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1 Introduction PAGE 1

Chapter 1
Introduction

This thesis centers on two interconnected propositions: 1) the design process of mapping an
abstract program specification into an efficient compilable algorithm can be partially
automated, 2) a formal, machine usable history of the design process including goals,
methods and selection criteria can be recorded. We will argue not only that both are of value,
but that with the high relative cost of maintenance, the fatter will become the finchpin of future
maintenance efforts.

We will support these propositions by presenting a system that automates part of the design
process. The system is based on a model of software development that starts with an
abstract, formal specification and transforms the specification into a compilable
impiementation. To handle realistic specifications, the user is expected to play an active part.
We will show the documented history of the design process produced by the system is
comiiciely captured for the automated portion of the design process and tools are provided
to encourage the user to document the goals, methods and decisions of the remaining
manual portion.

We will find each of the following items of use in this model!.

DA language for stating design goals. The language will become the
communication medium between user and machine.

D A catalog of methods for achieving those goals. The method catalog will contain
both transformations and planning techniques.

D A catalog of selection rules for choosing among competing methods.

O A well defined partnership' with the user which plays off the strengths of both
user and machine.

1W0 use the word partner where others have used assistant or apprentice. Coadjutor may come closest to our
intended meaning: equivalent status in all but authority. We will stick with partner.
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" PAGE 2 : Introduction r
0O A detailed recording of the design process that includes the goal structure, i

{ ' competing methods and selection rationale used to reach an implementation.

T 1.1. AProblem Solving Approach to Software Design _
- >~
" A general view of our system is that of a problem solver in the domain of software design. The =
N user issues design related problems (goals) and the system finds means of solving (achieving)

1':- 2

}-' 'hem .

N .
o~ Designer: These two parts of the spec are similar; let’s consolidate them. _
ol
:‘_'-,: Designer: This parn of the spec is unneeded (nonessential, redundant); let's remove it.

\:', Designer: This part of the spec is complex; let's break it into simpler cases.
- E
-:f‘_ Designer: This part of the spec is ready to design; let's implement it.

T

T K
:Z:'. We would like the system to achieve the user’s goals automatically, bothering the user only Zj-;
::" when interesting (e.g., insightful, organizational, domain specific) information is needed. That

__ is, the system should carry out the mundane detailed steps of the design, allowing the user to _r.:
-'_:j concentrate on higher-level development issues. )

":- System: I'm trying to find an equivalent replacement for this object. | believe that the last ;::

element of this sequence is & good candidate for these reasons... Can you verify that they

: are equivalent? =2
- '.\
;—f

::3 System: /n what order should these parts be designed? -
System: How big do you estimate this <fill in domain object> will be?

A
-{' We would like the system to document its design process in a way that can be used by other

F :: tools, e.g., a maintenance tool. The queries below are based on 1) the development history

A produced by the system and 2) a hypothetical maintenance tool which makes use of it; only 3
X . .

- the former is directly addressed in this thesis. _
‘:Z: Maintainer: How was this portion of the implementation introduced?
] u |
5: 2W0 use English here as a reading aid only; the actual language for stating probiems is described in chapter 5. T
‘: RS
L] \.
+ ~
}' .
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1.1 A Problem Solving Approach to Software Design PAGE 3

Maintainer: What role does this design step play?
Maintainer: Why wasn't this method chosen at that point in the design?
Maintainer: Under what circumstances can | get rid of this portion of the design?

Maintainer: /s this portion of the design re-usable if | make the following change to the

specitication? )

These objectives have largely been achieved by a running system called Glitter®, upon which
the above interactions are based. Glitter is implemented in Hearsay-lll, a system for i
constructing expert systems [Balzer 80, Erman et al. 81]. Glitter has been applied to several )
development problems, the most interesting of which is presented in Appendix C. Later .
chapters will discuss the software design model that Glitter embodies in more detail; we
provide here a brief description of its features

T i

O What vs. How. The model! advocates a shift in the way transformational
developments‘ are constructed. Instead of the user deciding how to achieve
some implementation by searching through a transformation catalog for
appropriate transformations and then selecting one, the user decides what
development goal he wishes to achieve by the use of the goal language. The
system then makes available all methods which might achieve the goal and all
knowledge that might help choose among them. Note that the same what vs. how
issues are raised in specifying programming problems (see chapter 3).

PV L N

DO Automation. For the package router development presented in Appendices, the
system was able to produce 158 planning steps given 13 user goals.

D Partnership emphasized. The design process is viewed as a joint activity with the
strengths of each partner emphasized. This requires both a mutually
understandable form of design knowledge and a control structure that uses both
partners in an efficient manner. Note the divergence of approaches between a
partnership mode! and that of automatic programming. In the latter, full
automation is achieved by studying constrained examples; research progresses
by working on gradually tougher problems. In Glitter, tougher problems can be
handled by including the user; research progresses by gradually removing the
user from the process.

N PR waR

e

-
-
-
r

3An historically rooted acronym: Goa/-directed jitterer. Rather antiquated currently.

‘Our use of the term deveiopment in this thesis is limited to the process of transtorming a specification into a
compilable algorithm. Hence, design and deve/opment will be used interchangeably.
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PAGE 4 : introduction

O Knowledge acquisition facilitated. As development experience is gained, it is
expected that new knowledge, missing from the current system, will come to light.
Mechanisms are provided for recognizing and recording holes in the system's
knowledge base; such holes are reported at the end of a development for human
analysis. The recognition mechanism keys off of actions taken by the user during
the development process. From this recording process, new methods and
selection rules are formed (by hand; no learning mechanism currently exists).

O Development history recorded. The by-product of a Glitter development is the
rich planning structure which sits on top of the actual transtormation steps. This
structure is available to other tools. In particular, we have begun to make use of it
in the proposal of a maintenance tool (see Section 9.3).

in the next section, we provide motivation for both a mechanized approach to software

development and its automation.

1.2. The Software Problem From a Mechanization Point of
View

A major stumbling block in the way of the growing use of computers is the problem of
producing high quality, maintainable software. Hammer and Ruth [Wegner 79] clearly state
its breadth:

... much of the software produced today is either costly or unreliable, and often
both; in effect the production of software is a process that is out of control.
Software is rarely produced on time or within budget; when delivered, it often fails
to meet its specifications or to provide the function for which it was conceived; and
all too frequently, it operates incorrectly or not at all. As users address ever more
complex applications, and as the price of hardware continues to drop, software
costs spiral upwards and dominate other costs of computer-based application
systems.

Listed are some of the contributing factors, categorized around major life-cycle processes.:

O Specification. The construction of software specifications is a difficult task. Any
specification is likely to have some combination of missing, imprecise or
inconsistent requirements. Because errors of this type may not manifest
themselves until deep into the development (imprecision and inconsistency
during implementation, omission during testing or after delivery), they can be
among the most expensive and difficult to correct.

O Implementation. Producing production code from informal specifications is an
error-prone and difficult task to control. Resulting software is unlikely to fully
meet specifications or be resource optimal. '

Et-".‘
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3 \.‘

5 3

" - D Documentation. Although standards exist, documentation of large evolving

! - systems is often useless. Frequently this is because of after the fact i’

e documentation, often by a third party distinct from developers and maintainers. - '

SRR Even documentation produced as a by-product during development is generally }

N incomplete, hard to understand and difficult to relate to the actual system. As a 4

- system is changed, documentation is rarely correspondingly updated. All this ,

makes the already difficuit task of maintenance more so. »

MRS D Maintenance. The majority of system costs and energy over the total life-cycle are K

N o devoted to modifying software to meet changing specification requirements. .

N There are several factors making maintenance a generally onerous task. The first .

[, - is lack of documentation as discussed above. The second is the loss of structure "
. brought about by program optimization steps. A finely tuned piece of software

. likely has information spread throughout and a high degree of interdependency.

s Finding all code segments that must be modified and keeping the modifications

self consistent is beyond the expertise of most programmers in such a
delocalized and documentation-poor environment. The ripple effect of adding k .
new bugs for every one squashed is now a maintenance cliche.

N . Software Engineering, a field concerned with addressing these issues, has evolved from an o
N ’ earlier time when machines were expensive and in limited supply. The consequence is that
- current software development practices are informal and many times undocumented. In the
¢ ! current era of cheap machines and expensive people, it has become apparent that a new "
approach is necessary, one based on the machine playing an active part in developing -
* :.-_Z programs. The minimal capability would be record-keeping. However, once the machine is '
~ involved in the process, one can contemplate various forms of mechanization, including
2 synthesis, analysis, tuning and maintenance.
' ‘ i In mechanizing the production of software, the major life-cycle products and processes must
R t‘;\ be formalized. There is a dark side to formalization: details that were implicit or ignored in -

informal models now have to be attended to. For instance, much software today is either -
specified in English or not at all. Such informal specifications rely on the common sense of the

==

human reader to fill in missing detail and disambiguate ambiguous portions (often -
erroneously). A formal specification for machine consumption must explicate such detail

47

down to the minutest level. The same problem arises in the development process. What

- iy previously was accomplished with a favorite text editor now becomes an effort in applying g
N A correctness preserving transformations and worrying about the many attendant details that R
id such a formal approach carries as baggage. Our view, one that seems to be supported by 2

T 7 empirical evidence, is that the mechanized mode! of software development is not and will not
& ;
. ', -
M .
. ,.I 1
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PAGE 6 : Introduction

be widely used by practitioners of the field untii much of the detail is managed by the
machine. The model we propose in this thesis addresses one part of this management, the
automation of the detailed steps necessary in transforming formal specifications into abstract
algorithms. It is a logical extension of earlier work in the area of software development
mechanization based on a Transformational Implementation (Ti) model. In the next section we
examine the Tl model in more detail. We will comment on Tl's strengths, discuss its
weaknesses and show how the Glitter system extends it to meet automation needs.

1.3. The Transformational Implementation Model

Since 1976, a group at information Sciences Institute has been actively constructing an
interactive model of program development based on a Transformational Implementation
paradigm [Balzer 76, Balzer 81, Feather 82a, London & Feather 82). (see [Bauer et al
77, Cheatham 81, Darlington 81] for related models). Glitter is one part of this overall effort.

The components of the TI model include

1. A formal, abstract, operational, specification language called Gist [Balzer et al.
78, Balzer & Goldman 79, Goldman & Wile 79, Swartout 82].

2. An interactive transformation engine called Tl, which incrementally maps
specifications into implementations [Balzer 76, Balzer 81].

3. A Gist interpreter for symbolically executing Gist programs and explaining their
behavior so that specifications rather than impiementations can be validated
[Balzer et al. 82, Cohen et al 82).

4. A system called PADDLE that allows a developer to record his development as an
executable program [Wile 81a). This program can be run during maintenance to
automatically produce portions of the original development.

The Gist language acts as the common interface between model components. We will be
concerned with only the first two components above in this thesis: the specification language
Gist and the TI transformation engine. When we reference the 7/ mode! of or T/ approach to

program development, we will be referring to these two unless otherwise noted.

...........
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&
~
o Specification
- The Tl approach to program development involves mapping a program specification written in
- a high level specification languagé into the implementation of an efficient compilable
- algorithm through a predefined set of correctness preserving transformations. Both
) 'J-:j | specification and implementation are described by Gist. Since Gist contains both a
) specification subset and an implementation subset, as well as various intermediate subsets, it
- is viewed as a wide-spectrum language [Bauer et al 78] (Chapter 3 provides an example-
] based introduction to the Gist language.).
= The Tl model supports the evolutionary approach to specification construction. Specifications
o do not spring to life in their full glory, but evolve from inqomplete and ambiguous forms into
= the desired final problem description (see [Swartout & Balzer 82] for a discussion of the
5 intertwining of specification and implementation). Because Gist is an operational
» specification language, specifications can be executed and the results used to validate that
. the specification meets the user’s intentions or point to portions of the spec which require
;'E further elaboration. A related effort is the construction of a natural language Gist paraphraser
[Swartout 82]. Gist specifications, like any formal specifications, tend to be unreadable®. The
. paraphraser can help a user discover discrepancies between what the specifier thought he
said and what he actually wrote by converting the Gist specification into an English
description.
~ Implementation
'l:'» The target of the TI transformation process is high level in the sense that it allows
- spontaneous computation (demons) and structures data in a relational data base. To produce
Lj the final production code, the impiementation produced by TI must be further compiled. There
is currently an effort within the Ti group to build such a compiler. Other program development
E',: systems have also shown the ability to do at least limited compilation at this level (see for
) instance, [Barstow 79a}, [Neighbors 80]).
c The effects of transformation application in Tl can be classified as mapping specification
: freedoms found in Gist into objects and operations which exist at the implementation level.
- The mapping process may involve mapping operational freedoms, informational freedoms or
L

5We will attempt to overcome the probiem in this thesis by an analogous manual paraphrasing process.

----------
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efficiency freedoms. Because Gist is wide spectrum, both refinement and optimization are
part of the general mapping process and neither is distinguished. The person invoived in a Tl
development will likewise not be distinguished as the refiner or optimizer, but simply user or.
developer.

The development is carried out by applying catalogued transformations to Gist program
fragments. This process is semi-automatic in that a programmer must both choose the
transformation to apply and the context in which to apply it; the Ti system ensures that the left
hand side (LHS) of the transformation is applicable and applies it. The application of a
transformation produces a new program state. A final cevelopment is a series of
transformation applications leading from the initial specification to the desired
implementation. The TI model supports the notion of development exploration by allowing a
user to revert to some previous program state and explore a new development path by
selecting an alternative transformation application.

Maintenance

The development process, whether it be manual or automatic, spreads information
throughout a program. What was local and understandable in the spec becomes splintered ,
smashed and difficult to understand in the final program. This directly affects the ease of
modifying a program and leads to much confusion among managers and programmers: what
appears to be a trivial change at the specification level generally turns out to be a difficult and
error-prone task at the concrete program level. In Tl, maintenance is shifted from the final
optimized code to the program specification. For each specification change, a new
development must be produced (Wile [Wile 81a) suggests ways this effort can be reduced.
See also section 9.3).

1.4. The Tl Model as a Foundation

We will refer to the Tl model as we have described it thus far as the base-/ine model or system.
In it, the user is responsible for deciding what transformation to apply and where to apply it.
The system is responsible for the faithful application of the transformation. iIn this section we
will argue that this model forms the right foundation for an automation effort. We will first look
at its strengths and then some necessary enhancements.

[ { A
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>
. . | |
. % | - Tl Report Card |
v,
7 | |
b .
- }\‘1 l | |
SN | 1. Ease of Specification | 8 |
- ' . | |
K., - | 2. Efficiency of the Implementation | € |
-q' Ak
2 | _ | |
. E | 3. Ease of Maintenance | B/D |
| I I
;} ~, | 4. Correctness of the Implementation | A |
voaY .
SRV
. l . | l
. ] 5. Resources Required | C |
| Y | | |
;. | 6. Type of Problems Handled | B+ |
RNy
- j | |
P | Comments: Does not live up to full potential. |
5
: K Figure 1-1: The TI Report Card
.: N
'», ::: Bob Balzer has suggested six criteria for judging the power of a program development system
. [Balzer 73). Figure 1-1 grades the Tl model on each of the six. We are grading absolute
X : (straight-line) as opposed to relative (on the curve). Caveat1: assigning a single grade to
LN
X such large categories is less than accurate. The grades are used as a general guide; the
N .
> discussion following provides the necessary detailed description. Caveat2: these six criteria
= formed the basis of the GIST/TI approach (see also [Balzer 72]). The reader can judge how
N skewed each is to the TI model. The grading rationale is as foliows:
’ r..'
\ a
‘: - 1. Ease of Specitication (B). The construction of a specitication can be measured along
E several axis:
‘A . 0O Does the system take into account the difficulty of writing correct specifications?
. ;}( Can the specification be, at least initially, incompiete or ambiguous? How are
S incompleteness and ambiguity discovered? By providing a Gist symbolic
e interpreter, T| supports an incremental, evolutionary approach to specification
] & construction. Further, a Gist paraphraser exists for providing an English-like {
S description of a subset of Gist.
’, 1
L !
7 4
$I ¢ ‘
4 |
< !
RN

S pea®?y=qa
\\J\ h



PAGE 10 : introduction

D How easy is it for the user to transiate domain objects and operations into Gist

constructs? Gist was not designed around any particular application domain. The

p question revolves around the general applicability of Gist's mode! of computation. ' -
¢ Of the few domains studied, Gist was capabie of handling the corresponding :
objects and operations. On the negative side, each Gist specification starts from
scratch. Thus the considerable domain analysis that must go into producing most
specifications must be done anew for each new problem (compare this with
Neighbor's Draco system [Neighbors 80] which attempts to reuse domain
analysis).

Ols the user forced to make design and implementation decisions during
specification? A fundamental tenet of Gist is that the user be able to specity what
the problem is without specifying how it is to be solved.

|

2. Etficiency of the Implementation (C). Tl focuses on the mechanical aspects of development

s

rather than the cognitive aspects. As such, it is neutral with respect to the decision making
process. Hence, the efficiency of the final implementation rests on the skill of the user. While

R

this may seem the natural way of things, we expect the complexity of a Tl development will
prohibit all but the most expert user from obtaining a fully optimized implementation.

3. Ease of Maintenance (B/D). The B reflects the ease of recording a change: all changes are
made at the highest problem description. The D reflects the difficulty of producing an £
implementation that incorporates the change: a brand new development must be carried out
to produce a new impiementation. Further, the only guidance the maintainer has is the record S
of the original transformation steps: there is no indication of the goals the developer was o

following or what choices were rejected and why. We note that one of the original motivations :
of the Tl model was the lack of documentation provided in informal design processes. Hence, o
a formal transformation record was produced. We now are complaining that the
transformation record leaves the problem solving process undocumented, clearly a case of
rising expectations.

4, Correctness of the Implementation (A). Given validated transformations and system
application, the resulting development guarantees a valid implementation. Note the difference

-4
P

with Program verification: a Tl development starts with a specification and maintains the

behavior specificed during the development process; Program verification attempts to R
connect a final program with its specification in an after the fact manner. Incremental 'Iz
maintenance of the proof is one of the big wins of a transformation system.

}j
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5. Resources Required (C). While not part of Balzer's original criteria, we consider the user's
required participation as a major component of resource measurement. In the TI model, the
user is required to carry out all transformation selections.

6. Type of Problems Handled (8 + ). Atthough our experience base is small, it appears that a
large range of problems is specifiable by Gist. We expect the catalog of Gist transformations
to grow as new applications are attempted. On the slightly negative side, Gist currently does
not address issues of programming-in-the-large, i.e., breaking a problem into separate pieces
to be developed by separate groups, defining interfaces, integrating implementations into a

final system.

it should be noted that the Tl model, and to a lesser extent the model we present in this thesis,
trade off items 5 and 6, ie., resources required and type of problems handied. By
incorporating the user in the development process, we increase the types and complexity of
problems we can handle. On the negative side, the user may be required to put a significant
amount of his time into a development. Systems which offer complete automation ( [Barstow
79a, Manna & Waldinger 79)) provide the contrast: they remove reliance on the user at the
cost of working on more constrained problems {e.g. smailer problems, more limited domains,
lower level specifications).

1.4.1. General Automation Issues

One goal of this thesis is to show that portions of the design process can be automated.
There are at least four major issues that must pe addressed:

1. Process formalization. Current Software Engineering development methodologies focus on
the products produced in developing software as opposed to the processes which produce
those p.oducts. Automation demands that we formalize and capture the development process
in machine usable form. Once inside the machine, it can be documented, analyzed,
understood and modified.

2. Detail management. Much of what occupies a developer’s time is attending to mundane
detail, detail that detracts from the more intelliectually chalienging problems of design and
implementation. This becomes even more so as development processes are formalized. In w
particular. details that were ignored or dealt with only implicitly now become explicit.

O S ey v, VAt PO
SO SN PG G A A A A A A A N A A P O TS, P Rt A A 2 PR SOARATY | L R,



- T
--------------

PAGE 12 : introduction

s -t

3. User’s role. Early efforts in programming automation strived for true automation, eliminating
' the need for the human programmer altogether. However, the complexity of the programming
; 1 task forced such systems to study smali, constrained problems. While several of these
systems provided significant results in software automation, they took the sometimes
deserved rap of working in toy domains (sorting, list manipulation). One inference from this is
that the automation of software production is destined to remain an academic exercise for the
foreseeable future. We do not believe that this has to be the case if we lower our sights and
allow the user to enter the loop. With the machine taking on a partnership role, the potential

AN

exists for tackling much tougher and useful programming problems. As more of the

gL

programming process becomes formalized, the less we must rely on the user, a somewhat
bottom-up approach to automatic programming.

-
e

However, placing the user in the loop presents some corresponding problems:

g I

D An interface or communication line must be established. A mutually understood
means of talking about program development must be defined.

v D A model of the system’s knowledge must be available to the user. Further, the j'{:
a user must be able to augment or enhance the system given some perceived
missing piece of knowledge. s

’.f D A model of the user's knowledge must be availabie to the systems. That is, the
system must know what types of knowledge the user can be expected to supply.

4. Documentation. The specification, design, implementation and maintenance phases of
‘ software production cannot be viewed independently. That they are by a number of models is
- a reflection of the problems found in the current state of affairs. The entire process history
must be available to any particular tool on request. Thus, documentation becomes more than
‘ an informal static description of code read by the new guy on the project; it records, in a -
dynamic fashion, each of the development processes. It is updated as the system and its
requirements evolve. We expect it to include, in a machine readable form, the following types
of information:

D Specification rationale. What role does each specification modification play. =
Does it help disambiguate, constrain, enhance. Does it reflect a modification to
meet changing requirements.

- § ‘o i W

eOur use of user here is the general as opposed to individual senge.
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N e,
N
-
o
X ~ 0 Development rationale. What role does each development step play. Why was it
: chosen. What other alternatives were competing. Why were they rejected. What
» portions of the spec is the step dependent on, e.g., what performance
N requirements does it help satisfy.
: 1 N, This information must be gathered anew as a by-product of each new program development.
. 1.4.2. Advantages of the TI model from an automation perspective
=
j How well does the base-line TI model meet each of the above four problems:
DAY
a 1. Process formalization. The model formalizes the development process as a

sequence of transformation applications.

2. Detail management. Some detail is taken care of by having the system worry
about program transformation applications.

mxman
"‘-

3. User's role. The user is a major part of the development process. He provides the
overall guidance and the sophisticated reasoning necessary to insure that a
transformation's applicability conditions are met. A repository of individual
development steps is defined in the form of a transformation catalog. Adding new
transformations is straightforward. Although it only has to be done once, proving
that they are correctness preserving may be not so straightforward (see [Gerhart
75, Broy & Pepper 80] for work in this area). Mitigating the problem, people
currently appear to do a good job of informally verifying transformations. While

- this does not replace the need for formal verification, it allows useful work to

. continue without it.

v
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4. Documentation. The development process is documented in a machine usable

2y form as a sequence of transformation applications.

TN

n

N .
3 .;_: 1.4.3. Needed Enhancements of the TI model
by o

S The base-iine Tl model provides a solid base from which to build. Below, we look at some of
I:, j:f the enhancements necessary to meet our thesis goais of automation and documentation.

:;
': & Process formalization
-I

;' ~ in the base-line TI model, only part of thé development process is formalized. Much of the
V.

i . work in complex problem solving domains such as program development involves 1)

i formulating the right goals or tasks to pursue and 2) finding the right strategies or plans for

o = refining them into more manageable subgoals, satisfying any pre-conditions and finally
- Y

.
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manipulating the program through transformation application. In the base-line T model, only
the program manipulation steps are explicated. For example, one high level plan for
implementing a spec is "first refine all abstract control structures to operational ones and
then work on refining abstract data structures”’. Note that plans of this type are far removed
from actual manipulations of the program, often passing through many intermediate problem
states.

To formalize the problem solving process, we must define both a language for stating
particular problems (goals) and building plans for solving those problems (achieving those
goals), or as McDermott puts it, a probiem vocabulary [McDermott 77]. The base-line system
provides nothing in the way of a development problem or goal Ianguages. The transformation
catalog does provide a limited form of plans, ones that work in the program space. However, it
is likely that many of the development goals will be far removed from the actual
transformations that finally realize their achievement. Plans that map goals onto goals

-- transform or elaborate the problem space -- are missing.

Detail management

Our experience with transformational developments [Balzer 76, Balzer 81, London & Feather
82] has produced an important result: most of the transformation steps are not the interesting
and clever optimizations we expect from expert programmers, but the mundane preparatory
and clean-up steps which are the filler between them. Often, the attention which must be paid
to these steps distracts a user from the more important optimizations that lead to real
performance gains.

The base-line TI model takes care of the details of applying a transformation faithfully to a
program. However, this is one of the least interesting aspects of detail management. More
importantly, we would like the automatic selection and application of entire sequences of low
level transformations to meet some higher level development goal.

7 A much simplified exampie. in reality, such a plan would be 100 rigid o be usetul

sln some sense, the ieft hand sidc of a transformation can be viewed as a goal to be achieved; its achievement

(matching) allows the transforr .uon to take place.
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) User’s role

Although the base-line T| model does provide for a machine/user partnership, it is a rather

-."A-'l.

one-sided effort. The machine's sole responsibilities are transformation application and

-
.i

recording; the user is responsible for all else. Our experience is that this degree of automation

. f,:._,

is not enough. The machine must help organize the development and automate as much of

:ﬁ: the development as its knowledge base aliows. This has several aspects:
N
o

D The cataiog of development techniques must not only contain the tactical
2 knowiedge embodied in program transformations, but the strategic type of
] knowledge useful for organizing larger chunks of the development.
- D We need the ability to identify and collect the set of tactics or strategies useful in
jf.; achieving some development goal. This is part of-a more general problem: the

ability to incorporate and make use of knowledge at the appropriate times. The

- catalog of development methods can be expected to both grow large and be

E under a constant state of change as new methods are added, old ones deleted

and others modified. In the base-line TI model, the user is responsible for both

T knowing what is in the catalog and finding it when needed. Even with cleverly

.I o constructed names, manually searching a large catalog of transformations for

c ones that are applicable to the current development task is both tedious and

error-prone. Note the irony here: as the system becomes more knowledge rich

N through the addition of more transformations, the partnership as a whole

becomes weaker because of the decreasing likelihood of the user successfully
searching the catalog for the set of applicable transformations.

4 D As a catalog grows, we would expect many candidate methods to be available for
achieving a particular goal. Trying each is intractable. Selecting the best one to
Z~.; apply is generally a non-trivial task and one that the machine should participate
in. In the base-line Ti model, the machine takes no part in the selection process.
~
v Documentation
:lfi The record of the development process is expected to be used by other Tl tools. For example,
’ a maintenance tool might need to determine the relationship between two steps in a
N development: is one a preparatory step for the other; are both sub-components of some
e higher level plan; are both totally independent; can one be replaced by another? (chapter
® provides examples of these type of questions in a maintenance scenario) The base-line Tl
. model provides a sparse history of development, noting simply the transformation sequence.
‘e This type of history cannot be used to answer any of the maintenance questions above. What
S is needed is the planning structure that sits above the actual program transformation steps.
'l
o
?
» %
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This includes the goal/sub-goal tree and the selection criteria at each node. The more of the
development process that remains in the user's head, the less effective will be other tools

relying on the development history. The base-line T model pries only a small portion from the
user.

In the remainder of this thesis, we describe in detail how the Glitter system provides the

TR R —.

necessary components to both automate and document the process of developing a Gist

specification using the Tl model. In particular, we address each of the issues above:

1. The development process is formalized and captured by the machine. This can be
viewed as an extension of the PADDLE system [Wile 81a), a Ti tool for structuring =
a development discussed in chapter 8.

2. Significant amounts of the detailed steps found in a development are automated,
freeing the user to concentrate on higher-level development issues.

3. A man/machine partnership is defined. We show how the partnership can play off i
the strengths of each member to develop non-trivial programs. Further, Glitter is )
knowledge-based: it provides catalogs of development knowledge that can be
extended and analyzed by both user and machine.

4. Our documentation ideal is to provide a common development data base that
specification, development and maintenance tools will all share. The development o
history produced by Glitter is the first cut at such a data base. b
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1.5. Thesis Layout

The general layout of the thesis is as follows:

1) high level introduction -- Chapters 1-4

2) heart of the model -- Chapters 5-7

3) wrap-up -- Chapters 8 and 9

4) package router development details -- Appendixes A-D
5) problem solver components -- Appendixes E-G.

Below we give a brief summary of each individual Chapter/Appendix:

Chapter 1: general introduction of thesis goals and approach.
Chapter 2: overview of the system and its components including user interface.
Chapter 3: an introduction to the software specification language Gist, sufficient to

understand the development examples found in this thesis.

Chapter 4: a discussion of the man/machine interaction that occurs during
development, illustrated in part by an annotated development transcript.

Chapter 5: a discussion of issues related to development-goal representation.

Chapter 6: a discussion of methods needed to achieve development goals.

Chapter 7: a presentation of the selection process used to choose among competing
methods.

Chapter 8: a discussion of related work.

Chapter 9: a summary of a) software' development automation issues and how well

they have been met, and b) the usability of the model and system. The use
of the development history as the input t0 a future maintenance too! is also
discussed and illustrated through several examples.
The appendixes make up a large part of this thesis. This is largely due to our decision to
provide an extended development as opposed to several fragments. We believe this gives the
"big picture” and a much more continuous view of things. However, there are clearly
problems with both presenting and following a textual description of a lengthy development®.

‘As shown in chapter 2. the development history is actually stored in machine usabie torm. When sitting at a
terminal, this allows a more interactive and useful presentation.

- e . RN .
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Introduction

To overcome these, we have provided two development overlays. The first provides the

planning structure with minimal detail. The second provides the selection knowledge that

went into each development step. When both are overlayed with the detailed development,

they provide the full planning structure.

Appendix A:

Appendix B:

Appendix C:

Appendix D:

Appendix E:

Appendix F:

Appendix G:

the Gist specification of the package router problem. Chapter 3 gives the
English problem statement, Chapter 4 a textual description of the key
components of the specification.

an overview of the router development is presented that highlights the
planning structure. This is extremely brief and hence is useful as a guide
to examples scattered throughout the thesis.
the detailed, 100 step router development, minus selection information.
Most of the examples in the thesis are taken from here. Chapter 4 provides
a high level description of this development.

an overlay of the selection process carried out to produce the
development of Appendix C.

an example based description of Glitter's goal language; the detailed
counterpart of Chapter 5.

the method catalog; the detailed counterpart of Chapter 6.

the selection rule catalog; the detailed counterpart of Chapter 7.

----------
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Chapter 2 :
< .

The Glitter System ;

o ]
< In this chapter we will look in a little more detail at the Glitter development model and the )
v o system which implements it. First however, we will revisit the T| model which forms the basis j
oo :

. of Gliter. |

23 :

o 2.1. Components of the T| model .‘
\ Figure 2.1 gives a graphical depiction of the baseline TI model of development. The l

. !

OO components of the model include the following: .
S l'
l:: - D The initial program state. A Gist specificationw.

)

o | 0 The transformation catalog. An unindexed collection of correctness preserving,

- program transformations. ]

o D The user. The user is responsible for selecting a transformation to apply and a
e context from the current program state in which to apply it.

; !

y D Transformation applier. Takes the transformation T and context C selected by the l

;‘ . user and checks if T is applicable in C. If so, applies it to produce a new program
o state.

'-A ,.\. ‘
~ é D Final implementation. The mode! is run iteratively to produce a path through the

s development space. A path consists of a an alternating sequence of program
- e states and transformation applications starting in the initial state and ending in an i
7~y implementation state. The full output of the model is the path to the ;
-:1 h implementation along with each alternative path followed, i.e., the tree of 1

by alternative developments. : !

) ]
- s i
.'l
' 2 1oEvery Gist specification is a program which can be executed and every program is a specification of some lower i

) .: ) level implementation. We will use program and specification interchangeably. 1
SO )

2 ]

b y
{ . !
. .'-. ‘
., Y 1

--------------------------------------------------------- \
----------------------------------------------------------- \|

. .t
------
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o
= o
= Dy
—_— Applier = = j
— = ]
: -
Initial (1 1) .
Program S
State New g_\
(#pD) State § i
—
Final
ementation

g

Trasformation e o
Catalog o
Figure 2-1: Timodel N i
) 1
2.2. Components of the Glitter mode! N
1
As can be seen in figure 2.2, the Glitter and Ti models are similar in several ways. Both take an

iterative approach to development, both include the user as a part of the development
process, both encapsulate development knowledge in terms of catalogs of useful
development techniques. However, Glitter attempts to apply the automation lever to a much
greater degree than TI. A discussion of the Glitter model components will help illustrate this:

D Initial Problem Solving state. A Glitter problem solving state consists of two items:

--------------------
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R
o

initial
Problem New
Solving

State (D)

>
1R

0
©

(\0,..0 (O
O <

Method Selection
Catalog Rule
Catalog

Figure 2-2: Glitter model

a program state and a planning state. As in the Tl model, a program state is
simply a Gist program. A planning 6tate consists of a goal/method tree of the
following form*':+

"We will consistently use O to represent a goal and D to represent a method. Dotted lines represent potental
methods. 'i will be used to point 10 parts of a diagram or program we wish 10 highlight.
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Goaltop

Methoachoson

g

This state shows the foliowing planning history:
1. Goalwp was posted.

2. Method was selected to achieve it.

chosen
3. The application of the method generated three new subgoals, one (»,) of
which is currently active.

For the sake of clarity, we have left out the selection criteria from the above
diagram, e.g., what other methods were competing with Methodchmn, why they
weren't selected. All of this information is part of the planning state; chapter
7 describes in detail how it is used.

In the initia! problem solving state, the planning state consists of a primordial goal
"develop program”.

DO Development goals. Glitter provides the user with a development vocabulary in
the form of goal descriptors (or simply goals). The user communicates with the
problem solver through the goal language. A goal has a life of its own
independent of the methods that are indexed to it, i.e., a goal may not be satisfied
after the method chosen to satisfy it completes.

O The user. The user is responsible for posting development goals.

O Problem Solver. The Problem Solver does the grungy work for the user. It takes a
user’s goal, finds a set of candidate methods for achieving the goal, finds a set of
selection rules that help order and refine the candidates and finally chooses a
method for application, passing it on to the method applier. Note that a single
user goal will likely require the Problem Solver to call on the Applier repeated
times, i.e., the Problem Solver is our automation iever.

D Method catalog. The method catalog is used by the Problem Solver to achieve
develocpment goals. That is, the Problem Soiver retrieves from the catalog all
methods that claim to achieve the currently active goal. Note that this set of
methods (alternatives) becomes a permanent part of the development history; at
any time'?, the user may back-up to any node in the development tree and both

12

in the case of maintenance, the time would be after the initial development was complete.
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~, examine the competing methods for any particular goal and spawn a new branch
- by selecting an alternative.
N Iin general, a method need not make a program transformation, but may instead
! simply refine the current goal into more manageable subgoals, what we might cal!
: \ a problem transformation. This allows the method catalog to grow as new goals
o are introduced through the use of current capabilities.
O Selection Rule catalog. The selection rule catalog is used by the problem solver
. to help refine and order the methods retrieved from the method catalog. In
particular, the selection rule catalog contains rules that examine the current
o planning state, candidate set and past planning states order competing methods.
-‘ As with the method candidate set, the information provided by the selection rules

is made a permanent part of the development history; at any point in the
development, the user may examine why a particular method was chosen or
rejected. .

O Method applier. Takes a method M and applies it, i.e., applies each of M's actions
; in turn.
N . _ D Final implementation. The model is run iteratively to produce a path through the
N development space. lteration here is in nested loop form: the user repeatedly
posts development goals; the Problem Solver repeatedly selects methods to
achieve each specific goal. A path consists of a an alternating sequence of
. probiem solving states and method applications starting in the initial state and
= ending in an implementation state. As in the Tl model, the output includes the tree
of development alternatives. Further, each node in the tree contains the
- information which lead to the various branches from it, e.g.. the methods that
A were competing. the selection knowledge used to order those methods.

a 2.2.1. The User’s Role

I:: The user’s role in the Glitter model we have presented thus far is predicated on a large
= catalog of both development methods and selection rules. That is, the user's sole
'j responsibility is to guide the overall development by iteratively posting successive
- development goals; the Problem Solver is expected to take care of the rest in a non-
v interactive fashion. Unfortunately, the system’s current small experience base leads to holes
k in its knowledge. As we shall discuss in following chapters, the user may incrementally add
“ new knowledge to the system as experience is gained. However, this does not mitigate the
o limited knowledge the system has initially. In order to remain a useful partner, the system has
.. expanded the user’s role and provided him with a more fine grained control. Besides guiding
4

- the overall development, the system relies on the user in the following ways:

Al s

.7
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,,
. S
T

1. If the Problem Solver is unable to find any methods to place in the initial

candidate set (or if the selection rules rule out all of the methods in the initial set)

{ then the system relies on the user to either a) define a method dynamically (see

. section 2.3.3.2) or b) choose some previous state to back-up to (see section
23.2.2).

!.a.A‘LLLth

2. In computing the applicability of a method or selection rule, the Problem Solver
will likely rely on the user to supply formal reasoning steps. Chapter 4 provides a
more detailed example and discussion of such steps.

Ul
[N

. The user may place the system in certain faith modes which currently inciude
trusting, cautious and critic modes. These modes allow the user to exert various
degrees of control over the Problem Solver: in trusting mode the Problem Solver
is allowed to choose and apply methods without user approval; in cautious mode
the user can examine the result of running the selection rules on the candidate
set (see section 2.3.3.3) and is allowed to override the system's choice (see
section 2.3.3.5): in critic mode the candidate set is formed but control is returned
to the user before the selection rules are run. In the latter case, the user can ask -
for a critique of a candidate method M, i.e., ask the system to run all of its ﬁ
selection rules pertaining to M (see section 2.3.3.4). In both cautious and critic
modes, the user has the option of backing-up to some previous state.

[ A

- ) PR o -
'- .l ‘I
Al

4. Moving around the development tree can be motivated by either the desire to
explore various implementations or the need to back out of some dead-end state.
In neither case does the system offer any assistance in sefecting the right state to 5
move to; it does provide him with the means to examine the development tree and R
move about it (see section 2.3.2).

UL

F Y R
L

As Glitter's knowledge base is augmented through experience, we foresee the user’s role
moving back towards our idealized mode!. However, even with a powerful problem solver, it is . d
likely the user can provide other types of guidance or control, e.g., advice on methods to ':‘: )
employ. highlighting of critical decisions. High level advice of this type has been either :j

sfatafa’d¥
-~ Nt

» .

implemented or postulated in other development systems [Feather 82b], [Wile 81a]. We

believe it can be useful in future versions of the Glitter system as well.

2.3. Glitter Interface

- 4
In this section, we present the user/Glitter interface (The reader may wish to skip this section ol _
until reaching the development transcript in Chapter 4 where it is seen in actual use.). The

L
oA

interface is menu driven and currently assumes a CRT display. Because a development is *

S

clearly information intensive and often graphical in nature, we plan to re-implement the

4

interface on a bit-mapped display at some future time.

[
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We will organize the discussion around the three menus that the system provides: the top
level menu (2.3.1) and its two subordinates DevTree (2.3.2) and PlanSpace (2.3.3). We will
first present a menu and then an example of each of its commands. We will try to present the
command descriptions in the same order as they appear in the menu, i.e., alphabetically.
However in some cases we may change the presentation order to avoid forward reference. All
text appearing as bold italics is input from the user; anything else is printed by the system.

2.3.1.Top Level

>Glitter: ?
one of:

DevTree - manipulate program development tree (sub-menu)
FaithMode - set trusting, cautious or critic mode
PlanSpace - manipulate planning state (sub-menu)
PrPlan - pretty print a portion of the planning state
PrProg - pretty print 8 portion of the program state
QU - quit

>Glitter:

2.3.1.1. Set faith mode (FaithMode)

>Glitter: FaithMode set faith mode

Mode (trusting, cautious. critic): cautious

.
»

A
Yy o This command allows the user to provide various levels of control over the selection process.
= In trusting mode, the system attempts to provide as much of the problem soiving as possible.
A in cautious mode, the system returns control to the user when it is about to make a method
L selection. In critic mode, the system returns control to the user after the candidate set of
L » methods has been formed bt before any selection rules have been run. Chapter 7 discusses
AN these modes in more detail.
:::': T
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> 2.3.1.2. Pretty print planning state (PrPlan)
! ) L
\ -
Ky,
Y
5 K4
- >Glitter: PrPlan pretty print planning state
™ Print how much of tree (<cr> for concise)? <cr> N
"y + Map set_switch_on_exit
) ...using MapByConsolidation -
':: Consolidate set_switch_on_exit and package_leaving_switch .
~ ...using MergeDemons =
: ™
. Equivalence trigger and trigger
S ...using Anchorl .
- Reformulate switch_is_empty as expression -
-~ ...using ReformulateDerivedRelation
- t Unfold switch_is_empty in trigger e
...using ScatterComputationOfDerivedRelation !
. s* Reformulate existential as expression .
N >Glitter: ::2
\ g
'l . N .
' '_’ While the user may wish to see the entire goal structure, more often only a local subset will be ..
'.1 of interest. The system prompts for the goal which will act as the root of the tree to be printed. Z:;
* A special concise mode is made available for printing the portion of the goal tree between the
P, current high level user goal (in this case, the Map goal) and the currently active goal. This is :::' ,
:'. useful for establishing a problem solving context without wading through too many details. )
2 ~
. S,
The display consists of a set of nested entries. Each entry consists of a goal followed by its -
arguments and the method chosen for achieving it. The latter is shown as “...using method- ' i
:'.' name”. The system decides how to print a goal’s arguments in concise form: names are used . ."!
-
;:‘, when working with defined objects such as demons, procedures, and relations, part names oo
g Lt .]
are second best, e.g., trigger, body, argument list; otherwise the type of the argument is +
printed. Indentation represents sub goal structure, e.g., the Equivalence goal is a sub goal of :
) Consolidate which is a sub goal of Map. A goal may be preceded with one or more special
" 3 'q
o marks: + denotes a goal posted by the user; ! denotes a goal that has been achieved; ° R
i denotes the currently active goal; = denotes a goal that is re-posted. The above example is Lo, [
taken from the package router development and represents the planning state at step 6.11 in " ;
4
» appendix C. ::: :
- NG
. A
; !
~
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[ \' R
‘. -
. .
: D -
g e 2.3.1.3. Pretty print program state (PrProg) .
s ! v
o .
" -
AN :
:: . >Glitter: PrProg pretty print program state
Print what portion (<cr> for entire program): switch is empty
- Y
' LY .
) .{4 (1:1) X
3 relation switch_is_empty(switch) .
~ s definition ~exists package || package:located_st = switch; R
s A
- .
>Glitter: k
N :
* :
NoW ‘|

-

The program state is stored internally in parse tree form. PrProg produces the text equivalent. i

[
AR

The numbers in parentheses, (1:1), give the current development state (see 2.3.2.1).

JLRE TS W W W
e

2.3.2.Manipulating the development state (DevTree)

~—

N v,
) - -
-
A l-v:. .
Yy :" >DevTree: ? .
—_— one of: K
3 (;‘. NewState - change problem solving states .
>, ,,': PrPath - print the current development path .
PrTree - print the entire development tree h
. - QU - quit . .
*
., ",
B
= »DevTree: P
., .
e n" .
~ .
Al -._ -
s .

s a

o
.

2.3.2.1. Print development tree (PrTree)

. o

l‘ -
7 .
; A
] ¥}

-
L
-
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>»Deviree: PrTree print the development tree

1:1 ¢
2:1
3:1
2:2 *
3:2

>DevTree:

The development tree represents the possible alternative paths leading to some
implementation. Each node in the tree represents a problem solving state. Each arc
represents the choice of one of possibly many competing methods. The tree is used to
structure the development exploration space. By moving between nodes, the user can back
track from a dead end state, resume a previously abandoned path or choose some new
alternative method to employ.

The PrTree command prints the textual form of the development tree; figure 2-3 gives the
corresponding graphical equivalent, clearly a better representation. Each pair of numbers is
the name of a single problem solving state (node): the first number gives the level of the state
in the development tree and the second is a generated uniqueness number. Indentation
corresponds 1o level, visual but redundant information. States at the same level are alternative
branches, e.g. 2:1 and 2:2 are branches from state 1:1. The current state is marked with "« *.
States on the path to the current state are marked with *.

2.3.2.2. Change states (NewState)

P .
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2.3.2.2 Change states (NewState)

Figure 2-3: Development tree example
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>DevTiree: NewState change current problem solving states

Change current state 5:1 to what: 3:7

>»DevTiree: PrTree print the development tree

1:1 ¢
2:1 ¢
3:1 ~
2:2
3:2
4:1 .
5:1

»DevTree:

The NewState command allows a user to move to any state within the current development
tree. In the above case, state 3:1 is marked as the currently active state and development

continues from there.
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o
<&
u.‘.' ::.
- 2.3.2.3. Print current path (PrPath) -
=
e .
o >Deviree: PrPath print the current development path o
. States on path: (1:1, 2:1, 3:1)
:i State changes:
{j 1:1 to 2:1...method MapByConsolidation applied Ei
[ ]
‘\ 2:1 to 3:1...method MergeDemons applied
(- "
~ -
k. >DevTiree:
B v, "
\ n
‘ 4
1,4
ey 2.3.3. Manipulating the planning space (PlanSpace) o
A N
N .
it =
. L
l.'
N >PlanSpace: ?
2 one of:
&N Choose - choose a method from the candidate set to invoke
Critique - critique a candidate method
' MarkGoal - mark current active gos) as achieved "
"4 Post - post a goal -
j PrCSet - print method candidate set of goal <~
. - quit
o .
. »PlanSpace: -
n
' ...:
-" .‘-
Y
~
N 2.3.3.1. Mark goal as achieved (MarkGoal) "
Y

<
"

-
—
= .
! N - K
N K
s -
LN N
N )
o
? o
=
\'. A
2% IOU
> . .
e b m pt ums at NSttt aman e A . T T T A A
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\ '@ 2.3.3.1 Mark goal as achieved (MarkGoal) PAGE 31
‘-'\ S
Ny
N
~
H
Ny o
& '.‘\-
EE S »PlanSpace: MarkGoal mark current active goal as achieved
:. :\\ New active goal is
AR
SN >PlanSpace:
N
hl \-‘
» An error message is generated if the current active goal is not a user-controlied goal (see
I3 . section 5.5.1).
B
" 2.3.3.2. Post goal (Post)
N
~
‘ 3 . >P1anSpace: Post post a goa)
‘ . Goal: Map
' % Freedom: sefswitch
- »’_
,,: . »PlanSpace:
c
0 -
DI
S e,
- < The user enters the goal name and the system prompts for each of the goals arguments (see .
F 3 X chapter 5). There are several different effects of this command: ;
5" . B
= D If there exists a currently active goal G then this command causes 1) an ad hoc -
S method to be created for G, 2) the posted goal to become the action of the )
N method and 3) the method to be chosen and applied, i.e., the posted goal _
NI becomes active. An ad hoc method is one that is created on the fly during h
::l ) development, i.e., it is not part of Glitter's general method catalog. Its actions will X
E be filled in as the development progresses. :
" D if there is no currently active goal then an ad hoc method must have previously
SRS been created and still be active. ‘The posted goal is added as a new action to
Ka = the ad hoc method and made the currently active goal.
2
-J 13Note that the initial problem solving state contains a system defined ad hoc method. The high level goals posted Y

by the user are placed under this method (see section 2.2).
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This command allows methods to be defined as a development progresses. In this way, it is
much like the PADDLE system [Wile 81a). After a development is complete, such methods
can be considered for inclusion in the method catalog, normally after they have been suitably
generalized.

2.3.3.3. Print candidates (PrCSet)

PPlanSpace: PrCSet print candidate set

Current active goal is

* Equivalence expression and object

Candidate methods are

-> 1. Anchor2 (+2)
Actionl: Reformulate expression as object

2. Anchorl (-)
Actionl: Reformulate object as expression

Selection information is

Anchor2 given +2 by rule ®Anchorle

Current choice of system is Anchor2

»PlanSpace:

In this example, taken from step 1.15 in the router development, two methods are competing
to achieve the Equivalence goal, Anchor1 and Anchor2. Both are printed with their current
weighting (see section 7.2.2) and instantiated action sets. If any of a candidate method's
actions will be trivially achieved if the method is selected, it is so noted (by a precéding ). In
general, this ability to "look inside" a candidate method is valuable to both user and system
(see for instance, content reference as it is described in section 7.2.2.2).

Any selection information that has been found is printed. In this case, the selection rule
*Anchor2a has been run and has given a weight of + 2 to the method Anchorg, the rationale
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2.3.3.3 Print candidates (PrCSet) PAGE 33

3 -
i 7§

.
l‘.

e
‘s (]

being that an expression can often be replaced with an equivalent object vaiue. No

i [ ] information has been found regarding Anchor1.
v Finally, the system prints the method it would select if asked to choose now. ;
- 2.3.3.4. Critique method (Critique) 5
e :
b, -
>4
'] "".
: n »PlanSpace: Critique critique s candidate method
N Which method (<cr> to print set): Anchor2
< Selection rules firing are K
.l
S E ®*Anchor2a: gives +2 to method Anchor2
) Current choice of system is Anchor2
:'.: >PlanSpace:
[ | J
AR
. o
2 Ry When running in critic mode (see section 2.2.1), this command allows the user to selective
N > examine what information the system can provide on one or more methods. Our example
N above is again taken from step 1.15. Being in critic mode, the user has been given control ‘
< X after the posting of the Equivalence goal and construction of the candidate set, but before any
l\ +
. selection rules have been run. Here he requests information on a particular candidate method :
“ : Anchor2. This causes the system to fire the corresponding selection rule *Anchor2a. p
“u - .
NS 2.3.3.5. Choose method (Choose) -
: ..
™
‘ , -
o .
e
1S
2
{ 1 .
a
.‘ [
YN
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>PlanSpace: Choose choose a method
Which method (<cr> to print set): Anchor2

Method Anchor2 has been invoked.

Current active goal fis
Reformulate expression as object

»PlanSpace:

When running in either cautious or critic mode, the user is responsible for making the method

selection. In cases where the user’s choice is different than the one preferred by the system, a

note is made of the discrepancy, e.g. in what state did it occur, why did the system prefer

some other method, what information was known about the user selected method.

2.4. Hearsay-lll Implementation R
Glitter is implemented in Hearsay-iii, a system which provides a framework tor constructing -,'
LY

knowledge-based expert systems [Balzer 80, Erman et al. 81]. In [Erman et al. 81), a detailed
description is given of an earlier version of Glitter called the Jitterer [Fickas 80). For the most

e
N PN

part, the Hearsay-lll organizations of both systems are the same. We point the reader to the
earlier paper for details. -

To avoid forward referencing problems, we will describe the components of the Hearsay- il
implementation in a distributed manner. At the end of the relevant chapters, we will provide a

| T

summary of how the mechanisms presented in that chapter are represented in Hearsay-Ill. In
particular, here we will describe the state-space representation; in section 6.5, we describe -

the representation of Glitter's methods; in section 7.6, we describe the representation of
Glitter’s selection rules and the overall scheduler. Again, these descriptions are brief; the user .
is urged to ook at the previously cited papers for more details. u
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-‘ 2.4.1, State/Space Representation

? A problem solving state consists of a program state and a planning state. We use the Hearsay 3

v blackboard to represent a single problem soiving state. The program state is represented by a

o parse tree which is implemented as Hearsay blackboard units and role/component pairs*é.

Y The planning state is represented as an AND/OR tree which is implemented as

o role/component pairs and hypothesis units.

: '

_ The development space -- the set of connected problem solving states -- is generated using

i Hearsay's context mechanism. A change in the current problem solving state (blackboard)
causes a new state (blackboard) to be spawned. States are encapsulated in Hearsay contexts.

::' Hearsay keeps track of the tree of contexts and provides the necessary inheritance

machinery.

nNes

L

A

~
N N
P t
E j uA project is under way to convert this relational representstion into a more economical Lisp record structure.
: This will allow Glitter to more easily interface with other Ti tools.
L
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Chapter 3
The Gist Specification Language

We will attempt to walk a fine line in this chapter. On the one hand, we will need to look at
enough of the Gist language to understand and motivate the ideas and examples of this
thesis. On the other, a thorough explanation of Gist would be lengthy and somewhat
orthogonal. Other sources exist for gaining an understanding of Gist in particular and
specification languages in general [Balzer et al. 78], [Balier & Goldman 79], [Goldman & Wile
79], [Swartout 82}, [London & Feather 82).

Gist is a wide spectrum language from which Programs are constructed. We further note the
existence of a specification subset which is used for describing a desired behavior, and an
implementation subset which is used for describing efficient algorithms. Put another way, the
specification describes what is desired and the implementation how to achieve it. The Gist
foundations. briefly, are

D No valid implementation need be ruled out. The Gist language does not inherently
force certain design decisions. However, it does not enforce any notion of
appropriate abstraction level, i.e., it is up to the specifier to choose the level of
specification abstraction.

D Natural. The Gist language is an outgrowth of the SAFE project, an attempt to
accept English specifications from domain experts and translate these into formal
specifications. Gist, SAFE's formal specification target language, was designed to
handle the type of specification constructs found in Natural Language problem
descriptions. In particular, it allows 1) objects and operations to be described at
the domain level, 2) process descriptions, 3) description of the environment, and
4) a specification to be incomplete or ambiguous.

D Testable. Specifications can be (symbolically) executed. Feedback can be used
to show incomplete or ambiguous portions of the specification.

We will introduce the individual Gist constructs by way of an exampie. The example, a postal
package router, is used as the basis for the detailed development of appendix C and for many
of the examples throughout the thesis.
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o 3.1. The Package Router Problem

;-j- Suppose we are given the following description of a package router (taken from [Hommel,
‘o 80)):

Begin English Spec'®
A package router is a system for distributing packages into bins. The physical
portion of the system consists of a source station, (binary) switches, bins and
pipes. Pipes connect the source station to a switch, switches to switches and
switches to bins.

Packages enter the router through the source station one at a time and at

random intervals. When a package enters the source station, its destination .
bin can be determined. Once a package leaves the source station, there is no -
mechanical means of checking its destination. T

Switches have settings and sensors. Two settings are possible corresponding
to the two output pipes emanating from each switch. A switch has an input
sensor for sensing when a package is entering the switch and an output
sensor on each exit pipe for sensing when the package in the switch has
exited. A switch can change its setting only if the switch is empty, i.e., no
packages are present between the entry sensor and either of the output
sensors.

Packages move through the network by gravity (working against friction).
Steady movement through the router cannot be guaranteed, hence packages
may bunch up and become misrouted. A package is misrouted if its current
location is not on the path to its destination bin. Once a package becomes
misrouted, we are no longer concerned about which bin it is finally routed to
(it clearly cannot be its destination bin). Bunched packages entering a switch
can, by clever bending of the input pipe, be individually sensed, but the switch
is prevented from changing until the last of the bunched packages exits. That
is, if we have a "train” of k bunched packages P1-Pk entering switch S, S can
sense that k packages have passed though but cannot change its setting
between P, entering and P, exiting.

To diminish misrouting. the destination of a package is checked when it enters
the router at the source station. If its destination is the same as that of the
previously entering package, it is released immediately (trains with a uniform
destination are fine). Eise, it is held up some fixed time t. We cannot assume
that t is large enough to guarantee that all bunching is eliminated, i.e.,
migrouting is possible. When a misrouted package reaches a bin, the
misrouting should be signalied by the router.

» (Swartout & Balzer 82] discusses specification abstraction issues in general, and the abstraction level of this
specification in particular. ’
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N ﬁi 3.1 The Package Router Problem PAGE 39
S Given that at any instance there may be many packages within the system, the
! - problem is to correctly route packages whenever possible.
b > End English Spec
§_-‘ :Q Figure 3-1 provides a graphical representation of the router; Appendix A contains the full Gist 1
y specification of the package router. In the remainder of this section, we will look at the major ;
'.E :‘;I specification constructs that Gist provides, grounded in the package router problem. 4
RS 3
-3 :
3 1
5 oY source {
]
i
R
!' '\
2
- svitch
!' .,-
e o,
+
v
.
: - ‘
.‘ -‘)
TN
A bin
-
. 3' '.'.
t Figure 3-1: Package Router
-
N 3.2. Relational Model of Information
™
Y, “ Information in Gist is modelled by typed objects gnd relations among them. The relational

- ““
n

KA IO |-
WICHE 3§

model of information permits the specifier to use a descriptive reference to an object:
The pipe that this switch is set to.

“ The bin that is the destination of this package.

The packages having this bin as their destination.
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) :‘5

o The relational data model is a very general data representation. For instance, the specifier -
' need not be concerned about data access paths; they are associatively accessible. -
) . o
. The package router domain involves objects of type PACKAGE, SWITCH, BIN, etc. X
. {ype PACKAGE; ‘-
j Type hierarchies are possible; for example, a switch or a bin (or the source or a pipe) is more K
. generally 8 LOCATION: ‘
. 3
-, type LOCATION() supertype of < SOURCE; PIPE; SWITCH; BIN > I
A ul
:: Relations among typed objects model information about a domain: ")
"j 0 The location of a package in the network is modelled by located_at, a relation R
- between packages and locations: . '
po: relation located_at(LOCATION,PACKAGE) = ;
'J: D The destination of a package is modelled by destination, a relation among Sf:
: packages and bins:
;
relation Destination(BIN,PACKAGE) "
D The setting of a switch (i.e., the outlet pipe that the switch is currently set to direct :
packages into) is modelled by switch_setting, a relation between switches and
pipes: .
relation switch_setting(PIPE,SWITCH)
: =
'j Binary relations, such as the ones above, are a frequently used form of n-ary relations. Gist
) provides a syntactic shorthand to more easily deciare and access binary relations. This ‘
shorthand takes the form of "attributes"” associated with types, for example Destination, a .
i binary relation between types BIN and PACKAGE, becomes an attribute of type PACKAGE (note -
s that because of the non-directional nature of relations, Destination could equally well be ’
made an attribute of type BIN). The simultaneous declaration of types and attributes .o
e
‘ becomes:
\ R
: \-J' ‘
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3.2 Relational Model of Information PAGE 41

type PACKAGE(located_at | LOCATION,destination | BIN);

type LOCATION() supertvpe of < SOURCE(Source_Outlet | PiPE);
BIN();
PIPE(Pipe_Outlet | SWITCH union BIN);
SWITCH(switch_outlet | PIPE, switch_setting | PIPE) >

The same effect could have been achieved by defining the attributes located_at,
destination, Source_Outlet, Pipe_Outlet, switch_outlet, switch_setting as separate
relations.

3.3. Predicates and Expressions

Information about the current state may be retrieved via predicates and expressions denoting
objects in the current state.

Expressions:

A package in the domain: a package16

A switch in the domain: a switch

The destination of package p: p: Destination'’

The location package p is at: p:located_at

A package destined for bin b: apackage || (package : Destination = b )18
Predicates:

Is package p at its destination? p:located_at = p:Destination

16Nomion. A variable name that is aiso the name of a type can be used instead of the form <var name)jtype. In this
example, package is shorthand for package | PACKAGE.

17Ncmtiora. <expression) : <attribute name> denotes an object related by <attribute name> to <expression>, in this
€288 & LOCATION.

Bpotation. The special symbol || should be read as “such that". The construct used here takes the form g
<typename> || <predicate> and denotes an object of that type satistying the predicate.
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Existential and universal quantification over objects of a given type is permitted:

Is there & package at every switch?
V switch || ( 3 package || (package:located_at = switch))

3.4. Change In the Domain

Change is modelled in the domain by the creation and destruction of objects, and the
insertion and deletion of relations among objects. Each such primitive change causes a
"transition” to a new state. A Gist specification denotes "behavior" - a sequence of states
connected by transitions.

Create & new package: gcreate package
Assign bin b as destination of package p: insert p : Destination = b

To include within a single transition several such primitive changes, we embed them inside
Gist's "atomic" construct:
Change the location of package p from loc1 to loc2:
atomic
delete p : located_at = /ocT,

insert p : located_at = /oc2
end atomic

A built-in Gist primitive aliows us to state the above change in a more concise form:
update located_at of p from /oc7 to loc2

3.4.1. Procedures

One or more Gist actions can be defined within & procedure construct. The procedure
construct is parameterized and can be called from any number of locations within the spec.
Each such call instantiates the procedure’s formal parameters with actuals and executes the
defined actions accordingly. Note that the Gist view of data is as a global database, and hence
procedures are not side-effect-free.

Define a procedure which removes a package from a sequence.
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3.4.1 Procedures PAGE 43

procedure TRIM_PACKAGES_DUE_AT_SWITCH(package, switch)
update packages_cdue of PACKAGES_DUE_AT_SWITCH(switch,$)
10 packages_due minus package;

3.5. Temporal Reference

The sequence of states connected by transitions leading to (historical) and from (future) the
current state is a behavior. Temporal reference refers to the ability to extract information from
any state in the behavior. Constructs such as asof everbefore, ordered temporally and asof
evermore allow the specifier to describe what information is needed from earlier and later
states without concern for the details of how it might be made available. By default, a
predicate or expression is evaluated in the current state. Evaluation in some arbitrary state in
the behavior is possible. As with reference to objects, specifying the state(s) in which to do
the evaluation is done by description - provide a predicate which, when true of a state in the
behavior indicates that state is to be used for evaluation.

Following are some examples of temporal reference taken from the package router:
D Has this package ever been at that switch?
((package:located_at = SWITCH) asof everbefore)™®

D The time-ordered sequence of packages ever at the source:

({package || (package:located_at = the source) gsof everbefore}
ordered wrt (start(se/f:located_at = the source)))

Botation. <predicate> aaof <stated, or

<expression> gaof (state>.
in each case the evaluation takes place in the state(s) in the history (i.e.. now or before) designated by <state>. For
the predicate, the result will be true if <predicate> heid in any of the selected states. For the expression, the result wilt
be the object(s) (non-deterministic f multipie objects) denoted by the expression in any of the selected states.
gverbefore designates the current state and all past states.
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<,
NA
-
o 3.6. Demons
\
\:; Demons are Gist's mechanism for providing data-directed invocation of processes. A
Ay
'_-ﬁj demon’s trigger is a predicate, which triggers the demon’s response whenever a state change
\, induces a change in the value of the trigger predicate from false to true.
\-_‘Z; Demons are a convenient specification construct for use in situations in which we wish to
Z'_f:f trigger an activity upon some particular change of state in the modeled environment. They
:lj save us from the need to identify the individual portions of the specification where actions
. might cause such a change and the need to insert into such places the additional code
i necessary to invoke the response accordingly. The specificationa! power of the demon
: construct is enhanced by the power of Gist's other features, since the triggering predicate
o may make use of derived relationships, historical reference, etc.
A
. Whenever a new package arrives at the source station, do ...
WA
Q:_
oo
demon RELEASE_PACKAGE_INTO_NETWORK (package.new)
A irigger package.new:located_at = the source
[}
X
The trigger of this demon is a predicate that will become true whenever a package becomes
on located at the source. When the demon is so triggered, occurrences of the variable
4 ' ]
-‘3 package.new in its response are bound to the instance of the object satisfying that triggering
> of the demon.
w3 3.7. Constraints and Non-determinism
7
b Constraints within Gist provide a means of stating integrity conditions that must always remain
satisfied. Within Gist, constraints are more than merely redundant checks that the
712:3 specification always generates valid behaviors; curstraints serve to rule out those behaviors
&."', that would be invalid. The combination of constraints and non-determinism proves to be a
'i powerful specification technique; a specification denotes those and only those behaviors that
"~ do not violate constraints. In contrast, an implementation is characterized by the clever
. - _
}.:-; encoding of its components to interact in ways guaranteed to result in only valid behaviors.
OO
A
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e )

e

L™,

AN

- 7 3.7.1. Non-determinism

Y =

:f '.:j Because of its "descriptive” nature, Gist's form of reference to objects may result in several
'.';: . objects satisfying the description. In such a case we say the the expression is non-
A

AN deterministic.

- - Anypackage whatsoever: g package

\Z:j > Any package at a bin: @ package || ( package : located_at = (g bin))
3_; < An outlet pipe of switch s: g pipe || (s : switch_outlet = pipe)
_ | (more concisely) s :switch_outlet
")
:3 oo Non-deterministic behavior results when such a non-deterministic reference is used in a
11 transition. The alternative transitions give rise to distinct continuations (branches) of the
v‘ .E behavior. Hence a Gist specitication denotes a get of behaviors.
‘.'.‘ .«
1.
S '
g demon SET_SWITCH (switch)
trigger RANDOM()
o R response
- if SWITCH_IS_EMPTY (switch)
IR then update :switch_setting of switch to switch:switch_outlet
" end;
£, "
e 3‘
MRS . » . .
N The SET_SWITCH demon is a2 non-deterministic expression of behaviors. It presents several
,"- ;;, non-deterministic choice points. First, it triggers at non-deterministic times. Second, the
. binding of the variable switch is non-deterministic. Third, the update of the switch setting
;: oy within the response is to a non-deterministic outlet pipe. Given no further constraints, the
‘ N a picture would be of a package router mechanism with switches flapping at random.
Y
e 2,
: E Non-determinism may also be introduced through the use of non-deterministic control i
K-, constructs.
S .
L ]
= !
R
\
~ -
v,
L
Y
1N .q. J
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™
3 '~ Set each switch to its second outlet.
, loop SiswitcH do update switch_setting of s o pipe.2%
- 3.7.2. Constraints
~
) Constraints are used to describe the limitations of the domain and of the desired behaviors.
'
- Several constraints on the package router domain are given below?'.
_: Packages cannot pass through each other.
R always prohibited PACKAGES_OVERTAKING_ONE_ANOTHER
::‘_ 3 package.1, package.2, location
::: || stadt (package.1:located_at = location ) garlier than
N start ( package.2:located_at = /ocation ) and
Y
‘ finish ( package.2:located_at = /ocation ) gariier than
" finigh ( package. 1:located_at = iocation ) ;
o There cannot exist more than one source:
X always prohibited 3 s7 | SOURCE. s2 | SOURCE || (s7 = 82)
{
- Switches and bins have a single input pipe
- always prohibited
3 switch_or_bin | (SWITCH ynion 8iN).
pipe.1, pipe.2 || pipe.1 # pipe.2 and
- pipe.1: connection_to_switch_or_bin = switch_or_bin ) ) and
59 pipe.2 : connection_to_switch_or_bin = switch_or_bin))
f, Constraints of the above form (on the cardinality of aftributes and relations) are common,
hence we apply a notational shorthand and declare them at the same time as we make type
'.’ and attribute declarations. For exampie, we have defined a package to have two attributes: a
.3 destination and a locstion (a.k.a. located_at). For each, the value is unique for a given
¢
¢ 20Notntion: joop <expression> g <statement> does the statement for each object denoted by the expression - the
J non-determinism arises from the non-specified ordering in which to consider the objects.
i
! 21 is interesting o note that in practice. constraints of this type are often forgotien in the initial spec, perhaps
. because they 80 trivigl. In any case, it is expected that a spec will be elaborated over time to include the necessary

domain constraints (see [Swartout & Balzer 82]). Packaging domain constraints 10 form an essential domain spec
: could alleviate the problem of every specification starting from scratch (Neighbors refers to this as the problem of
.. reuse of domain analysis [Neighbors 80)).

L
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package, but any number of different packages may share the same value (may have the

same destination or location). In Gist, we may specify this as

- .
T;- type PACKAGE(Destination | 8IN : ynigue :: a_n_y"’z,
% located_at | BIN)®
N
o
N in the package router, constraints such as MORE_THAN_ONE_SOURCE define the nature of
o ' the world in which the specified system will exist. It does not directly constrain the part of the
T specification to be implemented. Constraints may also be used to rule out those behaviors
o that would be invalid. In conjunction with non-determinism, they permit us to describe an
i activity in a non-deterministic fashion; those behaviors of the activity leading to states that
. violate the constraint are "pruned away”. This provides the ability to express our intents more
';' directly (in the form of constraints), rather than encoding all the processes of the specification
_ so as to interact in only those ways that prevent arriving at an undesirable state. The
E constraint DID_NOT_SET_SWITCH_WHEN_HAD_CHANCE is a good example.
:{
:f‘ always prohibited DID_NOT_SET_SWITCH_WHEN_HAD_CHANCE
3 package,switch ||
package :LOCATED_AT = switch
" and
' SWITCH_SET_WRONG_FOR_PACKAGE ( switch,package)
o ((package = first (PACKAGES_DUE_AT_SWITCH(*,switch))
>,
SWITCH_IS_EMPTY (switch)) asof everbefore));
L The system behavior we desire to specify iS to route packages correctly whenever possible
': - given the limitation of not being able to change a switch’s setting unless that switch is empty.

The constraints that state this desired behavior are the require statement within the body of
the SET_SWITCH demon, and DID_NOT_SET_SWITCH_WHEN_HAD_CHANCE. The

mNomicm: the keyword foliowing ":", in this case ynigue. constrains how many objects of the attribute type (aw)
may be attributed to the type being defined (Pacxage); the keyword following “::", in this case gny, constrains how
many objects of the defined type (PACKAGE) may have as their attribute an object of the attribute type (sw).

23Furthormon. since the unique/any case is typical of many attributes, the default is to assume
' ynique and :: gny
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AN "
:_'-:7 former rules out those behaviors that involve setting a switch when it is not empty"". The -
L latter defines a predicate that defines when a switch has not been correctly set. This -
A condition occurs when
N,
S
‘ QJ. O a package is in a switch,

' D the switch is set incorrectly for that package, and

,ﬂ O at some time in the past there was a chance to set the switch for that package, !

i.e., at some time when the switch was empty, the package was the first of those
o not-misrouted packages due to go through the switch (relation .
i PACKAGES_DUE_AT_SWITCH is defined to hold between each switch and the

- sequence of not-misrouted packages due to go through that switch).
.\c,j( By putting this predicate into an always prohibited, behaviors which lead to such states are .
5 ruled out. Picture a package router mechanism with switches still flapping, but in ways that i
%" lead to only desirable behaviors. Note that we have not ruled out the non-deterministic setting e
‘ of switches, but just constrained it to a desired subset. B
2
'\ The conjunction of non-determinism and constraints serves as a powerful specification j;:
e technique; non-determinism denotes a set of behaviors, constraints rule out those behaviors
s_.j containing anomalous states. Hence a Gist specification denotes only the set of valid ﬂ
gﬁ behaviors. :
5 2
: 3.8. Derived Relations '
‘. Often it is convenient to make use of a relationship that is derived from others. Its derivation is i
;C::j declared once and for all. The specificational power of this construct comes from being able
- to state a derivation (that is, an invariant among several relations) in a singie place, and make =-"
‘ j:lz use of the derived information throughout the specification. .
o
"’ Derived relations may be accessed within expressions and predicates in just the same way as
any standard relation. They may not, however, be explicitly inserted or deleted - their
:I:: definitions serve to denote precisely when they hold.
e 2‘smce this is the unique piace in the specification where the setting of switches is modelled, we have chosen to :
::.: use a require statement rather than a global constraint (a stylistic choice). '
M2 .
» o
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relation PACKAGES_DUE_AT_switch(PACKAGES_DUE | sequence of PACKAGE, switch)
PACKAGES_DUE = -

{ a package || ' {
LOCATION_ON_ROUTE_TO_BIN(switch,package:destination) and 1
~((package:located_at = switch) asof aver) and ]
~MISROUTED((package) a

)} ordered wrt (start (package:located_st = the source);

This is a derived relation between sequences of packages and a switch. The derivation is a .
predicate, which defines the sequence of packages (called PACKAGES_DUE) in terms of the 1

other argument (the switch). This definition is expressed by means of a set of packages upon ‘
which an ordering is imposed. For any particular switch, the set of packages consists of those
for which: ’

O the switch lies on the route to the package's destination,
LOCATION_ON_ROUTE_TO_BIN(switch.package:destination) ,

D the package has not already reached the switch,
~( { package:located_at = switch ) asof averbefore )

vy

O and it is not misrouted,
~MISROUTED (package)

The ordering puts packages in sequence by the time at which they were located at the
25

o o

source.

3.9. Closed Specification

Gist specifications are closed, in the sense t.hat in addition to describing the portion to be
implemented, they also describe (in as much detail as necessary) the environment in which
that portion is to operate. Thus the behaviors specified are those required of the entire world.
The portion to be implemented must act in such a manner as to interact with its environment
to produce a non-empty subset of those behaviors.

YW

The package router is described in a closed world in which packages are created at the

N

NI

~ )
;i 2£’Ohur\vc that the structure of the network (a tree with the source at the root) and the property that packages
- cannot overtake one another combine to ensure that packages will arrive at switches in the same order in which they

2 were located at the source.
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source, and are caused to move down through the network. The portions to be implemented

. (and hence over which we have control) are the source, where packages are released into the —
> network, and the switches. These must perform in such a manner as to cause the correct :'-j
A routing of packages, whatever their destination, and however they might move through the
network. =
Movement of packages through the router is not within the control of the portion we are to -
implement, yet must be described in sutficient detail to express the behaviors required of that o
portion. Movement is modelled by a (non-deterministic) demon that at random causes a .
random package to move (if possible) to the next location in the router. -
demon MOVE_PACKAGE(package) :C :
trigger RANDOM() e
respaonse if 3 location.next ||
MOVEMENT«CONNECTION(package:LOCATED«AT, location.next) o
then update located_at of package . :
1o MOVEMENT_CONNECTION(package:loc ated_at, *); .
3.10. Total Information
=
In specifying the behaviors required of the system, it is convenient to make arbitrary retrievals :
from relations, quantification over all objects of a given type, etc., in order to achieve a N 3.
AR
straightforward specification. Typically, however, the portion to be implemented will be 1
restricted in the queries it may make of its surrounding environment. g q
_ oA
To describe the desired behavior of the package router the constraints, demons, derived J:
relations, etc., make use of knowledge about the destinations and locations of packages __, !
‘anywhere within the routing network. - !‘
"o
relation SWITCH_SET_WRONG_FOR_package(switch, package) E
sefiniti St
LOCATION_ON_ROUTE_TO_BIN(switch,package:destination) and b
~LOCATION_ON_ROUTE_TO_BIN(switch:switch_setting,package:destination) ; ﬂ i
The mechanical nature of the environment limits observation of the destination of a package W .
to the time at which the package is at the source, and hence an implementation must explicitly -
read each package's intended destination while it is at the source, and explicitly remember ” !
that information in order to control the switches, perform signalling, etc. The implementation CHE
\
specification on page 188 defines what information is available to the developer: .
- |
4
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implement PACKAGE_ROUTER
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B attributes

-;.; package:Destination when package:located_at = the source
2 e

LSS

Total information provides the freedom to use any and all information about the system and its

B - environment to specify desired behaviors. It is left to the development of the implementation
N to determine just what information is useful or necessary and derive it from what is available.
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In this chapter, we will take a closer look at the role both user and machine play in the Glitter
model. The overall objective is to illustrate the type of interaction that oceurs during a Glitter
development: what is the user responsible for?; what is the system responsible for?. The

.‘I ;
'
0

package router development (see Appendixes A-D) is used as an explanation vehicle. We will

M“‘
LA,

3 N first look at the user's role of development organizer, and then present a small, annotated
ayn
YR portion of the router development transcript to illustrate other types of user/machine
o . interaction.
N
L
{ Z::
N 4.1.The User as Organizer
_. < ,.. In the Glitter model, the user is responsibie for guiding the overall development. In practice,
;a this means he or she must produce the high level goals that drive the problem solving engine
:‘_ ; and organize the development. In this section we will look at an example of development
™ organization taken from the package router development. Before getting into details, we
N F provide an overview of the package router development as background.
g
‘{ < 4.1.1. An overview of the package router specification
TN
R The Gist specification of the router problem (see section 3.1 for the English statement of the
C A
:',: - problem) is given in Appendix A. It uses most of the specification freedoms oftered by Gist
:j including temporal reference, derived relations, constrained non-determinism, demons and
o

total information. The general task of the developer is to map these freedoms into forms

r J
[ 991

N computable in the target language. A general discussion of the mapping of specification
IO
W freedoms can be found in section 5.2.1. The key components of the router specification that
4 .
- . . :
43' must be addressed in the development include the 1ollowmg”:
@ .
N -~ 2°w. have excluded from the list the portions of the specification which model the router environment, e.g.,
(S creation of packages, their movement by gravity feed.
. &
Q3 f,\
[l -
¢
3 3 ?
;’0 -‘:'
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O RELEASE_PACKAGE_INTO_NETWORK - 2 demon that triggers when a new
package arrives for routing. The portion of the Gist spec that models the
environment is responsible for creating packages for routing. Checks if the
package has the same destination as the last package. If not, delays its entry into
the router for some amount of time. Places the package in the pipe leading to the
first switch.

Specification freedom: data-directed invocation of processes eliminates the need
to identify individual portions of the specification where the processes must be
invoked. Further, demons can trigger on various events including past events and
unobservable events. In this case the event is an observable one produced by the
environment.

Mapping concern: since the target language supports demons and this demon
triggers on an observabie event, no mapping is necessary.

D SET_SWITCH - a demon that triggers at random times. Selects (binds) a random
switch. If that switch is empty, it sets the switch at random to one of the two
output pipes.

Specitication freedom: in conjunction with appropriate constraints (see below),
allows a specifier to describe the set of alf acceptable behaviors without choosing
a particular one.

Mapping concern: non-determinism and constraints must be combined to
produce only acceptable behaviors.

O DID_NOT_SET_SWITCH_WHEN_HAD_CHANCE - a constraint. Effect is to
constrain the demon SET_SWITCH to act in an acceptable fashion. in general, it
disaliows the following situation: 1) & package P is located at a switch S, 2) the
current setting of S will cause P to become misrouted, 3) there was a time when P
was the next package due at S and S was empty, i.e., S could have been set so
that P would not become misrouted.

Specitication freedom: allows a specifier to limit behaviors without explicating
control (see above). The third term of the constraint references a past event
(a.k.a. historical reference).

Mapping concern: constraints (and non-determinism) are not present in the target
language, hence they must be mapped. Past states must be remembered.

D PACKAGES_EVER_AT_SOURCE - a derived relation that defines the sequence
of packages that have arrived at the source as of ever (a monotonically increasing
sequence). The sequence is ordered by arrival time: packagel precedes
package? if package1 arrived at the source before package2 (packages cannot
arrive simultaneously).

Specification freedom: defines information that is useful in the specification (in
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o .

T this case a sequence of packages) by deriving it from other information (in this
o case a past event). The specifier does not need to state how this information can
,..,. ! be obtained or maintained, simply the invariant relation among packages and
s - their entry into the router.

.'::l': {jl . Mapping concern: Since derived relations are not supported in the target
T language they must be mapped to a computable form.
NN O PACKAGES_DUE_AT_SWITCH - a separate instantiation of this derived relation
-.:;: o exists for each switch. It defines a sequence of packages that are due to arrive at
a switch at some later time (size of sequence depends upon capacity of router).
‘ o As with PACKAGES_EVER_AT_SOURCE, the sequence is ordered by arrival
o ol time. Because packages cannot overtake one another, it is also ordered by the
o time packages are due to arrive at the switch: packagel precedes package?2 if
‘_;f v package1 will arrive at the switch before package2.

1N :fn .
.

»'i_.: Specification freedom: same as PACKAGES_EVER_AT_SOURCE.

e -

. H Mapping concern: same as PACKAGES_EVER_AT_SOURCE.

-_’Q N

fj'.:f . OLOCATION_ON_ROUTE_TO_BIN - a derived relation that defines a connection

o ::Z matrix between locations and bins within the router.

SRR Specification freedom: same as PACKAGES_EVER_AT_SOURCE, except
paon . defines a static relation.

"{:: Mapping concern: same as PACKAGES_EVER_AT_SOURCE.
PN
S

4.1.2. Organization of the router development

The package router development is organized around six high level goals provided by the

ST il
2 Ll&, -
P

ﬁ &. user. Below we list each and discuss its motivation.

) & 1. Remove relation PACKAGES_EVER_AT_SOURCE. This relation defines the
“. sequence of gli packages that have ever entered the router. Normally, this
-Z-; :-Tj derived relation would have to be mapped to an explicitly maintained relation with
; ) a process to add new packages as they enter the router. However, this relation
':-;’. .. also is the product of an efficiency freedom: the specifier knew that he or she
E would need to reference previous packages, hence the entire sequence was

defined without regard to whether all of it was truly needed. The user (developer)

N ‘o notices this and posts a goal to get rid of the unneeded sequence.

’.-
O 2.Remove relation PREVIOUS_PACKAGE. In the process of removing
NN . PACKAGES_EVER_AT_SOURCE in the previous step, this relation is introduced
L ] i along with the relation LAST_PACKAGE. Both relations represent the same
Al - basic information, making one of them superfluous. As a clean-up step, the user
-\"o
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= chooses to remove PREVIOUS_PACKAGE, leaving LAST_PACKAGE to record -
the necessary information. Again this can be viewed as the mapping of an

) efficiency freedom: at any point the specification may contain much redundant or ) =

':,'- unneeded information. it may be introduced by the specifier because he or she

thought it would be necessary, convenient, or made the specification more
understandable, or by the development process as in this case. It is the .
X developer's task to remove it before the final implementation is reached. ':_"

3. Remove relation LAST_PACKAGE. This relation is part of the residue of
> removing PACKAGES_EVER_AT_SOURCE. It represents the only part of the
package history we really need, i.e., the last package to enter the router. Once
again, however, this information is overkill: the only information that need be
, remembered about the last package is its destination. This step is then in the
\ same vein as the last two: further optimize the storage of information, i.e., map an
efficiency freedom. The outcome is that a new relation is defined that records just
the destination.

S L e . A R Bkt o n ot L A . Bl e - A A

| I

Ayl "‘,

4. Map constraint DID_NOT_SET_SWITCH_WHEN_HAD_CHANCE. The task here
is to decide a switch setting strategy. In general, this constraint must be
combined with the non-deterministic behavior of SET_SWITCH to get necessary
deterministic switch setting action. This is clearly the most difficult step in the
development. %

R
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» P B
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5. Map relation PACKAGES_DUE_AT_SWITCH. This derived relation defines a

{ dynamic sequence of packages for each switch. it provides a type of information &
S freedom: assume that the location of all packages can be determined at all times

and that they can be ordered by the time they are due to arrive at switches along

the route to their destination. Since in the router the only time a package and its

:- destination are identified is when a package enters the network, o
. PACKAGES_DUE_AT_SWITCH must be explicitly maintained by the system.

That is, packages must be added to the end of the sequence as they enter the <

router, taken off the front when they enter the switch, and taken out of the middie

when they become misrouted. )

-
PRSI

v,‘.
[2,]

.Map demons. One specification freedom is that demons may trigger on

unobservable events and/or non-deterministically. For instance, a demon may

trigger when a package "bumps"” another package. In the router specification, ~ 4

this is an unobservable event, i.e., there is no mechanical means provided for '.:f; l
1
s
N

B

[N NI -

sensing it. it would be up to the developer to map it into some form that relied on
or could be derived from observable events. There are several demons at this
point in such form; the developer marks each for mapping. ’

e
far

Some of these steps are specific to the router development while others are more general. For

instance, mapping of constraints, demons and derived relations are all steps likely to be found
in any development. Hence, why not define a method which triggers itself at the start of the

development and simply cycles through each of the Gist constructs placing a mapping goal

......
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4.1.2 Organization of the router development PAGE S7

on each? During a development, the recognition of the constructs that have to be mapped is
» only part of the development problem. Just as important is the order in which general and
X domain specific mapping goals are attempted. For instance, if we tried to map the
SET_SWITCH demon (step 6) before constraining its random trigger (step 4), We would have
to unfold it at every state transition point within the program. Currently we rely on the user
) both to recognize specification freedoms that must be mapped and to order the mappings in
‘_: _ an effective manner. In later chapters we discuss how this might be done by the machine.

- 4.2.The user as consultant/troubleshooter

Besides providing development organization, the user will likely be called on to supply
information unavailable to Glitter and fill in missing portions of Glitter's catalogs. In this
section, we will look at how this consultant/troubleshooter role manifests itself in a portion of

p# of

the package router development. In particular, we will look in detail at the first few steps of
the development presented in the appendixes, and discuss the user’s and system’s actions in

fns
P

generating them.

! The first organizational step of the router development, as seen in the last section, is the

removal of the derived relation PACKAGES_EVER_AT_SOURCE, or PEAS for short. In the
:I transcript to foliow, we will be dealing with this relation along with the demon
- RELEASE_PACKAGE_INTO_NETWORK. A description and pretty printed version of these
two Gist constructs is given below.

........

...............................
. .
.

.........
.........
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When a new package arrives at the source of the package router?’ the demon
RELEASE_PACKAGE_INTO_NETWORK is triggered *»,) The demon first checks to see if
the previous package’s destination was different than the current package’s destination (bz).
The previous package is computed (»4) by using the sequence of packages that has ever
arrived at the source, PACKAGES_EVER_AT_SOURCE. The previous package is the
package immediately before the current package in that sequence. If the destinations are
different then the new package is delayed for some time before being released (» o The final
action of the demon is to transfer the package to the pipe leading to the first switch by

updating its location property (bs).

The relation PACKAGES_EVER_AT_SOURCE specifies an ordered set (i.e., sequence) of
packages. The set is the packages that have ever arrived at the source. The ordering is by
their time of arrival.

demon RELEASE_PACKAGE_INTO_NETWORK (package.new)
)1 trigger package.new:LOCATED_AT = the source

response
begin
’, if
’, (Lhe package.previous | |

package.previous immediately before package.new
wrt PACKAGES_EVER_AT_SOURCE(*)

) :DESTINATION # package.new :DESTINATION

’, then invoke WAIT[]:
e update :LOCATED_AT Qf package.new 1o (ihe source):SOURCE_OUTLET
engd;

relation PACKAGES_EVER_AT_SOURCE(package_seq | sequence of package)
definition package_seq =
({package || (package:LOCATED_AT = the source) asof everbefore)}
ordered temporally by start (package:LOCATED AT = the source));

27The actual creation and placement of packages at the source is modeied by the spec but is part of the
environment rather than the portion to be impiementable. .
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4.2 The user as consultant/troubleshooter PAGE 59

Following is the annotated transcript of the first several steps of the router development
dealing with the removal of PACKAGES_EVER_AT_SOURCE. For readability, all user input
appears as bold italics. While a detailed understanding of the transcript relies on information
presented in suksequent chapters, we attempt here to provide an overall imbression of the
partnership roles.

>Glitter: FaithMode set faith mode

Mode (trusting, cautious, critic): cautious

By placing the system in cautious mode, the user will have final say over the
method selected to achieve a goal (see sections 2.2.1, 7).

>Glitter: Post post a goal

Goal: Remove
What: PACKAGES EVER AT SOURCE
From context: defaulting to entire specification

Since the relation definition is global, the system fills in the context slot
automatically.

Initial candidate set formed:

.

RemoveRelavion

A single method, RemoveRelation, triggers on the remove goal. The method can
be paraphrased as "if you want to remove a relation then remove all reference to
it". Note that since only one method has triggered, it seems pointless to run any
selection rules. However, as discussed in Chapter 7, the selection process not
only orders competing methods, but may reject them as well. If this method was
rejected, it would mean that either a method was missing from the catalog or
that the goal was unachievable. .

WIS I I I IN .. N

[
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<
3 :
!
l Running selection rules... -
N BurnedOutHulk fires '
('\
v,
- *RemoveRelationl being considered ;3
> -
Is only one element of packages_ever_at_source '
. being used? yes “,
o ‘. \l
o -
*RemoveRelationl fires ’
" *RemoveRelation2 being considered N
-
b Is packages_ever_at_source acting
- as a “"temporary variable"? no w
)
ko V.
L~ *RemoveRelation2 rejected
4y
~ ' =
Final candidate set formed:
h X3
A . .
¥ RemoveRelation(+4)
4 A
v ?:x
-
X
B Notation: rules prefixed by a * are tied to specitic methods. Others are method 5
_ , independent and compute a weight by both examining the effects a method will .
J have if chosen and how those effects will impact the current planning state as a -
3 whole, e.g., !will the method make it easier to achieve higher level pending
: goals?
\.
"
i The selection rules have given RemoveRelation a combined weight of 4 (well
" .above the selection threshold) on the following grounds: in general, a good way "~
N to get rid of a detined object is to remove all reliance on it (BurnedOutHulk); if
J only one element (first, last, nth) of a sequence is ever needed then it is likely
o that the sequence can be replaced with a single value (*RemoveRelation1).
Once the competing methods have been ordered, a selection is ready to be -
9 made. If in trusting mode, the gystem would choose the highest ranked method -
o for invocation. It in cautious mode, the system returns control to the user for his =
-:‘ ok (the case here). At this point the user may examine the individual selection
- rules that fired and their etfect on the method ordering as a whole. With this
information he or she may choose to either invoke another competing method, e,
‘ step in and define a method on the fly, or backtrack to some previous planning o |
N state. In each of these cases, the system will record the context for later (human)
- analysis: It is likely that they are symptoms of a missing piece of development <
3 knowledge. In this case the user chooses to contirm the system’s choice. N
' e
-
N .
\ ] -
"
& T
T
-~
"
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:_p' M
L
A
" »PlanSpace: Choose choose a method :
Saled Which method (<cr> for system's choice): <cr> RemoveRelation _ |
b E - |
= RemoveRelation invoked :
' f:.:f Goal posted: Remove reference to packages_ever_at_source j
o ° from the specification i
ol
- 1"*
. l'.:- :
s-j The method chosen, RemoveRelation, attempts to remove a relation by :
33. £~ removing all references to it. In this case, there is only one reference to ]
: . packages ever_at source, the one found in the derived object package.previous
L (>3). The corresponding goal is posted.
78S
:jZ; Initial candidate set formed:
.' ‘ ’
A E BabyWithBathWater-1
DI BabyWithBathwater-2
LA BabywithBathWater-3
N BabyWithBathwater-4
T MegaMove-1
.- MegaMove-2
. PositionalMegaMove-1
v PositionalMegaMove-2 1
. RemoveByObjectizingContext-1 )
RemoveByObjectizingContext-2 1
{
o ‘ Hyphenated names indicate separate instantiations of the same method. In all !
L~ s cases above, each instantiation represents a different context from which to
& view the problem. For instance, the method BabyWithBathWater attempts to
e remove X by removing some context Y that contains X; instantiations 1-4 above
. s represent different bindings of Y, i.e., the predicate of the derived object, the
il derived object itsell, the conditional that uses the derived object, and the demon
< that contains the conditional. 1
SR
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,
e
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4
3 -
& ~
o Running selection rules... )
Fillin fires 4 )
*BabyWithBathWaterl fires ;
*BabyWithBathwater2 fires o
*BabyWithBathWater3d fires e
*MegaMovel fires o
*positionalMegaMove fires {
RemoveRef1 fires -~
RemoveRef2 fires A
RemoveRef3 fires
1
Final candidate set formed: _
]
1. MegaMove-2(+3)
2. MegaMove-1(+3) o
3. PositionalMegaMove-2(+2) ) L
4. PositionalMegaMove-1(+2) ’ B
5. {RemoveByObjectizingContext-1(-), - 1
RemoveByObjectizingContext-2(-)} ]
All four instantiations of BabyWithBathWater have been rejected by the selection :jL: :
rules. The two RemoveByObjectizingContext methods have no selection R
information and so are placed last (see section 7.2). If in trusting mode, the = i
system would choose MegaMove-2: although it has the same weight as el
MegaMove-1, it has been explicitly ordered as first by RemoveRef1. In cautious .- :
mode, control is returned to the user. .
~
N
o ]
>PlanSpace: Choose choose a method
Which method (<cr> for system's choice): <cr> |
MegaMove-2 invoked _
-
. :
o
N We will summarize the next two steps of the development without providing transcript details. :
iy The planning structure that follows this paragraph is used as reference. The MegaMove ]
~ .
Ei method posts two subgoals: b, fold (isolate) the derived object into a derived relation R; b, <
- then unfold (maintain) R at locations where it might more easily be replaced. Before folding, 1
_b',,: an effort is made to remove any references to locally scoped variables (»,), in this case the o
a® <.
variable package.new declared by the demon. We will resume the development at this point. ' j
M Note that a) the user has had to post only a single goal up to this point (user posted goals are ~ )
! marked with a " + "), and b) no changes have yet been made to the program; the action has all = i
4 N
v
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~ taken place in the planning space. The planning structure at this point is as follows (see the
!
L PrPlan command, 2.3.1.2):

-~ '_\

. <«

: + Remove packages_ever_at_source from spec

N ...using RemoveRelation
SN

MERAY Remove reference to packages_ever_at_source from spec

...using MegaMove

j ;" 01 Isolate derived-object package.previous into R
WA ...using FoldGenericIintoRelation

- .. ', Globalize derived-object package.previous

) . ...using GlobalizeDerivedObject

* Reformulate package.new as global expression

. L ...to be selected

' '\1

Y Apply fold-into-relation(package.previous, R)
S ...primitive transformstion

ot

"3 >3 MaintainIncrementally R

© H ...10 be selected

X
.!1 »

'1 '

.

o
a

We resume the development at the currently active goal (marked witha "*"):

8
h] LAY oo s
2“ Goal posted: Reformulate package.new as global expression
W Initial candidate set formed:
.. ReformulatelocalAsFirst
o ReformulatelLocalAslast
. e
N
NI
:'_2 The two competing methods capture the following development technique: "if
you are trying to reformulate a local variable as a global expression then look for
N a defined sequence of the same type (i.e., package) as the variable; it may be the
N case that the object (package) referenced by the local variable is also contained
\ N within the sequence."” The two methods find such a sequence
5 (PACKAGES EVER AT.SOURCE) and suggest trying the first and last element
~, é respectively.
;
SRS
4~
4
: )
AT
. e
)
%4

IXEE -

R G Ry - N AN tq.':,;, IC A A NI ‘.-\'.:_'.'.;-, Lo .d -‘\d'.,'\;-,-:._-:._' PR TR A ‘\'.\‘ NN NS

o
[} 3

.



2 [ Sl N Y 1

A VIS

2 N

LR R A 3 M)

e s 2 o g

1.

RS @ e a A

PAGE 64

The Development Partnership

Running selection rules...

ReformLocl fires

RetformLoc1 orders the two competing methods. It can be paraphrased as "if
you are trying to decide between reformulating a local reference as the first
element of a sequence or the last element of @ sequence AND the sequence is
ordered temporally then try reformulating it as the last element".

Final candidate set formed:

1. ReformulatelocalAsLast(+2)
2. ReformulatelocalAsFirst(+2)

»PlanSpace: Choose choose a method

Which method (<cr> for system's choice): <cr>
ReformulatelocalAsLast invoked

Goal posted: Reformulate package.new
as 1ast(PACKAGES_EVER_AT_SOURCE(*))

Empty initial candidate set

1
v .’.;'-"' . .‘0!‘ .‘ WG

Assume that there is currently no method in the catalog that can reformulate the
reference to a local variable into the retrieval of the last element of a sequence.
At this point the user may either a) give up on this line of pursuit and backup to
some previous state to try an alternative pathor b) continue this path and supply
the next step himself. in either case, the system will record the event as &
possible symptom of missing knowledge: in the former case a bad selection was
made; in the latter a method is missing. The user chooses to continue by
reasoning as follows:

1) every package shows up in PACKAGES EVER AT SOURCE,

2) because the ordering is oldest first, the newest package is last,

3) package.new is the newest package,

4) therefore package.new and the last element of packages_ever at source
reference the same object.

The user uses a manual editing step to change the program. There are two
points to make here. First, even though the system was unable to carry through
on its general strategy of removing package.new, it did get to a low enough level
to allow the user to supply the last necessary reasoning step. Second, the need
for the user to intervene, as well as the needed verification of the manual step,
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")
",
&
- has been recorded for post-development analysis. If @ new method can be

added (by a human analyst) that generalizes the manual step then the mistake
! won't happen again, i.e., the system can supply the replacement step in the
future?®,
>Glitter: Post post & goal

Goal: Manual Replace
Replace what: package.new
With what: last(PACKAGES. EVER AT SOURCE(*))

. Recording step in development log as manual edit to be verified
- Recording step in development log as possible missing method
¥
Note that this is the first operation actually carried out on the program. Without
E motivation, i.e., the planning structure sitting above it, it appears as a somewhat

lucky or Eureka step: replace one expression with another. With the subgoal
“ hierarchy intact, its true purpose is illuminated: prepare the derived-object for
;% folding (so that it can be maintained so that the reference can be removed ...).
.

26'I’hc needed method is one that reformulates an arbitrary expression as another, with an applicability condition
that the two expressions can be shown to be equivalent.

----------
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1

Goal achieved: Reformulate package.new
as last(PACKAGES_EVER_AT_SOURCE(®*)) -
Goal achieved: Reformulate package.new as global expression o
Goal achieved: Globalize derived-object : '
Goal posted: Apply fold_into_relation(derived-object, R)

New relation being defined: o

r ion 7?relname (7argname | package) o
definition ?argname = :
(2 package.previous ||
package.previous immediately< last(PACKAGES_EVER_AT_SOURCE(*))
wrt PACKAGES_EVER_AT_SOURCE(*));

KL

RATAS

What do you wish to call .
the new relation (7relname): previouspackage

What do you wish to call the argument (?7argname): prev_package

L

.
When the system needs a name for a new item, it asks the user to supply it; user ._-:
supplied names lead to much more readable programs. :

Goal achieved: Apply fold_into_relation(derived_object,
previous_package)
Goal posted: Maintainlncrementally previous_package

Initial candidate set formed

The next step in the development would be the incremental maintenance of the newly defined »3
relation PREVIOUS_PACKAGE. The overall planning state is as follows:
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.sﬁ

=N

t:;{ 0]

KRR + Remove packages_ever_at_source from spec

Yy ...using RemoveRelation

Remove reference to packages_ever_at_source from spec
...using MegaMove

! Isolate derived-object package.previous
...using FoldGenericIntoRelation

! Globalize derived-object package.previous
...using GlobalizeDerivedObject

! Reformulate package.new as global expression
...using manual replace

' Apply fold-into-relation(package.previous, R)
...primitive transformation

* Maintainlncrementally derived relation previous_package

Notation: achieved goals are marked with a "!". The currently active goal has become the
maintenance of previous_package. The program state is now as follows:

demon RELEASE_PACKAGE_INTO_NETWORK (package.new)
trigger package.new:LOCATED_AT = the source
response
beginp
if PREVIOUS_PACKAGE(®):DESTINATION # package.new:DESTINATION
then invoke WAIT[]:
update :LOCATED_AT of package.new 10 (the source):SOURCE_OUTLET
end:

relation PACKAGES_EVER_AT_SOURCE(package_seq | sequence of package)
definition package_seq =
({package || (package:LOCATED_AT = the source) asof everbefore}
ordered temporally by start (package:LOCATED_AT = the source)):

relation PREVIOUS_PACKAGE (prev_package | package)
definition prev_package =
(8 package.previous ||
package.previous immediately < last(PACKAGES_EVER_AT_SOURCE(*))
wrt PACKAGES_EVER_AT_SOURCE(*)):

The remainder of the removal of PACKAGES_EVER_AT_SOURCE along with the remainder
of the package router development is presented in Appendix C.
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PAGE 68 The Development Partnership

4.3. Summary

In this chapter, we have provided a general view of the role of both user and system during
development. Regarding development automation, the system performed 5 out of the 7
planning steps in the transcript presented above. The continuation of the removal of the
relation PACKAGES_EVER_AT_SOURCE results in 34 planning steps out of which 12 are
actual program transformations. The user was required to provide 2 of these 34 steps: the
posting of the Remove goal, which triggered the problem solving; the manual step, which
filled in a missing method. On the whole, the system was able to perform 146 out of the 159
steps in the router development, i.e., the user was required to post 13 goals during the
development. The user was also called on to supply formal reasoning necessary in both
method selection and method application. While part of this can be automated in the near
term by incorporating sophisticated state of the art flow analyzers, much of it remains in the
reaim of program verification. This is particularly messy when constrainted non-determinism,
demons. parallelism and inference must be considered, all freedoms provided by Gist.

In following chapters, we discuss in detail the underlying knowledge necessary to produce
the development transcript above, and the partnership that underlies it.
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Iy "3

Chapter5
& A Development Vocabulary

In the Glitter model, the user is responsible for guiding a development by providing
development goals and the system is responsible for providing the steps which achieve those
goals. In this chapter we will look at the Glitter representation of development goals, what
development concepts they must represent, how well they do and how they may be extended.
' i At the end of the chapter we present a brief summary of the Glitter goal descriptors (Appendix
- E provides the detailed description), and below a summary of the important points made in the
! remainder of the chapter:

Separation of what from how.

Glitter provides a general goal language for stating domain independent
. development problems. We have chosen to separate the description of a particular
< development problem -- the goal -- from the particular techniques that can be used
to solve it -- the methods. As we shall see in later sections, this gives us several

Cf‘ useful capabilities including goal monitoring, development structuring and
L. knowledge additivity.
- Goal representation as a parameterized structure with an explicit achievement checker.
‘; To make goals useful over a broad range of problems, a typed set of context setting
- parameters is defined for each goal. In systems where a goal is tied directly to
methods for achieving it, the goal derives its semantics from the connected
:‘:; methods. We have unlinked goals and methods, and hence must define some
. alternate form of explicit goal semantics. We have chosen to attach to each goal a
E Lisp function which monitors the goal's achievement as the development
., progresses.
* Our major development concern is mapping Gist specification freedoms.
e Gist provides information, operation and efficiency freedoms to the specification
. = writer. The concern is mapping these freedoms into a form directly computable in a
E - target language. ‘
.
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Other development concerns include showing applicability conditions hold, jittering,
| simplitication and organization.

; Each ot these must be addressed in the problem solving approach we have taken to
development. '

The development vocabulary should provide a certain amount of robustness to the user.
Portions of the development that are independent should not be constrained to an
arbitrary order of attempt. Arbitrary constraints on the way a problem can be stated
should be avoided. The user may wish to sometimes work at the highest problem
description level and sometimes at the lowest. In the latter case in particular, the
user may wish to bypass the explicit statement of a goal and directly name a method
or transformation to apply (While the system allows this, it bypasses the planning
documentation needed for later maintenance.).

Goals specific to the particular specification under development will likely crop up.
While providing a general development vocabulary tied to no particular domain or
spec, Glitter has a mechanism for defining user goals on the fly as a development

progresses.

5.1. Goal Representation

To completely remove the user from the development process, Glitter would have to able to
achieve a goal such as "reach a state where only target language constructs remain”. A more \
complete form of this goal would be "reach a state where only target language constructs .
remain and the code is optimal”. While a Glitter devel’opment implicitly embodies these goals,

| )

their achievement in a totally automatic way is beyond the reach of the system (see Chapter

. -
L
ot ERETATaTATA A S AN LT N e LB

4 for a discussion of the user and system roles in the Glitter model). More typical in the =
partnership model is the user's recognition that certain distinguishable states must be L
achieved on the way to a complete development. These may be viewed as isiand states along
the development path which the user and system must link together. Examples inciude il
reaching states where all derived relations are explicitly computed or all non-determinism has

been removed. The user’s role is to guide the development by his choice of development

goals. We can classify these into several types:

) 4

0O The achievement of some goal state. Here, the user wants to reach a state where
some possibly abstract feature or pattern is present (Feather [Feather 82b) notes
a similar need for stating goal patterns in a fold/unfoid transformation system.).

[ 1{' ‘j
-—
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\ o

U
.

‘.I *

T Reach a state where these two expressions are equivalent. j

7]

. N
. ". Reach a state where this expression matches that pattern.

: . Note that a goal state may be described in varying degrees of abstractness; we i

v o will have more to say on this below. .

Yy - y
. O The completion of some abstract action. This differs from a goal state in that the
SRS process as opposed to the result is specified.

li \‘
: Break this expression into simpler cases.
YN
] Map this construct.
N
N E Swap these two statements.
N .
o Any one of several methods may produce the necessary case break-out, mapping
1 H or swapping.

i D The request for a specific technique to be employed. This differs from an abstract
“' . . action in that a single method (out of possibly many) is selected to achieve the
q .r_; goal.

%
. Use incremental maintenance to map this relation.
v L

: " Use unfolding to map this demon.

A <
oG ’
\ :j We define a goal descriptor as our formal notation for stating development goals of the above
L type. A goal descriptor consists of a unique name?, a set of typed slots and a predicate which
SERY tests whether the goal has been achieved. The user states a particular goal descriptor by use Y
- ot of the Post command (see section 2.3.3.2). For instance, there exists a goal descriptor Map
) N which takes a single argument, a Gist specification freedom. The user would post the Map .
‘.
= goal in the following manner:
.
.
T
S
LR
*
b o .
~ Y |
o 2 ve have chosen names which connote action for stylistic reasons. ’
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i |
»PlanSpace: Post post a goal ”
Goal: Map )
Freedom: <Gistconstruct) -
>P‘lanSpace':' ' -~
The system prompts for each argument of the specified goal and does type checking on the _‘_ ;
. ]
value supplied by the user. !
>
For purposes of presentation, we will use a more concise and complete form of goal notation: > f

GoalName(Arg,|argtype, ..., Arg |argtype)

c—_

Achievement condition: Predicate stating goal achievement.

Thus our Map goal becomes .
L
Map( Arg,|freedom ) SO
Achievement condition: Arg, has been either removed or operationalized ':
The semantics of a goal descriptor are given by its achievement condition. Because we have . !
chosen to represent all user development goals through the goal descriptor notation, the Lo
predicate defining achievement may be called on to monitor either a pattern or feature P
becoming manifest, or some action compieting. Note that in the former case a development _'; !
goal has a life of its own, independent of any method application. That is, the completion of a i
method indexed to a goal does not automatically mark the goal achieved; a goal is achieved _ :Z ‘
only when its achievement condition becomes true. This allows us the flexibility of incremental I
achievement by the combination of several method applications. :’ '
= 1
When the current goal is marked as achieved, the system does one of the following:
\‘.,
D If the goal has a brother which has not been achieved and is next in line to be T
posted, then it is posted. ” !
-_‘ ‘
|

--------------
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5.1 Goal Representation PAGE 73

D If the goal has no brother waiting then the method it is part of is marked as
complete. As noted above, this does not necessarily mean that the supergoal that
the method was attached to has been achieved. If it has then it is in turn marked
as achieved and the process repeats. If it hasn't then it is reposted as it it were a
waiting brother goal.

D If the achieved goal is a user posted top level goal then control reverts to the user.

Section 6.2 provides a more detailed discussion of goal/method control issues.

Given a goal representation, we next look at the type of Gist development probiems that need
to be represented.

5.2. Characterization of the Tl Development Space

The set of goal descriptors defines the type of development problems that the system can
work on (Appendix E lists the current descriptors). In our development of Gist specifications,
we are interested in the initial or high-level development of the specification. In this section we
will characterize Glitter's development concerns.

5.2.1. Mapping Specification Freedoms

Gist provides a certain set of specification freedoms: constructs that allow behavior to be
described without referencing implementation details { Chapter 3 explains Gist freedoms in
more detai). The major concern of a Glitter development is the mapping of these freedoms
into implementations. The development in Appendix B contains examples of most of the
necessary mappings, including those on d'emons. derived relations, temporal reference,
constraints and non-determinism. In general, there are three freedoms that we must deal with,
operation, information, and efficiency (see [Balzer et al. 82] for related discussion).

5.2.1.1. Mapping Information Freedoms

In a Gist specification, what information is necessary may be specified without describing how
it is to be computed. The mapping choice can be one of two general strategies:
D Maintain the necessary information explicitly. That is, store its initial value and

incrementally maintain it as the program executes (see [Paige & Koenig 82] for
related discussion).
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O Unfold the necessary code to rederive the information at each place that makes
use of the information.

Section 7.3 discusses the criteria used for choosing among these two.

5.2.1.2. Mapping Operation Freedoms

A Gist specification may contain non-deterministic choice points, which allow the specifier to
indicate equally acceptable alternatives in a straightforward fashion. The integrai partner of
non-determinism is constraints, which allow the specifier to declaritively state the limitations
of the system. A specification denotes a set of behaviors governed by its constrained non.
determinism. There are two basic strategies for dealing with constrained non-determinism:

0 Backtrack by Unfolding a constraint at each place in the program where it might

be violated. if the constraint is violated then control backs up to the most recent
choice point and a new choice is made.

D Predict which choices will lead to violation and don’t choose them, i.e. generate
only ones that satisfy all constraints. A general technique is to Map the constraint
into a demon which watches for potential violations and takes appropriate action
to insure they don't occur. We use this type of control in the package router
development. A related technique is to change a backtracking control into a
predictive control by moving constraints into choice points. The development in
[Balzer 81] uses this strategy (see also [Tappel 80]).

Section 7.3 discusses the criteria needed for choosing among the two.

5.2.1.3. Mapping Efficiency Freedoms

A Gist specification need not and should not contain efficiency concerns. The efficient
ordering of operations, the elimination of unneeded (e.g., redundant, unused) information or
operations, the sharing of information or computations among program parts, is not the
concern of the specifier. Mapping these freedoms is the concern of the developer. Glitter
supports three basic efficiency mappings:

D Efficient ordering of operations by making non-deterministic control sequential
and resequencing already sequential actions.

0 Removal of unneeded information or operation structures.

0 Sharing of like parts among compound structures by consolidation and factoring.

These clearly do not cover all effic_iency goals. However, we are only interested in the type of
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5.2.1.3 Mapping Efficiency Freedoms PAGE 75

optimizations that can be made during the initial mapping from spec to algorithm. While we
believe ordering, removing and sharing are all efficiency goals useful for indexing
optimization methods at the algorithmic level as well, the type of optimizations that deal with
making algorithms more efficient ( [Standish et al 76, Kibler 78, Bentley 81, Rdtter 77] lie,for
the most part, out of our area of interest.

5.2.2. Applicability Conditions

Most Glitter methods rely on some program or domain property to hoid before they can
successfully complete. A large portion of the development may be committed to showing
these applicability conditions hoid currently or making them hold if they don't. The DEDALUS
system [Manna & Waldinger 78] automates this process in its limited problem domain through
the use of an automatic subgoaling mechanism. Barstow [Barstow 79b] further speculates on
the automation of condition proving in a knowledge-based system. Our view is that the
freedoms afforded by Gist make the construction of a general purpose property prover an
unlikely prospect in the foreseeable future. In any case, Glitter currently has no automatic
means of proving the applicability conditions of methods, hence it becomes the purview of the
partnership.

5.2.3. Jittering

We have defined jittering to be the process of getting the current program state to match the
state required by some development method. Let's look at some ways we might get around
jittering. First, we could attempt to define a Gist canonica! form. It is clear that some jittering
will be required even when the program and pattern are in this form. For instance,
commutative and associative operators will always be necessary. In the example beiow, we
are given a canonical form of a conjunction with terms alphabetized. The canonical pattern
that we wish to match requires that the current expression be rewritten in a non-canonical
form to match the pattern.

pattern: (a gnd c)

current: (a and b and c)

The simple jittering necessary above could be handied by an automatic mechanism (see for
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instance PADDLE’s table driven mechanism, [Wile 81a]). However, the inclusion of defined
and derived constructs in Gist makes any general automatic canonicalization process' =
infeasible. For instance, the canonical form would require that all functional structure be ) -
flattened. Because the user is in the loop, such destruction of the basic form of the program
is unacceptable.

Paist

*

A second approach would be to anticipate all of the contextual forms. That is, each

-~
transformation would be broken out into k new transformations where k represents the
number of different ways the transformation can match. The magnitude of k makes this :3
intractable in general. -
In Glitter, jittering is made part of the overall problem solving process. The automation of :'I
jittering allows the program (parse tree) to remain in a non-canonical (but normalized) form -
and the method writer to be unconcerned with specializing his methods. The general jittering
goals follow.
D Reformulation. In some sense, reformulation is a form of local canonicalization. ":
We choose some syntactic pattern as our canonical form and attempt to get the
program to match it. =
D Equivalency. Many times, sharing of structures requires that one or more parts
be equivalent.
..
D Positioning. A method may require that one statement be in a certain relatnonal "
posmon with regards to one or more other statements. .
Ol
D lnformarion Movement. Much of the mapping process involves the movement of ~
information around the specification. One part of this process is pulling an .
expression out of a local context and making it & global structure (isolation). This _d
may require that steps be taken to trim any ties the expression has to the local -
context. Another part of the movement process is moving a global structure to a N
local context where it can be further optimized. N
5.2.4. Simplification A
Y As a Glitter development progresses, the intermediate forms of the program tend to become .
-.‘.. s
j.:j messy and hard to read. Part of this problem can be handied by the reorganization of the
o program (see the next section). A major part, however, has to do with the movement of code
™
O from one context to another. This may be a giobal to local movement or a local to local - =
g -
N '
hY
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n" .
- movement. in any case, the newly introduced code, in combination with its surrounding
'( environment, can often be simplified using low level rewrite rules. Typical rules include
oy
' (and ... false ...) = faise
o (or... true ..) = true
v (not (not P)) => P
’ (fPthen Aglse A)= A
, There are two things worth noting about the simplification process in Glitter:

1. The simplification process is below the planning level. That is, the individual
" steps involved in simplification are not made part of the development history.

2. The firing of the simplification rules is carried out by the system in a non-

N supervised fashion. Hence, simplification rules shouid not a) call on the user for
assistance, or b) rely on costly reasoning. For example, removing an unneeded
relation from the specification (see step 2.1 in Appendix B) could be viewed as a

- simplification step. However, the resulting steps necessary to carry out this task

Q both rely on the user and are costly.
, Only the cheapest and simplest of rules shouid be used in simplification: rules that involve
5‘ planning will be not show up in the final history; rules that involve costly reasoning will run
independent of the selection process and will not be under user control.
.
. 5.2.5. Pragmatics
7
Part of the development process involves practical organizational issues. For instance,
- breaking a complex expression into a number of simpler cases may facilitate further
e development. Regrouping & set of scattered objects may make the specification easier to
o read. Ordering certain mappings may have a profound effect on the ease of development.
&= Generally, each of these steps address not program efficiency but problem solving efficiency,
. whether it be by human or machine.
¥ 1
5.3. Coverage
K
In the previous section we looked at the type of development problems that arise in
: developing a Gist specification. The coverage of the development process by the current
" Glitter goals is a function of both our experience in developing Gist programs and our ability
E to generalize from that experience. Because our experience base is small, it relies more
- strongly on the latter. :
2 |
', [
k)
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5.3.1. Mapping of Specification Freedoms

Our results show that only a small number of development strategies exist at the Gist mapping
leve! (see also [London & Feather 82]), strategies that can be indexed by a correspondingliy
small number of goals. The difficult part of the mapping process is one of recognizing the
interdependencies among mapping decisions and organizing the development accordingly.
Elaine Kant addresses some of these issues in her LIBRA system [Kant 79]; much work
remains in modeling mapping organizations in Glitter. Currently, the user is responsible for
mapping organization, and little help is provided in the way of goais. We believe progress will
come in this area by studying a much wider range of developments.

5.3.2. Applicability Conditions

As discussed previously; Glitter provides no general purpose property prover. This means that
showing that a property holds becomes just another type of interactive problem solving.
Unfortunately, the current Glitter vocabulary for dealing with applicability conditions is weak.
The single descriptor Show is used to handie all property proving tasks. Bulnes-Rozas
[Bulnes-Rozas 79] demonstrates that a richer set of goal descriptors is possible in his
interactive GOAL system. Further work is needed along the GOAL lines to provide a better
vocabulary for cooperative property proving in Glitter. |

5.3.3. Jittering

The set of Glitter goal descriptors contains a subset of what we might label jittering goals,
goals that are not achieved for their ends but for as a means of achieving other goals. In
some sense, the jittering goals are used to paraphrase the left hand side of the
transformations (see section 6.2.1). In a GPS system, they would act as the difference
description produced by comparing the left hand side against program code. The definition
of the current jittering goals was in fact influenced by some earlier work in jittering using a
GPS approach [Fickas 80]. Section 6.1.4 in the next chapter discusses the evolution of
jittering in Glitter in more detail.
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AN 5.3.4. Simplification
- A number of researchers have looked at means of incorporating simpilification rules into the
- programming process: [Standish et al 76] provides a general catalog; Kibler [Kibler et al. 77]
e _ 3?: . and Neighbors [Neighbors 80] discuss ways to make their execution more efficient. In Giitter,
- - the simplification process is invoked by the posting of the Simplify goal, which causes the
_',:: rules in the simplification subcatalog (see F.16) to be run until a quiescent state is reached,
) = i.e., none of the rules fire. The argument of Simplify is the context in which simplification is to

- 3 be carried out.

X Glitter's current view of simplification is that of a user invoked process that will likely be
;'::J needed at frequent intervals during development. Their are clearly other views. For instance,

PADDLE [Wile 81a) automatically invokes its simplification rules after every non-jittering
change to the program. Simplification cannot be done directly after a jittering step for this will

£ o

likely undo the effects of jittering. For instance, one of PADDLE's simplification rules is

.

r

TrueCond: if true then action => action

-.
|

However, another one of PADDLE's rules is

) EmbedInCond: action = if true then action

- |

~. We clearly do not want to simplity after applying EmbedinCond, assuming that its application

:3' is part of some larger problem solving context that relies on its effect. PADDLE's solution is to ‘

= provide a special catalog of jittering rules which turn off simplification after their application.

:_-_:' EmbedIinCond is one of these rules. In Glitter, there arise questions on how long the !
simplification should be shut off (or equivalently, what event signals its reactivation) and

E'.: whether, in general, all development methods can be split cleanly into jittering and non- :

) jittering classes.

h Another approach would be to rely on the method writer to include Simplify goals in methods

where they would likely have a payoff and would not interfere with the surrounding problem

. solving context (this has somewhat the same flavor of Kibler's and Neighbor's work). This |

provides some degree of simplification automation, and we are considering it as an ‘

E improvement over the current manual process. ‘

----------
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5.3.5. Pragmatics

The system supports two basic program arrangement goals: 1) split a compound or defineq
structure into sub-pieces, 2) group sub-pieces into a compound or defined structure. The first
indexes divide-and-conquer strategies, the second is a simplification ends in itself. Note that
commutative, distributive and associative operations achieve these goals at the lowest level.

5.4. Robustness

We view the robustness of the system as the freedom given the user in carrying out the
development task. There are several aspects to developmental freedom:
1. A user may choose to work at somewhere below the highest level goals provided
by the system. For instance, the router development in [London & Feather 82]
was organized around isolation and incremental maintenance, two levels below
the top goal in our development (see appendix B). In general. the user should be

able to move among all descriptive levels, from stating abstract mapping goais to
naming particular transformations to be applied.

2. A user can choose one of possibly many orderings of mapping steps. For
instance, in mapping away the demonic structure in section 6 of Appendix C, the
user was free to choose the order in which to map each demon.

3. There may be two or more equivalent ways of viewing a problem. Given that the
goal language supports multiple descriptions, we need a means of mapping each
onto our known development techniques. Both Mark [Mark 80] and Mostow
[Mostow 81] discuss related problems. We will iook at the problem in Glitter in
more detail below.
The first two items are provided by the system: the user is given the freedom to choose the
problem solving level he wishes to work at, and is allowed (relied on) to organize the
development as seen fit. The last item presents more of a problem. We can characterize the
problem as such: we have a technique for solving a particular development goal and k ways of
stating the goal. We must find a way to map each onto the technique. A concrete example
may be helpful here. In section B.4 of the router development, the user turns his attention
towards implementing a switch setting policy. There are two constructs involved: a demon,
SET_SWITCH, which triggers at random times and sets a switch to one of its output ports,
non-deterministically; a constraint, DID_NOT_SET_SWITCH_WHEN_HAD_CHANCE, which
limits the non-determinism of SET_SWITCH. As described in Chapter 3, constraints and
non-determinism go hand in hand. Hence, there are two different ways the user can describe
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M the  switch  setting problem: 1) a mapping of the constraint
! - DID_NOT_SET_SWITCH_WHEN_HAD_CHANCE (the goal used in the development in B.4), p
b or 2) a mapping of the non-determinism in the demon SET_SWITCH. Either goal should . :
eventually lead to the application of a demon consolidation method. :

.- It is important to separate implicit and explicit descriptive power here. The goal language

] provides the explicit robustness of the system. It determines what problems can be stated. In

-\-:,’ ‘ our example above, the user was able to state both types of mapping goals. Contrast this with

_j a language which allowed only one to be used. This forced viewpoint could be carried out by

: i limiting the arguments of the map goal to certain constructs, e.g., constraints but not non-
" . determinism. K
: Given that a problem can be described in ditferent ways, it is up to the system to find methods ;
. < for mapping those descriptions onto techniques for achiéving them. The language may supply F
us with full descriptive power, but without this implicit mapping capability it is rather hollow. ;
” E However, it is difficult to define a priori all of the ways a particular problem can be stated. We -
3 . have relied on experience with different developers and developments to build the implicit 7
] mapping base of methods. Because this experience has been small, we view the current
. mapping base as incomplete. This is offset by 1) the ability of Glitter to highlight potentially p
o ' missing knowledge, and 2) the ease with which such knowledge can be added to the system. _
l Both of these capabilities are discussed in more detail in Chapter 6.
¥ 5
' 5.5. Extending the Language A
X :
3 N Goals and the methods for achieving them are explicitly coupled. This makes the addition of a A
. o new goal to the language a potentially difficult task® requiring its integration into the method 3
3 ‘-‘- catalog. An example may help to illustrate. Suppose that we wish to add the goa! Extract to
R the language: f

Extract(inner|construct, Outer|construct)

&2 Achievement Condition: Inner, a subcomponent of Outer, replaces Outer. 4

i Extract is achieved by destructively réplacing a compound structure with one of its

-y
FY
(3

X = mWe mean here the usefu/ addition of a goal. i.e., the integration of the goal into the rest of the probiem solving
) system. Simply defining a new goal is straightforward.
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components. For example, we can extract a statement ’, from a begin/end block b, by
replacing ¥, with >,
b, begin

update x 10 0;

’, invoke A(x)
end

Stated in goal form:

Extract b2 from )1

To add the Extract goal, we must do the following:

1. Find how Extract interacts with existing goals. Is it a specialization of some other goal? In this
case the component to be extracted can be viewed as the pattern argument of a Reformulate
goal and the compound structure as the current expression argument (see section E.11 for a
more detailed description of this goal).

Reformuiate b1 ash» 2

We must define a method for mapping specific types ot Reformuiate goals into Extract goals.
A method of the following type will suffice (Glitter method notation is introduced in chapter 6;
this method can be paraphrased as "if you are trying to reformulate X as Y, and the pattern Y
is found somewhere within X then call the match M and try extracting it from X".):

| Method ReformulateByExtracting |

Goal/: Reformulate X as Y
Filter: a) pattern-match[y, M, X]
Action: 1) Extract M from X

{It Y is found within X then try extracting it.]
| End Method - |

2. Find any existing methods triggered by the more general goal Reformulate which achieve the
more specific goal Extract. Specialize their triggers accordingly. Their are none such in the
current catalog.

............... \‘.\. N - ......_.....;.\:..“.
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/o)
J‘r }4
5:‘_ 3 3. Analyze the various types of extraction that can occur and define corresponding methods. A
A
good choice is to start with syntactic types: a method for extracting from begin/end blocks, a
, 5 method for extracting from conditionals, etc. For instance, we might define the following
% methods:
SV
’ ﬁ If you want to extract the action portion of a conditional then show that the predicate
_ portion is always true.
::j
w
‘ it you want to extract a statement from a begin/end block then get rid of all the other
‘e statements and simplify.

The actual Glitter form of the above two methods is given below.

| Method ExtractConditionalAction |

Goal: Extract A|action-stetement from C|conditional
Action: 1) Reformuiste condition-predicete 8s true
2) Simpiify €

[l truethen A = A)
{ End Method |

| Method ExtractStatementFromBlock )

Goal: Extract A|action-statement from B|begin/end
Action: 1) forall immediste-component-of[S, B]
suchthat S » A
do Remove S from B
2) S.mplity B

fbegin S end =» §)
| End Method ' |
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5.5.1.User Goals

The addition of the Extract goal is an example ot the addition of a general, development.
independent descriptor. We would expect this goal to be useful in many problem domains'.
However, it is likely that any particular development will involve goals specific to that
development or application. The Glitter system provides the user with a facility for defining
development-dependent goals which remain defined throughout a particular development.
User defined goals take the same form as Glitter goalis:

0 Goal name. Must not conflict with existing goal name.
D Typed slots. Zerg or more.

O Achievement Condition. Either user provided function or user controlled (default).
Primitive AC-building Glitter functions are available to the user.

Because user goals are not indexed into the method catalog, they serve only as a

development structuring and documentation aid. They allow the user to tie application-related

steps together under ad hoc methods (see [Wile 81a) for a similar capability). We will look at

an example taken from the router development.
Development context: although broken out separately, sections B.1, B.2 and B.3 of the
router development in Appendix B can be viewed as sub-goals of a single higher level
goal: optimize the use of package history. Currently this must be viewed as a
development-dependent goal; further experience may lead us to define a general,
development-independent Glitter descriptor for optimizing historical reference of this
type. |

To post a development-dependent goal, the user employs the same mechanism as posting a

built-in goal (see section 2.3.3.2):
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>PlanSpace: Post post a goal
Goal: OptimizePackageHistory user goal? yes
Argl: <er> ...no arguments defined

AC: <er> ,..user determined

»PianSpace:

The user enters the goal name and the system, unable tp recognize the goal name, asks the
user to confirm that it is a user goal (it couid also be a typing error). The system then prompts
for each of the goals arguments. Here, the user has chosen to forego any arguments. Finally,
the system prompts for the name of a function which will check the achievement of the goal.
The default, and in this case the user’s choice, is to allow the goal to remain active until the
user explicitly marks it as achieved (see section 2.3.3.1).

We would expect this goal to be posted as the first step of the development and marked as
achieved at the completion of the steps in section 3.

5.6. Direct Invocation

The goal descriptors form the link between problem and methods. Giitter advocates their use
as a means of separating the concerns of how to solve a development problem with that of
stating what the problem is. However it has become clear that there will arise cases where the
user wishes to name the method to employ directly, foregoing the explicit statement of the
corresponding goal. This can be viewed as part of the robustness supplied by the system.
There are three mechanisms that deal with direct invocation: a descriptor, Apply, for invoking
a transformation; a descriptor, Manual, for doing unsupervised editing of the Gist program; a
descriptor, Use, for invoking a method. We will iook at each in turn.
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5.6.1. Applying transformations

Apply(T|transformation-procedure)

Achievement Condition: Procedure T is invoked and completes.

Program transformations are represented as procedures in Glitter. They are invoked using the
Apply goal. Each procedure incorporates the necessary applicability conditions to guarantee
a correctness preserving change. Compare this with manual changes described next.

5.6.2. Manually editing the program

Manual(M|primitive-edit-operation )

Achievement Condition: Completion of M.

There are several reasons why a development system might provide the user with primitive
program-editing operations which bypass the normal method catalog: 1) given a posted goal
G, no methods exist for achieving G, or 2) the user is unable to find the right method in the
catalog. The first is especially likely during initial catalog construction and as long as the
system lacks a powerful theorem prover. The second is especially likely if the catalog is large
and unindexed. Since the Glitter system provides a solution to the second problem, we will be
concerned only with the first.

Given no method for achieving a posted goal, we aliow the user to edit the program directly,
using a set of built-in primitives. While the validity of this editing process is assumed to be
correct, there is no check made during development. It is left to some other analyst to verify
the editing steps (and possibly suggest the construction of new methods) after the
development is complete (see section 7.2.1.1). We will look at an example from the router
development.
Development context: step 1.6 posts a goal of reformulating the variable package.new,
an object defined locally, as a retrieval of the last element of the sequence
PACKAGES_EVER_AT_SOURCE. No methods exist for achieving this reformulation.
In step 1.7 the user manually replaces package.new with
last(PACKAGES_EVER_AT_SOURCE(")), thus satistying the reformulation goal. The
reasoning necessary to make the replacement is non-trivial: since 1) all packages are

--_.: _-.-‘.:/ ..-. .
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being "kept" in the sequence PACKAGES_EVER_AT_SOURCE, and 2) the ordering is
temporally descending (oldest first), and 3) the newest (last in sequence) package is the
last one to be located at the source station, and 4) package.new is the last package to be
located at the source station then §) package.new and the last package of the sequence
are equivalent objects.
The complexity of the reasoning process above is not uncommon in a development. Without
a certain level of specificity, we cannot be certain that the user will continually be able to
generate this type of analysis in its entirety. In particular, the system's role must be to
generate enough of the motivation to aliow the user to finish up the task. in this case, that
meant 1) pointing out that the variable package.new should be reformulated to avoid carrying
it along as baggage in the forthcoming isolate step, and 2) finding a likely candidate
expression 1o replace it with. It is left to the user to &:onfirm that the new expression on
PACKAGES_EVER_AT_SOURCE is equivaient.

5.6.3. Invoking a method

Use(M|method-name)

Achievement Condition: M's triggering goal is achieved

This descriptor allows the user to request that a method be invoked directly, bypassing the
normal Glitter goal-posting/problem-solving process. When a user employs this goal, several
interesting things happen:

O The normal process of forming the candidate set and selecting among the
members (see 7.2) is eliminated. This can produce a substantial speed-up.

D The development documentation is weakened. The normal documentation
provides a) goals, b) the competing set of methods for achieving individual goals,
and c) the rationale for selecting one method over the others. Both b and ¢ are
lost. ’

D A disregard for the system’s development knowledge is shown. The system's
knowledge is contained in the method and selection rule catalog. The user is
saying that he knows what methods are available and which one is best and he is
choosing it explicitly. During the initial construction of the system’'s knowledge-
base, many situations will arise when this is exactly the case. However, as the
system becomes more powerful and the knowledge more complex, it is less likely
the user can choose $o precisely.
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The posting of the Use goal has an important side-effect: the triggering goal associated with

the selected method is posted as it done by the user. The user will be required to fill-in the
necessary slots of the goal which also act as the needed context for the method. We will ook
at a hypothetical example taken from the router development.
Development context: in step 1.1 of the development, the user posts the goal of
removing the relation PACKAGES_EVER_AT_SOURCE from the specification. Suppose
instead that he decided to bypass the problem solving in 1.1 (and 1.2, 1.3) and choose a
method to use directly, in this case FoldGenericintoRelation.
Given the following state

gdemon RELEASE_PACKAGE_INTO_NETWORK (package.new)
irigger package.new:LOCATED_AT = the source
response
begin
if
(the package.previous ||
package.previous jmmediately before package.new
wrt PACKAGES_EVER_AT_SOURCE(*)
) : DESTINATION # package.new :DESTINATION

then WAIT[];

update :LOCATED_AT of package.new 10 (the source):SOURCE_OUTLET
end;

the user would post the following goal
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Va4

>PlanSpace: Post post a goal

[P R)

Goal: Use
Method: FoldGenericintoRelation
Splicing implicit goal Isolate
Goal: Isolate
Expr: ’1

Method FoldGenericIntoRelation invoked ...

The triggering goal of the selected method is /so/ate which has a single argument, an
expression Expr. The Use goal is replaced with an Iso/ate goal and the user is asked to supply
a value for Expr, in this case the derived object »,. Once the goal has been filled-in, the .
method is invoked. ’

This example was chosen to make several points. A previous development produced by
Feather and London [London & Feather 82] skips directly to the application of the fold
method, thus obviating the problem solving necessary in the Glitter development of Appendix
B. While a speed-up in development time is likely to be gained, there remain several
drawbacks:

D Two levels of the planning space have been eliminated: 1) remove the relation
PACKAGES_EVER_AT_SOURCE by 2) removing ali references to it. Although .
the system will post an /so/ate goal automatically, the motivation for isolating the ‘4
derived object has been lost. Without the two higher level goals, much of section
1 of the development appears unmotivated as well.

This flattening of the planning space is directly proportional to the ieve! of method
the user chooses to invoke. In the Tl model, the user always must choose at the
program manipulation level, eliminating all of the planning space. This could be
simulated in Glitter by exclusive use of the Apply descriptor. /

D An interesting competing development strategy is missed. The isolate/maintain
strategy employed in the Feather and London development seems a perfectly
reasonable one. The Glitter development relies on the same strategy. However,
during QGlitter's problem solving process, a competing strategy
(BabyWithBathWater) is suggested: remove the reference », by removing the
conditional that it is embedded in. That is, when a package enters the router, wait
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2

ij;'-ji unconditionally (see snapshot below). The appropriateness of this strategy rests

e on showing that the conditional predicate is always true, i.e., no consecutive -

o packages have the same destination®'. We believe that strategies such as this o)

G . . . '_-

‘,;.- are frequently overlooked when a user moves directly to a method invocation.

CNE o

e -

o e

) demon RELEASE_PACKAGE_INTO_NETWORK (package.new) -

:5:: trigger package.new:LOCATED_AT = the source

g :.;._? DEQ_ 1n .

oS invoke WAIT[]:
N update :LOCATED_AT of package.new to (the source):SOURCE_OUTLET -

. end:
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5.7. Goal-descriptor Summary

Appendix E provides an example driven presentation of the current Glitter goal set. Here we
summarize each descriptor.
Casify takes as an argument any construct capable of being broken into separate

cases, €.g., actions, constraints, expressions; achieved when the original
construct is replaced with two or more cases.

ComputeSequentially
takes two actions as arguments; achieved when the first computationally
precedes the second. .
Equivalence takes two constructs; achieved when both are structurally equivalent.
Factor takes a template and a context; achieved when all constructs which match

the template within the context have been replaced with references to a
newly constructed global definition.

Flatten takes a context; achieved when no reference to defined objects (e.g.,
procedures, derived relations) exist in the context.

Globalize takes a construct; achieved when the construct does not rely on the local
context.
Isolate takes an expression; achieved when the expression is replaced with a

reference to a derived relation.

Maintainincrementally
takes as an argument an information freedom (e.g., derived relation,
temporal reference); achieyed when the necessary information is explicitly

stored and maintained.

Map takes as an argument a freedom construct. Map is achieved when the
construct has either been eliminated or transformed into some operational
form,

Purity takes an action; achieved when the action does not appear inside an

unimplementable portion of the specification.

Reformulate takes a construct and a pattern; achieved when the construct matches the
pattern.
Remove takes a construct and a context; achieved when the construct has been

removed from the context.
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Show takes a development property; achieved when the property has been :'.:'
545 asserted as true.

5
4

g
"u's
h)

Simplity takes a context; achieved when all simplification transformations have Co.
completed.

Sy
4 a8 &

Swap takes two actions within a begin/end block; achieved when their 4
placement within the block has been interchanged.

.
o

K- Unfold takes as an argument a globa! defined construct (e.g., demon, constraint,
derived relation). Unfold is achieved when the global construct is replaced )
by local computation.
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£ E 4
;. N in chapter 5 we defined one component of our model, a vocabulary for stating development
: b goals. In this chapter we look at another model component, the methods necessary for
L achieving those goals. We will first look at the important properties of representing
: .. development knowledge and how Glitter addresses each. Next, we will present Glitter's
" - method representation and demonstrate how it can be used to capture various types of
X - development knowledge. Finally we define a set of pre.defined method building material
g useful for method construction. Below is a summary of the major points made in this chapter.
¢
\' 3-_\ | Once a goal is posted, all methods relevant to achieving the goal should be locatable.
-‘.; ? Given a large catalog of development methods, finding all methods which might be
N . useful in achieving a goal becomes a major problem. Searching such a catalog by
" ~ hand is both tedious and error-prone. Glitter provides an automatic retrieval system
Y based on goal indexing.
:: Y New methods should be readily addable.
" - Research into the mechanization of development knowledge is just beginning. Each
v new example unearths new methods. The ability to add these new methods to the
: B system is crucial to its evoiution. Issues related to both the construction and addition
~ ;5 of new knowledge are discussed.
n The entire planning space must be covered.
, \ -. Traditional transformation systems dgal solely with manipulating the program space.
“ In Glitter, methods must address the manipulation of the problem space as well, e.g.,
’: é goal reduction, subgoaling. '

In many cases, a chosen method is not directly applicable in the current state, i.e., jittering is
necessary.

Glitter methods provide explicit subgoaling to reach a matching state.
The method representation should be analyzable by other components of the system.

in particular, the selection mechanism (see Chapter 7) requires information about
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competing methods including the actions they propose to take and their
instantiation of local variabies.

6.1. Properties of Method Representation

Glitter is a knowledge-based system. One component of that knowledge is the development
methods that are useful in achieving development goals. We assume that such methods will
be stored in a method catalog. Here we will look at some of the desired properties of the
catalog and the methods in it.

6.1.1. Knowledge accessibility

Given a problem description (development goal), we would like to find a// relevant methods for
solving the problem. Our experience is that 8 manual search of a method catalog is both
wasteful of the user’s time and error-prone, i.e. relevant methods are often overlooked.

In Glitter, each method is indexed to a particular development goal. When a goal is activated
(posted and shown not to hold in the current state), all methods indexed to it are are formed
into a candidate set (see section 7.2.1). Note that this type of indexing is geared towards
problem solving: it may be inadequate for other browsing type of activities:
D A catalog maintainer may wish to peruse the method catalog for methods that
have a certain applicability condition or employ some technique. The CHI system
[Green et al. 81] allows a user to retrieve methods by content, e.g., "Find all

transformations which contain X in their left hand side"”, "Find all transformations
which rely on property P".

D A developer may be interested in all of the methods which became applicable
after a certain program change was made. The DRACO system [Neighbors 80)
uses meta-rules to derive information about which new transformations will be
applicable after a particular transformation has fired.

We view each of these capabilities as useful extensions of the current Glitter system. Note
that both rely on a form of representational transparency discussed below.
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6.1.2. Adding new methods

As our experience base grows, new development knowledge will need to be added to the
catalog. There are several aspects to this. First, there is the problem of constructing a
method to capture a needed piece of development knowledge. This is a problem of a)
providing the necessary representational power, and b) defining method-building materiais,
which allow for quick construction. Both of these are discussed in more detail in sections
6.2 and 6.3.

The second aspect is what McDermott refers to as additivity [McDermott 78): the ability to
incrementally add new knowledge to the system and show that the new knowledge will be
used at the appropriate times. In systems like Tl, where the user is responsible for searching
the method catalog, the addition of each new method slightly reduces the likelihood of the
user collecting all methods applicable to a given goal. That is, as the catalog increases, the
additivity property decreases.

in Glitter, a method is defined as an independent piece of development knowledge and
interfaces with the system as a whole through its goal index. Hence, once a method is added,
it is immediately usable by the system. However, additivity based on knowledge
independence comes at the price of problem solving efficiency. Other systems use a more
tightly coupled form of knowledge in an attempt to cut down on search [Kibler 78], [Neighbors
80], [Terry 82]. They pay the price in additivity: the addition of new knowledge to these
systems requires a re-organization of the knowledge base.

6.1.3. Coverage of development planning space.

The methods must represent both knowledge ébout ways of manipulating the program space
and ways of manipulating the prob/em space. An example of the latter is the following:

DivideAndConquerDemons: /f you want to map a complex demon then try splitting it

into several simpler demons and mapping each individually (divide-and-conquer).

Map D|demon

-p
Split D into D,ldemon...Dkldemon
Map D, "'Du
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R
s
s-.3 An example of a splitting method is:
QO SplitConjunctiveTrigger: /f you want to split a demon into simpler cases and the
N
'CE&‘S demon has a conjunctive trigger then apply transformation SplitConjunctiveTrigger.
bl [Ny
A trigger P gnd Q;
- response R;
= =
o demon
PN trigger P
D response R when Q;
oo demon
':g frigger Q
;:J response R when P;
A AN
"" The first method reduces a difficult goal into several simpler goals, i.e., it transforms the
- ‘ problem space. The second method replaces a demon with two or more new demons, i.e., it
\Et transforms the program space. In practice, the second implements the split goal of the first. A
:-1‘::'. Glitter method shouid be able to represent either type of transformation. We discuss the
[y LA
he necessary representation in more detail in section 6.2.
kY
-
:},'t: 6.1.4. Automatic jittering
., _\:
%
&' A problem with the base-line T| model is the limited applicability of the transformations: once
= a user finds & transformation he would like to apply, the system will be unable to apply it if it
WY
"\f- cannot match the transformation’s left hand side against the current state, i.e., sub-goaling is
o
N not supported. Given that a particular method has been judged appropriate for achieving the ‘4
302 current development goal (i.e., selected directly by the user or indirectly by the system's 5
- ; selection process), some preliminary jittering steps may be necessary before the method can .
’. .
::-Zﬁ be applied. Our results show that jittering makes up a significant portion of a development ".,:
::::f- (see section 5.2.3 for a general discussion of jittering). Hence, we would like a means of
.t -8
Q carrying out the jittering automaticatly. h
] :I:: A predecessor of Glitter called the Jitterer [Fickas 80] used a GPS control structure [Newell
., . -_-.
el 72] to automate jittering. In this system, the user was responsible for choosing a ~
¢ ' transformation to apply. If the tra: ‘~~ma’ . did not apply, the system passed the o
,:-_,j transformation’s left hand side pattern ar.. the current state to a system called the Differencer =
> ' :
TN SO T e L D e B RSN S e ol

R b
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. f.: . -

DT [Chiu 80], which produced a set of difference descriptions which could be viewed as low level
editing commands, e.g., "delete these three constructs and add this one”, "commute these
- - two statements”. These commands, when applied to the current state, would edit the program
into a state that matched the left hand side pattern. i.e., a state from which the transformation
could be applied. The problem was how to map the Differencer's output onto a sequence of
transformations which would actually produce the necessary correctness-preserving
_ changes. The Jitterer's approach was to attempt to translate the description produced by the
Ditferencer into higher level development goals (the forerunners of the goals of Appendix E).

&) I .'-;' o ~'."'.

" Each transformation was augmented with one or more goals which provided the necessary
. n indexing. Hence, once the translation process was complete, the relevant transformations
. could be gathered.

x There were two major probiems with this approach:

ﬁ 1. Of practical importance Chiu’s Differencer was not yet implemented. It was
necessary to hand simulate it in the Jitterer.

VYW WA |
¥}
a

~ 2. More importantly, the translation of the Differencer’'s output into higher level
i development goals was not practical as a general approach in Gist developments.
¢ - That is, the language necessary to describe the changes produced by a TI

transformation in a Gist development (e.g., mapping, casitying, information
movement) was at a much higher level than the Differencer’'s description. We
stress the word genera/ here. There are many cases of jittering during a
- development where the necessary changes are of a mundane low leve! variety.
For example, jittering logical or arithmetic expressions often involves changes
closely matched to the Differencer's description. Since the Differencer is now

.
)

-
A

:'.: {- implemented, our future plans include exploring ways that in can be incorporated
S into Glitter's problem solver as a useful jittering too!.
" ;;: Because of the above problems, a way to eliminate the need for a differencing engine in the
- jitterering process was needed. The solution, as embodied in Glitter, was to make each
. individual method responsible for the jittering necessary to apply it. In the Jitterer, the
: - Differencer’s role was to produce a set of "goals”, which when achieved would leave the
. program in a state where the method transformation was applicable. The problem was that
¢ J the goal language was not at the level of the transformations which must achieve them.
::I Glitter's approach is to have each method produce the goals needed to produce its pattern in

AT

a high level development language (see chapter 5§) and independent of the current state.
Thus, each method is responsible for posting a set of goals which will change the current
state into the necessary form. The method must be prepared for the worst case where all of

...’-"' fet e
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-4
the subgoals may be necessary; often one or more of the goals will be achieved trivially in the .:ﬁj
current state, i.e., the current state will partially match the pattern. In some sense, each
method can be viewed as having its own built-in differencer. Using this approach generally -:j
results in run-of-the-mill backward-chaining control. However, as described in Chapter 5,

Glitter goals are independent of methods and allow a more general GPS type of control if :Z;'
necessary. =
Below we list some further aspects of Glitter's approach to jittering. -
6.1.4.1. Eagerness o
=
Given that method M has been selected as the method to employ in achieving goal G, then M
should be eager to apply itself. if the program is not in the right state, then part of M's actions - :
[
will be to remedy the situation by calling for the necessary jittering steps (posting the i
necessary sub-goals). As an example, suppose we are given a method MergeDemons for l
consolidating two demons with the same trigger into a single new demon: 4
MergeDemons: Given two constructs D1 and D2, if D1 and D2 are both demons and . }
have the same trigger and the same local variables then under certain conditions they can - i

be consolidated into a single demon. e

I

Suppose that this method has been selected to consolidate two constructs S1 and S2. An
eager MergeDemons would do the following: 1) if §1 or S2 are not demons then change them
into demons, 2) if the two triggers are not equivalent then make them equivalent, 3} if the local

et icenl Bt

variables are not equivalent then make them equivalent, and finally 4) replace the two demons ;
with a consolidated third. k

Note the importance of the method selection process here: the philosophy is that if M is ha ;
selected then M is the best candidate for the job and is set free to change the program in
arbitrarily complex ways to reach a desired state. The selection process becomes an

important filter in weeding out unlikely methods, and hence, potentially costly excursions ‘
down wrong paths. In effect, we have moved the burden of determining method applicability o

v i

from the methods themselves to the selection engine. Chapter 7 discusses the system's )
selection knowledge in detail. -
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< ;
? 6.1.4.2. Prudence X
N -
. f;:: A consequence of the eagerness property is a robust coliection of methods with wide ) y
X applicability. Another less desirous property is that when a development goal is posted, the R
" set of methods competing for attention will generally include ones that are unfeasible or :
i unlikely to achieve the particular development goal, i.e., overeager methods. We have
2 ::j: ' mentioned the need for a strong genera! selection mechanism to combat this problem. We
-» - may aiso be able to add /oca/ knowledge which will filter out a method under certain
: s conditions. Such filtering knowledge often has a subjective flavor since the conditions
u unfeasible and unlikely are currently subjective. Using the MergeDemons example, it is ,
NI unlikely that the method should be attempted if D1 and D2 are not initially bound to demons: ‘
.f g reformulation of non-demonic constructs into demonic ones is a dubious undertaking32. :
ﬂ If a method is erroneously filtered out, the consequence is that the user will be responsible for ¥
j supplying enough of the jittering steps to pass the filter test. Note that we can simulate the K
) ’;:: non-subgoaling Tl mode! by adding to each method M a pattern P which represents a left- . :
T hand-side pattern. We require that M be considered only if P matches exactly against the
: . appropriate portion of code.
g :
; 6.1.4.3. Level of Effort N

We have described eagerness and prudence as binary choices: a method may either elect or .

N reject to pursue a particular subgoal. In some cases, the method may wish to attempt to ,
K »!
T achieve a subgoal to some level of effort. For instance, MergeDemons may wish to try ‘

reformulating one construct as a demon if the other is already a demon, but only to a limited 5
SRS extent. After a certain amount of problem solving resources have been expended, the method
will signal abandonment. Glitter currently provides no hooks for attaching this type of

28 2 22

‘: resource utilization knowledge to a method, i.e., the choice remains binary. We view
incorporating this type of knowledge into jittering in particular, and the Glitter problem solving

R

‘.}:‘
[ L)

engine in general as a significant research effort. Section 7.2.5 discusses more sophisticated
search contro! from a broader perspective.

L8
S
'S

o iq 32‘l’hiu is an overgeneralization. It is feasible to reformulate certain structures (e.g., constraints) into demon form.

: oy Also. H only one construct is non-demonic then we may want to compare the method with its competitors before =
. b rejecting it. Currently, the MergeDemons method requires both D1 and D2 to be bound to demons, and hence 2
'» considers neither of these factors. .
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6.1.5. Representational transparency

Our development approach is based on the user playing an active role in planning. Such
collaboration requires that the human be able to follow the planning process in general aﬂd
the effects of individual methods in particular. Further, if the system is to reason about the
best method to apply in a given situation, the ability to examine the effects of each competing
method becomes crucial. As Davis [Davis 80] points out, one powerful means of determining
this is to directly analyze the content of each method.

The internals of a Glitter method are transparent down to the transformation application level.
That is, the fillers of each field of a method consist of components with analyzable semantics.
This is true for all but the Apply goal. While we can reason that the posting of an Apply goal
will lead to a change in the program state, we cannot analyze what the change will be. The
method writer defines his own procedure for carrying out the application of a program
transformation. The analysis of the procedure code is beyond the capabilities of the system.
Section 7.2.2.2 discusses possible solutions to this problem.

In the next section we define the method notation used in Glitter

6.2. Method Template

In this section we presént the representation of development knowledge in the Glitter mode!,
i.e., the method. A method template takes the following form:

Method <unique name>
Goal: <development goald
Filter: [<boolean expression>]°
Action: [<development actions>]’
[ Short description of method. ]
End method

A 0 superscript indicates zero or more items, a 1 superscript indicates one or more items. In
general, a method can be read as "if the goal is G and the following conditions hold (filtering
properties are met) then try the following actions to achieve G". Below is a further description
of each of the method's fields:

o

r e
far

| {R

'l 'Jl (L‘

R, -

LY

I S0

LP




EC Ja 2 A A e Uit b s B Rn Bt A CR/CAIMICA AR AR LR A R IR A D e AR A S SIOERSAOS SIS S A KRR
-
" k‘ 6.2 Method Template . PAGE 101
N Goal field: filled with a Glitter development goal as defined in chapter 5. When a goal
{ - becomes active (is posted and not trivially achieved) and matches the filler of this field, the

- method is triggered.

A A N AR

. _':' Filter field. filled with zero or more boolean expressions. Multiple expressions are assumed
N to be conjunctive. All expressions must evaluate to true if the method is to be added to the
candidate set (see section 7.2.1). The filter provides & hook for non-subgoalable pre-
conditions on a method (see prudence under property 4). In a foliowing section we define a
set of functions which are helpful in building filters.

- Action field: filled with an ordered sequence of one or more development actions. A
& 'Z'} development action is either a subgoal to be posted or the action mapping function forall. The
« e

- latter maps one or development actions onto one or more components of a structure.

E‘ Mapping functions and generators are discussed in more detail in section 6.3.

o Actions are initiated after the method is a) triggered, b) filtered, ¢) added to the candidate set
PR and d) chosen by the selection engine. The latter is discussed in detail in chapter 7. When all
' . actions have been successfully completed, the method is marked as completed. A method
“ o completing and the triggering goal being achieved are independent events. Thus, a method is
AN not guaranteed to achieve its triggering goal. Sometimes it may just move goal achievement
AN

O closer, although no guarantee is made of this either. [f the triggering goal is not achieved
‘ when a method finishes, the goal is re-posted and the method triggering process starts anew.
3 By default, actions are attempted as ordered. That is, action A, must complete before A.,
<. .

2, -3 begins. An override of the default ordering can be specified using a selection rule as
L described in chapter 7. Briefly, a selection rule can re-order two or more actions depending
~ - on development specific information.

::: Next we will look at the construction of several development methods using the above
PR notation.
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-
- 6.2.1. Some examples of method construction P
i =
x in this section we will follow the construction of several methods taken from the method
v catalog of Appendix F. We will first describe the method informally and then use the process :
- 4
:E below to build the corresponding Glitter method. Note that this process must be currently o
Xi carried out by hand; future work includes studying ways that it may be partially automated. -
,2 1. Transiate implicit intent into an explicit development goal. Make this goal the .::ji
'3 trigger of the method. Sometimes a method may have multiple effects, and o
5 correspondingly, multiple intents. Each intent is broken out into a separate .
. method (Disjunctive goals are not currently allowed in a method's Goa! fieid.). ~ 3
[
1 2. If the method requires that the program be in a certain state before it can be .
o applied, define the subgoals necessary to bring that state about. Make these part j-:I
& of the action portion of the method (see eagerness, section 6.1.4).
X
N 3. If the method has applicability conditions attached to it then define a Show goal i
A for each and make them part of the action portion of the method. N
4. Translate the modification carried out by the method as one or more goals. Add -
each to the action portion of the method. -
i 5. Incorporate any /oca/ constraints that are possible (see prudence, section 6.1.4). o
P If certain instantiations of the method are unlikely to lead to an achievement of =
. the goal, rule them out by using the Filter field.
3 :
< We next look at three concrete examples. First, the method MergeDemons introduced in N
section 6.1. \;
‘1 . .:‘
v 6.2.1.1. Construction of the method MergeDemons
P N
v .\-
' MergeDemons: Given two constructs D1and D2, it D1 and D2 are both demons and =
- have the same trigger and the same local variables then under certain conditions they can -,
- be consolidated into a single demon. S
o
= Below is the 5 step construction process applied to the above informal description (we will )
1 use a slightly sugared notation when presenting the fillers of the various method fields; “
. section 6.3 defines the actual notation): L
' 1. Goal cefinition. The effect of this method is to Consolidate two demons; this is Foy
e made the goal of the method. .
X]
: a

»
~
-
-
N
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>,
-
- :.
[ 1‘. .
]
- -, { Method MergeDemons {
;‘; Goal: Consolivste D1 and D2
‘h o Fiter: a) ...

' Action: 1) ...
: ‘ {Consolivate two demons into one.}
A | End Method |
t N
) = 2. Define jittering steps. To carry out the consolidation, several things must be
~ present in the current state: 1) two demons with 2) equivalent triggers and 3)
. (l‘ equivalent local variables. Syntactically, we can represent this as (all underlined
NG items are quoted, others are pattern variables):
N
o~ demon D1 (vars)
o trigger t
N responge r
t. e
; demon D2 (vars)

frigger t

<R response r2

]
b

Represented as subgoals, we get the following:

A

y Yy

-
"
-~ !
N2
o,
“

. D Reformulate D2 as demon
¢
E: : O Equivalence triggers (t) of D1 and D2
g é D Equivalence declared variables (v;rs) of D1 and D2
> - We now have
¥ -
3 5

v
-~

o

o, g
N

L)

« S
.,

o

..

' .

-

D Reformulate D1 as demon
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.
v
.-_::. 2
) | Method MergeDemons i E
. e
;.: Goal: Consolidate D1 and D2 N
-t Fitter: 8) ... .
. Action: 1) Reformulate D1 as demon =
2) Reformuiste D2 as demon
::: 3) Equivaience triggers of DI and D2 ':
<4 4) Equivalence declared variables .
2', of D1 and D2 .
- 8) ... S
-
5 {Consolidate two demons into one.)]
>, | End Method I ~
2
3
YA 3. Subgoal on applicability condition. The applicability condition of MergeDemons is =
N MERGEABLE_DEMONS, which requires showing that the two responses r1 and r2 E
J can be interleaved to form the new response. After defining the corresponding
X\ Show goal we have: &
2
::3 b
N | Method WergeDemons [ "3
\.: Goal: Consolivate D1 and D2
:: Fiter: a) ...
AN Action: 1) Reformuiate D1 as demon
o 2) Reformuiate D2 as demon
2 3) Equivaience triggers of D1 and D2 o
\§ 4) Equivalence declared variables
N of D1 an¢ D2
< ' §) Show wenceasLt_Demons(D1, D2, I|interleaving) =
8) ... -
- [Consolidate two demons into one.)
\_. | End Method |
: 4. Define effect. The program transformation we want to carry out is the g
construction of a new demon out of the old two. We define a Lisp procedure that
53. takes as arguments the demons bound to D1 and D2, checks to make sure that w
the triggers and declared variables are equivalent, builds a new demon using -
> shared parts and the interleaving supplied by the Show goal, and finally deletes i
\ the two old demons and ingerts the new. The procedure is made the argument of v
L an Apply goal. Note that the procedure is self-contained: it is a transformation ko
3t: that can be applied directly and that can be guaranteed to produce a correctness o

-

. ®
-
'
v




\ ﬁ 6.2.1.1 Construction of the method MergeDemons PAGE 108
preserving change in the program. Thus if for some reason one of the previous
method subgoals becomes "unachieved”, the transformation will not fire. The

o user will likely be required to step in at this point and fix things up.

L \-: '
1

Y { Method MergeDemons i

[

KIS ‘ Goal: Consolidste D1 and D2

. Fifter: 8) ...

e Action: 1) Reformulate D1 as demon

= e 2) Reformulate D2 as demon

o . 3) Equivalence triggers of D1 and D2

A 4) Equivalence declared variables

A of D1 and D2

~. 5) Show MERGEABLEDEMONS(D1, D2, I|interiesving)
6) Apply DEMON MERGE(D1, D2, 1)

‘ a [Consoiidate two demons into one.]

:. : | End Method {

S

8. Define local constraints. It is improbable that two non-demon structures marked

for consolidation will need to be reformuiated into demons. That is, we can view
! the retormulation of a structure into a demon as a major step and one beyond
o~ simply jittering. Therefore, we add a filter that restricts our demon merge method
to work on only demons, removing the first two reformulation goals. in effect we

he " have decided against subgoaling in certain situations. Note the negative
" 5] consequences of this decision: any consolidation requiring that the constructs
bound to D1 and D2 be reformulated as demons will not trigger this method; the

. oY reformulation goai(s) will have to be supplied by the user.
1} :.:

o

. | Method MergeDemons |

S Goal: Consolidate D1 and D2
SIS Fiter: a) D1 isa demon

b) D2 isa demon
. Action: 1) Equivalence triggers of D1 and D2
é 2) Equivalence declared variadles
of D1 and D2
3) Show merGEABLE DEMONS(D1, D2, I{interieaving)
4) Apply DEMON merce(D1, D2, I)

v o«
» Y 'e

e M S b

{Consolidate two demons into one.]
| End Method |
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The actual MergeDemonS method is given below. Note that the two filters have been moved
10 the goal statement, and that accessor functions (trigger-of, declaration-of) replace the
more informal descriptions.

| Method MergeDemons i

Goai: Consolidste D1|demon and D2|demon
Action: 1) Equivaience trigger-of[D1] and trigger-of[D2]
2) Equivalence declaration-of[D1] and
declaration-of[D2}
3) Show werGeamLE DEMONS(D1, 02, 1jinterfeaving)
4) Apply oemon_mErRGE(D1, D2, I)

[You can consolidate two demons H you can show that they have the same
local variables, the same triggering pattern and that they meet certain
merging conditions.]

| End Method |

Before leaving this example, we should note that the next step would be to define any method-
specific knowledge on when this method is a good choice and when, if ever, the default action
ordering should be overridden. In particular, MergeDemons is the only method which is able
to consolidate two demons and this fact is recorded in a gelection rule (*MergeDemons). It is
sometimes easier to attempt action 2 before action 1 and this is also recorded in a selection
rule (TriggersAlmostEquiv). The next chapter discusses in detail the representation of this
type of knowledge.

6.2.1.2. Construction of the method RemoveRelstion
Our second example introduces the mapping of a goal onto one or more components. The
method, called RemoveRelation, can be stated as foliows:

RemoveRelation: /f the goal is to remove a relation from the spec then try removing all

references to it. Once this is accomplished the definition can be removed.

The construction of the corresponding Glitter method follows (again we will use a slightly
sugared notation):

1. Goal definition. The effect of this method is to Remove a relation from the
specification.

-2
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ﬁ 6.2.1.2 Construction of the method RemoveRelation PAGE 107
-

. ' { Method RemoveRelation | :
L . )
: Goa/: Remove R|relstion from spec
\ _::_ Fiter: ) ...
. Action: 1) ...
. .‘_:’ ) [Remove a relstion.]
NN | End Method |
i 2. Define jittering steps. To remove the definition we must first get rid of all y
S references to the definition. In this case, there is no corresponding syntactic
A representation. To define the necessary sub-goals, we must map the Remove
[y goal onto each reference of R. We use the forall mapping function: ‘
X} ‘
. E | Method RemoveRelation |
) :‘_: ' Goal: Remove R|relation from spec
iy ~° Fitter: a) ... D
e Action: 1) forall references of R called RR .
do Remove RR from spec
fo - 2) ... :
S o [Remove a relation.] :
. o | End Method | -
~E .
; :';- Note that if no references of R exist in the current state then the forall function .
$ produces no subgoals. :
v F.& 3. Subgoal on applicability condition. This method has no applicability conditions.
s . 4, Define effect. The program transformation we want to carry out is the removal of a .
v relation definition from the spec. We define a Lisp procedure which takes as an .
g e argument the relation bound to R, checks to make sure that no references to it X
. are found, and removes it from the spec. The procedure is made the argument of K
e an Apply goal.
p o
b .
» q.j
i 4
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| Method RemoveRelation |

Goal: Remove R|relstion from spec
Fiter: a) ...
Action: 1) forall references of R called RR
do Remove RR from spec
2) Apply REMOVE_UNREFERENCED_RELATION(R)

{Remove a relstion.]
| End Method |

5. Define local constraints. There are several heuristics for estimating the likelihood
of the RemoveRelation method succeeding. Each looks for particular features of
the program that signify that the relation is likely unneeded and so can be
removed. However, the absence of these teatures is not enough to rule out the
method. Hence, these heuristics are made a part of the method selection process
discussed in Chapter 7 as opposed to the triggering process.

The actual RemoveRelation method is given below.

| Method RemoveRelation i

Goal: Remove R|relstion from spec
Action: 1) foral) reference-location]R,RR, spec)
do Remove RR from spec
2) Apply REMOVE_UNREFERENCED RELATION(R )

[You can remove a relation i you cen remove all references to it.]
| End Method i

6.2.1.3. Construction of the method MaintainDerivedRelation

Our last example shows a transformation carried out solely in the problem space. The
method, called MaintainDerivedRelation, can be stated as follows:

MaintaintDerivedRelation: /f the goal is to map a derived-relation then try maintaining
it incrementally.

LY
‘
‘
‘
LY
<

The construction of the corresponding Glitter method follows:

1. Goal definition. The effect of this method is to Map a derived.relation.
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E 6.2.1.3 Construction of the method MaintainDerivedRelation PAGE 109
A
\ A
. . | Method MaintainDerivedRelation |
- . Goal: Map DR|derived-relation
s Fiter: a) ...
- Action: 1) ...
: ;:l {Map a derived-relation by incremental maintenance) -
R | End Method I :
- 2. Deline jittering steps. This is a straight goal reduction; there are no jittering steps.
;: e 3. Subgoal on applicability condition. This method has no applicability conditions. ;
“ e . o
N 4. Define effect. The eftfect is the transformation of the mapping goal into a more :
: E concrete goal, i.e., incrementally maintain the relation.
&
2
AR ' | Method MaintainDerivedRelation I
LI
¥ Goal/: Map DR|derived-relstion
. Fitter: a) ...
~" Action: 1) Maintainincrementally DR
4
: :_' {Map a derived-relation by incremental maintenance)
X | End Method 1
,': :,3 5. Define local constraints. There are several pieces of selection knowledge which
. pertain to this method. The first involves comparing it with other competing
e mapping methods, clearly not a local constraint. This knowledge is defined in
g2 terms of selection rules and will be applied during method selection as described .
. in Chapter 7. The second notes that it is not useful to attempt to incrementally 4
e maintain a relation which is unchanging, i.e. static. This knowledge is placed in
- _»Z;_‘ the filter. As with all filtering knowledge, it could alternatively have been made a
~ selection rule, and hence part of the method selection process. We have chosen
N e to place it in the filter because of its ciear discriminatory power. There is a
e i drawback to this placement: staticness can be moderately costly to check for and )
p out of the system's control as a filter. -
i
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| Method MNaintainDerivedRelation }

Goal: Map DR|derived-relation
Fiter: a) DR is not static
Action: 1) Maintainincrementally DR

[Map & derived-relation by incremental maintenance]
| End Method |

The actual MaintainDerivedRelation method is given below.

| Method MaintainDerivedRelation |

" Goal: Map DR|derived-reistion
Filter: 8) ~static[OR]
Action: 1) Maintainincrementally DR

[One way of mapping a derived relation is to maintain it explicitly.]
| End Method |

6.3. Method Vocabulary

In this section, we will iook at the predefined functions (or what McDermott [McDermott 77)
refers to as the problem vocabulary) which are available in method construction. These deal
with Gist syntax, iteration, pattern-matching, etc. The use of such a vocabulary serves several
purposes: 1) it buffers the user from the internal representation of the program, 2) it facilitates
the type of content reference needed for method selection (see section 7.2.2.2) and 3) it
provides convenient building blocks to the method writer.

6.3.1. Mapping function

We frequently want to map an action (or actions) onto several constructs. For instance, in
section 6.2.1.2 we needed to map the remove goal onto each reference of a relation. The
forall function gives us the necessary capability:

fod
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6.3.1 Mapping function PAGE 11

forall <(generator>
[suchthat <predicate>)’
do [<development action>]?

It is important to note that forall simply enumerates the set of development actions to be
carried out; all actions are created before any are considered for activation. The ordering of
the actions depends on the generator. In any case, the ordering can be overridden by action
ordering rules as discussed in Chapter 7. #f no mappings are produced -- the generator is
empty or the suchthat filter eliminates them all -- the function is removed from the method's

action sequence.

6.3.2. Predicates, Generators and Accessors

Glitter provides a method writer with a predefined set of functions to aid in method
construction. These functions may appear in either a filter or iterator. They can be used in
the following ways:

D Predicate. Each function always returns a nil or non-nil value.

D Generator. Some functions (i.e., ones marked as generators) can be used to
generate all possible combinations of bindings when one or more of their
arguments are left unbound. This is a powerful mechanism which can be used in
the following ways:

1. In a filter: will instantiate a separate method for each binding. The set will
be gisjunctive and competing to achieve the triggering goal.

2.In a forall: will generate all bindings producing a conjunction of actions
co-operating to achieve the triggering goal.

D Accessor. A subset of the functions deal with walking the specification parse
tree33. We call these access functions. The function F(S, C) used in the item
above (known as component-of in the system) is an access function. Section
6.3.4 lists the access functions used in our examples.

There are several things worth further discussion in the case of generators. First, note the

33Up to this point. we have been viewing the program under development as a pretty-printed textua! form. For
general understandability, this seems the right choice. However, the actual object under development is a program
parse tree. The semantics of several of the functions we will be discussing can be described more concisely in terms
of the parse tree internal form.

S R DR,
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ditference between the use of a generator in a filter and in an action: one produces an
alternative set, the other a cooperating set. For example, a general strategy for removing a

H_,__ compound structure S is to remove each of its components (divide-and-conquer). Suppose

"‘ we had a function F(S|structure, Clcomponent) for generating all components of S. If we

“ _‘._ placed F(S, C) in the filter of a method where S was bound and C was not, we would produce

\': k method instantiations were k is the number of components of S. The choice of one of these

= x methods would allow us to remove only one component. On the other hand, using F(S, C) as

Zj:_ﬁ'_f the generator in a forall loop produces a set of k subgoals which all must be achieved before

é the method completes, i.e., the method removes all components.

5 WA Second, a word about generation order. Currently, all Glitter generators generate items in an

,.;_j:E arbitrary order. This requires that any action ordering knowledge be represented as action

:"': ordering rules, which analyze the order of actions gafter all have been generated. A more

:'":‘ etficient approach would be to build some of the ordering smarts into the generators

themselves. We have refrained from doing so because such knowledge would necessarily be

f%}' of a procedural form unanalyzable by the system as a whole.

"

) Notation: the type construct represents (can be bound or point to) some syntactic portion of
N " the current Gist program under development (a node irlthe parse tree). The type pattern can

\_: represent one of several things:

!': D Gist syntactic type. For example, demon, Joop, action are ali valid patterns.

o _,. O Template. A partially to fully instantiated Gist construct. Portions of the template

:E-J may consist of wild-cards.

';:.j O Named template. Certain templates occur frequently as patterns. Any template

SR can be given & name which is then used as a reference.
N 6.3.3. General Functions

A

_,-. 6.3.3.1. pattern-match

:;.:‘ pattern-match[pattern, construct.loc, construct.context] generator

I-;:E The general pattern matching capability of the system. -
;f; o pattern and construct.loc are bound, returns true if they match

or (construct.context is ignored). L |
.\..'
i )
X =
'N:._ :“
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Df only pattern and construct.context are bound, binds construct.loc to (and
returns as value) any program fragment within construct.context which matches
pattern, nil it no match. As a generator, returns all fragments that match pattern
within construct.context.

O Any other binding combinations return nil.

As an example, the following method attempts to find a pattern of the Gist syntactic type
demon and bind it to D2. To consider all cases, we need a separate method instantiation for
each consolidation partner, i.e. each demon other than the one bound to D. We will let the
selection process sort out which is the best choice. As discussed in section 6.3.2, we can use
a generator in a filter to give multiple instances. Here we use pattern-match as the necessary
generator by leaving D2 unbound.

| Method MapByConsolidation |

Goa/: Map D|demon

Fiter: a) pattern-match{demon, D2, spec)
b) D = D2

Action: 1) Consoligate D and D2

[To map D, find some other demon D2 and consolidate.)
| End Method |

6.3.3.2. gist-type-of

gist-type-of[construct, Gist syntactic type]**
This is a special case of the pattern-match function: the first argument must be bound and the
pattern must be a Gist syntactic type. It is included as a special case.

DIf both arguments are bound, returns true if construct is of the right Gist
syntactic type.

O if only construct is bound, returns its Gist syntactic type, nil otherwise.

gist-type-of[X, relation-reference] (or X|relation-reference)
gist-type-of[X, action] (or X|ection)

M

A more concise form of this function is frequently used: construct|Gist syntactic type
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e 4
7. . o)
; 6.3.3.3. domain-type-of k

"2
l domain-type-of[object expression, DOMAIN TYPE) —
- . ... ‘

::‘ O If both arguments bound, returns true if object expression is of the right DOMAIN -
o TYPE. ]
» "]
':- D If boMAIN TYPE is unbound, returns the correct type for object expression else nil. B
33 domain-type-of[S, SWITCH] (or SiswiTCH) !
X domain-type-of[L, LOCATION] (or L|LOCATION) ) ;l

X 1
Py 6.3.3.4. brother-of S

-
S brother-of{construct. 1, construct.2} generator
&

» D i both arguments are bound, returns true if both constructs have the same father.
- O !f one is unbound, binds and returns a brother, else nil. When used as a l
A generator, returns all brothers. "

’

o O If both are unbound, returns nil. RS

-“ ..-

. 6.3.3.5. case-of
( 1

_ case-of[construct.case, case-list] generator
- case-list is a list of case constructs.

O If both arguments are bound, returns true if construct.case is an element of
case-list. ..

4 -
v D If construct.case is unbound, binds and returns one case from case-list. When <
2. used as a generator, returns all cases. o
9 ..‘

' o

D case-list is unbound, binds and returns the list of brother cases of =

= construct.case. -

- ~

X -~
- 6.3.3.6. maintenance-location
' maintenance-location[data-structure, construct.maint, construct.context] generator J
- it is often necessary 10 generate all locations within a certain context that modity a data-
<. structure. -
. a
o 0 If data-structure and construct.maint are bound, returns true if the execution of A

q construct.maint changes the value of data-structure. M
Ly : .‘.
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6.3.3.6 maintenance-location PAGE 115 !

O If only construct.maint is unbound, will bind and return a construct which
changes the value of data-structure (e.g., insert, update, delete, assign) in
construct.context. When used as a generator, will return all constructs modifying
data-structure in construct.context.

o if only data-structure is unbound, will bind and return the data-structure that
construct.maint changes.

Ble o 2’ 2 ' & X AW L .

iy

As an example, suppose we are given the following:

begin
update R(S) to y:
insert S(y): B
delete R(2) :
end
Used as a generator, ' :
forall maintenance-location[R1, Construct, SB] do ... !

where R1 is bound to the relation R, SB to the begin-end block and Construct is free, we get
the foliowing two bindings to Construct generated by the forall:

1) update R(S$) Lo y:
2) delete R(z) Y

Currently, maintenance-location generates items in an arbitrary order. Used for a slightly
different purpose,
forall maintenance-location[DS, Construct, SB] do ...

where Construct is bound to the update statement and DS is free we get the following binding
to DS:

1) R '

With Construct bound to the begin-end block, we get bindings of DS as
1) R

2) S

6.3.3.7. reference-location

reference-location[data-structure, construct.ref, construct.context] generator :
Similar to maintenance-location, but deais with references to (retrievals of) data-structure as :
opposed to modifications.

O If gata-structure and construct.ref are bound, returns true if the computation of
construct.ref references the value of gata-structure. ,
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D if only construct.ref is unbound, will bind and return a reference to data-structure
in construct.context, nil if none exist. When used as a generator, returns all
references.

D If only data-structure is unbound, will bind and return a data-structure referenced
in context.ref, nil if none referenced. When used as a generator, returns all data-
structures referenced.

6.3.3.8. trigger-location

trigger-location{demon, construct.trigger, construct.context] generator
It is often necessary to generate all locations within a certain context that potentially cause a
demon to trigger.

DIt demon and construct.trigger are bound, returns true if the execution of
construct.trigger potentially triggers demon.

D only construct.trigger is unbound, will bind and return a construct which
potentially triggers demon. When used as a generator, will return all constructs
potentially triggering demon in construct.context.

O If only demon is unbound, will bind and return a demon which construct.trigger
potentially triggers. When used as a generator, returns all demons that potentially
trigger.

As an example, suppose we are given the following:

begin
demon Exampiel (x)
irigger P(x);
response A(x);

demon Example2 (x)
irigger P(x) and Q(x);:
response B(x):

" insert P(a):
insert Q(b):

LAY

Used as a generator,
forall trigger-location[Example2, Construct, spec] do ...

where Construct is unbound, we get the following binding to Construct on iterating through
the loop:
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1) linsert P(a)
2) Jinsert Q(b)
Used to find the demons which a con.struct might trigger,
forall trigger-location[D, IP, spec] do ...
where IP is bound to the insert of P(a) and D is unbound, we get the following bindings to D:

1) demon Examplel (x) ...
1) demon Example2 (x) ...

6.3.4. Access Functions

The following functions are useful for accessing various syntactic portions of the program.
6.3.4.1. component-of

component-of[construct. 1, construct.2] generator

D As a predicate (both arguments bound), returns true if construct.? is a non.
reflexive transitive sub-component of construct.2 (construct.1 is 8 descendant of
construct.2).

D If construct. 1 is unbound, will bind and return a transitive sub-component of
construct.2 (a descendant of construct.2), returning nil if none exist. As a
generator, will return all transitive sub-components.

o if construct.2 is unbound, will bind and return a transitive super-component of
construct.1 (a ancestor of consiruct. 1), returning nil if non exist. As a generator,
will return all transitive super-components.

O If both are unbound, returns nil.

Suppose we take the following example:

demon Example (x)

irigger P(x);
response: if Q(x) and R(x) then A(x):
Now, given

forall component-of[R(x), Super] do ...

where R(x) is the reference in the response and Super is free, we would get the following
bindings to Super on iteration of the loop

1) Q(x) and R(x)
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2) if Q(x) and R(x) then A(x)
3) demon Example (x) ...

g

: e
- N(
. Given -
: ‘-_
N forall component-of[Sub, Conditional] do ...
5
) where Conditional is bound to the demon response and Sub is free, we would get the -
- following bindings to Sub on iteration of the loop s
o
< 1) Q(x) and R(x)
: 2) Q) .
R(x e
4) A(x) =
\\
.z,: 6.3.4.2. immediate-component-ot ji'.‘:
. immediate-component-of[construct. 1, construct.2] generator .
Same as component-of except that construct. 1 must be an immediate or direct component of £
f- construct.2. -
7 =
< .
» Using the exampies above with immediate-component.of
’ »
P forall immediate-component-of[R(x), Super] do ... ~
o where R(x) is the reference in the response and Super is free,
X 1) Q(x) and R(x) "
N Given
?
b forall immediate-component-of[Sub, Conditional] do .
;<8 RS
s where Conditional is bound 1o the demon response and Sub is free, o
.. 1) Q(x) and R(x)
o 2) A(x)
Vg
.
N 6.3.4.3. pairwise-component-of .
pairwise-component-of[construct.sub1, construct.sub2, construct.supl, construct.sup2]
generator N
Used to compare ordered components of two structures in a pairwise fashion. The two e
structures construct.sup1, construct.sup2 must be of the same Gist type. =
.




' A T DI Nl W e S N T A A KT NLML aN N S
Y

B
PR

u 6.3.4.3 pairwise-component-of PAGE 119

LM

> D If one of the two components is unbound, will bind and return the corresponding
{ - component.
N DIt one of the two structures is unbound, will bind and return the corresponding
;\' ) structure. i
g ..:' ;
Ot both components are unbound, will bind and return two corresponding p
. components of the two structures. When used as a generator, will return all 3
oo corresponding components. 1
i O Any other combinations return nil. 1
U K
, u Suppose we are given two structures
N S1: ypdate x of R(S) 1oy '_
N S2: update w of S($) to z : ;
“= B
“
. E The loop
:_»:.: forall pairwise-component-of[C1, C2, S1, S2] do ... :
::; _,« would bind C1,C2 to the following on iteration
¥ 1) x,w :
R 2) R(S).5(8) 1
;- 3) y.2 3
) ,
- 6.3.4.4. component-correspondence
" .- component-correspondence(construct.sup 1, construct.sup2, C/correspondence)
v o generator
X ;
1.' - . )
'_ 2) Used to compute a pairwise correspondence between unordered components of two
) - structures of the same Gist type.
1 O If all arguments are bound, will return true if C is a valid correspondence of the
; ) components of the two structures.
-~ \
a f;‘. DO if C is unbound, will compute a correspondence between the components of the
I. two structures.
-
RS O Any other combinations return nil.
g
q i Suppose we are given two local variable declaration lists (A B) and (C) as bindings to the first
N = two arguments. component-correspondence will generate the following correspondences: :
2 <A.L>,<B,C>. :
B
o é
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6.3.4.5. body-of

body-of[construct.body, construct.definition)}
O If both arguments bound, returns true if construct.body is the definition body of

some defined construct (e.g., demon, constraint, derived-relation)
construct.definition.

Dt only construct.body is unbound, returns and binds the body of
construct.definition.

6.3.4.6. parameter-of

parameter-of{parameter, construct] generator
construct may either be a parameterized definition (e.g., relation, action) or a parameterized
reference (e.g., relation reference, action call).

0 If both arguments are bound, returns true if parameter is one of the parameters of
construct.

O If parameter is unbound, binds and returns a parameter of construct. When used
as a generator, returns all parameters of construct.

6.3.4.7. trigger-of

trigger-of{construct.trigger, demon]

O If both arguments bound, returns true if construct.trigger is the trigger of demon.

D If construct.trigger is unbound, binds and returns the trigger of demon.

6.3.4.8. local-var-of

local-var-of[variable-name, construct.declarative] generator
construct.dec/arative must allow the declaration of local variables (e.g., scoping-blocks,
demons, quantifiers).

D f both arguments are bound, returns true if variable-name is declared by
construct.declarative.

OIif variable-name is unbound, binds and returns a variable declared in
construct.declarative, nil if none declared. As a generator, returns all variables
declared by construct.declarative

3
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6.3.4.9. scoped-in

scoped-in[variable-reference, construct.declarative) generator
construct.declarative must aliow the declaration of local variables (e.g., scoping-blocks,
demons, quantifiers).

D If both arguments are bound, returns true if variable-reference uses a variable
declared by construct.declarative.

O if construct.declarative is unbound, binds and returns the construct which
declares (scopes) the variable used in variable-reference.

O If variable-reference is unbound, binds and returns a variable reference that uses
a variable declared in construct.declarative. When used as a generator, returns
all references.

6.3.4.10. name-of

talal ey

' aTuP e a

’

name-of{name, construct.named]

-

<3 construct.name must be a construct with a name associated with it (e.g., variable, relation,
' constraint, demon, action).

D !f both arguments bound, returns true if name is the name associated with
construct.named.

7::'; O if name is unbound, binds and returns the name of construct.named.
= 6.3.4.11. update-relation-of
~
update-relation-of[relgtion-reference, update]
“J
-
;g_j D If both arguments bound, returns true if re/ation-reference is used as the object
being updated in update.
"_: D If relation-reference is unbound, binds and returns the object being updated in
update. '
2 6.3.4.12. new-value-of
::I new-value-of[object, update)
l."
0 If both arguments bound, returns true if object is the new value of update.
14 .
- 0 If object is unbound, binds and returns the new value of update.
A
W
"
l'. -. Y. t.‘- \( : . ‘ .‘ on \‘ \ f.. ' V :{(- 0 l. 'l:.:-'(‘-:'i.
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o 6.3.4.13. recursive

recursive[construct.definition)

N
. . .
, .
ROKE I
bl It bt

A predicate which is true if construct.definition is either directly or indirectly recursivel9
defined.

. -
[ ¥ o w o)

6.4. Direct Method Invocation

A method can be invoked directly, bypassing the normal problem solving process. This is
accomplished through the Use goal as described in section §.6.3. When invoking a method
this way, the triggering goal associated with the selected method is posted as if done by the

|

user. The user will be required to fill-in the necessary slots of the goal which also act as the
needed context for the method.

/0 a0 0 B R

.
.
-

vid

The use of direct method invocation, while saving problem solving time, has some

disadvantages: development documentation is weakened; alternatives are disregarded;

possible deleterious side-effects are ignored. Section 5.6.3 discusses each of these in more ~ :
1 detail. %

FARlN

6.5. Hearsay-lll Method Representation | <

:“l L

Methods are implemented as domain knowledge sources, or simply KS. A KS consists of a
trigger, immediate code and a body. The trigger reacts to changes on the blackboard (a.k.a.
problem solving state). A method’'s goa/ and filters are implemented as a KS trigger. The
immediate code is executed at triggering time. It is used to set up the actions of the triggering
method and add the method to the candidate set. After the immediate code has been
executed, Hearsay creates an activation record for the method and places it on the

§ ANIINIVYE
I.-.

AW

l’l. l'

scheduling blackboard (see section 2.4 for details). The activation record notes the triggering
context and points to the method's body. The body is executed only after the activation
record has been selected by the scheduling process. in Glitter, a method's body contains
code which marks the method as the one chosen and spawns a new context.
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Chapter 7
The Selection Process

During a Glitter development, there arise various points where selections must be made:

n 1. Given one or more competing methods, we must decide which jf any should be
selected.

::-'. 2. Given a selected method, we must decide if the method's detault action ordering
should be used; we may choose a reordering of independent actions based on

N specialized development knowledge.

3. Given an unachievable goal, we must decide what previous problem solving state
the development be should backed up to.

4. Given an overali development strategy, we must choose the high level goals
. which will implement it.
We consider the definition, representation and use of selection knowledge -- knowledge
useful in making the right choice in each of the above areas -- a necessary component of our
N model. Glitter's current selection knowledge lies in argas 1 and 2; in this chapter we will
describe how this knowledge is represented and used. At the end of the chapter (section 7.5)

l._"'_i

we will discuss ways to incorporate selection knowledge for areas 3 and 4.

Before getting into the details of Glitter's seléction process, we will summarize the important

ﬂ':_‘:'.‘

points made in this chapter:

oy In making a selection, both implementation gngd problem solving efficiency must be
considered. '

Part of the development process involves making design decisions which will atfect

the efficiency of the final implementation, e.g., use method A instead of method B if
J. you want {0 conserve space (time). Also important is the amount of time necessary
for the selection engine to make the optimal choice. The Glitter search space is
large. An exhaustive search is out of the question. With a user in the loop, some

ur

estimate of how much time a particular method will take to complete must be
considered.
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Partnership paradigm shines in all its glory.
The machine provides a repository of accumulated selection knowledge and is able
to call it forth in the right situations. Further, the machine will perform detailed and
tedious analysis uncomplainingly. However, its selection knowledge is incomplete, a
situation we expect to exist for a long time to come. The user fills in the missing
pieces.

The system must make allowances for its incomplete knowledge.
Because the system's knowledge base is incomplete, we expect a user to view the
system’s analysis with some skepticism. The user is provided with several selection
modes with which to gain various degrees of control of the selection process.

The system facilitates growth.
Experience breeds knowledge. The catalog of selection knowledge is made up of
independent selection rules. This gives the system the important additivity property
discussed in chapter 6. Further, the system monitors the actions of the user to
detect its own selection mistakes; when found, it records the necessary context to
allow future knowledge maintenance.

Problem solving structure is accessible.
Local selection knowledge is not enough. The selection engine requires access to 1)
a method's internals, 2) the current active goal, and 3) the goal superstructure. The
notion of meta-goal and meta-plan (see [Wilensky 80]) are introduced here as useful
concepts.

7.1. Selection Criteria

There are several different criteria on which to base selection. Traditionaily, the development
of an algorithm has been based on how efficiently the final implementation runs, i.e., how
much space does it use, how much time does it take on best, average and worst cases. Kant
[Kant 79) describes a ruie based form of such rules for developing text manipulation
programs. This type of knowledge is directed at the product of the development process, the
final implementation program. This is one type of knowledge contained in Glitter's selection
rule catalog.
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More recently, the development process itself has been the focus of selection knowledge (see
- for instance [Kant 79]). This has been brought about largely by 1) the study of non-trivial
specifications and 2) the attempt to automate the development process. Current state-of-the-
art machines do not have the capacity to exhaustively search all possible implementations of
a given specification. Systems that use a partnership paradigm have particular problems in

judging the amount of time to devote to a specific selection problem: the selection process
, must be geared towards returning a solution to the waiting user in a reasonable amount of
- time. This forces us to examine the problem solving efficiency associated with various
development strategies. Glitter's selection rule catalog contains knowledge which attempts to
estimate the effort involved in applying a method. In the next section we will see that such an
3 estimate requires examining 1) the actions a method takes and 2) its compatibility with the
overall goal structure. '

7.2. The Glitter Selection Process

In this section we present first a summary and then a detailed description of one stroke of the

Glitter selection engine. We will use this as the organizational basis for introducing each type
.. of selection knowledge found within the Glitter selection rule catalog.
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‘.
. ;
“
. Selection Process Summary
- 1. Goal G posted. If G is satisfied in the posting state then it is marked as trivially achieved.
- 2. Initial method candidate set formed. Given that G is not trivially achieved, then G is activated and all
': methods that are indexed to G and whose filters evaluate to true are placed in an initial candidate set.
-
3. Weighted method candidate set formed. Weight assigning rules are run.
‘.: a. General selection rules run. These rules use the goal context tree 1o assign weights to methods
. within the initial candidate set.
: b. Method specific rules run. These rules are indexed directly to specific methods within the initial
b set.
N ¢. Resource rules run. These ruies inspect methods within the initial set for their use of problem
" solving resources.
<
[ d. Weights summed. The weights provided by the general, method specific and resource rvies are
9 summed for each method.
Y
. 4. Final candidate set formed.
:: a. Ordering rules run. These rules provide a partial ordering on the methods of the initial candidate
A set. They may or may not take into account the weighted sum of a method.
C4
: b. Weak methods culled. Any methods whose weighted sum is below a given threshold (currently 1)
s are removed from the final set.
1y
" c. Any methods that are ordered after a culied method are aiso removed regardiess of weighted sum.
o d. Methods that are unordered and have no weight (i.e., are not referenced in any of the selection
- rules run in step 3) are not removed.
- 5. Final candidate set ordered. The remaining methods are ordered by 1) explicit ordering provided in step
4a, and 2) by sum of weights. Methods about which no opinions are expressed are ordered last in the set.
3 6. Method chosen from final set
. 2. if the system is in cautious mode then the user is calied on at this point to select a method.
; b. H the system is in trusting mode then a selection will be made as follows:
O If there is & clear winner in the final set then the system will choose it.
A O it there is no clear winner then the system will ask the user to arbitrate.
7. Actions reordered. Any action ordering rules associated with the selected method are run.

"lll

8. Method applied.

We will follow the selection process in more detail. The references to Davis are from [Davis
1 80]

.
N
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v
~ R

7.2.1. The initial candidate set

Y
a s
WPLIS . PRV S SR N

f -
S The activation of a goal G causes several things to happen. First, a check is made on the
> - achievement of the goal within the current state. If G is achieved then it is marked as such and K
T -
A a new goal is selected for activation. If it is not achieved then the method catalog is searched N
. ~ for methods that are indexed to G. If the filter of a matching method evaluates to true then it is :
- f:ij added to the initial method candidate set (what Davis refers to as the set of plausibly useful :
°j A Knowledge Sources). If this set turns out to be empty the user is informed and control reverts Ny
- . to him. At the same time, the context is recorded for future reference as described in the next
& section, ‘
- 7.2.1.1. Inferring that knowledge is missing
1
'5 F There are two different causes for an empty initial candidate set: 1) a piece of deveiopment
- knowledge is missing from the method catalog, or 2) the goal G is unachievable. While the
< J system cannot determine which is the case at this point, the user’s next action provides a big -
N
WA clue:
. . O | the user next does a manual operation on the program we can infer 1, i.e., &
2 program transformation is missing.
) D If the user next posts a subgoal of G we can infer 1, i.e., a problem reduction is .
N missing. !
— D On the other hand, if he next switches to an alternative problem solving context 1
(backtracks) we can infer 2, i.e., this is a dead-end. The system’'s default
assumption is that some missing piece of selection knowledge led to a wrong
choice at some earlier point in the path.,
- The system helps facilitate the discovery of missing knowledge by monitoring the above y
e events. First, the system records each occurrence of a change to some previous
- development state (see section 2.3.2.2). At the end of development, any states that were

- abandoned and not later resumed as part of the final implementation path are marked as
o & '

= backtracking points. States which a) were backed-up to and b) are on the final path are
flagged as places where new selection knowiedge may be needed.

Second, the system records any ad hoc methods created by direct user intervention, i.e., goal
tq posting or manual transformation (see section 2.3.3.2). Such methods, after a generalization .

process carried out by a human analyst, become likely candidates for inclusion into the
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method catalog. Note that the ad hoc method defined by the system under the primordial goal
(see initial problem solving state in section 2.2) is included in this set. Thus, the user's high
level organization of the development is always considered for inclusion as a generalizable
method.

7.2.1.2. Set size, saturation, etc.

Once the initial candidate set is formed, why bother defining a further selection process? Why
not simply try all methods in a breadth-first manner (see for instance, unadorned
PECOS [Barstow 79a)). Davis gives one answer:

Almost all traditional problem-solving structures are susceptible to saturation,
the situation in which so many applicable knowledge sources are retrieved that it is
unrealistic to consider exhaustive, unguided invocation.

Depending on the eagerness of the methods (see chapter €), we can assume that the initial
set will often be saturated. However, even in cases where only a few methods are competing,
their individual resource costs may be large. For the same reason that we don’t want to try
each door exhaustively in the lady and the tiger problem, we want to avoid getting eaten up
following non-optimal methods. This is particularly important given the assistant role that the
system plays, i.e., where development is interactive. With a human user in the loop, the system
must become resource conscience in several ways: 1) once the user passes off a task to the
Giitter assistant, he must wait for Glitter to come back before moving to the next task, i.e.,
Glitter cannot be "gone" for arbitrary lengths of time, and 2) the user may need to get
involved with lower-level problem solving in much the same way the user/physician was
needed in MYCIN [Davis 77] -- to supply information unavailable or uncomputable by the
system. The latter case is particularly troubiesome since, with an exhaustive search, it
requires the user to answer a set of questions, most of which are likely irrelevant to the final
choice.

7.2.2. The weighted candidate set

Given the need for a selection or refinement process, Glitter's next step is to apply its
knowledge about the applicability of certain methods in a given development situation. The
general form this knowledge takes is as follows:
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Selection Rule <unique name>
IF: [<selection expression>]?
THEN: <weight>

S [optional comments]

End Selection Rule

The fields of a selection rule are broken out as follows:

<unique name> - provides a unique textual handle and is intended to give a short
description as well.

<selection expression> - in general, some problem solving event such as a method
joining the initial candidate set or a goal becoming active. For details, see the
particular classes of rules that follow.

<weight> - a weight in the set {5, -4, -3, -2, -1, 1, 2, 3, 4, 5} to be attached to a
™ specified set of methods.
We further divide selection rules into three classes:

. 1. Method Specific Rules. These rules have as a <selection expression> the
inclusion of a particular method within the initial set. Each rule captures some
P piece of knowledge about the usefuiness of a specific method in the method
v catalog.

2. General Rules. These rules have as a <{selection expression> some situation
> involving the wider problem solving context. in particular the rule will access a
portion of the goal tree beyond the current initial set, e.g., super-goals activated,
super-methods applied. Further, they generally reference methods within the
candidate set by content as opposed to name. More on this later.

s v
EC AR AP N
v':‘

e

3. Problem Solving Resource Rules. These rules reward candidate methods that
avoid what are known to be costly actions. Again, reference is on method content
as opposed to name. '

)
)‘-.

s
~
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We will look at examples of each type.
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¢ |
N .
.",:‘ 7.2.2.1. Method-specific rules -
2 )
! , . -
L The selection rule *Anchor1b® is a method-specific rule: =
;“: .}_:
B -
‘\ | SelectionRule *Anchorib | L
b . IF &) Anchorl is a candidate =
b) Y|RANDOM
_:: THEN  +5 N
5 | End Selection Rule I .
P\
% -
.- ~ ;
, It is keyed to method Anchor1: -
L)
A 3
£ &
S | Method Anchori l
EXY .
- Goal: Equivalence X and Y E
; : Action: 1) Reformulate Y as X
-‘\- ~e
'_;: [Try changing the second construct into something that matches the lirst.] T
“ | End Method I
. =
-
o -
L 4 v . . 3 . ope .
-;. The first <selection clause> of *Anchortb is the inclusion of a specific method (Anchor1) in
%. -
oY the initial set. The second <selection clause> checks on further details of the method, namely ;"'
", . . o . ~
whether Y is bound to RANDOM, a particular type of event in Gist. if so then the <selection
-.’ action> is to give a large weight to the method: it is always possible to reformulate a random -
= event into a more specific event. -
Lo
'y o
I Let's look at another method-specific rule keyed to Anchor1. =
--.: -
S £
._:::
bt Y
. =
“w
2 \
N X
;\ -
N
)
asmthod-spocmc rules are given names starting with * to differentiate them from the corresponding method E
Y name. .
Mod
M
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N
P .

a® 1.\
S
1
.

Ly | SelectionRule *Anchoric |

.::.. . IF a) Anchorl is a candidate

.:". o b) Y|derived-relstion-reference

- c) Definition of Y reformulatadble as X

) THEN +2

\S | End Selection Rule i

.f_?'-, ‘ The first two clauses are similar to those of *Anchor1b. However, the third clause introduces
A . a new wrinkie. Since Y is bound to a reference of a defined object, and it is known that
=~ . defined objects can often be unfolded in place of their reference, this clause asks whether the

} "-' . . - 0 1Y »

;:: - defined object associated with the reference Y looks like it can be reformulated as the
fl expression bound to X. in other words, the rule hypothesizes that the body will be unfolded
B H and attempts to look ahead and see how successful that unfold will ultimately be. This is the
:-: . focus of the rule. However, carrying out the necessary analysis presents a problem: the
‘_ e : system currently has no general means to analyze the likelihood of reformulating an
,,. - expression E1 into an equivalent expression E2%. wWe must rely on the strength of the
‘ ! partnership here, i.e., call on the user to supply missing information. The following question is
b - asked of the user:

<

T Can <definition of Y> be reformulated as X?

L «

.

. where <definition of Y> and X are printed as their bound vaiues. Note that the system carries
.. ) out as much of the computation of the rule as possible. That is, given that the focus of the
e

) rule is to check whether Y can be unfolded into something like X, the system 1) checks to see

Y N if Y is unfoldable, 2) gets Y's definition and 3) calls on the user for the reformulation
L)
e information. By gathering together the information in 1 and 2, the system avoids questions
ij such as :
S
o v
$e Can RANDOM be unfolded as X?
::’; - ‘
- Ll
ta Can the body of the definition associated with Y be unfolded as X?
I\‘"
A - The first is plain silly, the second simply bothersome (the user must search for the definition
D associated with the reference ).
2 |

“nun *Anchorib above embodies knowiedge on reformulating a special expression, a random event, into some
other sxpression.
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{7 -
b ’
- -
.:,: -
o 7.2.2.2. General selection rules
o
A DemonsAreGood is a general selection rule: <
.-‘\' L
':: | SelectionRule DemonsAreGood 1 :‘_
‘. IF a) Goal/Supergoal is Map X “
o b) Method M reformulates X as s demon ..
o THEN  +1 <
v T:’ [Demons are generally sasy 10 work with.] 7
¥ ; | End Selection Rule | e
“ =
o This rule captures empirical knowledge built up from our development of the package router o
f-:'_' program presented in appendix C. In particular, we found that during this development, the -?_:
> :
:‘,:. reformulation of various Gist constructs (e.g., constraints, derived relations) into demon form i
. facilitated future optimizations. However, we give it a relatively small weight because of the !
-
O small experience base it is derived from; we are not convinced that the catalyzing effect of
"N .;.* :
N demons will carry out of the package router domain or domains like it. What might be ',C:
W . ; ; .
'\-:.' necessary to give the rule a stronger weight is another antecedent clause of the form
L ¢) the problem domain has features F1...Fn a

where the features F1...Fn may or may not be computable by the system.

An important point 10 notice about the rule DemonsAreGood is its indirect reference to

‘o methods by the actions they take. That is, instead of naming methods to reward as in the

_-: method-specific rules, the actions of methods within the candidate set are analyzed for the

.{-: actions they propose. Hence, if a new method is added to the catalog that reformulates some -
= construct as a demon, it will automatically be rewarded whenever competing. Davis refers to =
,._ this ability of looking inside knowledge sources (methods) to glean control (selection)
./:‘,S: information as content reference. -
o ‘
. in regards to content reference in Glitter, the system can analyze both the individual filters
N and actions of a method. This includes examining the arguments of individual goals.

Ij;l' However, program transformations, as found in Apply actions, reflect calls on Lisp code '
;{q whose effects are unanalyzable by the system. For example, the general selection rule B
" SubComponent, "
':_,: =
§ 2
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T
-': s
SR
.
p . ! | SelectionRuis SubComponent |
SN {F &) Goal 1§ Reformulate X ss P
XS b) pattern-match(Y, P, X]
'2 ::- . ¢) Method M extracts Y from X
vt THEN +2
A | End Selection Rule }
, \:
}.\ .-
o . asks whether a method M extracts™ a component Y of a compound structure X. Since there
. exists no corresponding goal for the extraction task (see however section 5.5), we can
a assume that M’s action is to apply an extraction transformation (as opposed to an Extract
_ };: goal). There are several ways the system can get at the necessary information about this

transformation: 1) define an effects l/anguage of transformations and require the
transformation writer to augment his code with the relevant descriptors from the language, 2)
RE better yet, interpret the efiects language directly, doing away with the Lisp code, or 3) ask the

§ et user. The first two remain in the domain of future work, the third is current practice.
} -
N 7.2.2.3. Problem solving resource rules

B

Py ReadyToGo is an example of a problem solving resource rule:
ok | SelectionRule ReadyToGo {
- IF 3) M|method is a candidate
": Qf b) forall actions A of M either
HE 1) A is an Apply or
P - 2) A-is achieved trivially
' é THEN +1
) [t only apply goals left then cheap choice)
vy - | End Selection Rule |
";' . This rule notes that if the only actions a method will take if chosen will be to apply
<
E transformations then it may be worthwhile in terms of problem solving costs to give it a try.
. . Note that Glitter is able to compute the antecedent clauses of this rule without help from the
KON .
.-:: .' user.
(O
..'.
";,‘ "i
M "' 37The meaning of extract here is that of destructive replacement: overwrite 8 compound structure with one of its ‘
> components.
o
"‘ ’:
f
=

‘
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After the method-specific, general and resource rules have been run each candidate method
will be augmented with weighted opinions of the form

P

(Weight RuleName)

At this point, a method’s weights are summed and the total is attached to the method.

e ..l’ 0

7.2.3. Final Candidate Set

v
IR R .

We are now ready to apply ordering knowledge to the candidate methods. Selection ordering

=

rules, found at the end of each section in the Selection rule catalog (appendix G), have the -
following form: -
>

Selection Rule <unique name>.
IF: [<ordering expression>]’
THEN: [<ordering action>]?
[optional comments]
End Selection Rule

,
¢ P

The tields of an ordering rule are broken out as foliows:
<ordering expression> - the inclusion of one or more specific methods within the
candidate set. May be modified to include the goodness of a method as I~_:~_ :
provided by the weighting rules, e.g., "if method Foo is a good candidate ..." T
where good is defined as a function of total weight™®. Besides the reference b
to specific competing methods, other clauses may reference properties of the '
program or goal tree.

<ordering action) - the selection ordering of a set of candidate methods before or
after another set of candidate methods. -
We will look at some examples of ordering rules.

N P SR [ #4

e

3a‘l’hc system currently defines good as a total weight greater than 1.
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| SelectionRule MapDR1a )
IF a) StoreExplicitly is a good candidate
b) (number of refs * recompute cost) is more cosﬂj than
number of explicit insertions
THEN  StoreExplicitly > UnfoldDerivedRelation
| End Selection Rule }

Glitter computes the number of references to the reiation and relies on the user to supply
estimates on 1) the cost of computing the relation on demand, and 2) the number of explicit
insertions necessary if storing the information explicitly. The power of the partnership
approach is illustrated well here: the system focuses on the right questions; the human
provides domain specific knowledge about branching frequencies and an estimation of
computation costs. Each piece of information is unavailable to the system, the former
because it is domain specific and the latter because the system lacks a sophisticated analysis
model.

The action of the rule asserts that StoreExplicitty should be chosen before
UnfoldDerivedRelation.

The results of running the ordering rules (and taking the transitive closure) is a partial
selection ordering on the weighted candidate set®:

M1 > {M2,M3} >...Mn

The next step is to cull the candidate set of unpromising methods (what Davis refers to as
knowledge source refinement). Any method whose total weight is below the goodness value is
removed from the set. Any method that is ordered after a removed method is in turn removed.
All methods remaining form the Final Candidate Set. If this set is empty, one of several things
may be the cause: 1) some piece of development knowledge is missing, 2) some piece of
selection knowledge is missing, 3) the goal is unachievable. As with an empty initial candidate
set, the system examines the user’s next action: 1) if the next step is manual the system
records the step and notes a potentially missing method, 2) if the next step is to select a
method from the initial candidate set the system records the method chosen and notes a
potentially missing piece of selection knowledge, 3) if the next step is to switch to another

Brne system fiags inconsistent orderings.
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: i
) g: X 4
: problem solving context the system notes the change and, at the end of development, records -:;:
! locations among which a wrong branch was taken.
: 7.2.4. Final Set ordered :

Any methods not ordered explicitly by selection ordering rules in the previous step are
ordered by relative weight: if method M1 has a higher total weight than method M2 then M1 is N
ordered before M2, Unordered methods with equal weights remain unordered. Un-imputed
methods, i.e., methods that have no weight associated with them, are ordered as a set, last.

; 7.2.5. Method chosen W
3 .‘.; :
': The user can place the system in several selection modes (see also critic mode, section X
X .
) 7.2.7): i
ﬂ D Trusting mode. The system selects the highest ranked method for application. If -
3-' no one method emerges as a best choice, the user is called on to make the
j J selection. The context and the user's selection is recorded as a point where DA
possible further discrimination knowledge is needed.
1]
, O Cautious mode. The system presents the final ordered candidate set to the user. <
N The user selects the method to apply. If this method is different than the one that
- the system has ranked first, a record is made of the discrepancy.
* . .N'
X. Note that there are cases where forcing the user to arbitrate ties is a very conservative choice, "
) i.e., when a subset of equally weighted methods are all relatively good. In cases such as this, R,
2 the system could instead try an automatic approach by either carrying each method in the SR
. by
. subset along for some specified time to pick up more information or picking one and
backtracking to this selection point on failure and choosing another. There are two reasons -
that techniques like these have not been incorporated into the selection process. The first is
: quite pragmatic: they have yet to be needed. That is, there generally is a marginal winner '_'-:
which also turns out to be an adequate choice. We view this not as an insightful find that in
. Gist developments there are always clear cut best methods, but that our current selection E
. rules are over-tailored to the small set of developments that we have tried. ;
. R
j Secondly, handling conditional or backiracking control intetligently requires a new problem s
: solving vocabulary and knowledge base, an effort, we argue in section 7.5, best left as future -
work. <

4
]
[ ]
"
L
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7.2.6. Method actions ordered :

- The independent actions of a method are given a default ordering by the method writer. For
example, the first two actions of method MergeDemons

| Method MergeDemons |

'l
[

Goal/: Consolidate D1|{demon and D2 |demon
Action: 1) Equivaience trigger-of[D1] and
trigger-of[D2)
2) Equivalence var-declaration-of[D1] and
var-declaration-of[D2)
3) Show MmERGEASLE DEMONS(D1, D2, I|ordering)
4) Apply pemon_merGe(D1, D2, 1)

[ R

e

[You can consolidate two demons if you can show that they have the same
local variables, the same triggering pattern and that they meet certain
merging conditions.]

| End Method |

n“!

&
-

can be achieved in either order. However, it is usually easier in terms of problem solving effort
to achieve the equivalencing of the two triggers first. Hence, the method writer orders this

-,
vl

goal first. In cases where it is easier to achieve the equivalencing of the demon's variables
first, action ordering rules can be used to reorder the actions. In this particular example, it is
easier to achieve the second action first when the triggers differ only in variable naming. The

N

action ordering rule TriggersAlmostEquiv represents this information:

| SelectionRule TriggersAlmostEquiv |

‘ T'- :"

IF a) MergeDemons is selected
- b) Triggers differ only in varfsble renaming
;\' THEN action-2 > action-}
o

[The lirst goal will fall-out as side-elfect of second.]
{ End Selection Rule . |

-3 While action ordering rules are local to-a method, we place them as part of the selection
process to provide control over when they are computed, i.e., instead of being computed on
o triggering as a method’s filter is, they are computed only on need, when the method is
"~ selected.
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=

‘ After all action ordering rules are run, the method is applied. -2
] -
. 7.2.7. Critic Mode _ : =

\ .

32 Besides placing the system in trusting or cautious mode, the user can choose to go into critic ::.

a mode. In this mode, once the initial candidate set is formed, control is passed back to the S
5 user. From this point the user can either choose a method from the initial set or request :
information on a specific member M. From the system's point of view, this is the same as an , -
?Z initial set containing the single member M. The system runs selection and ordering rules on M .. _
. and reports the results back to the user. ;
& The purpose of critic mode is to allow the user to take over the selection process, calling on %

. the system to critique selected methods in cases where the computation is complex or v

:' detailed. While the critic mode is likely to provide a significant speed-up in response, it has the l-.-
N same disadvantages as calling a method directly (see section 5.6.3): documentation is lost; o
:I there is a chance the user will be unaware of or forget to apply some piece of selection -

i z knowledge cataloged by the system. Sy
kY E )
. 7.3. Program features used in selection R

:’_' In this section we present the program features which have been useful in making selection

' decisions in the package router development. Note that none of this knowledge is particular

; to the rbuter domain. This is not to say that such domain specific knowledge has no place in X

S the selection catalog, only that more general selection knowiedge was found sufficient in our ) :
N particular development. .& ‘
There are two basic strategies for mapping constrained non-deterministic control: 1) at :?_:
each location where a constraint may be violated insert conditional backtracking code to . ’
N undo the current choice and generate a new one or 2) at each non-deterministic choice -1

Y point, predict what choices will iead to constraint violation and avoid choosing them (or _

- vice versa, choose one that meets all constraints). Infrequently, both strategies may be I;j

S possible in a given domain; more often only one is applicable. The following knowledge is -

: useful in choosing between the two: Ll .
) 3
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D It may be (often is) the case that one of the two strategies is impossible or at least

J = intractable in the problem domain. As an example, in step 4.1 of the router
WS development two methods are competing: UnfoldConstraint, corresponding to
- the backtracking strategy; 'MapConstraintAsDemon, corresponding to the

o predictive strategy. The related selection rules, *UnfoldConstraint and
X *MapConstraintAsDemon, ask the user the following questions:

.. . Is it possible to backtrack on violation of
(- - DID_NOT_SET_SWITCH_WHEN_HAD_CHANCE?

Is it possible to predict violation of Ny
- DID_NOT_SET_SWITCH_WHEN_HAD_CHANCE?

] _ We rely on the user 10 notice that 1) once a package is at a switch and the switch g
- is set wrong there is no means t0 move the package back out of the switch and :
3, o reset it (backtirack) and 2) it is possible to avoid violating the constraint by .
5 choosing the right switch setting before the package reaches the switch (predict). 3
H‘ The consequence of this is that the backtracking strategy is ruled out while the
prediction strategy is rated high. "
e ) D Given that a predictive strategy has been chosen to map a particular constraint C, ;:
LW we must next choose an event E suchthat whenever event E occurs, we make -
i sure that the constraint C will not be violated. If the constraint is conjunctive, the .
. event E can often be most easily chosen as a conjunct arm. That is, whenever one )

arm of the constraint becomes true, guarantee that the other arms don't.
Choosing which arm to select is left to the user:

N Which arm of <conjunction) is a usefu! predictor?

~ In step 4.2 of the router development, the question becomes N
e~ .

Which arm of

t ", (package :LOCATED_AT = switch

and Y
s e b, SWITCH_SET_WRONG_FOR_PACKAGE(switchpackage) -
. e and .
s P, ((package = first(PACKAGES_DUE_AT_SWITCH(*®,switch)) -
< . -
. and
. E SWITCH_IS_EMPTY (switch)) asof everbefore)): A
is & useful predictor?
L
X :f-‘ Both arms b, and », are of the idiot light variety: when they are on (true) it's too \
z . late. The third arm by is the right choice: when a package becomes the first one K
‘ i due at a switch and the switch is empty, set the switch correctly.

-~ :
T Demons -
l' -‘\

1] {.. -

n
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Demons provide a powerful specification abstraction. Moreover, they have been found to
be a equally powerful development aid, as recorded in the selection rule
DemonsAreGood. The use of demons as a type of intermediate mapping form allows other
demoni¢c development strategies to be employed. For instance, the demon
NOTICE_NEW_PACKAGE_AT_SOURCE is an intermediate mapping of the derived
relation PACKAGES_EVER_AT_SOURCE (see step 1.11), the demon
SET_SWITCH_WHEN_HAVE_CHANCE an intermediate mapping of the constraint
DID_NOT_SET_SWITCH_WHEN_HAD_CHANCE (see step 4.1). In both cases, a
strategy of consolidating the intermediate form with an existing demon leads to further
optimizations. Opposite of consolidation, splitting a demon into separate cases can lead
to divide-and-conquer strategies. Below is the knowledge found useful in dealing with
demon-manipulating methods:
O Knowing whether a demon is within the implementable portion of the spec or
triggers on an observable event can be useful in determining its utility as a

consolidation  partner (see selection rules *MapByConsolidation1,
*MapByConsolidationd)

O Recognizing complex or abstract triggering events can lead to the selection of
divide-and-conquer methods (see  selection rules *CasifyDemon,
CasifyCompliexConstruct).

0O Recognizing non-deterministic triggering events can be useful when attempting
to map away constraints (see selection rule *MapByConsolidation2).

Relations

L
-
.
® .

There are several actions we might attempt on a relation R: we can attempt to remove R
entirely from the specification; we can attempt to map R into an operational form. The
relation-manipulating methods which deal with these actions are rated using the following
criteria:

Relation removal: There exists a straightforward method for removing a relation R, namely
RemoveRelation. This method is unfiltered, meaning a) it can be applied to any relation,
and b) determining its likelihood of succ: s3 falls on the shoulders of the selection rules.
The necessary selection criteria is as follows: the likelihood of removing a relation R
depends on how R is used within the specification.

1. If R is never referenced then it can be removed trivially.

2.If R is a composite object (e.g., sequence) then we may be able to remove

-
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...............

(actually replace) R by showing that only certain attributes or elements of the
object are ever referenced.

3. Otherwise, if R can be shown to be acting as an intermediate place holder for
some other relation Q then with suitable value replacement, R can be
removed.

The detection of case 1 is straightforward and is handied as part of the more general case
of choosing methods that are cheap to apply (see rules ReadyToGo, CheapRemove).
Noticing that only certain attributes of an object are ever referenced is also
straightforward and is handied by *RemoveRelation3 (see step 3.1). However, noticing
that only certain elements of a set or sequence are used can be a more difficult
proposition. This analysis is currently left to the user by rule *RemoveRelation1. After it is
determined that R's argument is a sequence, the following question is asked of the user:

Is only one element (i.e., first, last) of (sequence) ever referenced?

in step 1.1, the sequence in Question is PACKAGES_EVER_AT_SOURCE and the
answer is yes (the last). Further work towards removing the sequence
PACKAGES_EVER_AT_SOURCE requires noticing various features of the sequence's
construction: the ordering of the objects (packages) of the sequence relative to some
event (their entry into the router). Or equivalently, whether new objects are appended or
prepended to the sequence (they are appended). This information helps select which
element of the sequence to focus on during the removal process.

Finally, case 3 is based on noticing whether R is a "temporary variable":
Is R acting as an intermediate place hoilder for some other relation? If so, which? "

in the case of step 2.1, the answer is yes, for relation LAST_PACKAGE.

Relation mapping: Given a derived relation R, there are several mapping strategies
available: compute the relation on demand at each of its reference points; maintain the
relation explicitly; some combination of the two (e.g., memo functions). Selecting among
these strategies relies on the various resource costs associated with computation and
maintenance. Currently the system can do some of the low-level computation
automatically, e.g., counting the number of references to a relation R in simple cases. A
more hefty part is left to the user. We give some of the selection analysis associated with

mapping relations below.
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£ In choosing among explicitly maintaining a derived relation or computing it on
demand, we must estimate, among other things, the recomputation cost. This
estimation is left to the user in the form of the following question:

The cost of computing relation <name) is what (low, medium, high?)

The range of the cost has been broken into three discrete classes from which
- the user must choose. For example, in step 5.5 we would expect the user to
answer "low" while in step 5.1 we would expect an answer of "high".

0 Given that a derived relation is static, one method for mapping it is to
explicitly store a separate relation for every one implied by the definition.
When deciding on the cost of such a mapping strategy, an estimate of the
number of explicit relations required is necessary. We rely on the user to
supply the estimate. For example, in the router deveiopment the relation
LOCATION_ON_ROUTE_TO_BIN implicitly computes the reachability matrix
for the physical router network. The user is asked to supply the number of
relations (non-zero entries) needed to explicitly store the matrix.

How many relations must be inserted to explicitly store
LOCATION_ON_ROUTE_TO_BIN?

7.4. Problem solving features used in selection

In the previous section, we focused on program features useful in the selection process. Here
we will look at some of the problem features which can be used in selecting among competing
methods. In particular, we will be using the problem solving context in terms of the
superstructure built on top of the current candidate set. Figure 7-1 provides a graphic
description of the goal/method tree. This entire tree is available for analysis by the selection
rules. Given that we are selecting on some method ¢andidate set S, the following information
is available:

o >1 The individual methods of the candidate set S.

o, ‘The immediate goal G,

producing (triggering) S.

=128 The brothers of G both previously achieved and currently pending.

imm'

o», The method Ms“ 0 producing G

imm’

D¢ The selection rules firing and participating in the posting of G, . i.e., the
reason Ms“p was selected.

0 », The transitive relation of all of the above, i.e., the goal Gs“ which triggered
Nf G p's brothers, the method producing Gs"p. why it was selected, etc.
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———==b (Selection Rules)

Glun
/1
/4 \
/,\

" {{ 6 é} Candidate Set S
Figure 7-1: Goal contexi available to selection process

7.4.1. Method Inspection

As we have described earlier in section 7.2.2.2, the action fields of a method are open to
inspection by the selection process. We may use this information to determine the trivial
achievement of one or more of a method's goals. This aliows us to make selections based on
the following criteria:

O In the absence of a single method becoming a strongly supported candidate, we
fall back on how cheap in terms of problem solving a method is to apply. A
method is viewed as cheap if

1. The only actions not achieved trivially at triggering time are Apply goals,
i.e., the method's only effect will be to apply transformations. Especially
high marks are given to methods that cheaply achieve Remove goals.

P WL P
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2. One or more of the method’s actions are trivially achieved, a weaker case of
1.

D A set of methods may be (currently) ungeneralizable and hence, broken out into
specific cases. Instead of restricting the methods triggering by placing special
case checks within their filters, we generally prefer using sub-goalable
restrictions, i.e., goals placed within the method's action set that jitter the
program into the special case required (see property 3, chapter 6 for further
discussion). However, in such cases we want to give high marks to a method that
meets its jittering subgoals trivially. in most instances, this has the same effect as
using filtering restrictions. However, it is more general in that it aliows alternate
selection knowledge to intervene and possibly ruie out the method on other
grounds.

A good exampie of such a set of methods is the set associated with casifying a
local constraint. Each method expects the constraint to be in a particular form, If
it is not, its first action is to Reformulate it into the correct form.
RequireReformUnnecessary is the selection ruie which notices when one of these
methods is triggered and no reformulation is necessary. It rewards such a method
accordingly.

We may also be interested in the effects a method has when applied. For instance, the
selection rule DemonsAreGood rewards methods that introduce demons as intermediate
forms in pursuit of mapping goals. Selection rule ReformAsExtreme rewards a method that
attempts to reformulate a sequence retrieval as either a retrieval on the first or last element.

Many of the method inspection rules are only one level deep. That is, they do not attempt to
reason beyond the actions of the competing methods. This means we must generalize what
we know about certain actions without relying on the details of those actions. Therefore, we
punish reformulation goais in general (we know they are often hard) without checking to see if
the particular reformulation under analysis is easy.

There are several schemes for providing better analysis of a candidate method's actions. We
could try applying the method (and other of its competitors) and follow the consequences to
some specified depth. Kant does a form of this in her rule selection system [Kant 79). in a very
practical sense, this allows us to view the method's affect on problem solving. As an
alternative, we could attempt to reason abstractly about an action. For instance, it a method's
action will be to reformulate some expression E into P then we can look at E for clues on the
likelihood of success:

D A connection matrix might be defined for expressions, i.e., what expressions can

i
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be transformed into what other expressions (Mostow discusses the use of such a
connection structure in his rule-based system). Cross indexing E and P would

F give us some estimate of the likelihood of reformulation (and possibly an abstract

3 plan for carrying it out). .

3‘_4 D If E is a reference to a defined object D, we can check if D contains something ;
KN that might match P. If so, we know we can unfold D to get at it. '
2 Currently, selection rules exist for doing specialized reasoning of the above form, but rely on

» the user to fill in information. To remove the reliance on the user requires adopting a more

general and powerful analysis approach similar to the ones discussed above. We view this as

ﬁ a large enough effort to be considered as part of future work.

”

"~ 7.4.2. The Goal Tree

A large part of the Selection Rule catalog consists of method-specific rules. These rules
trigger on a particular method becoming a candidate and use the /oca/ context of the method ;

to analyze its potential effectiveness. There are cases, however, when we need a bigger if not ;

-
<t the big problem solving picture. We discuss below the ways in which Glitter uses the goal tree
.’ in the selection process.

7.4.2.1. Goal-specific knowledge
p Sometimes we can generalize a set of method-specific rules into one or more goal-specific
- rules. That is, we can define selection criteria based on a goal as opposed to a method. This
‘:1 knowledge usually comes in the form "If goal/ G is posted then methods that have property P

. are useful (unuseful)". Clearly, we can unfold this knowledge onto each method indexed to )
}; G. However, placing it on a goal facilitates the addition of new methods indexed to G; they are
automatically included in the analysis set. As a simple example, the knowledge that “The

..‘V - . . e -

.3-‘, reformulation of the relative retrieval of an element of a sequence to a positional retrieval
) (first, last, Nth) is most often successful when the position chosen is an extreme (first, last)",
é‘ is embodied in the rule ReformAsExtreme. In previous versions of the catalog, this knowledge

was spread over the two methods ReformulateRelativeRetrievalAsFirst and
O ReformulateRelativeRetrievalAsLast. Although it is unlikely that any new methods will be
:‘: added that will be effected by ReformAsExtreme, it is possible that the value of the knowledge
will change, e.g., experience may show that the "extreme" strategy is successful n% of the

Rre

time, causing the value to increase as n increases. Such rule maintenance is most easily
carried out when selection knowledge has been localized to the greatest degree. !
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7.4.2.2. Meta-goals <

xR
\ As in any problem solving domain, it is sometimes difficult to select among competing actions <
'-’.;: without knowing the overali goal or goals being pursued. Wilensky [Wilensky 80] defines the <
. notion of & meta-goal to describe properties that we wish to hold during the planning process .
‘:Z and a meta-p/an as an action we can take 10 achieve a meta-goal. Glitter uses the goal tree to _
" detect supergoals (i.e., ancestors of the current goal) which become easier or harder to i
_ _: achieve with the selection of certain methods. In Wilensky's paradigm of meta.planning, \
, ~, Glitter’'s use of the goal tree could be expressed by the foliowing two meta-goals:
Meta-goal 1: Avoid choosing (weight negatively) plans (methods) =
\ which cause other goals to become more difficult to achieve. -
Eﬁ Meta-goal 2: Choose (weight positively) plans (methods) - :Ij
_. which cause other goals to become easier to achieve. .
These are actually a cross between several of Wilensky's meta.goals, including "Don’t waste
o resources”, "Achieve as many goals as possible”, "Don't violate desirable states”. Glitter !
S: “has no explicit representation for meta-goals and only represents .he above two implicitly.
'{: Likewise, there is no explicit representation of meta-plans. However, certain rules do implicitly
:: implement goals of the above type. One such rule is MapSubOfRemove. This rule recognizes
‘ situations where there exists a supergoal of removing some construct from the program and a E
: subgoal of mapping it. It rewards a method which avoids scattering the construct throughout
‘: the program and punishes one that does. In a slightly more recognizable “omain, suppose f;::
- that Johnny wants to haul (remove) a bag of tin cans to the dump*®, but the bag is too big to fit -
s in his wagon. He has several (mapping) options: 1) stomp the bag until the cans are fiattened -7
‘ to an acceptable size, 2) take the cans out of th? bag and haul them in acceptable size :
- ) subsets to the dump, using repeated trips. Johnny, being a bright meta-planner, chooses the =
first. -
3
o s
T :4
¥ 5
¢ n
: Oy, the dark ages before recycling centers. -~
s .
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S .
2 ‘..
- 7.5. Extending the Rule Catalog
A e .J
~ Adding new selection knowledge is straightforward if the knowledge can be encapsulated in o
. .
: one of the forms of selection rules we have defined. As we have seen, the current form of our
M rules is useful for capturing knowledge about competing methods and their application.
- However, there are other types of selection knowledge that users employ in a development _
) ‘_ which are not addressed by Glitter. First, there is the case of dead-end solution paths, i.e., ]
3 g
T states where the current goal cannot be achieved. The user must choose a new state in the .
. - problem solving tree, kept by the system, from which to continue the development. If the '
4 system is to get involved with this backing-up process, several things must happen. One, a ._
i '.l'.; problem solving goal language must be defined. The goals here reference not a program but N
S N
Y a development. We might expect goals of the following form: :
! Back-up to a state before a mapping decision was made on Foo.
SIS Back-up to a state where Foo is in demon form. :_
S g
Help."1 .
. E Two, backtracking-methods must be defined for achieving the corresponding goals. For
5 ;_,; example, using our current method formalism, we might define the following: 4
o .
P ‘:j | Method TryAlternativeMethod | ;j
s T _ '
- Goal: Help! A
A '.';: Fiter: a) Current sctive method is M1 ::
= b) Next best alternative of M1 is M2
c) M2 1s not too bad X
- Action: 1) Back-up to stste where M1 was chosen g
- 2) Choose M2 ‘
- {Maybe another method will work.]
] | End Method : I )
» ~
. c.'. j
v :-, Three, given a collection of such methods, selection rules must be defined for choosing
' among them:
i i
— .
Y, 4., Back-up 1o a state from which | can continue. -
( .:
3 -
o -
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PAGE 148 The Selection Process

| SelectionRule *TryAlternativeMethod |
IF a) TryAlternativeMethod is a candidate
b) difference detween weight of M1 and weight of M2 {s small
¢) no ordering rule explicitly ordered M1 before M2
THEN  +2 ,
{Choice looks somewhat arbitrary; M2 could be just as good.]
| End Selection Rule ]

The point here is that the same mechanism used for defining development methods and
associated selection rules looks, at least initially, capable of representing this new type of
problem solving knowledge.

A second type of knowledge which we have not addressed in Glitter is the large scale
organizational knowledge a user employs in producing a development. As an exampie, what
knowledge does the user employ in choosing 1) the first steps of each section of the router
Adevelopment, and 2) the particular order that they occur? Why choose to map
PACKAGES~EVER-AT+~SOURCE before mapping PACKAGES«DUE-«AT+SWITCH?
Why bother mapping LAST<PACKAGE at all? We currently rely on the user to provide the
insight to answer these questions, and hence supply the top level organization of the
development. Being a helptul partner, we might expect Glitter to field the following type of
questions from the user:

1. Will mapping Foo before Fum cause problems?
2. What should | do next?

3. Please develop the rest of the program.

Request 1 requires some form of hypothetical reasoning and in its full generality is a very
difficult question to answer. However, it is likely we can generalize some of this ordering
information in rule form (see for instance, Kant's plausible-implementation rules).

Request 2 is actually subsumed by request 3. in request 2, the user is not ready to relinguish
control of the development, but simply wants some guidance on what he should focus on
next.
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Request 3 is more of a case of clean-up: "I've supplied the interesting steps, now you wrap it
up”. Of course this request given with only a small portion of the development complete must
rely on some powerful clean-up mechanisms.

While we assume that some types of organizational knowledge can be generalized in rule
form, we suspect that much of such knowledge is domain and even development dependent.
That is, we cannot define a strategy "always map constraints before demons" across
specifications. Further, our small data base of development examples prohibits us from more
specific rules of the form "map constraints before demons when P is true"; identification of
conditions like P will require more experience with Glitter developments. Given this, the user
must continue to provide high level guidance and the system must be prepared to support him

in the ways mentioned above. Providing the right set of support tools we view as future
research.

7.6. Hearsay-lll Rule Representation

Glitter selection rules are implemented as scheduling knowledge sources, or simply SKS. A
SKS has the same form as a KS. The difference is that an SKS triggers on changes to the
scheduling blackboard, a structure which holds activation records of triggered methods. In
Glitter, as each method triggers on a particular development goal (represented by a goal-unit
on the domain blackboard), its corresponding activation record is placed in a candidate set
on the scheduling blackboard. When all such methods have triggered, the set of scheduling

rules (as represented by SKS) are run. Their effect is to order the competing activation
records.

7.6.1. The Scheduler

Hearsay provides both a simple default scheduler and hooks for defining more sophisticated
application-specific schedulers. The Glitter scheduler, a form of the latter, provides for the
overall control of the system. It sequences through goal posting, method triggering, SKS
execution and method selection. it implements the various faith modes and drives the user
interface.
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Chapter 8
Related Work

People are usually more convinced by
reasons they discovered themseives
than by those found by others.

-- Blaise Pascal

In this chapter, we will look at research that either has influenced our work or that has
interesting similarities. Most generally, we will be looking at software development systems.
More specifically, we will be interested in development systems which are either knowledge-
based, use problem solving or provide an interesting interaction between user and machine.

Many of the development techniques proposed by the systems that we discuss are of the
hypothetical or future work variety. This encourages us. It appears that Glitter addresses
problems recognized as important by other research efforts in program development. While
we find it instructive to compare Gilitter to these proposals, we are iead to an admonition, "A
running system in the hand is worth n hypothetical scenarios in the bush".

8.1. The PSI system

The PSI system integrates a set of expert modules into a single software development system
[Green et al. 79). The modules include a trace expert [Phillips 77], a model building expert
[McCune 78], a domain expert, a discourse expert [Steinberg 80), a coding expert [Barstow
79¢) and an efficiency expert [Kant 79]. The usage scenario is for the user to describe his
problem to the system in an interactive fashion, using English and execution traces. Using
consultation with other modules, the model expert creates a high level procedure (called a
model) by using the discourse, domain and trace experts to extract the necessary problem
information. The model is passed to the coding expert for refinement into a Lisp
implementation. The coding expert calls on the efficiency expert for advice on optimal
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implementation decisions. We will look at the bottom end of this process*? .. the
PECOS/LIBRA modules [Barstow & Kant 77] -- in more detail.

There are several similarities between the Glitter and PECOS/LIBRA systems: both sfart with
a formal, abstract specification; both use a rule-based refinement (mapping) paradigm; both
have a selection engine for choosing among competing tasks. There are differences as well:

D The formal specification languages of the two systems are at different abstraction
levels. The PSI system makes contro/ design decisions before the coding expert
is called. Hence, the mode! language specifies the basic algorithm structure and
need not contain the abstract control of Gist, e.g., inference, demons,
constraints, non-determinism. One of the ftoundations of Gist is that no
implementation need be ruled out; refinement of Gist's abstract control is left to
the transformation phase.

O PECOS uses no explicit goal structure. A limited form of sub-goaling is achieved
through the QUERY feature. However, the basic search is one of running rules in
a forward chaining fashion. The effect is to produce a decision tree where the
leaves are final implementations. LIBRA allows PECOS to control exploration of
this tree. When a decision node is reached, LIBRA is called to analyze one or
more of the alternatives and choose one as best. This automatic, non-
backtracking search rests on uniformly cheap, non-deductive monotonic
refinement. each rule refines an abstract structure into a more concrete
structure; no deductive machinery is needed to prove rule preconditions; the cost
of applying a rule is of no consequence. In Glitter, no such constraints are placed
on development methods, forcing the system to deal with deduction,
backtracking and possibly infinite paths. In many cases, the user is called on to
supply the needed information or control.

it should be noted that Barstow discusses the need for more sophisticated
problem solving techniques in a later paper [Barstow 79b]). In particular, he
argues that as specifications become less algdrithmic (more abstract), refinement
rules with non-trivial pre-conditions will be required as well as a theorem prover to
verify them. He also argues that controliing search will become important as the
cost of applying a rule increases and the avoidance of backtracking becomes
difficult.

D LIBRA incorporates the following types of selection knowledge: heuristic rules for
choosing among competing impiementations; formal technigues for analyzing the
concrete computational complexity of alternative implementation choices;
heuristic rules for organizing the refinement process in general and its resources
in particular. Glitter incorporates the same knowledge with two differences: 1) the

‘2ln both PSi and SAFE, the top end process of acquiring the problem description in English has been limited to
smali problems.
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8.1 The PSi system : PAGE 153

forma! analysis while machine guided is basically user supplied, 2) selection

knowledge must exist for making choices which will effect both overall

development strategies as well as tactical program transformations.
in summary, the abstraction found in PSI's model language is at a low enough Ie'vel to be
refined automatically by a catalog of approximately 400 refinement rules. PSI, therefore, puts
the burden on the problem acquisition modules of translating the English description into a
low enough level to be encoded in the model language. PSI's model language is at about the
same level as the final program produced by Glitter; we foresee PECOS and LIBRA.like
systems acting as "compilers” on Glitter output.

8.2. The CHI system

The CHI system is a more recent attempt to use some of the PSI technology in building &
knowledge-based programming environment [Green et al. 81]. Instead of a system of
autonomous experts, CHI proposes a homogeneous collection of tools all sharing a common
data base of program objects, operations and refinement rules. The synthesis portion of PSI,
PECOS and LIBRA, have been incorporated into the CHI system. The major change has been
the definition of a base language "V" that a) replaces PS!'s model fanguage, i.e., it is used for
program specifications in CHI, and b) describes the system's data base and tools as well. This
form of representational transparency aliows the user of CHI to query all parts of the
environment in a uniform way. Of course, this extends to the individual tools as well. At least
one tool in the CHI environment, the rule compiler, has been implemented using CHi itseilf.

8.3. The Programmer’s Apprentice

The Programmer's Apprentice system (PA) is both knowledge and partnership-based [Rich &
Shrobe 78, Rich et al. 78]. The PA functions in two ways. First, given a Lisp program, it can
analyze the underlying structure of the program and recognize it as a structure composed of
known program building blocks [Waters 78]. Second, given an abstract or incomplete
description of an algorithm, it can help the user fill in details and debug incorrect portions.
The final result is a working Lisp program and a layered description of the program moving
from abstract to concrete.

The Programmer’s Apprentice consists of several related research efforts. Rich [Rich 81} has

-------------
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built the knowledge-base portion of the PA around what is called a plan, the basic
representation of programming structures. A plan consists of a network of ported operators
linked by data and control flow. Each operator may be primitive or may be an abstract
description fillable by some more detailed plan. The PA's knowledge is embodied in its p/an
library, a collection of commonly occurring, language independent plans, or as Rich calls
them, programming cliches.

Shrobe [Shrobe 78] has implemented a deductive system for reasoning about PA plans. The
deductive system can verify that a plan matches a portion of a program, point out bugs in a
plan, and especially important, reason about the consequences of modifying an existing
program.

Waters has implemented a system that given a program is able to produce a low level plan
structure for it [Waters 78). That is, Waters' system provides the analysis and rudimentary
recognition task of the PA.

Chapman [Chapman 82] has implemented a testing assistant that watches over the user's
shoulder during program development. The assistant helps define cogent test cases and
executes them at appropriate times. in particular, the assistant can sometimes automatically
update old test cases when the program is modified.

Waters [Waters 82] presents a development scenario using the PA. The development follows
a knowledge-based editing approach. In it, the user constructs a Lisp program by naming the
general algorithm (plan) he wishes to employ and then refining the abstract components of
the plan down into Lisp code. The refinement can be done either by naming more concrete
plans or by filling in literal values. There are several things worth noting about this
development approach. First, there is no formal.problem specification. Thus, second,
arbitrary modifications, within the bounds of plan compatibility, can be made. The tradeoff
here is between informality and validity. The editing approach is closer to current
programming techniques. It allows a user to code up an initial solution, and then go back and
modify various parts that he is unhappy with. Flexibility is gained by aliowing the program to
be described, both by and to the user, at various 'abstraction levels. Validity must be gained by
the traditional testing paradigm (see [Chapman 82]). Third, the PA does not assist in
collecting relevant refinements or choosing among a competing set. Most of these issues
have been earmarked for further work by the PA research group (see for instance the
hypothetical synthesis scenario in [Rich 81), pages 21-31).
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in comparison, Glitter supports a more formal and rigid view of development, requiring the
user to stick to a top-down development paradigm. Specification construction is supported
through symbolic execution and paraphrasing. While the goal language can be viewed as
editing commands similar to the PA editor, they expect a formal abstract specification and
aliow only correctness preserving modifications. Thus, it non-correctness preserving changes
are to be made, they must be done at the top level. Because of this, much Tl research centers
on easing :he burden of re-implementation. Finally, Glitter provides a knowledge-based
selection engine for choosing among competing strategies and tactics.

These two approaches to development -- the PA’s more informal and flexible editing paradigm
and Glitter's more formal and inflexible top-down mapping paradigm .- place different
requirements on their respective knowiedge representations. In the PA it is important that the
knowledge representation allow both synthesis and analysis, i.e., going from abstract to
concrete and vice versa. Glitter does not attempt to map implementations back into
specifications or aliow the user to arbitrarily change a program under development. Hence, it
does not require the type of analysis capability provided by the PA. In the PA, there is no
formal abstract problem specification. Hence, the plan language does not need to represent
the type of specification freedoms provided by Gist ( demons, inferencing, global constraints).
Glitter must capture the strategies and tactics necessary for mapping these freedoms. In
conclusion, it appears that the two research efforts may be heading for some common
ground: Waters [Waters 82] mentions plans to add formal specifications to the PA, part of Ti's
(and hence Glitter’'s) future plans include studying various alternatives to the classical top-
down refinement approach to desién.

8.4. The FOO system

Mostow [Mostow o) has built a system, FOO, for operationalizing a problem description
stated at the domain level into a procedure executabie by a task agent. in the domain of the
card game Hearts, for instance, the problem of deciding whether the queen of spades is out
(in an opponent's hand) can be stated to FOO as (Evaluate (Out QS)). Through
operationalization, a procedure is developed which relies only on actions executable in the
task environment by the task agent. In this case the task agent is the player requesting the
information. In particular, a procedure is derived which is based on the pigeon-hole principle:
if an object must be in one of a finite number N of locations, then you can show that it is in
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location | by showing that it is not in any of its other possible N-1 locations. In this case, the
locations are the agent's hand, cards that have been played, and cards held by other players.
The procedure checks if the queen is in the agent's hand or has already been played. If not
then it must be in an opponent’s hand, i.e., out.

The operationalization process is carried out by the user repeatedly selecting one of FOO's
300 transformations to apply and a portion of the current problem expression to apply it to.
The user may aiso be called on to select among competing instantiations of the same
transformation. As can be seen, FOOQ is similar to Ti except for its problem domain: Al problem

solving.

Of interest here is Mostow’s proposal for automating portions of the operationalization
process (see [Mostow 81), page 327). He suggests using a means-end analysis to guide rule
selection. In Mostow's hypothetical scenario*3, the user provides the left hand side pattern of
some rule that he wishes to apply. The means-ends analysis module would compute the

" difference between this and the current expression, using the difference as an index to rules

that might help reduce the difference. This approach is similar to the one implemented by the
Jitterer as discussed in 6.1.4. While there are fundamental problems with mapping low level
difference descriptions onto high level domain operators, in Mostow's world (and Giitter's
subworld) of expression reformulation it appears to have promise. In particular, Mostow
hypothesizes several differencing analysis techniques that ook useful in selecting among
competing methods of a Glitter Reformulate goal*.

8.5. The IPMS system .

des Rivieres proposes a system (unimplemented) that crosses a structured editor with a
transformation catalog [des Rivieres 80). In des Rivieres's system, IPMS (Interactive Program
Manipulation System), the user gives standard structured editing commands to modify or
optimize a functionally correct Pascal program. IPMS g'uarantees that the user's commands
are valid by implementing them as source-to-source transformations similar to those found in

“Muww has since implemented a prototype that handies several examples from hig thesis, aibeit with a limited
set of rules.

“This isn't surprising since Glitter's Reformu/ate goal was influenced by Mostow’s notion of reformulation in FOO.
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the Irvine Transformation Catalog [Standish et al 76). There are several interesting things to
note about this approach. One, the user is moved up a level from selecting transformations by
name to using an editing language presumably closer to his modification goals. At the very
least, the language provides an index into the transformation catalog. Two, given that a
transformation is indexed to a posted goal, the transformation may contain, instead of a
replacement pattern, one or more goals to achieve. In this way, IPMS could directly address
the problem space as well as the program space in a similar way to that of Glitter’s methods.

At least one weakness of the proposal is the selection process. Competing transformations
are chosen in the order they appear in the catalog. Further, recursive transformations are
kept from infinite sequencing by employing an application threshold: after n transformations
are applied the system returns to the user with a failure message. Both of these problems are
overcome in Glitter by providing a more powerful selection engine. In general, however, we
find much agreement with des Rivieres approach, although we question the need for
maintenance at the code level. To our knowledge, the IPMS system was never implemented.

8.6. The DRACO system

Neighbors has constructed a system, DRACO, that takes a program written in a high level
domain-specific language and refines and optimizes it into a Lisp program [Neighbors 80).
The DRACO user is expected to identify the necessary objects and operations of his problem
domain, and define a domain specification language around them. This involves several
related tasks. First the syntax is defined through a BNF type formalism. Second, the
semantics are defined by providing mappings from statements in the newly defined language
into statements in one or more previously defined domain languages. Finally, a set of
optimizing transformations must be defined for the new language.

The DRACO system addresses several interesting development points. First, domain analysis
is reused. That is, once a user has carried out the difficult task of analyzing his domain's
objects and operations, defining a language, mapping it to other domains and producing
optimizing transformations, the newly defined DRACO domain can be used by future domain
writers as a mapping target for their domain languages. Second, the idea of optimizing a
program at the right level of abstraction is an important one. Domain-specific transformations
provide much more powerful optimizations than is possible if optimization is postponed until

..........................
...............
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{
E—:‘; the code level. As an example, one of DRACO's domains is augmented transition networks
"" (ATNs). One transformation defined for this domain looks for unreachable transition states
[}
e and eliminates them from the specification. This is trivial when applied to the ATN language,
{3 but intractabie when applied to the final Lisp code. The actual refinement process consists of
P "" ' the system presenting the competing refinements and the user choosing among them.
X THe Gist/Glitter paradigm addresses the issue of optimization level, but currently says
::C: nothing about reuse of domain analysis. Given the difficulty of constructing correct
}; specifications, once a correct Gist specification is achieved the effort of building it shouid not
N be wasted. This suggests interesting future research on cataloging skeletal, domain-
- dependent, Gist specifications which can be filled in with the necessary details when
3 specifying a specific problem. For example, in the package router domain discussed in this
f: thesis, we might catalog a skeleton specification for routing problems*® that included:} 1) the
constraints on the items being routed and the mechanical hardware for routing them, 2)
- demons to fiag misrouting, and 3) an environment for adding and deleting items from the
\ ;\ system. Each new routing system could use this as a base to start the specification.
L7
-
i 8.7. The DEDALUS system
<
: The DEDALUS system [Manna & Waldinger 79] takes a deductive approach to program
" synthesis. The problem is specified using a predicate logic-like formalism that includes
. primitive control sfructures such as conditionality. A Lisp program is produced by applying
both domain-specific transformations and general programming principles. If a
E}' transformation matches its pattern in the current state, the task of proving its applicability
o~ conditions is set up as a separate sub-goal. DEDALUS is run without user intervention.
_ Although there are major differences between DEDALUS and Glitter, there are also some
interesting similarities. For one, DEDALUS allows a limited form of subgoaling (jittering) in
’ order to prove a transformation's conditions. Secondly, DEDALUS uses selection knowledge
to compute the best choice among competing transformations. This selection knowledge
fj comes in several forms:
\'J
! ; ‘5Whilo one can think of more general domains to abstract, e.g.. physical systems, abstracting routing can still be
L | useful. For ingtance, think of routing packages across wider expanaes than a simple pipe/awitch network such as a
.:. City, a state, a country or the world.
2
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O There exist explicit orderings among transformations that have much the same
fiavor as Glitter's ordering rules.

O There exist strategic conditions which keep a transformation from being applied
foolishly. These act in much the same way as a method's filter in Glitter. As in
Glitter, this type of filtering can prevent a desirable transformation from
triggering. in Glitter, the consequences of this are that the user will have to step in
and produce some portion of the development himself; in DEDALUS it appears
that the transformation will fail to be applied.

D Finally, there exist procedures tied to specific transformations which provide
localized knowledge. These have the same flavor as Glitter's method selection
rules.

Since DEDALUS is a totally automatic system, its control mechanism is vital, i.e., the onus is
on the selection process to keep the search on the right path. Because DEDALUS's selection
knowledge is hard wired into the program, it is difficult to say how easily it can be examined,
modified or added to, or how this will affect efforts to scale up to larger problems.

8.8. The ZAP system

Feather [Feather 79, Feather 82b) has constructed a program transformation system, ZAP,
based on Burstall and Darlington’s fold/unfold model [Burstall & Darlington 77]. Darlington's
implementation [Darlington 81] uses the recursive equation language NPL [Burstall 77) (which
has evolved into HOPE [Burstall et al. 80)) to specify a simple but not necessarily efficient

applicative procedure. By applying 6 basic transformations over and over their system is able

to develop the simple function into an efficient one. Because of the generally large search
space, the user is required to provide detailed development guidance.

Feather notes that overioading the user with the large amount of mundane detail in the
Burstali and Darlington system makes it impracticai to apply to large problems. Feather's
solution is to automate the detailed portions by relying on the user to supply enough guidance
to allow transformations to be strung together by the system (Darlington [Darlington 81)
presents another approach based on user control of folding/unfolding similar to Glitter's taith
modes.). This guidance comes in several forms:

D The general development context is set. This includes choosing which functions

1o use in the fold/unfold operations, what simplifications may be useful and the
functions that may appear in the optimized result.
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D The general form of the optimized function. For instance, what terms and
embedded functions are likely to be present.

OA concise specification of the instantiated cases that will be useful in
development.
Feather further defines a set of tactics for choosing the functions to optimize and a strategy
for ordering the tactics. Neither the tactics nor the strategy are part of the system, i.e the user
is responsible for carrying them out. The ZAP system allows the transformation process to be
viewed as a structured object which can be interpreted by the system, thus formalizing the
development. Feather uses ZAP to develop a text formatting system taken from Kernighan
and Plauger [Kernighan & Plauger 76), a specification and development clearly larger and
more complex than any attempted previously by a transformatioq system that we are aware of.

We find many philosophical agreements with Feather's work. Like Glitter, the ZAP system
builds on a formal development paradigm hampered by poor use of its human partner. Like

‘Glitter, ZAP attempts to automate the detailed portions of a development that have little

inteliectual content. Like Glitter, ZAP provides the user with a higher level language to guide
transformation application. in ZAP, this takes the form of a) descriptions of the goal state, b)
the functions and simplifications that will likely be useful, and ¢) development organizational
knowledge in the form of tactics and a strategy‘s. We will iook at each of these in terms of
Glitter.

a) In Glitter, we have chosen to provide a broader goal language than that provided
by 2AP. While it is sometimes useful to state a development goal as an
abstract state (see Reformulate), the class of transformations that can be
carried out on a Gist program is much richer than the six defined for NPL and
hence leads to a richer set of development concepts. Many of these concepts
are not easily described by a pattern language (see for instance our method
derivations in section 6.2.1).

b) The ability to provide hints to the problem sblving system in the form of methods
that are likely to be useful in achieving a goal is missing in Glitter. This ZAP
feature would be a useful Glitter extension.

‘sNot actually a part of the ZAP gystem per se, but guidelines furnished in the ZAP user manual.
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oK . .
2 R .
) \ c) ZAP's three tactics and single strategy address the same problem as Glitter's -
! - methods -- the representation of the organizational, problem solving ) '
: * knowiedge necessary to develop non-trivial programs. The main difference is |
x . Glitter's attention to a representation that will allow this kndwledge to be
3* 1 examined, reasoned about, modified and added to. |
3 8.9. The PADDLE system
3 ﬁ The PADDLE system [Wile 81a) is a tool produced for use within the Tl development model. ‘

PADDLE addresses the problem of re-implementing a specification that has changed since

: ‘ E;S the initial implementation, i.e., the Ti maintenance proplem. A major part of the PADDLE K
. system is a language for describing a Tl development. By using the powerful editor it sits atop .
¢ ﬁ [wile 81b], PADDLE aliows the user to document the Tl development process in much the d
A same way as a Program Design Language (see [Caine&Gordon 75]) allows a user to

N : document a program: by providing a skeletal structure for English description leading to
R primitive items. In a PDL the primitives are statements from the target language; in PADDLE
. - they are primitive development commands such as Match and Replace. "
¥ When a specification change forces a re-implementation, PADDLE aliows the development
'. ?;'-3 document to be applied to the new specification. That is, the document can be treated as a :
. program which accepts as input a specification, and produces as output (if the program .
N "‘ completes without error) an implementation of that specification (see ZAP,discussed -
N u previously, and a ZAP descendant defined by Darlington [Darlington 81) for similar y
N K approaches). There likely will be places where the document cannot be applied verbatim. Itis ‘
3_ these places where the user must step in and attempt to patch things up. Wile proposes B

- several tools for helping the user in the patching process: 1) a high level language for
- specifying what portions of the program to focus on, 2) the attachment of templates the user
expects to be matched by certain key states, and 3) an identification of milestone steps which,

6 g 8 5 ¢ _»

' é when reached, signal the system to print the current state of the program. The first of these P
. . seems to be tied to particular probiems of the PADDLE language. However, the last two 100k K
: ; like general techniques useful in any replay effort (we discuss maintenance issues as they .
j: relate to Glitter in section 9.1.4). :
i .
. e PADDLE handles jittering (what Wile calls conditioning) by augmenting Gist with tables of y
: §
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associative and communative constructs. Thus, if the user attempts to Match the current
expression against a pattern, the system will consult the appropriate tables and apply the
associated re-combination laws to attempt to force the expression and pattern to match.

More interesting is Wile's proposal (unimplemented) for a broader jittering technique.
PADDLE has two basic primitive editing commands: Match the current expression against a
pattern; Replace the current expression with another expression. Wile suggests that jittering
be keyed to a failure on Match. On failure, the system will search for a transformation that
does a Replace and produces a new expression that can be matched against the desired
pattern, i.e., the pattern we are trying to Match. If this process fails then the system would try
a breadth-first search of all jittering transformations (see section 5.3.4) until either success or
a depth threshold is reached (Wile suggests level 2). We see this simple search technique
working well in cases where a) the set of transformations used can be kept small, b) they can
also be kept cheap, and ¢) the search depth is low. Our experience with the Glitter
development of the package router shows that many jittering tasks are lengthy (see for
instance, section C.1 and for related, [Mostow 81]) and rely on selection knowledge to order
potentially costly methods. In this thesis we have argued that a full biown problem solving
engine is required, in general, to carry out jittering, with attendant vocabutary, plans and
selection. However in particular cases, simple expression reformulation for example, it may be
more cost effective 10 try the proposed brute force search first. A stronger conclusion must
wait for a larger empirical base.
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Summary and Future Work
3o
i in this chapter, we will first summarize the major points made in this thesis, presented around
¥ i the four automation issues raised in Chapter 1. Next we will discuss the usability of both the
Glitter model and its implementation as viewed from a practitioners standpoint. In section
:,' fi-j 9.3 we present several usage scenarios of a hypothetical maintenance tool, future research
~ that we view as an interesting follow-on to Glitter. Finally'we compare the Ti and Glitter report
4 ' cards.
i . . s
I ~ 9.1. Automation Issues Revisited
RN
. in chapter 1 we presented four software automation issues:
; 0N 1. Formalization of the development process.
= 2. Detail management.
3. Man/machine partnership.
—
S
‘ v, 4. Production of a development document usable by other tools.
SR in this section we will summarize the degree to which Glitter solves each.
¥ .y
e
- 9.1.1. Formalization of the Development Process
~ ‘
:: We view the production of software using a transformation-based model as a fuli blown
= E‘ problem solving activity. Hence, it is this problem solving activity that must be formalized. In -
[ particular, there must exist a notation or vocabulary for stating development probiems,
. ‘,'_: describing techniques for achieving those problems and describing how to select among
»
X competing technigues.
o
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Problem vocabulary

To formalize the problem solving process, the first order of business is explicating the type of
problems encountered. Glitter's goal descriptors provide the explication means. The current
set of goal descriptors captures the freedom mapping that the developments we have studied
hinge upon. With further experience, we expect that the need for new problem descriptions
will become apparent. Because the goal descriptor notation aliows a wide range of problems
to be stated*’, we expect that new problem descriptions can be encapsulated as goal
descriptors.

A drawback to our current goal representation is the atomic leve! at which goals are defined.
Their semantics are embedded in the Lisp code that acts as the achievement checker. Hence,
they cannot be reasoned about directly. Thus, any process that must analyze the goal
structure must rely on some other means of finding a goal's semantics, e.g., explicitly building
the information into the process.

Description of development techniques

Given a notation for describing problems, we next must find a means of describing techniques
for solving them. Development techniques are represented as methods. The method tempiate
provides an index, a hook for stating application constraints and an action field. Each of these
can be filled with either goal descriptors, predefined functions or user defined functions. We
found that the set of method building-blocks described in chapter € provided the right support
for defining the development methods required in the router development. Wile [Wile 81a], for

‘one, points to the need for more sophisticated plan notation including conditionality: if goal A

cannot be achieved, try goal 8 (see also [Wilking 78]). However, this type of increase in
notational power comes at a cost: the ability of the selection engine to analyze the effects of a
method diminishes. We currently favor simplicity, the consequence being the need for
possibly many methods to capture a piece of development knowledge which is representable
as a single method in a more powerful notation. We currently value the content reference
property over catalog economy.

There also is & question of development robustness or freedom. Glitter implements a basic

47

i.e., any goal whose achievement can be monitored by a Lisp procedure.
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9.1.1 Formalization of the Development Process PAGE 165

top down refinement paradigm. A perusal of the general Al problem solving literature shows
that many others are possible. We have discussed some of these as they relate to software
development in Chapter 8. It seems certain that some will have to be considered for inclusion
in Glitter. In particular, the ability to provide hints and/or constraints on the development
process seems an attractive one, a capability that is supplied in one form or another by both
the CHI [Green et al. 81] and ZAP [Feather 82b] systems.

Description of the Selection Process

in chapter 7 we laid out four choice points where a selection had to be made: 1) which
method out of a competing set, 2) what action ordering for a selected method, 3) what state to
backup to from a dead-end path, and 3) what goals implement the overall development
strategy. Glitter provides notation for both 1 and 2. Section 7.5 conjectures on a notation for
the last two which we won't examine further here.

Method selection is represented as 1) a set of candidate methods and 2) a selection process
which weights. orders and refines the set into a final selection. Weights and ordering are
supplied by selection rules. The selection rule notation is uncomplicated: an antecedent
describes some selection event; the consequence either weights a set of methods or orders
two methods. The things addressable by a selection rule include the competing set of
methods, the current goal, the current method being applied, the reason for its selection and
the planning superstructure that lies above it. In other words, the entire development history is
in machine usable form.

There are several weaknesses in the selection notation:

D The system relies on the overly simple process of weighted votes to record
preference and summation to represent overall worth. However, its replacement
with a more sophisticated selection engine must meet certain properties
necessary in a partnership model. One, the reasoning used for selection must be
analyzable by both user and machine. Two, the user should be allowed to
selectively request selection knowledge, e.g., "what can you tell me about
method M".

D Because they are impiemented as arbitrary Lisp functions, the effects of
transformations are not analyzable. In section 7.2.2.2, we discuss ways of solving
this problem.

D Much of the selection knowledge is based on surface features. In Kant's system,

-
o

I P o s
. o

D

o
- i3
-
.-
-
o1




Al Gl o Al e i G it A el saldl S, dnd, il QL0 S At T St Tndn BRI K ST S D At e N AN -

3
PAGE 168 Summary and Future Work 4
¥ |
~T
AN
-‘_:',- we find these type of surface rules in addition to a formal analysis model. A similar
d - model is needed in the Gist domain if we are 10 make more accurate estimates of
(% cost. Indeed, some preliminary work has begun on this problem within the Ti . "
E::,‘ group. . -
\‘i
i'_’;: O The ability to explore alternative paths to some depth would be useful not only in -
‘,C:-: breaking ties, but in analyzing selections in general. Kant provides this capability A
in her system for choosing among alternative data structure refinements; a similar
- capability is needed for choosing among alternative mapping methods. 5
L2 ’
Ny 9.1.2. Detail Management .
23 -
-
\_. On the largest development attempted to date, the package router development of appendix
‘ C, Glitter produced 146 out of the total 159 planning steps automatically. The 13 steps -
b -
:f. provided by the user were the type of high level design goals that are the user's responsibility
"" in the Glitter model. Out of the 146 steps produced by Glitter, 60 were actual program E
‘j transformations. In a very narrow sense, we have leveraged transformation application from ’
. ﬁ_; [60 steps/60 transformations) in the TI model to [13 steps/60 transformations] in the Gilitter -
2 model. However, we argue that the total number of planning steps automated is the crucial
' number. The implicitness and non-automation of these steps in the T| model forestalis the o
organization of transformations into coherent chunks and leaves the user to reason informally N
':Z:j about the plan space. Thus the measure of [13 steps/159 steps] is a truer indication of the
ot automation provided by the system.
This degree of automation corresponds closely to that found in the other development -
‘_: produced by Glitter, the optimization of a text pre'processor (see [Balzer 76) tor the TI .
:J'.:‘, development). However, a sample of only two is hard to extrapolate from. That is, what o
- makes us suspect that the next development we attempt will be able to use the current system -
Py
- knowledge to get the same degree of automation? The answer comes in two parts, one v
:::; "because of ...", and the other "even if not ...": A
o
.
:ﬁ'; 1. Care was taken in defining the methods and rules of the two catalogs to avoid e
defining development-dependent knowledge. That is, once a method was mn
discovered for achieving a particular goal in a particular situation, an attempt was
o made to generalize the method to other situations. For exampie, most of the N
_'Czj current methods for equivalencing two expressions started out as much more it
< specific cases.
B
] Less generalizable are the selection rule weightings. The effectiveness of the :“-'
N selection rules can be measured by the number of times backtracking had to be o
#
‘.
‘.
S ~
-‘- ....................................................................... o \.h\ -ﬂq"-h.“.-".\'-\
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performed to undo a bad choice. In the router example this occurred only twice.
However, the weights, and to a lesser extent the rules themselves, are difficult to
motivate with a small sample. For example, the rule DemonsAreGood gives a
method + 1 if it jitters a construct into a demon during mapping. We believe the
rule itself will be useful across an interesting set of problem domains, i.e. demons
have some inherent development-facilitating properties. However, the weighting
is close to arbitrary: we have little confidence that + 1 is the right value outside
the current development or even that weighting shouid be uniform.

2. As future developments are attempted, holes in both catalogs will be highlighted.
The system facilitates the identification of missing knowledge and makes its
addition to the system straightforward. We expect missing methods to manifest
themselves as manual manipulation of either the problem state (user-posted
goals) or the program state (manual editing of the program). The system records
instances of each for post-development analysis. As new methods are identified,
they can be incorporated into the existing catalog as described in section 6.2.1%,

We expect missing selection knowledge to manifest itself as a) excessive
backtracking from dead-end or non-optimal states, or b) user override of the
system’s choice (when in cautious mode). Both events are recorded by the
system. Adding a new selection rule is straightforward, deciding on its relative
merit within the current weighting scheme less easy. We believe that a more
rigorous selection process will be required as both catalogs continue to grow
(see for instance [Barnett 82]).

9.1.3. Glitter As a Development Partner

In an ideal partnership, the strengths of each partner would compensate for the weaknesses
of the other. This should allow the partnership as a whole to tackle much tougher problems
than either of its members individually. Below we take a look at these strengths and
weaknesses in the Glitter model.

First, a view of the partnership's strengths (and corresponding weaknesses) in regards to
development methods:

D Glitter provides a repository for useful development methods.

It is unlikely that a single user can discover or remember the collective store of
development techniques.

“Tm user is responsible for both defining new methods and placing them in the catalog. Chiu [Chiu 81]
discusses means for automating this process in a TI system; we believe that similar techniques can be used in Glitter.
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O Glitter finds all methods that are applicable to a given goal.

It is unlikely that a user can find gll methods that apply to his problem. This is
especially true as the catalog of methods grows.

D Glitter handles much of the mundane detail of method application, e.g. finding all
places X is referenced, Y is maintained.

The user is likely to tind these details tedious to compute and easy to miss.
O The user provides overall development organization.

Our experience base is weak in the area of high level organizational knowiedge.
This remains an area where !Eureka is often heard.

O The user provides insightful reasoning.

As is evidenced by the slow progress of formal verification research, there
remains much in the program-property proving business that is beyond
mechanization.

Next, a view of the partnership from the perspective of selection;

D Glitter finds all selection rules that are applicable to a given selection problem
and computes an ordered set of method candidates.

It is unlikely that a user can find all selection rules that apply. This is especially
true of rules that reference methods not by name but by effect or compatibility
with the overall goal structure.

D Glitter handles much of the mundane detail of rule application, e.g. counting
number of times X is referenced, counting number of piaces where Y must be
unfolded.

Again, tedious to compute and easy to miss.

O The user provides unavailable information,

In general, this invoilves supplying domain-specific information, e.g. how large
will some sequence grow, how often will some event occur. In some cases, the

system will accept a simple estimate if exact figures are not known.

D User is responsible for exploring the development space. In particular, he is
responsible for backing up from dead-end development paths.

While we speculate on its encapsulation by current notation (see section 7.5), the
knowiedge necessary to control development exploration is left as future
research.
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9.1.4. The Development History

M b, e

g
. The output of Glitter is the full development exploration tree as pictured in figure 8-1. While at :f
least one development path must exist from initial specification to final implementation, no -’
= restrictions are placed on the completeness of the remainder of the tree: not all paths need be I
7
) explored or terminate before a final implementation is reached. I
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Figure 9-1: Development exploration tree
-s:_ ':
= Each node in the tree represents a particular problem solving state; figure 7-1 gives a 9
graphical representation. Included in each state are 1) the current active goal, 2) the methods ‘;:
< competing to achieve it, 3) the selection criteria used to order them, 4) the planning ::
" superstructure that sits above all this. in the section 9.3, we show how the exploration tree ::
E can be used as a corporate body of knowledge, shared among development tools. ‘
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{r ﬁ.
Y. )
\"_". .:
o 9.2. Usability
( _ R
Vo i In this thesis we have shown the feasibility of automating and documenting the -
B~ .
: ;—k transformational development of software. However, we have not addressed, at least directly,

SN the usability of the system. This revolves around two separate questions: how useful is the o

- ﬂ .*
Glitter development mode/; how useful is the Glitter system as a too/. We will look at each in =

:-::.'i’ turn.

N

) 9.2.1. The model

v -
: —
a" . Throughout this thesis we have stressed Glitter's partnership approach to development.

{ , "
;_ X There are several requirements on the human half of this partnership: :.'-
3 S
‘ ;:?-.' 1. Knowledge of Gist. The user must be familiar with the syntax and semantics of the .
N Gist specification language. ﬂ
'“ 2. Organizer. In the ideal model, this becomes the user’'s primary role, the overall
x -
o organization of the development. ~
3. Knowiedge of mapping technigues. Interactive problem solving requires that the
i user follow and sometimes provide development strategies and tactics. f-,}
o
A .
-‘;:,J 4. Knowledge of selection criteria, Choosing among competing methods often
-,.:-f requires the user to become involved in supplying unavailable information about o
ey the program as well as arbitrating ties. -
A 5. Knowledge of the application domain. The user must supply information e
o pertaining to the particular probiem domain of the program under development. -
23Y -
.-C:’ The first requirement, that of knowing Gist, currently limits the potential users of the model to N
D. \-
‘-" less than a dozen. Assuming for the moment that the Glitter model can be used with formal =
‘.; specification languages other than Gist, ones that still rely on transformational development,

T3
-3'-:; the problem remains: the use of Tl-type models has yet to gain acceptance outside of the 74
':;:Z laboratory. We have argued in this thesis that Glitter addresses part of the acceptance
problem, that of automating portions of the development. We have pointed to other research ﬂ
NG which addresses another major acceptance problem, that of the construction, debugging and
a2l - , .

: \:‘ maintenance of formal specifications. Because a formal specification is a major component Q
l' ’ u\.
P L. of the Glitter model, final acceptance must remain tied to the success of this work.
SO
\ 4 -
! The second requirement, that of the user's organizer role, may slowly become less of a
Y
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burden as experience is gained. That is, as the base of example developments grows, general
organizational methods should become apparent. At this point we should be able to
introduce higher level goals such as Develop which take as arguments either large physical or
conceptual chunks of the program. This addresses part of the orgapizational problem. The
other part is the more general problem of development robustness or freedom. The Glitter
model forces a basic top down design paradigm. As discussed in Chapter 8, there are others
that are also attractive. General acceptance of the model will likely require a less rigid stance,
i.e., the ability to provide alternative design paradigms.

The third and fourth requirements, that of mapping techniques and selection criteria, are
linked to our evolutionary approach to competency. As the catalogs become filled, these
should become less and less of a requirement. However, as long as a reasoning engine (e.g.,
theorem prover) is absent, the user must remain a part of the sometimes tedious process of
proving program properties.

Finally, the fifth requirement that the user be familiar with the domain is a generally difficult
one to overcome. Its solution relies on capturing in some machine usable form knowledge
about the domain in general and the application in particuiar. See DRACO in chapter 8 for
work in this area.

In summary, we might take a look at how the mode! has advanced the field of software
development. We clearly have not added new hordes of neophytes to the ranks of Gist
developers (or possibly not even performed any conversions from non-Gist sects); the use of
the model requires the same development knowledge as that of Gist/TI. However, by making
the Gist/T! model a more attractive one to use', we have hastened the demonstration that such
a model, as it is now embodied in Glitter, can be the basis of a practical development tool.
Once this has been shown, the transformational mode! of development will stand or fall on the
attributes presented in Chapter 1.

A separate point needs to be made here. While Glitter addresses the implementation as
opposed to the maintenance process, in the Ti model they become aimost one in the same.
Maintenance is a process of changiné not the final product but instead the formal
specification. This in turn requires a re-implementation. As we argued in the introductory
chapter, and demonstrate later in this chapter, a rationalized devalopment history becomes
an input to a mechanized Tl maintenance tool. Because of the large impact maintenance has
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2
'\ shown to have on the overall software lifecycle, one could argue that the production of a o
"' development history useful to a maintenance tool is useful in and of itself. That is, the
e-.-‘\.; documentation of the development planning structure can be viewed as a necessary product, ' §J
‘,: regardless of the user effort needed to produce it, i.e., the automation issue can be separated .
::::Zj. from the documentation issue. However, the knowledge necessary to produce the history is 3
- the same as that used in automation. This symbiotic relationship can be used to achieve both. )
::::- .
tﬁ’ 9.2.2. Tool Usability .
(33 -
= Separate from the usability of the model is the usability of the system. There are several -
.::;; issues to consider, the first of which is the user/machine interface. While minor .
:f,'z enhancements can be made to Glitter's menu and command structure, the major payoff will “
":‘; come with better presentation of the development, problem solving and program state. .
R ' Currently this information is presented in textual form. The abundance of information and its s
:&: general structural nature make this often a poor medium. We view the ability to produce the ’ )
; E various forms of development information in a graphical form and simultaneously as an E:
:f.-: important future area of research. -
. b
:' .;::: Secondly, there is the responsiveness of the system. The Hearsay-lll implementation of
:'.x Glitter, running on either a normally loaded DEC 2060 or VAX 780, is too slow to be practical
:ﬁf:: as an interactive partner. This is in spite of attention paid to selection using estimated problem
S solving costs (see chapter 7).
Ui .
-\',.'3 There are several potential solutions to the responsiveness problem. First, Hearsay-Ill was
,é‘; designed to be a general system, not tied to any particular application domain. A significant ,
» number of Hearsay features are unused by Glitter, making them excess baggage =
:: unnecessarily taking up resources. Trimming off these unneeded features will bdy some
__::: increase in responsiveness (for instance, replacing the general relational representation of
";": the parse tree with a more economical Lisp structure). The extreme would be to re-build .
Glitter from the ground up, borrowing only those features that were found useful in the
s Hearsay implementation; we have attempted to avoid this alternative up to now.
&% #
*'- However efficiently we construct our systems, ones which are knowiedge-rich and interactive )
a such as Glitter will remain in need of powerful processors. The most leverage can be gained !
3.:'.'_: o
N -

-
»
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by moving oft a time sharing system with its load average vagaries and onto powerful single
user machines, i.e., the cheap*® hardware mentioned in the introduction. While Hearsay does
not currently run on a single user machine, efforts are under way to rectity this; we look
forward to their successful completion.

9.3. Some Maintenance Examples

We have argued that the document produced by the development process should be a formal,
machine usable product. In this section, we will look in a little more detail at how such a
product might be used in software maintenance. We will present two examples, the first an
interrogation of the development history by the user, the second a modification of the original
development to accommodate a specitication change, i:e.. a re-implementation. While both
examples are based on the planning structure produced by Glitter, we stress that no such tool
currently exists.

9.3.1. A browsing example

Suppose we are given the following fragment from the initial specification of some program
(an abstraction of the conditional wait in demon RELEASE_PACKAGE_INTO_NETWORK):

if 3x || P(xy) then A;
Suppose further that one step in a development was to replace y with Q(x) by applying some

transformation T (an abstraction of the 'first program transformation of the router
development):

if 3x || P(x, Q(x)) then A:

We assume that a maintainer is browsing through the development looking for places where
performance improvements could be made, i.e., design decisions could be improved upon.
We see the ultimate goal of such a browser as providing a "you-are-there" capability, allowing

‘QCurrenuy. not 3o cheap, but rapidly faliing.
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1

'\

RS -
::.'; the maintainer to place himself at any decision point and see exactly what the the developer -
{ saw in the original development. -
, 25 . '
:: The above step in isolation is quite unmotivated: take some variable and replace it with a i
.:".:_ relation reference. The rationale behind this step in the full development is fairly deep (steps -;:
“ o

1.1 - 1.7): 1) we want to get rid of the relation P, 2) to get rid of P we have to remove all

‘_-‘,Z: references to it, 3) to remove all references we have to remove this reference, 4) to remove '{",
. '\.'__
e this reference we can try folding the existentially quantified expression involving P into a new
.'.:: relation and then worry about getting rid of P from there, 5) to fold the expression we would <Ts
. ] like to get rid of any references to non-quantified variables, e.g., y, 6) one way of getting rid of a
:f:; a reference to a non-quantified variable V is to replace the reference with an equivalent .
Ca ..
5:: expression that doesn't reference V, 7) replace y with the relation reference Q(x). We can view
._ this as a (small) portion of a plan for getting rid of a particular relation within the

, specificationw. In the process of forming this plan, points were encountered where a choice ﬁ

e had to be made among competing methods. Selection knowledge was applied to choose the
'-',:" best method among the candidates.

ol

*)

{ Suppose now that the user (i.e., maintainer) was interested in the reference to Q(x). He or she ™
@ might ask the following: =
::'_'.- User: Where did Q(x) come from? :::“.
" -

’ MaintenanceTool: the application of transformation T replaced y with Q(x).

_‘Z:; Note that this question can be answered by recording nothing more than transtormation

g2y . .

3 -; applications. However, suppose that we asked the following: ~7

User: Why was y replaced by Q(x) (or why was T applied)? -

JR - >
'. s MaintenanceTool: because we want to replace y with an expression using non-
x quantified variables. .z
; 2
P User: Why?

&: -
v ﬁn "‘:
[ W~
1\ MaintenanceTool: because we want to foid an expression that contains y.

g 1

507he motivation for getting rid of P in the first place must be supplied by the user.
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9.3.1 A browsing example PAGE 178

User: Why?
MaintenanceTool: ...
User: Can | replace the transformation y =» Q(x) with y = S(z)?

MaintenanceTool: yes. However that choice was rejected because it introduces a new

free variable 2.
User: Under what circumstances can | get rid of this step altogether?

MaintenanceTool: in the most general case, when you are not trying to get rid of P.

Each of these questions relies on some portion of the development history produced by
Glitter, e.g., the goal structure, the selection process. Each could be answered by the current
Glitter system if stated in very restricted terms. Our goal is to generalize the access to the
information and allow a much richer retrieval fanguage. Swartout {Swartout 81] discusses the
use of a similar question answering capability in the domain of expert medical programs.

9.3.2. A re-implementation example

Here we will look at the manipulation of the package router development given a specification
change®'. Suppose we notice the following:

After running the package router for sometime, it is discovered that consecutive
packages rarely have the same destination. Hence, miost packages entering the
router are delayed. A decision is made to do away with the conditional check in
RELEASE_PACKAGE_INTO_NETWORK and simply delay each package, i.e.,
unconditionally wait. Note that this is a specification modification as opposed to a
development step. '

To achieve this modification, assume that the following specification transformation®? has
been made, replacing », with b, '

51WQ add as anecdotal information that the spec change of this example was motivated by browsing (manually)
through the design decisions made in the original development history.

52,1 \east part of the effort of building a maintenance assistant will be to classffy the various types of
transformations that are made to a specification, ¢.g.. enhancement, disambiguation, constraint.
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Old Spec:

demon RELEASE_PACKAGE_INTO_NETWORK (package.new)
trigger package.new:LOCATED_AT = the source
response

begin
1 if (the package.previous ||
package.previous immediately before package.new
wrt PACKAGES_EVER_AT_SOURCE(*)
) : DESTINATION # package.new : DESTINATION

then invoke WAIT[];

update :LOCATED_AT of package.new
1o (the source):SOURCE_OUTLET
end;

New Spec:

demon RELEASE_PACKAGE_INTO_NETWORK (package.new)
trigger package.new:LOCATED_AT = the source

Lesponse
begin
’, invoke WAIT[]:

update :LOCATED_AT of package.new
10 (ihe source):SOURCE_OUTLEY
end;

We would like to reuse as much of the development in appendix C as possible in
reimplementing the new spec. We begin most naturally at the highest portions of the goal tree
(appendix B may be useful in following this discussion). The first goal posted by the user (step
1.1) was the removal of the relation PACKAGES_EVER_AT_SOURCE. This goal is still valid,
as is the method chosen to achieve it, RemoveRelation. That is, both goal and method use as
context the definition of the relation PACKAGES_EVER_AT_SOURCE which is still around.
The RemoveRelation method attempts to remove a relation by first removing all reference to
it. The re-application of RemoveRelation to the new spec produces an interesting result:
because the single reference to the relation has been eliminated, the definition can be
removed without further ado. In other words, the entire goal structure below step 1.1 {(steps
1.2 - 1.22) is eliminated. Imagine the effort invoived given only the transformation sequence:
each transformation application would have to be examined individually to determine its use
in the old development and its potential need in the new. As an illustration, one of the
transformations we would need to study is the one presented in the previous browsing
example, given there in its abstract form. We would be required to answer similar questions to
those given, but now inferring the corresponding goal structure. '
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9.3.2 A re-implementation example PAGE 177

The next user goal (step 2.1) is the removal of the refation PREVIOUS_PACKAGE. However,
this relation in the original development was a part of the residue of removing
PACKAGES_EVER_AT_SOURCE; it doesn't exist in the new development and hence the
step (and those subordinate to it, 2.2 - 2.14) can be eliminated. Whether in gene}al a goal that
loses its context can be eliminated entirely is open to question. We plan to explore these type
of questions in our future work.

The next user goal (step 3.1) is the remova! of the relation LAST_PACKAGE. Again, this
relation in the original development was residue from the removal of
PACKAGES_EVER_AT_SOURCE,; it doesn't exist in the new development and can be
eliminated (along with 3.2 - 3.5).

The last three user goals - mapping the  constraint
DID_NOT_SET_SWITCH_WHEN_HAD_CHANCE, mapping the relation
PACKAGES_DUE_AT_SWITCH and mapping the demonic structure -- can be run verbatim
as in the old development,

Let’'s examine what has happened here. Close to half of the original development has been
eliminated and the remainder run verbatim. In eliminating the portions of the old development,
we were required to examine only three high level user goals. We can see in retrospect that
these three goals should be subgoals of some still higher level goal such as "optimize use of
package history"”. Because of its domain dependence, this goal would likely be defined by the
user (see section 5.5.1). With this new structure, even less of the development would need to
be examined, i.e., optimizing something that is no longer needed is wasteful and should be
eliminated from the development. .

In summary, we have illustrated through hypothetical scenarios two important uses of the full
problem solving history produced by Glitter. One, it might be used in a browsing system that

allows the user to inspect and attempt to improve on the design decisions made in a

development. Two, it might be used by a maintainer to index chunks of the development to the
goal they achieve. There are clearly further things to consider, such as a broader model of
both spec and development dependencieé. Also, previous research into plan reuse in other
problem solving areas looks worth investigating here (see for instance [Hayes-Roth et al. 81}).
Our future plans include defining a maintenance tool that integrates spec changes, goal
structure, development modification, and replay. As in Glitter, an important goa! of this work
will be to identify the role both user and machine will play.
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-
e 9.4. Final Grades .
-§I}1 In figure 1-1 we graded the Tl model of software development according to Balzer's six o
,}% criteria. It is only fair that we now provide a report card on the Glitter system using the same ..
SO criteria. ';_I:
e
o-‘{. -..
- | | -
e | Glitter Report Card |
i I I
. -
; | e l I
oo ] 1. Ease of Specification | B | ..
EAN )
o\ | | | e
X | 2. Efficiency of the Implementation | B |
'~' P
" | | X
N | 3. Ease of Maintenance | B/B- |
L
P, o, -
) | | | <
7 | 4. Correctness of the Implementation | A |
L c | | X
-9 | 5. Resources Required I € | e
e | l |
—;.\f | 6. Type of Problems Handled | B+ | =
A | | ‘
;;-: | Comments: Gets along well with others. |
N
)
L) ..J
] :" Figure 8-2: The Glitter Report Card
. . The grading rationale for figure 9-2 follows.
-.’:-' 4
S0y :
A 1. Ease of Specitication (B). Unchanged from Tl mode!. .
£ , b
NO! 2. Efficiency of the implementation {B). The efficiency of the final implementation rests on the
o combined strengths of user and machine (see 9.1.3). )
o -
:::- “
N 3. Ease of Maintenance (B/B-). The first grade, the ease of modifying the specification, is
. unchanged from the T| model. The second grade reflects the ease with which a new -
3-;;.. implementation can be obtained incorporating the modification. The development history
o 3
o !

.','A’— "{\f:'.‘:-f:.-' '-'.:l' ) ‘.-"-; "-:".
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produced by Glitter provides the rationale behind each step in the original development. The
drawback is that the no tool currently makes use of this during re-implementation. That is, the
user must use the history as documentation in constructing the new development. In section
9.3, we speculate on how the development history can be used as a machine usable product
during re-implementation.

4. Correctness of the Implementation (A). Unchanged from the T| model.

5. Resources Required (C). This is the same Tl grade, but now for different reasons. We gave
Ti a C because of its overburdening of the user. We give Glitter a C because of its
overburdening of the underlying hardware.

6. Type of Problems Handled (B +). Our addition of one more development example is not
enough to significantly raise the Tl grade.

in summary, we have improved the grades in several categories. Just as importantly we have
improved the ease with which grades can be further improved. That is, our knowledge-based
approach and reliance on the machine to carry out details should pay big dividends as
experience is gained and more powerful hardware built. As with our two astronauts in figure
9-3, both mechanized and non-mechanized approaches are far from solving the software
probiem. However we argue that the formalization and automation provided by Glitter is a step
in the right direction.
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