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~As has been brought out repeatedly at the ACSAS industry briefing

and at the June, 1982 workshop, a viable technique for the mitigation of low

~~wavenumber flow-induced noise at higher submarine speeds is the most important .

advance that could result from the ACSAS effort. Historians, militarists and
i scientists all can agree that you must know your enemy before you can defeat

him. Therefore, our approach in the very limited effort funded by the ACSAS
p7, rogram to -detehas ben--6)start A-oh the development of A-t-least)a rudimentary"!

description of the nature of the low-wavenumber noise production mechanisms

and features. -We feel that we have made some progress -- the reader can make
his own judgement -and we report that progress herein.

iBriefly we demnst-rate that 4certain responses and mechanisms _must be .

considered and included in even a minimal model of the turbulent boundary

layer (TBL) low-wavenumber pressure fluctuation production processes and the

~~attendant stipulation of outer decoupler design guidelines., Specifically, we '

show that to explain~the observed features of the noise spectracyou must .,

i include: "..

(1) Cyclic, self-sustaining nonlinear interactions of packets of

.,."', finite-amplitude Tollmien-Schlicting waves intrinsically "

subject to large phase modulations. ;

( 2) The continuous spectrum of modes of response of the TBL to I

i Reynolds stress bursts.,,



3) Nonlinear interactions between the continuous spectrum modes.

The measured features of low wavenumber noise that cannot be explained without

consideration of the above mechanisms are:

1) The inability of a perfectly valid linear model for the

response of the TBL (Bark, 1975) to predict the measured

(Morrison, et al., 1971) low wavenumber velocity fluctuation

response to a burst.

2) The decrease in narrowband convention velocities found by

Blake (1970) at small separation distances especially for

frequencies below the spectral peak value.

3) The strong phase modulations among interacting waves of nearly

equal wavenumbers measured explicitly by Miksad, et al. (1982)

and shown inferentially by Blackwelder and Kaplan (1976). .-a

4) The relatively low (c 0.4U) convection velocities of con-

vected wall pressure fluctuation features measured by Emmerling, t.

et al. (1973).

5) The full scale observation that the flow noise approximately

-_doubles every 3 meters in the nose region of the vehicle.
.. 42 . " -' -, , .

We show that the interacting fluctuations are of spacial scale 26 and lie at

small angles.. 10°-eto the wall. Therefore,k o develop; from first

principles, design criteriakfor outer decouplers that defeat the low

wavenumber flow noise) in two ways: C " " '1-

j.. L2 ' (1) --By9responding to pressure fluctuations in a scale-selective

fashion, transmitting with adequate fidelity the acoustic

waves of interest but rejecting the fluctuation carrier

components of scale 2&C' ..

(2) -B y/rejecting the noise component that arriveat the decoupler

at grazing incidence angles.

The resultant design constraints are manifold but achievable.

Important desired properties are: a bulk density near to that of water, a

longitudinal wave speed slightly above that of water and a bulk modulus to

1-2
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shear modulus ratio above about 225. While isotropic materials cannot meet

these criteria, anisotropic materials are available and viable. We further

V examine and specify support structure constraints.

Based on the foregoing we suggest an effort to:

1) Quantitatively and iteratively (with the materials fabri-

cators) specify the optimum achievable material properties.

2) Assist and monitor the materials design/development process.

3) Evaluate and define materials attachment concepts and dis-

continuity effects.

4) Assist in field (KAMLOOPS) test planning and interpretation.

5) Assist in the analysis and interpretation of flow noise measure-

ments.

~WIP

-
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4 2.0 THE TURBULENT BOUNDARY LAYER (TBL) FORCING FUNCTION

2.1 BACKGROUND

The wavenumber-frequency spectrum of wall pressure fluctuations is

divided traditionally into three components deemed statistically independent:

the convective component [characterized by k -I (w/U)], the low wavenumber

component [(w/ca) Z k Z (WWI) and the acoustic component [k <_ (ws/ca)]. The

low wavenumber and acoustic components provide the significant noise sources

for the large scale arrays considered in the ACSAS program. Unfortunately,

only a modest body of relevant experimental information and a limited mechanis-

tic understanding of the generation processes are available for those two

components. The best available data (e.g., Jameson, 1975, Martin and Leehey,

1977) exhibit unexplained differences of about 10 dB between scaled low wave-

number spectral levels as a function of dimensionless frequency. In addition,

the data are restricted to a range of wavenumbers, 0.2 Z k6* Z 0.8 that are

over an order of magnitude higher than those of interest in practical applica-

tions where, for example, with w = 100 Hz, k =4 x 10-3 cm1, U = 103 cm/S,

L -=3 x 103 cm, 6* (L) w2.9 cm, one is concerned about kd* (L) - 1.2 x 10-2.
Extrapolations remain quite uncertain because the data (Martin and Leehey,

1977) indicate

P (kO,w)/(q26*3/U) (w6*/UY-10/3 (k6*)O

~ while theory (Phillips, 1956) suggests

P ( 0" 0(k 2 )

J" I

2-1
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in the incompressive limit. Finally, little guidance is provided for the

evolution of outer decoupler concepts whose potential effectiveness against

low wavenumber fluctuations is clearly contingent upon the fluctuation

generation process.

The ORI effort has sought to address some of the aforenoted

uncertainties about data extrapolations and desirable features of outer

Il decoupler designs by constructing a rudimentary mechanistic view of boundary

layer turbulence dynamics and its cause-effect relationships with the three

components of the wavenumber-frequency spectra of wall pressure fluctuations. .. -

This viewpoint also provides a framework for rationalizing the scaling laws to

be extracted from analysis of the experimental data generated under the ACSAS

program and for identifying complementary approaches to the determination of

the spectral components in question.

The particular mechanistic view of turbulence dynamics -- and its

manifestations in the wall pressure fluctuations spectra -- depends on several

supporting sets of considerations, namely: 1) the description of the coherent

large scale structures/events revealed by recent fluid dynamic experiments

' employing conditional data sampling techniques in terms of cyclically

self-reproducing, non-linear processes involving packets of finite-

amplitude Tollmien-Schlichting waves intrinsically subject to large phase

modulations; 2) the assessment of the significant, but incomplete, role of

these.non-linear wave processes in reproducing the salient aspects of

available data for wall pressure fluctuation spectra, and the consequent

evidence -- from both data and theory -- that a significant role is played by

the continuous spectrum of modes of the turbulent boundary layer; 3) the

determination of specific properties of the continuous spectrum -- largely

ignored in previous studies of turbulent boundary layer dynamics -- that bear

on the salient aspects of the wall pressure fluctuation data; 4) the

indication that non-linear interactions between discrete spectrum (Tollmien-

Schlichting) modes and continuous spectrum modes provide a plausible mechanism

for the marked, experimentally observed, jitter of the coherent motions

mentioned at 1 above and -- in line with recent findings about jet noise by

S Ffowcs-Williams and Kempton (1978) -- for the concurrent generation and

characterization of the broadband low wavenumber as well as acoustic

2-2
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components of the pressure fluctuation spectra. The four sets of i:

considerations are set forth below in sequential paragraphs followed by a

summary of the mechanistic view and its multifaceted implications for data

acquisition, analysis and scaling as well as for outer decoupler uesign ..

guidelines.

The emphasis on nonlinear aspects of the problem - explicitly

indicated by the above list of considerations - stems directly from our

interest in the low wavenumber and acoustic components of the wall pressure

fluctuation spectra and from the straightforward observation that all linear

modes of the turbulent boundary layer -- whether belonging to the discrete or

to the continuous spectrum -- are characterized by phase velocity c smaller

than, or at best equal to, the free streamvelocity U. Thus, linear modes are

characterized by wavenumbers k R (w/U) which can only contribute to the

convective component of the spectrum. The low wavenumber and acoustic

components (say k3) must arise from nonlinear interactions among two or more

linear modes (say k, and k2) such that

k3  kj - k2  (Low wavenumber)

3 W1 2a (Acoustic)

The requirement can be met, for example, with k1 = k2 and W2  < W..

Accordingly, our inquiries are largely keyed to the following issues: 1) Do

the discrete and continuous spectra of turbulent boundary layers include

couples of modes that satisfy the noted requirement? 2) Does the mechanism of

turbulence sustenance suggested by recent conditionally sampled measurements

include the excitation of such couples of modes? 3) Do the available data for

wall pressure fluctuation spectra -- especially their unresolved, puzzling

aspects -- provide evidence that the considered couples of modes are indeed

excited? These are the main issues discussed in the following paragraphs,

although the discussion will at times depart from them to address additional

aspects of the problem.

2.2 WAVE MECHANICS OF TURBULENCE GENERATION AND SUSTENANCE

Many of the considerations in this section were presented in an

earlier ACSAS report (Vaglio-Laurin, Hoglund and Collier, 1982). They are

repeated he-e to provide the reader with a single integrated exposition of our

2-3 " A



views about boundary layer turbulence dynamics and its relationships to the

three components of wall pressure fluctuation spectra.

According to the evidence submitted in the previous report a

self-reproducing, deterministic cycle of wave-like processes determines the

dynamics of the intermediate and low frequency modes in turbulent boundary

layers. The cycle involves: a near-wall Reynolds stress burst that has

limited spatial and temporal extent -a packet of finite-amplitude,

oblique, Tollmien-Schlichting waves (representing part of the boundary layer

response to the burst) that evolve on time/space scales much larger than those

of the burst - oblique-wave-induced wall streaks and near-wall inflections

of the instantaneous velocity profile that are subject to secondary

Kelvin-Helmholtz instability - ejection of low momentum fluid from the wall

and, thus, a Reynolds stress burst that restarts the cycle.

The nature of the cycle is largely determined by the following

specific features of the finite amplitude oblique waves: 1) the profiles of

the streamwise fluctuation velocity associated with an individual wave exhibit

inflection points which, when viewed in wave-fixed coordinates, describe a

locus that propagates downstream and away from the wall over a wavelength; 2)

the profiles of streamwise velocity fluctuations associated with a pair of

oblique waves are spanwise periodic and, therefore, characterized by

inflection points only in a neighborhood of the "peaks," where the two waves

reinforce each other; 3) oblique wave pairs interact nonlinearly with quasi

two-dimensional (low kz ) waves of equal streamwise wavenumber (k ) to yield

locally inflectional distortions of the streamwise mean flow, also confined to

a neighborhood of the "peaks"; 4) the superposed contributions of the -

streamwise velocity fluctuations and mean-flow distortion noted in 2) and 3)

yield localized, hairpin-shaped, time-evolving inflections of the instantane-

ous velocity profiles which are ultimately subject to a secondary

Kelvin-Helmholtz instability; 5) concurrent with the formation of inflectional

profiles, oblique-wave pairs subject the near-wall region to a spanwise

component of velocity (periodic in time as well as in the spanwise space

coordinate) which results in the formation of wall streaks and the periodic

ejection of low-momentum fluid from the wall (Blackwelder and Eckelmann 1979,

Hatziavramidis and Hanratty 1979).

2-4
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The oblique waves in question are those associated with the peaks of

the velocity fluctuation spectra measured by Morrison et al., (1971) and with

the largely coincident peaks of the spectra predicted by Bark's (1975)

calculations of the response to a burst including only the contribution of the

Tollmien-Schlichting modes (Figures 2.1 and 2.2). The experiments of

- Blackwelder and Kaplan (1976) clearly establish that the dynamics of these

waves is controlled by deterministic processes and is characterized by an

-, amplitude-dependent dispersion relation which renders them susceptible to

large amplitude modulations. Specifically, Blackwelder and Kaplan used the

"-. variable-interval-time-averaging (VITA) technique to detect bursts in a

flat-plate turbulent boundary layer. The VITA detection criterion depends

upon a threshold value of the squared streamwise fluctuation velocity. As the

threshold value is increased only the more intense coherent events are

• " detected and higher conditionally-averaged signatures are obtained. However,

if the process responsible for the signatures is truly deterministic -- as

* implied by our views -- the conditional averages at different threshold levels

* Y must scale with the threshold value. This requirement is supported remarkably

*well by the data obtained with threshold-value variations of as much as a

factor of three, provided the detection and the sampling take place at the

same location (Figure 2.3a).
h.

- In spite of their amplitude-independent structure, the coherent

velocity signatures possess a random convection velocity as revealed by

Blackwelder and Kaplan's attempt to follow the downstream evolution of the

signatures. For that purpose the conditionally averaged Reynolds stress was

measured at the detection station (top trace in Figure 2.3b) and, after an

appropriate time delay, also at a station displaced downstream by Ax = (6/4).

The middle trace in Figure 2.3b displays the results of the averaged stress

*. measurements at the latter station obtained with a fixed time delay

corresponding to the average convection velocity. The original strong

Reynolds stress has disappeared almost completely. This result was quite

* surprising because, if the bursting phenomenon is so important in the

* "turbulence production process, then the Reynolds stress associated with this

* . phenomenon should not die out so quickly downstream. After exploring several

! different explanations, Blackwelder and Kaplan recognized that the result was

spurious in that random minor variations in the convection velocity combined

2-5
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FIGURE 2.3a CONDITIONAL AVERAGE OF STREAMWISE VELOCITY COMPONENT
AT VARIOUS THRESHOLD LEVELS (FROM BLACKWELDER AND KAPLAN, 1976)
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Ax 4 /4,-c -0.8 U
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FIGURE 2.3b CONDITIONAL AVERAGES OF THE REYNOLDS

SHEAR STRESS (FROM BLACKWELDER AND KAPLAN, 1976)
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with the short duration peaky nature of the signature to invalidate its

conditional average at fixed time delay. The difficulty was overcome by again

j applying the detection criterion at the downstream station. Then, if the time

difference between detection at the upstream and downstream positions was

within the limits established by the maximum and minimum values of the

convection velocity, the Reynolds shear stress was conditionally averaged with p..

* respect to the downstream detection time. By this process Blackwelder and

. Kaplan recovered the results displayed in Figure 2.3b as the lowermost trace

with the time shift taken as the average delay of observations in the ensemble

average. As can be seen, most of the Reynolds stress is still evident,

although some decay is apparent. Unfortunately Blackwelder and Kaplan report

!7Z neither the statistics of the minor random convection velocity variations nor

the correlation between those variations and the much larger ones in the

signature amplitude. Nevertheless, an amplitude-dependent dispersion relation

is strongly indicated since the shape and spectral content of the signature

are insensitive to amplitude variations (Figure 2.3a). The analytical

considerations presented in Appendix A permit calculation of this amplitude

dependence from first principles.

The amplitude-dependent dispersion relation (A - 27) is of the form

W = w(k,IA12 ) (1)

In the presence of an amplitude modulation lim-- such as accrues to
sequential realizations of the wave motions representing the coherent TBL

response to a burst according to the conditionally averaged measurements of

Blackwelder and Kaplan reported in Figure 2.3a -- the dispersion relation (1)

can be expanded in the form

W=W(k'lA12) + ( )oJA2+ 2

where (aw/31AA12 )0 denotes the derivative computed at IA! = IAIo, the amplitude (2)

averaged over the ensemble of possible realizations. The frequency deviation

exhibited in (2), viz

.= (aw/a A12) IAI2 (3)

is equivalent to a phase modulation. Indeed, if one writes the stream

function associated with the dominant wave motion in the form

(x,y,t) =I A(x,t)fC(y) Cos [koX- Wot + p(x,t)] (4)

2-9



where IA(xt)lm - IA(x,t)l - IA(x)H o and p(x,t) are slowly varying amplitude
and phase modulations, one can readily determine the deviation of the instan-

taneous frequency w from the carrier frequency wo, viz

6W = W - Wo = -(Op/at) (5)

A comparison of (3) and (5) then yields -.9..

(ap/at) = -(aw/3aAJ2)o IAI2 (6)

Pwhich shows that, because of the amplitude-dependent dispersion relation, the

Tollmien-Schlichting waves partaking in the TBL response to a burst are subject

to amplitude-modulation-induced phase modulations, and vice versa.

If the amplitude modulation were known -- e.g., from an examination
of the time series for variable threshold measurements such as those by

Blackwelder and Kaplan compiled in Figure 2.3a -- and the phase modulations were

determined accordingly -- by integration of (6) -- the spectrum of the modulated

wave motion could easily be calculated. Indeed, it is well known (Kim et al.,

1980) that in the model situation where IA(x)lo is independent of x and

IA(xt)Im = sin (xx - vt + e)1A1o (7-a)

p (x,t) - sin (xx -vt) (7-b)

the spectrum of the wave motion (4) is

V (x,y,t) = . An ;(y) cos (knX - Wnt + n)  (8)

m = -n n-

with
A2 = (1 + 2- sine)2 J2(a) + (acoso)2(dJ /dB) 2  (9-a) '9.

n n n

kn = k0 + nx (9-b)

Wn W0 +nv (9-c)
=~~C Cos dn/d

n= tan' [I + /osin dJnd (9-d)

where Jn denotes the Bessel function of order n and argument 8. Unfortunately,

this simple model proves inadequate to reconcile the wide differences exhibited

in Figure 2.1 between the velocity fluctuation spectra calculated by Bark (1975)

and those measured by Morrison et al., (1971). The measured spectral ridge

coincides with a line (w/k) constant (say co < U) for

2-10
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k ;t k0 and w Z wo,but progressively shifts toward c < (/k)-- U as k and -

decrease below the peak values ko, Wo" The proportionality (x/k0 ) -k (V/Wo)
implied by the behavior of the upper sidebands is then violated by the lower

sidebands.

The behavior of the measured spectral ridge for k > ko and w t w

differs significantly from Blake's (1970) finding that narrow band convection

velocities decrease by a factor 1.4 as the frequency increases by a factor 5

over the spectral peak value (Figure 2.4). The Morrison data (Figure 2.1)

suggests that at least the high frequency-high wavenumber portion of the

spectrum is dominated by a modulation due to nonlinear interactions among the

waves of nearly equal wavenumber associated with the narrow spectral peak

calculated by Bark (Figure 2.2). Since these waves are nearly resonant

(Figure 2.5), their coupling is quite efficient. A strong phase modulation

ensues according to the theoretical considerations of Appendix B (adapted from

the work of Kim et al., 1980) as well as according to some recent measurements

of velocity fluctuations obtained by Miksad et al., (1982)*-in the transitional I%.

wake of a thin two-dimentional airfoil exposed to a U = 8.4 m s- 1 air stream.

i A brief review of these measurements vividly illustrates the rapid build-up of

the modulation within wave convection distances Ax 3A which coincide with

the damping distances of the dominant waves in the TBL indicated by attendant U
narrowband correlations of wall pressure fluctuations at.and above the spectral
peak frequency.

,*

* Dr. Miksad's permission to quote his yet unpublished results is acknowledged
gratefully. =7
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The initial width of the wake investigated by Miksad et al., is

b 10- 3 m and the initial velocity defect (U - U ) 1.6 m s-1. Acoustic

sources are used to excite simultaneously two unstable frequencies fo = 550 Hz

and f, = 582 Hz with wavelength x c .015 m. The two frequencies grow linearly

without evidence of significant interactions up to a distance x = .01 m down-

stream of the airfoil trailing edge. The power spectrum of the velocity

fluctuations at this station -- displayed on the top left of Figure 2.6 --- .

exhibits dominant sharp peaks at the two forced frequencies accompanied by an

emerging fluctuation at the difference frequency f = f6 - fl. Nonlinear wave-

wave interactions rapidly evolve at stations x > .01 m. The result three

wavelengths downstream (Ax z .05 m, x - .06 m) is that the power spectral

density increases about one hundred-fold over a broad range of frequencies

(see Figure 2.6, x = 6 cm). The nonlinear evolution of the spectrum continues

further downstream; however, the consequences over relatively large distances

(e.g., between x = 6 cm and x = 30 cm in Figure 2.6) are quite moderate compared

to those observed during the initial interaction. Significantly the filling

of the spectrum (at x < 6 cm) as well as its subsequent evolution can be

associated with amplitude and phase modulations of the dominant frequency fo.

Miksad et al. prove this point by applying the digital complex demodulation

procedures of Khadra (1981) to the velocity fluctuations waveforms displayed

on the left of Figure 2.7. By those procedures the amplitude (am).and the

phase (p m) modulations attendant to the representation

u'(x,t) = a [1 + a (x,t)] cos[k x - 21rf t + p_(X,t)]

0 m- 0 0 01

of the waveforms are obtained. The results displayed at the center and right

of Figure 2.7, show that the amplitude modulation is relatively modest while

the phase modulation becomes quite large (the phase modulation scale in Figure

2.7 is ± 6 rad). In line with the expectations set forth in Appendix B the

strong phase modulation process is largely accomplished within the first three

2-14
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wavelengths and remains close to being a simple sinusoid at the difference

frequency f throughout the process.

Inspection of the results of Appendix B for the amplitude and phase

modulation indices [see (B-la) and (B-7b)] readily shows that even a

modulation driven by the nonlinear interaction of nearly resonant waves does

not explain several significant aspects of the data, namely: 1) the distinct

convection velocities exhibited by the ridge of the measured convective

component of the velocity fluctuations spectrum at low and high frequencies

(Figure 2.1); 2) the presence of modes having high subsonic and supersonic

convection velocities as accrue, respectively, to the low wavenumber and

acoustic components of the spectra; 3) the large amplitude variations

exhibited by the ensemble of coherent motion realizations observed by 4

Blackwelder and Kaplan (Figure 2.3a); 4) the large, experimentally observed,

seemingly random space/time jitter of sequential realizations of the coherent

motions that is required to yield the experimentally observed smooth growth of

the mean TBL flow. Clearly we must question the assumption implicit to

wavemechanical models of turbulence that Tollmien-Schilichting modes and/or

their nonlinear interactions dominate the problem. Other modes must be

present and they must be associated with the continuous spectrum of the TBL, a

component which has generally been ignored except for Gustavsson's (1979)

study of the initial value problem for laminar boundary layer flows in the

linear limit.*

A little reflection readily indicates the significance of the

omission. Recent studies of laminar boundary layers keyed to the determinaton

of the higher eigenvalues of the Orr-Sommerfeld equation (Mack 1976, Corner et

al., 1976) show that for any combination of wavenumber and Reynolds number

there is only a finite, and small, number of discrete Tollmien-Schlichting

eigenvalues. But a finite set of eigenfunctions cannot be a complete set.

The correct expansion of an arbitrary initial disturbance -- such as that imposed

by a burstin aTBL -- must include the continuous spectrum. Specifically, the

* Gustavsson points out the requirement that the continuous spectrum be

included but does not exhibit its effect on flow evolution even in thelinear limit. ,.
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stream function of a strictly two-dimensional flow even in the linear

approximation must be described by

0  {x A (k) *n (y,k) exp [ik (x - Cnt)] +U , n nn(10) -.
fU B(kc) 0 (y,k,c) exp [ik(x.- ct)] dc } dk

where the summation term and the subsequent integral term, respectively,

reflect the contributions of the discrete (Tollmien-Schlichting) spectrum and

the continuous spectrum. Admittedly the higher modes of the discrete spectrum

are highly damped and, therefore, can be neglected compared to the first mode

as in Bark's calculations. However, the continuous spectrum -- as shown in

Section 2.4 -- includes modes subject to less damping than the first mode

Tollmien-Schlichting waves and, therefore, cannot be neglected. For the

purposes of this report we must then ask whether the inclusion of the

continuous spectrum can rationalize the aforelisted unsolved aspects of the

data. The evidence to that effect is set forth in the following paragraphs.

2.3 SOME ASPECTS OF WALL PRESSURE FLUCTUATIONS SPECTRA

We begin by reviewing wall pressure fluctuation frequency spectra

for turbulent boundary layers on smooth and rough flat plates (e.g., Blake,

1970; Willmarth, 1975). These measurements indicate that three frequency (,)

ranges may be recognized in the spectra 0(w) scaled with respect to outer

variables U (freestream velocity) and 6* (boundary-layer displacement

thickness): a high-frequency range (wS*/U) Z 2; an intermediate-frequency

range 0.3 : (ws*/U) : 2; and a low-frequency range (w6*/U) : 0.3.

At high frequencies the frequency spectra correlate in the

functional form dictated by inner variables; with the notation q for the

dynamic pressure, uT for the shear velocity, cf for the skin friction

coefficient, kg for the mean roughness height, and v for the kinematic

viscosity, this form is:

[.(w)/q2] [v/u 2]-l vs W(V/u 2 )

for smooth walls and '

[O(w)/q 2] [kgCf 2/u ]" vs w(kg/u)

.4'j
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for rough walls. The narrowband convection velocities are found to be

frequency-independent but roughness-dependent (approximately 0.6 U for smooth

walls and 0.45 U for rough walls).

At intermediate frequencies the spectra over smooth as well as rough

walls correlate in the functional form dictated by the outer variables, viz

['(w)/q 2] [6*cf2/U -I1 VS (6*/U)"

The narrowband convection velocities are frequency -- as well as roughness --

dependent; for example, they vary from 0.6 U to 0.8 U as the frequency decreases

for the smooth-wall case.

At low frequencies the scaling remains uncertain. Reference to the

outer variables fails to correlate the spectra over rough walls. The narrow-

band convection velocities decrease sharply with frequency when measured at

small separations, but show considerably less frequency dependence when

mesured at large separations; the levels measured at small separation fall

distinctly below those associated with the high and intermediate frequencies

(Figure 2.4).

The behavior of the spectra at high and intermediate frequencies is

consistent with a wave-like nature of the attendant sources. In fact Landahl

(1967) and Bark (1975) have demonstrated that the intermediate-frequency

fluctuations constitute the large-scale response of the boundary layer to the

localized stress pulses caused by the periodic bursting process evidenced in

numerous turbulent boundary-layer studies (e.g., Kim et al., 1971). The

analytically determined response reproduces many of the experimentally

observed features in the smooth-wall case. For wavenumbers above the spectral

peak, the phase speed decreases with an increase in wavenumber from a value of

0.8 U. at low wavenumbers to a value of 0.6 U.. at high wavenumbers (Figure 2.4

and 2.5). The calculated decay rate provides an e-fold amplitude decrease

within a travel distance of 1.5 wavelengths in line with that indicated by the

measured longitudinal cross-spectral densities of wall pressures. The

predicted U-fluctuation spectra in the wall region (Bark 1975) peak at

frequencies and wavenumbers in reasonable agreement with the measured data of

Morrison et al., (1971) (Figure 2.2). However, the computed peaks are

considerably narrower than the measured ones for the (Wikx) spectra (compare
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the regions kx  102 in Figure 2.1) while they are comparable to those

observed for the (wikz) spectra. The latter comparison supports the

interpretation set forth in Section 2.2 and in Appendix B that the relatively

rapid decay of the spectral ridge computed in the linear limit is due to a

phase modulation driven by nonlinear interaction among the dominant waves.

As noted in Section 2.2 the low frequency portion of the measured

spectra ( < 10-1 in Figure 2.1) is not explained by either the Landhal-Bark
linear viewpoint or the nonlinear modulational viewpoint. The low frequency,

low wavenumber modes evidenced by the measurements cannot be linear Tollmien-

Schlichting modes because these have all been included in Bark's

calculations; the results displayed in Figure 2.1 indicate that the

contribution of the low wavenumber Tollmien-Schlichting modes is rejected in

the process of convolving the second derivative of the eigenfunctions -- which

possesses distinct sensitivity to wavenumber -- with the shape of the forcing

stress pulse to determine the response. The nonlinear modulational viewpoint

does not reproduce the convection velocities associated with either the K

spectral ridge of Figure 2.1 or the narrowband correlation measurements of
Figure 2.4. Significantly, the narrowband correlation measurement, dC low

frequency indicate low convection velocities c .4 U distinctly below those

at intermediate and high frequencies but comparable to those of the intense,

convected, positive wall pressure features exhibited by Emmuerling et al.'s

(1973) observations of instantaneous spatial patterns of wall pressure

fluctuations (Figure 2.8). These features at first are roughly circular with

streamwise extent of the order of 0.56* and then become larger in the

cross-stream directions while they travel downstream. They retain their

identity over downstream distances of the order of 96* and, thus, exhibit a

ratio (- 18) between decay distance and streamwise extent greatly exceeding

that (- 6) revealed by the narrowband correlations and the linear response

calculations. As such, they can hardly be associated with

Tollmien-Schlichting modes. We submit that they reflect continuous spectrum

modes which -- as shown in the next paragraph -- possess convection velocity

and damping distinctly lower than those of the Tollmien-Schlichting waves. We

have argued in Section 2.2 that the continuous spectrum modes are part and

parcel of the TBL response; 'the experimental evidence presented here proves
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that they provide a measurable contribution to the convection component of

wall pressure fluctuation spectra.

2.4 SOME PROPERTIES OF THE TBL CONTINUOUS SPECTRUM

The available information about continuous spectra of boundary

layers is limited to the sparse results recently presented by Grosch and

Salwen (1978) and Salwen and Grosch (1981) for laminar Blasius flow.

Fortunately some of the results can readily be extended to the TBL problem of -

interest here.

The continuous spectrum of the Orr-Sommerfeld equation for a

two-dimensional spatially developing flow contains four branches. In terms of

dimensionless variables scaled to the boundary layer displacement thickness 6*

and the boundary layer edge velocity U the first two branches of the

continuous spectrum are characterized by the dispersion relation

kl, 2 = + (w/y) - iR[(1 ± y)/2 ± (w/R)2/y3 ] + O(wS/R 2 ) (11)

where k denotes wavenumber, w frequency, R. Reynolds number and y = (1 +

4m2/R2) in terms of a parameter m that can vary between 0 and =.

Equation (11) can be greatly simplified in the limits m -O and

m--=. With the phase velocity defined by

C1 ,2 = k* 2 W/Ikl 21"

(where * denotes complex conjugate) one obtains

ki = to[1 - 2 (m/R) 2 ] + iR[(w/R) 2 + (m/R) 2 ] (12-a)

k2 -4[1 - 2 (m/R)2] - iR[1 + (w/R)2 + (m/R)2] (12-b)
4(m/R)2<<1

C= 1 - [(w/R)4 + (m/R)4](w/R)-2 - i[(w/R) 2 + (m/R)2 ](w/R)' (12-c)

C2 = -(w/R) 2 + i[l + (w/R)2 + (m/R)2](w/R) (12-d)

0. k = (w/2)(m/R)-1 + im (13-a)

k2 = -k (13-b)
4(m/R)2>>1 -

c1 = (w/R) 2 (m/R 3 - i(w/R)(m/R) 1  (13-c)

C2 = c1  (13-d)
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Clearly the eigenfunctions on branch 1 represent downstream traveling waves

while those on branch 2 represent upstream traveling waves. All of these

waves decay strongly as they travel except for the subset of branch 1

characterized by (m/R)2 : R- 1 << 1, which possesses modest damping rate Im(k)

and nearly unit phase speed Re(c).* Only this subset is of interest for our

considerations because the eigenfunctions on branches 3 and 4 prove to be

standing waves varying like exp(±mx).

As y-- the considered eigenfunctions exhibit the normalized,

constant amplitude, oscillatory behavior
- (x,y,t) r expji(kx + my - wt)] +

B exp [i(kx - my - wt)] + (14)

C exp [-Re(k)y + i(kx - wt)]

which is bounded, not exponentially decaying. However, wave packets that

behave like exp(-koy) can be constructed by selection of appropriate (k, w )

spectra such as that which describes the linear response of the boundary layer

to a localized vorticity disturbance periodic in time, viz.

I . 6(x - x0 ) 6(y - y0 ) exp (- i k0c0t)

A little reflection on the results (12-a, d) and (14) is

illuminating. Let's first consider the eigenfunctions on branch I

*characterized by (m/R)2 = f R-1 where f is a quantity of order unity,

comparable to the frequency w. The damping rate and the phase velocity for

these eigenfunctions are Im(k) = f and Re(c) = 1 ,(f/w)2  respectively,

according to (12-a) and (12-c). Since Re(k) - w per (12-a), we see that

Im(k)/Re(k) = (1 - c)3 and, for a fixed Re(k) and w, the damping rate

increases as the phase velocity decreases. But this is exactly the behavior

displayed by Blake's narrowband correlation measurements (Figure 2.4) where

the convection velocity increases markedly with the separation distance,
especially for frequencies below that of the spectral peak, w :E .3. Thus, we
interpret the observed dependence of the convection velocity upon separation

distance as evidence that significant continuous spectrum modes are excited in

• Representative values of the quantities appearing in (12-a,d) and (13-a,d)

for situations of practical interest are:ii O(1), R _ 0(104), 6* - O(.5cm) for
wind tunnels experiments; w 0(1), R - O(10), 6* O(.5cm) for water tests
with quarter scale models.
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the boundary layer. Further support for this view is gained by a reexamin-

ation of the velocity fluctuation spectra first displayed in Figure 2.1.

Selected constant power density contours from Figure 2.1* are replotted in

Figure 2.9 together with lines of constant convection velocity. The

measurements clearly associate significant power with modes characterized by
. : (c/U) <  1 and frequency smaller than twice the peak frequency (region

1 of Figure 2.9). Since the power densities in region 1 equal or exceed the

square of the peak power density we can hardly attribute the modes in question

to nonlinear interactions among Tollmien-Schlichting modes of near peak power.

This is the same conclusion reached in Section 2.2 on the basis of convection

velocity considerations, and just above on the basis of the separation

distance dependence of narrowband convection velocity measurements.

Significantly the experimental data in Figure 2.9 associate

measurable power with modes characterized by convection velocities 1 :S (c/U)

< 1.6 (see region 2 in the figure). These modes, which belong to the low

J wavenumber component of the spectrum, cannot be linear modes because

(c/U) 1 for both the discrete (Tollmien-Schlichting) and the continuous

spectra; hence, they must reflect the result of nonlinear interactions among

components of those spectra. At present we cannot specifically identify

the interactions in question because our results pertain to the strickly
- two-dimensional continuous spectrum, while in a TBL we anticipate that, due to

the highly localized nature of the bursting process, highly oblique continuum

modes are excited, much as we know to be the case for the discrete modes from

Ba-'k's calculations.**

* Figures 2.1 and 2.9 follow the practice by Morrison et al., (1971) of dis-

playing the densities P(kx,w) related to the two-dimensional spectra J(kx,w)
by P(kx,w) = kxw 0 (kx,w) . With logarithmic scales for kx and w, and a
linear scale for P(kA,w), the energy in a particular frequency - wavenumber
band is directly proportional to the volume under the surface displayed in
the figure.

** The long lived, small scale positive wall pressure feature revealed by
Emmerling's experiments (Figure 2.8) is clearly three-dimensional. Its
analytic reconstruction must await the determination of the 3D continuum.

2-24

e-z Z. 4%.4.<- - _



* ~ ~ ~ ~ ~ ~ ~ : C) C-. 
.-. -- - f 

f tf

C-4

C\J 0 .ftC3

cftC)

* -J

Lii Cj V-4 *A

0-0 - I CDes

cm m0- *

.j LL. -
Lii 4)

>. La.. u

0 ~ 0

0- 4 C V4 1 -4 ) S - l b

0) S-.

Li-

C

0 f

0 0 C)LL 0f

C0 L) 41
C)a. Ln-L (

-0- LI
Ljiir

P:I-

CD0 4.)
- L -

004

9-ft,

2-25~



The task of analytically predicting the relative contributions of

"Z continuum modes, discrete modes and their interactions is conceptually straight-

forward but quite laborious. Three steps are involved, namely: 1) the deter-

"mination of the three-dimensional continuum by numerical solutions of the Orr-

Sommerfeld equation; 2) the extension of Bark's linear response calculations to

include the continuum contribution in the context exemplified by Equation (10)

of Section 2.2; 3) the assessment of the three-way nonlinear interactions among

finite amplitude discrete modes, finite amplitude continuum modes and the mean

flow. None of these steps has been pursued in previous studies. The effort

required for their execution certainly exceeds the limited resources available

under the present contract. Also, the effectiveness of a strictly analytical

approach vis a vis a selective combination of theory and experiments is not

obvious at this early stage of the program. Thus, our case rests on the bridging

arguments presented heretofore and below.

The asymptotic behavior of the continuum eigenfunctions displayed in

Equation (14) provides the basis for some additional observations. Clearly the

.. p. first term at the right hand side of (14) represents a wave traveling away from

the body with wavevector k of modulus IktI = {[Re(k)] 2 + m2}1/2 inclined at an
angle e = tan-1 [m/Re(k)] with respect to the x-axis. The second term represents

a wave traveling toward the solid boundary with complex amplitude B, wavevector

of modulus [kj inclined at the angle -e with respect to the x-axis. Finally,

the third term represents a "wall" wave propagating parallel to the solid

boundary with complex amplitude C and wavenumber Re(k). In general, the modulus

and argument of B and C can only be determined upon calculation of the eigen-

functions and matching of the two wall boundary conditions; however, preliminary ."

estimates indicate that IBI 1, arg(B) - I, C - o, arg(C) - (-7/2) for

o - , i.e., m - o and c 1. These, we submit, are the waves that, upon

nonlinear interaction, significantly contribute to the low wavenumber and acoustic

components characterized by (c/U-) > 1. It is well known (e.g., Bergeron 1973)
that the low wavenumber component must decay exponentially with y, the coordinate

normal to the wall, while the acoustic component must be periodic in y. Because

of their low wavenumbers both components must also be characterized by extremely

small damping rates in the propagation direction. Since damping rates add in

any nonlinear interaction (whether sum or difference), we require that

Im(kj) + Im(k2) < Re(kj) - Re(k 2 )

" 2-26
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in the interactions between Re(kl) and Re(k 2 ) Re(kl) which yield the low

wavenumber and acoustic components. The requirement is clearly violated by

modes with [Im(k)/Re(k)] = 0(1) such as the Tollmien-Schlichting modes

[Im(k)/Re(k) 1 i/3] or the continuum modes with phase velocity measurably

different from unity [Im(k)/Re(k) = (1 - c)1 /2]. By contrast, if we restrict

attention to interactions between continuum modes characterized by e -0 , we

recover the low wavenumber component by considering pairs such that

C, C* exp {-[Rekl + Re(k 2)Ily} exp [i~ki - k2)x] + c.c. >

{B* exp[i(m, + m2)yJ + B1 exp[-i(m, + m2 )y] + (15)

exp [(mI - m2 )YI + BI B* exp[-i(m, - m2 )y]}exp [i(ki - k2 )x] + c.c.

,. as y -- , and we recover the acoustic component by considering pairs for

which the inequality (15) is reversed. Since preliminary estimates indicate

thatC becomescomparable to B for 0 ! 10 , while C << B for 0 0 (as noted

above), we attribute the generation of the low wavenumber component to

interactions among pairs with e 100 and the generation of the acoustic

components to pairs with e - . Preliminary consideration of compressibility

effects -- which must be recognized when the phase velocity of the difference

modes approaches sonic -- suggests that the y-damping of the C components is

reduced and, thus, the inequality (15) attendant to low wavenumbers may be

1- satisfied by values of e even smaller than the 100 noted above. This finding

is exploited in Section 3.0 to select outer decoupler designs that reject

waves incident at e : 100.

The recovery of the proper asymptotic (y -o) behavior for the low
E .-. wavenumber and acoustic components of the spectra on a mechanistic basis, V

although conceptually satisfying, does not constitute the ultimate test for

the views here presented. Recent models of jet noise associate the acoustic

radiation with a specific aspect of turbulence dynamics, viz, the jitter of

the large scale coherent motions. The question then arises as to whether the

* jitter does reflect nonlinear interactions between continuum and discrete modes

that are excited to significant levels according to the evidence presented

above. The matter is discussed in the following paragraph.
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2.5 WAVE RADIATION DUE TO JITTER OF TBL COHERENT MOTIONS

Ffowcs-Williams and Kempton (1978) have assessed the importance of

the coherent large scale motions in a turbulent jet as a source of noise.

They conclude that those motions provide the dominant contribution by way of

the randomly jittering process of eddy coalescence which is responsible for

the smooth growth of the jet in the mean. The vortex-pairing model, which

fairly predicts the experimentally observed characteristics of excited jets as

* well as the attendant overall sound intensity, indicates that the magnitude of

the radiated sound is determined by the eddy strength but the spectrum is

controlled by the randomness in the position of pairing. If the variation in

the random position of pairing g(t) is small compared to the scale k -1 of the
0S eddy, i.e., if <g2 > « < 1, sound is radiated only at certain discrete

frequencies; by contrast, if <g2 > k2 >> 1, the radiated sound is broadband
0 th raitdsudi rabn

with spectral width directly proportional to <g2 >1/2 ko and inversely

proportional to Tg, the correlation time of the randomness. Since smooth mean

flow growth requires that the position of pairing vary over a distance

comparable to the eddy separation, the condition <g2 > k2 >> 1 applies with

attendant implications for the acoustic radiation.

In Section 2.4 we have suggested that interactions among continuum

modes having finite amplitude (see Figure 2.9) and convection velocity c - 1

are responsible for the acoustic radiation. In view of Ffowcs-Williams and

Kempton's result we infer that the same modes must also be responsible for the

jitter of the large scale coherent motions associated with the spectral peak

discrete (Tollmien-Schlichting) modes. In that connection we note that, due

to their finite amplitude, the considered continuum modes can measurably

distort the mean flow much as the discrete modes do (see Vaglio-Laurin and

Liu, 1981, for a particular example of such distortion). The longer life

(smaller damping rate) of the continuum modes can compensate for their lower

amplitude vis a vis that of the discrete modes to yield comparable intrin-

sically unstable, inflectional distortions of the mean velocity profile which,

in turn, lead to a burst. However, due to the different phase velocities and

damping rates of the continuum and discrete modes (c - U and c = .4 U,

respectively), the attendant mean flow distortions exhibit a time dependent,

but periodically recurrent, phase relationship. The strength, structure and

b. 2-28
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space/time separation of the ensuing bursts then display periodically

recurrent time dependencies, i.e., jitter. Since the properties (amplitude,
wavenumber, frequency) of the mean-flow-distorting, jitter-producing continuum

and discrete modes scale with the local boundary layer characteristics (U, 6*,

cf), we expect that the statistics of the jitter scale with the same

quantities. The few available experimental observations confirm this view, at

least for what concerns the lowest statistical moments -- i.e., the mean and

the standard deviation. With specific regard to the standard deviation (of

the jitter) we further expect that it be comparable with the wavelength of the

NW dominant, intracting continuum and discrete modes, i.e., approximately

26 - 166* according to Figures 2.1 and 2.9. For smooth mean flow growth we

also require this value to be comparable with the mean separation distance d

-- between bursts. The rough equality is supported by the available measurements

in that the mean time between bursts, T - 5(6/U-), combines with the %

aforenoted propagation velocity of the energetic Tollmien-Schlichting waves,

c ='.4 U-, to yield d = cT n 26. Thus, the periodically recurrent phase

coincidence of continuum/discrete modes with attendant mean flow distortions

7 yields, in principle, a jitter of the coherent motions with low order

statistics having the correct order of magnitude and scaling. Only in passing

~ we note that, although the driving mechanisms is deterministic, the jitter can

exhibit complex, seemingly random, behavior because a large number of

continuum modes (and attendant mean flow distortions) contribute to the

process. Evidence to that effect is provided by recent studies of the

Wevolution of non-linear water waves subject to the well-known Benjamin-Feir
modulational instability (Yuen and Ferguson, 1978); numerical solutions of the

governing cubic Schrddinger equation show that a single wave, initially

subject to monchromatic spatial amplitude modulation with wavenumber A,

evolves in either simple or complex (and seemingly random) fashion depending

on whether only the initial modulational perturbation, or the perturbation and

several of its harmonics, contribute to the process (Figure 2.10). In either

case the initial simple configuration is recovered periodically (Fermi-Pasta-

Ulam recurrence).

The quantitative characterization of the jitter of coherent motions
in TBL flows has received scant attention even in recent experiments, mainly
because measurements are typically performed with a modest number of fixed
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(a)

.-

A

(b)

FIN FIGURE 2.10 THE LONG TIME EVOLUTION OF THE ENVELOPE
AMPLITUDE JAI FOR A NONLINEAR WAVE SUBJECT TO

BENJAMIN-FEIR MODULATIONAL INSTABILITY AND
INITIAL CONDITIONS T = 0, A = a 0 (1-0.1 cos 2irAX).

Note: (a) Simple and complex evolutions calculated for different values
of the perturbation wavenumber A.

(b) Stability map of the normalized perturbation wavenumbers (6/2a 0 )
used in cases la through 5 and their harmonics (nA/2ao)(from
Yuen and Ferguson, 1978).

The complexity of the response at (a) increases as the number of
unstable harmonics increases.
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point sensors. Thus, we have little evidence to quote except for the results

of Dimotakis and Brown (1976), who measured velocity autocorrelation functions

near the edges of the mixing layer between two streams having velocity ratio

(Ul/U 2 ) = 5. When plotted against the local dimensionless structure lifetime

/(x-x o  , these autocorrelations retain oscillatory character for time

lags much longer than unity (Figure 2.11). The existence of memory times well

in excess of the structure lifetime suggests that phase is not completely

destroyed in the amalgamation process that erases a structure but, instead,

ID remains coupled to the phase of structures formed subsequently. This long

time coupling, as well as the seemingly random jitter observed concurrently,

are plausibly explained only by a non-linear interaction between sequential

*. instability wave packets and lightly damped continuum modes excited in the

non-linear process of structure formation with simultaneous mean flow and

eigenfunction distortions (Vaglio-Laurin and Liu, 1981).

All the above arguments lead to the conceptual reconciliation of the

Ffowcs-Williams and Kempton viewpoint (spectral characteristics of the
Tgacoustic radiation determined by the low order statistics <g2 >1/2 )with'the .

viewpoint of Section 2.4 (spectral characteristics of the acoustic radiation

determined by the spectral density of the continuum modes with c n U

partaking in the TBL response to a burst). In our mechanistic view the

length/time scales and densities associated with the continuum modes in

question are uniquely related to those of the dominant discrete modes by the

modulation of the attendant eigenfunctions with the shape of the common

forcing stress pulse provided by the burst. The length/time scales and power

densities associated with interactions between continuum modes -- leading to

acoustic radiation -- and with interactions between continuum and discrete

modes -- leading to jitter -- are then also in fixed ratios. As a result, the

same spectral characteristics of acoustic radiation must follow from the two

viewpoints.

The reconciliation above completes the arguments in support of our

rudimentary mechanistic view of TBL dynamics and its cause-effect relation-

ships with three components (convective, low wavenumber, acoustic) of wall

pressure fluctuation spectra. Some implications of this view for data

analysis, scaling and acquisition are discussed in the following paragraphs.
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FIGURE 2.11 SCALED VELOCITY AUTOCORRELATION FUNCTIONS
MEASURED NEAR THE EDGES OF A MIXING LAYER

(from Dimotakis and Brown, 1976)
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2.6 IMPLICATIONS FOR DATA ANALYSIS AND ACUISITION

In addition to affording a basis for the selection of candidate

outer decoupler concepts and a related design approach -- to be elaborated in

Section 3.0 of this report -- the considerations of the previous paragraphs

are aimed to provide a systematic context for:

. The analysis of data to be acquired under the ACSAS program

0 The integration of those data into well founded, working,

mathematical models of low wavenumber wall pressure fluctua-

tions and their parametric sensitivities.

The potentially useful role of the mechanistic view in support of those

objectives is indicated by the following brief comparative discussion of

selected field and laboratory data.

Field data indicate that, at the speeds and stations of interest

(say U 5 m s- , x 4 30 m), the flow noise in low frequency Lands (say one

octave bands centered at frequencies w < 500 Hz) varies like U7LJ"  for a fixed

point sensor on board a full scale vehicle. This noise increases rapidly with

. the location of the sensor along the hull, the doubling distance being roughly

a three meters. By contrast, the noise measured by a remote sensor varies like

U4.

The contrasting velocity dependencies of the two sets of data

indicate that the on board measurements are dominated by the contributions of

direct path and hull-transmitted turbulent wall pressure fluctuations and not

by the radiated sound that affects the remote sensor. The U7W - 4 dependence is

in fact consistent with the form of the wavevector-frequency spectral density

of turbulent wall pressures suggested by several authors (e.g., Blake and

- Chase, 1971, Chase, 1980), namely

P(kW) : p2UW - F(uk/w, k6, /u) (16)

where U-cf/2 denotes the friction velocity and v the kinematic

viscosity. The same dependence is also consistent with the laboratory

measurements of Martin and Leehey (1977) who found

P(k X , 0, W) p2U36*3 (W6*/U)'3 .34(kx 6*)o.03 (17)
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Significantly, neither theory (16), nor laboratory experiments (17), give any

indication of the rapid noise increase with sensor location along the hull

observed in the full scale measurements. The latter effect has been attrib-

uted to forward-propagating hull-borne modes that decay by radiation.

However, the explanation is not fully satisfying because it implies predom-

inence of the hull-path contribution over the direct-path contribution at all

stations x 4 30 m. Thus, some reflection about potential shotcomings of

'_ theory and laboratory experiments is in order.

With regard to the theory we note that considerations -- including

many presented in earlier paragraphs -- are generally based on the assumption

of a spatially homogeneous TBL. In practice the boundary layer is not

spatially homogeneous and, therefore, "correlations" depend upon position as

well as separation. This fact was recognized by Bergeron (1973) who showed

that, on a finite plate of dimension L much larger than an acoustic wavelength

Xa' correlations become position-independent only for points x, x1 charac-

terized by x-xlj << L and by distances O(L/2) from the boundaries (for both x

and X1 ). Only at such points does the infinite plate spectrum become correct

for the finite problem, an exception still being required for a neighborhood

O(6*/L) of the acoustic wavenumber M(w6*/U). At all other points correlations

and spectra are affected by the inhomogeneities of the flow which include:

the TBL spatial growth rate; the ratio of the mode wavelength to the distance
4. from the edges of the surface supporting the TBL; the ratio of the mode

wavelength to the principal curvatures of the surface supporting the TBL. Our

mechanistic view provides the 6ontext for examining these effects. For

example, the TBL spatial growth rate is expected to influence significantly

and differentially the amplification rate of the energetic modes, much in the
same fashion as flow divergence does in jet flows (Crighton and Gaster, 1976,

Fuchs et al., 1979). The proximity of edges -- with attendant spatial

variations in the mean flow structure -- is expected to alter measurably the

energy content of commensurate low wavenumber modes, even though they may be

generated by difference interactions of relatively high wavenumber modes that

are per se insensitive to the mean flow variations. Similarly surface

curvature must and can readily be recognized in calculations of difference

modes with wavelength comparable to the principal radii of curvature simply by

casting the problem in the appropriate curvilinear coordinate system, rather
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than in the traditional Cartesian reference frame. In this light the effects

of spatial inhomoqeneities upon the low wavenumber and acoustic components of

wall pressure fluctuation spectra can be recognized only if the functional

dependence (16) is generalized to the following form based on outer variables*

p(X,m) p2U6 W-3 F[U k/w, w.*/U, cf, M, k d, k •i Rz ,

. R2/R1 , 6* v(p/U) n1

In (18) cf denotes the skin friction coefficient, M the outer flow Mach

number, and d the vector distance between the observation point x and either

the surface edges or the boundary layer origin; il is the unit vector in one

of the directions of principal curvature and R1 the attendant radius of "-

curvature; R2 is the second radius of principal curvature and 6*v(p/pU 2) the

dimensionless pressure gradient.

The drastic escalation in the number of parameters appearing in (18)

visa vis (16) cannot be rejected a priori as a frivolous academic exercise,

devoid of practical impact and, therefore, unworthy of careful consideration.

In that regard we pause to calculate the parameter combination
(Uk/w)- M(kd) = kac (w) d

for the median conditions of the Martin anid Leehey (1977) experiment.

According to the findings of Bergeron (1973) -- already quoted above -- the

product k d must be much larger than unity if the infinite plate spectrum is
to be recovered on a finite size plate. However, with U n 40 m s- 1, M .13,

6" - .5 cm, k6* - .5, (a*/U-) - 2, d t 35 cm (equal to the radius of the bass

drum frame which in our reading of Martin and Leehey's sketches represented

the largest dimension for the test fixture in the free jet facility), we

calculate k acd - 1.85 in apparent violation of the Bergeron requirement. We

then become concerned upon the impact of the indicated nonhomogeneity upon the

data and upon their unexplained 10 dB difference vis a vis the results of

Jameson (1975) in a similar experiment. We cannot settle the issue because

* According to the mechanistic view set forth in previous paragraphs the sig-
nificant modes scale with outer variables.
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parametric dependencies of the spectra upon spatial inhomogeneities are

unknown at present. However, we submit that the large disparity between the
two sets of measurements has such practical significance as to warrant

investigation of the matter in forthcoming ACSAS studies.

As in Section 2.5 we take the view that, at this stage of the
W, program, the issue of flow inhomogeneities and their influence upon wall -.

pressure fluctuation spectra is best approached by a combination of:

* Theoretical model solutions quantifying specific individual
-:" effects. V

- Data analyses seeking to recognize those effects and their

interplays in the data to be acquired under the ACSAS program.

We outlined approaches to some theoretical problems when we first mentioned p'

TBL growth rate, surface curvatures, etc., as factors. With regard to the

data analysis we suggest that valuable information may be gained from

comparative studies of space/time correlations obtained at different spatial

locations on a given model and/or on different models whose goemetries cover

significant ranges of the parameters listed in (19). Admittedly the

suggestion is rather imprecise, but we have not had the opportunity to study

the model configuration and instrumentation layout being planned for the

forthcoming field experiments.

We close with a note on data acquisition in possible laboratory

S experiments. The difficulty of wall pressure fluctuations measurements at low

wavenumbers is well recognized and the susceptibility to contamination by

facility acoustic background is well known. According to the wavemechanical

view of this report the difficulty stems from the fact that the continuum

eigenfunctions -- which govern the generation of the low wavenumber and

acoustic components of the spectra -- tend to zero as the wall (y = 0) is

approached. By contrast, those eigenfunctions oscillate with constant, finite

re amplitude outside the boundary layer (y - c), where the energetic Tollmien-

Schlichting modes decay exponentially. Measurements just outside the boundary

layer should then considerably enhance the detectability and diagnostics of

continuum modes and their derivative low-wavenumber as well as acoustic modes.

The observations of Dimotakis and Brown (1976) quoted in Section 2.5 were made
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-- possible by just this approach: the identical, long-persisting velocity

autocorrelations (Figure 2.11) detected near the two edges of the shear layer

could hardly be recoved within the shear layer due to the high level of small

scale turbulent activity prevailing there. Should laboratory experiments

prove desirable in the ACSAS program, the approach may be used in conjunction

with the heated model design suggested by Vaglio-Laurin, Hoglund and Collier '

% (1982) to facilitate the quantification and subtraction of background acoustic

noise.

. i1*
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' 3.0 OUTER DECOUPLER DESIGN APPROACH

" In this section of the Report we concentrate on those features

of outer decoupler design which are relevant to signal transmission and
flow noise isolation. With respect to the former, we clearly wish to receive

the desired signal within a specified range of fidelity. With respect to.

flow noise, we wish to reduce it to levels equivalent to the ambient noise

of the sea. We shall also find that the outer decoupler affects the reception

of self noise, and we shall make some extensions of our work to include this '

' " as well.

, The outer decoupler can be seen as a layer of polymeric material

supported in some manner by the base structure. We assume that this layer

is not covered with a structural skin but extensions to such a domed ,

structure would be straightforward. €

All the essential properties of the outer decoupler layer and its

• support structure can be made evident by the analyses to be presented here.

At this point our effort is less to settle on a particular design and more

:-a.

~to put forth an approach by which a detailed design could be carried forward.

Also these analyses are intended to help guide test programs which no doubt

" will be part of the development.

3.1 TWO-DIMENSIONAL MODEL FOR SIGNAL RESPONSE _,

SWe consider first a flat layer upon which is incident the signal.

(To the extent we are dealing with acoustic ambient noise and/or acoustic self
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noise, as in surface reflected signals from the engine compartment, noise

properties will be identical.) This 2D layer is taken first to be a fluid

with zero internal dissipation. In this Report we consider the base of the

layer as an immobile foundation, that is, one of infinite impedance, which

could be modified later should the hydrophone designers recommend otherwise.

Figure 3.1 depicts the geometry of the various waves. For harmonic

time dependence the equations describing these waves are:

= eikw(XC°SO + zsine)

: ~reikw(xcoso - zsine) (1)Pr = Pre

Pt = 21tcos kL(Z - h)sinet e ikL x cOsOt :
where pr and Pt are the reflected and transmitted waves resulting from the

incident pressure pi, Ur and pt are reflection and transmission coefficients,

k and kL are water and layer wavenumbers, h is the layer thickness, x and z

are the coordinates parallel and normal to the layer, and e and e are the

angles of the incident and transmitted waves. We have explicitly shown the

reflection and incident angles as equal. Also in these equations we have

written Pt as a standing wave, recognizing that it is made up of two *..

travelling waves, i.e., that to get good transmission we must avoid evanescent

waves in the layer,

S 3.1.1 Refraction

We note that the transmitted phase variation in the x direction

(which will be used for beamforming) must be identical to the phase of the . .

incident wave. This is automatically so, in order for the system of waves

portrayed to be matched at the outer surface. Stated differently the x-going

phase matching condition

kwcoso= kcoset

or (2)

case co se~ -4

cw cL

with cw and cLthephase speeds in the water and layer, is just Snell's Law.

Whatever we choose for the speed in the layer will preserve phase information.
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Our freedom of choice in layer phase speed, however, is not that

broad. One limitation for our application is the need to avoid evanescent

or exponentially damped waves in the layer. Thus cos® t must be < 1 for all

o of interest, i.e., the index of refraction n (=-c /c ) must be
w L

n > coso (3)

It is useful to introduce the relative speed increase in the layer, A.

Condition (3) then becomes

n - cose (4)
l+a

Thus the speed can be taken to be less than that of water (-I< A<O) so as to

satisfy (3) or (4) for all e. We shall find, however, that slow layers are

unsatisfactory from other viewpoints, and we should consider fast ones. We

could choose a layer that is at least slightly fast provided we are willing

to forego some small angular range 0 <E)Omi n wherein (1) is not applicable

and instead the input suffers an exponential decay into the decoupler layer.

Then we have for the allowable range in speed
-j<<2 n/2 (5).
-A min

where we have taken omi n to be a small angle.

In summary to this point we have found a condition on the sound

speed change in the layer and noted that a fast layer can properly be only
slightly so.

3.1.2 Transmission

Equation (1) can readily be solved for the ratio of the signal

level at the base to the incident signal level. We can define this as the

signal gain G and the result is

2 4

G = (6)
? cos-(k hsinet) + n2sin 2ot sin 2 (kLhsinet)

SP m2sin 2o
z = h >-,

where m is the index of density defined by
P L Ow

m =- -=1+ k
Pw
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with k the relative density increase, and where o can be found from

Equation (2). For the thickness h = 0 we see the gain is 4 (6 dB) as is

expected at an immobile foundation. More generally, to avoid rapid oscil-

lations in the frequency response of the layer, the thickness should be

made small compared to wavelength in the layer. That is, we must have

k L 2h2« 1 (7)

Since thickness ultimately wil prove valuable as a reducer of flow noise,

condition (7) can be seen as restrictive. Put differently, we are forced

to have the speed in the layer as high as feasible to avoid undue constraints

on thickness.

Coupled with the comments in Section 3.1, one can sense immediately

that the applicable design range for sound speed in the layer is governed by
I0 < A 4 02n/21 (8) +

N This insures fast layers, but only slightly fast, depending upon one's

choice of omin .

With application of condition (7) the signal gain can be written

as

G =4 (9)F__
1 + (kLhsinet) 2  n2sin 2-

LLt m2sin2o
This shows that the layer density ideally should be large, i.e.,

2  n2sin 2e.t (10)
sin 2e

which would guarantee that G > 4. But as a practical matter virtually any

- reasonable choice of m would lead to G - 4, and we can relax condition (10).

3.2 A NAVAL-ARCHITECTURAL CRITERION

What is a reasonable choice for m? Clearly ship design and

performance would be served if we require the bulk modulus of the layer to

be equal to that of sea water. Then compressive strains at depth would be

no more in the layer than in water, and concerns usually associated with

depth effects evaporate. Thus we take

....
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or .--°° 1

.. °

C2  P C 2

PL L w w
or m=n (11)

or 1 + k = A)-2

as the appropriate (reasonable) choice for m.

Equation (8) gives a design range for A which, based on the

presumption that emin and hence A is small, leads to

(12)

We see that choosing A positive (fast layer) leads to a choice of k

negative (buoyant layer), an advantage quite apart from acoustic consider-

ations.

Of course slight deviations might be entertained, but to help fix

the design approach we settle on Equation (12) as a design constraint.

3.3 THREE-DIMENSIONAL EFFECTS

A 2D layer can hardly be considered a practical model. At minimum

the layer is finite and must be structurally supported along its lateral

dimensions. Thus we include here an analysis of the effects of finiteness

and of lateral supports. We imagine the supports to form some pattern of

crossing structural elements as shown in Figure 3.2. These elements define

an unsupported layer of area S and perimeter P. Waves within the layer

incident on one of these support elements, also shown in Figure 3.2, reflect

with an angle a equal to the incident angle. We characterize the reflection
with an energy coefficient y and phase {. We also assign a volumetric energy

absorption a to the layer material.

For finite 2D bodies, it is well known that the mean free path is

S/P where by mean free path we mean the distance averaged over all between

successive interactions of the wave with the lateral boundaries. In our

case the mean free path is

pcoset (13)

which accounts for the up and down travel in the z direction.
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Each wave within the layer which reflects from one of the support 2
elements can interfere with the incident wave in the layer thereby causing

* signal confusion. We wish to establish criteria to keep such confusion

within acceptable bounds.

Before proceeding, note that we have adopted a forwardscatter or

reflection model for the interaction of the layer wave with the support struc- -

ture. This is justified at least for present purposes by the notion that

the individual support elements are likely to be organized along a particular

line, the whole of which yields maximum energy in the forward scatter

direction.

The wave in the layer incident on a support line is

Pt = f(z)eikLcOsOt (xcosa + ysina) (14)

where f(z) contains the wave's z dependence. The forward scattered wave is

pt f(z) eie 2eikLCOSOt(xcosB + ysin) (15)

Aside from the obvious change in direction, the forward scattered wave

differs from Pt by containing the support reflection parameters (y,c) and

the volumetric attenuation parameter (a). The latter is held to act over

a distance covering the mean free path, which merely says that we consider

much longer absorption distances as impractical from a signal fidelity

viewpoint, and much shorter as implying impractically high attenuation.

The sum of the two interfering signals can be written as

Pt + pt pt[Ae (16)

where the amplitude deviation associated with the layer support structure

5* (IAI -1) can be found from

A2 = 1 + 2y e'ar/2cos(2kLxcosetCosa - E) + ye-ar (17)

and where the phase deviation is '4

_I y2e-ar/2sin(2kLXCOSotCosa -
tan (18)

W 1 + y e1ar/ 2cos(2kXCOSOCOS - ).

We see that both (JAI - 1) and tend to zero with
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ye «1 (19)

and this then becomes the relevant condition for design of the support O

structure. Under this condition we have

IAI y e r/2cos(2kLxCosetCosa -(

y e_/sin(2kLxCosotCOS8 _L~ t> -

from which we find the amplitude of the combined signal is practically

identical to the desired incident signal. On the other hand, the phase

error, while of the same magnitude, may well be non-negligible. We observe

this error to be sinusoidal in space; what is of interest is its modulus or

maximum value @max" We have plotted this in Figure 3.3, and observe that if

we wish to keep this error small, mutual conditions are placed on the support

absorption parameter y and the volumetric absorption a.

In subsequent sections of this Report we shall return to some

possible choices for these parameters. We do observe here, however, that

the energy absorption coefficient can be significantly less than one if the

support lines are not solid or do not fully occupy the layer height h. That

is, we need not consider support elements with intrinsic sound absorption;

they may merely be partial sound transmitters (poor reflectors). We also

note that the volumetric absorption can be composed of true polymeric

losses in the layer or may be governed by waveguide leakage from the layer;

we treat this explicitly in the next Section.
.' %'"

3.4 LOSS FACTOR AND WAVEGUIDE LEAKAGE

The volumetric absorption can be decomposed via

a kL+ cs (21)

where n is the layer loss factor (ratio of imaginary to real part of bulk

modulus) and as represents equivalent loss associated with waveguide leakage.

Loss factor is an important material property; more will be said about it in

a subsequent design example. Waveguide leakage is no less important and we

now proceed to quantify it.

Figure 3.4 sketches the ray pattern associated with support induced

forward-scattered wave in the layer. It executes a complete cycle in a lateral
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distance given by

2h (22)
tan o t

during which it reflects from the water interface once. If the wave reflects

weakly (transmits into the water strongly) then it suffers an equivalent

volumetric loss, and the layer or waveguide is said to be leaky.

We can write the energy leakage loss for one cycle as exp( ). Then .-

the energy loss in volumetric distance r is

e -asr = e - (rcosat) (23)B

under the approximation that the above continuous function represents, on

average, the discrete process implied by Figure 3.4 and Equation (22). Finally

we can find the loss coefficient E from

In 1 (24)2 ,.

where the layer/water energy reflection coefficient is :.

I sinot (25)+-=- - cose('
1 sinet +[ I  t] S2

F t Ln2t

This comes from consideration of the layer-trapped scattered wave coupled

to a wave radiated into the water. Of course the ray angle et , through

Equation (2), converts upon radiation to e, but now in the transverse plane

of the scattered wave in the layer.

We see from Equation (24) that the layer must be fast (n<l) to

have u2<1 for all ot , confirming the condition stated in Section 3.1. That is

fast layers are leaky and provide control for scattered waves. Slow layers

are undesirable since they can trap scattered waves by perfect internal

reflection.

Combination of Equations (22), (23), (24), and (25) gives the

leakage loss__'..

n sinet + "1 cos2ot (26)

* -. *3*-..- q* . . . * * * .* -.* .2 .. ,.: 2

ff:;rL,;# , ;" *. , :.,-, -. -... '; .,..-'-. ". ; ,'..''...:.'.-.,'.." '-"o-. Cos,-. _n"2 -''--t"'%.''..



where we have used the design constraint m n2 (Equation (11)). That is we

include explicitly the requirement that the layer's bulk modulus equals that

of water. The leakage loss is plotted in Figure 5 for small values of

positive A, corresponding to the desired range of slightly fast layers. Here

a in dB/unit length is just 4.34 the latter in nepers/unit length.

We see from Figure 3.5 and Equation (26) that there is an angle of

intromission (Brewster's angle) which is ob r/4 for A2 << 1. For ot>0 ,

the leakage loss is approximately angle independent, and generally high.

For 0t<Eb however, the leakage loss might be low enough to raise some

design issues.

To place the design question in context, however, consider that

0 the mean free path r is generally much larger than h, i.e.,

that the leakage loss in a panel is r/h times that shown in

Figure 3.5

, the loss factor equivalent to leakage loss is
sino* t2kLh

which suggests that leakage loss is apt to be important

.. even for small and ot, because kLh is small.

To add to these general remarks in understanding leakage loss we need to

consider some specific design examples, which we do later in this Report.

3.5 SELF-NOISE LEAKAGE FROM THE OUTER DECOUPLER LAYER

Self-noise entering the outer decoupler from acoustic paths in the

sea (e.g., reflection from the free surface) will be modified, if at all, in

a manner identical to the signal. But self-noise can come into the outer

decoupler via structure-borne paths. These paths ultimately involve the

support structure of the layer, and possibly also other structures contiguous

to the layer such as that holding the hydrophones.

It is not our present purpose to control structure-borne paths as

. part of the outer decoupler design, although surely a high degree of inter-

action ultimately should take place between those responsible for these two
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aspects. What we must do here, however, is assure that such self-noise does

not reverberate in the outer decoupler.

The condition placed on structure-borne self noise in the layer

follows closely the development of Section 3.3. Since this noise is not

correlated with the signal, we merely require its amplitude to be small.

Since it is generated at a support structure, its form is just Equation (15).

Thus we require

J e-a << (27)

and this is more restrictive than condition (19). We note, however, that

proper attentuation in the structural paths will allow us to use the more

moderate one:

ye-<<I (19)

A. k

.r,
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3.6 RESPONSE OF THE OUTER DECOUPLER TO TURBULENT BOUNDARY LAYER NOISE

The main thrust in outer decoupler (OD) design for flow noise reduc- ->-tion is to take advantage of the difference in wave-vector characteristics

between the desired acoustic field and the undesired turbulent bou1odary layer

(TBL) field. The former has modulus of order (kw cos G)-1 with general propa-

gation angle o between the wave-vector and the solid surface. The latter,

based on Part 2 of this report, is characterized by scale of order 26 (where

6 is the boundary layer thickness)and angle e c 0 for the dominant wavenumbers

associated with the convective ridge, and by larger scale but propagation angle

e < 100 for the low wavenumbers. The physical description of the turbulent

boundary layer forcing function given in Section 2.2 provides a rationale for

the design of a decoupler that isolates energy of scale 26 from the hydrophones

and simultaneously reduces the low-wavenumber contributions at near-grazing angles.

We note that the efficacy of the outer decoupler design concepts

presented herein is not strictly dependent on the validity of the TBL forcing

function descripLon of Part 2. That is, the TBL low wavenumber noise source

is either:

1) The nonlinear hydrodynamic interactions of Part 2 that appear

at low wavenumber by virtue of high frequency interactions,

that enter the outer decoupler at obtuse angles and are re- %

jected along with their high frequency carrier by the scale-

3selectivity of the OD material, or
6 2) Acoustic waves of low wavenumber that propagate along the

boundary layer waveguide, enter the OD at near-grazing angles

and are attenuated by the choice of emitt as a non-zero small

angle.

3.6.1 Scale-selective OD Materials

A homogeneous isotropic material responds to all scales of deformation

in accordance with the value of bulk modulus and density. Shear modulus is a

parameter also, but only weakly so since it is related to bulk modulus through

Poisson's ratio, which would be close to 1/2 for nearly incompressible mater-

lals. Such homogeneous isotropic materials offer little advantage as an OD

precisely because we need to have it nearly transparent to the acoustic scale,

which then makes it also nearly transparent to the TBL scale.
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What is needed as an OD is a material with scale-selective elastic

properties. In concept such a material would have a modulus at TBL scale much

less than that at acoustic scale, and we now proceed to explore its use as an
OD. While still homogeneous, the material would be anisotropic to obtain its '--

scale-selective property. We observe that such materials are not oddities and

are often used (high transmission-loss architectural panels, optimized noise

control mufflers, etc.). They do, however, require special configuration, which

materials engineers can readily provide with state-of-the-art technology.

3.6.2 Response to TBL Deformation

Consider a scale-selective material with shear modulus G for TBL

scales (-26). Consider also that the OD using this material is not too thin,

speci fi cal ly

h - 26. (28)

Then a TBL disturbance at the water interface generates both shear and volume

deformations in the OD layer. If the speed of the disturbance at the interface

Uc is

U c< CT (29)

where CT is the transverse (or shear) wave speed [ (G/PL)'/ 2], free surface

waves (Rayleigh waves) are generated, and are known to have the form

= ikTSX e-kTNs 2 - d - z

= ikTSX e-kT YS2 - I z (30)

where 6 and a are the volume and shear disturbances respectively, x and z are

the coordinates parallel to and normal to the layer, kT is the transverse

(shear) wavenumber and

S = CT
.-, cR

1 - 2a I
2

with cR the Rayleigh speed and o Poisson's ratio.
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The free surface waves described by Equation (30) attenuate into the

layer; this provides the flow noise reduction we seek. To estimate this reduc-

tion we need s, which is a function of Poisson's ratio and which has values

a 0 1/4 1/2

s 1.144 1.088 1.047

These values are not too dependent upon a and we choose a value corresponding

to a : 1/2. Then we see that the volume and shear deformations attenuate into

the layer with values of about

volume: kTs 2 -d.z (20 log'e) = 57 z/x T , dB

shear: kT-S2-!tz (20 log e) = 17 z/XT, dB (31)

where xT is the transverse wavelength. In the practical case where z/XT is

large enough to provide useful attenuation, volume deformation can be neglected

compared with shear deformation. Since the TBL forcing field is at least as

energetic in moment excitation as in force excitation, we may conclude that

shear transmission governs flow noise reduction.

Criteria for reduction of flow noise are frequency-dependent. If,

however, we satisfy such criteria at the lowest frequency of interest, then

in accordance with the foregoing, the noise reduction would increase at the

rate of 3 dB per octave, and would likely meet noise reduction requirements

for the entire frequency spectrum. With the choise of the lowest frequency

as 100 Hz we find, therefore, that we need layer thicknesses as displayed: -'..

Noise Reduction, dB 10 20 30 40

h/cT , sec. requiredat 100 Hz 0.59 X 10-2 1.18 X 10-2 1.77 X 10-2 2.35 X 10-2

We see that cT must be quite small (say much less than 100 m/sec) to keep h

from being impractically large.

3.6.3 Realization of Anisotropic Materials

We sketch in Figure 3.6 a possible configuration for the anisotropic

material. This sketch does not exhaust the wide range of material configura-

tions that can be used to achieve our ends, but its inclusion here will help

illustrate the design principle.

3-18
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Local deformations on the outer surface of the layer tend to buckle

the pillars connecting the upper and lower skins. This provides small shear

modulus at small scale. At larger scale, however, the pillars do not buckle,

given that the volume between them is filled with a liquid-like material.

Thus for acoustic scales the large area properties of the layer can be adjusted

to have the appropriate cL. Since the desired cL at acoustic scale is 1500 m/secL' L&

and the desired cT at TBL is <100 m/sec, we conclude that the materials problem

is to design one with bulk modulus to shear modulus ratio more than about 225

(in contrast to isotropic materials with ratios of about 2 to 3). This is a

realizable requirement.

3.6.4 Response to TBL Low Wavenumber Components

There is concern that TBL energy at low wavenumbers can be important,

and we analyze its reduction here. By choosing a fast layer (A 20) such TBL

waves are exponentially attenuated, the reduction R in an OD of thickness h

being

R = k2 - kZ h (20 log e) = 8. 7 kLh (cL/U)2 - 1, dB (32)L L

where k is the flow noise wavenumber and where U is its phase speed. U generally

fills the range

U 4 U C (33)
C W

At the convective ridge (U = Uc) we have
R = 8.7 kch, dB

since kc >> kL. We see that

is a design condition for control of low wavenumber flow noise.

To be more specific than condition (34), we need to use the spectral

density at low wavenumbers. The ratio of unattenuated to attenuated energy is

k fk
, kdk k exp[ -4k2 k' h dk

k kw
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where kq is a power law approximation to the spectral dependence. Since uncer-

tainty exists on the precise form of low wavenumber spectral density, we choose

two values often suggested (q =0, q = 2) to evaluate the ratio:

q 0 2

k3h3
kch c

This evaluation is approximate, but is quite good for our conditions (kc >> kL,

kw k k h2 >> 1). Then the reduction R in dB is:

Ro  10 log k h
C

kchR 30 log(kh (35)

The foregoing developments (Eqs 32 through 35) assume implicitly that the

transition wavenumber for long waves is of the order 1/h. This transition

wavenumber is determined by the specific properties of the selected OD material.

Conservative practice suggests use of R as the approximate design value. Also

many researchers in TBL noise tend to favor q = 0 as a better representation of

available observations.

As in Equation (31), R0 shows the noise reduction increasing at a

rate of 3, dB per frequency octave. Thus satisfaction of noise reduction

requirements at the lowest frequency of interest (say 100 Hz) should also

meet requirements for the entire spectrum.

3.7 ANOTHER NAVAL-ARCHITECTURAL CRITERION

We have already seen that the transverse wave speed cT should be

larger than Uc , the convection speed of the TBL field. It is well known that

a flow field over an elastic layer can damage it when the flow speed equals

the relevant free wave speed in the layer. To avoid this we adopt the condi-

tion:

where U is the free stream speed. Since cR is less than cT (CR = cT/s) and

U is more than Uc (Uc A 0.8 U.), Equation (36) is more restrictive than

Equation (29), and we adopt it for conservative practice.
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3.8 A DESIGN EXAMPLE

We do not intend to provide a thorough discussion of design alter-

natives, but it is instructive to carry out a design example. This will indicate
!the way in which the foregoing models and concepts may be applied, and will help

to make firm the design approach.

*We have boxed in the most important equations and conditions of the

foregoing sections, to make the example easier to follow. As in any design,

there is no unique starting point; the designer ultimately will iterate several

times to achieve an appropriate compromise among competing desiderata. All

specifications in what follows are fictitious, but represent the kind of input

the OD designer needs.

1) Choose A positive to avoid perfect internal reflection for

scattered waves and self noise. [Equations (8) and (25).]

2) The array is specified to operate to within 0.17 rad (100)

of grazing. Thus 0min = 0.17 and at most A = 7.6 X 10-3

The layer c is thus 11 m/sec faster than that of sea water.

[Equation (8).]

3) The OD is specified not to collapse at depth. Thus k =

-1.5 X 10-2, i.e., its specific gravity re sea water is

less by 1.5 percent. [Equation (12).]

4) The OD is specified to have a controlling flow noise re-

duction requirement of 12 dB at 100 Hz. Thus h/cT = 0.71 X
10-2 sec, [Equation (31)], and kch = 16 [equation (35).]

5) The array is to withstand a free stream speed of 30 m/sec.

Thus take cR = 33 m/sec and cT = 35 m/sec (a 1/2).

[Condition (36).]

6) From (4) [Equation (31)] and (5), h = 0.25 m, based on '
shear deformation.

7) The array is to perform acoustically up to a free stream

speed of 12 m/sec. Thus from (4) [Equation (35)], h = 0.24

m. Since this is less than that found in (6), step (6)

governs.
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8) The highest frequency of interest is specified to be 1000

Hz. Thus kLh < 1.05 and condition (7) is violated. (At

this point one can iterate to remove the violation, or can

explore the ramifications of holding to 1000 Hz and 0.25 m.

We assume the ramifications can be tolerated, and proceed.) ,.

9) Signal phase error associated with the support structure is

specified to be no more than 0.1 rad. Thus ma = 0.1, andmax
as one possible design branch, take y = 0.3 and ar = 3.4.

[Figure 3.3 or Equation (20).]

10) The condition for control of self noise, Equation (27), is

satisfied by the choice in (9).

11) With y = 0.3, the support grid should occupy no more than

30 percent of its transverse area. If more than 30.percent

is occupied, sound absorption treatments must be designed

into its structure.

12) The structural designer specifies, for the 30 percent

structure, a support grid of 1 m X 2 m. Thus we find r and

a as listed in the following table. [Equation (13) and step
(9).]

et, deg 0 15 30 45 60 75 90

1, m 1.05 1.08 1.21 1.48 2.09 4.05 ",

m, nep/m 3.25 3.14 2.81 2.30 1.62 0.84 0

aV nep/m 0 3.24 9.86 27.7 20.7 21.9 22.3

n at 100 Hz 7.76 - - - - - -

n at 1000 Hz 0.78 -....--
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13) With A = 7.6 X 10- 3 from step (2) and h = 0.25 m from step

(6), obtain as in the foregoing table. [Equation (26)

or Figure 3.5.]

14) Leakage from the waveguide meets all absorption requirements

except for o small. Find required n (listed in the table)

to make up this deficiency. (Since the maximum practical n

is about 0.1 from a materials viewpoint, and about the same

from a signal transmission viewpoint, we must explore the

ramifications of violating our requirements at small ot.)

This completes a zero-order design, and iteration would yield

compromises that perhaps are more acceptable. Note that the values of A and

h affect the design most dramatically. Also note that the design yields a

materials specification which, symbolically, is:

6 density: PL

" large scale bulk modulus: pLCL2

* small scale shear modulus: 2LCT2  ___

I loss factor: n P--

-.-. _.

7
% V.
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4.0 PLAN OF ACTION

4.1 INTRODUCTION

The Plan of Action, which we believe is compatible with the ACSAS

qF Program Plan, is organized in three iterative phases based on our under-
standing of design and test objectives for two major KAMLOOPS tests in FY83
and FY84 and one series of LSV tests in FY86. The KAMLOOPS FY84 tests are to
be augmented by selected component full scale submarine tests. The Phase I

effort in FY83 is to be directed to initial tests and evaluation of inner and
outer decouplers, polymer hydrophones and effects on noise due to hull

discontinuities and roughness. The Phase II effort is directed to optimiza-R tion and definition of array and hull design parameters; Phase III is

-' concerned primarily with propulsion platform effects on array performance and -..

confirmation of the KAMLOOPS data set.

The Plan of Action described in this section is focused on Phase I
objectives. The objectives and plans for Phases II and III are only outlined

since detailed plans would, of course, depend on Phase I results. The ACSAS
program plan is focused on an experimental approach with KAMLOOPS as the
principal test platform. This approach involves major attention to experi-

4 mental configurations, operating conditions and design of measurements and

analysis procedures. In particular, it is important to minimize and control060
external effects which might excessively contaminate the measurements of

design and operational variables. In certain cases, it may be desirable to

4-1
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introduce controlled diagnostic tests Lo identify and quantify cause and

effect relationships for both the needed design parameters and the external

factors affecting the measurements.

4In addition, it is recognized that testing of outer decouplers and

hull coatings must be carried out in close coordination with hydrophone, inner

decoupler and hull structural investigtions. The testing requirements of

these associated components will determine, to a large degree, the test

configurations and measurements for the outer decouplers. Therefore, the

-: following discussion is restricted to guidelines and general approaches to the

* experimental plan for evaluation of the outer decoupler.

r 4.2 FY83 -- MAJOR KAMLOOPS TESTS

The Plan of Action for the FY83 KAMLOOPS tests is organized in six

tasks directed to specific objectives.

TASK 1

Determine the physical properties and acoustical characteristics of
4 the array outer decoupler system needed to isolate to a satisfactory degree

the pressure field of the turbulent boundary layer from the array.

The design parameters for the outer decoupler are discussed in

, Section 3. They include the following: sound speed, cL; shear wave speed,

c CT; density, p; loss factor, n; volumetric absorption, a; and geometric

dimensions including thickness, h. In the aforementioned discussion the range

-of values for these parameters is established qualitatively. In some cases

the design objective is well understood and/or the range of practical values

is relatively narrow. On the other hand, there is a need to establish

criteria for selected design parameters in terms of both performance

sensitivity and practical materials engineering and fabrication constraints.

, The initial design and test effort is, therefore, directed to
determining the effects of design and construction variables in order to

i establish criteria for subsequent design optimization. The detailed design

and test plan will specifically address criteria with respect to the following

characteristics:

SV
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6 Refraction criteria for the prescribed range of cL

o Transmission loss for a range of p

* Support structure energy reflection loss, y

o Internal volumetric energy absorption, a

* Material loss factor n

0 External wave-guide loss,

The approach to this task is to:

1) Develop and refine the analytical results presented in Section

3.0 of this report as may be needed for specifications.

2) Prepare design guides in the form of design envelopes, charts,

and tables.

3) Specify the material properties together with the range of

particular design parameters needed to establish parameter

sensitivity and, optimal characteristics through subsequent

development and testing tasks.

TASK 2

Monitor the development of design options for the outer decoupler.

The approach to this task involves technical discussions with those tasked to

design and fabricate the materials to ensure that requirements defined in Task

1 are properly accounted for in the design process and to assess the impact of

engineering compromises and alternatives. The design and fabrication of the

test configurations must be compatible with KAMLOOPS installation

requirements. Specifically:

1) Determine how and to what degree the variations in the design

parameters selected in Task 1 can be incorporated in the
detailed material configurations.

2) Assess design/cost trade-offs in the design process.

3) Provide technical reviews during the design/development/

process.
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Iwo4) Work with material fabrication contractors and incorporate

standard material testing procedures to determine basic

material properties.

5) Ensure compatability with KAMLOOPS installation requirements.

TASK 3

Determine the effects of discontinuities caused by mounting and

attachment requirements on the noise coupling into the array and the hull.

lei Significant progress has been made in recent years in the develop-

ment and application of hull coating adhesives. It is possible that the outer

decoupler installation requirements can be met by adhesive attachment

procedures. On the other hand, practical naval architecture requirements may

dictate structural strength members. Structural discontinuities are in

important consideration in the design of the outer decoupler system as

discussed in Section 3.0. The technical approach is to introduce structural

connections into selected outer decoupler samples to represent attachments or

active strength members. This is an initial step to assess the relative

importance of structural discontinuities on the overall performance of the outer

decoupler materials. Specifically:

1) Design test configurations with a structural bracket to retain

the material on the hull structure; select the material.

2) Monitor the fabrication of these test samples to ensure its

compliance with test objectives.

TASK 4

Experimentally determine the characteristics of outer decouplers and I
the effects of structural discontinuities on noise coupling into the array and

the hull.

The conduct of the outer decoupler testing program will be carried

out by DTNSRDC staff with the assistance of selected contractors. Our

approach is to provide technical support in the following areas:

4-4 ,V
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1) Assist in the development of the test plan for the outer

decoupler testing including instrumentation, procedures and 2
analysis plans. ...

2) Provide sketches for needed instrumentation including

locations and mounting provisions for hydrophones and

accelerometers.

3) Recommend diagnostic tests for transfer functions and external

,IR factors.

TA SK 5

Prepare initial evaluation of outer decoupler materials and assess

their potential for noise reduction. Define effects of mounting and

attachment structures.

The technical approach is directed to early assessments based on

on-line data analysis with comparisons to predicted performance. An early or

preliminary evaluation is vital to the planning of Phase II FY84 experiments

and to the support of design/fabrication efforts. It is important at this

state tu assess the outer decoupler in the context of the entire system

including inner decoupler, hull coatings, structureborne noise control and

other features which effect outer decoupler performance. Specifically:

1) Prepare a Quick-Look Report

2) Participate in analysis of data

3) Review designs and prepare optimized material and design

specifications for the outer decoupler system including

suggestions for changes in the design of other array

components such as the inner decoupler and hull coatings

and structureborne noise control features. -.

4) Prepare design guidelines for mounting and attachments

methods.

5) Recommend modifications to FY84 measurement and analysis

procedures for evaluation of the outer decoupler system

owe
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including suggestions for changes in other array features which

reflect interpretation of the data on outer decoupler system

properties.

P TASK 6F

Review, interpret and assess scaling rules for existing and new flow

noise data in the context of the mechanistic description of noise sources 9
presented in Section 2.0 of this report. -"

Data are available from full scale submarines and from KAMLOOPS and

other scaled-down vehicles. The scaling and correlation of these data remains
an issue, however. Some sort of model is a prerequisite for scaling; existing

models are quite broad, they fail to correlate the measured spacial depen-

dencies, and they are short on specific, mechanistic physics. We have

attempted a start to fill this void. Our approach in this task then is to:
1) Review existing full-scale and scaled-down flow noise data

for consistency with the correlations and relations implicit

in ORI's description of low wavenumber noise sources.

2) Assist in the develooiment and review of test plans for

KAMLOOPS and/or water tunnel tests that would provide infor-

mation on flow noise sources and characterization.

3) Assist in the interpretation of new data with emphasis on

development and validation of scaling rules. ...-.

4.3 TEST CONFIGURATIONS ,J.

In this section we discuss some approaches to the design and

installation of test sections on KAMLOOPS for initial evaluation. We also set

forth recommendations on instrumentation and measurement and analysis

requirements.

Figure 4.1 illustrates a basic conceptual approach which involves

placing the test sections in a peripheral arrangement so that each one is in

contact with essentially the same fully developed turbulent boundary layer

flow.
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Figure 4.2 illustrates a second basic conceptual approach which

prescribes a common surface geometry for all test sections. This surface

would be either a part of the KAMLOOPS bow surface profile such that the test

sections would be recessed within the hull lines or parallel to the surface

profile such that the test sections would be raised above the hull lines to an

equal height. The latter approach requires fairings around the periphery of

the hull as shown in the sketch.

Figure 4.3 illustrates a third basic concept, namely that the test

sections be structurally isolated from the main hull structures. The

effectiveness of the vibration isolation must be established so that the

background vibration levels of the hydrophone mounting structures behind the

outer decoupler test sections are comparable and below a prescribed acceptable

level.

Figure 4.4 shows a suggested arrangement of test sections which

involves several "control" sections, i.e., no decoupler, interspersed between

the decoupler test sections. These control sections would provide baseline

vibration and noise levels under direct TBL pressure field excitation.

Figure 4.5 provides a preliminary concept on measurement

requirements. The basic approach is to incorporate both vibration and

hydrophone array measurements in order to define the performance of the test

sections and isolate the more significant measurement variables and design

parameters. An example array for each test section is also shown, consisting

of a line array of five hydrophones in both longitudinal and lateral

coordinates.

Figure 4.6 shows a preliminary concept for the testing of the

effects of structural attachments or strength members.

90
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APPENDIX A

THE DISPERSION RELATION FOR FINITE AMPLITUDE WAVES

For simplicity we consider the nonlinear interactive evolution of a

temporally growing (or decaying) finite amplitude two-dimensional wave super-

posed on the mean incompressible boundary layer flow on a flat plate. We seek

to show that one consequence of the nonlinearity is the amplitude dependence

of the dispersion relation for the wave.

With reference to cartesian coordinates (x oriented streamwise and y

oriented normal to the plate) we assume the initial state of motion to be

described by

V(x,y,O) = [U(y,O) + u(x,y,O), v(x,y,O)] (A-i)

u and v being periodic with wavenumber k and frequency w. We determine the

temporal evolution of the flow in terms or the stream function (x,y,t) which

must satisfy the vorticity conservation equation
(V1pt +  - -  V2) 4 = o

(vy~ + P~ 2 Px - x~(~p (A-2)
where R denotes the Reynolds number formed with the reference velocity U, the

reference length 6 and the fluid kinematic viscosity v. We solve (A-2)

subject to the initial conditions (A-I) and to the boundary conditions

Sy :0 0 : y :0 (A-3a)

y -+ - -0 0 (A-3b)

A-i
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In seeking the solution we assume that, for all t > 0, the stream function

may be resolved into a mean flow contribution y (y,t) and a disturbance

contribution eo(x,y,t), the latter possessing small but finite amplitude --

characterized by the parameter e << 1 -- as well as spatial periodicity with

wavenumber k; thus

(x,y,t) = (yt) + Ep(xyt) (A-4)

Substitution of (A-4) into (A-2) yields

(V2w)t - R-v14i + di(v 2 p)t + T (V2 )x - V (V2 )y - R- V4]+

2y (V2 ) - x(V2I)y
Ell (A-5)

and upon x - averaging

(V2-) t - R-1v4y + C2 < y(V2 ) _ -x(V
2 )y > = 0 (A-6)

which is the equation governing the time evolution of the mean flow. The

equation describing the evolution of the periodic dist',bance follows readily

N upon subtraction of (A-6) from (A-5), viz

(V2y)t + Ty(V
21,)X - X(V2T) - R-vV4p +

[y(V2)x (V2 - < (V2) (V2 )y >] =0 (A-7)

Equation (A-6) indicates that, for E2 > R-1 , the mean flow vorticity (v2p)

varies on a slow time scale T = e2t, provided the disturbance stream function
remains of order unity under differentiation with respect to the space coordi-

nates. Under these conditions the solution of (A-7) may be sought by the

method of multiple scales (e.g., Nayfeh 1973) and a uniform expansion for the

s disturbance stream function in powers of e may be obtained according to

3
op(x,y,t) C *npn(X,y,t,z) (A-8)

n=1
5*

With a single eigenmode excited at t = 0 the leading term of the

solution (A-8) must have the form

1(x,y,t,T) = -[A 1 (T) 1 (Y,T) e + c.c.] (A-9)

'I'
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where
ae _ k c _-_(k,t) "1:

ax at -'

Substitution into (A-7) then shows that the function 1(y, T) must satisfy the

Orr-Sommerfeld equation

2k2  + k ) - -%:/l l (lyyyy 2k yy + '

iR[(Uk -)(yy-k2 l W ~yl 0 (A-10) -ly 1 yy I

with the homogeneous boundary conditions

y 0 1= eiy 0  (A-11a)

Y -O i- 0, iy 0 (A-11b)

However, the function A1(t) remains undetermined at this level of approx-
imation.

Further elaboration of (A-7) in the context of the solution (A-8)

shows that the contribution P2 to the disturbance stream function must have
the form

' 2 (X,y,t,t) = 7-[A2(T) 2 (Yr) e2' (® + c.c.] (A-12)

the function 2(YT) being the solution of the equation

2(;yyy - 8k2  + 16 2 -

2iR[(Uk - )( 4k2 2) -W

-kiR(y (A-13)1 Iyyy 1y lyy)

subject to the boundary conditions

-2 0 2 =2y= 0  (A-14a)

Y2 '2y-. 0 (A-14b)

The function A1(t) still remains undetermined.

An equation for A,(T) is obtained upon consideration of the

contribution 0(e3 ) to the solution (A-8). Elaboration of (A-7) to that order

shows that the inhomogeneous part of the equation for p3 includes, among

others, terms proportional to exp (ia), which are contributed by the

derivative of @i with respect to the slow time variable T. Secular terms in

the particular solution for 3 and the attendant nonuniformity of the

A-3



expansion (A-8), can then be avoided only by seeking the particular solution2

~p3x~yt, 2 . 3A(~jltj~ (Y,)e'O + C.C.] (A-15) l-9

the function O3 yIT) being the solution of the inhomogeneous equation

13)= R(A1!A112 )-l [A1(;1yy - -2,]

-R exp [i(e) - E®*)][k(2C2 Cyy + C2y yy -

2k*(2y- 3k' 2) - k *( 2yy -3k
2 C2)y] (A-16)

i4 subject to the boundary conditions

y O C3 3y 0 (A-17a)

in (A-16) /1(03  denotes the Orr-Sommerfeld differential operator -- defined

by (A-10) -- and denotes the complex conjugate of t1. The inhomogeneous

problem consisting of equation (A-16) together with the boundary conditions

(A-17a, b) then has a solution if, and only if, the inhomogeneous terms in

(A-16) are orthogonal to every solution of the adjoint homogeneous problem.

With (A-16) recast in the form

~1( 3) =i(AiIAiI 2)-1 (Algl) + exp [(E) 0 *)] g2  (-8

where

gl(y,tc) = -iR(;1  k2 ;1) (A-19a)

g2 (y,T) = ik 2 C2 iyyy + C2y y -1Y 2 y (2 yy R2 Ck2 )-

~t(~yy 3k 2 2)y(A-19b)

we thus require that

f {(Alg1) - AIJA 1I2 exp [ice 92 C*] , dy =0 (A-20)

"I- O(y,-r) being the eigenfunction that corresponds to the eigenvalue k of the
adjoint homogeneous equation

= ~ yyyy - k y +k 1

yyy

A- 4
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YI
subject to the boundary conditions

y 0 1 =i y 0 (A-22a)

=y - 0, y 0 (A-22b)

The condition (A-20) is readily recast into an ordinary differential equation

for A(T), namely

hl(dA,/dT) + h2Al + h3A1 ]A1 1
2 = 0 (A-23)

where

h1 (k,-r) =  g1C, dy (A-24a)

h2 (kT) = g1 dy (A-24b)

h3 (k,T) = -i exp [i (o - 0*)] g2C1 dy (A-24c)
" *%**

If the vorticity distribution (gl) associated with the wave has negligible

dependence (g1,) on the slow time T we can set h2(T) = 0 and solve (A-23) in

closed form, viz N

A = JAJ exp(-iJA1 2 C2T) (A-25)

with a2 = -i h3 h-
1 . To a first approximation the wave motion is then

described by

t(x,y,t) =.y {jA(T)I 1(y) exp[i(e - E21AI 202t)] + c.c.} (A-26)

with obviously amplitude-dependent frequency %

w + e2 JA12 02 (A-27)

The result clearly accomodates the experimental finding of Blackwelder and

Kaplan (1976) that conditionally sampled velocity fluctuations display

amplitude-independent signtures that propagate at amplitude-dependent

velocities.
A-
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APPENDIX B

THE MODULATION OF A PACKET OF FINITE AMPLITUDE WAVES

For simplicity we consider a packet of two-dimensional finite

amplitude waves that roughly approximate the features of Bark's (1975) results

for the linear response Suu(kx) of a turbulent boundary layer to a burst-

associated Reynolds stress pulse (see Section 2.2 and Figure 2.2). We assume

that the wave packet initially involves a dominant frequency w -- associated

with the wavenumber k0 at which S uu peaks -- and two sidebands with

frequencies w ± v and wavenumbers k ± x. Since the peak of Suu is quite

narrow we set v << w and x << k . As the waves possess finite amplitude and

nearly coincident phase velocities (see Figure 2.5), we admit of significant

nonlinear wave-wave interactions. Below we explore the consequences of those

interactions upon the development of the spectrum; specifically, we seek to

show that the interactions between the sidebands and the difference wave (of

frequency v and wavenumber X) lead to amplitude and phase modulations of the

dominant frequency w 0I

In the presence of wave-wave interactions the amplitude an of the

nth sideband -- with frequency wn = (W + nv) and wavenumber kn = (k + nx)

n 0 n 0evolves in time obeying the equation (see Kim, et al., 1980)
• a n

2i n- V-(kn k n-lX) an. b exp (iAnt) +

V (kn kn+i,-X) an+1 b* exp (-iAn+ 1t) (B-I)

B-1
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where V-(V) denotes the coupling coefficient between the waves present atn n

and w n(Wn+l), b denotes the amplitude of the difference wave with frequency

v and wavenumber X, and A = (n - - v). As the difference wave arisesnn-

as the result of nonlinear interactions among the original carrier and

sidebands -- which are characterized by ( w/aa) = (w/a) -- we also have

(v/X) - (w/a) and, thus, A A ! 0. The coupling is then efficient and

near-resonant among all the considered frequencies. Under those conditions

(B-I) may be recast in the form

1 +-
(dan /d) = y (v an vn an+I)(B-2)

with
a a exp (in. - arg(b)]} (B-3a)
an =n ex

t

V0f Idt' (B-3b)
0

(V/Vo), Vn : (Vn/Vo) (B-3c)

Inspection of (B-2) indicates that, if the coupling coefficient is+

independent of n (i.e., v- = vn = 1), the equation reduces to the recurrence

relation among Bessel functions. The solution then is

an = J( ) (B-4)

tantamount to a pure phase modulation of the dominant frequency w with maximum

p frequency deviation (6wmax/v) = T. By contrast, if the coupling coefficient

has a dependence on wavenumber, both amplitude and phase modulation ensue. The

characteristics of these modulations can generally be determined by first

integrating (B-2) to determine the amplitude of the nth sideband and then

adding the sidebands to the carrier. The process may be carried out in closed

form in the particular case where the coupling coefficient exhibits a slow

variation with wavenumber such that

(Vn/V n ) = (1 - 6)/( + 6) (B-5)

with 6 << 1; the result is [Kim, et al., 1980]

a exp[i(knX - t)3 + c.c. = ,S
n n n

a(x,t) cos[k0X - W0t + p(x,t)] (B-6)

B-2
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with

a(x,t) 1 1 - r6 sin(xx - vt - -) (B-7a)

p(x,t) = T sin(xx - Vt - (B-lb)

Rapid growth of the difference mode with consequent rapid development of the

phase modulation index T, defined by (B-3b) and exhibited in (B-7b), is

expected for the waves excited by a TBL burst because of the near resonance

between the dominant frequency wo and the first sidebands that are also

excited directly. The wavenumber dependence of the coupling coefficients, and

the consequent magnitude of the amplitude modulation index T6 exhibited in

(B-7a), are expected to be weak (6 << 1) due to the lack of dispersion

inherent to the nonlinear forcing of all other sideband modes. The nonlinear

processes here considered then accommodate the theoretical proposition -- set

forth in this report -- that the distinctly broad velocity fluctuation spectra

measured by Morrison, et al., (1971) for k > ko , w > o result from a phase

modulation of the narrower spectra which Bark (1975) calculates as the linear

response of the turbulent boundary layer to the burst-associated Reynolds

stress pulse.

..
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