEPACKAGE, i.e., the initial increment of the sequences.

We now must add code to decrement the sequences in appropriate cases.

The first step would be to maintain the sequence in
0

RELEASEPACKAGEINTONETWORK: the uoate of the packages location to the

% source's outlet is a relevant change. However, since there is only one outlet pipe from the
source, we can show that the maintenance code is unnecessary. The actual steps will be

similar to the simplification of the maintenance code in CREATEPACKAGE, and will be

omitted here.

We will next look at the MOVE-PACKAGE demon since it updates the location of a package,

and hence potentially can cause it to become misrouted or located at a switch.

demon MOVE_PACKAGE(package)
trj gger 3 location.next II MOVEMENT-CONNECTION(package: LOCATED.AT,

location, next) .

u :LOCATED.AT 2L package
t MOVEMENTCONNECTION (package: LOCATED.AT, 0);

ee

After inserting the necessary code 0 1to remove packages, we have: 7



C.5 Map PACKAGESDUEATSWITCH PAGE 281

demon MOVEPACKAGE(package)
jtrigaer 3 location.next MOVEMENTCONNECTION(package:LOCATEDAT.

re s .location, next)

update :LOCATED_AT 2L package
I& MOVEMENTCONNECTION (package: LOCATED-AT, e);

*' I1g~ switch II
-( MEMOLOCATIONBIN(switch package: DESTINATION)

-( MOVEMENTCONNECTION (package: LOCATED.AT.') s switch)i ~AML everbefore)

And
(MEMOLOCATIONBIN (MOVEMENTCONNECTION(

package: LOCATEDAT,).
package: DESTINATION)

AD
-3 switch.2 II

(MOVEMENTCONNECTION (package: LOCATEDAT, )
switch.2

And
-MEMOLOCATIONBIN (switch.2: SWITCH.SETTING,

package: DESTINATION)))))
do update packagesdue oL PACKAGESDUE_ATSWITCH(switch.$)
I& PACKAGESDUEAT_SWITCH(switch,*) minus (package>

Our only worry is if a package moves into a switch; if it moves to any other type of location, it

cannot effect our sequence. When it moves into a switch, we must remove it from that switch

sequence and possibly others if the switch is set wrong (because of bunching). Using a

S.number of simplification steps (omitted here) we arrive at the following:

* .,



PAGE 282 PACKAGE ROUTER DEVELOPMENT

deon MOVEPACKAGE(package)
trigge 3 location.next I I MOVEMENTCONNECTION (package: LOCATEDAT,

location.next)
atomic

Update :LOCATED.AT gL package
I& MOVEMENTCONNECTION(package:LOCATEDAT, );

1 3 switch.current
(MOVEMENTCONNECTION (package: LOCATED-AT, ) •

switch.current

MEMOLOCATIONBIN(switch.current, package: DESTINATION))

.2 i.f MEMOLOCATIONBIN(switch.current: SWITCH.SETTING,
package: DESTINATION)

.3 undate packagesdue oi PAC K AGESDUEATSWITCH (switch.current, S)
I& PACK AGES_D UE.ATSWITCH( switch.current. *) minus package

15 .1= (switchl I MEMO-LOCATION-BIN(switch .package: DESTINATION))
do undat packagesdue oL PACK AGESDUEATSWITCH (switch,$)

t PACKAGESDUEATSWITCH(switch,*) minus package;

-.

To paraphrase, 0 if a package is moved into a switch and that switch Is on the route to the

package's destination then: 02 if the switch Is et right then 13 remove the package from the

sequence due at the switch, else lo if the switch is set wrong then 0 remove the package

from all switches along the package's destination route, including the current one.

STEP 5.14: Purityif ... ... in MOVEPACKAGE ""

MOVE_PACKAGE is outside of our portion of the development, hence the introduced code

must be moved in.

.4.



C.5 Map PACKAGESDUEATSWITCH PAGE 2"
:r1

I Method PurityDenion

Goal: Purify AlIcton in DIdemon

Action: 1) Remove L ftrom D

'5. [Remove unpure statement L from D.]

End Method

STEP5.15: Remove g1 f ... hen ... from MOVE_PACKAGE

I Method RemoveFromDemon I

Goal: Remove Alection from Oldemon

Action: 1) Globallze A

2) fora11 trigger-locationD2Idemon. body-of[*. D]. speoc]

do Apply MOVLSTATft.TO_.DEmO(A. 02)

.* [Find all demons that trigger from D and move the action A there.]

* I End Method

STEP5.16: Globaize i f ... n...

I Method GloballzeActlon

Goal: Globalize A I action

Filter: a) component-of[A. Xletomie]

Action: 1) Unfold X

S[You can t pull something out of an atomic; jitter.)

I End Method

STEP 5.17: Unfold tomic...wdaatomic

of 'r.

NI

5-5

4



.2

PAGE 284 PACKAGE ROUTER DEVELOPMENT .

I Method UnfoldAtomic

Goal: Untold Al tomicAction: 1) Show 8EoIarIwA.-omfRBm(O ordering. A) %

2) Show SuPIwmuou.ATomic(A)
3) Apply UWOLD.ATOUC(A. 0)

[You can untold an atomic N you can show that there exists come valid
seQuential ordering of the statements and that no demonic or Inferencing
procesSes will be afflected.]SEnd Method Y

We rely on the user to verify the two conditions. The actual unfolding uses the following -"

transformation:

update X:a to v:
<expression using v>

update X:a to v;
<expression using X:a>

J.

P"4.

-,

-,

.'I. 
.* 's,



C.5 Map PACKAGESDUEAT SWITCH PAGE 285U

4 *

demon MOVE PACKAGE(package)
.q t.~rigger 3 location.next I I MOVEMENT-CONNECTION (package: LOCATED AT.

location.next)
response

IIDAA& : LOCATEDAT of package
MOVEMENTCONNECTION (package:LOCATEDAT, ):

if
3 switch.current I package: LOCATED.AT a switch.current

and
MEMO_LOCATIONBI N (switch.current, package: DESTINATION)

j MEMO_LOCATIONBIN (switch.current: SWITCHErTING,

package: DESTINATION)

update packagesdue of PACKAGESDUEATSWITCH (switch.current.$)
12 PACK AGESDUEAT_SWITCH (switch.current ,) minus package

11J
ig.Moo (switchl I MEMOLOCATIONBIN(switch,package :DESTINATION))
g2 undgLe packages_due gL PACK AGES_ DUEAT_SWITCH (switch.$)

, PACK AGESDUEAT_SWITCH (switch.*) minus package;

. The maintenance code is now ready to be moved out of MOVE_PACKAGE. We must find all

~demons which trigger on the update of a package's location and move the unpure code to

, each. There are four demons to consider:

0 MISROUTED_PA CK AGE_REA CHEDBIN

' " 0 SETSWITCH

• "- PACK AGEENTERINGSENSOR

., I: PACK AGELEAVING_SENSOR

. We will work on MISROUTEDPACKAGEREACHEDBIN first.
4,

.,0

.:

* Th manteanc coe isnowreay t bemove ou ofMOV~ACAGE.We ustfin al

deoswihtigro h paeo akaeslcto n oeteupr oet

,. ah hr r ou eost osdr
o IRUTDAKAEEC]DI



PAGE 2" PACKAGE ROUTER DEVELOPMENT

dmon MISROUTEDPA C K A GEREA CHEDBIN ( package, binreached, bin.intended)
trigger package: LOCATED.AT * bin.reached

MA
package: DESTINATION " bin.intended 2

response
i MISROUTEDA RRIVAL ( bin.reached, bin.intended)

'ai

After distributing the maintenance of PACKAGESDUEATSWITCH I into the response of

MISROUTED_PACKAGEREACHEDBIN, we have the following: N

demon MISRO UTED_PA C K AGEREA CHED.BIN (package, bin.reached, bin-intended)
trigger package: LOCATED.AT * bin.reached

Aid
package: DESTINATION * bin.intended

response ..

3 switch.current I package: LOCATEDAT • switch.current
MU

MEMOLOCATIONBIN (switch. current, package: DESTINATION)

if.L MEMOLOCATIONBIN(switch.current: SWITC._SETING,
package: DESTINATION)

update packagesdue 2f PACKAGES_DUEATSWITCH (switch.current,$)
I& PACKAGES_ DUEATSWITCH(switch.current,") mitnus package

looo (switch I MEMOLOCATIONBIN (switch, package : DESTINATION))
dA update packagesdue 2L PACK AGESDUEATSWITCH(switch,S)

I& PACK AGESDUEATSWITCH (switch, *) m.Jus package;

invoke MISROUTED.A RRI VA L ( bin.reached, bin.intended)

'-4,

Since we know that package is located at a bin when this demon triggers, we can simplify

away all of the newly added code since it relies on package being located at a switch.

Next, we will look at SET_SWITCH as we have developed It so far.

62l0 dos not allow e smoe to be bound to sprae variables (me ction 3). •4

":"I".2.P;" .2" . ",: " " " .'" .""" " ''".'. "." '" .' "'"""" *.". ." ." "." Vi.","+ " " *'" -" '



C.5 Map PACKAGESDUE.ATSWITCH PAGE 287

denon SETSWITCH (switch)
trigger 3 package II

*" package fjst( PACKAGESDUEAT.SWITCH (* switch))

n
SWITCH_IS_EMPTY (switch)

• I,. update :SWITCHSETTING Oi switch I&
* (pipe II pipe - switch: SWITCHOUTLET

MEMOLOCATIONBIN (pipe package: DESTINATION))

Knowing that the package cannot be located at a switch when the maintenance code is

executed allows us to employ a similar simplification process as on

MISROUTED_PACKAGEREACHEDBIN in getting rid of all of the introduced maintenance

code (the actual steps are omitted here.).

The next location of interest is PACKAGELEAVINGSENSOR.

'
;V demon PACKAGELEAVINGSENSOR(package, sensor)

tr era • -package: LOCATED.AT = sensor
response nJll;

After unfolding the maintenance code, we have

-4'

.. 9*.. .. 
. . . . .

-h -A Ld k



- - a ,. -- - -o - - ,-. -. - - 'a . . a .

#43

PAGE 28 PACKAGE ROUTER DEVELOPMENT

.1-s,

demon PACKAGE_LEAVINGSENSOR (package, sensor)
tigr-package: LOCATEDAT u sensor -.°

3 switch.current I package: LOCATED.AT a switch.current

MEMOLOCATIONBI N (switch.current, package: DESTINATION)

if MEM OLOCATION-_BIN (switch.current: SWITCH.SETTING,
package: DESTINATION)

update packages_due of PACK AGES_DUEATSWITCH (switch.current. S)

t2 PACKAGESDUEATSWITCH(switch.current,*) minus package
else
lon (switchl I MEMO-LOCATION..BI N (switch, package : DESTINATION)) -

dg update packagesdue fL PACKAGESDUE_ATSWITCH(switch,$)
t1 PACKAGESDUE.ATSWITCH (switch, *) minus package;

We Will return to simplify P. after a few more steps.

We have one location remaining to look at, PACKAGEENTERINGSENSOR.

demon PACK AGEENTERINGSENSOR (package, sensor)
igger package: LOCATED-AT a sensor

response null;

AdioSAfter unfolding the maintenance code, we have ; q

-i

? q'

I

, , t .- • .e % " • -.. o .
v

e . • . * *p e " -. ".)- .. ,•t o'• t.. '•t "e "
"

"., .• • " #" ' .
.

* e* °" - e. "
s

" '.q • el " " a.. ;



C.5 Map PACKAGESDUEATSWITCH PAGE 289

demon PACK AGEENTERINGSENSOR (package, sensor)
* triggor package:LOCATED.-AT a sensor

3 switch.current I package: LOCATED.AT z switch.current

MEMO_ LOCATION_BIN(switch.current, package: DESTINATION)
then

if MEM 0 LOCATION_81 N (switch. current: SWITCH_SETTING.
package: DESTINATION)

* nupdate packagesdue If PACKAGESDUEATSWTCH(switch.current,$)
I& PACKAGES_DUEATSWITCH (switch.current.*) minus package

*. - n1 (switch II MEMOLOCATIONBIN (switch, package: DESTINATION))
. -A2O update packagesdue 2f PACKAGES_DUEATSWITCH(switch,$)

- PACKAGESDUEATSWITCH (switch,*) minus package;

We have now completed the distribution of maintenance code for

PACKAGES-DUE-AT4-SWITCH. However, there are several more optimizations we can

perform. As a preliminary step, we will break out the supertype sensor. In the initial

specification, the type sensor allowed several actions to be localized, and hence improved

.* understanding. However, as a development progresses, abstractions such as sensor tend to
get in the way and certain optimizations are made easier if they are removed. Such is the case

here. The removal of sensor from several demons will allow us to further optimize the

maintenance code introduced earlier. We will work on PACKAGELEAVINGSENSOR first.
P..

STEP 5.1(user): Casify PACK AGELEAVINGSENSOR

I Method CasifySuperTrlgger

Goal: Casily Dl demon
Fifter: a) trtgger-of[T, D)

b) component-ofISIsupertype. T]
~*. .~.Action: 2) Apply cAsiIFYEmoNKsUPfN7YPE( T, S)

.Spawn a #oparate demon for every subtyp X of S.]

1End Method

JI.



PAGE 290 PACKAGE ROUTER DEVELOPMENT

We gain two new demons, only the first useful in the current environments.:

demon PACKAGELEAVINGSWITCH (package, switch)
trigger -package:LOCATED-AT a switch
response

0Z if3 switch.current I package : LOCATEDAT switch.current

demon PACK AGELEAVINGBIN (package, bin)
trioger -package:LOCATEDAT a bin
resDonse

3 switch.current package: LOCATEDAT switch.current

Since the PACKAGELEAVINGSWITCH demon relies on a package not residing at a

switch, the introduced code can be simplified away. Although the second demon,

PACKAGELEAVINGBIN, is never triggered, we can expect that further elaboration of the

spec will change this. In that case, we can simplify away the code by showing that the

package's location after leaving a bin can never be a switch.

.4.'.

We next look at specializing sensor in PACKAGE_ENTERINGSENSOR.

*..- STEP 5j1(user): Casity PACK AGEENTERINGSENSOR

I Method CastfySuperTrigger

Goal: Casilfy DIdemon
Filter: a) trlgger-of[T. D)

b) componsnt-of[Slsupertype. T]

Action: 1) Apply CASIFY.DEMONSUPRTYPE(T, S)

(Spawn a separate demon for every subtype X of S.)

.. I End Method

Iln the spec, a package currently never leaves a bin. Naturally, further elaboration of the spec will likely address
Isues of infinite capacity bin* and what happens to packages after they reach a bin.

S "p



J .i Y

- SI

C.5 Map PACKAGESDUEATSWITCH PAGE 291

4,. We gain two new demons.

demon PAC K AGEENTERINGSWITCH (package, switch)
N. trigger package:LOCATEDAT - switch

• " ""response

if
3 switch.current I package: LOCATEDAT s switCel.current

"And
MEMOLOCATIONBIN(switch.current, package: DESTINATION)- then

. if MEMOLOG ATIONBIN (switch. current: SWITCHSETTING.
j package: DESTINATION)

then
. .update packagesdue of PACK AGESDUEATSWITCH (switch.current, S)

o PACK AGES_DUEATS WITCH (switch.current,* ) minus package
fin
1= (switch I I MEMOLOCATIONBI N (switch, package : DESTINATION))

fQ udate packagesdue oi PACKAGESDUEATSWITCH(switch.S)
..j PACKAGES_DUEATSWITCH (switch,*) minus package;

" demon PACKAGEENTERING_BIN(package, bin)
.- triger package:LOCATEDAT x bin
resDonse

S13 switch.current I package: LOCATED-AT • switch.current

We can get rid of the maintenance code from PACK AGEENTERING_BIN by showing that a

Spackage cannot be both at a bin and a switch..,

.V Finally, we can do some minor simplification to PACK AGEENTERING_SWITCH.

0..

J.
,." % 3 .1 ..L " . - -"." -2" - - ", ' - "-";.' .".



PAGE 292 PACKAGE-ROUTER DEVELOPMENT

.4•

demon PACK A GEENTERING_SWITCH (package, switch)
triger package: LOCATEDAT a switch
response

MEMOLOCATIONBIN (switch, package: DESTINATION)

if MEMOLOCATIONBIN (switch : SWITCHSETTING,
package: DESTINATION)

updaej packagesdue of PACKAGESDUE_AT_SWITCH(switchS)
12 PACKAGESDUEATSWITCH(switch, *) minus package

1oo= (switch.1 II MEMOLOCATIONBIN(switch.1.
package: DESTINATION))

do jpdat packagesdue 2f PAC KAGESDUEATSWITCH (switch. 1,$)
jo PACKAGESDUEATSWITCH (switch. 1., ) minus package;

This completes the maintenance of PACKAGESDUEATSWITCH. We have introduced

code in RELEASEPACKAGEINTONETWORK to incrementally add packages to

sequences and code in PACKAGEENTERINGSWITCH to do the corresponding removal.

4..-.

•-.

1%%

2. IeZ> .* '' . 4 .. 4,.4 4



C.5 Map PACKAGESDUE_ATSWITCH PAGE 293

.1i C.6. Map Demons

At this point in the development, there are a number of demons defined in our portion of the

specification:

1. RELEASE_PACKAGEINTONETWORK

2. PACKAGEENTERING_SWITCH
'I

3. PACKAGEENTERINGBIN

rolj 4. PACK AGELEAVING_SWITCH

! 5. PACKAGELEAVINGBIN

2. 6. INITMEMO

7. SET_SWITCH

8. MISROUTED_PACKAGEREACHED_BIN

There is nothing we can do with the first six since each triggers on an external event (e.g.,

packages entering the router, packages tripping sensors). However, the remaining two,

.... SET-SWITCH and MISROUTEDPACKAGEREACHEDBIN, need to be mapped. We will

look first at SETSWITCH.

STEPfL61(user): Map SET-SWITCH

demon SETSWITCH(switch)
Itriager 3 package II

package a f jrst(PACKAGESDUEATSWITCH(* switch))

- 2  SWITCH_IS_EMPTY (switch)
- ,;response

pu date :SWITCHSETTING Af switch 1a
(pipe II pipe a switch: SWITCH.OUTLET And

MEMO_LOCATION_BIN (pipe package: DESTINATION))

A. N

. -,%

O ~
4,X % - )' '-' ,''o.'-" '.-.-,% -- ,. . . ,'.,,., .'':",,.N ".--' -", -2...".,-.'",-• . .. ."-, ., ."



PAGE 294 PACKAGE ROUTER DEVELOPMENT

%1"

I Method CasifyDemon I "-.

Goal: Map Ol demon
Action: 1) Caslty D

2) forae1 case-of[X, D) do Map X -

[Try mapping by case analysis.]

I End Method I

STEP 6.2: Casify SET-SWITCH

SET_SWITCH may trigger on either of two events: ) a package becoming the first in some

sequence due at a switch; '2 a switch becoming empty. We will split the current

SETSWITCH demon into separate ones to trigger on each Individually. Note that the

selection of the trigger splitting method here requires a fair amount of insight. One has to

notice that there are two components of the SET.SWITCH trigger, one that is under direct

mechanical observation (a switch becoming empty) and one that is not (a package becoming

the first of an internal sequence). The former may be handled by using existing sensing

• ,' information while the latter will need to be maintained explicitly; two different development '-

strategies will be required.

-U%-

I Method CasifyConjunctiveTrigger ,

Goal: Casify D l demon
Filter: a) gist-type-of[Tlltrigger-of[],

conjunction] 

Action: 1) Show *I41VIUALS'rART(D)

2) Apply sPLrr ,cowtucnw.thmIER(D. T)

fIt may be easier to break a demon up Into special cases and then trying to
map. Make sure that no new trIggeringa are created.]

I End Method I

Two new demons are spawned:

"1"-'

..

* U • . -



C.6 Map Demons PAGE 205

demon SETSWITCHWHENBU BBLEPACKAGE (switch)
~~ 1.rigger 3 package 11I

package - first(PACKAGESDUEAT_SWITCH(* switch))
". response

.£auire SWITCHJS_EMPTY (switch) al ThisEvent)
uDdAt :SWITCH.SETTING OL switch 12

(pipe pipe a switch: SWITCH.OUTLET ADA
.:. (pipe MEMO_LOCATIONBIN (pipe package: DESTINATION))

demon SETSWITCHONEXIT(switch)

trigger SWITCH_IS_EMPTY(switch)

reauire (3 package II
j package a fist(PACKAGESDUEATSWITCH(* switch))

A ThisEvent)
update :SWITCH_SETTING O1 switch I&

(pipe I I pipe - switch: SWITCHOUTLET AD.U
MEMOLOCATIONBIN (pipe package : DESTINATION))

STEP 6.3: Map SETSWITCHWHENBU BBLE_PACKAGE
~. .

I Method UnfoldDemon

Goal: MapD I emon
4 , Action: 1) foral trtggar-location[D. L, spec]

do Unfold D at L

rTo Map a demon, unfold It where appropriate.]

., ~~ I End Method

We must locate each place that the trigger may change, i.e., that

PACKAGESDUEAT_SWITCH is changed. There are two such locations:

1. the sequence is incremented when a package enters the network
(RELEASEPACKAGE_INTONETWORK)

I2. the sequence Is decremented when a package enters a switch
(PACK AGEENTERINGSWITCH).

We will look at the former first:



4.p- ... j-: .. -.. . . . . . .. . - P

PAGE 296 PACKAGE ROUTER DEVELOPMENT

.4-4.

demon RELEASEPACK AGE_INTONETWOR K (package.new)
trigegr package. new: LOCATED.AT * the source:
resmonse

'4 begina
1M (switch I MEMOLOCATIONBIN (switch ,package.new: DESTINATION))

A2 uodate packages_due of PACKAGESDUEATSWITCH(switch.S) -
to PACKAGESDUEATSWITCH (switch,*) concat (package.new>;

it LAST_PACKAGEDESTINATION(O) 0 package.new: DESTINATION
Ihe invoke WAIT[];

update lastdestination ja LASTPACKAGEDESTINATION(S)
I& package. new: DESTINATION:

update :LOCATEDAT Of package.new ,..
I& (Ih source):SOURCEOUTLET

enD;

STEP 6.4: Untold SETSWITCHWHENBU BBLE_PACK AGE at

I update packagesd ue of PACKAGESDUEATSWITCH(switch, S)
o PACKAGESDUE AT SWITCH(switch, ) conca (package.new>"

I Method ScatterComputationOfDemon

Goal: Unfold DIdemon at L
Filter: a) trigger-location[D. L. S]

Action: 1) Apply UwOLDoDEtONoOO( L)

2) Purify L

[To unfold a demon D at a trigger point. stick in code to compute Ift and make
aure L is within implementable portion of spec.]

I End Method I

After adding the maintenance code 2 we have

29"

:1

'5,



C.6 Map Demons PAGE 297

demon RELEASE-PACK AGEINTONETWO R K (package. new)
ggtriger package.new: LOCATEDAT * the source

-'- response
beo-n

1= (switch I MEMOLOCATIONBIN(switch,package.new: DESTINATION))

beoin
update packagesdue of_ PACKAGESDUEATSWITCH(switch.$)

- j1 PACK AGESDUEAT_SWITCH (switch,*) concat <package.new>;
if 3 package.? II

-((package. 1 f i s t( PACKAGESDUEAT_SWITCH (switch, ))
ggf = lst update 2f PACKAGESDUEATSWITCH(switch,S))

package. 1 - f i rst( PAC KAGESDUEATLSWITCH (switch,*))

-eau ir'e SWITCHIS_EMPTY (switch)

L=pdte :SWITCHSETTING 21 switch I&
(pipe I I pipe a Switch: SWITCM.OUTLET A"

MEMOLOCATION.BIN (pipe package. 7: DESTINATION))

if LASTPACKAGEDESTINATION(s) o package.new: DESTINATIONiean invoke WAIT[];

upAte last_destination .j1 LAST.PACKAGEDESTINATION(5)
* to package.new: DESTINATION

S"ugdate :LOCATEDAT 2L package.new
t& (the source):SOURCE.OUTLET

. In general, the unfolding of a demon with body B and trigger T at event E takes the following

.' form:

<event E> U> <event E>
i, -T AsLg E aU T (now) the 8

-" In our case, E is the update of PACKAGESDUEATSWITCH and T is the trigger of

SETSW ITCHWHENBU BBLE_PAC K AGE.

Some fairly sophisticated reasoning is needed to simplify further:

1. We know that this is the sole location where packages are added to sequences,
and hence package. new was not part of the sequence in the previous state.

2. Given the semantics of sequence appending, we can reason that the only way
that the first element of a sequence can change on an append is if the sequence

"was initially empty.



PAGE 2" PACKAGE ROUTER DEVELOPMENT

We require the user to supply much of the above reasoning; the system carries out the

mundane portions (see example B, section E.14):

,,'.".demon RELEASEP AC KAGE_INTONETWOR K (package.now )

tigg.gter package.new'LOCATEOAT a U1 source
res£oons

1Mn (switch II MEMO-LOCATIONBIN(switch, package.new: DESTINATION))

.. begin
update packagesdue oi PACKAGESDUEATSWITCH (switch,$)
12 PACKAGESDUEATSWITCH (switch,*) concat <package.new>;

.i

package.new fi rst(PACKAGESDUEATSWITCH(switch,*))
AI1U

SWITCHIS_EMPTY (switch)

update :SWITCH SETTING j switch to
(pipe J pipe - switch: SWITCHOUTLET And

MEM OLOC ATION_BIN (pipe package. new: DESTINATION))

JL LASTPACKAGEDESTINATION (*) * package.new: DESTINATION
invoke WAIT[];

URA= lastdestination jj LAST_PACKAGEDESTINATION(S)
I& package.new: DESTINATION

.-* ukd*29 :LOCATED.AT of package.new
I& (yJ source):SOURCE.OUTLET

We will look next at PACK AGEENTERINGSWITCH.

SN



C.6 Map Demons PAGE 299

IP demon PAC K AGE_.ENTERINGSW ITCH (package, switch)
t.rigger package: LOCATED.AT a switch

if
~ MEM O.LOCATIONBIN (switch, package: DESTINATION)

jf MEM OLOCATION_.BI N (switch: SWITCHSETTING.
package : DESTINATION)

- iwUn~dAJ packagesdue g.t PACK AGESDUEATSWITCH (switch,$)
S. ~ PACKAGESDUEAT.SWITCH (switch.*) minus package

.IM~ (switch. 1 IIMEMO-.LOCATIONBIN (switch. 7.
package: DESTINATION))

02 updatej packages.due 91 PACK AGESD U E.ATSWITCH (switch.1 7.S)

ThPACK AGESDUEAT..SWITCH (switch. 17,) mninus package:

Before preceding, we will factor the two updates of PACKAGES..DUE.AT_.S WITCH ac01, 2

* into an procedure '3 for the sake of conciseness.

STE MI~ used: Factor

updte packagesde 91' PACK AGESDUEATSWITCH ( #switch 64, s)
12 PACK AGESDUE.AT..SWITCH ( #switch,*) minusi #package

in PACK AGE-ENTERING.S WITCH

I Method FactoirDBMaintenanceIntoActionIV.

~~ Goal. Factor UlIdb-mainlenence in L
Action: 1) Apply CNEATI.PROCEDURE.FOOMTUMP.ATE( U A)

2) forall pattern-match[U. W. LU
* 'S. do Apply REPI.ACE..OSMAIWMNACE..WrT~jACTI14( W A)

S (create a now procedu're A and than find all matches IN In L and replace each
* with a call to the new procedure A.)

IEnd Method

64In a factor template, otype.name signifies a formal parameter. The # will be removed in the procedure
5 definitio.

%

a6



- I * i . - 4 *~**0

PAGE 300 PACKAGE ROUTER DEVELOPMENT

_%

demon PACK AGEENTERINGSWITCH (package, switch)
tr igger package: LOCATEDAT a switch
response •

i f
MEMOLOCATIONBIN(switch, package: DESTINATION)

i/" MEMOLOCATIONBIN (switch: SWITCH.SErTING,
package: DESTINATION)

then
invoke TRIMPACKAGESDUE.ATSWITCH(package, switch)

1M (switch.71 I MEMOLOCATIONBIN (switch. ,.
package: DESTINATION))

Agjd invoke TRIMPACKAGESDUE_AT_SWITCH (package, switch.1)

- 3 proceaure TRIMPACKAGESDUEATSWITCH (package, switch)
.update packages.due gL PACKAGESDUEATSWITCH (switch , S)

to PACKAGESDUEATSWITCH(switch,*) minus package;

Now unfolding the maintenance code for SET.SWITCHWHEN.BUBBLE,_PACKAGE 04

into the newly created procedure, we have

-7,

4--
4,r.,

',r

% ,

. .- '

%"

0*%

.. i:

..I.

4,,.4 -..- ,.,~+ ' ' ',.-..-.,,, ' ,' , ,,'_,,.,'., . -7L -. ' .- -' .- . - . .• .. ' '- "• - : -.



C.6 Map Demons PAGE 301

. _ ~demon PACKAGEENTERINGSWITCH(package, switch)
trigger package:LOCATEDAT a switch

r lr9soonse
4if

MEMOLOCATlONlN (switch, package: DESTINATION)

" -then
if MEMOLOCATIONBIN (switch: SWITCH.SETTING,

.1 package: DESTINATION)
then invoke TRIM_PACKAGESDUEATSWITCH(package.

switch. current)

io (switchl I MEMOLOCATIONBIN (switch. package: DESTINATION))
do invoke TRIM_PACKAGESDUEATSWITCH(package. switch):

procedure TRIMPACKAGESDUEATSWITCH(package. switch)

* MfuOMpg= packages.due gi PACK AGESDUEAT_SWITCH (switch,$)
1i 2 PACKAGESDUEATSWITCH(switch,*) minus package;

'3 package.1 II
' "-((package.1 a f irst(PACKAGESDUE AT SWITCH (switch,*))

asf last update oLf PACKAGESDUE ATSWITCH(switch, ))

package. 1 - i. _s( PACKAGESDUEAT_SWITCH (switch,*))

reoui re SWITCHISEMPTY(switch)
uJDdate :SWITCH SETTING Of switch I&

4. "" (pipe II pipe a switch: SWITCHOUTLET AnU
MEMOLOCATIONBIN (pipe, package. 1: DESTINATION))

Note that the factoring was a mixed blessing. While it did allow us to unfold in a single place, it
prevents us from carrying out some further optimization: if the procedure is being called when

the switch is set right, we can safely ignore the switch setting code (we can show that the
-. .switch is non.empty). To actually get rid of this unneeded case, we will eventually have to

unfold the procedure back into the demon and simplify.

* "" We can simplify the procedure further if we rely on the user to supply the following necessary

reasoning step: the only way for a new package to become the first of the sequence is by the

* -.. removal of the head of the sequence.

AA

4., 0
* ~ ', T ~~ ~ > .>:~ :~~ * ~ * 4A



PAGE 302 PACKAGE ROUTER DEVELOPMENT

prcdc TR I M-AC K AGES.D U EAT.SW WITCH (package, switch)

i* it Lrs(PACKAGESDUEATSWITCH(switch. )*package

update packagesdue gL PACKAGES..DUEAT-SWITCH ( switch , S)
12 PACK AGESDUEAT.S WITCH (switch,* ) minus package;

begin
£tgiretf SWITCHJSEMPTY (switch)
Upd.ate : SWITCI4SETTING gL switch I&

(pipe 11I pipe a switch: SWITCH_.OUTLET And~
MEMO_.LOCATION_.BIN (pipe.

fLjrst ( PACK AGES..DUE_.AT.S WITCH (switch,.e
) DESTINATION))

41upate packages..gue gL PACKAGESDUE..AT-SWITCH (switch ,$)
J PAC KAGES..DUE..AT..S WITCH (switch ,*) inusi~ package.

This takes care of the SETSWITCHWHENBU BBLEPACK AGE demon which deals with

the package sequence changing. We now must take care of setting a switch when It becomes
empty, an event captured by the SETSWITCH..ON-.EX IT demon.

demona SET_.SWITCH_0N..EX IT (switch)
trijgger SW ITCHJ S-.EM PTY (switch)

re.DhJre (3 package I
package a Lirsi( PACKAGES_DUk..AT_.S WITCH (* switch))

gdt SwITCH-SETTING gj switch I&
(pip pie aswitch: SWITCMOUTLET ADA

MEMO_.LOCATION...BIN (pipe package: DESTINATION))

STEP 6.6: Map SETSWITCHON..EXIT

Instead of unfolding this demon as we did with SETSWITCH..WHEN..BUBBLEPACK AGE,



s - .

C.6 Map Demons PAGE 303

we will attempt to consolidate it with an already existing demon,

PACKAGELEAVING_SWITCH.

demon PACK AGE-LEAVINGSWITCH (package, switch)
"1  trigger -package: LOCATEDAT z switch

response null.

demon SETSWITCHONEXIT(switch)
" 2 l0triggor SWITCH ISEMPTY(switch)

- . response

reguira (3 package II
package - first(PACKAGESDUEATSWITCH(" switch))

,-" a ThisEvent)
Update :SWITCHSETTING 2L switch I&

(pipe I I pipe a switch: SWITCH OUTLET and
MEMO_LOCATIONBIN (pipe package: DESTINATION))

S3 relation SWITCH_IS_EMPTY(SWITCH)
definition n=t exists package II package:located at z switch;

I Method MapByConsolidmtion

Goal: Map Didomon
Filter: a) pattern-matchdemon. D2. spec]

b) D 0 D2
Action: 1) Consolidate .and D2

[To map 0. find some other demon D2 and consolidate.]

I End Method

Naturally, the selection of the right demon to consolidate with is crucial.

STEP 6.7: Consolidate SETSWITCHONEX IT and PACK AGE.LEAVINGSWITCH

%U

%. ..'.,.- % .*% .



,%

PAGE 304 PACKAGE ROUTER DEVELOPMENT

I Method NaorgeDomons;"

Goal: Consolidate D11 dcemon and D2 I dmon
Action: 1) Equivalence trigger-st'[D1 ] and

trigger-of[D2]

2) Equivalence var-declaration-of[D1] and

ar-dec 1 sat on- slEJD2] 
-'

3) Show MERGE.ABLE EmoNs(D|. D2,. ]larderig) i-

4) Apply DEM3M4ROE(D1. D2. 1)

[You con consolidate two demons If you can show that they have the some ml

local variables, the some triggering pattern and that they meet certain
merging conditions.]

SEnd Method -

pp..-

• k I t r iggoe r" -package: LOCATEDAT switch
0 2 trioaer SWITCHISEMPTY (switch)

As in step 2.3, we will anchor the first trigger and try to reformulate the second.

1%'

I Method Anchor..

Goal: Equivalence X and Y

Action: 1) Reformulate Y as Xan

• " {Try changing the second construct into something that matches the first.]

;:I tEnd Method

STEP 6.2: Reformulate SWITCH_IS_EM PTY(switch) asn

%" ~-package : LOCATES_AT •Switch

*11

lo.,aials hesm ri e-g atr adta te et eti

% "

mg 0 dtn

I EndMetho

-'4

-.4-
'4*

MetodAncor

,- , ". , ,', '..'... "Goal:, Equivalence '.'' .,""'X,,-,-."."""", - "._"';.,-.,;' .end""-" .V'"," ,.'"n



C.6 Map Demons PAGE 305

I Method ReformulateDertvodRelation I

Goal: Reformulate RR I ralation-reference as X
Filter: a) gtst-type-ofjname-of[R. RR].

v drived- relotion]

Action: 1) Unfold R at RR

*':. [Try reformulating the body as X.)

* I End Method

STEP 6.10: Unfold 13 SWITCHJS_EMPTY at reference 2

I Method ScatterComputationOfDerivedRelatlon

Goal: Unfold DRIderivil-.rletion at L

- Filler: a) Wofrence-locatonDR. L. S)
*, Action: 1) Apply UNFOLD.COMPUITATION.COOE(DR L)

2) Purify L
P[To untold a derived relation DR at a reference point. sticA In code to compute

" . It and make sure L is within implementable portion of spec.]

I End Method

The unfolding of SWITCH_IS_EMPTY still does not achieve the reformulation goal in step

6.9, hence it is reposted:

STEP 6.11 (reposted): Reformulate

triggaer -3 package.O I1 package.O:LOCATEDAT switch
as tri g ge•r -package: LOCATED.AT a switch

Our goal here is to produce a more general trigger for SWITCH-IS.-EMPTY than its current

one. That is, we want to trigger whenever a package is no longer located at a switch no matter

If a new package has moved Into the switch or not. The current trigger requires that a

* package leave a switch And that no other switch moves in immediately behind it.

.. %

L4

!.

A

* ~

- ... * . ***U. i * * * .. *

"% C ~ U. ~ ~ ~*U~
\- ,' ' .:, : .;o:,.: .,,- ,: ;,- --. ; -.,,..;,-, : ".,", ' '_., ,, ,, ,, ., ,. ,- ,,.' .- .. ,,........-. .. .j .. ... ,'... t. .. . .' .. .. S



PAGE 306 PACKAGE ROUTER DEVELOPMENT

I Method ReformulateExstonttalTrlgger

Goal: Reformulate Titragger -3 olIR(O) as R(o')
Action: 1) Show ThIOOEKm.mdSAKZAU.(T)

2) Apply OENERALME .'R 9MhR( T)

[You can reformulate an existential trigger Into a universally quantified one
under certain conditions.]

I End Method

We assume the user verifies that the trigger is generalizable. After application of U

GENERALIZE.TRIGGER, we have

demon PACK AGELEAVING_SWITCH (package, switch)
Strigger -package: LOCATEDAT a switch
response null;

demon SETSWITCHON_EX IT (package.gen, switch)

0 trigger -package.gen:LOCATEDAT a switch
response

IL -3 package I package: LOCATED.AT a switch
jb= begin

reouire (3 package fl
package - firs t(PACK AGESDUEATSWITCH (0 switch))

jAl ThisEvent)
update :SWITCHSETTING OL switch Uo

(pipe I I pipe a switch : SWITCH.OUTLET And
MEMOLOCATIONBIN (pipe package: DESTINATION))

STEP 6.12: Equivalence (package, switch) and (package.gen, switch)

The same renaming strategy (with the exception of using Anchor2 in place of Anchori) used

in step 2.10 will be used; we omit the steps here.

After consolidation, we have

%U

-I



I 1

C.6 Map Demons PAGE 307

- demon PAC KAGELEAVING_SWITCH (package.gen, switch)
trigger -package.gen : LOCATED-AT - switch
resDonse

if -3 packagel I package: LOCATEDAT a switch
then begin

reauire (3 package II
package - first(PACKAGESDUEAT_SWITCH(* switch))

g:al ThisEvent)
Lupdate :SWITCH_SETTING 21 switch I&

(pipe II pipe a switch:SWITCHOUTLET aL
MEMO_LOCATIONBIN (pipe package: DESTINATION))

:Big

This finishes our task of mapping away SET_SWITCH.

STEP .13(user): Map MISROUTEDPACKAGEREACHEDBIN

demon MISROUTEDPACKAGEREACHEDBIN (package, bin.reached, bin.intended)
triage package: LOCATEDAT * bin.reached

* package : DESTINATION * bin.intended
response invoke MISROUTEDARRIVAL(bin.reached, bin.intended)

I Method CasifyDemon

Goal: Map D I demon

Action: 1) Casify D

2) forall case-of[X. D] do Map X

[Try mapping by case analysis.]

I End Method

; ~ STEP 6.14: Casify MISROUTED_PACKAGEREACHEDBIN

We will use the same trigger splitting strategy as used on SETSWITCH in the previous

9,]

.. ",': .- '- ,*' ', '-'. * . , , . ir9 .".".", ,- "§K. ",.;, . ". .'* • " - " ." .'. . '.'.."- '.. ..- % " ' .. " ,



. -t- o . . . . . . . . . , - .. •. .•. - . .

PAGE 308 PACKAGE ROUTER DEVELOPMENT

section. MISROUTEDPACKAGEREACHEDBIN may trigger on either of two events: a

package becoming located at a bin; a package's destination being set. The selection of the

trigger splitting method here requires the same insight as in the SETSWITCH case: one has

to notice that one of the two components of the trigger is under direct mechanical observation

(a switch entering a bin) and one is not (a package's destination changing).

I Method CasifyConjuncttveTrtgger I

Goal: Casily D I demon
Filter: a) gist-type-of[Ttrigger-of[D. 5

conjunction]
Action: 1) Show NDIVVUAL.SWART(D)

2) Apply sPrrcoNJUcTEr mG.(D, T)

/It may be easier to break a demon up Into special cases and then trying to
map. Make sure that no new triggerings are created.]

I End Method

Two new demons are spawned:

Sdemon MISROUTEDP A CK A GE_ LOCATED_AT_BIN ( package,bin. reached, bin-intended)
.gtrigger package: LOCATEDAT a bin.reached

responseL

rejuije (package: DESTINATION a bin.intended
al ThisEvent); ; .;

invoke MISROUTED_A RRIVA L ( bin.reached, bin.intended)

demon MISROUTEDPA CK AGEDESTINATION_ SET (packagebin. reached, bin-intended)
trigger package: DESTINATION a bin.intended

srsonse .
begin

regui re (package: LOCATED.AT * bin.reached
Al ThisEvent);

ijgnvoke MISROUTEDARRIVAL(bin.reached, bin.intended) -

STEP 6.15: Map MISROUTED_PACK AGELOCATEDATBIN

*•" ,



C.6 Map Demons PAGE 300

wJ

q I Method NapByConsolldation

I
Goal: Map DI dmon
Filter: a) pattern-match[dmon. D2, spec)

1, ~ b) D 0 D2

Action: 1) Consolidate D and D2

[To map D, find some other demon D2 and consolidate.]

End Method

i
STEP 6.16: Consolidate MISROUTEDPACKAGELOCATEDATBIN and

PACKAGEENTERING-BIN

demon PACK AGEENTERING_BIN (package, bin)
tr igge •r package: LOCATED_AT a bin

I . response nLut;

I Method MergeDemons

Goal: Consolidate D1Idemon and D21demon

Action: 1) Equivalence trigger-f(D1Ji and
trigger-of[D2]

2) Equivalence var-declaration-of[D1] and
* •. var-decl aration-of [D2]

3) Show MEPGfALEDEMON(D1, D2. I Iordering)

4) Apply DoN.weAoE(DI. D2. I)

[You can consolidate two demons It you can show that they have the same
local variables, the same triggering pattern and that they meet certain
merging conditions.)

I End Method

STEP 6.17: Equivalence (package, bin.reached, bin.intended) and (package, bin)

F4i



PAGE 310 PACKAGE ROUTER DEVELOPMENT

I Method EquivAlenceCompoundStructures2 I

Goal: Equivalence SI I compound-etructure and
S2 I compwund-sIruture -

Filter: 9) gist-type-ot[., S11 - gist-type-ot['. S2]

b) -f txed-structure[SI]

c) component-correspondence[SI. S2. CIcorrespondence]

Action: 1) foraU correspondence-plar[C. C1. C21

jo Equivalence CI and C2

(Divide.and.conquer: make the components of two non-fixed structures
equivalent.)

I End Method

-,

Choosing the correct correspondence here is a little tricky. Being of the same type, the two

package variables are paired-off. However, bin can be paired with either bin.reached or

bin.intended. We note that both bin and bin.reached occur in their respective triggers and use

this clue to make the right choice.

STEP 6.18: Equivalence bin.reached and bin

As in step 2.10, we will eventually anchor the first and then rename.

Our equivalence goal from step 6.17 is still not achieved and hence is reposted.
-5,.

STEP 6.19(reposted): Equivalence (package, bin.reached, bin.intended) and (package,

bin. reached)

Reapplying EquivalenceCompoundStructures2 now will gain us nothing. We try a new

method.

'17

,A-

'd '

.. *

• °*"J •* 4 " " d' * ' 
°

4- a.



C.6 Map Demons PAGE 311

I Method AddNewVlar

Goal: Equivalence Lii variable-list and L2 I variable-list
Filter: a) langth(LIJ ) longth[L2]

b) mambo rIV Iveriable-dclration, LI]
c) -.mmberjV, L2

Action: 1) Show w4TOOUcEA3.E-VAN.mA(V. L2)

2) Apply wmI=O-NEw-vAP(V. L2)

[Try adding a new var to make the two Nats equivalent.]

End Method

After consolidation, we have

-. demon PACK AGEENTERINGBIN (package, bin.reached, bin.intended)
i '.$ trigoer package:LOCATEDAT a bin.reached;

resoonse
beoin

reou ire (package: DESTINATION a bin.intended
A& ThisEvent) ;

i nvoke MISROUTEDARRIVA L (bin. reached, bin.intended)

We next must take care of MISROUTED-PACKAGEDESTINATIONSET.

STEP 6.20: Map MISROUTED_PACKA(E_DESTINATIONSET

*%" I Method UnfoldDemon

Goal: Map Oldemon
Action: 1) foral trigger-locationlD, L, spoe)

*, do Untold D at L

[To Map a demon, untold It where appropriate.]

I End Method

9j

'U
"p' , - , - o - - . - .,. " .. ' .. " , % " . . , ,- - , . % . , ., -% % , . % % , , ' . . " . . - . . '.". .



PAGE 312 PACKAGE ROUTER DEVELOPMENT -

We must locate each place that a package's destination is changed. The single such location

is at CREATE_PACKAGE.

'-S

* idemon CREATEPACKAGE()
trigger RANDOM()
response

Ltomi.c-
create package.new II

package. new: DESTINATION a A bin An
package.new: LOCATED.AT * the source;

STEP 6.21: Unfold MISROUTED_PACKAGEDESTINATIONSET at

create package.new I I
package.new: DESTINATION a A bin ad!
package.new:LOCATED.AT a Thi source;

I Method ScatterComputationOfDemon

Goal: Untold Dldemon at L
Filter: a) trigger-locaton(D. L. S]
ActiOn: 1) Apply uNFOLD.oEMoN.cooE( D L)

2) Purify L

(To unfold a demon D at a trigger point. stick in code to compute ift and make
sure L is within implementable portion of Spec.]

I End Method

After adding the maintenance code, we have

5.i

S... ,L

• " % " . . . . .. . . . . - - " . . . . . ' " " . . . 'I • " . . • jSI



- C.6 Map Demons PAGE 313

idemon CREATEPACKAGE()
I.. trigger RANDOM()" response

atomic
create package.new II

package.new: DESTINATION = A bin aL
package.new: LOCATEDAT the source;

,. atomic
IL 3 bin.intended, bin.reached II

~( (package.new: DESTINATION - bin.intended)
AIQI 1_i_. jjU update o package.new:DESTINATION)

package.new: DESTINATION - bin.intended

'9 begin
re-uirfe package.new: LOCATEDAT n bin.reached;

invoke MISROUTEDARRIVAL(bin.reached. bin.intended)

By showing that the require statement is always false, we can remove the

MISROUTEDARRIVAL procedure and finally the entire newly introduced conditional,

leaving CREATEPACKAGE in its original state.

.-

I .



PAGE 314 PACKAGE ROUTER DEVELOPMENT

-~ C.7. Termination State

This ends our development of the package router. The state of the router at this point is given.

below. The Gist/TI group is currently working on an intermediate-level language called WILL

which is able to implement directly this form of program.

-Portions which have not changed from the initial spec given in Appendix A are:

[3 type hierarchy, including attributes (sensor could be removed since it is no longer
referenced)

D constraints

MORETHANONESOURCE
"o-.

• PIPEEMERGESFROMUNIOUESWITCHOR_BIN

• UNIQUEPIPELEADSTOSWTCH_ORBIN

• SOURCEONROUTETOALLBINS

" relations

"MISROUTED

*"SWITCH_ISEMPTY

" demons

" CREATE_PACKAGE

" MOVE_PACKAGE

" procedure

* MISROUTEDARRIVAL

Portions of the specification which are new or have changed are given below.

C,'Y,

. . !



C.7 Termination State PAGE 315

Sdemon RELEA SEPAC KAGEINTONETWOR K (package. new)
J trigger package.new:LOCATEDAT • the source

.... responrse
-begin

" j . (switch II MEMO-LOCATION- BIN(switch,package.new: DESTINATION))

bein
Supdate packagesdue 2L PACKAGESDUEATSWITCH(switch,$)

V_ ,.. 12.: to PACKAGES_DUEAT_SWITCH(switch.*) concat <package.new>;

package.new - Li r t( PACK AGES..DUIE.AT.S WITCH (switch,*))
A"~

SWITCH_IS_EMPTY (switch)

.upate :SWITCHSETTING 2f switch t2
(pipe II pipe a switch:SWITCHOOTLET and

MEMOLOCATION_BI N (pipe package. new: DESTINATION))

i f LASTPACKAGEDESTINATION (") 0 package. new: DESTINATION
-.then invoke WAIT[);

UDALU last_destination in LASTPACKAGEDESTINATION(S)
I&l package.new: DESTINATION

update :LOCATEDAT Of package.new
t2 (ti source):SOURCE-OUTLET

demon PACKAGEENTERINGSWITCH (package, switch)
". .rtriggen package:LOCATEDAT n switch

reslponse

MEMOLOCATIONBIN (switch, package: DESTINATION)

jL MEMO_LOCATIONBIN (switch : SWITCHSETTING,
package : DESTINATION)

Sinvoke TRIM_PACKAGES_DUEATSWITCH (package,
.,. (tA"w cgswitch.current)

m° (switchl I MEMOLOCATION-BIN (switch. package: DESTINATION))
i noke TRIMPACKAGESDUEATSWITCH(package, switch):

A .-

'4"'



PAGE 316 PACKAGE ROUTER DEVELOPMENT

J

n tdur TRIM_PAC KAGESDUE-ATS WITCH (package, switch)

.itf i rst(PACKAGESDUEATSWITCH(switch, ) • package

begin
update packagesdue oL PACKAGESDUEATSWITCH(switch. S)

I& PACKAGESDUEATSWITCH (switch,") minus package;P begin
reoui re SWITCHIS_EMPTY (switch)
update :SWITCHSETTING f Switch o'

(pipe I pipe & switch: SWITCHOUTLET and
MEMOLOCATIONBIN (pipe,

fi rs t (PACK AGES.DUEAT_SWITCH (switch, *
) : DESTINATION))

update packages_due oi PACKAGESDUEATSWITCH(switch,$)
to PACKAGESDUEATSWITCH (switch,*) minus package;

end.

demon PACKAGELEAVINGSWITCH(package.gen, switch)
trigtger -package.gen : LOCATED.AT a switch
r'esponse 

C

.1 -3 package I Ipackage: LOCATEDAT - switch

reguire (3 package I
package a frst(PACKAGES.DUEAT.SWITCH (* switch)) *.

al ThisEvent)."

Update :SWITCH.SETTING f switch I&
(pipe II pipe - switch:SWITCH OUTLET Ad

49

*MEM O_.LOCATI ON_.BI N(pipe package : DESTINATION) ) ,

II

*f?.



C.7 Termination State PAGE 317

demon PACK AGEENTERINGBI N (package, bin.reached, bin.intended)
.a .tiri gge r package: LOCATEDAT .- bin.reached;:, " ::response

L' l' e .u r(package: DESTINATION z bin.intended
al ThisEvent);

invoke MISROUTEDARRIVAL(bin.reached, bin.intended)
endv

i.

demon PACKAGELEAVINGBIN (package, bin)
rtriaer -package: LOCATEDAT - bin
response null;

relation LAST PACKAGE DESTINATION (last destination bin);

relation PACKAGESDUEATSWITCH(packagesdueIsea uence of package,
U lswitch);

rE..

relation MEMO-LOCATIONBIN(location, bin);

I.

'p

., tkt relato MEMO_.LOCATION_,BIN(location, bin) ;

demon INITIALIZEMEMOLOCATIONBIN ()
: f; ~r igge•r : ( start initialization_state )

oo B I BIN do inSert MEMOLOCATIONBIN(B, B);
-;0 L I LOCATION 11

MEMOLOCATIONBIN(L, B) Ad
, L - L2: CONNECTION.TOSWITCHOR.BIN
So insert MEMOLOCATIONBIN(L2, B);

Z",

-

•
4 .J'*'4

.-,4 ' ....;.,,, '- .,..,.,,,' , ...,.,.-.-. -' : ,, , , , ,,. .,..,;, .... ,... .,.,......... ' .,.,



D Method Selection Overlay PAGE 319

Appendix D
Method Selection Overlay

-;1 This appendix presents the selection information used to produce the router development in

appendix C. When overlayed with the development, the complete problem solving trace is

explicated. The sectioning follows that of C. Each step here has the following form:

*.; :.. Step i.j: abbreviated development goal

Candidate51
[<augmented method>]0

, General Rules: [<general selection rule>]0

* -! ), Method Specific Rules: [<method specific rule>]0

)o- Resource Rules: [<resource rule>] 0

n ~> Ordering Rules: [<ordering rule>]0

Method Ordering: [<ordered method list>]0

• .> Action Ordering Rules: [<action ordering rule>]0

Comment: Optional comments on interesting problem
solving features of the step.

An <augmented method> under the Candidate Set has the following form:

[Abrev:] MethodName [((opinion> SelectionRule)]0

An <opinion> is either a signed weight in the case where SelectionRule is a non-ordering rule

S.or an ordering operator (i.e. >,<) for ordering rules. In the latter case, (< Foo) says that the

current method has been ordered after some other method or set of methods by selection rule

Foo. To find the method or meohds which are ordered before this method, look for the

corresponding (> Foo).

. :. If a candidate method contains unbound free varaibles, then a breakout of all instantiated

bindings is given under the MethodName (see for example, step 1.2). Each instantiation has
the following form:

% ". ,0.p

5-. ," C.. . , . . .,",., / t. .. "." , ' . , . . .. ,.. . . .'. ; . . ' . . .'2 . .. , ° . . .' . .' ,
, I .,'# ',',,',-* / . ,' . ' -, ", ',.' ., ,, . . ,- . .: .,, ., . . . . .o . ;,



PAGE 320 METHOD SELECTION OVERLAY

[Abrev:1 Binding [(<Opinion> SelectionRule)]0

Note that opinions expressed about the general MethodName are inherited by any of its

particular bound instantiaions.

A list of the selection rules augmenting the candidate set is brokenout by type below the

Candidate Set. This is redudant information provided for convenience.

Finally, <ordered method list> is a partial ordering of the Candidate Set with the following

form:

MethodSet1(Sum),..MethodSetn(Sum) N

A MethodSet is either a 1) single method or 2) a group of MethodSets from the Candidate Set.

In the second case, the set is marked off by set brackets ({ )). After each single method is the

sum of all weights provided by the selection rules. If no weight-giving rules fired then a dash

appears in place of the sum. If MethodSet, occurs before MethodSetj in the list then all

methods in MethodSet, are rated more highly than all methods of MethodSet. Methods within
a MethodSet have the same rating.

Not all methods of the Candidate Set may appear in the ordering list. If a method's weighted WA

sum is below a certain threshold, 1 currently, it will not appear. Also, if method M1 is ordered

by a selection rule after method M2 whose sum is below the theshold, M1 will not appear, no

matter what its sum is. Currently, methods which have no ordering information associated

with them are included last in the list.

.- Bold facing is used in the <method order list> to mark the method actually chosen in the

router development. Bod faced methods which do not appear first in the list represent

locations where one or more alternative methods were rated more highly thatn the method

finally chosen. I.

The details of the Glitter selection engine are discussed more fully in chapter 7.

9i

:. S ... ..', .- *.,-'-'. -','- - ... .".-,: , . .. .,: , . , ,,., ,. . . . .. . .,,- .*7. ,. ,..... ... - . . ..



D Method Selection Overlay PAGE 321

~: 2-~ D.1. Remove PACK AGES-.EVER...AL.SOU RCEj

Step 1. 1 :(user) Remove peas (packages~ever~atsource) from qme

candidate ~Jr

D RR: RemoveRelation (. 2 BurnedOutHulk) (. 2 *Removefelationl)

10 General Rules: BurnedOutHulk

*' ~Method Specific Rules: *RemoveRelationi
;. -o

Method Ordering: RR(+4)

Step 1.2: Remove reference to peas from spec

D Baby With~ath Water

*BWBWI: Y bound to rolative-rot rievel (-2 *BabyWithBathWater3)

* BWBW2: Y bound to derived-object (-2 1BabyWithBathWater3)

* BWBW3: Y bound to conditional (0 *BabyWithBathWaterl)

* BWBW4: Y bound to demon (-1 *BabyWithBathWater2)

0 MegaMove (.1I Filtin) (> RemoveRef 1)

* MM1: Y bound to relative-retrieval (. 2 *MegaMovel) (< RemnoveReQ )

4 * MM2: Y bound to derived-object (+ 2 'MegaMovel) (>RernoveRef )

13 PositionalMegaMove (+ 1 MUMl~) (< RemoveRell)

* PMMI: Y bound to relative- retrie vat (.1 PositionalMegaMove) (< RemoveRef 3)

' PMM2: Y bound to derived-object ( 1 'PositionalMegaMove) (> RemoveRef 3)

- 0 RemoveByObjectizingContext

* RBOC1: V bound to rpetive-retrievel

7-. * RBOC2: V bound to derived-object

SGeneral Rules: Filln

10 Method Specific Rules: *BabyWithBathWater, *MegaMovel, 'PosltionalMegaMove

.0 Ordering Rules: RemoveRs? 1, RemoveRet2. RemoveReM

Methodrd ~gQil: MM2(.3), MMl( 3), PMM2( .2), PMMI( .2), (RBOC1(.), RBOC2(-))

Step 1.3: Isolate derived object

~%%



PAGE 322 METHOD SELECTION OVERLAY

Candidate ,j

D FGIR: FoidGenericintoRelation (2 'FoldGenericlntofelation) 4

SMethod Specific Rules: *FoldGenericlntoRelation

MethodOrdering: FGIR(+2)

Step 1 .4: Globalize derived object

CandidsteWj

5= 0000: GlobalizeDerivsd~bject (+ 2 *GlobalizeDerlved~bject)

SMethod Specific Rules: *GlobalizeDerived~bject

Method Ordering: 000

~ Step 1.5: (try) Reformulate p.new as global

Candidate ~JW:

0 ReformnufateLocalAsFirst (+.2 ReformulateLocalAsSequenceExpresaon) (( Reformloc2)

%: RLAF: R bound to packages~ever at source

13 ReformulateL-ocalAsLast (. 2 ReformulateLocalAaSequenceExpresaon) (> Reforml-=2)

RLAL: R bound to packages~everat source

SGeneral Rules: Ref ormulateLocalAsSequenceExpression

10 Ordering Rules: Ref ormLoc2

Method0rderin : RLAF(.2), RLAL(.2)

Step 1.6: Reformulate p.new as JI(peas(*))

Candidate JU

5,Do

no rules fired

55jStep 1.:ue)Mna manual- replace(p.new last(peas)) k

Step 1.8: Maintainlncrementa fly previous.package



p, .,'.,.-o
. 

,,, o ..* -.~_ . . %.. ; . .:.•......, .,...--....... -.-. -. o-....

D.1 Remove PACKAGESEVERATSOURCE PAGE 323

Candidate W

0 SMFDR: %catterMaintenanceForDerivedRelation ( 2
"ScatterMaintenanceForDerivedRelation)

, Method Specific Rules: *ScatterMaintenanceForDerivedRelation

. ~ Methodr : SMFDR( 2)

Step 1 .9: Flatten previous.package

- Candidate W

0 Flatten (+ 2 Flatten)

• Method Specific Rules: Flatten

MethodI': Flatten(+2)

Step 1.10: Map peas
i Candidate "It

U!

0 MDR: MaintainDerivedRelation (+ 2 "MDR)

0 UDR: UnfoldDerivedRelation ( 2 "UnoldDerivedRelationl) (-2 MapSubOfRemove2)

10- General Rules: MapSubOfRemove2

*.. -Method Specific Rules: *MaintainDerivedRelation. "UnfoldDerivedRelationl

Method Orering: MDR(.2)

, ** Comment: Normally.the methods for maintaining and unfolding a derived
-'. relation compete equally. However, the general rule MapSubOfRemove

recognizies certain contexts in which scattering what Is currently a
global definition may lead to difficulties further along in the development,

;. I.e. if we are trying to remove a relation then scattering references to It
througout the program is a non-cooperating strategy.

* .-Step 1.11: Maintainlncrementally peas

Candidate 1

- I SMD: IntroduceSeqMaintenanceDemon ( 1 Demon*AreGood) (1 MapSubOfRemovel) (+ 1
ReadyToGo) (. 1 ReformUnneceary)

0 SMFDR: ScatterMaintenanceForDerivedRelation (.2 MepSubOfRemove2) ( 2 "SMFDR)

10 General Rules: DemonsAreGood, MapSubOfRernovel, MIpSubOfRemove2
30 Method Specific Rules: "ScatterM.intenhnceForDervedReLaton

P Resource Rules: ReformUnnecesaary, ReadyToGo

MethOrdarinn: ISMD(.4)

.,

:.



TE M-,- .. . ..e- .. . .. . -

PAGE 324 METHOD SELECTION OVERLAY

Stop 1. 12: Remove reference peas from Spec

Candidatt &1 7-

0 BabyWithBathWeter

*BWB WI: Y bound to Weative-retrioe l (.2 '8aby WIthBath Wator3)

BWBW2: Y bound to derived-object (-2 'BabyWithBathWater3)

*BWBW3: Y bound to update (-2 *BabyWithBathwater3)

*BWBW4: Y bound to atomic (-2 1BabyWithBathWatev3)

DWBW5: Y bound to demon (A1 BabyWith~athWater2)

00 0 MegaMove (+.1 Filn)

MMI: V bound to relative-retrieal (+* 2 'MegaMovel) (< RemoveReI2)

MM2: V bound to derived-object (-2 *MgaMove2) (> RemoveRef2)

O PositionaMegaMove (+ 1 Filn)

* PK4M1: V bound to relative-retrieval (+1 PoitionalMegaMove) (( RemoveRe3)

' PMM2: Y bound to derived-object (+1 PoWton&AlegaMove) (> Ramoveke3) 0.

0 Remove~yObjectizingContext

" RBOC1: V bound to relative- ret tie vol

" RBOC2: Y bound to derivied-object

0 ReplaceRetWith Value (41I Fillin) (.2 *Rep1*ceRfWith Value2)

-General Rules: Pllm

SMethod Specific Rules: MegaMovel, *MegaMove2.. BabyWlthBathWator,

*PouitionaftegaMove, 1ReplaceRetWithValue2

SOrdering Rules: RemoveRet2. Rernov*R*13

Malhod ~rdw.inh: PMM2( 42), PMMI( .2). {RBOCI(*), RBO2(.)I

Step 1. 13: Reformulate derived-object as positional-rot rievel

Candidate U1

0 ADO: RformulateDerivgdObject (4 2 *RoformulateDervedObject)

3 Method Specific Rules: oRef ormulateDerlvedObject

Whod~rdering: RDO(+2)

Comment: Note that It's up to the user to determine "close to" here. I.*. he
must determine if the body ot the derived object, a relatinal retrieval, can

* be changed Into a positional one.

%**t ~ ~ - * * q *



D.1 Remove PACKAGESEVERAT..SOURCE PAGE 325

Step 1. .14: Reformulate relative retrieval as equivalence relation

Caniah ea1
0 RRRAF: Ref ormulateRelativeRetrievalAsFirst (.I ReformAsExtreme) :

0 RRRAL: ReformulateReIativeRetrievalAst~st (1 Ref ormAsExtremew) (. 1
Ref ormUnnecessary) (+ 2 *ReformulateRelativeRetrievalAsLast)

)P General Rules: Ref ormAsExtreme

Method Specific Rules: *ReformulateRelativeRetrievalAaLast

4 - Method Ordering: RRRAL( .4). RRRAF( 41)

Ste 1. 15: Equivalence IAA(peas@p) and p

* Candidate fi

* 0 Al: Arnchorl

0 A2: Anchor2 (4 2 *Anchor2a)

~ *,.)p Method Specific Rules: *Anchor2a

Method Ordering: Anchor2(. 2), Anchorl(-)

Step 1. 16: Reformulate Iast(peas@p) as p

Caddae W4

: *2.0 RAO: Ref ormulateAsObject (+41 Ref ormUnnecessary) (+ I ReadyToGo)

* ~ Resource Rules: ReformUnnecessary, ReadyToGo

Methodg~[g9ejflf: RAO(.02)

Step 1 .17: Isolate last(peas)

0 FGIR: FoldGenericIntoRelation (4 2 IFGIR)

_ ~ Method Specific Rules: *FodGenericintoRefation

Step 1 .1 8: Maintainlncremen tally Iastpackage :

140 SMFDR: ScatterMaintenanceFor~erivsdRelatlon (4 2 OSMFDR)



, .
PAGE 326 METHOD SELECTION OVERLAY

% )o Method Specific Rules: *ScaftWMainbwnneFotderled~eletion

Mehdr~ia SMFD(2)

Step 1.19: Remove reference peas from spec

Canddat I
0 BabyWithftthWater

* BWBW1: Y bound to concat (-2 0BabyWithath Water3)

'BWBW2: Y bound to lost (-2 1BabyWIthB*hWater3)

* BWBW3: Y bound to update (-2 "abyWitI~atIhW&ter3)

* BWBW4: Y bound to atomic (-2 'BabyWithflath WaterS)

'BBWS5 V bound to damon (.1 *BabyWithBathWater2)

o MegaMove (+ 1 F1lum) (( RemoveRet)

* MMI: V bound to concat (+.2 "MegaMovol) (( Remove14l2) (> Removefi1)

*MM2: V bound to last (. 2 *MegaMove1) () RemoveRet2) (> RemoveRef 1)

0 PoaftionafMegaMove (. 1 Filum) (( RemoveRef 4) (< RemoveRef 1)

* PMM1: Y bound to eoncat (+ I PositionskfegaMove) (( RemoveRe!3)

* PMM2: V bound to last (+ 1 *PomitionalMega~ve) (1 Reformlinnecessary) (>
'S RemoveRef 3)

0 Remove~y~biectizingContext (. 1 RUM I)

*~ ~ RBOC1: Y bound to concat 5

" RBOC2: Y bound to last (. 2 *Remove~y~biectizlngContext) (> Remov&1404)

0) ReptaceRetWfth Value (+ 1 Fiflin) (-2 *ReplaceRefWith Value)

30 General Rules: Pllm

10 Method Specific Rules: ORemovefly0biectizingContext. 'MegaMovel. *BabyWfthBathWater,

*PositionalkftaMove

SResource Rules: ReformUnnecessary '

30 Ordering Rules: RemoveRef 1, RemoveRe12, RemovaRef , ReamoveRef 4

Methodrdejin: RBOC2(.3), *42( .3). MM1(.3). PMM2(.3), PMMI( .2), RBOC1(,1)-

Step 1 .20: Reformulate last(peasfp) as object

Canidate fi

0 RAO: Ref ormulateAsObject (. ReformUnnecemary) (4. 1 ReadyToGo) .,

% %



L D.1 Remove PACKAGES..EVER_.AL.SOURCE PAGE 327

SResource Rules: ReformUnnecessary, ReadyToGo

Kjthod rd~rin: RAO( +2)

Step 1 .2 1: Remove update peas from spec

Cniatefi

D BabyWithBath Water

*BWBWI: Y bound to atomic (.2 -BabyWith~athWater3)

* BWBW2: Y bound to demon (-I -BabyWIthBathWater2)

0 RUA: RemoveUnused Action (+.2 *RemoveUnusedActionI)iasIO

3Method Specific Rules: *RemoveUnusedActionl
Mehdrdrn: U(2

Step 1.22: Show update unnoticed

* Candidate 10

4 0 SD: ShowDysteleological (+ 1 'ReayToGo) (+.2 *ShowDysteleological)

30 Method Specific Rules: 'ShowDyst*leological

$- Resource Rules: ReadyToGo

Maikh2d Qdjjija: SD(+3)

I II
% MV 4M



PAGE 328 METHOD SELECTION OVERLAY

% ~D.2. Remove PREVIOUS-PACKAGE

Step 2. 1: Remove previouspackage

E3 RR: RemoveRelation (+ 2 BurnedOutHulk) (2 *Removefelation2)

SGeneral Rules: BurnodOutHulk

30 Method Specific Rules: 'Remnoveftlation2

Motho~adJrna: RR(+4)

Step 2.2: Remove reference previouspackage from specm

Candidaterhi

0 abyWith~athWater

" BWBW1: Y bound to conditional (0 *BabyWthBathWater1)

" BWBW2. Y bound to demon (-I1 BabyWithBathWater2)

.1 ~ 0 MegaMove (. 2 Fillin) (( Remove%%t)

W 9A Y bound to ottribute-re ference (+.2 Mega~vel)

0 PositionelMegaMove (+ 1 Fill1n) (( RemoveRet6)

PMM V bound to atti bute-reference (. I Poultionam"Waove)

0 RemoveByObiectizingContext (+ I Pilum)

*RBOC: Y bound to attrIbute-reference

/4 0 RRWV: Replac*RefWithValue (+ 1 F1lum) (. 2 *ReplaceRef With Valuel )( Remov*RefB)

SGeneral Rules: FNilm

4,Po Method Specific Rules: *MegaMovel, 'BabyWith~athWater. *Replac*RetWlthV&luel

SOrdering Rule;: RemoveReM

Mohodh dgrginh. RRWV(+3), FM9(+3), PMM(2) RBOC(. )

Step 2.3: Show value known of previouspackage

ConfidsUlh

03 ShowUpdateGiveoValue

*SUGV: U bound to update in notce.newackfe.at.source (. 2
01howUpdateGliveaValue)

0, Method Specific Rutos: *51howUpdateGiveaVolue

4%



* D.2 Remove PREVIOUSPACKAGE PAGE 329

* .

' "-, Method : SUGV( 2)

Step 2.4: Show last.package still holds at conditional

Candidate ie

, SNVSV: ShowNewValueStill Vlid (+2 *ShowNewValueStillValid)ieelO

Method Q rg: SNVSV(+ 2)

% "-Step 2.5: Show last.package doesn't change

* Candidate Wj

0 MovelnterveningUpdate

*"MIU: L bound to update in not'ce.newpackagesetource (+ 1 ReadyToGo) (+ 2
4 *.. "MovelnterveningUpdate)isel()

) Method Specific Rules: *MovelnterveningUpdate

. Resource Rules: ReadyToGo

Method Orderin: MIU(.3)

Step 2.6: ComuteSequentially conditional before update of lastpackage

Candidate U

( 0 MOOA: MoveOutOfAtomic (+ 2 "MoveOutOf Atomic)

.* P Method Specific Rules: "MoveOutOlAtomic

Method Orderin: MOOA( + 2)

Step 2.7: Unfold atomic

Candidae fig

0 UA: UnfoldAtomic ( 5 *UnfoldAtomic)
"S

% P, Method Specific Rules: "UnfoldAtomic

% Mthod Orderin : UA(+S)--

Comment: A weight of .5 implies that there Is no other method, now or
foreseen. which can achieve the goal. In some sense, the goal is an
abstract pointer to the method.

.p
Step 2.8:(reposted) ComuteSequentially conditinal before update of last.package

Candidae&I
-

%* .-.

%'. .'o%

" 
A **-' . *



PAGE 330 METHOD SELECTION OVERLAY

D CTMS: Consolidate'ro~ale~euential (. 2 -Consolidate'roMakeSequeniaD

30 Method Specific Rules: -ConaoidateToMakeSqUentlal

MothlodOrderina: CTMS(.2)

Step 2.9: Consolidate notice..new.package~atsource

and releasepackage.into.network -

-. CIDgitel

0 MD: MergeDemons (+.5 MorgeDemoms)

SMethod Specific Rules: *MergeDemnons

30 Action Ordering Rules: TriggersAlmostEquiv

Step 2.10: Equivalence declaration lists

Candidatefig

4:0 DAl:Anchorl

0 A2: Anchor2

* .~D ECS: EcuivalenceCompoundStructurWs (2 'EquivalenceCompoundStructures2)

31 Method Specific Rules: *EquivalenceCompoundStructures

I1aetho Orderng: ECS(.2)

Step 2.11: Equivalence p and p.new

Candidate Ugj

03 Al: Anchori (+.2 Anchorla) (< EquivVarsl)

0 A2: Anchor2 (. 2 *Anchor2a) (> Equiv~aral) i

30,Method Specifi Rules: *Anchorla, Anchor2a

30 Orde ring Rules: Equlv~arsl

Maith d.Lde.infl: A2(+2)

Comment: Until have theory of mnemonics, user relled upon to select
names.

Step 2.12: Reformulate pas p.new

Canllata i

%a



D.2 Remove PREVIOUSPACKAGE PAGE 331

0 RV: RenameVar (2 *RenamneVar)

)o Method Specifi Rules: *Renam*Var L

MatbndOrderina: RV(+2)

Step 2.1 3:(reposted) ComuteSecwentially conditional before update of lastpackage

0 SU: SwaPUp (+2 'SwapUP)

SMethod Specifi Rules: 'SwapUp

Method Ordering: SU(+2)

Step 2.14: Swap update of Iast~package with conditional

.4 Candidate i

0 SS: SwapStatements (+.5 *SwapStatements)

SMethod Specific Rules: *SwapStatements

4' *Method Orgering: SS(+5)

*%



u-V M~ 1.- -.-. ~ ~ ~ ~ '.X X\~- .. r r r .~~I

PAGE 332 METHOD SELECTION OVERLAY

.J

D.3. Remove LAST-PACKAGE

%I Step 3.1 :(user) Remove Iaspackage

D RR: RemnoveRelation (+ 2 BurnedOutHulk) (2 "RemoveRelation3)-

* )o General Rules: BurnedOut~ulk

SMethod Specitic Rules: *RemnoveRelation3

MothodOrderina: RR(.4)

Step 3.2: Remove reference Iastpackage from spec

0 Baby With~ath Water

*BWBW1: Y bound to conditional (0 'BabyWithBathWater1)

*BWBW2: Y bound to demon (-I *BabyWithBathWater2)

* .. ,0 MegaMove (. 1 Fillin)

MM V bound to at: ribut e-reterence (+.2 *MegaMovel) (>RemoveRet 1)

4'. C3 PositionalMegaMove (. 1 Fill1n) (( RemoveRef 1)

*PMM Y bound to at: ribut e-referenee (+.1 PositionalMegaMove)

C3 RemoveByObgectizsngContext

RBOC: Y bound to attribute-re ference

0 RRWV: ReplaceftffthValue

SGeneral Rules: Fillin

SMethod Specifi Rules: *MegaMovel, *BabyWithBathWater, *PoultonalMegaMove

P, Ordering Rules: RemoveRef 1

M~tadfld xfina: MM(,3). PMM(,2), {RBOC(-), RRWV(.fl

Stop 3.3: Isolate iastpackage:destination

* 0 FGIR: FoldGenerlcntoRelation (5 *FoldGenerlclntoR*lation) 4

10 Method Specific Rules: OFoldGeneficintoRelation

Wta'deig ,I(5



D.3 Remove LASTPACKAGE PAGE 333

Step 3.4: MaintainIncrementally Iastpackagedestination

Ca0dt SWFR 1 ttr*1eaneo~rv~~lto (*.2 ScatterMaintenanceForDerivedRelation)

SMet hod Specific Rules: *ScatterMaintenancoForDmrivedRelatin

Method Ordering: SMFDR(.i2)

a. Step 3.5: Remove update of Iastpackage

a Candidate Wi
D BabyWith~ath Water

~ * BWBWI: Y bound to atomic (-2 *BabyWithBathWater3)

*BWBW2: Y bound to demon (-1 'BabyWithBathWater2)

D RUA: RemoveUnused Action (. 2 *RemoveUnusedActionl)

* ~Method Specific Rules: IBabyWIthBathWater2, *BabyWithBathWater3, 'RemoveUnusedAction

MothodQ~rdarn: RUA(.i2)

* ?.: a



PAGE 334 METHOD SELECTION OVERLAY P

D.4. Map DIDNOTSET_SWITCHWHEN_HADCHANCE

Step 4.1 :(user) MgD did.not.set.switch.when.had.chance

Candidate fi-

0 MCAD: MapConstraintAsDemon (+ 1 DemonsAreGood) (.2 •MCAD)

0 UC: UnfoldConstraint

* General Rules: DemonsAreGood

10 Method Specific Rules: "MCAD

MethodpOrdring: MCAD(+3)

Comment: Of course the difficult decision here Is determining whether a
pridictive or backtracking solution is possible. The system points out the
need for making the decision, the user provides the answer.

Step 4.2: Show body implies 0

Candidate Wet

0 ConjunctlmpliesConjunctArm (+ 1 UseConjunctArm)

" CICAl: A bound to first conjunct arm (-2 CICA2)

" CICA2: A bound to second conjunct arm (-2 *CICA2)

* CICA3: A bound to third conjunct arm (.2 *CICA)

10 General Rules: UseConjunctArm ,,.

1 Method Specific Rules: "ConjunctlmpliesConjunctArml, OConjunctlmpliesConjunctArm2

Method r: CICA3( 3)

Comment: The system points out the selection conditions which must be
attended to; the user determines which of the candidates satisfies the

.2Lconditions.

Step 4.3: Map set.switch.when.have.chance (sswhc)*9..

0 CD: CasifyDemon (. 2 CasityComplexConstruct) (<MapDemonl)

0 MapByConsolldation

* MBC1: D2 boudn to et.switch (+ 2 •MC2) (> MapDemoni)

MBC2: D2 bound to relese.package.into network (. 1 °MBC1)

MBC3: 02 bound to misroutedpackage.reached bin

6%.

*



D-4 Map DjD_.NOT..SET..SWITCH..WHEN..HAD...CHANCE PAGE 335

*MBC4. 02 bound to cratepAckage (+ 2 *M8C2) (-2 *MBC4)

p' U BC5: 02 bound to mnovepackage (. 2 *MBC2) (.2 'MBC4)

* MBC6: D2 bound to package.ntering.sensor (*1 MBCI)

*MSC7: 02 bound to package*Ieavingsnsor (.1 MBC1)

0 UD: UntoldDemon (+ 2 OUD) (( Map~emonl)

~~31 General Rules; CasiyComnpbgxConatruct

J 10 Method Specific Rules: 'MapflyConsodidationl, Map~yConualidation2, Map~yConsolidation4.

*UnfoldDemnon

30 Ordering Rules: Map~emoni

Method Ciderina: MBC1(. 2), (cD(2), UD(.2)), (MBC2(. 1), MBCB(.1), M8C7(. 1)3

* Step 4.4: Consolidate sswhc and setswitch

Candid~ate Wl

0 MD: MergeDemnons (. 5 MKergeDemons)

SMethod Specific Rules: *Merge~emons

Mothod0rdorina: M(,5)

Step 4.5: Equivalence two triggers

Cadiat fig

O Al: Anchorl

V0 A2: Anchor2 (5 'Anchor2b)

~ ~*30 Method Specific Rules: *Anchor2b

MethoOrdein , A2(.,$)

: ~ Step 4.6: Reformulate random as specific

0 SR: SpecializeRandom (+ 5 *Speclallzefandom)

P, Method Specific Rules: *SpecializeRandom

Method~rdering: SR(.5)

ii Step 4.7:(user) hMA2 require -P from ThisEvent until EverMore

C'%



PAGE 336 METHODu SELECIONOVERLAY

Candidate Aa

O CPC: CasifyPosConstraint (+ 2 CaaiyComplexCotistruct) (> MapCorkstraintl)

O MCTA: MoveConstraintToAction

0 NXUX: tdotXUntflX

% 0 TIC: TriggerimpiwConstraint

03 UC: Unf oldConstraint (+ 2 *UnfoldConstraint) (MapConstrainti)

* ~ General Rules: CasifyComplexCorstruct

P, Method Specific Rules: *UntoldConstraint

30 Ordering Rules: Map~onkstrainti

M~iodrd*ena: CPC( .2), UC( .2). MCTA(.), NXUX(.), TIC(,))

Stop 4.8: Casily require -P from ThisEvent until EverMore

Candidate le.

0 BS: SinarySplit (+ 1 ReadyToGo) (-2 *BinarySplit2)

*~ DPI: Pastinduction

O CFUEC: CasityFromUntdEverConstraint A. ormnnfemary) (+ I
RequireReformUnwn~csary)

o CAE: CasifyAroundEvent

SMethod Specific Rules: 'BinarySpfit2'.

30 Resource Rules: Ref ormUnnecasary, RequireRetormnnecebary, ReadyToGo

Maghpdgderin: CFUEC(.2), {PI(.), CAE(.))

Step 4.9: Map require -P at ThisEvent

o CPC: CasiyPosConstraint (+ 2 CasffyComplexStructure) (> MapCoratraintl) (
MapConstraint2)

0 MCAC: MoveConstrainvtToAction a

O NXUX: N~tXUntIIX

* ~0 TIC: TrIggermpIWConstraint (+ I etormnUnnemary) (. Paqulre~etormUnfwcmsary)
(. ReadyToGo) (> WpConstrain!:2)

0 UIC: IUnfoldCorstraint (. 2 *UnfoldConstrant) (< MapConatrainti) (( MapConstraint2)

SGeneral Rules: CaalyComplexConstruct



_ DA4 Map DIO..NOT.SETSWITCH_.WHEN...HADCHANCE PAGE 337

10 Method Specific Rules: "UnfoldConstrsint

SResource Rules: ReadyToGo. Rofonrmnwc..ry. RsquireReformUnnecessry

)0 Ordering Rules: MapConhtrainil, MapConstralnt2

*Method rderin: TIC(*3kCPC(+2)UCrAe2)

Step 4.10: map require -P after ThisEvent

Candidate fi

4 0 CPC: CasityPosConstraint (. 2 CasityComplexConatruct) (>mapConstraint )

0 MCTA: MoveConstraintToAction

0 NXUX: NotXUntiIX

~ 0 TIC: TriggerlmpliesConstraint

0 UC: UnfoldConstraint (+.2 'UC) (< MapConstrainti)

)o General Rules: CasifyComplexConstruct

)- Method Specific Rules: *UnfoldConstraint

* .. ~)-Ordering Rules: Map~onstraintl

* Method Ordering: Casif yPosConst taint(* 2), UrdoldConstraint(i 2)

Step 4. 11 : Casity require -P after ThisEvent

.1 Candidate fi

- 0 BinarySplit (+ I ReadyToGo) (-2 'BinarySplit:2)

-. 0 PastInduction

' 0 CasifyFromUntilEverConstraint

0 CasifyAroundEvent (+.1 ReformUnnecemary) (. 1 RequireReformUnnecessary)

SMethod Specific Rules: *BinarySplit2

~)P- Resource Rules: ReadyToGo, Ref ormUnnecessary, RequireftformUnnecmary

~ ... M3tgQL~g.ejflg: CasifyAroundEvent(.2). {Pastlnduction(-). CasifyFromUntilEverConstraint(-))

Step 4.12: Map require -P after ThisEvent until E

~ Candidate hi
~ 0 CasiyPosConstraint (. 2 CasifyComplexStructure) (> MapConstrainti) (MapConstrant2)

0 MoveConstraintToAction

t,%



. ..- . . . . . . .

PAGE 338 METHOD SELECTION OVERLAY

0 NotXUnt!IX (+1I RetormUnnecoosary) (. RequiweReformUnnecomary) (> MapConotrainl2)

0 TrlggerlmpliesConstraint 7

0 UnfoldConstraint (+ 2 *UC) (< MapConstrainti) (MapConstralnt2)

* .
)0 General Ruiles: CasifyComplexConstruct

*~ A Method Specific Rules: ReadyToGo, Ref ormUnnecesmary, RequireReformUnnecommary

P, Ordering Rules: MapConstralnti, MapConstraint2

Mothod Ordv ina: NotX UntiIX( .+2), CasifyPosConstraint( .2), UnfoldConIwtant( .2)

* Step 4.13: Map -P during Ej

Cadjgaai1
O CasifyPosConstraint (. 2 CasifyComplexStructure) (> MapConstrainti)

0 MoveConstraintToAction

0 NotXUnti1X

0 TriggerimpliesConstrokint

0 Unf oldCoristraint ( +2 0UnoflIdConstraint) (( MapCoristrainti)

0, General Rules*. CuifyComnpexCorstruct

P, Method Specific Rules: *UnfoldConstraint

4*IP Ordering Rules: MapConstraintl

Motho jrdwig: Cos If y PoCo not oI nt(.+2), UnfoldConstrsint( .2), (Mov9ConxtraintToActian(-),

NotXUntaiX(-), TriggerlmpliesConstraint(-))

Step 4.14: Casify require -P during E

Condiate &

0 BinarySplit (+.1 ReadyToGo) (-2 'BinarySplit2)

0 PastInduction (.1I ReformUnneessary) (+ I PlquireRetormUnnecessary)

O CasiyFromtntllEverConhtralnt

o CasiyAroundEvent

lo Method Specific Rules: 'BinarySpit2

0 Resource Rules: ReadyToGo, ReformUnnecoery, R*quireftformUnnecomwary

Mothad~ deriaup: Pastlnduction(,2), fCaslfyFromUntilEverConhtralnt(-), CaalyAroundEvent(-))
-4.E



_ D.4 Map DID_.NOT_.SET,.SWITCH.,WHEN...HAD,.CHANCE PAGE 330

~ Step 4.15: Map require -P at last update switchsetting

I* Candidate U1

**~ 0 CasifyPosConstraint (. 2 CasifyComplexStructure) (> MapConstrainti) (mapcontraint3)

4 .~0 MovsConstraintToAction (+ 1 ReformUnnecessary) (.1I RequireReformUnnecessary) ()
N' MapCormtraint3)

0 NotXUntiIX

0 TriggerlmpliesConstraint

0 Unf oldConstraint ( +2 'UnfoldConstraint) (< MapContstraintl)

)-General Rules: CasifyComplexConstruct

10 Method Specific Rules: 'UnfoldConstraint

* N ~Resource Rules: RefarmUnnecessary, RequireReform~nnecessary
- ~Ordering Rules: MapConkstreinti, MrApConkstraint3

Method rdein: MoveConst ra intro;. ction( .2), CasifyPosConstraint( .2), UnfoldConstraint( *2),

{NotXUntiIX(-), TrIggerimpliesConstraint(-))

Step 4.16: Map require -(= OfQ -P) between last update, E

'~ -~0 CasffyPosConstraint (. 2 CaslyCofnplexStructure) () Map~ormtraintl) (< MapContraint2)

£ 03 MoveConstraintToAction

4 0oXntI

.' 0 ShowNoChange (. 2 "ShowNoChange) (> MapConstraint2)

''I 0 TriggerlmplieaConstraint

- '0 UnfoldConstraint (. 2 'UnfoldConstraint) (< MepConstrainti)

)o General Rules: CasffyComplexConstruct

* .r~ ~ ~Method Specific Rules. *ShowNoChange

P, Ordering Rules: MapConstraintl, MapConhtraint

Methd~rdring ShowNoChange(.2), CasH yPoeConstraint( .2), UnfoldConstraint( .2)

Step 4.17: Show -(start -P) betweeni last update, E

I!.3 0

V'



PAGE 340 METHOD SELECTION OVERLAY

Step 4. 18: (user) MA2 update of switch..setting where P

*ol andicatt Ul
0 CNV: ComputeNew Value (. 2 *ComputeNewValue)

10 Method Specific Rules: *ComputeNewValue

Methd~rdrin: CNV(.2)

Step 4.19: unfo1 switch.set.,wrong..or.package at aet.switch

Caagiclae fi

0 SCOOR: ScatterComputationOf DerivedRelation (. 5 'ScatterComputationODerivedRelation)

*30- Method Specific Rules: *ScatterComputationOfDerved Relation

Ma1tagg.rderna SCODR(.5)



~r.%, Llj."-.P-Jq "' V 717. K, Y-; 77 -7 7 .7 77 r.7 r-7-.

DA4 Map DID...NOT_.SETSWITCH.WHEN_HAD...CHANCEPAE4

D.5. Map PACK AGES.D UEATSW ITCH

Step 5. 1:(user) M12 packags.due-at.switch (pdas)

~. D MDR: MaintainDerivedRelation (+.2 *MaintainDerivedRelatiori) (>MmpDR2a)

0 UDR: IUnfoldDerivgdRelation (+ 2 *UnfoldDerivedRelationl) (( MapDR2a)

SMethod Specific Rules: OMaintainDeriwedRelation, *UnfoldDaed~elatianl

)I Ordering Rules: MapDR2a

* ejjogOrdring: D(2UD()

* Comment: Currently. the system has no mechanism for computing the
' lelthano'side of MapDR2. i.e. it is up to the user to determine the cost of
* .~ computing the relation.

Step 5.2: Maintainlncremen tally pdas

Carliai &Ia

0 lntroduceSoqMaintenanc*emon (+.1 DemonsAreGood) (+ I
* lntroduceS"Maintenance~emon) (#.1 ReformUnnecessary) (MintDRi)

p 0 ScatterMaintenanceForDerivedRelaton (. 2 *SMDR) (>MintDR1)

)o General Rules: DemonskreGood

) Method Specific Rules: *lntroduceSqMaintenanceDmeon, *ScatterMaintenacneForDerivedRelation

~~P, Resource Rules: Ref ormUnneceessary

.V 10 Ordering Rules: MaintDRI

* -. ?hodkngrdawina: SMFOR(.2),ISMD(+3)

Stop 5.3: Flatten pdas

~~ Candidate &gJ

I 0 Flatten (. 2 'Flatten)

10 Method Specific Rules: *Flatten

Wthodnrdwg: Flatton(.2)

Step 5.4 Map Iocationon.routeJo.bin

Candiate 21

0 StoroExplicitly (+.2 *StorsExplicly) (MapDR Ia)



PAGE 342 METHOD SELECTION OVERLAY

13 UntoldlDerlved~eation (-2 flintodDervdRl&#cn2) (< MmpDRla)

10 Mehod Specific Rules: *StoreExpficity. *UidaldDarjvedR6Igfion2

lo' Ordering Rules: MapORi a

Maebno Qiderina: Stor*Explicitly(+*2)N Step 5.5: Map misrouted

0 MDR: MaintainDerivedRelation (+ 2 M1oaintainDerivedRelation) ((MaPDR2b)

C3 UDR: UnfoldDerivedRelation (+.2 aUntoldDerhtedRiatlonl) (> MJapDR2b)

Al ethod Specific Rules: *MaintainDerivedRlatiori, Unf@rdidDerivdRelatiofli

10- Ordering Rules: MapDR2b

Mohoireing MDR(.2),UDR(2)

Step 5.6: Unfold rniSrouted at pdas

0 SCOOR: ScatterComputationOlDerivedRetationi (5 'ScattvComlputationOlDerveRetatio)

10, Method Specific Rules: *ScattrComnputatonOf Deived Rlaison

Methogd Orderng: SCODR(.i5)

Step 5.7: Flatten pdas

Cadiat

0 Flatten (. 2 'Flatten)

10 Mfethod Specific Rules: "Flatten

I&bW~rdjJin: Flatten( .2)

Step 5.8: Map switch..atwong..or..paCkago

Candid*a &I
O MDR: MulnalnDerlvedRelation (. 2 MaintainDerivedRelation) (MaPDR2b)

O UOR: UntoidDerlvedRelation (. 2 *Unf oldDerivdcRelatlon 1) 0 MapDR2b)

0, Mfethmod Specif Rules: *MalntainDerivecdRelation, OUnfoldDerlvedRelationi!

3Ordering Rules: MaPDRfb

Malbuid~rdehna: UDR(+g),MOR(.2)



D.5 ap ACKAESUEAS~TCHPAGE 343

Step 5.9: Unfold switch.stwrong..or..rackage

Candidaib1

0 SCOOR: ScatterComputationOfDenivedRslation (5 'ScatterComputation~tDerivedRelationj

10 Method Specific Rules: *ScattrConputationODerlvedRelation

Wthod~dering SCODR(+5)

Step 5. 10: Purify loop in create..pckage

Cmndidata h

0 PurifyDemon (. 2 *PurlfyDemon)

b- Method Specific Rules: 'Purify~emon

'~Method~rdering: PurifyDemon(i2)

Step 5. 11: Remove loop from create.package

CandidaeU1

0 BabyWithBath Water

* 3WB W1: Y bound to atomic (-2 'BabyWith~ath Water3)

~ ~ * BWBW2: Y bound to demon (-2 BSabyWithBath Water3)

0 RFD: RemoveFromDemon (. 2 *RemoveFromDemon) (( RemActI)

.~i 0 RUA: RemoveUnused Action (+.2 *RemoveUnuaedAction2) (> RemActi)

30 Method Specific Rules: 'BabyWlth8athWater3, *RemoveFromDemon, 'RemoveUnusedAction2

~. ~ ~Ordering Rules: RemActl

.4 ethodjrdtrjn : RUA(.2),RFD(42)

Comment: The syst em does not have the necessary knowledge to
determine what code can be simplified away and whet must remain.
Because of the big gain in problem solving coats, the system always

~ suggests blowing away unfolded code before moving i about. Here, the
introduced loop Ia necessary and hence must be removed from the
demon.

Step 5. 12: Globalize loop in create~package

%. . ,.an il ah
0 GlobalizeAction (+.2 *GlobalizaAction)

lo Method Specific Rules: "GlobalizAction

Mehd flgjg: Globeliz*Action(.2)

5% .-F



PAGE3244 METHOD SELECTION OVERLAY

Step 5.13: unfold atomic

Candiat h
0 UnoldAtomic (+ 5 'UntoidAtomic)

* ~ Method Specific Rules: *UnfoldAtomic

Mothod~rdeins: UnfoldAtomlc(.5)

Step 5. 14: Purify conditional in movepackage

candidate Mi

0 PurifyDemon (+ 2 'PurltyDemon)

)0 Method Specific Rules: 'PurifyDemon

Method~rderg.l: Pu rifyD~mon( *2)

* Step 5. 15: Remove conditional in movepackage

Ca.nd4idatefig

0 BabyWith~ath Water 
'.

Y bound to atomic (-2 0BayAth1BahWter3)

Y bound to demon (-2 *BabyWlthBathWater3)

I" 0 Rmov*FromnDemon (+ 2 *RenmoveromDemon) (< RemAct)

0 RemoveUnused Action (. 2 *Remov*UnuswdAction2) (> RemActi)

10 Method Specific Rules: *BabyWthth Water3, 0RmvUnuaedActlon2, *Remove~romDemon

0 Orern Rules: RemActl

M3jth39Jj9Jdern: RUA(.2).RFD(.2)

Comment: See comments at 5. 11

Step 5.16: Globlize conditional in movepackage 
'

* Candidate &I

0 GloballzeAction (. 2 *GlobaflzeAction)

a,*~P AMehod Specifi Rules: *0oblizeActon

Methodg Pdadna: GIobeIUaeActIon( .2)

Step 5.17: Unfold atomic



D.5 Map PACKAGESDUEATSWITCH PAGE 345

Candidate fii

0 UnfoldAtomic (+ 5 'UntoidAtomic)

'10- Method Specific Rules: OUnfoldAtomic

* A MaihoOrdering: UnfoldAtomic(.5)

Step 5. 18: Casifv package.Ieaving.sensor

Candidate U1j

0 CasitySuperTrigger (+ 2 *CaaifySuperTrigger)

*10, Method Specific Rules: *CasifySuporTrigger

Method rdering: CmsIfySuprTrigger(+2)

Step 5. 19: Casitv package.entering.sensor

0 CaslfySuperTrigger (. 2 *CasifySuporTnigger)

)o Method Specific Rules: *CasitySuperTrigger

MiehoOrde ring: CasifySuperTrigger( .2)



PAGE 346 METHOD SELECTION OVERLAY

D.6. Map Demons

Step 6.1 :(user) MAg setaswitch

Candidat

03 CD: CasifyDemon (+.2 CasifyComplexConstruct) (+ 2 oCasifyDemnon)

0 MapsyConwoidation

*MBCi: 02 bound to roelespaccage.Into.network (+.1 *MBCI)

MBC:2 D2 bound to package~entering~switch (+ 1 M84C1)

MBC3: D2 bound to packag..enteringbin (+.1 IMBC)

MBC4: 02 bound to paccage*Ieving~switch (+.1 OMBCI).-

*MSCS. 02 bound to package teaving~bin (+.I *MBC)

*MBCS: D2 bound to init~fmemo (+4 1 *MBC1)

MBC7: D2 bound to mtisrouted~package~reach.bin

MBCS: 02 bound to createpackage (-2 0MBC4) ( +1 MBC2)

MBCS: 02 bound to movepackage (.2 IMBC4) (+I MBC2)

0 UO: UnbIodDemnon (+1 UnfoldDmron)

SGeneral Rules: CasifyComplexCorkstruct *

)P Method Specific Rules: *Ceulfy~emon, 'MBC1, "MBC2, M6404, 'UnfoldDemnon

Maighodzrdeing: CD( .4), (MBC1(.1), MBc2(. ,MBC3(.1), M8C4(.1), MBC(+. ,M86( + 1).

* UD(+ 1))

Step 6.2: Casify se.switch

faaflidaia &I
(3 CCT: CaslyConjunctiveTrigger (. 2 *CalyConjunctiv*Trigger)

0, Methlod Specific Ruler. OCaslyConjunctive~ngge

Miaod.rdeina: CCT(+2) 4

Step 6.3: Map s.WtwtCh.when.bubble.package (sswbp)

13 CO: CamifyDemnon

C3 MapflyConaolidation



W D.6 Map Demons PAGE 347

'MedI: D2 bound to release~package intonetwork (. I MBCI)

*MBC:2 02 bound to package.entering switch ( I *MBCI)

*MBC3: 02 bound to pac kagekentering~bin (+.1 OMBCI)

*M8C4: 02 bound to package~leavingswitch (+ 1 *MBC1)

* MBC5: D2 bound to package .Ieaving~bin (. 1 IMBC1)

.- 0 ~* MBC6: 02 bound to Initmemo (+ 1 IMBC1)

'MBC7: D2 bound to misrouted~packagejeached~bin

MBCS: 02 bound to setswitchkon.exit (+ 1 IMBC1) (-2 IMBC5)

*MBCO: 02 bound to createpackage (-2 *M904) (+1 *MBC2)

MBC1O0: 02 bound to move package (-2 *MBC4) (.+I MBC2)

* 0CUD: UnfoldDemon (+ 1 *Unf otdoemon)

SMethod Specific Rules: *MBC1, *M8C2, "MBC4. *MBC5, 'Unfold~emon

Method Orderina: {MBCI(. 1), MBC2( +l), MBC3 + 1), MBC4( * ), MBC5(. 1), MBO6(. 1), UD(. 1))

Comment* User determines that consolidation doesnt look promising.
Unfolding a demon is & strategy that in general always works. It is often
not a great choice because of the necessary work of opotimizing the
unfolded code. Nere it is about the only choice.

Step 6.4: Unfold sswbp at release.packageinto.network

CandiateWa
* 0 ScatterComputationOf Demon (. 5 *ScatterComputationOf Demon)

* ~ Method Specific Rules: *ScatterComputationOf Demon

Mohdreig Scott* rdomputation~ftDamon(+ 5)

Step 6.5: Factor update of packagesdOueat.switch

Candida Sii

0 FactorDflMaintenancelntoAction (+ 1 ReadyToGo) (+.2 'FactorDBMaintenancelntoAction)

SMethod Specific Rules: *FactorDBMaintenanceintoAction

)0 Resource Rules: ReodyToGo

Mothoggrmina: Facto rDSMai ntonancelntoAction(+ 3)j

Step 6.6: Map Set.SwltCh.on.exit

V .4%



*PACE 348 METHOD SELECTION OVERLAY

o CD: CauilyDemon

o Map~yConaolidation

' MBCI: 02 bound to releampackagjnto~network (41 MBC1)

* MBC:2 02 bound to paclcageoentering~switch (+ I *MBC1)

* MBC3: D2 bound to packageentering~bin (+1 MBCI)

*MBC4: D2 bound to packag.eavingswitch (41 MBC1)

' MBCS: 02 bound to package.Ieaving bin (+41 *MBCI)

4 * MBCS: D2 bound to init~memo (+ I *MBCI)

*MBC7: D2 bound to misroutedpackagejeached~bin

*MBC8: 02 bound to createpackage (-2 1MBC4) (41 MBC2)

*MBC9: 02 bound to move~package (-2 *M1C4) (+ 1 *MBC2)

O3 UD: UnfoldDemon (+ 1 *UnfoldDemon)

SMethod Specific Rules: IMSCI, IMBC2, IMB04, 'UnfoldDemon

M~thd~gjfin: IMBC1(.1),Mi3C2(4 ),MBC3(.1), M3C4(.1), MBCS(. 1), MBS(. ),UD(. 1))

* Comment: Again up to the user to find a promising consolidation demon.
In this case. a level of Indirection is Involved via a vie the derived relation
SWITCH*IS.EMPTY.

Stop 6.7: Consolidate set.SwitChonexit and packagejleaving~switCh

Candidate le*5*

o3 MergeDemons (+ 5 'MergeDemons) .

10 Method Specific Rules: OMerge~emons-

M~thod~rd~rin: MergoDomons(.5)

Step 6.8: Equivalence triggers

Cadiat 1
o Anchorl (+.2 *Anchorlc)

o Anchor2 :

So Mehod Specific Rules: *Ancharle

Motodfdasina: Anchorl(.2), Anchor2(-)

Comment: Note that the selection rule *Anchoric focus"s the user's

NU



D.6 Map Demons PAGE 349

attention In the right place, the body of SWITCH.ISAMPTY. Currently,
* the user is required to carry on trom here In regards to the evaluation of

promising.

Step 6.9: Reformulate switch.is.empty as expression

Candidate ~J

0 Ref ormulateDerivedRelation (+ 2 'RetormulateDerivedRlation)

SMethod Specific Rules: *ReformulateDerivedRelation

Method rdering: ReformulateoerivedRlatlan(+2)

Step 6.1 0: Un fold switCh.is.empty in trigger

N'Candidate l

C0 ScatterComputationOf DerivedRelation (+.5 "ScatterComputationODerivedRelation)

P Method Specific Rules: *ScatterComputationOtDerivedRelation

N" t odrdering: Seat to rComputat ion~f Derived Relation(+ 5)

N Step 6.11: Reformulate existential as universal

* p Candidate jIj

-* 0 Ref ormulateExiatentialTrigger (+.2 *ReformulateExistentiaTrigger)

83 , Method Spec/iei Rules: *ReformulateExiatentialTrigger

Maoiho QLUrinDB ReformulateExlatentiallrigger( .2)

Step 6.1 2: Equivalence two declarations

-~Candidate le (Problem Solving Abridgement)

0 Anchorl (2 'Anchorla) (> EquivVarsl)

~10 Method Specific Rules: *Anchorla, *Anchor2a

0 -So- Ordering Rules: EquivVarsl

MothodQrdeina: Anchor2(.2), Anchorl(#2)

Step 6. 13: (user) MM~ misrouted..package..reached.bln

Candidaa te
0 CD: Casiybemon (2 CalfyComplexConatruct) (+.2 'Caaify~emonl)

%.......



PAGE 350 METHOD SELECTION OVERLAY

0 Map~yConsolidation

* MBCI: D2 bound to releamepackageinto.network (.1 MBC1)

,jv1% *M8C:2 02 bound to packageenteigwitch (+.1 OMCI)

' MBC3: D2 bound to package entoringbin (.1 MBCI)

* MBC4: D2 bound to packageIeaving~switch (+ 1 IMBC1)

* MBC5: 02 bound to packagelaving~bin (.1 MBC1)

* MSC6: 02 bound to init~memno (+ 1 IMBC1)

' MBC7: 02 bound to iaroutedpackagerachdbin

* MBCS: 02 bound to createpeckage (-2 *MBC4) (* 1 *MBC2)

'MBCO: 02 bound to movepackage (.2 *MBC4) (.1 0MBC2)

0 UD: UnfoldDemnon (+ 1 'UntoidDemon)M

30 Method Specific Rules: *CasiyOemonl. IMBCI. *MBC2, *MC4, "Uriold~emon

UD( * 1))

* Stop 6.14: Casity misrouted.package.reached.bin

C CasifyConjunctiveTrigger (+ 2 *CasifyConjunctiveTrigger)

P, Method Specific Rules: *CWiyConjunctiveTrigger

Mogdgd Qina: CasifyConJunctiv*Trlgger(+2)

Ste p 6. 15: Map misroutedpackage~located.abin

O CD: CasifyDemon

O Map~yConsolidation

* M8C1: 02 bound to relemsepackageinto~network :

* MSBC:2 D2 bound to packag~enteringmwhtch

' MOW3: 02 bound to package.enterng~bin (+.2 *MBCS)

* MIBC4: 02 bound to packageIeavng~swlch

*M13CS 02 bound to packageIeaving~bin



0.6 Map Demons PAGE 351

' kM: 02 bound to itmeo

* MOW7: D2 bound to mivsoutsd.DAckaG.MaChed.bfl

* MBC8: 02 bound to createpackage (-2 *MBC4) (.1 *MBC2)

*MBC9: D2 bound to movepackage (-2 OM8C4) (+1 *MBC2)

0 UD: UntoldDemon (+ 1 *UnfoldDmron)

SMethod Specific Rules: *MBC2, *M8C4, *MBC6, *UrfoldDemnon

Method Ordwn: MSC3( .2), UD( * ), (MBCI(-), MBC2(-), MBC4(*). MBC5(.), MBCB(.), M5C7(-))

Step 6.1 6: Consolidate misroutedpackagejocated.at.bin and

~':-0 MergeDemnons (* 5 MhergeDemons)

*IN- Method Specific Rules: MergeDemnons

* Method Orderinlg: MergeDemon&(.5)

11 Action Ordering Rules: TriggersAlmostEquiv

Step 6.1 7: Equivalence declaration lists

0 Al. Anchori

0 A2: Anchor2

U ECS: EquivalenceCompoundStructures ( 2 'ECS2)

' ~ Method Specific Rules: *ECS2

Step 6.18: Equivalence bin.reached and bin

0 Anchori ( 2 *Anchorls) (>Equiv~arsl)

0 Anchor2 (. 2 *Anchor2a) (( Equiv~farsl)

SMethod Specific Rules: *Anchorle, !Anchor2a

b, Ordering Rules: EquivVarul

Methodjrdrna: Anchorl(.2), Anchor2(.2)

-^q



PAGE 352 METHOD SELECTION OVERLAY

Ste0p 6.1 9: (rOpostfd Equivalence declaration fists

Candida U1
o Al: Anchori

o A2: AnChor2

O ECS: EquivlenceConipoundStructures2

0 ANV: AddNewVar (+.2 'AddNewVar)

P, Method Specific Rules: *AddNewVar

Mtthg Ordering: ANV(+2)

Step 6.20: Map misrouted~package.destinationset

O CD: CasifyDemon

0 Map~yConsolidation

*MBC1: 02 bound to releasepackageinto~network (+.1 IMBCl)

MBC:2 02 bound to packageenteringswitch (+ I MBACl)

*MBC3: 02 bound to package~enternng~bin (+ I MBCI)

*MBC4: 02 bound to packageIsavinggwitct (+ I OMOCl)

*MECS: 02 bound to package jesving~bin (+1 MBCI)

*MBCS: 02 bound to init~memo (+.1 &MmCl)

*MSC7: 02 bound to mmsoutdpackage~mched.bin

*MBCB: 02 bound to createpackago (.2 *MSC4) (*I 1 MBC2)

MBCO: 02 bound to movepackage (.2 *MBC4) (+I *MBC2)-

0 UD: LinfoldDemon (+.1 *UntoldDemon) -

SMethod Specific Rules: IMBCl, *MBC2, *MBC4, 'UnfoldDemnon

Comment: See 6.3

* Step 8.21: Untold mlSroutedpackagedestlnation.set

Canidst U1
EO ScatterComputationOfoemnon (5 'SCOD)



4

0.6 Map Dmons PAGE 353

.ft

i
I ~ Method Specific Rules: SCOO

ME1hfl~ 9.zdadna: SCOD( +5)

, -ft

* 1%

* 3~4.1
'ft.

*1.

* ft~ft'. P
* -ft

I p
* ft

* mm- ft

A
ft

ftp
ft-P.

B, P

ft
1  

B
*~

ml 'ft.
ft~

q
.*ft

*0 *

~--:.~: ft * * ft -



PAGE 354 GOAL DESCRIPTORS "

Ac°.

- %S

..

-D

'a a

...

4'_.

MJ

.

Ism

SII

4"° .1

lmA



E Goal Descriptors PAGE 355 -'

Appendix E
- Goal Descriptors

In this Appendix, we will present the set of goal descriptors that make up Glitter's

development vocabulary. We have attempted to define a general set of descriptors, distilling

the essential semantics of a development goal and avoiding special cases. For instance, one

of the goals of the language is Remove. This goal takes as an argument an arbitrary program

structure. We do not define a separate goal for removing particular structures:

RemoveRelation, RemoveDemon, etc.-g
With each descriptor will be given a textual description followed by several examples of the

4.. descriptor in use. Heading each example section is a list of the steps in the router

": '-'development (appendix C) where the goal is explicitly used; goals trivially satisfied in the

*router development (i.e. achieved within the posting state) do not show up explicitly either

* .here or in the development. In some cases, we have taken examples from other developments

including the following:

1. Text preprocessor. The first development attempted using Glitter. The problem is

the optimization of a procedure which cleans-up a message body before sending
"S it through an analyzer. Portions of the development are reported in [Balzer

76, Wile 81a]. This development will be denoted as Text Preprocessor.

2. Line drawing algorithm. This hand development of a graphics line drawing
algorithm was reported by Sproull [Sproull 81]. It offers a slightly different view of
several development concepts. We will denote this development as Line Draw.

-, ,-. 3. Heap sort development. No research into automatic program development would
4" be complete without at least one sort example. This one is taken from some

unpublished notes of Tim Standish. We will denote this development as Heap
Sort.

We use these different examples to provide explanation variety; only the Package Router and

Text Preprocessor have been developed using Glitter.

Finally, we will simplify the goal posting notation to that used in Appendix B.

9- : .. . . . . . . .:. . .% .* .......... ,. . .,..- , . , . .: ,. , , . . ,.,.,.,,,... ., ..



PAGE 356 GOAL DESCRIPTORS

E.1. Casify

Casif y( Clconstruct)

Achievement Condition: C is replaced with {C.C

Goal Description: this is the driver behind divide-and-conquer strategies. A complex

structure can often be broken out into several simpler components. However, while the case-

analysis concept is a powerful one, the real insight comes from selecting the right partitioning

elements. The user is generally relied on to make this selection.

I."

......................... Examples of Use ........... ............

Router References: 4.8, 4.11,4.14, 5.18, 5.19, 6.2, 6.14

Example A

Router Reference: 4.11

Development context: section 6.4 of the router development points out the problem of

working with complex, temporally.modified predicates. At step 4.10, the following constraint is

marked for mapping:

re£.re (-(packge:LOCATEDAT 8 switch

SWITCHSETWRONGFORPACKAGE(switch,package))
af toer ThisEvent

U

In this example, ThisEvent can be interpreted as the current time. Abstractly, we have

£Unuiwr on) P' L:,
Step 4.11 attempts to simplify the mapping problem by suggesting that the single constraint
be broken Out into several cases. Once the Casify goal Is posted, the remaining problem Is

choosing the best case.analysis method. In this example, a method is chosen which casifies

around some future event E (chosen by the user):

£*fl P frM now utli E);
regau irj P uring E);
reaurl P after E); " "

• ." 9
C,

C.'..- ."" -



M.~~; .. 7N *W' W- 7

E.1 CaSify PAGE 357

- . The time requirement is split into the period before, during and after E. Of course, the

effectiveness of casifying here depends on the correct choice of E. In this case E was chosen

as the time the package was located at the switch, allowing is to straightforwardly get rid of

the first and third cases and center our attention on the second, linchpin requirement.

*1 'a-I Example B

Router Reference: 5. 18

Development context: while the use of abstraction may lead to a more perspicuous initial

*i spec, the development may require specific cases to be broken out. Such is the case in step

5.18: an abstract (a.k.a. Super) type SENSOR has been defined in the initial spec. Further, a

demon has been defined that triggers on a package leaving a sensor.
F

demon PACK AGELEAVINGSENSOR (package, sensor)
.t riger -package : LOCATED-AT sensor
response nu1l;

In section 5 of the development, it becomes useful to know which type of sensor (SWITCH or

BIN) a package is leaving. The case-analysis method chosen hinges on the subtypes of

SENSOR, producing two new demons:

demon PACK AGE.LEAVING_SWITCH (package, switch)
triger -package: LOCATED-AT - switch

demon PACKAGE-LEAVINGBIN (package, bin)
~ tr'igtger -package: LOCATED.AT • bin

response nu..U.;

Example C

Router Reference: 6.13

-,V.
,,. . ,."A..



PAGE 358 GOAL DESCRIPTORS

Development context: the triggering of a constraint or demon may depend on the

occurrence of any one of a number of events. It Is sometimes useful to break out the events

".'-'.. into individual cases, and treat each one separately. Such Is the case in step 6.13, the

mapping of the demon MISROUTED_PACKAGEREACHEDBIN (note that Gist variable

convenetions do not allow bin.reached and bin.intended to be boudn to the same physicla

bin):

demon MIS ROUTED-P ACK A GE-REA CHED-BI N (package, bin. reached, bin.intended)
trigger package: LOCATEDAT * bin.reached

ADA
package: DESTINATION = bin.intended

response invoke MISROUTEDARRIVAL( bin.reached, bin.intended)

The necessary conditions for triggering this demon are either 1) a package enters a bin or b)

the destination of a package is setM5. Breaking the demon into these two cases facilitates

.i further development: the second case cannot be satisfied and hence only the first need be

considered (in its now simplified form):

demon MISROU TEDP A C K A GELOCATED_ ATBIN (package,bin.reached, bin-intended)
t.,rigger package: LOCATED.AT a bin.reached

-f (package: DESTINATION a bin.intended
Al ThisEvent);

l,.hn .invoke MISROUTED_.ARRIVAL( bin.reached, bin.intended);
demon MISROUTED PACK AGE.DESTIN ATIONSET(package, bin.reached,bin-intended)

ntrigger package: DESTINATION a bin.intended
_?., responrse

..% .1t. (package:LOCATEDAT z bin.reached
Al ThisEvent);

mi nvo ke MISROUTED_.ARRIVAL(bin.reached, bin.intended);

6 5That these two events cannot happen simultaneously is something that must be shown later in the development.

p%

e.* e',v.



E.1 Casify PAGE 359

Example D

Router Reference: Text Preprocessor

-, -Development context: a portion of the Text Preprocessor is given below. The following

actions are performed on a sequence of characters Text:

D 01 If the current character is a linefeed then replace it with a space.

002 If the current character is not an alphanumeric or space then remove it from

'~ Text.

D0 S3 If the current character is redundant (i.e. a space preceded by a space) then
remove it from Text.

"* (...

i Char i n Text

0 1 if Iinefeed(Char then invoke REPLACE(Char, space, Text);
0 2 f -(alphanumeric (Char) or space(Char))

then invoke REMOVE(Char, Text);
0i 3 f redundant(Char, Text)

, .. , .then v ke REMOVE(Char, Text);

By using the Casify goal, we can add some structure which will facilitate further optimization.

We can embed the body of the loop within each case of a mutually-exclusive case statement

.]. (given that the user supplies the necessary partitioning):

g.l

9..,

i
.,

5i~

-p

°.

%°

4,

* .V*~



_ PAGE 360 GOAL DESCRIPTORS

~ Char in Text d
mu-case Char
linefeed: begin

if" linefeed(Char)
tbe invoke REPLACE(Char, space, Text);

if -(alphanumeric(Char) I. space(Char))
ninvoke REMOVE(Char, Text);

i.f redundant(Char, Text) then invoke REMOVE(Char, Text);

space: begin
f Ilinefeed(Char)

then invoke REPLACE(Char, space, Text);
it -(alphanumeric(Char) or space(Char))

then invoke REMOVE(Char, Text);
if redundant(Char, Text) then invoke REMOVE(Char, Text);

* alphanumeric: begin~
if linefeed(Char)

then invoke REPLACE(Char, space, Text);
if -(alphanumeric (Char) or space(Char))

1hen invoke REMOVE(Char, Text);
if redundant(Char, Text) then invoke REMOVE(Char, Text);

otherwise: begin N
if linefeed(Char)

I then invoke REPLACE(Char, space, Text);
it -(alphanumeric (Char) 92. space(Char))

".thn invoke REMOVE(Char, Text);
it redundant(Char, Text) thin v REMOVE(Char, Text);

Pnd
end-mu x-case ; ,

After further optimization, we have

"-: 
-'" 4

. ' 4
* t J



E.1 Casify PAGE 361

jggnChar i~n Text fg
mux-caseii Char
linefeed: .11. p redeces so r(space, Char, Text)

* then invokej REMOVE(Char, Text)
gtU invoke REPLACE(Char, space, Text),

space: f p redecesso r(space, Char, Text)

alphanueric: Lj invoke REMOVE (Char, Text);

* otherwise: invoke REMOVE (Char, Text)
end-mux-case;

A4

.



PAGE 362 GOAL DESCRIPTORS

E.2. ComputeSequentially

ComputeSequentially( Cllconstruct, C21construct)

Achievement Condition: C1 computationally precedes C2

Goal Description: C2 is an action that has the potential of effecting C1. We want to

* guarantee that C2 does not effect C1.

......................... Examples of Use .........................

Router References: 2.6

Example A

". Router Reference: 2.6

" Development context:
AU

demon NOTICENEWPACK AGEATSOU RCE (package) ,.
trigger package:LOCATEDAT * t source

* atomic
5 update prevpackage ja PREVIOUSPACKAGE(S)

Zo LASTPACKAGE():.
02 update lastpackage i LASTPACKAGE(S)

= package .

demon RELEA SEPACK AGE_INTONETWORK (package. new)
t.r'igger package.new: LOCATEDAT * th sourceresponse ":-

3  JL PREVIOUS_PACKAGE(e): DESTINATION 0 package.new: DESTINATION
Mmen WAIT[]:
update :LOCATED.AT gj package.new I& (yhe source):SOURCE.OUTLET

Here, relation PREVIOUSPACKAGE is updated to LAST_PACKAGE(*). We want to insure

that a subsequent reference to PREVIOUS.PACKAGE can be replaced with



* e - *.* .a .I~*- -- -

E.2 ComputeSequentially PAGE 363

.LAST-PACKAGE, i.e. that the value of LAST_PACKAGE has not changed between the time

PREVIOUSPACKAGE was updated and the time it is referenced. If there exists an action

4.. that changes LASTPACKAGE between these times, we want the action executed aftLr the

reference. Above, , points to the update of PREVIOUS_PACKAGE, '2 points to the change

" to LAST_PACKAGE which must be moved, and 03 to the reference.

Example B

Router Reference: Text Preprocessor

*During the development of the text-preprocessor, a state is reached containing the following

program fragment:

0 invoke REPLACE(Char newspace Text);
.2 .if predecessor(space, Char, Text))

then invoke REMOVE(Char Text)

pThat is, replace the current character Char with a space 10,). If the preceding character is a

", ' space then remove the current character (02)" In only some cases we will be replacing Char's

value only to remove it entirely later, i.e. those cases where Char's predecessor is a space. A

general method says that if you can compute two actions sequentially and show the first is

superseded by the second then you can get rid of the first.

-, To achieve the ComputeSequentially goal, we must distribute the call on REPLACE within the

conditional:

. ~bein
if predecessor(space, Char, Text)

0 invok REPLACE(Char newspace Text);
invoke REMOVE(Char Text)

Sinvoke REPLACE(Char newspace Text);

Finally, we can remove the first call to REPLACE 1 :

. i

;4 .
.. -
:-~

3.



PAGE 304 GOAL DESCRIPTORS

.'-. predecessor(space, Char Text)
J"th invoke REMOVE(Char Text)

• -. ~in vok REPLACE(Char newspace Text);

,.. Rn :

9-.

lmd

L%

71'

.
°

-. 9-

b-



E.2 ComputeSequentially PAGE 365

E.3. Equivalence

F! Equivalence( Cliconstruct, C21construct)

4 Achievement Condition: C1 is structurally equivalent to C2.

Goal Description: Equivalency here is based on structural or pattern-match semantics (see

also the Lisp function equals): if C1 and C2 are two expressions in one-to-one

correspondence, then C1 and C2 are equivalent. Note that in achieving this goal, there is no

requirement that either C1 or C2 remain anchored; both may change into some new common

form.

......................... Examples of Use .........................

Router References: 1.15, 2.10, 2.11,4.5, 6.8, 6.12, 6.17, 6.18, 6.19
4

Example A
Router Reference: 4.5

Development context: when attempting to consolidate two structures, generally one or

more of the components of each must be made equivalent. In consolidating the two demons

at step 4.4, we find we must equivalence the two triggers 2) of the two demons:

demon SETSWITCH (switch)
1 1 trigger RANDOM()

" F'response . .

.

1demon SET_SWITCH.WHENHAVECHANCE (switch, package)

* -12 trigger (package - first(PACKAGESDUEATSWITCH(*,switch))

SWITCHISEMPTY (switch))

- In this example, 2 will be held constant (anchored) and P1 changed to match it. This strategyi2

my€, ' .. """";,..,.."".".' ": " - " " "". m "" "" . . ," °" "r :"'' . - " . ." ".".".". ."



* PAGE 366 GOAL DESCRIPTORS a

'a..i

was chosen because of the general ease with which RANDOM can be specialized. After

consolidation we have

demn SET_SWITCH(switch, package
trigger (package a first(PACKAGESDUEATSWITCH(*.switch))

SWITCHIS_EMPTY (switch))
response ...

Example B

Router Reference: 2.10,2.11
'

Development context: equivalencing two compound structures is a frequently occurring

goal. For instance, in step 2.10 we wish to make two demon argument lists equivalent:

(package.new) is the first list and (package) the second. A useful method for achieving this

goal employs a divide-and-conquer strategy by attempting to equivalence each

subcomponent in a pairwise fashion. This leads to the equivalencing of package.new and

package in step 2.11. Since each of these are primitive components, other methods will be

employed (e.g. anchoring, renaming).

( --

'a

.1% •

a,
,'.a x ':'; ' ' .' .'.,..' ,' ".,' " . ,:. . .- . .- . . . . . . . . .



r. E.3 Equivalence PAGE 367

E.4. Factor

* Facto r( Tltemplate, Clconstruct)

Achievement Condition: Factor all occurrences of T within C

Goal Description: As a development progresses, information tends to spread throughout

.' .d the program. At certain points It is organizationally useful to regroup (factor) common

structures.
;-',

The factor goal has two parameters: a template and a context. The template is a pattern with a

* . special mechanism for marking formal parameters in the resulting definition. The context

-. bounds the area in which the template will be matchedM6."

......................... Examples of Use .....................

Router References: 6.5

Example A

Router Reference: 6.5

Following is a portion of the package router development, abstracted somewhat here for

readability.

if P

update packagesldue of PACKAGESDUE EATSWITCH (switch.current,S)
I& PACK AGESDUEAT_SWITCH (switch.current, 0) minus package

Supdate packagesldue of PACK AGESDUEATSWITCH (switch,$)
J,2 PACK AGES.DUE_ATSWITCH (switch,*) minus package;

Using the template

W O6The Isolate goal can be viewed as a special case of the Factor goal where the context is exactly the expression

to be factored.

.. A-.



- -k.

PAGE 368 GOAL DESCRIPTORS

uwdate packagesdue of PACKAGESDUEATSWITCH(#switch 67 , S)
I& PACKAGESDUEATSWITCH (#switch,*) minus #package

we can factor the two updates into a single new procedure:

.hen invoke TRIM PACK AGESDUE_ATSWITCH (package,
.a'%' -L_ . , switc h.current )

A2 invoke TRIM_PACKAGESDUEATSWITCH (package, switch)

jrocedu r' TRIM_PACKAGESDUEATSWITCH (package, switch)
update packagesdue of PACKAGESDUEATSWITCH (switch, S)

12 PACK AGESDUEATSWITCH (switch,.) mi nus package;

The usefulness of factoring here will become apparent later in the development when

maintenance code must be introduced at each change to PACKAGESDUEAT_SWITCH,

before occurring in two locations, but now only one.

Example B

Router Reference: Heap Sort

The following is a portion of an intermediate state in the development of a heap sort algorithm

suggested by Tim Standish:

procedurSiftUp(i,n)
declaer j: Integer;

,/ .11 201>n then Exit else i :a 20i;
i.9 If. 2i<n MM ij_ C(21i+1)>C(j) then i :a 2i+l;

JI C(I)>C(i) Mhen
be~gina
invoke Exchange(C(j) C(i));
invoke SIftUp(j n)

,A. Factoring 2*i gives us

VIn a factor template, otype.name signifis a formal parameter. The # will be removed in the definition.

%~~r a '.*.. - - - - - -v~s wm .. .



EA4 Factor PAGE 369

Pr~ceadure SIftUp(i,n)
declarjj j: Integer;
rltion.Q double-j(V I Integer)

definition V = 2*i;

if, doublei(*))n jhM Exit n.Laa j :*doubtei(*);
if, doubtej(*)(n Mm.j~ if. C(doubleI(*)+1))C(j) jn j:udoublel(*)+I;
It C(j)CMi ima

invoke Exchange(C(j) C(i)),

Further development yields

produ~.~re SiftUp(i,n)
declare j: integer;

i :- 21i;
jit i>n then Exit;
Jif j<n lh~ if C(j+1)>C(j) then i :zj+1;
It. CUj)CMi 11MD

invoke Exchange(C(i) C(i));

inok ifg;jn



PAGE 370 GOAL DESCRIPTORS

E.5. Flatten

Flatten(Clconstruct)

Achievement Condition: No procedure calls or derived relation references exist in C.

Goal Description: The Flatten goal can be used for several different purposes:

In To explicate dependencies. For example, before maintaining a derived relation R,
we must determine the set of base relations that R depends on (is defined in
terms of). A simple way to determine the base set is to make all base relations
explicit within R's body, i.e. Flatten any derived relations within R's body.

o To optimize. In general, optimizations cannot be carried out across definitional
boundaries. If C is shown to be crucial to the performance of the program as a
whole, then we may want to Flatten the procedure calling structure within C to
allow local optimization to be carried out.

The methods used to flatten a context rely on either maintaining or unfolding defined objects.

Hence, Flatten could be described as one or more postings of Unfold and/or

Maintainlncrementally, making Flatten a vocabulary enriching, but unnecessary goal.

......................... Examples of Use ..............

Router references: 1.8, 5.3, 5.7

Example A

Router Reference: 1.8

Development context: the goal of step 1.7 is the incremental maintenance of the derived

relation PREVIOUS-PACKAGE.

£Shiioll, PREVIOUSPACKAGE(prevpackage I package)
definition prev.package
(A package.previous II
package.prevous immediatly < LsI.(PACKAGESEVER_AT_SOURCE(*))

X t PACKAGESEVERATSOURCE(*));

,5; . """"""*"""""""""'% "% .. *""' .". . - ".* ° ' . " '-' .. ° % . '." .. ,.. '. . . .... . .i .. • • • .



E.5 Flatten PAGE 371

* .* To maintain PREVIOUSPACKAGE, we must determine when it changes, i.e. what relations

it depends on. In this case, there is one: PACKAGESEVERATSOURCE (01). However,

PACKAGES_EVERATSOURCE isa derived relation itself which may be defined in terms of

still further relations. To explicate PREVIOUSPACKAGES's base relations, a Flaten goal is

:*,.* posted at step 1.8. Note that if PACKAGESEVERATSOURCE was defined in terms of still
"- : further derived relations, these in turn would have to be flattened (see step 5.3).

.8

:i

- , ; - . . . , .. , . , - - . , . . .. . . . ... . . . . , .



. 1;7

PAGE 372 GOAL DESCRIPTORS

'S.:

E.6. Globalize
.1-*

Globalize( Clconstruct)

Achievement Condition: C is to be moved out of the local context: local connections

have been snipped; C is not part of an atomic.

Goal Description: Much work in a development involves moving structures from one place

to another. In pulling some piece of code out of a particular context, we must make sure of

several things: i

r- Any references to locally scoped variables within C should, if possible, be
removed. If one or more variables resist removal, then C must be encapsulated -

and an argument defined for each local variable remaining.

r3 C cannot be part of an atomic. The statements of an atomic are treated as an .
indistinguishable action and cannot be spread out individually.

......................... Examples of Use .........................

Router Reference: 1.4, 5.12, 5.16

Example A 4'

Router Reference: 1 .4
N.

Development context: at step 1.3, a goal is posted to Isolate a derived object (I ) found in

the demon RELEASE_PACKAGE_INTONETWORK. The derived object makes reference to

the variable package. n:w, locally scoped by the demon.

5%

'I



E.6 Globalize PAGE 373

Ile demon RELEASEPACK AGEINTONETWOR K (package.new)
-rigge package.new:LOCATED.AT a h source

.4 response Suc

i-f
(.t1 ](the package.previous II

package.previous immediatelv before package.new
wrt PACKAGESEVERATSOURCE(-)

) :DESTINATION 0 package.new: DESTINATION
then WAIT[];

uodatte :LOCATEDAT f package.new t& (It source): SOURCEOUTLET

If the reference to package.new is not eliminated, the resulting derived relation must include it

as an argument.

% ,Example B

Router Reference: 5.12

Development context: in this example we are trying to move a piece of code I 2 out of a

'.
"" demon which is part of the environment (see Purity, section E. 10).

'demon CREATEPACKAGE()
S"triger RANDOM(): ' . /r e s I o n s e ,

create package.new II
package.new: DESTINATION - A bin ad
package.new: LOCATEDAT - the source;

2 -: .LQ.on (switch I
MEMOLOCATIONBIN (switch, package. new: DESTINATION))

S2 update packagesdue gf PACK AGES DUE ATSW ITCH (switch,$)
12 PACKAGESDUEATSWITCH (switch,*) concat <package.new>

n atomic;

Although the loop makes no reference to locally scoped variables, it is part of an atomic which

Iprohibits it from being moved. To Globalize the loop, it must be removed from the atomic.

.z.
,,



-* . W; .* .7 1.IN.9 9

PAGE 374 GOAL DESCRIPTORS i

E.7. Isolate

Isolate( Elexpresslon)

Achievement Condition: Replacement of E with reference to defined relation.

Goal Description: This goal reformulates some local embedded expression into a global

one. This is generally the first step in moving the expression to a location where it can be
ft~. further optimized. Note that the Isolate goal is a special case of Factor where the template

must be a value returning expression and the context is the expression itself. In this sense, itj
* .~..is equivalent to a Fold in apllicative Inaguage development systems (e.g. [Darlington 81 ]). We

believe it occurs frequently enough as a speical case of factoring to be broken out separately. 'f

................. *.............. Examples of Use ...................

Router References: 1.3, 1.17,3.3

Example A

- Router Reference: 3.3

Development context: in section 3, we are concerned with the removal of the relation
LAST_.PACKAGE: only the destination of the last package is needed. The general strategy

used is to remove all references to the relation, thus making the definition removable. There is
only one reference to the relation:

it1 LAST_.PACK AGE(-): DESTINATION 0 packpg1e. new: DESTINATION
~jn invokei WAlTO;

By posting an Isolate goal on the retrieval of the last package's destination, we can make this-

expression global.

itL LASTPACKAGE..DESTINATION(O) 0package. new: DESTINATION
JIhM itnvoke WAlTO;

£3J.Lti.a~ LASTPACKAGE..DESTINATION (last-.destination I bin)
dfiition ~t.Qlos8t-destinationl LAST-PACKAGE(*) : DESTINATION:



E.7 Isolate PAGE375

The global computation, in the form of a derived relation, can now be moved to a location

Owhere further optimizations can be performed (see step 3.4).
4' S

- Example B

Router Reference: Line Draw

- Development context: Sproull presents the development of a line drawing algorithm which
attempts to minimize the reliance on costly arithmetic operations such as multiplication and

-', division. We will view the use of such operators as specification freedoms that must be

mapped6 8 . We are given the following portion of program for drawing a "straight line"

between two points (0,0 and dx,dy) on a graphics screen~e:

:_= x from 0 1& dx
g2 begin

y : truncate([dy/dx] * x + 1/2);
DISPLAY (x y)

* iOur goal is to map the multiplication operation into an acceptable operation (e.g. addition) on

the final implementation hardware. The method we wish to use replaces the multiplication of

the loop variable by a constant with a new expression only using addition (as residue, it leaves

another expression involving multiplication that can be mapped later). The method expects

that the multiplication has been isolated, i.e. it cannot work on embedded expressions.

Note that Sproull's development is the algorithmic optimization type that we have disassociated from. However,
the freedom mapping view makes it an Illustrative example.

• 'The pseudo Pascal notation is Sproulrs. The Gist version would replace variables with relations and
assignments with inserts and updates.

#

-iP

F 2v. ~~ *



r AD-Ail9 919 AUTOMATING THE TRANSFORMATIONAL*DEVELOPMENT OF SOFTWARE 3/3
VOLUME 2 RPPENDICES(U) UNIVERSITY OF SOUTHERN
CALIFORNIA MARINA DEL REY INFORMATION S- S F FICKAS

UNCLASSIFIED MAR 93 ISI/RR-83-199 NSF-MC79-i8792 F/G 9/2 NL

EohmhEEohhEEEE
mhmhohhohEEEEE
EEmhhmhEEEEEEI
smmhEmhmhhEoh



iv.

1111IL2 1..6__

ICRI yRSOUIN ET-HR
MfT0,L SRA jSl&OS-Sl-



PAGE 376 GOAL DESCRIPTORS

A.-

Transformation RemoveMultipl icatlon:

r: :.1Mo i IrMM cl I& c2

z :* c3 * 1

nd:

z :* (cl - 1) 0 c3;
1M l from c1t&c2

z :a z + c3;

.5

Using isolation leads us to the following state in which the RemoveMuftiplication

transformation can be applied:

jgMg x from 0 1& dx

t:a [dy/dxJ 0 x;
y :a truncate(t + 1/2):
DISPLAY(xy)

Further in the same development, we reach the following state:

t :a 0;
= J x fr1m0& dx

s :a t + 1/2;
y :a truncate(s);
DISPLAY (x y)

:l t + [dyl/dx]

The goal is now the removal of the variable t. Again using isolation, in this case the reference

to t in the computation of s, we get

.. 5

~--



E.7 solate PAGE 377

re.lationf sIRftAL *t + 1/2;

ox from 0 o dx

y :z truncate(s);
DISPLAY (x y)
t :a t + [dyldx]

Lad;

Finally, after computing a at each place it changes (see the goal MaintainIncrementally) we

get

relations I real:

atomic~
I :* 0;
s :" 0 + 1/2

MA atomic
I= x from 0 1& dx

y :- truncate(s);
DISPLAY(x y)
atomic
t :W t + [dyldx];
s - s + [yldx]

and,

which can be simplified into

relao s I real;

s :a 0 + 1/2
x fr.om 0 o dx

A2 begin
.. y :a truncate(s);

DISPLAY(x y)
s s + [dy/dx]

'U

p. 9



PAGE 378 GOAL DESCRIPTORS P

E.8. Map

Map(Clconstruct)

Achievement Condition: The freedom embodied by C has been mapped away.

Goal Description: A large part of the development of an abstract specification involves

finding ways to remove specification freedoms which are not supported in the implementation

language. What is considered a freedom is naturally dependent on the specification language

being used and the final implementation language. The following are Gist specification

freedoms: derived-relations, temporal reference, demonic computation, constraints and non-

deterministic selection (see section 5.2.1 for further discussion). Depending on the

implementation language, other freedoms might include recursi{n, parallelism, the

associative relational data base and even multiplication (see example B in section E.7).

......................... Examples of Use .........................

Router References: 1.10, 4.1,4.3, 4.7,4.9,4.10,4.12,4.13,4.15,4.16,4.18, 5.1, 5.4, 5.5, 5.8, ,

6.1,6.3, 6.6, 6.13, 6.15, 6.20 -%

Example A

Router Reference: 5.4

Development context: LOCATIONONROUTE.TO_BIN is one of the derived relations

found in the specification:
m

£.iM n LOCATIONON_RO UTE_TO_BIN (LOCATION, BIN)
definition

cAs LOCATION -,

BIN * LOCATION a BIN;
PIPE n LOCATIONONROUTE_TO.BIN (

LOCATION: connectlon_to_switch_o r_bln, BIN);
SwrrCH - LOCATIONON.ROUTETOBIN(LOCATION: switchoutlet ,BIN);
SOURCE so LOCATIONONROUTE.TOBIN(LOCATION: sourceoutlet,BIN):

i-

we ",_',.' - .' # V:,, .-. .-. . .. ," % ..' . ,'..'. .. .''.. -... ,, ... ** * S.

2" oo



E.8 Map PAGE 379

a-

It is mapped away by remembering the router connections explicitly:

' ;'; reliation MEMOLOCATIONBIN(location, bin);

demon INITIALIZEMEMOLOCATIONBIN()
,- 7 dgtriger: (start initializationstate)
®r response

becin
1.U B I BIN do insert MEMOLOCATIONBIN(B, B);
J=goo L I LOCATION II

MEMOLOCATIONBIN(L, B) An
L x L2 : CONNECTION_TO_SWITCH_ORBIN

A2d insert MEMOLOCATIONBIN(/L2, B);

Example B
1 %4 Router Reference: 4.1

, ,., Development context: the constraint DIDNOT SET SWITCHWHENHADCHANCE is

a freedom which must be mapped:

cs.ai.t. DIDNOTSETSWITCHWHEN_HADCHANCE
alwys prohibit 3 packageswitch I

(package: LOCATED-AT 8 switch

ADA~
SWITCHSETWRONG_FOR_PAC KAGE ( switch,package)
A"

((package a f i rst(PACKAGESDUEAT.SWITCH (*,switch))
ADA

SWITCH_IS_EMPTY(swilch)) Aso& everpefore));

The method employed maps the constraint into a demon which triggers on one of the

conjunctive arms of the constraint, and requires that the other two arms not hold. The trick

here is choosing which arm to trigger on, i.e. whcich event allows the others to be avoided.

The choice is currently left ot the user. The new demon is

q *,

4'.f ". e f - '" q " q P "." " - " . '. " . "o N ' - " - - " - " . " .
= ' . * '  

. ' ' ". .

" ' ' ' ; * , ' " ; ', ; '. .,' '! A ,, ,I ,.',,,a " _ _'. , ,. .*'.",,. .*.\> , , ', ,, ,, *.. .,..', .,'-, ,. .'.-. -,. ,-,- ....



* PAGE 360 GOAL DESCRIPTORS

j;;= SETSWITCH_ WHEN_ HAVE_ CHANCE (switch, package)
triggenr (package a first (PACKAGESDUEAT_SWITCH (*,switch))

SWITCHISEMPTY (switch))response "

-rftAuire (-(package:LOCATEDAT a switch
AUA

SWITCH_ SETWRONGFOR-PAC K AGE ( switch,package))
f tM ThisEvent7 0

until -((package"
f i rst( PACKAGESDUEAT.SWITCH (, switch) )

ADA
SWITCH_IS_EMPTY(switch)) jgso everbefore))

We now must map this demon. The general strategy will be to consolidate this demon with the

SET_SWITCH demon which controls the setting of switches. Note that the use of demons as

intermediate mapping forms appears useful and is replected in the selection rule

DemonsAreGood.

Example C

Router Reference: 4.18

Development context: at step 4.18, the update of a switch's setting Is still in non-

deterministic form: I,

update :SWITCM_SETTING aj switch I& switch : SWITCHOUTLET
where SWITCHIS_EMPTY (switch)AnD -,

-SWITCHSETWRONGFOR_PAC K AGE ( switchpackage);

The method employed will be to choose, deterministically, a setting that does not violate the

attached constraints:

7 f-..

* ~7°. e trigein of thi demon.

r, .I. °" * ' ° .r .t . % ". '.... ... .. . .'. .... : i: .. . . .-. . 6 . .b



-AP jorut -J'7 IQV- -.' -.7 77-:1.777 -. 7777.

E.8 Map PAGE 381

undt :SWITCHSETTING 2Li Switch I&
(pipe 11 pipe switch: SWITCHOUTLET

LOCATION-ON_.ROUTEO..BIN (pipe,
package: DESTINATION));



PAGE 382 GOAL DESCRIPTORS

E.9. Maintainincrementally

Maintainl nc rementally( Rjdeflned-reiation)

Achievement Condition: R recomputed eagerly (as opposed to lazy evaluation) in

terms of the changes to the value upon which it is defined.

Goal Description: A derived relation R is defined in terms of another expression E. We can

remove the need for E by making sure that R is maintained throughout the program. That is,

wherever the value of E changes, we introduce code to incrementally update R.

. ......................... Examples of Use .....................

U
Router References: 1.8, 1.11, 1.18,3.4, 5.2

Example A

Router Reference: 1.11

Development context: The goal of step 1.10 is to map the derived-relation

PACKAGESEVERATSOURCE (or PEAS). There are several general strategies we wcan

try: maintain the relation incrementalyy; unfold the relation where ever it is used (lazy

evaluation). The relation PEAS is ideally suited for an incremental maintenance approach:

packages are added to the end of the sequence one at a time.

relation PACK AGESEVERATSOURCE(packageqs& I fn package)
definition packageseq a

((package II (package:LOCATEDAT a tha source) Ans. ever.befor.e)
or.der.ed temDorally bXv start (packge:LOCATED.AT - the source)).,

The Maintainincrementally goal posted at 1.11 triggers several competing methods. That is,

the concept or general strategy of incremental maintenance was generalized into a goal with

a set of methods or tactics for actually carrying it out. The method we will use introduces a

demon which "watches" for relevant changes (a package becoming located at the source

station) and does the necessary update to PEAS.

x~u~cr,.c .



E.9 Maintainlncrementally PAGE 383

" *- demon NOTICENEWPACKAGEATSOURCE (package.new)
trjigger package.new:LOCATEAT " the source. response

update packageseq ja PACKAGES_EVERATSOURCE(S)
I& PACKAGESEVERATSOURCE concat <package.new>;

. aion PACKAGES_EVERATSOURCE(packageseq se a fl ni package);

Example B

Router Reference: 1.8

In step 1.8 we wish to incrementally maintain the relation PREVIOUSPACKAGE:

relation PREVIOUSPACKAGE(prev.package Package)
definition prevpackage

(n package.previous II
package. previous immedja8tely, < JMIt(PACKAGESEVERATSOURCE( ))
wrt PACKAGESEVERATSOURCE('));

Instead of using a demon as in example A, we will employ a method which scatters

maintenance code (0 at every location within the program where the relation may change,

i.e. where its base relation PACKAGESEVERATSOURCE changes. There is only one

*- such location (0) and that is found within NOTICE_NEW_PACKAGE_AT_SOURCE.

* ...-
4 .,; ,

*°,



PAGE 38 GOAL DECRIPTORS

.ruelati. PREVIOU S-ACK AGE (prev.package Ipackage);

deo NOTICE..NEW.P AC K A GE..ATSOU RCE (package. new)
t.rjiggeg- package. new: LOCATEAT * 1±source

l updgate package..seq j~a PACK AGES..EVER..ATSOU RCE (S)
I& PACKAGESEVER-.AT.SOURCE cncat <packagenew>;

02 uoda prev..packege ial PREVIOUS.,PACKAGE(S)
I& (113* package.previous I

package.provious immeadiatelyx before
ILLL( PAC KAGES-EVERATSOU RCE( ) coca <package.new>)u

SPACK AGES.,EVER..AT..SOU RCE (O) coca (package. new>)

atmi

SF



q E.9 MaintainIncrementally PAGE 85

E.10. Purify

. %Purify( Alaction)

Achievement Condition: A does not appear inside an uncontrollable portion of the

spec.

Goal Description: During a development, the unfolding and maintaining of defined

structures may lead to the introduction of code into portions of the specification which are

uncontrolable. For instance, a specification may contain a model of the environmentin which

the application program is to run. Code introduced intosuch uncontrollable portions must be
moved to parts of the spec that are under control of the application program. We Purify a

newly introduced action A by either 1) doing nothing if A is in the implementable portion of the

spec (the goal is trivially satisfied) or 2) removing A from the uncontrollable portion.

......................... Examples of Use........................

Router reference: 5.10, 5.14

Example A

Router Reference: 5.10

Development context: in the process of maintaining PACKAGESDUE_ATSWITCH in

section 5 maintenance code (0,) is introduced into the demon CREATEPACKAGE:

..

vi

V....

*: *qW ~



PAGE 386 GOAL DESCRIPTORS

demon CREATEPACKAGE() .

trigger RANDOM()
response

A tomic..
create package.new I

package.new:DESTINATION 5 a bin An
package.new LOCATEDAT he source;I 1 .L00o (switch II

MEMOLOCATIONBIN (switch, package. new: DESTINATION))
g2 Update packagesdue gi PACKAGESDUEATSWITCH(switch,$)

tg PACKAGESDUEATSWITCH(switch.*) cancer <package.new>

In step 5.10, we post a goal to Purify the new code. Since CREATEPACKAGE is outside the

implementable portion of the spec -- it is a part of the model of the environment -- the

achievement of the goal rests on moving the code to an implementable part of the spec, in this

case the demon RELEASEPACKAGEINTONETWORK.

a..

I "'

"p

I
C~ [

-!

~ c~: ~ .~SJS ~.. • ". -*'*



7#1- W' -75- 7-V

10 E.10 Purify PAGE 387 p

E.1 1. Reformulate

Refo rm u late( Clconstruct, Plpattern)

Achievement Condition: A state is reached where C matches P

Goal Description: Using the Reformulation goal, the user can describe a goal state as a

syntactic pattern. Such a general goal has great expressive power. In fact, we can express

several other defined goals through the Reformulate goal: Remove given the empty state as a

pattern; sometimes Map where the mapped state can be described by a syntactic pattern (e.g.

derived- relations).

Over reliance on syntactic goal descriptions loses the development abstraction we strive for,
g ji.e. an explicit vocabulary of goals for which specific methods can be developed. Currently,

use of the Reformulate goal in a development is viewed as ad hoc: the pattern has not

occurred enough to generalize into a new goal descriptor. As more experience is gained in

developing programs using Glitter, we expect further pattern generalization to occur.

.......................... Examples of Use .........................

Router References: 1.5,1.13,1.14,1.16,1.20, 2.12.4.6, 6.9,6.11

Example A

Router Reference: 1. 5

Development context: Before a derived object is folded into a derived relation (i.e. Isolated),

an attempt is made to remove as much linkage to the local context as possible (i.e. Globalize).

In step 1.5, the local variable package.new is to be reformulated into a global-expression,

one which consists solely of relations and global objects. At step 1.6, this goal has been

further reduced to reformulating the variable into an expression on

%,, PACKAGES4-EVER*-AT,-SOURCE, namely JW(PACKAGESEVERAT SOURCE(°)).

Having gotten this far, the system does not have the necessary theorem proving capability to

show that these two expressions are equivalnet, and hence relies on the user to fill.in the last

step.

' . .. ' . .',,? ;, . ',.. a.,.*,-;*.; ,.'.,,,,,' 5, 5,',,.. '. . . ,',-. ..- ., .. ..... ... ,... .... ,..... .... ...,



PAGE 368 GOAL DESCRIPTORS

Example B

Router Reference: 1.13, 1.14

Development context: The goal of step 1.12 is to remove the reference to

PACK AGESEVERATSOU RCE from the following context:

II-
0 (tb package.previous II

package.previous ummediat.ely befor
last(PACK AGESEVERATSOURCE (0) concat <package.new>)

r PACK AGESEVERAT SOURCE (*) concat <package.new>)

Cm
The method chosen attempts to reformulate the derived object 1 as a positional.retrieval on

iPACKAGESEVERATSOURCE which may prove easier to work with:

goal-pattern: lut(Slsequence)

A method exists for reformulating derived objects of a certain type, namely ones that do a

trivial binding:

goal pattern: (x II x - ... (Slsequence))

Finally, a method exists for reformulating relative retrievals from a sequence into positional

ones:

goal pattern: x immediatelv before y = (S~sequence concar z)

This last pattern can be matched directly against the current state.

Example C

Router Reference: 4.6, 6.9

Development context: A general means of making two expressions equivalent is to hold

one steady and reformulate the other. This crops up several places within the router

development when two demon triggers need to be made equivalent. In the first, RANDOM

must be reformulated as

,-*- .. . . . . . . ....-



E.11 Reformulate PAGE 389

,.~.' package jrst(PACKAGES_DUE_ATSWITCH(*, switch)

- SWITCH_IS_EMPTY (switch)

Here, a method which replaces a random event with a more specific event is chosen.

, In the second, we must reformulate the relation reference SWITCHISEMPTY (switch) as

package: LOCATEDAT = Switch

Here, a method which unfolds the relation at its reference point is chosen.

0. -,.

4 "

.4

I.

.

4 . ,, 4 ,,,,. ,". " V*.,.... .. ,.,. ,. ,... .%, .,...,..



PAGE 390 GOAL DESCRIPTORS

E.1 2. Remove

Remove( Slconstruct, Clconstruct))

Achievement Condition: Structure S is removed from context C

Goal Description: The removal of structure S from context C may be motivated by any of the
following:

1. S is deadwood; no use is made of S within C.

2. S is a component of some larger structure X; by stripping away all components of ..
X, X can be removed (see I above).

3. C is a portion of the specification outside of which we have control.

......................... Examples of Use ........................

Router References: 1.1, 1.2,1.12,1.19,1.21,2.1,2.2, 3.1,3.2, 3.5, 5.11,5.15

Example A

Router Reference: 1.1

Development context: section 1 of the router development centers on optimizing the

relation (sequence) PACKAGESEVERATSOURCE. In particular, we only reference the

last element of this sequence and hence, have no need for the entire history of packages ever

entering the router. In step 1.1, the user states his desire to Remove this relation71. U

relation PACKAGESEVERATSOURCE(package_seq I s1uMnca oft package)
definition package.seq • '

({package II (package:LOCATED.AT a IjM source) hiso everbefore)
ordered te.p l.l* k start (package: LOCATED.AT Mtb source));

After a number of development steps, the above relation is removed from the spec, and as

residue, the following two relations are left: .
* .Q

1 Note the difference between mapping the relation and removing the relation. A mapping goal would be
achieved when we had eliminated the derivation freedom from PACKAGES.EVER.AT.SOURCE (ae step 1.S), the
remove goal when the entire relation has been eliminated. In fact, the remove goal in a more specific case of the map
goal: removing a derived relation entirely i one way of getting rid of the freedom.

- .' .*. .. *.



• - J °. . _ o - . = , . . .° . o .. .- . • ° , . . . - .

E. 12 Remove PAGE 301

relation PREVIOUSPACKAGE(prev..package I package);

- .rai..relation LAST-PACKAGE(last-package I package);

Example B

Router Reference: Text Preprocessor

Deve!opment context: in much the same way that the sequence

- -, PACKAGES EVERATSOURCE was unused in example A above, an action may be

ll "unused". That is, there may be no references to its effects. In the text preprocessor

development, we reach the following state (see example B, section E.2):

. w.-. .. ,.

if predecessor(space Char Text)

invoke REPLACE(Char newspace Text);
invoke REMOVE(Char Text)

.i.

2111 invoke REPLACE(Char newspace Text);

The first replace procedure . is wasted effort since the next action is to REMOVE the

. character. A goal is posted to Remove the call on REPLACE 01

I iExample C

Router Reference: 5. 11

Development context: the above examples have dealt with removing a construct

. .completely, i.e. from the entire spec. The Remove goal can also be used to remove a

construct from a more specific context. For example, the effect of maintaining a derived

relation is to place maintenance code anywhere in the spec where the relation might change.

Some of these locations may be outside of the portion of the spec over which we have direct

control, e.g. the portion of the spec that models the environment. Such is the case in the

4. ; maintenance of PACKAGESDUEAT-SWITCH in section 5. Code is introduced into the

• demon CREATE-PACKAGE, part of the model of the router environment:

.'.b

.- 4.

* .w . 4 * :.- v**



U MV11. .* . . . . .V.V X.

PAGE 392 GOAL DESCRIPTORS

demon CREATEPACKAGE()
trinaar RANDOM()

.CrAa package.new II
package.new: DESTINATION u A bin A
package. new: LOCATEDAT * the source;, b! (switch I

MEMOLOCATIONBIN(switch, package.new: DESTINATION))
A2o update packagesdue oI PACKAGESDUEATSWITCH(switch,$)
, PACK AGESDUEATSWITCH (switch.*) concat <package.new)

The maintenance code 1 must be removed from CREATEPACKAGE. While we could

attempt to remove it from the entire spec, reasoning that this is one way of removing it here

(this method is used in removing the same maintenance code from

RELEASEPACKAGE_INTO_NETWORK in section 5) the actual method chosen attempts to

move the code out of CREATEPACKAGE (and into the implementable portion), hence

satisfying the goal.

--9

-9.

.;

9,.?

'-9
9.



-5 - 7M --- -. -is -.-b-]- -:6 '_ - .9 - 9 -Y -

- E.12 Remove PAGE 393

.

E.13. Show

* . . Show( Plproperty)

.A ; Achievement Condition: P asserted

Goal Description: The validity of many development methods rest on showing that certain
properties hold in the current state of the program. Sometimes, one or more of the arguments

to a property may be unbound. In these cases the task is to find some binding that makes the
property hold. Below are listed the currently defined set of properties. Following each
property is the locations in the router development where it is used as an applicability

." ..,, condition for a chosen method.

ACTION.IS.UNNOTICED(Alaction) (1.22,3.5)
* An action A is unnoticed if either it has no effects or its effects are not

used by any subsequent computation.

4 .,. COMPUTATIONALLYBETWEEN(Elexprossion, Al1action, A21actlon) (2.5)
The expression E is computed after Al is executed but before A2 is

4 executed.

EVENT.BEFORE.EVENT(Blevent, Elevent) (4.14)
Event B occurs before event E.

FINITEEX PLICATION(DRIderived relation) (5.4)
. A finite number of explicit data base assertions will compute DR.

FUTURE.EVENT(Fevent, Clevent) (4.11)
Event F occurs after event C.

4o

GENERALIZALETRIOGER(Tltrigger) (6.11)
The trigger (-3 x I1 P(x)) can be replaced by -P(x).

- IMPLIED_BY(Qlexpreshion, Plexpression) (4.1,4.9, 4.12)
Logical implication: P ,> 0.

. INDIVIDUALSTART(Dldemon) (6.2,6.14)
If D has a conjunctive trigger, none of the arms ever occur simultaneously.

INTRODUCEABLE.VAR.NA ME(VI variable-name, Dldeclarative-construct) (2.12, 6.19)
It is legal to introduce V as a variable declared in D, i.e. V does not conflict

A with any existing variables declared by D.

LAST.ACTION(Alaction, ElIction-event) (4.15)

44%
41, 9-



. . . .* . . . .. .. .. . .

PAGE 394 GOAL DESCRIPTORS

E specifies the event of an action. Action A is the location of the last such
event relative to current location.

- , MERGABLEDEMONS(Bldemon-body, B2jdemon-body, liordering) (2.9,4.4,6.7,6.16)
The value of I is an interleaving of the two demon bodies 81 ,B2 suchthat
valid behaviors remain.

NONEMPTYSPECIALIZATION(SIexpression) (4.6)
E does not rule out all behaviors.

SEOUENTIAL.ORDERING(OIordering, Xlatomic) (2.7,5.13, 5.16)
The statements of X have been ordered in O. The ordering is a valid
sequentiation of the parallel atomic.

SUPERFLUOUSATOMIc(Alatomic) (2.7,5.13, 5.16)
The statements in A do not need to be executed as a single step, i.e. no
other construct (demon,constraint) gains or loses triggerings.

SWAPPABLE(AIlaCtion, A21action) (2.14)
Al does not modify any data referenced by A2. A2 does not modify any
data referenced by Al.

UNCHANGED.BETWEEN.EVENTS(Plexpression, Ellevent, E21event) (2.5,4.17)
The value of P does not change between the two events El ,E2.

UPDATEVALUE.HOLDS(Ulupdate, Rjrelation-reference) (2.4)
"" Given that U modifies the value of X to Y, this modification is unchanged

(X's value is still Y) when R is computed.

VALUE.KNOWN(RI rela tion-reference, Vlobject) (2.3)
The value of R is V.

......................... Examples of Use .................

In some cases, methods exist for asserting needed properties, and in some cases the

necessary reasoning is beyond the reach of the system and the user is called to verify and

assert the property. The examples below show both types of processes.

Example A

Router Reference: 1.22

Development context: at stop 1.1, a goal is posted to remove the relation

S. ,% % '' 'e% % % '. . ,'o,% '•. . . o ", . , • ,



E.13 Show PAGE 395

PACKAGES-EVER-AT4-SOURCE. The method chosen attempts to remove all reference to

the relation. At step 1.21, a subgoal is posted to remove one such reference, an update of the
.- % . relation.

update packageseq jiJ PACKAGESEVERATSOURCE(S)
I& PACKAGESEVERATSOURCE concat <package>)

The method chosen to remove the update relies on showing that the update is unnoticed, i.e.

'/ " ' no other subsequent expression references the new value. At step 1.22, a Show goal is posted

;.j " -* to show that the update is inedeed unnoticed. The method chosen to assert the necessary

property is ShowDysteleological. This method takes a rather unsophisticated approach,

asserting the property when p_ references exist to the updated relation, not just ones effected

- by the update.

Example B

Router Reference: 2. 3

Development context: as in the previous example, at step 2.2 a reference to a particular

relation, PREVIOUS_PACKAGE, is trying to be removed so that the relation itself can
., eventually be removed.

>-2 .if" PREVIOUSPACKAGE(-) : DESTINATION 0 package. new: DESTINATION
then invoke WAIT[];

relation PREVIOUS_PACKAGE(prev.package i package);

The method chosen attempts to rpelace the reference with an actual value. To do this, the

method posts a goal at step 2.3 to show that the value is known at the point of reference. The

method chosen to assert the property relies on showing still another property: an update U of

, the relation to value V still holds at the reference. Showing, in general, that V is the relation's

value at the reference is beyond the reasoning power of the system; the user is called on to

assert the necessary property. Note that while the system was required to call on the user for

assistance, the chosen method did a portion of the reasoning necessary to set a more specific

context for the user.

* :.

* .- , ,.. .,., --, .*.- ,. ,'..... ,-. .'.. ,,. . ....-. '.../ *.,:..... ., %;. ". .'.", . ........



PAGE 36 COAL MECRIPTORS

E.14. Simplify

Simplify( Clconstruct)

Achievement Condition: No simplification transformation firings

Goal Description: The posting of this goal causes the transformations in the simplification4 +subcatalog (see F.16) to be run until a quiescent state is reached, i.e. none of the

transformations fire. C bounds the context in which simplification is to be carried out.

Chapter 5 discusses simplification isuues in more detail.

.............. ......... Examples of Use .........................

In the router development of appendix B, we have omitted the explicit posting of simplification

steps in favor of textual comments.

Example A

Router Reference: 4.19, after unfold

Development context: as happens in the development as a whole, simplification often

requires a joint effort between user and machine. The simplification of many constructs relies

on the user to provide sophisticated reasoning to prime the process. The simplification at step

4.19 is one such example. We are given the following state:ii:

d, a e.,,e .q ,+,-+ +,+. , + .,- ,l ,,+ ,IX w o . . .+ p . ' ,. " . -'. . . . . . " , . - 1, •. , . . .



E.14 Simplify PAGE 397

%"4.

demon SETSWITCH(switch. package)
trigger package a fLirst(PACKAGESDUEAT_SWITCH *,switch))

. .SWITCH_IS_EMPTY(Switch)
•"- relsponse

update :SWITCHSETTING fL switch I&
" -: (pipe I I pipe a switch: SWITCHOUTLET

SWITCHIIS_EMPTY (switch)

I -"( LOC ATIONON_ ROUTEjO_BIN (switch,
package: DESTINATION)

ad
-LOCATIONON.ROUTETO..BIN (pipe,

I%. package: DESTINATION));

0
The user can reason that switch is indeed on the route to package's destination (first term of

: )0) and so can get rid of this term. However, the system currently has no indirect reasoning

machinery, and hence cannot show that the definition of PACKAGESDUEATSWITCH

requires that switch be on the route to package's destination. The user is required to get the

process going:

STEP 4.20(user): Manual

4" MANUALREPLACE LOCATIONONROUTETOT BIN (switch, package: DESTINATION)
with

true

STEP 4.21 (user): Simplify o

The resulting simplification process takes the following form:

Applying

(... true And term) -0 (...term)

*" gives
.- (-LOCATIONONROUTE_T0.BIN(pipe, package: DESTINATION));

* Applying

-(term) so -term

:: ' ' ¢',2,',*g e.' . .''.€..''. . .. ", ".... .... .-. ........ . -.**4... . -.. *. • .....-... ... . . . . .
, , i - .. .. ' " ; - "; '; "r " "; - "' " ,,"," . -; ,% "",'," "" "4..,-"".'.. ." ,*-, ,,,*",:.,..,...,,......'...



PAGE 398 GOAL DESCRIPTORS

I. e... -- LOCATIONONROUTETO_BIN (pipe. package: DESTINATION);

Applying

-- term term

p gives

demon SET_SWITCH(switch, package)
trjgger package - f i r4t(PACKAGESDUEAT_SWITCH (*.switch))

SWITCH_IS_EMPTY (switch)
.. . resoonse

U-3date:SWITCHSETTING kf switch I
S3 (pipe pipe a switch: SWITCH_OUTLET

1 - SWITCHIS_EMPTY (switch)

LOCATIONONROUTETOBIN (pipe,
package: DESTINATION));

The same process can be carried out in removing the second conjuct arm 13: replace it with

true (again the user must provide the reasoning) and simplify the conjunction 12' This giv#A

us

.amon SET_SWITCH (switch, package)
jtrigger package - fir rst(PACKAGESDUEATSWITCH (* .switch))

SWITCH-ISEMPTY (switch)
-... ,response

update :SWITCHSETTING 2L switch I&
03 (pipe II pipe a switch: SWITCHOUTLET

LOCATIONONROUTETOBIN (pipe,
package: DESTINATION));

~ -4.

.L. . .A. . , . '. ... '. '.',. .,. .. ..b



E.14 Simplify PAGE 399

E.1 5. Swap

Swap( Al laction, A21action)

Achievement Condition: Al and A2, brothers in a begin/end block, are interchanged

Goal Description: allows the exchange of one or more actions within a begin/end block.

IS

S -......................... Examples of Use .........................

, ~.Router references: 2.14

Example A

Router Reference: 2.14

Development context: our goal in step 2.13 is the computation of the update to

LAST_PACKAGE (0,) after the reference to PREVIOUSPACKAGE (02).

9demon RELEASEPACKAGEINTO-NETWOR K (package. new)
trcioger package. new: LOCATED.AT * jth source

~response LB1DiJM

update prev.jackage in PREVIOUSPACKAGE(S)
I& LASTPACKAGE(*);

>1 update lastpackage in LASTPACKAGE(S)
I& package.new

"2 if PREVIOU S_PACK AGE(-): DESTINATION 0 package.new: DESTINATION
then WAIT[];

update :LOCATED-AT Of package.new I& (the source):SOURCE-OUTLET

The method chosen attempts to Swap the two statements.

, ,%

'"4



PAGE 400 GOAL DESCRIPTORS

E.16. Unfold "

Unfold( DIdefinition, RIreference)

Achievement Condition: D unfolded at reference point R

Goal Description: Given that our specification language gives us the ability to create global

parameterized definitions (e.g. procedures, derived-relations, constraints, demons) and local

implicit and explicit references to them, we would sometimes like to replace the local

reference with the instantiated definition. The motivation for this step can be one of

optimization (calls may be expensive), mapping (mapping a derived relation by unfolding it

everywhere it is referenced, a demon everywhere it is triggered) or catalytic (the introduction

of the definition in the local context allows further optimizations to occur). The Unfold goal

requests that a particular global definition be instantiated at a particular reference point.

* -S

.......................... Examples of Use .........................

Router References: 2.7, 5.6, 5.9, 5.13, 5.17, 6.4, 6.10, 6.21

Example A

Router Reference: 6.10

Development context: One means of reformulating a derived relation is to unfold it

wherever referenced. Given the definition and use of SWITCH-ISEMPTY below

Ai

relaio SWITCHIS_EMPTY (switch)
Idef inition -3 package II package: LOCATED.AT Switch.

* Ltrigger SWITCH-JS_.EMPTY (switch)

we can unfold SWITCH_IS_EMPTY to get

mM

:'-:. -

-4o

I: ' L -" q f f" "" ' ". .4' ....... . .. . P. : ...........
4.. 

. .. .. . . . . . .. J . . l . i I . .



.r.-.. .. ..- - .-;., .j. *h., * *.. -*, . -, ; - .. .,. .- %, _ w ...- j'

E.16 Unfold PAGE 401

l trigger -3 package If package:LOCATED-AT switch;

From this point, one more reformulation leads to the desired state.

Example B

.tRouter Reference: 6.4

Development context: We can view the reference of a-demon as a location that causes a

state change which may cause the demon to trigger. Step 6.4 requests that the demon

* SET_SWITCHWHENBUBBLEPACKAGE be unfolded at such a location 1:

demon SETSWITCHWHENBU BBLEPACKAGE(switch)
trigger 3 package II

Se n.package = first ( PACKAGESDUEAT_SWITCH(* switch))

. 1 update packagesdue DI PACKAGESDUEATSWITCH (switch,S)
jo PACKAGESDUEATSWITCH (switch,*) concar <package.new>;

O%*J~

I-

#p

-., * %*." ... - .. .,-.-... -. .. '.. .-............ ........ .. .... . ..... - % .. . ...



__PAGE 402 METHOD CATALOG

;

N,

.9(



F Method Catalog PAGE 403

Appendix F
Method Catalog

I" F.1. Catalog Notation

The presentation of the Glitter development methods will be grouped around the individual

Gold descriptors. Each method will be presented using the following format:

Method <name>

Goal: [<triggering goal>)1

Filter: [<boolean expression>] 0

Action: [<development actions>]1

, '." [ Short description of method.)

References: list of triggering steps for this method

End Method

* I'- A method's <name> is used to give it a unique textual handle and is intended to give a short

-. description as well.

The references list points into the router development in appendix C. The items of this list are

steps where the method was competing. Steps listed in boldface are ones where the method

was chosen.

The rest of the fields conform to the description given in chapter 6.

alt'
a, "i'

9

* ~ q%~ '**J . %\~.,. .~., %~. v



75 7W V -

r.-.,.

PAGE 404 METHOD CATALOG

F.2. Casify

Method BinarySplit

Goal: Cosity C . constreint

Action: 1) Apply aNiARYkSPlr(C)

[oonstreintP so +constraint 0 implies P; .constraint -0 implies PI
References: 4.8. 4.11. 4.14

I End Method

S'J.

I Method CaslfyConjunctivoTrigger

Goal: Cosily DI demon

Filter: a) gist-type-oft[Titrigger-of[D].
conjunction]

Action: 1) Show INDMOUAL.START(D)

2) Apply SPLr"C ONJUNCTIVErlROONI(D. T)

lit may be easier to break a demon up into special cases and then trying to map. Make sure that
no new tripgerings are created.]

References: 6.2,6.14

I End Method

I Method CasitfySuporTrigger

Goal: Caslfy DI demon

Filter: a) triggr-of[T. D)
b) component-ofISlsupertype T)

Action: 1) Apply CASFV.DEM0N.8IUPAPI(T, S)

[Spawn a separate demon for every subtype X of S.)

References: 5.18,5.19

I End Method

p%

V * *- .* *. 5 P ? f .. * * -.



F.2 Caify PAGE 405

I Method PastInductton

Goal: Csilfy CI + constraint
Action: 1) Reformulate C as +constraint P dd.ing E

2) Show EvT.UEpORE vENT(B. E)

3) Apply PAST.dDUCTON.CPAY(C, B)

[Use induction from some past state.]
References: 4.8. 4.11. 4.14

I End Method

I Method CaslfyFromUntlEverConstraintI

Goal: Casify CI .constraint
Action: 1) Reforumlate C as

P from E unil evermore

2) Apply CASIFYASNOW ANDAFTER (C)

[You can show that C holds from E until everafter If you can show It holds at E and afte E.)

References: 4.8. 4.1. 4.14

I End Method

54

.; *. I Method CasifyAroundEvent

, 6%*

Goal: Casify C I constraint
Action: 1) Reformulate C as constraint P uiter E

2) Show FUTURE.EVENT(F. E)

3) Apply CASIPYAROUNDEVENT(C, F)

" .' [Choose some event F In the future and show that C holds before, during and after F.)

References: 4.8. 4.11. 4.14

r' I End Method

e

6'*



PAGE 406 METHOD CATALOG

I Method RefromulateAsMuxCase

* .,,' Goal: Cosily X aoction
Action: 1) Apply eMaeo.W.MUx.CASE(X)

JX so mux-case 6 c1:X c2:X ... cn:X)

References: TextPreprocessor

I End Method

F.3. ComputeSequentially

I Method ConsoldsteToNakeSequential

Goal: ComputeSequentially Al eoction before A21ction

Fi er: a) component-of|Al, Dildemon

b) component-ofA2. D21demon]

Action: 1) Consolidate D1 and D2

[it Is easier to move actions around if they are in the same context.]
Relerences: 2.8

I End Method

,-, I Method MoveOutOfAtomic

Goal: ComputeSequentially B loction before A action
Filter: a) component-of[A, Clotomic]

Action: 1) Unfold C

4. [f you are trying to move A after B and A Is In an atomic, untold the atomic before attempting to
continue.]

References: 2.6

I End Method I

-. ;.,

'-

9". ,._,+',',+';P.,-.,."... ... .. ,".'€;,,2""'_ .'.:,",",,: + ',- +,',,"".,'.''' .. ',."-°"-, .. "-", . ,"""". . . +"



F.3 ComputeSequentially PAGE 407

S.'

Method SwapUp

Goal: ComputeSequentially Y before X
Filter: a) brother-ofT[X. Y] -

Action: 1) Swap Y with predecessor of Y

Ill you are trying to compute X after Y then move Y up.]

* References: 2.13

I End Method

F.4. Consolidate

I Method MergeDemons

Goal: Consolidate Dlldmon and D21domon
,,j Action: 1) Equivalence trigger-of(DIl and

trigger-of[D2]

2) Equivalence var-declaration-of(D] andU var-decl &rat on-of([D2]

3) Show MEGABLEDMONS(D1. D2. ;iordering)

4) Apply DEON. mE(DI, D2. 1)

[You can consolidate two demons It you can show that they have the same local variables, the
same triggering pattern and that they meet certain merging conditions.]

References: 2.9,4.4,6.7,6.16

I End Method

! ,% ,
,-v,% .%, %- -



7 % -. 7. . . . . . . . . . .i if i-

PAGE408 METHOD CATALOG

I Method ConsoltdateEnumeratonLoops

Goal: Consolidate Li gaction and L2lection

Action: 1) Reformulate LI as onumertion/-Iop

2) Reformulate L2 as enumeertion-loop

. 3) Equivalence generator-of*. Lii and
generator-of[. L2]

5) Show uEALE.LOOPS(LI, L2)
6) Apply MEn E NUMERAT*N.LOOPP(LI. L2)

(To consolidate two loops, make their generators eqvivalent and show that they are mergable.)
References: TextPreprocessor

4- .* I End Method

i Method ConsolldateSimpleCondsl

Goal: Consolidate Clii!" P then A and

C211T Q ILM B
Action: 1) Equivalence P and 0

2) Show (hoare-axiom) P {A) Q
3) Apply me sRG -PLE.cONDS.Wrrm.s.e.PeEDCATE(Cl. C2)

(It P then a:it P than b If P then a;b under certain conditions.)

References: unused

I End Method

I Method ConsolidatSimpleConds2

Goal: Consolidate C1IJ.. P IM A and

C21I±tf Q iM B
Action: i) Equivalence A and B

2) Show (hosre-axiom) P {A) -0

3) Apply tmEROE.IsUtE.CONSWrm.SAEACTION(Cl. C2)

....

(i P then &;if 0 then a mo I P or 0 then a under certain conditions.)
References: TestPreprocessor

S,'. I End Method

rS.,-.-.

.,.,;" .,-','.' ,,'..' -.'. .'.\.; ...... .. %",..-- .....-- .'-, .:: . , '..... ...



.. Equivalence PAGE 409

F.5. Equivalence

I Method EquivalenceCompoundStructuresl

Goal: Equivalence SI I compound-structuro and

S2 I compound-structure

Filner: a) gist-type-of[e. S1] n gist-type-of[e. S2]

b) f ixed-structure[S]

Action: 1) forah pasrwtse-component-of[CI.C2.SI.S2]

uM 4 Equivalence C1 and C2

(Divide-and-conquer: make the components of two fixed structures equivalent.)

References: unused

I End Method

*" I Method EquivalenceCompoundStructures2

Goal: Equivalence SI I compound-structure and

S2 I compound-structur,

Filter: a) gist-type-of[". S] a gist-type-off[. S2]

b) -fxed-structure[Sl]

I € c) component-correspondence[SI, S2. Clcorrespondence]

Action: 1) forall correspondence-patrs[C. C1. C2]

flo Equivalence CI and C2

(Divide-and-conquer; make the components of two non-fixed structures equivalent.)

U" References: 2.10,6.17

" End Method

.,, "

Method Anchorl

Goal: Equivalence X and Y

U Action: 1) Reformulate Y as X

[Try changing the second construct into something that matches the first.]

References: 1.16. 2.10. 2.11, 4.6. 6.8, 6.12, 6.18

I End Method



*. , .. . .** ~ * * - * * ~ .* .' .. . .

,* , PAGE410 METHOD CATALOG

- ,°.'4.

I Method Anchor2

Goal- Equivalence X and Y

Action: 1) Reformulate X as Y

[Try Changing the first construct into something that match"s the second.]

References: 1.15. 2.10. 2.11,4.5. 6.8. 6.12. 6.18

dI edMethod

I Method AddNewVar

Goal: Equivalence LII variable-list and L2 I variable-list
Filter: a) l.ngthfLlJ > longth[L2]

b) memberivI variable-declaration. LI]

C) -membor[V. L21
Action: 1) Show wROOUCASLE-VA-NAME(V. L2) -'

2) Apply WJOOUCE-NEW-VAR(V. L2)

frvy adding a new vat to make the two lists squivalnctj

References: 6.19
I End Method

F.6. Factor
""

I Method FactorDfMantenancelntoAction

,... Goal: Factor U I db'maintenance I n L

Action: 1) Apply CiEATE_CT0;O-PR.OtMKAT9(U A)

2) fora1 match-patternU, W. L)

do Apply REPLACEDSMAINTENACEWITH..ACTION(W A)

[Create a new action A and then find all matches W in L and replace each with a Call to the new
action A.)

4* - References: 6.5

I End Method

% %

%.-. %'********* , **



F.7 Flatten PAGE 411

F.7. Flatten

I Method Flatten

Goal: Flatten DR I drived-relation

. Action: 1) foral1
* rfefrence-1ocation[BR Idorived-rletion,$,DR]

do Map BR

% (Map all derived relations found In DR into simple ones.]
References: 1.9, 5.3,5.7

I End Method

F.8. Globalize

I Method GlobalizeAction

,1 Goal: Globalize A I ectian
Filter: a) component-of[A. Xletomic]

Action: 1) Unfold X

[You can I pull something out of an atomic: Jitter.]
References: 5.12,5.16

I End Method

I Method Global eDerlvoidObject

Goal: Globalize DO I derived-object
Action: 1) foral1 location-refarnce@V. S, DO]

.4 suchthat V , local-var-of[*, DO)
do Try Reformulate V as globol.-oxpresion

[(Try changing all local variable references )o global references.]

. References: 1.4
I End Method

* V
d. .0



PAGE 412 METHOD CATALOG

F.9. Isolate

I Method FoldGenericlntoRelation

Goal: Isolate X I expression
Action: 1) Globalize X

2) Apply FOLCNTORELATION ( X)

(Straightforward fold into derived-rolation.]

References: 1.3, 1.17, 3.3
End Method

F.1O. MaintainIncrementally

I Method ScattorMaintenanceForDorieoRelatlon I

Goal: Maintaintncrementally DR I d0erived-relation
Filter: a) -recursive[DR]

.- , Action: 1) Flatten body-of[DR]
2) forall locatton-reforence[BR. S, DR)

4 do forall location-roforonco[BR, L. spec)
do begin

Apply WA0DUC5.MAIENANCE_=OO(DR L)

Purify L

end

fTo maintain a derived relation DR, find everywhere the bass relations of DR are changed and
stick code in to maintain. Make sure that all base relations are simple before maintenance and
that al code is pure after.)

References: 1.8. 1.11, 1.18. 3.4, 5.2

End Method

,.--

5%%

:.5;
4 '.'," ,",-"5", .,'-,"-. .''"'"./." '"."-'''" .''"':-",""',- ... .'-''-.- -. P-',".,".-, ,.''



F.10 MaintainIncrementally PAGE 413

J°

I Method IntrOdUc*SqMalntenancsDmon

Goal: Maintainincrementally DR I derived-relation

"' .Filter: a) 91St- type-of[paramoter-of [DR],

2. %. sequence]

Action: 1) Reformulate body-of[DR]
• r - 72

* 
as temporally.ordered-set-idiom

2) Apply ITRODUCE SEO.MANTENAN E.OEMON(DR)

[One way of maintaining a derived sequence is to first change the definition into a temporal order
((xIP(x)Usf everbefore) ordered t m v P(x))-. and then set up a demon with trigger

P(x) to add elements.]

References: 1.11. 5.2

,., I End Method

'.,, F.1 1. Map

I Method ShowNoChange

Goal: Map C I +constrtaint -(start g P)
between E1,E2

Action: 1) Show UNCHANGEOBETWENEVENT(P, El. E2)

2) Apply REMOVE.UNcHANGEDCONSAINr(C)

* ,'S. .5 [The direct approach.]

References: 4.16

End Method

%
%

4-" 72 Patterns can be predefined aind named. In this case. ({xUlPlx) Asok everbef orel ordered teprl b~ljWqP(x)).

-aj

JV|

a' - , , .. ..5 .- . .', .. , ,. , _, , ., . , , , : ., , ., , , , , _ ' _ ' ' , , , . . . , . . , ., ,



PAGE 414 METHOD CATALOG

%. - Method ChooseEIement0fSet

Goal: Map Cl +constraint
Filter: a) gist-type-o[E Iconstraint-body[C, *xisteniel

Action: 1) Show ELzMENT O.SET( X. E)

2) Apply c.oo0E.eLEET(X. E)

[Try replacing the existential set with one of its elements.]
References: unused

4 I End Method

_ Method CasifyDemon

Goal: Map DI demon
Action: 1) Casily D

2) fora1 case-of[X. D] do Map X

[Try mapping by case analysis.]
References: 4.3, 6.1. 6.3. 6.6, 6.13, 6.15, 6Bg

I End Method

I Method UnfoldDemon

Goal: Map Didemon
Action: 1) fora1 trigger-locaton[D, L. spec)

do Untold 0 at L U

A To Map a demon. untold It where appropriate.]
References: 4.3. 6.1. 6.3, 6.6. 6.13. 6.15, 6.20

I End Method
-4.,

i *i

*,: 4. ".:.:.;:::;::,.;:;::::::"' " ''".. ,.". '..', - ," . .". ." " " " " ' "' "" . .



.4

" .- F.11 Map PAGE 415

i Ii Method StoreExp1icitly

Goal: Map DR I derived-relation

Filter: a) STATic(DR)

Action: 1) Show FINrrEEXPLICATION(DR)

2) Apply WrrALIZE.MEMORELATKoN(., DR)

3) toral1 location-reference[DR, L, spec]

:.% do Apply REPLACE.REF.Wrr.MEMO(L, M)

4) Apply REMOVEUNREFERENCEDRELATON(DR)

[You can explicitly compute a static derived relation given a finite number of resulting db
kI insertions.]

References: 1.10. 5.1. 5.4. 5.5. 5.8

, I End Method

I Method UnfoldDerivedRelation

' .'Goal: Map DR I derived-relation
Action: 1) torall location-reterence[DR. L. spec]

3 do Unfold DR at L

[One way of eliminating a derived relation is to unfold if at its reference points.]

-p * References: 1.11 5.1. 5.4. 5.5. 5.8

I End Method

J.%

I Method ComputeNewValue

Goal: Map U lu.da.e X of Y 1o Z where P

Action: I ) Apply

COMPUTEoDFRIVEoOJECTFRAOM CONSTRAINT (U)

(Reformulate Z as derived object using P.)

References: 4.18

L3 I End Method

%.

.



PAGE 416 METHOD CATALOG

I Method ovConstrasntToActlon "

Goal: Map C I rquire

Action: 1) Reformulate C as

require P I Jul E I ection-event

2) Show LASTACTIO(A I action . E)

3) Apply MOVE CONSTPIAVrTO..ACTION(C. A)

[If a constraint C is on some action event E at A, attach' the constraint to A.]

References: 4.7. 4.9, 4.10. 4.12. 4.13. 4.15. 4.16

End Method i

Method otXUntIlX I

Goal: Map R I + constraint

Action: 1) Reformulate R as +constraint P ... t% i E

2) Show . (e. .E)

3) Apply REMOVIVACUOUS.CONSTRAW4T( A)

(P unil E - true when -E implies P)

References: 4.7. 4.9. 4.10. 4.12, 4.13. 4.15. 4.16

IEnd Method .

I Method TriggerlmpllesConstraint -

Goal: Map R I require

Filter: a) component-of[R, Dldemon]

Action: 1) Reformulate R as reguirt P at ThIsEvent

2) Show wfe.e.Y(P. trgger-of[D])

3) Apply ftMOV9.hPL EO"uEMEWNT (R)

fIf a requirement is part of a demon, try showing that I is implied by the demon's trigger.]

References: 4.7. 4.9. 4.10. 4.12. 4.13. 4.16, 4.16

SI End Method

%N

1.:i

4* 5 5 *q5'~-%5 . 'C



F.11 Map PAGE 417

4 .- ,

I Method CasifyPosConstralnt

Goal: Map C I + constraint
Action: 1 ) Casify C

' .. 2) forall case-of[X, C) do Map X

(Try mapping by case analysis.]

References: 4.7. 4.9. 4.10. 4.12, 4.13. 4.15. 4.16

I End MethodI

I

I Method UnfoldConstrasnt

Goal: Map C I constraint

Action: 1) forall location-violation[V. C] do Unfold C at V

[Find all places constraint might be violated and untold maintenance code.)

* .,,,References: unused

End Method

Method apConstrantAsDemon .
%

Goal: Map C I constraint
Action: 1) Reformulate C as always nrohibit P

2) Show IMPLIEDO.Y(Q. P)

3) Apply REFORMULATE.CONSTRAINT.AS.DEMON( C, Q. 0. ew) a..

4) Map Dne w  a.

[To map a prohibitive constraint, first choose some predicate 0 that Is always true when the
constraint is violated, and then introduce a demon whose trigger is 0 and whose body is a
requirement of -P.]

References: 4.1

I End Method

V %

S5*o-

::

.-U.



PAGE 418 METHOD CATALOG

I Method NaintatnDerivedRelatlon '

Goal: Map DR I derived-reletion
Fiter: a) -static[DR]

Action: 1) Maintainlncrementally DR

!. [One way of mapping a derived relation is to maintain It explicitly.]
References: 1.10,5.1, 5.4, 6.5. 5.8

".' ',. I End Method

I Method NapRandomToForwardEnum

Goal: Map GI random-elenntgenerotor

Action: 1) Show nosuccessorfelisnce(G)

2) Apply~ FAEFINE_8ENUMT.TORWARDSEO( 6)

f You can map a random (or ND) generator to a forward generator under certain conditions.)
References: TextPraprocessor

I I End Method

I Method NapRandomToBackwardEnum

Goal: Map G I rendomI.elment-genra tor

Action: 1) Show no.predceseor.reliance(G)

2) AULU stEsvwgTNUMTmAcwAo.sEo( 6)

{~You can mop a random (or ND) generator to a backward generator undler certain conditions.)
References: unused

End Method

*,*q°° --. \*0- 0



-. p.* 77 -J -. 4 V .%W - -o .1 .~ T T

F.11 Map PAGE 419

., I Method MapByConsolidation
4-

Goal: Map DIdemon

Filter: a) match.pattern[demon, D2. spec]

b) D 0 D2
Action: 1) Consolidate D and D2

/To map D. find some other demon D2 and consolidate.]
References: 4.3. 6.1. 6.3, 6.6. 6,13. 6.15, 6.19

I End Method

F.12. Purify

I Method PurifyDemon

Goal: Purify Alection In Dldemon

Action: 1) Remove L from D

[Remove unpure statement L from D.)
Refrences: 5.10,5.14

z. ,: I End Method

-- 3 R fr u["" F.1 3.Reformulate

4'

.4

0..,

I,

-" ,' 4 . "' . '' . ,{ ' . " . - ' .. - - . ,. - , " . . - -. . . . , . ,. . . . . . , . . • ,, ., . . ., , ,



-%

PAGE 420 METHOD CATALOG

I Method ReformLocalAsFirst

Goal: Reformulate VI variable as globe-expresion

Filter: a) patten-match[relation name (seq3glsuenco oL type) def;.

R. spec]

b) domain-type-of[type. V)

% Action: 1) Reformulate V as firsl(name(0))

[it you can find a sequence containing the same type of objects as V then you may be able to
4L change V into a specific reference to the sequence.]

References: 1.5

I End Method

I Method ReformLocalAsLast

Goal: Reformulate V I variable as global-expression

Filter: a) patten-matchlrelat ion name (seqlseauenc, gJ type) def;.

-' R, sp]

b) domain-type-of[type, V]

Action: 1) Reformulate V as U.(name(*))

'., If you can find a sequence containing the same type of objects as V then you may be able to
change V into a specific reference to the sequence.]

References: 1.5

End Method

I Method ReformulateEvert4oreAsDuring

Goal: Reformulate X as (-Y during E)

Filter: a) gist-type-ofIX, predicate]

Action: 1) Reformulate X as (-Y &UL everimore)

2) Show Nw _o(Y. E)

3) Apply REFOAM.EVERMOtE.A-UNTIL ( X, E)

((-Y aof evermore) (- V during E) where Y Implies E)

References: unused
I End Method

'a



F.13 Reformulate PACE 421

,

-_. g Method ReformulatoUntlAsEveriore

. Goal: Reformulate Uluntil P as 22f evermore

. Action: 1) Show NULLOCCUmAENCE(unttl-eVent[Sj)
2) Apply UNTL NEIv~_O.EvEO;%mO(S)

"-": [P until never , P &sol evermore)
References: unused

I End Method

I Method RoformulateAsCondByEmbeddlng

Goal: Reformulate X as 1! True t X
Action: 1) AD.V EMDED..COND(X)

. X N True then X)

References: TextPreprocessor

End Method

*IMethod Renam.var

Goal: Reformulate VI lveriable-decleration as
i . V2 I variable-doclarstion

Filter: a) scoped-in[V1 S]
Action: 1) Show WMThOOUCEABU VAkNAME(V2. S)

"*L 2) Apply RENAMEVAP(VI, V2. S)

/Replace all occurrences of VI with V2 in S ofter showing that V2 does not conflict with scoped
variables already defined within S.]

References: 2.12
I End Method

'..

."9. 'a. . .,., ' ' ' % t -L'u .- x:' .,% ,'-''' ,_.LJ'%V ' , - , , . . -"- . . --- . . . . "-".%--."- . -, --



PAGE 422 METHOD CATALOG

I Method ReformulateActionCall

Goal: Reformulate ACIaction-call as P

.i Action: 1) Appfly wu'oo.,%CT* .( AC)
0 2) Reformulate AC as P

. (it trying to reformulate an action call, unfold the body and try and reformulate ft.)

References: TextProprocossor

I End Method I

I Method ReformulatoDerlvedObject

Goal: Reformulate DO derived-object as P
Action: 1) Reformulate body-of[DO)

as local-var-of[O. DOJEP
2) Apply uNFoLDERtvEo.oeJf'EcT(DO)

I(x P) I
References: 1.13

* End Method

I Method ReformulatoDerlvodRelat ion

Goal: Reformulate RR I relation-reference as X

Filter: a) gist-typ-of[name-of[R, RR],

derived-roletion)
Action: 1) Unfold R at RR

. 'fTry reformulating the body as X.
-~ ~ ~*References: e.g

I End Method--.
N.

S.
.5-s



, wF.13 Reformulate PAGE 423

II
Method RefonulateRelativeRetrievalAsLast

Goal: Reformulate RS I relative-Se Quence-retrieval
as zlobectls]A(SeqIsEouEtc*n

Action: 1) Reformulate RS as

x immediatelv before y wrt (Seq concat z)'
", .. 2) Equivalence y and z

3) Apply CANGE . RMoEVAL_.OF.LAST(RS)

Ix immediately before yr t(Seq cncat y) x'fLst(S'Q)

j References: 1.14

I End Method

I Method ReformulatoRelatlveRetrievalAsFlrst

Goal: Reformulate RS I relative-sequence-retrieval
as "xjobjectfirst(SeqlsEouENcE)

Action: 1) Reformulate RS as
.x immediately after y wrt (z concat Seq)"

2) Equivalence y and z
3) Apply CHANGE TORrRIEVALOF FIRST(RS)

Ix immediatel after y (y onct Sq) - xa• first (eq))
References: 1.14

End Method

%,p

PI Method ReformulateAsObject

Goal: Reformulate SR I last-retrieval as 01 object

• . Action: 1) Reformulate parameter-of[*. SR] as (S €oncat 0)

2) Apply SIMPLFYLAST(SR)

jz ILI(S o 0t) so 0)
References: 1.16, 1.20

1 I End Method

% .*

% .".

; , , ..... ,,....4, *,,, .. ,Y,...-.,.- ,...:.:. ,,,.,,.......-,....... *...., ,...... . ,

Fu . .. *' q~* .. ~ .. .

06U



PAGE 424 METHOD CATALOG

"-

I Method SpeciallzeRandom

Goal: Reformulate XIRANDOM as Y
Action: 1) Show NoN1 EMPTv.sPEcALIzATIoN(Y)

2) Aply

RELACE IRANDOM WITSI.o3ECIALIZATION( X Y)

(You can always replace RANDOM with a more spelclallzed event I you can show the new
eventdoes not remove all choices.]

References: 4.6

I End Method

-ft.

I Method ReformulateExistentialTrigger

-' Goal: Reformulate TItriager -3 oIIR(o) as R(o')

Action: 1) Show TR*3E.OENERALIZABE(T)

2) Apply GENERALIZETRSG ER(T)

[You can reformulate an existential trigger Into a universally quantified one under certain
conditions.)

References: 6.11

I End Method

F.14. Remove

I Method RemoveF romOemon

Goal: Remove Aloction from Dldemon
Action: 1) Globalize A

2) fors1l trigger-locationtO2 demon. body-of'[, 0). sp ]

do Apply MOV SrATEM .NTOEMoN(A, D2)

[Find all demons that trigger from D and move the action A there.)

References: 5.11,5.15

I End Method

~~-'t.

I :. ..i..Q..,-... -+'. .','.'.,.+.N.rP+. '''. - .-:. :.V .."- .,.



F.14 Remove PAGE 425

SpI I Method RemoveRelatlon -j

Goal: Remove R relation from spec
Action: 1) foral refarence-locationR.RR,.sp~c

•. . do Remove RR from spec

2) Apply REMOVEUNEPERE wCED.fSLAT*ON(R)

[You can remove a relation It you can remove all references to It.]
References: 1.1. 2.1. 3.1

I End Method

I Method ReplaceRefWlthValue

Goal: Remove RRI base-elation-refe'enoe
Action: 1) ShOw VALUE KNOWN(R. V)

2) Apply REPLACE RE,.wmrTVALuE(R V)

(One way of getting rid of a non.derived-relatlon reference Is to replace it with Its value.]

References: 1.12. 1.19, 2.2. 3.2

i End Method

I Method MegaMove

Goal: Remove RR I relation-reference from spec

Filter: a) component-of[RR. Ylexpresaion

Action: 1) Isolate Y in DRI derived.relafion
2) MaintainIncrementally DR

(Remove the relation.reference RR by moving If directly after the locations ft Is assigned.)
References: 1.2. 1.12. 1.19. 2.2. 3.2

I End Method

a-°

i'

0* . . ? .; ; ... ;: .. : : 2 ,.......,.. ........... : ..... ....... .



.... ... .. . u - . . . - I * . .. . ... '. -..

PAGE 426 METHOD CATALOG

IMethod Post ionalMegaMove

Goal: Remove RR I relation-reference from spec
Filter: a) component-of[RR, Ylexpression

b) gtst-type-of[sequence, argument-of[*. RR]

Action: 1) Reformulate Y as PR I positional-retrievel

2) Isolate PR in DR Iderived-relation
3) Maintainlncrementally DR

S[One way of gaffing rid of a reference to a sequence Is to reformulate It as part of a positional
retrievai, and then megamove 11.1

References: 2.2, 1.12, 1.19. 2.2. 3.2
! i End Method

Method RemoveVariable

Goal: Remove VI variable from S I scope

, Action: 1) forell reference-location[V.VR.S]

do Remove VR from S
2) Apply REMOVE.UNREFERENCED VARIABLE(V)

[You can remove a variable If you can remove all references to It.]
References: TextPreprocessor

I End Method

I Method Remove@y0bbJectlzingContext

Goal: Remove RR I relation-reference from spec
Filter: a) component-of[RR, Ylexpression

Action: 1) Reformulate Y as object

. * [One way of getting rid of a relation reference which is embedded In context Y Is to reformulate Y
as an explicit object.]

References: 1.2, 1.12. 1.19. 2.2. 3.2
I End Method

ZJ
- ". -A. - ,- r -. " .. '.,. - . . ' V " . ' '. .. ' ' . ', ", r ,.- . " , . -.



u~w~w-w E -4L 4kw~~w.-W. dV Wr KF- ~. * ... ~ -7 S *7-77 .--. j. *

INF.14 Remove PAGE 427

i.

I Method EmptyAndRemove

" Goal: Remove S
". ,.Filter: a) compound-structure S

Action: 1) foral1 immediate-component-of[X. S]

do Remove X
2) Apply AEmOVt.EmprY.smuCTuRE(S)

(Remove a compound strucutre S by removing each of its components X.)~References : unused

I End Method

9.

I Method RemoveUnusedAction

Goal: Remove Al action

Action: 1) Show action_iaunnoticed(A)

2) Ano lV REMOVE.UNNOTICED.ACT0N (A)

(Show that the current action is either not used or superseded by a subsequent action.)
.1 References: 1.21,3.5, 5.11, 5.15

I End Method

S.

Method ReplaceVarlableWlthValue

Goal: Remove VR I variable-reference

Action: 1) Show (value isknown(VR Vl object)

- 2) Apply AEPLACEVARIaI.EwrrT~ALuE(CVR V)

f H a variable's value Is known fill I in.)
References: TextPreprocessor

I End Method

%%

II

ee

- 4 * . ' U* . *".' ..



%'...%

PAGE 428 METHOD CATALOG

; Method BabyWtthiathWator

Goal: Remove X
Filter: a) X component-of Y

Action: 1) Remove Y

(One drastic method of removing X Is to remove strucutre X is embedded in.)
References: 1.2. 1.12. 1.19. 1.21, 2.2. 3.2, 3.5. 5.11, 5.15

I End Method

Vi

F.1 5. Show

1 Method ConjunctImpliesConjunctArm,

N Goal: Show Xlconjunction implies Y
Filter: a) unbound[Y]

b) conjuct-arm[AIlogicel-expression, XJ
Action: 1) Assert X implies A -

((P and Pa...n implies P/
References: 4.2

I End Method

I Method ShowDysteloological

fi.M
Goal: Show actionjiesunnoticed(Ulupdate)
Filter: a) updato-relaton-of[R. U]

b) -location-reference[R. S. spec)
Action: 1) Assert action.isunnoticed(U)

/I you are trying to show that an update Is unnoticed, show that t is never referenced.]
References: 1.22

I End Method

IIm
V 

'.a. 
. ". . . .,,.. ... ,.'. . .; ....... ,"."" . . . y ',.. , _ . , ' .,., ,,,..., . , - ' . " ., "''''''""''""' .



F.15 Show PAGE 429

5R

I Method ShowUpdteGivesValue

Goal: Show VALUEKNOWN( R I relation-reference, V)

Filter: a) match-pattern[update. U. SPOc]

b) name-of[R] a update-relation-of[0. U]

Action: 1) Show UPDATE VALUMmOLDS(U. R)

* p 2) Assert VALUEJKNOWN(R. new-value-of['. U])

[Find the last update of R and show that the newvalue is still valid.]

References: 2.3

End Method

I Method ShowNewValueStillValid

Goal: Show UPDATE VALUE HOLDS(U I update, RI relation reference)

Filter: a) name-of[R] a update-relatton-of[*. U]

Action: 1) Show

UNCHANGED.BETWEEN.EVENTS(new-value-of[o. U]. U, R)

3) Assert uP oATEYALUE.Oos(U, R)

* [To show that the new update value is still around at R. Show that the update value has not been
changed before R.]

References: 2.4

I End Method

.

w-- I Method MovelnterveninqUpdate

Goal: Show UtCmAwEO.BEwEENLOCATIONS(V I relation reference,

" ", U l updat,

RI relation reference)

Filter: a) pattern-match[updote, L. spec]

b) update-relation-of[V, L]

Action: 1) Show COMPUTATIONALLY.SETWEEN[L. U. R]

2) ComputeSequentially R before L

• ..* *it an intervening update of V exists, move it after R.)

References: 2.5

I End Method

%

,,

- *5 5%.~ - ~ * ~ . A 5* J , .... " .'t, , .*. w,9 * ,-*- .*- .* . *,,,4.



PAGE 430 METHOD CATALOG

F.16. Simplify

In this Section. we i4- the transformations that make up the simplification subcatalog. For further details, see section

E.14.

Simplifying a conjunction

(and) true

(and ... false ... ) false

(and p) s p

(and ... true ...) (and ...)

(and ... p ... p.) (and ... p ...)

(and ... (and p q r) ...) - (and ... p q r ...)

(and ... p ... -p ...) false.

Simplifying a disjunction

(or) - True

(or ... true ...) n true

(or p) - P

(or ... false ... ) (or ...)

(or ... p ... p ...) - (or ... p ...)

(or ... (or p q r)...) - (or ... p q r ... )

(or ... p ... -p ...) , (or ... true ...)

Simplifying a negation

,,; (not (not p)) - p

(not true) s fails

(not false) s true

OR



F.16 Simplify PAGE 431

Simplifying a conditional

i e i(cond true - a ... )

(cond) , empty

(cond ... false a. .) -o (cond ... )

(cond ... true a a ... ) - (cond ... true - a)

. (cond p - (cond q a)) so (cond p and q - a)

F.17. Swap

I Method SwapStatements

Goal: Swap A with 8

Action: 1) Show SWAPPADLE(A B)

.':" 2) Apply SWAPSTATEMENTS( A B)

[A:B mo B:A under certain conditions.]

References: 2.14

I End Method

F.18. Unfold

I Method ScatterComputatlonOfDerivedRelation

* ., Goal: Unfold DR I derived- relation at L
Filter: a) location-reference[DR. L. S]

Action: 1) Apply UNFOL.COMPLJTATIONCODE(DR L)
2) Purify L

[To unfold a derived relation DR at a reference point, stick in code to compute If and make sure L
* Is within Implementable portion of spec.)
* ,References: 4.18. 5.6,5.9.6.10. 6.16

I End Method

-,- .



PAGE 432 METHOD CATALOG

I Method ScattorComputatlonlfDemon I

Goal: Untold Ddemon at L

Filter: a) trigger-locaton[D, L. S]
Action: 1) Apply UWFOLODoEMON.C00E(D L)

2) Purify L

ITO untold a demon D at a trigger point, stick In code to compute it and make sure L Is within
" ,implementable portion of spec.]

- References: 6.4, 6.21

SEnd Method I

I Method UnfoldAtomic

Goal: Unfold Al atomic

Action: 1) Show SEOUENTIAL.ORDERING( O1 ordering, A)

2) Show SUPERFLUOUSATOMIC(A)

3) Apply UNFOLD-ATOMIC(A, 0)

(You can unfold an atomic If you can show that theme exists some valid e@quentlal ordering of the

statements and that no demonic or inferencing processes will be effected.]

References: 2.7,5.13,5.17

I End Method

*.".

I Method UnfoldSimpl*SB

Goal: Unfold SBIlUUia S g.ag
Action: 1) fly UNFOLD s.imPLa.NESTtD.LOCK(SB)

-.. : €~..., Aglia , M ... ..,..o;;
References: TextProeprocessor

I End Method I

L-

.-a

.~ -%

*.r;v '% .. w a :-t'*"":*%:



G Selection Catalog PAGE433
Ai .

Appendix G
Selection Catalog

G.1. Catalog Notation

Selection rules will be presented using the following format:

Selection Rule <name>

IF: [<selection expression>)1

THEN: [<selection action>]'

[optional comments]

References: list of steps where rule used in selection process

End Selection Rule

A rule's <name> is used to give it a unique textual handle and is intended to give a short

description as well.

The references list points into the router development in appendix C. The items of the list are

*. -,steps in which the rule played an active part in selecting a method.

For an explanation of the remaining fields, see chapter 7.

,The selection rules are organized in the following manner:

'., 0 Method Specific Rules: grouped here as in appendix F, around the set of
development goals. Each development method in appendix F will be listed here
along with a list of steps where it was competing; bold faced steps mark steps in
which the method was the one finally selected. Following each method are the

,' selection rules pertaining to it (possibly none).

0 Action Ordering Rules: listed after specific method.

0 Method Ordering Rules: listed at the end of each goal section.

*A,
AA~ I~V

-:7Zs



.%

PAGE 434 SELECTION CATALOG

0 Problem Solving Resource Rules: listed in section G.19.

o General Rules: listed in section G.20.

G.2. Casify

BinarySplit (4.8. 4.11,4.14)

I SelectionRule *BinarySplitl .
IF a) *BinarySplit is a candidate K

b) Good choice for Q is known

THEN * 2

[Good choice if have a 0 in mind.]
I End Selection Rule I

I SelectionRule *BinarySpllt2 I
IF a) *BinarySplit is a candidate

b) Good choice for Q is unknown

THEN -2

[Bad choice If don't have a 0 in mind.]

Reterences: 4.8, 4.11, 4.14
I End Selection Rule

CaifyConjunctiveTrigger (6.2, 6.13)

CasitySuperTrigger (5.18, 5.19)

PastInduction (4.8,4.11, 4.14)

CaalfyFromUntllEverConstralint (4.8, 4.11, 4.14)

RefremulMA@WuxCm (TextPr~esso) l
4**

"
4 .;4 .; ; % .'4 .' . . .. .. ¢ .: . ,..-.% . .4. . . - . . ... ,.. -.. . .,



G.3 ComputeSequentially PAGE435

G.3. CornputeSequentially

ConolidateToMakeoSequential (2.8)

01%

I SelectionRule *ConsolidateToakeSequential
IF a) ConsolidateToMakeSequential is a candidate
THEN +2

References: 2.8

I End Selection Rule

MoveOutOfAtomic (2.6)

I SelectionRule *MoveOutOf Atomic

IF a) MoveutOfAtomlc is a candidate

THEN *2

References: 2. e

I End Selection Rule

SwapUp (2.13)

I SelectionRule *SwapUp

IF a) SwspUp is a candidate
THEN +2

References: 2.13

I End Selection Rule

G.4. Consolidate

MergeDemons (2.9, 4.4, 6.7, 6.15)

..
:4,

1""



PAGE 436 SELECTION CATALOG

SealectlonRule *MergeDemons
IF a) MergeDemons is a candidate
THEN +5
References: 2.9, 4.4, 6.7, 6.15

IEnd Seliection Rule

* I SelectionRule TriggersAlmostEquivI
IF a) MergeDemons is selected

* -S. ~b) Triggers differ only in variable renaming
THEN action-2 > action-i

* 'I,[The first goal will fall-out as side-effect of second.)

End Selection Ru leI

ConsolidateEnumerationLoops (TextPreproceeor)

ConsolidateSimpleCondsl (unuse)

ConsolidateSimpleConds2 (TextPreprocessor)

G.5. Equivalence

EquivaloeeCompoundStructuresi

ISelectionRule *EquivalenceCompoundStructuresl
IF a) EquivalenceCompoundStructuresl is a candidate .

THEN +5

End Selection Rule

EqulvaleneCompoundStructures2 (2.10, 6.12, 6.1?



G.5 Equivalence PAGE 437

I SelectionRule *EquivalefnceCompoundStructures2

IF a) EquivalenceConipoundStructures2 is a candidate
THEN +2

References: 2.10. 6.12, 6.17

I End Selection Rule

Anchor1 (1.15, 2.10, 2.11, 4.5, 6.8,6.12, 6.18)

I SelectionRule eAnchorla

IF a) Anchor1 is candidate
b ) X I object

THEN .2

References: 2.4, 6.12. 6.18

End Selection Rule

I SelectionRule *Anchorlb

IIF a) Anchor1 is candidate

b) YIRANDOM

THEN .5

End Selection Rule

.,

I SelectionRule *Anchorlc

IF a) Anchor1 is candidate

b) YI derived-roetion-reference

C) Defintlon of Y reformulatable as X

THEN .2

References: 6.8

R.,.,..

%

En Slcto Rl

Anchor2 (1.15, 2.10. 2.11, 4.5.6.8, 6.12, 6.18)

N1

.. . . . . . ~ ~ , -.. . . . ,,.. , .. .... '..*.*..... .. . .. *. . .* * *' ., . . .- . -. . .. ,. ;. ,,-:. ,.?



U U -Z W P -. P -. P -7 -. -. P -37F~.~~.- ~ . . ~

PAGE 438 SELECTION CATALOG

- . .%

I lectionRule *Anchorla
IF a) Anchor2 is candidate

b) Y Iobet

THEN +2

References: 1.15. 2.11. 6.12. 6.18
I End Selection Rule

I SelectionRule *Anchor2b
IF a) Anchor2 is candidate

b) XIRANDOM

%.j THEN .5
References: 4.5

I End Selection Rule

I Selectionfule *Anchor2c
IF a) Anchor2 is candidate

b) X derived-relation-reference

c) Defintion of X reformulatable as Y

THEN .2

End Selection Rule

AddNewVar

I SelectionRule *AddkewVar
IF a) AfidNewVaf is candidate

THEN .2

I End Selection Rule

Method Ordering Rules



G.5 Equivalence PAGE 439

JN
oN

I SelectionRule EquivVarsl 
j

IF a) Method "Anchorl is a good candidate
b) Method "Anchor2 is a good candidate

* - c) X and Y are variable names

- THEN Rely on user to choose

IThe manipulation of names Is viewed as important and currently rests In the hands of
the user.]
References: 2.11, 6.12, 6.18

I End Selection Rule

i correspondecne 1 has more type matches than corresp 2 then choose first

* if corresp 1 has more usage matches (trigger vars) than correap 2 then choose first.

if tried eQuivcompst before try addnewvar now else vice versa

G.6. Factor

FactorDBMaintenancelntoAction (6.5)

I SelectionRule OFactorDBMalntenancelntoAction
, IF a) FactorDBNaintenancelntoAction is a candidate

THEN +2

References: 6. 5

I End Selection Rule

G.7. Flatten

Flatten (1.9, 5.3, 5.7)

I SelectionRule *Flatten

IF a) Flatten is a candidate

THEN +2

References: 1.9. 5.3. 6.7

I End Selection Rule

I-

S " , " " -. " . .. '. ,



.. v' .,

PAGE 440 SELECTION CATALOG

'V G.8. Globalize

GlobalizeAction (5.10, 5.15)

I SelectionRule *GlobalizeAction

IF a) GlobalizeAction is a candidate

THEN +2

References: 5.10. 5.15

I End Selection Rule

GlobalizeDerivedObject (1.4)

I SelectionRule *Globaliz9DerlvedObject

IF a) GlobalizeDerivedObject is a candidate

THEN +2

References: 1.4

i End Selection Rule

G.9. Isolate

FoldGenericlntoRelation (1.3, 1.17, 3.3)

SelectionRule *FoldGenericlntoRelation

4IF a) FoldGenericlntoRelation is a candidate

5 THEN .2

It applicable. use It.)

References: 1.3. 1.17. 3.3

i End Selection Rule



G.1 0 MaintainIncrementally PAGE 441

G.10. Maintain Incrementally

ScatterMaintenanceForDerivedRelation (1.8, 1.11, 1.18, 3.4, 5.2)

.4

~ ISelectionRule *ScatterMai ntenanceForDe rivedRel at ion
IF a) Scatte rMalntenanceForDerivedRlation is a candidate
THEN +2

References: 1.8. 1.11, 1.18. 3.4, 5.2

I End Selection Rule

lntroduceSeqMaintenanceDemon (1.11, 5.2)

I SelectionRule *IntroduceSeqfalntenancefemon
IF a) IntioduceSeqliaintenancefemon is a candidate

THEN +1

References: 1.21. 5.2

I End Selection Rule

Method Ordering Rules

I SelectionRule tMalntDRl
W~ a) IntroduceSeqMaintenacneDemnon is a good candidate

c) Scatterl4aintenanceForDerivedRel at ion is a good candidate
d) DR has a complex definition

*THEN ScatterMaintenanc@ForgerivedRelation

> IntroduceSeq#4alntenacne~emon

[A Complex definition means a large number of new demons must be introduced.)
References: 5. 2

IEnd Selection Rule



PAGE 442 SELECTION CATALOG

G.11. Map

ShowNoChange (4.16)

I SelectionRule *ShowtOChange
IF a) ShowioChange is a candidate

THEN +2

References: 4.16

I End Selection Rule

ChooseElementOfSet (unused)

CasifyDemon (4.3,6.1,6.3,6.6,6.13,6.15,6.19)

I SelectionRule *CasifyDemon
IF a) CasifyDemon is a candidate

b) D has a conjunctive trigger

c) One or more arms of the trigger art observable events

d) One or more arms of the trigger are unobservable events
THEN +2

[Different strategies for each so break out.] -.
References: 6.1, 6.13

I End Selection Rule

UnfoldDemon (4.3. 6.1. 6.3, 6.6, 6.13, 6.15, 6.19)
Ii

'9" I SelectionRule *UnfoldDemon .

IF a) UnfoldDemon is a candidate

THEN +1

fTry i0 nothing else looks good .]

References: 4.3, 6.1, 6.3, 6.6, 6.13, 6.16. 6.19 -

I End Selection Rule

StoreExpliclly (5.4)

,' ..... : .-,-,..,, -_-_.,..... ,.,.- -,,...,._.. ._, ,-_.,, .. . . .: . .. _._.-,- - •.. - . , ... ,.... ... .q



G.11 Map PAGE 443

• i,

I SelectionRule OStoreExpllcitly

IF a) StoreExplicitly is candidate

THEN +2

* References: 5.4
4..q

I End Selection Rule

MapByConsolidation (4.3.6.1,6.3, 6.6, 6.13, 6.15)

I SelectionRule *MapByConsolidationi

IF a) MapByConsolidation is a candidate

b) D does not trigger on an observable event

c) D2 triggers on an observable event

" THEN .1

References: 4.3, 6.1. 6.3. 6.6. 6.13

I End Selection Rule

I SelectionRule *MapByConsolidatlon2

IF a) MapByConsolidatlon is a candidate
b) D2 triggers randomly

' 5 THEN +2

References: 4.3, 6.1. 6.3, 6.6, 6.13, 6.15

I End Selection Rule.

SelectionRule *MapfyConsol ldation4

IF a) MepByConsolidatlon is a candidate

b) D2 is not within implementable portion

THEN -2

References: 4.3. 6.1, 6.3, 6.6. 6.13, 6.15

I End Selection Rule

'.5

-S

.5 %*

S.o

-U
o

*1' . % % % ; ,:. ..... ,... ...,.
-'S.,, i - *-ll l ; , -, , . t .':,, , ,'" -- , ,' ,'



PAGE 444 SELECTION CATALOG

I SelectionRule -MapByConsol idatlon
% IF a) l4apByConsolidation is a candidate

b) DI and D2 are case-brothers

THEN -2

[Unlikely will want to re-join previously split cases.]

References: 6.3

I End Selection Rule

4 I SelectionRule ONapByConsolidation6

IF a) MapByConsolidation is a candidate

S'S, b) DI and D2 triggers are "trivially" different
,%. *THEN *2

-i.e. I0 only differ in variable naming]

References: 6.15

I End Selection Rule

UnfoliDerivedRelation (1.10, 5.1, 5.4, 5.5, 5.8)

SelectionRule *UnfoldDrivedR*latloni

IF a) UnfoldDerivedRelation is candidate

b) DR is not recursive

THEN +2

References: 1.10, 6.1. 5.5. 5.8

I End Selection Rule

I SelectionRule *UnfolderivedRelation2
IF a) UnfoldDerivedRelation is candidate

P.,, b) DR is recursive

THEN -2

References: 5.4

I End Selection Rule I

ComputeNewValue (4.18)

%3 %

j3-0?



G.11 Map PAGE 445

MoveConstraintToAction (4.7,4.9, 4.10,4.12,4.13,4.15,4.16) ,I

NotXUntilX (4.7,4.9,4.10, 4.12,4.13,4.15,4.16)

* ",TriggerlmpliesConstraint (4.7,4.9,4.10, 4.12,4.13,4.15,4.16)

CasifyPosConstraint (4.7,4.9.4.10,4.12.4.13,4.15,4.16)

,I.

UnfoldConstraint (4.1)

I SelectionRule "UnfoldConstraint

IF a) UnfoldConstraint is a candidate

b) Backtracking solution is possible"

THEN +2

1 End Selection Rule

MapConstraintAsDemon (4.1)&1

I SelIctionRule "NapConstraintAsDemon
IF a) MapConstraintAsDemon is a candidate

b) A predictive solution is possible
THEN +2

References: 4. 1

I End Selection Rule

*. MaintainDerivedRelation (1.10, 5.1.5.5. 5.8)

. I SelectionRule MNlantainDerlvedRelation

IF a) MeintainDerivedRelation is candidate

THEN +2

Reerenc,: 1.10, 5.1,. 5..6

I End Selection Rule

MapRandomToForwardEnum (TextPreprocemor)

F4
MapRandomToBackwardEnum (unused)

""r, ,



SId

PAGE 446 SELECTION CATALOG

Method Ordering Rules

SelectionRule NMpDRla
IF a) StoreExplicitly is a good candidate

b) Number of refs * recompute cost is more costly than

number of explicit insertions

THEN Storelxplicitly > UnfoldDerivedRelation

References: 6. 4I. I End Selection Rule

SelectionRule MepDRlb
IF a) Storetxplicitly is a good candidate

b) Number of refs * recompute cost is less costly than

number of explicit insertions

THEN UnfoldDe rivedReletion > StoteExplicitly

I End Selection Rule

i SelectionRule MapDR2a
IF a) MaintsinDerivedRelation is a good candidate

b) UnfoldDerivedRelation is a good candidate

" c) Number of references 0 recompute cost is high

THEN MainteinDerivedRelation > UnfoldDerivedRelation

References: S. 1

I End Selection Rule

I SelectionRule NapDR2b

IF a) MintainDerivedRelatlon is a good candidate

b) UnfoldDerivedRoletion is a good candidate

c) Number of references 0 recompute cost is low

THEN UnfoldDoerivedRelation > MintainDerivedRelation

References: 5.6. 5.8

I End Selection Rule1

4'.-



710 W -02 -y -3 0-0 -N 17. -l .7 57%T7-

G-11 Map PAGE 447

IP SelectionRule MapDemon1
IF a) NapByConsolidation is a good candidate

THEN MapByConsolldation > (CasifyDemon. UnfoldDemon)

References: 4.3

I End Selection Rule4I

i SelectionRule apConstraint1,

IF a) CaisfyConstraint is a good candidate
THEN CaisfyConstraint > UnfoldConstraint

References: 4.7. 4.9. 4.10. 4.12. 4.13. 4.15. 4.16
',,, iEnd Selection Rule

I SelectionRule MapConstraint2

IF a) Goal is Map Rrequire

b) M1,1method is a good candidate

c) M2imethod is a good candidate

d) Mi eliminates R

e) M2 does not eliminate R

THEN M - ) 42

[Don't muck around with R it it can be directly eliminated.]

"- References: 4.9. 4.12. 4.16

,I End Selection Rule

I SelectionRule MpConstralnt3

IF a) Goal is Map Rirequire
b) N11method is a good candidate

c) M2Imethod is a good candidate

d) MI moves R closer to a non-deterministic choice point

e) 142 does not eliminate or move R

THEN MI > 42
[Moving a requirement towards .nd choice point is good.)

'. References: 4. 15

!, I End Selection Rule

%

2



PAGE 448 SELECTION CATALOG

I SlectonRule Napi

IF a) Goal is Map X

b) Mlmthod is a non-negative candidate

C) M1 casifles X

d) -3 a good candidate

THEN Select MI

[IM nothing looks very good, try caslying.]

I End Selection Rule

G.12. Purify

PurlfyDemon (5.10, 5.14)

, SelectionRule *PurifyDemon

IF a) PurifyDemon is a candidate

THEN +2
References: 6.10, 5.14

I End Seloction Rule

G.1 3. Reformulate

ReformulateLocalAsFirst (1.5)

ReormulateLocalAsLast (1.5)

ReformulateEverMoreAaDuring (unused)

ReformulaleAsCondByEmbedding (unused)

RenameVar (2.12, 6.7, 6.14)

"S-



16 uu -L T,- uiw V - % .% ,K ~.*

G.13 Reformulate PAGE 449

I SelectionRule ORenameVar
IF a) RenameVar is a candidate

THEN 2
References: 2.12. 6.7. 6.14

I End Selection Rule

is! ReformulateActionCall (TextPreprocessor)

ReformulateDerivedObject (1.13)

I SelectionRule *ReformulateDerivedObject

IF a) ReformulateoerivedObject Is a candidate

b) Definition of DO reformulatable as P

THEN +2

[If the body of the derived relation looks like it can be made to match the reformulation
pattern then give method a try.)

E References: 1. 13
End Selection Rule

ReformulateDerivedRelation (6.9)

I SelectionRule ReformulateDerivedflelation
IF a) ReformulatoDerivedRelatton is a candidate

THEN #2

References: 6.9

I End Selection Rule

ReformulateRelativeRetrievalAsLaut (1.14)

P I SolectionRule *ReformulatoRolativeRetrevalAsLast

*', IF a) ReformulateRelatilveRetriovalAsLast is candidate
i-, b) =r sequence of RS is constructed by appending

THEN +2

References: 1.14
e I End Selection Rule

a.

* * .*J*%** . * .*. **~s *



'F WA 3 -j ...- 0 -5 W-. -Xa'y-. y.. .) ja -. -3, .~* ~ p'p*'; -Y7 * Y~.~ *

PAGE 450 SELECTION CATALOG

.

ReformulateRelativeRetrievalAsFirst (1.14)

-eI SelectionRule *R~formulat*elativeRetrievalAsFirst
IF a) Ref *rmulateRelative RotrievalAsFi rat is candidate

b) wr sequence of RS is constructed by prepending
THEN +2

IEnd Selection Rule 
..

ReformulateAsObject (1. 16, 1.20)

SpecializeRandom (4.6)

. 01

IeectionRule *Special izeRandom
IF a) SpeciallizeRandom is a candidate
THEN +5
References: 4.6

IEnd Selection Rule

ReformulateExistentialTrigger (6.1 1)

SelectionRule *Roformulat*ExistentialTrigger
IF a) Reformulat*Existentia1Trigger is a candidate

THEN +2

References: 6.22

End Selection RuleI

Method Ordering Rules 
I-.

I SlctionRule ReforniLoci *
IF a) ReformulateLocalAsFirst is a candidate 1

b) Rlderived-relotion is ordered historically by start Elevent

EdTHEN RefonnulateLocalAsFirst > Reformulat*LocalAsLast
En Selection Rule

% %

V%



G.13 Reformulate PAGE 451

I lctionRule RaeormLoc2
*IF a) Ref ormul ate Local AsLast is a candidate

b) Rilerived-retion is ordered temporally by start Elevent
-~ ~-THEN Reformulat.LocalAsLast > ReforuulateLocalAsFirst

Reforences: 1.56

End Selection Ruleg

I SelectionRule ReformLoc3
IF a) ReformnulateLocalAsFirst is a candidate

b) Rlbese-relation is maintained by simple prepending
THEN ReformulateLocalAsFirst > ReformulateLocalAsLast

I End Selection Rule

I SelectionRules ReformLoc4l
IF a) ReformulateLocalAsLast is a candidate

b) Rlbese-relation is maintained by simple appending
THEN Reformulat*LocalAsLast > ReformulateLocalAsFirst

IEnd Selection Rule

- ~ G .14. Remove

RemoveFromnDemon (8.11, 5.15)

1 SelectionRule *Remove FromDemon
IF a) RemoveFron~emon is a candidate
THEN +2
Reforen~ces: 5.11. 5.15

IEnd Selection Rule

Remtoveoeation (1 .1, 2.1, 3.1)

Ir.

4,

Ar. 'k I



%4 PAGE 452 SELECTION CATALOG

SelectionRule GRemoveRelationt -

IF a) RemoveRelation Is being considered

b) A's argument is a sequence S

c) Only one element of S is referenced

THEN +2

tMay be able to replace sequence with single object.)

References: 1.1

I End Selection Rule ,

I SelectionRule *0emoveRelation2 .
IF a) RemoveRelation is being considered

b) R is acting as a temporary variable

THEN 2 2

[Can get rid of temporary variables]

References: 2 .1

I End Selection Rule I

N

I SelectionRule *Removeelation3
IF a) RemoveRelation is being considered

"C b) Only use of R is in attribute expressions
THEN *2

[Can replace R with various attributes.]
References: 3. 1

I End Selection Rule I

ReplaceRefWithVatue (1.12,1.19. 2.2,3.2)

SelectionRule *ReplacefleftithValuel
IF a) ReplaceRefWithValue is being considered

b) Can find a change to the relatin before its use
THEN +2
References: 2.2

End Selection Rule

-. "% .. ' . % % _.g.o ._. , - .'.v, ,°.. *'* *" ,r* at" * ***Cq*€ % ." ,.* %



M .~ S S

G.14 Remove PAGE 453

i SelectionRule *ReplaceRetWithValue2
IF a) ReplaceftefWithValue is being considered

b) RR's argument is a sequence
THEN -2

[Unlikely that the entire sequence can be unlolded.]
References: 1.12

- J End Selection Rule

MegaMove (1.2,1.12, 1.19.2.2, 3.2)

I SelectionRule *MegaMovel
IF a) MegeMove is being considered
. b) -3 derived relation with defintion Y

THEN +2

References: 1.2. 1.12, 1.19. 2.2. 3.2

i End Selection Rule

I SelectionRule *NegaMov•2

IF a) MegaMove is being considered

b) 3 derived relation with defintlon Y
THEN -2

References: 1.12

I End Selection Rule

PostionalMegaMove (1.2, 1.12, 1.19. 2.2,3.2)

I SelectionRule OPositionalegaMove
IF a) PositionelMegeMove is being considered
THEN +1

References: 1.2, 1.12. 1.19. 2.2. 3.2

I End Selection Rule

I.?

w*" ' ' "" '" ~ '-'"-" "..." , .....- V ". " ,',--; .. , , . -V. ..



PAGE 454 SELECTION CATALOG

nvolieey biectizingConlext (1.2. 1.12. 1.19,2.2.3.2)

.1'%

I SelectionRule *ReMoveeyObjectizingContext
IF a) RemovelyObJectizingContext is a candidate

b) Y I positionol-retrieval -

THEN *2

References: 1. 16

I d Selection Rule

RemoveUnusedAction (1.21, 3.5, 5.11, 5.15)

I SelectionRule *RemoveUnusedActionl
IF a) RemoveUnusedAction is a candidate

b) Alupdote

C) Supergoal Is Remove updated relation

THEN good candidate

/To remove a reaiflon you generally have to Show update is unused.]

References: 1.21, 3.5
End Selection Rule

I SelectionRule 0RemoveUnusedction2
IF a) RemoveUnusedActtion is a candidate

b) Supergoal is Purify
THEN #2

[In many cases, unfolded code can be simpiied away.]

References: 5.11, 5.15

End Selection Rule

ReplaceVariableWith Value (TextPreprocemor)

abythflathfWater (1.2, 1.12, 1.19, 1.21, 2.2,3.2,3.5, 5.11, 5.15)

% -

A



G.14 Remove PAGE 455

I SelectionRule *BabyWithlathWaterl

IF a) BebyWithBathWater Is being considered

b) Y I conditional
THEN +0
References: 1.2. 1.19. 2.2. 3.2

I End Selection Rule

I SelectionRule *BabyWithBathWater2
IF a) BabyWithBethWater is being considered

b) YIdemon

c) Y in implementable portion

THEN -1
References: 1.2. 1.12. 1.19. 1.21, 2.2. 3.2. 3.5

I End Selection Rule

I SelectionRule *BabyWithBathWater3

IF a) BabyWithBathWatet is being considered
b) Y I -{ conditional.demon)

THEN -2

" References: 1.2. 1.12, 1.19. 1.21. 3.5. 5.11. 5.15

I End Selection Rule

Method Ordering Rules

I SelectionRule RemoveRef'1
IF a) MegMove good candidate

* THEN Meg&Move > PosltionalMegaMove

References: 1.2. 1.19. 3.2

I End Selection Rule

o %



PAGE 456 SELECTION CATALOG

'.

SelectionRule RomoveRofZ

IF a) MlMegoMove is candidate
b) M21MegeMove is good candidate

C) component-of[Y of M2, Y of M1J

THEN M1 > M2

_ (Usually beier to take as much context with you as possible.]
References: 1.2. 1.12. 1.1g

I End Selection Rule

. .l I SelectionRule RemoveRef3
IF a) M1lPositionafieglMove is candidate

b) M21PositionoMegAMove is candidate

C) component-of [Y of 142. Y of' M1

THEN M > N2

[Usually better to take as much context with you as possible.]
References: 1.2. 1.12. 1.1g

I End Selection Rule

I SelectionRule RemoveRefA I
IF a) RemovByObjctizingContext is a good candidate
THEN RomovoyOhbJectizingContext ) (Mega1ove. Positionslegsfovo)

References: I. ig
End Selection Rule

I SelectionRule ReovRof5
% IF a) BabylithilathWater is a good candidate

THEN SabyWithlathWater > (Megaove. PoslttonalMegaMove)

I End Selection Rule

S " . %,



G.14 Remove PAGE 457

I SelectionRule RemoveRef6l
IF a) ReplaceReftithValue is a good candidate

- THEN ReplaceReOWithValue > (NegaMove, PositlonalMegawove)

-; References: 2.2

I End Selection Rule

a'

I SelectionRule ReMActl

IF a) RemoveUnusedAction is a good candidate

THEN RemoveUnusedAction > RemoveFromemon

II's worth a try.]
References: 5. 11, 6. 15

I End Selection Rule

G.15. Show

ShowNoChange (4.16)

' .! ConjunctlmpliesConjunctArm (4.2)

I SelectionRule *Conjunctlmpl iesConjunctArml

.* IF a) ConjunctlmpliesConjunctArm is a candidate

b) Supergoal is Map CIprohibitive-constraint

c) The conjunct arm A is a good predictor

THEN *2
References: 4.2

I End Selection Rule

% N4

A, 2
j4

:4'.



4,- 4-,.• " ' o""'.

PAGE 458 SELECTION CATALOG

I SelectionRule *Conjunctlmpl iesConjunctArm2
IF a) ConjunctlmpliesConjunctArm is a candidate

b) Supergoal Is Map CIrohib,,ive-constraint

c) The conjunct arm A is a bad predictor

THEN .2

[e.g. A is bad l it acts as idiot light: tells you when something is wrong, but no way to
backtrack and make it right.]
References: 4. 2

I End Selection Rule I

ShowDysteleologica (1.22, 2.14, 3.6)

I SelectionRule *ShowDysteleological
IF a) Showoysteleological is a candidate
THEN 2

References: 1.22. 2.14. 3.6

I End Selection Rule

ShowUdateGivesValue (2.3)

I SelectionRule *ShowUpdateGivesValue
IF a) ShowUpdateGivesValue is a candidate
THEN *2
References: 2.3

End Selection Rule

ShowNewValueStillVlid (2.4)

.S

I SelectionRule *ShowNewValueStilIVll1d

IF a) ShowNewValueSti11V&1id is a candidate

THEN *2

References: 2.4

I End Selection Rule

"."

MovolntervenlngUpdate (2.5)

1,4, "* . " R 5tS~..i... . 5. , 5 * S S* . . S~



G.15 Show PAGE 459

1SelectionRule Movlnterven ingUpdate
IF a) Novel aterven ingUpdato is a candidate2

THEN +2

References: 2.5
5I End Seliection RuleI

e, Method Ordering Rules

SelectionRule ShowVal 1
$ IF a) MI I ShowUpdeteGives Value

b) M21 ShowUpdeteGives Value
C) M1 computationally closer to A than M2

THEN MI > M2

IEnd Selection Rule

G. 16. Simplify

* No rules.

* G. 17. Swap

SwapStatemnents (2.9)

q-4%

ISelectionRule *SwapStatements
-IF a) SwapStatements is a candidate

THEN +5
References: 2. g

* I End Selection Rule

%P
1%P



PAGE 460 SELECTION CATALOG

G.18. Unfold

ScatterComputationOfDerivedRelation (3.19, 4.18, 5.6, 5.9, 6.10, 6.19)

I SelectionRule *ScatterComputatlonOfDertvedRelation
IF a) ScatterComputatlon0fDertvedRelation is a candidate

THEN +5

References: 3.19. 4.18, 5.6. 5.9. 6.10. 6.19

IEnd Solection, Rule

ScatterComputationOfDemon (6.4, 6.20)

I SelectionRule *ScatterComputatton0fDemon
IF a) ScatterComputation0fDemon is a candidate

THEN +5

References: 6.4. 6.20

I End Selection Rule

UnfoldAtomic (2.7, 5.13, 5.16)

I SelectionRule *UnfoldAtomtc
IF a) UnfoldAtomic is a candidate

THEN .5

References: 2.7. 5.13, 5.16

I End Selection Rule

UnfoldSimpleSB (TextPreprocensor)

G.19. Problem Solving Resource Rules

._

W 4 ~ ~ I, * ~ -.; -: .- .'.-.- % .~. * $ **' . *



G.19 Problem Solving Resource Rules PAGE 461

I SelectionRule ReformUnnecessary

I IF a) Hlmethod is candidate

b) M4 contains a reformulate action A
. C) A is achieved trivially

THEN +1

References: 1.11. 1.14. 1.16. 1.19. 1.20. 4.8, 4.9. 4.11. 4.14.;4.,. 5.2
I End Selection Rule

I SelectionRule RequIreReformUnnecessary
* -., IF a) Goal is (Map, Casity) Rlrequire

b) Mlmethod is candidate
c) 14 contains a reformulate action A

d) A is achieved trivially

THEN +1

[Give a bonus to methods which don't need to reformulate a require statement.)
References: 4.8. 4.9, 4.11, 4.14, 4.16

l.

I End Selection Rule

r N, I SelectionRule EquivUnnecessary
IF a) Mlmethod is candidate

b) M contains an equivalence action A

c) A is achieved trivially

THEN +1

I End Selection Rule

I SelectionRule ReadyToGo
IF a) Mlmethod is candidate

b) forall actions A of M either 1) A is an Apply,

or 2) A Is achieved trivially

THEN +1

fit only apply goals left then cheap choice)
References: 1.11. 1.16. 1.17, 1.22, 2.6, 4.8, 4.9. 4.11. 4.14, 6.5

I End Selection Rule

zJ

.,* * .i



PAGE 462 SELECTION CATALOG

% .

I SelectionRule *ShowUnnecessary

IF a) Mmemthod is Candidateb) M contains a Show action A

C) A is achieved trivially

THEN +1

I End Selection Rule

G.20. General Rules

S eolectionRule BurnedOutHulk

IF a) Go&l is Remove X from Spec

b) X is a defined strucutre

C) Method M removes the need for X

THEN +2

References: 1.1. 2.1. 3.1

I End Selection Rule

* I SelectionRule FillIn

IF a) Goal is Remove RRIrelation-reference from spec

THEN Try filling in values within RR'S context

References: 1.2, 1.12. 1.19. 2.2, 3.2

I End Selection Rule

I SelectionRule MapSubOfRemovel I

IF a) Goal/Supergoal G is Map X

b) Supergoal of G is Remove X from ope"

-' THEN 1

[A method which keeps X localized fecilitates the higher level of goal of removing X.)

References: 1.10.o .1

I End Selection Rule

sa6

Vq

Refernces 1.10 1.1

I.



G.20 General Rules PAGE 4634

I SelectionRule MapSubOf Remove2
IF a) Goal/Supergoal 6 is Map X

60 b) Supergoal of 6 is Remove X from apec

THEN -2

IA method which spreads X out when trying to remove It Is counterproductive.]

.- References: 1.11

I End Selection Rule

I SelectionRule DemonsAreGood
IF a) Goal/Supergoal is Map X

b) Method M changes X to a demon

THEN +1

(Demons are generally easy to work with.]

References: 1.11. 4.1, 5.2

I End Selection Rule

*' I SelectionRule SubComponent

IF a) Goal is Reformulate X as P

,. Ib) pattern-match[Y, P. X]

c) Method M extracts Y from X

THEN +2

* I End Selection Rule

i SelectionRule ReformAsExtreme

IF a) Goal is Reformulate Rl reltive-retrievel as XPlposltionel-retrievel
b) Method M reforms R as extreme

THEN +1

References: 1.14

I End Seleelon Rule

p.0



- 1-1 ' b~ - b -' -.A' i* ~Jp ~ .w wj~- - J1

PAGE 464 SELECTION CATALOG

I SlectlonRule UseConjunctArm -

IF a) Goal is Show Xleonjunction implies Ylunbound

b) Supergoal is Map Cjprohibiive-@onatraint

c) Method M binds Y to arm of X

THEN +2

References: 4.2

I End Selection Rule

%

I SelectionRule CasifyComplexConstruct g N
IF a) Goal is Map X

b) X is complex

c) Method M splits X into simpler cases

THEN +2

References: 4.4. 4.7. 4.9. 4.10, 4.12. 4.13. 4.15. 4.16, 6.1

I End Selection Rule

SelectionRule CheapRemove I
IF a) Goal is Remove

b) Mlmethod is candidate

c) forall actions A of M either 1) A is an Apply.

or 2) A is achieved trivially

THEN +2

[If you can get rid of something cheaply. do It.]

End Selection Rule -

4.,,

oqU

" *' ,"' "' ,'<" ","," " ".","," . ,. . , .. • ,. ,',. , ,,' ,• •.-, . .,., ,. V r,. . ... .,., ,._.,:...1 .



r$-~ TIN " -t

t I

441 A

A'A

AA 1.

44

t el..4


