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"’1 CHANNEL COOLING BY TURBULENT CONVECTIVE MIXING
.’-S
o
2 I. INTRODUCTION
The propagation of intense particle beams, laser beams, or electric
:3 discharges through a gaseous atmosphere can result in the deposition of
? significant energy along the path through the atmosphere, producing a hot,
34 reduced-density channel. The properties of the channel, in turn, affect the
: . propagation of subsequent portions of the beam which would travel along the
;q same path and the propagation of subsequent discharge strikes.}»2 As the
.% . channel developes, these properties are determined not only by the deposition
of energy that creates the channel but also by the rate of cooling. For
" lightning discharges in the atmosphere the rate of cooling of the hot channel
Eﬂ also determines the chemical composition of the products.3’4 In this paper we
<

t describe the results of a series of experiments which show that over a wide

range of channel conditions the primary mechanism for channel cooling is

A turbulent convective mixing. Such turbulence has been explained by Picone and
f Boris®+*® in terms of a residual vorticity that is caused by non-cylindrical

‘1§ features in the deposition of energy during the formation of the channel. For
X, channels whose radius after reaching pressure equilibrium with the surrounding
" atmosphere is ~ 1 cm, cooling by turbulent convective mixing is typically one

Ei thousand times faster than thermal conduction which means that channels cool
11 on a time scale of milliseconds rather than seconds.

" II. EXPERIMENTAL PROCEDURE

8

:Qj We have studied five different types of channels with very different
.;: energy deposition (from 0.4 J/cm3 to 40 J/cm3), with radii at pressure

equilibrium varying from 0.4 cm to 2.3 cm, and with a wide range of asymmetry

-

,;5 in the energy deposition: they are listed in Table 1. None of these channels
:ﬁ . was created by an intense particle beam but channels were created by the .
ﬁ deposition of laser energy in gaseous atmospheres and by ohmic heating in i
e electric discharges.
$js Type A). Channels of type A were produced in the laboratory atmosphere by CO, N
‘%; laser-driven, aerosoli-initiated, air-breakdown. The output pulse from a UV ﬁ
+} preionized, gain-switched TEA laser,7 consisting of an oscillator and three g
_.E Mlppmved December 21, 1983, .:
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TABLE 1. Channel Cooling Studies

Energy Initial
Deposition Radius** Perturbation
A. CO, Laser/ 2 2.3 very large
Aerosols/
Atmosphere
B. Unguided 40 1.4 small
Electric
Discharge
C. Laser-guided 20 1.0 large
Electric
Discharge
D. CO, Laser- 0.4 0.5 very small
Off-axis Modes
N2 + SF6
E. COZ Laser- 0.4 0.4 negligible
Axial Modes/
J/cm3 cm

*Energy Deposition is measured before expansion.
**Radius is radius after expansion to pressure equilibrium [r(z)].
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amplifiers, was focused by 2 3 m focal length salt (NaCl) lens. 7he radius of
the laser beam at focus was ~ 1 cm and over an axial length of ~ 30 cm the
radius remained < 1.5 ¢cm. Breakdown occurred in this focal regicn during the
100 ns spike of the laser pulse and spread towards the lens during the tail of
the pulse. Within the focal region breakdown occurred on many individual
aerosols (Figure 1). Nearly spherical plamsas were created that grew during
the tail of the laser pulse and finally coalesced to form a pseudo-cylindrical
channel. The total energy in the CO, laser pulse was ~ 1 kJ, the energy
absorbed in the focal region was ~ 2 J/cm3 and absorption occurred before the
channel had expanded appreciably. The hot channel produced by the deposition
of this laser energy expanded to reach pressure equilibrium at ~ 100 us when
the channel radius was ~ 2.3 cm. Thereafter the channel became very turbulent
and the channel envelope expanded as cold air was mixed into the channel
(Figure 1).

Type B). Type B channels were produced by normal (unguided) electric
discharges in the atmosphere.4 A small Marx generator with an output voltage
of < 300 kV, risetime ¢ 100 ns, and stored energy of < 1000 J was the source
for these discharges. The discharge channel length was only ~ 20 cm, the
energy deposited was ~ 40 J/cm3 again calculated on the volume before any
expansion had occurred, and the initial asymmetry of these channels was
relatively small (Figure 2). Because all the capacitance, most of the
inductance, and an appreciable fraction of the resistance (~ 50%) was within
the Marx generator itself, these discharges were very reproducible
electrically; period ~ 3 us and peak current ~ 15 kA decaying

to €1 kA in ~ 7 us.

Type C). Channels of Type C were produced by laser-guided, electric
discharges in the atmosphere.9 The path of these discharges was designated by
laser-induced, aerosol-initiated air breakdown using the pulse from a Q-
switched Nd:glass laser (¢ 100 J in ~ 40 ns). To enhance the

laser/atmosphere interaction the aerosol content of the laboratory atmosphere
10

was increased to ~ 10'7 gm/cm3 by burning a small charge of black powder.
The small Marx generator, used for Type B channels, was also used as the
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source for these discharges. Discharges of length up to 2 m could be produced

-
b2

by these technigues with a laser energy deposition of only ~ 15 J/m within an
initial channel of radius ~ 0.5 ¢cm. For a discharge length of 1 m, the energy
deposited by the discharge channel was ~ 20 J/cm3 ( ~ 350 J/m of channel
length): the current in the discharge was a damped sinewave with peak
amplitude ~ 10 kA and period ~ 3 us that decayed to < 1 kA in ~ 7 us. The
use of aerosols to initiate the laser/atmosphere interaction caused these
channels to have relatively large initial asymmetries (Figure 3), but not as

large as those in Type A channels. These channels reached pressure
equilibrium with the surrounding atmosphere ~ 30 us after initiation of the
Marx discharge; the channel radius was ~ 1 cm and the channel temperature
was ~ 5000 K. Turbulent cooling became obvious for these channels

after ~ 200 us.

Type D and E). Both Type D channels and Type E channels were produced by the
absorption of CO, laser radiation in nitrogen doped with ~ 1% sulfur
hexafluoride.ll At low laser intensities absorption of 10.6 um radiation
excites the sulfur hexafluoride molecules but there is only slow vibrational-
transiational coupling to the nitrogen motecules.l? However at higher laser
intensitiesl3 (2 106 watt/cm?) multiply excited molecules are produced and
much more rapid heating of the nitrogen occurrs (pt < 20 us Torr). In our
experiment a 50 J pulse from the CO, laser’

length salt lens, into a long cylindrical chamber, 30 cm in diameter. The
first 2.5 m of the chamber were filled with dry nitrogen, and the next 1.0 m,
the interaction zone, was filled with the nitrogen/sulfur hexafluoride
mixture. The fill pressure was ~ 900 Torr and the separation of doped from

was focused, using the 3 m focal

undoped nitrogen was maintained by flowing the gases in at both ends of the
chamber and out at a double aperture, two plates about 10 cm apart, that
divided the chamber except for the 7.5 cm diameter holes at their centers.
Before each laser shot the chamber was evacuated. It was filled with dry
nitrogen and the flow pattern was established. Then the sulfur hexafluoride
was introduced into the appropriate flow line and after the mixture had filled
the interaction zone of the chamber (~ 10 minutes) the experiment could
procede.
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The difference between these two types of channels was in the structure
of the COp laser beam. For Type D channels the oscillator of the COy laser
used a simple “plane-plane” cavity. Thus the laser beam contained off-axis
modes that came to focus at different off-axis positions. The intensity
distribution in the focal region (in the interaction zone) therefore consisted
of a number of “hotspots", in filaments running roughly parallel to the optic
axis of the lens, with regions of lower intensity between the hotspots.

For Type E channels the oscillator of the CO, laser was reconfigured to
use an off-axis confocal resonator. In such a geometry only axial modes are
produced. Further, the "crescent" shaped output beam produced by the
oscillator was masked with a 7.5 cm diameter aperture to select a nearly
uniform, circular laser beam. In the focal region of the lens, the energy
distribution from this beam was nearly azimuthally symmetric.

Channels produced by these two laser beams are shown in Figure 4. At
early times (~ 100 us) when the channels have reached pressure equilibrium but
turbulence has not had time to grow, the "hot spots" in the laser beam cause
the fringes in the interferogram of the Type D channels to contain sharp
discontinuities. Fringes in the interferogram of the Type E channels are
smooth and continuous. Type E channels did not exhibit turbulence! Apart
from the mode structure in the laser beam Type D and Type E channels were very
similar. The energy deposited was ~ 0.4 J/cm® for both channels for Type D
channels the radius of the C02 laser beam was ~ 2.5 mm and for Type E channeis
it was ~ 2.0 mm. At pressure equilibrium the radii of the channels were 5 mm
and 4 mm respectively.

IIT. RESULTS AND DISCUSSION

For each of the five channels used in these experiments the energy was
always deposited within a time, t1s which was short compared to hydrodynamic
times and within a radius r(1) which was ~ 1.0 cm. Thus at time t, there
existed a hot channel whose density was still the ambient density but whose
pressure was significantly above ambient. In the next few tens of
microseconds, t ~ 30 us, the channel expanded almost adiabatically to reach
pressure equilibrium with the surrounding atmosphere. A shock wave was
created during this expansion and, in some cases, some energy was lost to
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radiation, but these were relatively small corrections (< 20 %). If the
channel had been cylindrically symmetric, as it expanded to pressure
equilibrium, it would have cooled thereafter only by thermal conduction. Then
the envelope of the channel would have grown aslé4

i
"‘: rz(t) ~ r'z(r) + 4 & (t - 1) ,
o
AICN
where a, is the thermal diffusivity which is ~ 0.2 cm?/s and t = 7 is the time
') at which the channel achieved pressure equilibrium. For a channel whose
_‘3 temperature, T(t) is ~ 3000 K, the time required for the channel to cool
‘2§ to ~ 600 K, i.e., for the channel radius to increase by a factor of ~ v2, is
almost one second,
}ﬁi The measured growths of the five channels used in the study are shown in
'sg Figure 5. At early times the curve for each channel is linear so that unique
'* values of a maximum anomalous diffusivity, a, can be determined. This initial
- rate of growth increases with the initial radius of the channel, r(z). At
;iﬁ later times, channels A through D grow at increasingly slower rates (for B
fis‘ this flattening of the curve occurs between 20 and 30 ms).
' Channels of Type E show very little growth compared to other channels,
j&; though it is still ~ 10 times thermal conduction. For these channels the
;ij slope increased at later times to ~ 5 cm?/s.
AE?Z Turbulence transports fluid properties by small scale convection.

However in very simple terms, this effect may be modeled as an anomalous
diffusionld in which fluid cells move a distance % (Prandtl eddy length)
before breaking up and losing their identity. The product of this “mean free
path" and the relative velocity of the fluid cell is the eddy diffusivity and
becomes the effective mass diffusivity, kinematic viscosity, or thermal

A A A,
YAy VY

vl

-‘.'
:;: diffusivity. Thus we expect the thermal diffusivity to be of the form
%
]y
W a ~ 2v
L
S where 2 is a characteristic length and v is a characteristic velocity. For
‘: our channels, which are to a first approximation cylindrical, the diffusion is
’ radial. The maximum value of 2 is therefore some fraction of the radius of
; - the channel, r(-'. The iximum cell velocity is limited to some fraction of
1238
S
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g
EE the sound speed, Cqs of the ambient atmosphere around the channel for that is
:C the maximum speed with which the cold fluid cells can move. With this in mind
- we have fitted the data for channels A through D to the relation
:-‘ @=Cg r(t)/k,
- and find that
& k =66t 6.
\.n *
;; It is perhaps coincidental that the initial growth (cooling) of these
EE four very different channels should be related in such a simple way.
& Certainly Picone and Pﬂr‘iss’6 have shown that the residual vorticity, K,
4 developed in different models for the asymmetric energy deposition is always
is of the form
N
:' K~U§ZM. In (p /p.) . f
, Cg w' "o
o
ﬁf where up is a characteristic velocity of the expanding channel boundary, p_ is
% the ambient density, P is the minimum density in the channel, and f is a
geometric form factor which is < 1. And this vorticity leads to a predicted
I~ maximum anomalous diffusivity of
N
: a~cg {r(n) = r(1)} 1n (o /o) « |F|/4n .
- While values of the maximum anomalous diffusivity calculated from this
ig equa1:1'on4’5’6 fall within a small factor (< 3) of the measured values they do
; not indicate the near constant value of k. Also whereas in the experiments we
v see a fully developed isotropic turbulence, both theory and the numerical
4 simulations actually deal with a residual, large scale vorticity and do not E
; . attempt to reproduce the cascade to fine scale turbulence. On the other hand 0
oA the near constant value of k in the experiments suggests that the turbulence .
2 N developed in the channels saturates at relatively modest levels of asymmetry ';
o in the energy deposition. However the drastic reduction in the turbulence By
seen in the Type E channels, and predicted from the theory in that f » o for E
these channels, is a clear indication that development of residual vorticity N

because of asymmetry in the energy deposition, is the mechanism that causes
turbulent convective mixing.
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IV.  CONCLUSION

In a series of experiments we have found that hot, reduced-density
channels in the atmosphere or in nitrogen at near normal temperature and
pressure always cool by turbulent convective mixing provided there is more
than some minimal level of asymmetry in the channel. The channels were
produced by aerosol initiated, C02 laser driven air breakdown, by normal
electric discharges in the atmosphere, by laser-guided, electric discharges in
the atmosphere, and by the absorption of o, laser radiation in nitrogen
doped with sulfur hexafluoride. Unfortunately quantitative measurement of the
azimuthal asymmetry in the channel was not possible, but it was clearly shown
that elimination of the asymmetry prevented the development of turbulent
convective mixing, Thus as noted by Picone and Boris9:0 their theory for
the development of vorticity and turbulent convective mixing and these
experimental findings are in good agreement both in terms of identification of
the mechanism for generating turbulence and in the calculation of the
magnitude of the effect.

However in the experiments we have found that the anomalous diffusivity,
by which the effects of turbulent convective mixing can be represented,
saturates at very modest levels of asymmetry in the channel at a value
dependent only on the sound speed in the ambient atmosphere and the size of
the channel at pressure equilibrium. This phenomenon may well be associated
with the fact that the fastest convection is always associated with the
largest cells but it is not as yet predictable from the theory. It is
certainly convenient that the effect of turbulent convective mixing can be
represented so simply for it permits ready inclusion of this effect in channel
cooling problems. For channels in the atmosphere with radius at pressure
equilibrium of ~ 1 cm, the saturated anomalous diffusivity caused by turbulent
convective mixing is ~ 500 cm?/s and that is ~ 2000 times larger than the
effect of thermal conduction.
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R-1031

Schlieren photographs of hot channels in the atmosphere produced by
aerosol-initiated, laser-driven air breakdown using a pulsed CO
laser. Each photograph is from a different laser pulse and the
time in microseconds between firing the CO, laser and taking the
photograph is shown under each photograph. The scale size for each
pair of photographs is also indicated. The exposure time for each
photograph is ~ 25 ns. The CO, Taser enters from the left.
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Figure 4.

CO, LASER PRODUCED CHANNELS
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?//_/////m'/'f/

il

TIME 0.1 ms 1.0 ms

R-1029

Interferograms of channels produced by the absorption of radiation
from a pulsed CO, laser in nitrogen doped with ~ 1 % sulfur
hexafluoride. The two upper photographs show the first and the
tenth frames from a "movie" of a Type D channel. The two lower
photographs show the same frames from a "movie" of the Type E
channel. These movies were taken with a high speed framing camera
using a Mach-Zehnder interferometer and a He:Ne laser. The
exposure time is ~ 40,us and the time between frames

was ~ 60 us (i.e., 104 frames/sec). The size scale for these
photographs is indicated.
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where t

(RADIUS)? [cm2]
-

10

BUACASAE A A AC B At et S A N R e G R AR A R N A R A el d 24
.

r2{t) = A1) + 4a (t-1)

TIME [ms]

Variation of the measured radius of various channels with time.

The channel designations A, B, C, D, and E follow from Table 1.
Values of a consistent with the equation

(o}

+

Channel
Channel
Channel
Channel
Channel

r2(t) = r2(1) + da(t-1)

< 100 us are given for the linear portion of each curve.

A

Experimental data
points.
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