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G observations for an earthquake making it appear "anomalous” (i.e.,
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A which explosions could appear earthquake-=like, and which could also lead
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Research vn Deterministic Methods of Seismic Source ldentification
- Summary of Annual Technical Report for
,g October 1, 1982 - September 30, 1983
ol
""5‘ The objectives of the research being conducted under the current 2 year
\ |
~
contract are to: (1) Develop and test methods of discrimination in the regional
‘:‘;.f: and teleseismic distance range using physical source parameter discriminants,
: &
d‘ 2
j:f (2) Pursue theoretical and observational studies of seismic sources; (3) To
.
' develop methods of theoretical seismogram synthesis in the near, regional and
,‘{: teleseismic distance ranges for structure and source definition; (4) To develop
N
,:; and apply advanced signal processing/analysis methods for discrimination and
. explosion yield estimation studies and; (5) to pursue near field studies of explo-
-'}’
.;;:; sions and earthquakes for detailed source definition.
\.:.:
:'-'_':f In this report we describe specific research results in: (1) The theoretical
basis for seismic event discrimination and for the inference of physical parame-
~
2 ] ters describing seismic sources; (2) Observations of body wave magnitude resi-
HY
™ duals in the U.S. and Southern Canada and the implications for yield estimation
N at non-U.S. and/or U.S. test sites; (3) Inferences of magnitude-yield relation-
)
t::q ships for both U.S. and U.S.S.R. test areas, with applications of these relations
{1
: :‘ to U.S. and Russian nuclear test observations, to obtain new yield estimates; (4)
s Studies of a variety of physical situations which would produce seismic observa-
i
{‘3’ tions for an earthquake making it appear "anomalous" (i.e., explosion-like)
o
A
E:’;- when viewed from the perspective of "standard" discrimination methods, and
? similarly physical situations were described for which explosions could appear
oy
:: earthquake-like, and which could also lead to large yield estimate errors.
“n
o,
: ": Some of the major conclusions drawn from the results described are: (1)
, That earthquake-explosion discrirmination by m, - M,, at large to moderate
magnitude levels, is due, in part, to basic "d‘?f@'&f‘c@s in “th}sﬁIﬁgfrf%&\mht‘)
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'}: radiation from the two source types, as predicted,with explosions producing
X > more high frequency seismic radiation than earthquakes with the same low fre-
Ej quency radiation. Further, because of this same spectral difference between
:; the two types of seismic events, spectral discrimination, using variable fre-
o quency magnitude (VFM) methods, is very effective in distinguishing and identi-
' ,,.' fying the two event types in the regional distance range and can be applied to
.:'é; very low magnitude levels (below m, = 3). (2) Deviations of observed single sta-
tion body wave magnitudes from the mean observed magnitude can be very
E: large, of the order of one magnitude unit from the mean, and these deviations
.EE can also be strongly dependent on the azimuth from the station to the source,
\' with rvariations as large as .5 magnitude units occurring as a function of
; ‘E azimuth. These variations are considered to be due to both focusing (defocus-
‘ ;: ing) effects and variations of anelastic absorption between points of observa-
- tion. The azimuthal variation at OB2NV, at the Nevada test site, is .22 magni-
::. tude units, while at RKON, on the Canadian shield, the variation with azimuth is
.:.'; .45 units; suggesting that use of these sites as analogs for the differences
2 between NTS and Russian test sites requires additional assumptions about how
'.*. the strong azimuthal variations are to be interpreted. If, however, azimuthal
: variations are averaged and these stations are used, then the predicted differ-
“' ence in m, observations from Russian tests and NTS tests should be .31 magni-
:.:‘_': tude units, with NTS having the lower average magnitude if the observing sta-
:2 tions provide a reasonably uniform azimuth sampling of both test sits. (3) Rus-
sian test site body wave magnitude-yield relations, adjusted from NTS derived
EZ magnitude-yield relations to account for a transmission bias of slightly more
E: than .3 magnitude units between NTS and Russian sites, give estimated yields
..‘ for Russian tests (from 1968 to 1977) that are reasonably consistent with yiclds
:\ estimated using "universal” surface wave magnitude-yield relations. Further,
O ]
vy
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: the estimated yields for Russian tests appear to be within the limitations of the
) test ban agreement. That is, within the uncertainties of the estimation
J methods, all the yield estimates obtained are less than, or about equal to, 150
:[‘. kT. (4) Seismically anomalous events can (and do) occur under a variety of
* conditions, but it is possible to properly identify these events when appropriate
N seismic procedures are employed, with these methods being spectral
Q:: discrimination methods which can be implemented for routine analysis.
] 1. Introduction
% The objectives of the research being conducted under the current 2 year
contract are to: (1) Develop and test methods of discrimination in the regional
. and teleseismic distance range using physical source parameter discriminants,
?: (2) Pursue theoretical and observational studies of seismic sources; (3) To
:.:: develop methods of theoretical seismogram synthesis in the near, regional and
: teleseismic distance ranges for structure and source definition; (4) To develop
? and apply advanced signal processing/analysis methods for discrimination and
1": explosion yield estimation studies and; (5) to pursue near field studies of explo-
:: sions and earthquakes for detailed source definition.
% In this report we describe some of our work, and results, on the theory of
-

earthquake source representation, as it relates to earthquake-explosion

discrimination. In this regard, Section 1l and the Appendix 1 provide a descrip-

A

: tion of a major part of our comprehensive study of the
X
theoretical /observational basis for earthquake-explosion discrimination. In
-

.(; addition, in Section IIl, we summarize our observational results pertaining to
'.:: measurements of magnitude variations for the U.S. and Southern Canada, and
discus the relevance of these observations to magnitude bias due to upper man-
:: tle attenuation, as well as the relationship of these results to yield estimation
->

< for USSR underground tests. In a related study, described in Section IV, we
4
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‘: address the effects of variable coupling and attenuation as they relate to yield
»
. estimation for underground nuclear tests within the U.S. and the U.S.S.R,, and
; then apply our inferences to the Russian and U.S. test data in order to obtain
E yield estimation results. In Section V we describe some of our investigations of
the conditions under which "anomalous”" events will occur, specifically for
."'. m, — M, discrimination and VFM (variable frequency magnitude) discrimination.
{ II. Discrimination of Seismic Events
. Several research projects have been pursued during the 1982-83 contract
\.'E period. In this report we will emphasize our work on a comprehensive study of
: the theoretical foundations of seismic event discrimination (Archambeau and
& Evernden, 1984). These results are the first part of a comprehensive study of
:{ discrimination, with the complete study involving an integration of previous
work on source theory, wave propagation theory and earth structure, including
5 new material and results obtained under current AFOSR support. This work is
; an attempt to provide a complete explanation of empirically substantiated
7 discrimination methods, and, in addition, to provide a basis for less verified or
' new discrimination methods. In the complete study, the theoretical predictions
are compared to relatively large sets of observed data, in order to substantiate
‘" the predictions and confirm the models. Further, inferences of network capa-
, bility for the detection and identification of explosions, including decoupled
o explosions, are also considered in an attempt to provide an accurate and realis-
tic evaluation of U.S. capability for detection and identification of Eurasian
: events under a variety of conditions. Finally, consideration is also given to

-

anomalous events, particularly anomalous explosions and the conditions under
which it is expected that such events can be generated. In this regard, joint
discrimination procedures are described that can be used to identify such

events.
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'..'f" The first part of this study is included in the Appendix 1, wherein we pro-
.. vide the theoretical foundations for quantitative descriptions of earthquake
{E generated seismic fields, along with specific spectral predictions, scaling laws,
i‘s etc. These results form part of the framework within which we interpret
- discrimination methods, the other part being a similar quantitative representa-
:5. tion of explosion generated seismic fields. Through the use of these theoretical
;§ predictions we are then able to interpret and understand observed discrimina-
: tory differences between earthquakes and explosions (Evernden and Archam-
;{ beau, 1984). (These detailed comparisons of theory and observation will be dis-
5\ cussed in our next report.)
x We are also concerned with seismic source discrimination through the use
’,‘:'E of inferred physical parameters for seismic sources. In this investigation we
%: consider it necessary to use formal inversion methods to obtain estimates of
. source parameters, such as stress drop, rupture length and rupture velocity.
.:.}:: In this regard, inversion methods provide the necessary automated and objec-
j:: tive methods that must be used, and we have therefore investigated approaches
‘\ which involve moment tensors as well as new approaches to source inversion
E: based on vector multipole formulations of the seismic radiation fields from
;:; explosions and earthquakes (Archambeau and Scales, 1984).
<
‘ In this work it has been shown that the conceptual and physical basis for
I"_ Gilbert's moment tensor representation (Gilbert, 1971) is faulty and that its cri-
’ ticism by Backus and Mulcahy (1973) is also in error. Further, it is found that
ri the stress glut formulation and concept is without physical or mathematical
‘5__: (i.e.. logical) foundation. An alternative approach for the inversion of seismic
:::.: data for source properties is given and it is shown that a vector multipole
:_l.: expansion of the seismic radiation field is appropriate, in that it provides a
é} desired linear inversion for these coefficients from the observed data, as do
%
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g moment tensor components. In addition, the physical parameters defining the

. ) source, such as spatial stress changes, failure rate and failure zone dimensions,

‘:j are explicitly related to the vector multipole coefficients and it is shown how

% these parameters can be obtained from the multipole coefficients through a

'. non-linear inversion procedure.

¥ \: In addition to a formal inversion approach, we have previously used relaxa-

§ tion source models in earth structure models to provide a basis of interpreta-
tion of the m, and M, data from earthquakes, in terms of failure zone dimen-

'5 sions and stress drop (Archambeau et al, 1983). In particular, we studied

".:;‘ recorded earthquakes in the Aleutian region. During the present contract

_ period this work was finalized and is being submitted for publication. We have

;:; begun a similar study of the magnitude data for the Japan-Kamchatka region

3‘ during the current contract period and expect to finalize this work by the end
of the contract period. Finally, we have begun studies of small earthquakes and

‘ explosions from the California-Nevada region using spectral methods to infer

-e source stress-drop, dimension, etc. (Wilson and Archambeau, 1984). One of the

) principal results is that the average stress drops observed for large numbers of

::4‘ individual events show a definite dependence on rupture length, with small

:' events giving much higher average stress drops than larger (longer) ones. This

- result strongly suggests that many smaller events involve failure at highly

E; stressed single asperities, without failure zone propagation continuing very far

:; outside the single asperity zone. On the other hand, larger events appear to

T involve failure connecting several or a large number of highly stressed asperi-

:‘E_ ties separated by zones of low tectonic stress. In such a picture, expiosions

' ‘ appear as small rupture dimension events with very high stress drops (above

g the 4-5 kilobar level), while earthquakes of comparable effective failure zone

j lengt’ s have ~' ess drops significantly below the low kilobar level (below 1 kilo- :

|
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bar) and generally, as a population, have effective rupture dimensions that are
much larger than explosions. Hence, a "physical parameter space" discrim-
inant, involving stress drop vs maximum failure zone dimension, serves as

another approach to event identification.

During the FY 1982-83 contract period we also continued our studies of
spectral discriminants, in particular, the variable frequency magnitude discrim-
inant employed in the study of Eurasian event data set. This latter effort was
jointly conducted with Systems, Science and Software. The current effort
involves finalization of this work, along with applications of new modeling tech-
niques, of source and propagation effects, applied to provide a more detailed
understanding of the observational results. The essential result obtained, how-
ever, is that VFM discrimination is very effective down to very low magnitude
levels (at least to m, = 3.0) and that its effectiveness is due to the fact that
most explosions with the same low frequency spectral level as an earthquake
will have a higher "corner frequency” than the earthquake, as well as a lesser
P-wave spectral decay rate at frequencies above the corner frequency. Thus,
this results in substantially greater high frequency generation for an explosion
compared to an earthquake with the same low frequency spectral level for the
direct P-wave, and this difference is exploited by the VFM method to provide the
observed discrimination capability. The method is shown to be very effective in
regional distance ranges where relatively high Q paths are available, particu-

larly when very high frequency magnitudes (up to 10 Hz and beyond) are used.

II1. Magnitude Bias Estimates for Yield Estimation

This work (Butler, 1983) involves body wave magnitude measurements at 1
Hz from a large set of selected events at all available U.S. stations, as well as at

some stations in Canada. At a number of stations, including OB2NV at the

Nevada test site, magnitude data was obtained at 3 azimuths, with each azimuth
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data set analyzed separately. The results of this analysis are summarized in
Figures 1 and 2. The conclusions that are apparent from the results of this
study are that the relative body wave magnitude variations in the U.S. are large,
with the range running at least from +.4 to -.4 magnitude units. Further, the
spatial variation is, in many areas, extremely rapid, suggesting focusing and
defocusing effects. In this regard, the variations of ém, with azimuth at a par-
ticular station can be very large, with variations of as much as .4 magnitude
units occurring, and with no apparent correlation with tectonic province for
the large variations. In particular, the Nevada test site station OB2XNV (on a
granite stock), shows an azimuthal variation in ém; of .22 magnitude units, and
the site at RKON, which has been used as a station site comparable to Eurasian
nuclear test sites, shows an azimuth variation of .45 magnitude units, with
larger magnitudes to the north than to the south and northwest. These partic-
ular results strongly suggest that magnitude bias estimates, using OB2NV and
RKON as representative NTS and Russian test site analogs, may be misleading
and at the least ambiguous since different azimuthal sampling will give very dif-
ferent results. (e.g., One could get values for the difference, ém, (RKON) - ém,
(0B2), anywhere in the range from .74 to .07 depending on azimuth sampling.) If
an average of the three azimuths is used, then dm, (0OB2) 2 .14, while ém,
(RKON) 2 .45, so that ém, (RKON) - 6m, (OB2) 2 .31. However, blind use of such
an average in estimating magnitude bias for test sites is certainly suspect,
unless one can show that the averaging removes local focusing-defocusing vari-
ations completely and that the average represents the basic anelastic absorp-
tion effect plus any regional focusing-defocusing due to deep (crust-upper
mantle) structure. Even so, one would expect fairly wide ranging fluctuations
in observations at different azimuths from tests at such sites. In any case, it is

clear from the data that OB2 is not representative of the Nevada area nor the
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Basin and Range Province, and its anomalously high ém, values relative to

—

nearby stations probably represents strong focusing associated with the gran-

;\._"' ite intrinsive at the site.

;:: These results imply that extremely accurate yield estimates (to within, say,

e a 10% uncertainty) will most likely require detailed site information in view of
$E$ the rapid, and somewhat unexpected, variations present within geologic pro-
_.S: vinces and sub-provinces. However, correlations of these observations with

~ more readily available geophysical data (e.g., gravity, heat flow, P delays, cru-

:; stal thickness, near surface geology, P, velocities,, elevation, etc.) may offer

\3 some hope of deducing magnitude variations for "random" sites.

v

::E: IV. Teleseismic Yield Estimation with Applications to U.S. and U.S.S.R Test Data

G )

"E The necessity of obtaining accurate and rather precise yield estimates

.:.: from seismic data places a rather extreme burden on our methods of measure-
-;:" ment and data analysis and, as well, on the basis of interpretation, of such data.
.;, As is well known, a large number of near site environmental factors, such as

':- detailed material properties at the explosion site and the nature of tectonic

‘: stress fields, are capable of strongly perturbing the seismic field, and so this
';3 state of affairs makes accurate estimates of any single parameter such as yield
X

== extremely difficult, if not impossible, without a detailed understanding of all
these (other) effects and the means of taking them into account in the analysis
of the observed data. In addition, we are also well aware that variations in crust
and upper mantle properties, including both structure and absorption proper-
ties, can lead to very strong fluctuations in the observed seismic data, resulting
in biasing between different test sites. Until we have reasonably accurate
determinations of these characteristics for potential underground test areas, it
will be difficult to obtain yield estimates that are reliable to within a factor of

two. Furthermore, the effects of anelastic absorption and scattering (focusing
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and defocusing) are certainly frequency dependent and without fairly precise
knowledge of the form of the frequency dependence for each, and the relative
magnitudes of these effects at particular test locations, it is unlikely that very
precise yield estimates can be obtained because of this uncertainty alone.
Finally, it seems clear that much more precisely defined seismic magnitudes
are required (or perhaps a different measurement or group of measurements
which are carefully and precisely defined) in order to reduce observational sub-

jectivity and associated variations in the measured data.

In addition to the effects of anelastic attenuation, it is clear that variations
in material properties produce changes in the explosion coupling and so will
produce different seismic wave fields for the same explosive yield. Figures 3
and 4, from Archambeau and Evernden (1983), show body and surface wave
data (from Marshall et al.) which illustrates the approach required to obtain
meaningful yield estimates. In particular, we have used high, intermediate and
low coupling magnitude-yield curves to interpret this data, with these curves
being based on results derived from explosion modeling in different types of
materials. Further, the m, versus yield curves shown are segmented into sec-
tions of different constant slope, this change of slope occurring at large yields
when the corner frequency for the explosive generated P wave is less than 1 Faz.
The upper curve, for non-NTS explosions in high coupling media, applies to Rus-
sian event data as well as U.S. Aleutian explosions. This curve, and associated
data, indicates a clear shift above the high coupling NTS curve, of about .25
magnitude units. This then is a bias effect, which arises because of the differ-
ences between the NTS site transmission characteristics and the less

attenuated transmission from other sites.

The data show considerable scatter about the magnitude yield curves, and

this is considered to be due to: deviations from the mean material properties
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Figure 3. Observed body wave magnitude versus yield data (from Marshall et al.)

interpreted using three coupling level m, v8 Y curves, which are based
on modeling results. Note that yield curves generally consist of two
segments of differing constant slope, these being due to magnitudes
measured gbove the corner frequency for large yield events, and below
the corner frequency for intermediate and low yield explosions.
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(implicitly) assumed for each of the three coupling level curves; local variations
in the transmission characteristics arising from the shifts in explosion loca-
tions; and, finally, variations in m, and M; values due to tectonic release
effects. The latter effect has been interpreted as being particularly strong for
the Rulison and Rio Blanco events (Murphy, Archambeau and Shah, 1983), with
the m, values being considerably reduced by tectonic release having a double
couple or fault plane equivalent corresponding to a 45° plane with normal
equivalent faulting at the explosion hypocenter. (The actual tectonic release
mechanism is thought to be stress relaxation in a prestressed zone around the

(nearly spherical) shatter zone created by the explosion itself.)

As examples of the application of these current, somewhat preliminary
results, to Russian explosion test site data, Figure 5 shows the inferred magni-
tude yield curves for Russian (shield) explosions with announced yields, along
with French and U.S. data from the Aleutians, the latter two data sets con-
sidered to be comparable to data from Russian test sites in terms of roughly
equivalent transmission characteristics. In particular, the anelastic absorption
and other transmission characteristics are considered to be comparable. The
empirical curves shown on this plot are obtained from the NTS curves shown
earlier, with a .3 increase in the m, value for a given yield. This value is based
on the average 6m, value between an NTS test site (OB2NY) and the shield-like
station at Red Lake Ontario (RKON), the result being obtained using the data
shown in Figures 1 and 2. this value is also consistent with the rough magni-
tude of the inferred body wave magnitude difference between NTS and Aleutian
events (.25 m, units) indicated in Figure 3. The fit of the empirical curves
shown in Figure 5 to the observed data is considered to be very good, with the

high and intermediate coupling curves being in agreement with the observed

data in a sensible and physically understandable manner.
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The consequences of yield estimation based on magnitude-yield curves
incorporating sensible corrections for strong biasing effects, such as differen-
tial absorption, variable coupling and tectonic release are indicated in Figures
8 and 7. Thus, with an uncorrected application of the NTS derived magnitude-
yield relations to Russian test data one obtains yield estimates from conven-
tional m, and M, data as indicated in Figure 8. As noted in the figure caption,
there are several reasons why one expects such estimates to be systematically
in error. On the other hand, Figure 7 shows estimates for the same set of Rus-
sian explosions when a bias correction in m, values is applied to the NTS magni-
tude curves so as to account for the different transmission losses that are
inferred between NTS and the Russian sites. Clearly, quite a different picture of
Russian test activity is implied by Figure 7, compared to that inferred from Fig-

ure 6.

We expect that the residual scatter, about the one to one slope line
corresponding to yield values which are the same from both m;, and *; esti-
mates, is mainly due to the unaccounted effects of tectonic release and local
variations of transmission characteristics,which fluctuate about the mean for
the Russian sites. In our future work we intend to attempt to significantly
improve upon these yield estimates by more fully and accurately accounting for
all three effects, and to provide a strong justification for the "corrections” that

are used.

The yield estimates for U.S. underground tests, before and after the limited
test ban agreement, were obtained using the NTS magnitude-yield curves shown
earlier and these estimates may be compared to the results for the Russian
tests. In this regard, the U.S. test data gives yield estimates with a distribution

similar to the Russian results for the 1977-81 period. The somewhat greater

scatter in the yield estimates for the Russian tests is thought to be due to the




Yield Determination from mp & Mg for USSR Explosions
(NTS mp, ond M, vs. yield curves used directly)
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Figure 6 . USSR test data for the period of the limited test ban from 1977-1981. The

yield estimate brsed on m, is plotted vertically, while the Mg yield
estimate is given on the horizontal scale. The NTS based m, versus yield
curve, uncorrected for site differences,was used to infer the body wave
yields, Y(m). The universal Mg versus yield curves were used for Y(Mq).
Use of the uncorrected m, estimates of USSR yields produces biased Y (my)
results, with the yield estimates much too high for most events.
Conversely, use of Mg uncorrected for tectonic release effects could
result in Y(Mg) too low for some events, and possibly Y(Mg) too high for
a few events.
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based on Mg were obtained using "universal' Mg versus yield curves, with
no correction for tectonic release effects.
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l
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pared to NTS or the Novaya Zemlya sites. In particular, the Kazakh site appears
to have a thrust type tectonic release equivalent while the NTS site is generally
thought to produce strike-slip equivalent radiation, which only mildly perturbs
the M; values and has almost no effect on m, values. On the other hand, a
thrust mechanism can strongly bias M, values and have nearly as large an
effect on m, (increases in m, would be expected). As observed previously, we
intend to more systematically investigate the effects of tectonic release on
these yield estimates in an effort to provide a procedure for reduction or elimi-

nation of its effect for yield estimation.

V. “"Anomalous Event” Conditions Leading to Discrimination Failure and Inaccu-

rate Yield Estimates

It is rather easy to demonstrate that there are several complicating effects
that can cause some of the standard earthquake-explosion discrimination
methods, such as m, vs M, to fail in particular circumstances. Further, biased
yield estimates can be obtained when such magnitude data is used to estimate
explosive yield. In particular, aside from the obvious failure that will occur for
m, vs M; discrimination when earthquakes are grossly misclassified with
respect to depth, it is shown that particular types of small earthquakes occur-
ring at shallow depths, in the range from 5 to 25 km, will have anomalously low
Rayleigh waves in the usual measurement range from 18 to 20 seconds. This
"M, null” occurs for small strike slip earthquakes, and is found to occur at all
azimuths from this type of event. Further, as illustrated in Figure 10 small

thrust earthquakes with dips at or near 45° produce similar "M, nulls”. These

low M; values will lead to earthquakes that appear very "explosion-like" in the

m, — M, discrimination plane.
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Figure 9. Yield estimates from both and M_ data for NTS explosions during the
period 1977-81. The solid circles correspond to estimates based on
the intermediate coupling magnitude-yield curves for NTS while the
open circles are yield estimates based on the NTS high coupling
curves. The uncertainty lines indicated with the solid peoints are
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A second complication that affects spectral discriminants at teleseismic
distance ranges, and affects teleseismic explosive yield estimation as well, is the
highly variable effective Q observed across continents, as well as similar varia-
bility across trench zones and oceanic ridges. For example, on the basis of
results from Butler (1983), which are summarized in Section 1], large variations
in the observed effective Q occur within the continental U.S,, not only from geo-
logic province to province, but also within these provinces on a rather fine spa-
tial scale. While part of these observed variations are undoubtedly due to com-
plex velocity structure, which produces scattering and focusing effects, it is
certain that the most important broad scale effect is due to upper mantle
absorption, which occurs nearly exclusively within the upper mantle low velo-
city zone. As is well known, differences in the anelastic absorption and
"scattering loss” processes between test sites can result in the necessity of
recalibration of empirical magnitude-yield relations, to take into account the
differences in absorption (the "Q bias") between test sites, as was discussed in
Section IV. This, consequently, requires fairly detailed knowledge of the upper
mantle characteristics at a test site, or reliance on other (robust) methods of
yield estimation which are unaffected by upper mantle absorption. Thus, for
accurate teleseismic yield estimation using "Q corrected” m,, it would be
necessary to have effective Q information for an area of interest that was at

least as complete as that now available for the continental U.S.

In addition, low Q zones with associated high absorption can cause the high
frequency spectra of explosions and earthquake P waves to be reduced below
station noise levels near low Q regions, so that the spectral differences upon
which variable frequency spectral discrimination is based cn be obscured by
noise. Such effects on spectral magnitudes have been observed and correlated

with the existence of anomalously low upper mantle Q zones in the vicinity of
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particular events. (In this case, explosions will appear within the earthquake

population in the spectral magnitude "parameter space.")

Theoretically it has been shown (Stevens, 1980) that zones of high initial
prestress, at or near the failure zone for an earthquake, can give rise to peaked
earthquake spectra and a significant enrichment of the high frequency part of
the spectrum from the event. This is potentially a problem for both m, vs M;
and spectral discrimination, since the high frequency enrichment could lead to
enhanced m, values at a fixed M; level. However, it appears in reality that the
stress levels in the earth at shallow depths are not generally high enough to
cause serious difficulties for discrimination, and that only for quite deep earth-
quakes (100 km and deeper) is the effect likely to be very strong and only then,
apparently, for some rather small percentage of earthquakes. In this regard,
however, Figures 11 and 12 illustrate results of variable frequency magnitude

(VFM) discrimination where this effect appears to occur.

Specifically, these figures show VFM discrimination results at Red Lake,
Ontario and the LASA array in Montana for well recorded events from a large
Eurasian data set. At RKON three deep earthquakes appear in the explosion
population, plus one earthquake that is thought to be a shallow event.
Nevertheless, a large number of deep and shallow earthquakes form a distinctly
separate population distribution, which is well separated from the explosions.
The LASA results, with fewer events well recorded, show that there is again a
good representation of the explosion and earthquake populations with, how-
ever, one deep earthquake appearing in the explosion population. In both fig-
ures the earthquake populations are made up of earthquakes at all depths,
from very shallow to very deep. Thus it appears that some earthquakes can

violate this spectral discrimination criteria at a single station. However, it is

also true that only very rarely does a particular earthquake fail the VFM
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discrimination criteria over an entire set of stations and in the one instance
where this occurred, the event in question was a very deep earthquake that
appeared in explosion populations at many stations. {The event was in fact
event No. 147 shown in these figures.) Thus, there appears to be occasional
deep events having spectral properties that are explosion-like and that appear
so at nearly all teleseismic stations. Nevertheless, almost all deep and shallow
earthquakes appear distinctly different spectrally from explosions. Clearly, if
these "anomalous" earthquakes are only deep earthquakes, then depth esti-
mates for all events that appear "explosion-like" in the VFM plane will identify
these "anomalous” events as deep earthquakes, with any shallow event in this

population being a probable explosion.

Should there be more common occurrences of shallow earlhgquakes
appearing in the explosion population, such as the one event considered to be
an earthquake in the explosion population region in the VFM plane at RKON,
then more elaborate (joint) discrimination procedures would be required to
sort out the probable explosions, from events in the explosion population
region in the VFM plane. However, based on the Eurasian events studied so far,
no shallow earthquake that was "well" recorded (with signal to noise power
larger than 2) at several stations has been found to appear explosion-like at a
majority of the stations. Thus, occasionally, at one or two stations, a shallow
earthquake will appear explosion-like, but on a multi-station identification
basis, these events have been properly identified. (This means, however, that
single station event identification by VFM spectral discrimination can result in
misclassification of some shallow earthquakes as possible explosions unless
other single station discriminants are also used which can help provide identifi-

cation.)

Finally, a complicating effect of considerable significance is ltectonic
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:‘: release associated with explosions. As is well known, numerous Shagan River
i\ " test site explosions show highly anomalous surface wave radiation involving
': large Love waves and "reversed” Rayleigh waves (i.e. reversed in polarity com-
:-E pared to explosion events in the same region that do not produce large Love
XK

waves). The effect can be explained by tectonic release equivalent to a thrust

type tectonic shear stress field at the explosion site. Hence, it is clear that low
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frequency Rayleigh waves, and M; measurements, can be very strongly affected.
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In fact the tectonic component can be much larger than the expission com-

:2 ponent, so that yield estimation from M, can be (very) strongly perturbed. In
:' addition, as shown by Murphy, Archambeau and Shaw (1983), the direct P wave
:. from the Rulison explosion in Colorado was strongly perturbed by induced tec-
! :,3:‘. tonic release, such that the observed mb value was reduced by about .3 magni-

E:..E; tude units. Therefore both M; and m,; can be strongly perturbed by tectonic

o~ release effects making yield estimation using these magnitude measures more
\

:}\ difficult. (Indeed, if the thrust oriented shear stress applies to the surface
:}:\: waves from the Shagan River events then, based on the Rulison results, this tec-
.." tonic mechanism would also strongly perturb the m, values for these events.
t;: The perturbation would, however, be such as to increase them by as much as
3&: several tenths of a magnitude unit, which is opposite to the decrease in m,
\": observed for Rulison.)

A
‘\-:::: Solutions to most of these problems are not too difficult to find, once the
-E:':S mechanisms responsible for the anomalies are identified. Specifically, mul-
\ tivariant spectral magnitude discrimination using both body and surface wave
:'-\ magnitudes measured at a number of frequencies can eliminate or minimize the
..;E discrimination problems described earlier. Here the appropriate approach

- would be to rely upon body wave spectral magnitudes, such as m,(/,) vs
-l"l:’ my (f 2). for discrimination in the regional distance range, particularly for small
%
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399 events, and to use my(f,) vs M;(f2) (including the standard m, vs M) at
.

: J teleseismic distances, for the larger events (e.g.. for events with m;,; > 4.0 to
A

- 4.5). In this case the "M, null” for small events is avoided, since body waves are
_.«'{ used for spectral discrimination of small events, and at regional distance

ranges the upper mantle low Q absorption will not affect this crustal body wave

) discrimination procedure. For all larger events, which will involve failure over a
R
o fairly wide depth interval, the "M, null” will not appear and m; vs M; will apply
By
]

as a well verified discrimination procedure that is not so strongly perturbed, by

< upper mantle Q variations and other propagational effects, as to cause event
.;: identification failure. Here, the standard m, vs M; approach would be supple-
:: mented by using m;, vs M; at a range of frequencies (e.g., 1 Hz and .05 Hz, as is
'.::. the practice now, but also at .5 Hz and .03 Hz, 1.5 Hz and .05 Hz, etc.) This latter
‘:_‘. multivariant m;, vs M; approach can be used to increase the confidence level of

teleseismic event identification, and also to supplement the body wave spectral

v discrimination at regional distances.

<

Y

X For accurate yield estimation of identified explosions in all situations, it is

necessary to avoid Q biased measurements, or to correct for the "Q bias", and

:-b to explicitly remove contamination effects due to tectonic release, the latter
?3 when it occurs being evidenced by SH wave production at rather high levels at
- all frequencies. This can be accomplished by routinely measuring M:(f) (ie.,
- Love wave magnitudes at several frequencies) as well as #§(f ) (the normal Ray-
j\. leigh wave magnitudes at various frequencies) and m,(f ). When the Love wave
~ magnitudes for identified (or suspected) explosions are low, then ME(f), with
:«: appropriate distance corrections applied, can be used to estimate yield in the
':E usual manner. Since M_g based yield estimation avoids the strong upper mantle

attenuation effects, it is to be preferred for yield estimation. However, m,

based yield estimates can simultaneously be obtained using a standard empiri-
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cal relationship, and any "Q bias" for the explosion site region can be estimated

YIRS,

-

by comparing the yield estimated from m; to that obtained from M;. (In this

way a calibration for m, vs yield for the site could be obtained.) For explosions

JUAAAAL P

showing moderately large ME at the lower frequencies used for yield estimation,
such as .05 Hz, then the observed Mg and M_é’ data must be jointly interpreted

(e.g. within the theoretical framework of stress relaxation due to shatter zorie

[N O

induced tectonic release) to provide estimates of the physical parameters for
the tectonic release source, in particular the effective shatter zone radius and
- the prestress magnitude and orientation. These parameters can then be used,
’ again within the framework of the theory, to infer the magnitude of the explo-

sive component for both Mg and m, measurements. These corrected M§ and m,

values can then be used to infer the proper yield, again with #f used as the pri-

mary means of yield estimation, so that "Q bias” effects are minimized. For very

L

N large observed Mg values associated with an identified explosion (e g., M_é > M_’sg
for f = .05 Hz), then it is possible that earthquake triggering could have taken

place and, in this rare instance, an in-depth study of such a potentially complex

R

event would be necessary to obtain an accurate explosive yield estimate.
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> Appendix 1
' Seismic Discrimination of Earthquakes and Explosions:

) Part 1 - Theoretical Foundations
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" 1. Mathematical Foundations

[N~ 4

_'.:; _ In the following sections we will wish to make use of a number of rather
t standard results in the mathematical theory of elasticity. In addition, we will
:-::, use some new results, as well as specialized notation, which may not be immedi-
ately familiar to the reader. In order to present the more physical arguments
and discussion that will follow, without the clutter involved with the parentheti-
cal digressions required to define notation and develop certain mathematical
;:Z’- results, we give a brief summary of the basic mathematical notation and results
N that will be needed later.
o
39 Basic Equations of Motion and Boundary Conditions
. In order to develop the representations to be used in a systematic and logi-
f—' cal fashion we begin with the basic equations of motion in an elastic/anelastic
N continuum, which simply are an expression of the conservation of momentum.
X These equations can be put into the form (Archambeau and Minster, 1978):
5 D Lapuy=pfaia,y=1234 - (1)
A
N -:'. where the summation convention for repeated indices applies and where u, are
. components of the displacement field and f, the external force field density,
-fﬁ with both of these fields written as four vectors for the convenience of express-
e ing the equations of motion in compact form. In particular, these fields are
- defined to have the component form:
(4,) = (4, ug, 1y, 0)
v, . A
-.(:. .. - . .. P . .
:‘. (Fd=(/1.72750)
) 1 where the fourth component (the "time-like” component) is set to zero. In
- addition, the independent variable vector x is the four vector:
';:- . (z,) = (z, zp. 25. )
0N '
& with time £ the fourth component in this notation. Further, in this notation L,,

is the "elastic operator”, and has the form:

iR

where
. Capr6 == Caui(a.B.7.6)=(5.5.k.1)
% Caprs = {Giara = Cocar =pbuit. k =1,2,3
1::; Capys = 0: all other a, £, 7.6
'.Q
N
\‘ Here the greek indices are always defined to run over the integer range from 1
.4 to 4, with the regular latin indices i, j, etc., always defined to run over the
Ny integer range from 1 to 3. The tensor G, is the ordinary elastic tensor, which
7 in the isotropic case is just:
3 G = N6y + u(6ubp + 6aby)
Vv

“w ¢-
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G‘ (This material tensor can incorporate anelastic effects if the Lamé constants A
: end u are generalized to represent operators, involving convolutions and

derivatives with respect to time. See Archambeau and Minster (1978) for
< details.) Finally, p is the density for the material.

Thus the elastic tensor, when written in the expanded "four component”
form, can be made to include inertial effects as well as rheological effects. The
symmetry of this generalized elastic tensor is the same as that of the ordinary
elastic tensor, in particular:

Gt = Cpa = Gt = Gy
and
Caprt = Cpays = Capty = Ciap

This symmetry insures that angular momentum is conserved, as well as linear
momentum, in the equations of motion.

A generalized stress tensor 7,5 can be defined in terms of the generalized
elastic tensor, where

AW"
Tes = Copt 37,

In terms of this tensor, the equations of motion become
Taps =P a. (2)

where the comma denotes the derivative with respect to the index g, that is:
[
Ters = oz, e

As is shown by Archambeau and Minster (1978), boundary conditions at or
across any type of boundary within the medium are:

[ 7emp) =0:reodv (3)

where the double bracket notation is used to denote the change (or jump) in
the quantity enclosed across the internal or external boundaries 3V. That is,
¢ ] = ¢ — o®, where p is any function or variable and the superscripts (1)
and (2) are used to denote the value of ¢ when the surface is approached, in
the limit sense, from opposite sides. Here 7, are the components of a space-
time normal to a hypersurface in (2, , ), and this four-vector has the form:

(np) = (n1. g np = Ury)

where n;, L = 1,2, 3, is the ordinary spatial normal to a surface of discontinuity
in the continuum and

Ul =lh-v,

where U; are components of the velocity of the boundary* and vy, are the

*gincg U ig the velocity of a surface, 1t is defined to be continuous scross that surface.
ﬂm:l U J=0toralll,




..............................

‘.

components of the velocity of the material particles. If the boundary moves
with the particles and the particle velocity is continuous across the boundary,
which is ordinarily the case for solid-solid boundaries, then the relative velocity
components [}® all vanish, and the boundary condition (3) reduces to the regu-
lar condition of continuity of traction across a material boundary. Further,
since the combination Ui*n; appears in the expression for 5, then U;*n; van-
ishes if only the normal components of U and v are equal and continuous at the
boundary. This is the case for ordinary liquid-solid boundaries. However, in
certain cases such as when the boundary in question is a moving phase change
boundary, where the material on one side is in a different phase state from that
on the other, then the boundary movement in space may be driven at a slower
or faster rate than the particles are driven, and in this case U;*n; is non-zero.
In particular, in the case of spontaneous failure in a solid under stress, the
N boundary of the failure zone expands with time and separates material regions
~ in which the rheological properties are quite different. Further, the failure
X sone surface separates regions in which the material behaves nonlinearly (the
interior) from the exterior linear region, where the linearized equations of
motion (1) apply. The boundary of a failure zone usually expands at a rate that
is very different than the local velocity of the material particles and, as shown
by Archambeau and Minster (1878) and in later sections of this discussion, the

NP~ R

A '

s

-

3 rate of movement is much larger than the particle velocity, usually being of .the

oy order of the local shear velocity in the material. Therefore the boundary condi-

- tion (3), which expresses conservation of momentum at a boundary, must be

used in its most general form when we deal with failure processes, such as those

~ involved in earthquake phenomena.

. If we use the definition for the generalized stress and "elastic” tensors,

N then the boundary condition (3) can be put into the form:

z:j [rame =l v = Tu)m =0

where 7}, is the ordinary stress tensor, that is

% Tu = ComnUman

;-j in the exterior linear region, and where*

Z;:_ ve=y~-U=-U"

;': Whereas (3) expresses the conservation of momentum across a boundary,

the conservation of mass is insured by the condition (Archambeau and Minster,

- 1976) . . _

= [oveni ] =0 (4)

% which holds in general, whether the boundary moves with the particles or not.

v It the boundary does, however, move with the particles, then conservation of

. mass is insured by

g [unm ]=0

.. :it should be emphasized that U is, by definition, continuous across the boundary over -
= which it is defined, in that | U; ] = O, for all I. However, since components of ¥ cen be J
o discontinuous, U} = v; can only occur if v happens to be continuous in all its components y
D on the surface over which U is defined. :
-~ K
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so that (4) degenerates to the condition of continuity of the normal component
of the particle velocity. If the boundary is assumed to be a "welded"” solid-solid
contact, then the tangential components of the particle velocity across the
‘boundary are also continuous, and the (stronger) condition,

X [w.]=0.2=123,

applies. This is also often expressed in terms of the displacement field as
[w]l=02=123.

The conservation of energy st an expanding or moving boundary has the
form (Archambeau and Minster, 1978): C :

vt -uTu @)y | =0 (5)

Here p is the density, £ the total energy, g; the components of the heat flux
and 7 the stress tensor. In most elastodynamic applications, including those
involving faillure processes, the heat flux termn may be neglected since the
changes due to heat flow are very small on the time scale associated with elas-
todynamic variations. Thus, for a "fast process” like failure in solids, the heat
flux term in (5) is negligible. Further, the total energy, pE, is the sum of the
internal energy pe. the kinetic energy 1/2pv;v; and the potential energy due
to conservative body forces, so that »

Ex=s +1/2yyu, ¢+

where ¢ is the potential for the body forces, defined by f = — Vp. In the elasto-
dynamic case, 9 corresponds to the gravitation potential and changes in this
quantity across boundaries, in particular across failure zone boundaries, are
very small. Therefore

lz']-[cli-l/z[vw.]

is a good approximation for the change in £ across material boundaries. When
beat exchange and changes in the body force potential are neglected, then (5)
is automatically satisfied when the momentum and mass conservation relations,
(3) and (4), are satisfied, {f there is no change or “jump"” in the internal energy
across the boundary. This is the situation with normal boundaries, defined by
material contrasts in a layered medium, where the boundary moves with the
material particles. .

If there is energy absorption or release at a boundary, such as is the case
for a failure process where energy is absorbed by the material in the transition
to the more disordered (failed) state, then (5) is not automatically satisfied and

. the conservation of energy condition at the boundary constrains the rate at
.which the failure process can proceed. In particular, the energy absorbed per
unit mass | ¢ ] is characteristic of the material and the particular transition
process which is occurring, and so is equivalent to a quantity analogous to a
latent heat. For failure processes in #solids (which may or may not involve first
order phase transitions) the energy required for the process, per unit mass
that undergoes failure, is denoted by L. Hence, we set: [ ¢ ] = L, and the boun-
dary condition in (5) can bs put in the form:

PNL+1/72] v DU v = = [ vy Tun, —qiny )
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- Here p{!? and y{") refer to the material before transition, that is to the material
._ outside the failure zone. We define the rupture rate Uz to be the rate at which !
Zj-'.: the failure surface expands in the direction normal to itself, measured relative
ok to the particle velocity in the material outside the failure zone. Thus

Up = (Ui = v{n,

Now, using the other conservation relations given in (3) and (4) to eliminate
terms involving | v; ). it is shown by Archambeau and Minster (1978) that this
relation is equivalent to:

tat,
- loml laal o

pL 2L

where p = p{!), and f, = Tun; is the traction. Here, of course, it is assumed that
L # 0. If the heat flux is neglected then this gives:

4
Up > L;:—'i%l— (s)

which expresses energy conservation on a moving boundary along which energy
absorption occurs due to a transition process, such as material failure.

The momentum and mass conservation relations, in the general case, may
be combined into one relation by expanding (3)., and by using (4) to eliminate
terms. Specifically, the combined mass-momentum boundary relation is
(Archambeau and Minster, 1978):

Pl”tlUn=°i‘t| (7)

where Uz.p and {; are as defined above.

In genersl, any boundary along which energy absorption (or release)
occurs will move at a rate that is different than the particle velocities on either
side of the boundary, and in this case the general forms of the conservation
laws expressed by (3), (4) and (8), or (8) and (7). are the appropriate boundary
relations to be satisfied. Further, such moving boundaries make the dynamical
system non-linear, since the movement or expansion of these boundaries
depends on the elastodynamic field, via the (nonlinear) dependence of Up on
the particle velocities and tractions in (5) and (7). Thus, while the equations of
motion in the medium exterior to a failure zone are linear, and are as indicated
in (1), nevertheless the system of equations governing the elastodynamic fields
in the linear zone outside the failure region consist of the linear differential
equations plus the (nonlinear) boundary conditions on a rapidly moving, or
expanding, boundary surface. The non-linear aspect of this elastodynamic
problem is displayed explicitly by the Green’s function integral equation for the
displacement field u in the exterior (linear) region surrounding an expanding
failure zone, since it incorporates, in a single equation, the equation of motion
and boundary conditions at the failure surface, plus initial conditions.

Green'’s Functions and Integral Equations for Elastodynamic Problems

In order to obtain integral equations for the elastodynamic field, and exact
and epproximate solutions of these latter equations, we need to consider
Green's functions, GI*(x. {;: X, £y), corresponding to the k component of dis-
placement in the medium, at a receiver point at x and time ¢, due to an impulse



force in the m coordinate direction, occurring at a source point at x; and at
time £5. The Green’s function to be considered must satisfy the inhomogeneous
elastodynamic equation of motion along with the regular boundary cenditions
for a layered earth model. More specifically, the boundaries of the medium are
taken to move with the material, so that there is not relative movement between
particles and the boundary surface, but there may be slip at the boundary such
as occurs at fluid-solid or fluid-fluid boundaries. In this latter case the tangen-
tial components of the particle velocity need not be continuous.

The Green's function of interest therefore is defined by the following sys-
tem of equations:-

= A"(x. t:x, tg) (8a)

o % o |, OGF
ot |P "ot )T Bz, WM
with A" a generalized delta function given by

Al = 4nby, 6(x - x5) 8(t — o)

Here 8 =1 if i =m and is zero otherwise, while é(x — x;) and &(¢t — ;) are
Dirac delta functions. The appropriate boundary conditions for GI" are:

lgr]l=0:xcav (Bb)

and, on welded solid-solid boundaries

der)=:xz0v (8c)

or, on liquid-solid and liquid-liquid boundaries

| n,] O:xzdV (8d)

Here g. denotes the tractions on the boundaries of the medium, the latter
denoted by 8V, with n, the components of the normal to such a surface. (The
boundaries 8V can be internal as well as external, with any of these being
defined as surfaces across which the material properties are discontinuous.)
The explicit form for the Green’s traction is:

¢ =[Chu sgt‘ﬂ"]ﬂ;

The system of equations in (8) can be solved in closed form for media com-
posed of layers with uniform properties, such as are usually used to model the
earth. In particular, for a spherical earth model, consisting of concentric
spherical shells, the Green’s function satisfying the system of equations (8) in
such a model is obtained by first applying the Fourier time transform to the
system of equations (8), and then expressing the Green's function as an eigen-
function expansion with coefficients which are determined by the boundary
conditions. The resulting systern of algebraic equations can be solved using the
Haskell-Thompson matrix method (e.g. Ben-Menahem and Singh, 1972) and this
gives, for the transform of the Green’s function:

5 ) ¥5(x0: W)

...............
......................
..............................

aMPLR e 2 "4 a m M s M. . 2 =



.1.

¥i(x of) ¥i(xg wf) |
+ o = () ] ’ (®)

' where
' ¥i(x of) = Do (r: o) Pin(0. 9)-e,

+ Epu(r: 0f) Bim (9. 9)8p

¥3(x: of) = Fim(r; ok) Con (9. p)e,

Here 1': and 1«: denote components of the spheroidal and toroidal eigenfunc-
tions for the layered sphere, with oS and wf the associated eigenfrequencies.
A bar over the eigenfunction denotes complex conjugation. The functions Py,
Byn and G, are the vector spherical harmonics (e.g. Morse and Feshbach, 1853)
and the radial functions D,,. Eps and F,, can be expressed in closed form in
terms of spherical Bessel functions, with coefficients expressed in terms of pro-
ducts of Haskell-Thompson matrices, (e.g., Ben-Menahem and Singh, 1972).

An entirely similar eigenfunction expansion for the Green's function in a
layered half space can also be obtained (Archambeau and Stevens, unpublished
manuscript, 1980). Therefore the Green's functions for quite detailed models of
the earth can be expressed explicitly in terms of elementary functions.

As is well known, the system of equations defining the Green's function,
that is, equations (8). may be used together with the elastodynamic equations
(1) and appropriate boundary conditions, such as given in (8) and (7), to obtain
an integral equation for the unknown elastodynamic displacement field in an
elastic (or anelastic) medium. Such an integral equation incorporates the equa-
tions of motion along with the spatial boundary conditions and "initial values".
This integral equation is usually called an "elastodynamic representation”
theorem in the present context. In the case of an elastic/anelastic solid with
an expanding failure zone, the usual development of the Green's function
integral equation is not straightforward. Archambeau and Minster (1978) give
the derivation for this case. The important differences between this derivation
and the more standard results used in elasticity theory and seismology (e.g.
DeHoop, 1957) are that the equilibrium stress field, for a medium which is in a
state of initial stress, will change as an internal failure zone boundary grows.
This gives rise to an "initial value" integral term that isn't present in the usual
formulations in elastodynamics. In addition, the boundary conditions on the
growing failure surface are of a more general form than those on a normal,
"fixed"”, boundary, as was indicated earlier.

A form of the Green’s function integral eguation which accounts for these
effects is shown by Archambeau and Minster (1978) to be:

amu,(x) = ] tts [ o7 ) GE (n %) %50 = [ dto [ Jp(x. %) mylme) 4o

"‘f.“o.[lp ou(x) | 0G4 (x.x0) d°x (10)
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Here the summation convention applies as always, and a four-vector notation is
used, where all greek indices run over the range from 1 to 4. In this case we
express ordinary spatial vectors as four vectors with the fourth ("time-like")
component set to zero, such as for an ordinary displacement vector where:

(“#) = (“l- Up, us. 0)

[T

Similarly, all ordinary spatial tensors are "adjoined” with zeros for the "time-
like” (index 4) components. Thus:

G ifaor u=1,23
Gt = O:ifaor u=4

where the latin indices, such as ! and m, run only over the range from 1 to 3.

The quantities , and J§'. on the other hand, are four vectors with non-zero
time-like components, and are defined by:

' If = Clrep~uaT s

(np) = (n,, ng ny. - Uimy)

Tap = Caprs(xc) !'-%7;%)-

8G.
G = Capys(xo) -—#;(3'—")-

.are the generalized strﬁu tensors associated with the displacement u, and
Green's displacement J,, respectively. Both 744 and g,s have non-zero "time-
like” components, as well as "space-like” components. Here the coordinate
components =4 define a four-vector x such that

(zs) =(z1 2p.25. ) 6 =1,234

and Cgpy is the generalized elastic tensor, defined earlier in connection with
equation (1), with the density as well as the ordinary elastic constants of the
material as components. Thus this tensor includes inertial as well as elastic
response coefficients. The space-time normal with components ng have values
equal to the ordinary components of n, the spatial (outer) normal to the moving
surface, plus a fourth, “time-like"”, component with a value equal to the negative
of the normal component of the boundary velocity at this surface.

To obtain the (linearized) integral relation for the elastodynamic field u,
the equations of motion in the linearized form of (1) are used and, in addition,
the generalized normal has been linearized by using - Un; as its fourth
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DN Tm necessary for notational clarity, we will write the source coordinatesas 2,29, 29,
V., £4 in component form. se are 10 be interpreted as the components of Xg. We shall also

eccasionally write Xg as X’ when necessary for consistency in notation.
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component rather than the (proper) term - Ui*n;, with Uj* = U; —v; where v; is
@ component of the particle velocity and U, a component of the (absolute) velo- J
city of the boundary. In the case of interest, wherein we are concerned with

rupture zone growth rates, |U| > |v|, we can neglect the particle velocity rela-

tive to the rupture velocity, so Uj*n; ~« U;n;. In this case then, the components

of the generalized normal 7, can be expressed in a form that is explicitly

independent of the elastodynamic field variables. The quantity Uin, is usually

called the "rupture velocity”, and is defined as Up = Uin;. It is simply the rate

at which the rupture surface expands in the direction normal to itself and

defines the time history of expansion or growth of a failure zone.

The volume integrals in (10) are defined over the (linear) region exterior to
any (nonlinear) failure zone, and this exterior volume is simply denoted by V.
The surface integral is to be taken over the surface 8V of the failure zone and
p all other boundary surfaces of the medium Because the failure surface
expands with time, at the rate Ui, then both the volume V¥V and the surface OV'
are functions of the source time variable £,.

_- " The first integral in (10) involves the external body forces acting on the
medium. In the elastodynamic case the only body force of any significance is
\ gravity, and only the changes in the gravity field will affect the dynamic dis-
. placement field. These changes are very small relative to tectonic stress field

changes for an earthquake source and can be neglected relative to other terms
. in (10). (See, for example, Archambeau and Scales, 1983). .

The final integral term involves the derivative of the equilibrium displace-
ment field u® with respect to the source time variable £, When a failure boun-
dary forms and expands with time in a stressed medium, as is the case with an ;
earthquake source, then the equilibrium state for the medium must also
change and this integral accounts for the dynamical effects produced by such
changes. It plays the role of the initial value integral of the classical Green's
function integral representation (e.g. Morse and Feshbach, 1853), but has a
more general form in this case. The surface integral over the moving boundary _
8V accounts for scattering and absorption of energy at the moving boundary .
and it also has a more general form than arises in the classical case due to the ,
relative movement of the boundary with respect to the material particles. )

The expanded form of the integrand J§' 7, in the surface integral can be .
shown, from the definitions given, to be:
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where y;, T, and n; are the conventional spatial displacement. stress and sur-

face normal, and similarly GI" and g,': are the Green's displacement and stress.
This quantity is identical to the classical result for a stationary boundary,
except for the addition of the terms involving the boundary velocity function U. A
These latter terms account for the actual transport of material from one side of
the boundary to the other. In the case of failure, the terms account for the X
envelopment of new material by the rapidly expanding failure zone. p

In order to make direct use in (10) of the eigenfunction expansion for the :
Green's function given in (9). it is necessary to use the Fourier transformed "
: (spectral) version of (10). Hence, with the Fourier transform operator with
. respect to the (observer or receiver) time variable ¢t having the form:
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Fir(e) =£!(t)""" dt = f (w)

v_lth inverse

FF (@) = [ Fo)et df =1 (e)

where o = 2nf, then application to a causal Green's function (see, for example,
Archambeau and Minster, 1978), Gf (x; x5) = Gf (z*, =§: t - £p). gives:

I}{G{(:'. z5:t - tg)] = c".“'" G (z*, =k ©)

Here 5{ denotes the Fourier transform of Gf with respect to ¢. Since the
transform is with respect to the time variable £, then this operator commutes
with the integrals and derivatives taken with respect to £ and £, so that the
operation can be taken inside the integrals appearing in (10). It is then not dif-
ficult to show that:

|4l (2, ©) =Z.-‘“.¢t° '{',Pftal"dazo

=Feean f forf -G ) -l crtralca,

Hch"“"a, '{.,Ip:'—:“ol ordtz, (11)

As is clear from the expresssion of sach ‘integral term in (11), the terms
correspond to Fourier transforms of integrals over a time dependent volume or
surface integral. Here the transform turns out to be with respect to the source
time variable g, rather than with respect to the receiver time £. If the depen-
dence of the volume V and surface 8V’ on £y can be neglected, and some fixed
limits of integration used, then the transform operation can be moved inside
the spatial integrals. In this case the result (11) simplifies to spatial integrals
bver products of Fourier transforms, as in the classical result with stationary
boundaries. However, in general, the result (11) must be used essentially as it
stands.

One formally rigorous approach in dealing with the evaluation of (11) in
general circumstances is to (continuously) map the surface 8V’ into some fized
surface that has a convenient shape, such »~ a sphere, and to thereby produce
spatial integrals that bave fized limits with respect to £o. In this case all the
functions appearing in the integrand are also mapped into a new (time depen-
dent) "space” and, in addition, the Jacobian of the mapping appears in the
integrand. Then, however, the Fourier transform can be moved inside the
integrals and applied directly to the resulting integrand. In this case a variety
of approximations are possible gince the Jacobian of the transformation can be
expanded, as well as the Green’s functions and other terms, in appropriate
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functions to yield quite accurate analytical and numerical results. This latter
. _ approach, while complicated, has been pursued by Scales and Dilts (1983) and
f';« has provided initial resuilts in several important cases involving ellipsoidal
o, ‘failure zone formation. In the present discussion we will be content to consider
i) simpler (geometric) cases that can be approximated without recourse to the
e . mapping theory, but that nevertheless contain the essential features of the
- theory of spontaneous elastodynamic sources (earthquakes).

In view of the length of the expressions for the integral representation of

the elastodynamic field, it is convenient to introduce an inner product notation,

. along with the four-vector (space-time) representation, in order to condense
the results and to highlight their physical significance.

Thus, defining inner products over the failure zone boundary, 8V" and the
volume, V, exterior to that boundary, we can express the integral representa-
tion of the transformed dynamic field 2, in (11) as:

U =0 + D T (12)
with
o) = F, [(pn. Er),}
L e : ,. . -cy'); F;.[(u.. ﬁ{,‘,n,)”_ =Ty 5“)”,

e =k, {(pac.uu‘- ér )y}

Here €{°) denotes the dynamical displacements associated with (gravitational)
body force perturbations due to the failure process. As noted earlier, this term
is very small compared to the displacement term €@P), associated with the
relaxation of tectonic stress due to the spontaneous creation of a failure zone.
The displacement term d',‘.” denotes the (secondary) displacement effects due
to scattering from the (growing) failure surface. (The four vector notation is
used to compress the expression for this term. However, uf5 is identical with
,m = 1,2,3 since the component with 4 = 4 is zero.)

The various inner products represent spatial integrals over the volume
outside the failure zone or over its surface, so that for example:

~ TR
(PO GT), = '{' )P [3;0— Gl'dSz,

Finally, l‘.. represents the Fourier transform operator with respect to the
(source) time variable £y, as defined earlier.

If, as was also noted earlier, the volume V and surface 8V are independent
of time variable £, then the operator F;, commutes with the inner product
integrals and, in this special case,
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\:' where ;g. stc., are simple Fourier transforms of the variables in question. In
i this case, when the volume V and surface(s) 0V are independent of time, then
3 it is also true that the normal boundary velocity U-n will be equal to the normal
. component of the particle velocity at the boundary. That is, there are no grow-
ing failure zone boundaries in this case. Therefore the rupture velocity
_ Up = (Ui =v{")n; vanishes in the integral terms above, and these integrals
N immediately reduce to:
- @l =(pt1. GT*),
» . ﬂ.’: = (ﬂc;gh Yov- = (Ture. GI*),,. (13)
> o) = - ot (p2. GT),
o
oY
N where 7, and g.: are the ordinary elastic stresses associated with the displace-
~ ment w; and Green's displacement function Gi". Since the medium does not, in
. - this case, have an internal growing inclusion corresponding to a failure zone (or
,,-:'- o . other phase change), then the equilibrium field will not change with the time
W : variable g even if the medium is initially stressed. In this case, o.ou' = 0, and
J': the relaxation displacement field vanishes. Hence, in this case only the first
'5.: two integral terms in (13) are nonzero and the total displacement field is just
the sum of these two terms. Written out explicitly we have, in this "standard”
case:
”,
g ~ o~ ~ ~
3 Uy = ,[Pf: Gl doz¢ + ‘[ {ﬂ'zgﬂ"lt - 6“"&“&]“0 (14)
nY
-$' " . . . R
: This is, in fact, the classical integral representation used by DeHoop (1957) and
- others in elastodynamic and seismological applications. As will be seen, this
e integral form for the elastodynamic problem has many uses, including the
representation of dynamical dislocation fields and equivalent elastic sources.
»! In these cases, and in many others involving elastic scattering problems, the
N first integral over the body forces f; can be neglected. On the other hand, if
one uses equivalent forces to represent a source, then this leading integral
: term gives the displacement field.
~ . .
o II. Basic Theory and Models of Earthquakes
b
N

It is generally agreed that the seismic radiation produced by an earth-

quake is a consequence of the relaxation of tectonic stress in the medium sur-

., rounding a zone of material failure. Thus, the origin of the energy of an earth-

quake is the stored strain energy within a large volume surrounding the (nar-
row) fracture zone and, in quantitative terms, the total energy release is the
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difference between the equilibrium strain energies stored in the entire medium
before and after the creation of the failure zone. The computation of this
energy change is, in principal, accomplished by simply computing the strain
energy stored in the prestressed medium wifh an inclusion (the failure zone)
and subtracting it from the strain energy initially stored in the stressed
medium without the inclusion. In both computations the prestress state is
specified by requiring the stress field, with or without ths inclusion, to assume
a prescribed fixed form and value at great distances from the origin, where the
finite failure zone is centered. (See Landau and Lifshitz, 1858; Archambeau,
1968 ;nd 1873 or Eshelby, 1857 for examples of this computation in specific
ocases.

The creation of a failure, when viewed in this way, can be shown to cause a
net reduction of the strain energy stored in the medium. This difference in
stored (potential) strain energy must necessarily be partitioned between
seismic radiation and the energy required for the creation of the failure zone.
Such a calculation, involving the differences between two equilibrium states,
does not, however, tell us how this energy is partitioned between these two
forms, nor does it tell us how the energy in the radiation field is distributed
spectrally. That is, it says nothing about the manner in which the system goes,
dynamically, from one equilibrium state to the other.

On the other hand, this fundamental energy computation forces us to
recognize that the energy in the seismic radiation field comes from the release
of stored energy from the volume surrounding the failure zone. Thus an earth-
quake is, quite literally, a volume source within which, or at the boundaries of
which, our measurements are usually made. This simple observation, in itself,
suggests that any direct dynamical formulation describing the seismic radia-
tion from an earthquake will involve a volume source distributed over the
medium surrounding a growing failure zone or fracture. This follows, of course,
because the energy literally comes from the elastic region surrounding the
failure zone and any direct dynamical formulation of the problem designed to
predict the seismic radiation should show this explicitly.

Kinematical Representations

In contrast to dynamical representations of earthquakes, which must
involve the physics of the failure process itself as well as stress wave radiation,
kinematical dislocation sources are often used to represent an earthgquake.
This approach has considerable intuitive appeal since an earthquake, as well as
changing the stress field in the medium, also produces a displacement "disloca-
tion", or offset in the medium across the failure zone. Since a failure zone is
usually very thin, often only a few millimeters in thickness, then the zone can
easily be considered to be essentially a plane and the displacement to be
discontinuous across this plane. Clearly, one may conceive of an earthquake as
being equivalent to a displacement dislocation taking place along a plane (the
“failure plane”) with an "appropriate” time history. In this case, one has at
ones disposal the knowledge that if a displacement is specified completely in
terms of its space, time and magnitude history on such a plane, and if the
(usual) boundary condition requiring continuity of tractions is assumed, then
this is sufficient to prescribe the elastic wave field everywhere in the medium
surrounding this “dislocation source”. This, in fact, follows quite simply from
the usual Green's function solution of the equations of n.otion in an elastic
solid with fized boundaries. (See, for example, Morse and Feshbach (1953), for
basic Green’s function solutions; or Aki and Richards (1980), for detailed dislo-
cation solutions.) In particular, the displacement field (neglecting body forces)
is given, in general, by*:

:E summation convention is to be applied to repeated indices throughout, so for exam-
e, Uiny = Uin, + Ugng + Ugng. Here aloo, we use t* =t + ¢, where £ is the re-
S Y7 < ]

:.i.nr’ ud-: and & > 0 is a small time increment which mersly serves to avoid any mingulari-
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. where G is the displacement Green's function, g: the Green's function trac-
: tion on the surface(s) I, given by

9: (xt:x0.t0) = G (xo) ’m:::’o-fo)

with Gq; the elastic tensor, and where {; and u; are the traction and displace-
ment components of the dynamic field. On a dislocation surface I;, where the
volume enclosed by the surface is allowed to vanish, the traction component
differences across such a (two-sided) surface vanish by the assumption of con-

~ tinuity of the traction, and the surface integral giving the displacement field in

the medium reduces to:
‘4
41“‘..(!.‘) = {a°£AUgg:¢ao N

where Ay; is now the difference in displacement on the two sides of the disloca-
tion surface &,. _

_ It is now evident that if the surface I, is specified along with the displace-
ment offset, both as functions of time and spatial position, then the integral

" ean be ‘evaluated .and the field is given (predicted) at all receiver positions x

and for all time £. ) A L ; o

It is just as clear however, that all that is accomplished by the evaluation
of this integral representation is to propagate the assumed displacements on
the surface I4 to other points in the medium. Thus, by assuming a particular
displacement space-time history one prescribes a kinematical description of
the failure process. The problem with this is that we do not necessarily know
how to do this, and even if we are fortunate enough to be able to guess a
proper, or nearly proper displacement space-time history using intuitive con-
cepts, we still do not know how to relate such an assumed displacement func-
tion to the basic physics of the process. Indeed, this inability to relate the
assumed dislocation displacement to the fundamental dynamical variables asso-
ciated with an earthquake immediately shows up in the computation of the
energy changes due to a dislocation in a prestressed medium. In particular,
Steketee (1958) demonstrated that the strain energy change in the medium
due to creation of a dislocation is independent of the prestress and depends
only on the displacement jump and, furthermore, that this energy change is
always such as to increase the strain energy of the slready stressed medium.
This increase is precisely the opposite of what is required for an allowed spon-
taneous process. Taken together, the increase in strain energy end the
independence from the initial stresses in the medium simply means that when
displacements are arbdifrarily specified on a boundary or dislocation surface, in
a manner independent of the initial stresses, then work is done on the system
in order to create the dislocation. The key here is that the dislocation displace-
ment is imposed arbitrarily without relation to the initial stress state, or
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subsequent time changes in this stress state. Further, because no changes in
material properties occur in the idealized dislocation procedure, then there is
no reason for the initial stresses to adjust and the dislocation field is simply
linearly superposed on the initial field. Consequently, a dislocation representa-
" tion for a spontaneous energy release source, such as an earthquake, is funda-
- gnentally unrelated to the basic physical processes actually occurring, that is,
the dislocation displacement is not related to the dynamical changes of the
stress field in the medium within the representation theory provided by the
dislocation model. (To provide such a relation one has to solve the dynamical
problem from first principles and then deduce from the solution the equivalent
dislocation, with suitable definitions of how changes in the energy state of the
system are to be interpreted.)

Dynamical, Relaxation Source, Representations

While a dislocation and other similar kinematical representations of earth-
quakes can certainly be useful in some instances, such equivalents are not very
helpful if we wish to describe the source from first principles in terms of basic
physical parameters and variables. We shall therefore consider the description
of earthquakes from the point of view already suggested, namely as a volume
source of elastic energy which is released as a consequence of failure. Further,
since we recognize that this is an interactive process in which the readjustment
of stress in the medium is accomplished dynamically in such a way as to
strongly influence the growth of the failure zone, we seek a formulation of the
problem that incorporates such interactions.

In this regard, the formulation of the full dynamical problem as an initial
value problem, as described by Archambeau (1968) or Archambeau and Minster
(1978) for example, provides a representation of the seismic radiation in terms
of a volume integral over the region surrounding a growing failure zone. This
theoretical representation, which is now termed ‘relaxation source theory’,
shows that the actual (volume) source function for an earthquake corresponds
to changes in the equilibrium displacement field in the medium surrounding a
failure zone, where these changes arise from the growth of a new boundary (the
failure zone boundary) in the medium. In particular, the Green's function
integral representation for the dynamical description of doth the failure zone
growth and the associated seismic radiation due to relaxation of the equili-
brium stress field is, from Archambeau and Minster (1878):

‘O
Anu,, (x.t) ={¢to£l6§"[c‘w %M % Ui]-u;[Cw ::: +p :‘f Ultmda,

L ou [0
+{dto _[p -O_t:_ [% d%z, (1)

with boundary conditions on the failure zone boundary, denoted by 8V and with
normal p, given by

pUr [ve] = =[1:] . (conservation of mass and momentum) (2)

U =]tats])/(20%L) . (conservation of energy) (3)
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where Up = Uin; is the normal component of the velocity of rupture boundary

s L growth and L is the energy per gram required to cause the material to undergo

- failure. The latter two equations, (2) and (3), are statements of conservation of

tnomentum and energy, respectively, at the moving failure zone boundary and

. the bracket notation is used to denote the changes in particle velocity com-
.. ponents, v,. and traction components, {;, across the failure zone boundary.

- In the integral representation in (1) for the dynamic displacement field u,,
“ at any point within the elastic region surrounding the failure zone,
G = GI'(x.t:x.to) represents the Green's function (impulse response) for this
elastic medium, with x and £ denoting the receiver coordinates and time, while
X and £ denote the independent set of source coordinates and time. The first
integral term, involving the surface integral over the failure zone boundary,
accounts for the interaction between the elastic wave field and the growing
failure zone boundary. This interaction, or wavefield "scattering”, is actually
coupled to the boundary conditions of (2) and (3), since the rupture velocity,
Ur = Uiny, is explicitly present in the integrand and also determines (implicitly)
the limits of the surface integral, since the surface 8V changes with time in a
manner determined by the function Usp. ' '

The second integral term over the entire elastic region, V, exterior to the
failure zone involves the time rate of change of the eguilibrium displacement
field u®(x.tg). measured relative to the initial displacement field associated
with the prestress state of the medium. This integral therefore accounts for
the primary radiation due to relaxation of stress in the medium surrounding

" the growing failure zone, and as the failure zone continues to grow then the
source density term [8u®/ 8¢,] in the integrand will be a non-zero and changing
. - function of £g. the source timse. This integral term therefore corresponds to a
" (generalized) initial value contribution to the radiation field which arises from
the continuous change in equilibrium that is required during the creation of a

failure zone inclusion.
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Special Relaxation Theory Models and “Instantaneous” Failure Sources

To relate this integral term to more familiar initial value problems it is
instructive to consider the limiting case in which a spherical failure zone is
created, in an initially stressed medium, at a rate equal to, or greater than, the
intrinsic compressional velocity in the medium. This situation, although some-
what of an idealization, approximates the creation of the roughly spherical
shatter zone by an underground explosion. In this case the shock wave pro-
duced by the explosion propagates at a speed near the compressional velocity
in the solid and produces a zone of failure in the material at, essentially, a
“supersonic” rate. If the medium is initially stressed, then no changes in the
prestress state outside this failure zone can occur until after the complete for-
mation of this zone, since any relaxation of stress proceeds (radially outward)
at a rate which is less than, or just equal to, the rate at which the failure zone
formation occurs. In this case the failure inclusion in the medium is, in effect,
created instantaneously, insofar as relaxation of any prestress is concerned,
since its speed of formation is greater than the speed with which information
concerning its existence can be propagated. Thus, an initially stressed medium,
which had been in equilibrium, suddenly finds itself in a state which is out of
equilibrium, at say the time £y = 0, due to the presence of a newly created
internal inclusion which has altered effective elastic properties. 1n this case
) the initial value for the displacement field is:

i u¥(za.to) = [0(x) - a(m) | CEo)
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where u® is the initial displacement associated with the prestressed state of
the medium without the failure zone inclusion, while uf" is the equilibrium dis-
placement field in the medium with the failure zone present. Further, H(t) is a
step function, at £y = 0, arising from the "instantaneous" creation of the failure
zone, so that u® is zero before the failure zone is created at £ty =0, while it is
constant in time and equal to [u{® - u(!)] after the zone is created. According
to the initial value integral term in (1) then, the source density term 8u,*/ 8¢,
will be a delta function at the time £y = 0. Thus, the initial value integral term
in equation (1) takes the form

Z‘dt, .[ p %‘:l[%]] d%, =

fooo f b=t 5

Lo o

where V(0) denotes the volume integration limits at the time £5 =0, and so
corresponds to the entire medium outside the failure zone. For all times £5 > 0
the rupture boundary velocity Ug is zero, since the failure zone is fixed in size
after its “instantaneous" formation. Therefore the boundary conditions in
equations (2) and (3), for this special problem, reduce to the (standard) condi-
tions that the tractions, f,, are continuous; that is, to It.] = 0. Likewise the
terms in the surface integral involving Up = Uin; are absent; so for this "instan-
taneous” failure problem the general representation of the displacement field
specified by equations (1) through (3) reduce to:

4mu,, (Xo.t) =Z¢to .'/(;’ [Q" t —u 9:] dQ,

o [0
with the condition
[til =0 ' (5)

across the boundary, 8V, of the failure zone. Here, éu® = [u(®(x;) - u!"(x))
and

ts = G ':';‘;E'nl

are the tractions on the surface with normal vector n. Similarly,

g =G %‘ff.;m
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are Green's function tractions on the surface with normal n. L

The equation (4), which provides a representation of the radiation field for
this special relaxation source, is identical to the classical Green’'s function
integral representation for an elastic medium with an initial displacement from
final equilibrium equal to §u®, and this problem iz discussed in standard works
in considerable detail (s.9., Morse and Feshbach, 1953). The interpretation of
the physical origins of the two integral terms making up the representation in
(4) is that the surface integral describes scattering of the primary elastic radi-
ation by the failure zone boundary (e.g., reflections and refraction at the boun-
dary), while the second integral, involving the initial value of the displacement
field, represents the primary elastic field produced by the release of stored
elastic energy from the entire medium external. to the failure zone. Clearly,
scattering effects will be of secondary importance for purposes of predicting
the main features of the seismic radiation field from this relaxation source and
to first order one expects the field to be predicted by the initial value term in
(4). Therefore, to first order, we have the simple solution

Amui(xt) = ',(fn )p[he‘] [%‘ d%, - (8)

where w{! denotes a first order solution obtained by neglecting the surface
integration term in (4). To account, approximately, for the scattering effects
we can use the first order solution for v, and £, in the surface integral term in
equation (4), to obtain a second order approximate solution. That is, we have as
an approximate solution which includes scattering effects:

.. o . ¢t . m .
amalixe) = amuli(ne) + [dto [ ) [t -wivgllaa, @

i bticbadiontindenie Ao

The detailed solution of (8) for a spherical failure zone can be found in Archam-
beau (1972), for example, and involves first specifying a prestress state for the
medium and then solving the static boundary value problem for an inclusion, in
the prestressed medium. This requires a solution of the equations of equili-
brium such that the new equilibrium stress assumes the value of the prestress
at large distances from the failure zone while satisfying continuity of traction
and normal displacement scross the failure zone boundary. Hers, in particular,
the material inside the failure zone is considered to have rheological properties
that are quite different than those before failure. Solutions for static inclusion
problems, for various boundary shapes, can be found in the literature (e.g., Lan-
dau and Lifshitz, 1959; Neuber, 1946; Eshelby, 1957) or can be obtained from
first principals in either analytical or numerical form. In any case, using the
static solution so obtained to specify the initial value §u® in (8), as the differ-
ence in the equilibrium states before and after the failure zone formation, and

then expressing the Green's function as an eigenfunction expansion (i.e., as an L
expansion in eigenfunctions for a layered spherical or flat-earth model, for -;
example), dllows the integral in (8) to be evaluated. Once wf!) is obtained from d
(8). then the second order solution ¥ can be obtained from (7). using the o
expansion for the Green's function and the same integration procedures as are :j
used for (8). i
It is appropriate to emphasize that the integral representation for the =
radiation field given by equation (4), along with the iterative form of solution K
given by (8) and (7)., can be used to describe the seismic radistion from any .
fnstanfansous failure process with any boundary shape. That is, while a K
.
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f{j" spherical failure zone is one that is of practical interest and can effectively be
(,’_ produced instantaneously by an explosive shock wave, such a failure zone
. shape is only one of an infinite set of geometric possibilities that can be
1 described by (4). Thus, while it is difficult to envision natural situations
a (including man made) where failure zones, other than explosive induced spheri-
o - cal (or near spherical), are produced at supersonic rates (or "instantaneously")
o8 nevertheless in the abstract we can use the “geometric generality” of the sim-
. _ ple "instantaneous failure" representation in other ways, as we will show later,
to provide an understanding and interpretation of the rather complex general
o representation in (1).
o e .
% Interpretation of the General Relaxation Source Representation
5 The value of the "“instantaneous failure” example is at least two fold: First
it shows that the rather complicated representation given in (1), for a general
spontaneous failure process, reduces in a natural and logical way to what is
- essentially a classical result with which we are familiar and for which there are
alternate formulations that can be demonstrated to give the same result. In
this regard Stevens (1981), has shown that the initial value formulation given by
- (4) can be put into the form of a stress pulse equivalent, wherein the initial
- value volume integral can be re-expressed as a surface integral over the failure
ar sone boundary, and where the effective source function in this integral is now
- the stress difference between the initial and final equilibrium states at the
.{;Z- boundary. This form is identical to the usual integral representation employed
e in crack theory. Further, when reformulated in this way, Stevens was able to
- solve for the seismic field produced by a spherical inclusion exactly, including

( . all scattering effects. Further, his solution was obtained for an arbitrary (spea-
A " tially variable) prestress condition, so that the solution has considerable gen-
- erality. Comparison of this exact solution with the iterative solution procedure

R indicated by the equations (8) and (7). but with (7) repeated in successive
- approximations, showed that the iterative method is convergent and that the
. scattering term produced only a small correction to the relaxation term, as
a _expected.
In addition to the verification of the general representation and its itera-
o tive solution in a special case, the "instantaneous failure” example can be used
- to provide insight into the structure and meaning of the general relaxation
s source representation. That is, the limiting process and logic used to generate
- the special case equations from the general representation of (1) through (3)
- can be turned around to enable us to see bow the general formulas can be built
e from this special case. In particular, we can adopt the special instantaneous
,‘;:-; failure integral representation and associated solution as the fundamental or
N canonical problem to be used to build more general solutions. From this point
N of view the more general case of spontaneous failure at a finite rate can be
’: thought of as a sequence of instantaneous failure processes of the canonical
o type. with each increment of failure zone growth occurring instantaneously
e after some interval of time 8ty between successive instantaneous events. This
- corresponds to the approximation of a continuous growth rate by a sequence of
N small steps. If we add up, or superpose, the fieids produced by each step-like
oy change in the failure zone, then we will be able to obtain the total radiation
_f-: field from the entire sequence. Proceeding with this approach, using (8) to
@ represent the radiation induced by each increment of boundary growth and
= considering scattering (and other interactions) at the boundary as a second
:;: order effect, we get to first order:
- Joy
- 1) = [ » ][—l 9
< dmadi(xt) = Z mf.)p b )] [ Bty fone, 50
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. where £,. n = 1,2, - - - N, denote the times at which incremental, instantaneous,
{ growth of the failure zone occurs. Here V(t,) denotes the elastic volume out-
- side the failure zone at the time £,. Now we can explicitly introduce the time of
separation between increments of instantaneous growth of the failure by

oburving that ¢, =1¢,_; + 815 and rewrite the previous superposition as:

- | amu{l(xt) = Eéto “‘;t(:")] ”flﬁ

d".

Now we can pass to the limit in which 8¢ is infinitesimal and where the boun-
dary growth also becomes infinitesimal, and with it the incremental changes in
the equilibrium field éu,®. By this process we can simulate a continuous, and
finite rate, failure process and we have, using the definition of an integral as
\ the limit of the surnmation:

: anuf)(xt) = fdt.,'[ [M,][u, dz,

it st -
20 1 2PES

- .

N We observe now that this limit of a sequence of elementary initial value
. representations of the seismic radiation from instantaneous failure processes
Q - results in a total field representation that is precisely the same as the relaxa-
! tion term in (1), which accounts for stress relaxation effects in the general
N _case. Thus we arrive at an interpretation of the most important term in the
. ~ general representation in terms of an elementary initial value source which has
{ & well known solution, in particular the general source is just a “sum” of these

elementary initial value sources.

The close relationship between the very limple "mltantaneous failure”
source and the more complicated integral representation for the general case,
given in (1), can be exploited further by observing that the surface integral -
term represents scattering, or interaction of the primary field with this boun-
dary discontinuity in both cases; albeit that the.boundary interaction in the
general case is more complex since it involves reflections, etc. from a moving
boundary and simultaneous absorption of energy at this boundary, due to the
energy required to produce a failure transition in the material. In spite of
these differences however, we may approach the solution of the integral equa-
tion in (1) in precisely the same fashion as was done in the case of the simple
"instantaneous failure”, and so in analogy with the iterative approach leading
to equations (8) and (7). we use, in the general case, the solution procedure:

: S amuiN(xt) = [ dtg "f P m ot

s a a8 " a

77y el (8)

5 | n T Y
| anul )(x,t)zﬂ"(!.t)i'{dlo.'{;.) IG? [Gm 0z +r ot,o Ul]

-ug‘“”[%x =+ P “ J,]]n.da, (9)

where the index n > 2 is the order of the iteration carried out using (9). with
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[ : (8) the first order "starting approximation”. Here the exact solution is, for-

O : .

o U (x.t) = lim w{* (x.t)

:--. N ow

3 but in practice u{¥, or even u{!), is a sufficiently good approximation for the
seismic radiation field, just as was the case for the instantaneous failure.

- Hence the primary contribution to the radiation field arises from the general-

-;‘.' ized initial value term given by w{!), while corrections accounting for scattering

- and the energy adsorption required to drive the failure process are obtained

5 using the iterative approximation prescribed by (9). The energy absorption

5 manifests itself explicitly through the dependence of the integrals in (8) and (9)

‘ on the time varying limits of integration, which are determined by the rupture
; rate function Up, and through the rupture rate dependent terms of the form
pYx Ug. with v; = 8y, /8¢ corresponding to the particle velocity, appearing in
the surface integral in (9). The interpretation placed on these effects, which
were not present in the instantaneous failure representation, is that there is
strain energy absorption in addition to scattering from a moving failure zone
N boundary in this more complete description. Further, we do not prescribe the
. boundary movement, but instead the rupture rate is determined by the dynami-
cal boundary conditions at the failure surface, given by equations (2) and (3).
In this interpretation then. energy absorption arises because the dynamical
radiation field itself "feeds” the failure process and supplies the necessary
energy to create a larger failure zone. Thus, the strain energy is redistributed
dynamically by wave propagation to the failure zsone boundary and, in one or
more locations, reaches levels high enough to supply the energy required to
continue the failure growth process. When the failure transition occurs (albeit
in a very narrow zone, but nevertheless in some finite volume of the material)
then the local strain energy is absorbed in the process, =ssentially being used
to convert the material to its “failed state”.

_ In spite of the added complications associated with the interaction of the
radiation field with the (nonlinear) failure process in the spontaneous failure
representation, the approach to the solution of the integral representation for
the radiation field is the same as for the instantaneous failure. That is, the first
order solution w{! is obtained by first solving the static boundary value prob-
lem for an inclusion of appropriate geometrical shape and rheological proper-
ties in an initially prestressed medium, so tbhat w,*, the change in the equili-
brium field, is obtained. This static field is expressed in a form that depends
parametrically on the time, £;, because of the dependence of the inclusion
geometry (f.e., rupture zone dimensions) on the failure velocity function. Thus,
for example, the equilibrium field changes due to the creation of an ellipsoidal
failure zone in a prestressed medium would depend parametrically on the ellip-
soidal axes (a, b and ¢) of the inclusion, and these in turn would depend on the
time integral of the rupture velocity in the axial directions, so that the change
in the equilibrium field would be expressible in terms of a time variable t,. The
derivative of the equilibrium field with respect to this time parameter yields the
required source term in (8), and with the Green's function expressed in terms
of an eigenfunction expansion, then evaluation of the integral for ! is possi-
ble. Once wf! has been obtained, in the analytic form of an eigenfunction
expansion, then the iterative procedure expressed by (), while algebraically
cumbersome, is straightforward.
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Implications from the Dynamical Boundary Conditions for Failure Growth

In order to solve this source problem using the approach described, or any
other method for the solution of ?1). it is clear that a determination or specifi-
cation of the rupture velocity function Up(xo.to) is necessary. As was indicated
earlier, the boundary equations (2) and (3) serve as dynamical conditions for
. failure and therefore actually determine the rupture velocity function. In most
. modeling of earthquakes however, the boundary conditions have not been used
" explicitly to determine this function, but instead a rupture velocity function
bas been specified (or assumed) having a form that was based on a combination
of simple observation and elementary analysis of the failure boundary condi-
tions. (See, for example, Archambeau, 1968 and Minster, 1973).

Archambeau and Minster (1978) show formally, however, that if a complete
losz of shear strength and no essential change in compressibility characterizes
the material after failure, which is a rather plausible assumption, then the
boundary relations in (2) and (3) give a relation of the form:

U [u) = |;%"h| 4 (10)

where v, are particle velocity components and C, denotes a signal velocity
characterizing stress wave propagation in the medium surrounding the failure
surface. If the rigidity inside the failure zone is essentially zero and if the
failure process is considered to be driven by a shear wave, so that G, ~ Vu/p,
then this relation gives: _
. I U = V/p (11)
with 4 and p denoting the shear modulus and density in the medium outside the
' failure zone.* Therefore, under the reasonsble assumption of loss of shear
strength in the material involved in the failure process, it is found that the rup-
ture rate will be close to the local shear velocity within the medium. This result
appears quite consistent with observations which suggest that the highest rup-
ture rates are, in fact, close to the shear velocity.

Another result that provides insight into the failure dynamics, as
expressed by the conservation equations at the failure boundary, can be
obtained from the energy relation (3) which states that

pUR = l—:;%l— (12)

Now we note that the previous result states that Uy = v, = V2/p when the pro-
cess of failure, characterized by & particular energy of transition Ly, results in
a complete loss of shear strength. Thus for this process

=put= 1091°

'E a change in compressibility is allowed during the failure transition, then this result is
modified and it is possible for the rupture rate to become "trans-sonic”, that is, to have a
value between the shear and compressions] velocities in the medium. It is felt that transi-
tions of this sort are unlikely, or at Jeast rare and confined to failure transitions st great
depth in the earth.
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which follows from the general energy equation, where we have used [Ao| to
represent the quantity \/I 6ty l which, in itself, is a measure of the magnitude
of stress drop across the failure boundary. Because of the lack of shear
strength in the failure zone for this process, then [Ac| represents a “total
stress drop” (that is, the maximum possible shear stress change) at the boun-

Now for some other process of failure that may operate in some thermo-
dynamic environments in the earth, a complete loss of shear strength may not
occur, or the material may be characterized by plastic or viscous properties
allowing the retention of shear tractions. In this case the energy equation still
applies in the form given by (12), with Uy and the traction jump in general dif-
ferent from those in (13). But we can use (13) as a means of normalizing the
general case relation given by (12), so as to obtain a scaling law relating “par-
tial shear stress drops” to the condition of total stress drop, characterized by
|Ac|. That is, if we divide equation (12) on both sides by the result in {(13) we

get:
tut, ]
o ew, Dl [%r (14)

e R e S A A LR Y 0GR b .

Thus we find that the rupture rate scales as the ratio of the partial to total
. (shear) stress drops, and is always directly proportional to the local shear velo-
city of the material surrounding the failure zone. We also observe that Up will
. _ depend on the square root of the transition energy ratios when the process of
ERINY failure, resuilting in a partial stress drop, is fundamentally different then the
ot " failure process resulting in complete loss of shear strength. However, in this
regard, we might reasonably make the assumption that the same fundamental
process is normally responsible for all occurrences of failure in the earth, and
that the differences in stress drop are due to relatively subtle changes in
mineralogy, water content and local temperature, which result in different
rheological characteristics among similar earth materials subject to the same
process of failure. In this case we would have L = Ly, and transition energy
differences would not mediate the normalized rupture rate equation, given by
(14). Under this assumption then, we get the simple scaling relation

Ao,
U v, T2 (15)

where we have introduced*lAa,l to represent the magnitude of the "partial
stress drop” quantity [£,¢, )~

These results allow us to make several generalizations concerning earth-
quake dynamics and to also simplify the analytical modeling of these sources of
seismic waves. In particular, total loss of shear strength in the material after
failure implies total stress drops and rupture rates at or near the local shear

~ welocity. The converse of this result, namely that rupture rates near or at the
shear velocity necessarily require total loss of shear strength (and total shear
stress drops) has not been shown, but certainly this would be a plausible
interpretation of high rupture rate observations. Further, it is found that rup-
ture velocities Up scale linearly with the magnitude of the stress drop, so that
the larger the partial stress drop, the larger the rupture rate, until the limits of
total stress drop and rupture rates equal to the shear velocity of the medium
are reached.
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‘;2 .- . We observe further, however, that the stress drop and traction jumps

{ appearing in all the relations describing conditions. at the failure boundary, in

particular, equations (14) and (15), are dynamical quentities and actually
correspond to transient tractions, or stresses, at the points on the failure
boundary surface where active failure is taking place. These stress changes
- . may be very large due to dynamical stress concentration effects in the vicinity
F of the expanding edge of the failure zone and, while clearly related to the
ambient background tectonic stress, could be one or even two orders of magni-
o " tude larger than the ambient stress level. Therefore to relate an equation like
(15) to ambient quasi-static tectonic stresses, it is necessary to assume that

/.
a

e

»
bt the transient dynamic stress concentrations occurring at the front of a failure
-} ‘ zone, which are responsible for fallure, are directly related to the (local)
-3 ambient stress level. The simplest assumption would be that the general shape
- and curvature of the failure surface is the same for all conditions of failure, in
; which case the dynamic stress levels are always (for all failure modes) directly
™ proportional to the ambient stress levels. With such an assumption, the ratio of
A the partial to total dynamic stress drops is equal to the ratio of the changes in
ro the ambient (quasi-static) stress levels for partial and total stress drop. In this
. case a relation like (15) can be used to estimate ambient tectonic stress levels,
N since it can be rewritten in the form .

2 U v, 122 (18)
AL Oa

y :
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) - where |Ac| is the quasi-static change in the ambient stress field under condi-

tions of a partial stress drop and |o, | denotes the ambient stress level, which

ol arises from the total stress drop condition. R _

y :

T - Phyuical Processes and Stress Level Requirements for Failure in the Earth

. If assumptions required to arrive at the result given in (18) are appropri-
v ate, in particular if the mechanism of failure has the same energy requirements
’ whether the stress drop is total or partial and if the dynamical stress load caus-
. ing failure is strictly proportional to the quasi-static ambient stress for any
A failure process, then the relation provides the means of estimating the ambient
> stress from simultaneous observations of the rupture rate and the seismically
- observed stress drop. Such estimates cannot, however, be literally interpreted
" as being the stress levels that directly cause failure, since it is the dynamic

stress concentrations that produce failure once the process is initialed and,
quite certainly, ‘it is intense quasi-static stress concentrations that initiate
" failure in the first place. That this must be true follows from an elementary
i consideration of the energy requirements for reasonable processes of failure in
3 : the earth. .

« Specifically, we observe that direct and indirect estimates of the average
1 stress change in the quasi-static stress lield due to earthquakes are in the
: range near 100 bars (10° dynes/cm®) and are, at most, from 300 to 500 bars

. (e.g. Archambeau st al., 1983). Further, the highest rupture rates observed are
pnear the shear velocity, so, using (18), we estimate that ambient deviatoric

$; stresses are at most of the order of 500 bars, and usually closer to 100 bars in

ié regions with strong earthquake activity. Now if stress levels of such low magni-

q tude actually were directly responsible for failure, then from (13), we would
bave for the energy per unit volume, pLg, required for failure, the estimate:

2 1 |8o|® 1 (5x10°¢ s

: Plo 3 JF.I_‘ 2 3@x100p - 8 x10° ergs/ om
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P2 But this implies an energy for failure in the earth that is extremely low in com-
:: perison with energy requirements for even trivial changes in the thermo-
bl dynamic state of the material. For example, the energy required to raise the

.

temperature of one sram of water by one degree centigrade, in, say, a water
saturated rock, is 10’ ergs, which is already 25 times greater than the failure
energy estimated from the largest ambient stress field changes. Further, when
we consider the energy required for a material phase change such as shear
melting, then even in the presence of water which would reduce the meltin
point considerably, the latent heats invoived are of the order of 10° ergs/cm
and larger, and so the energy required for failure by melting would be of the
order of, at least, 10° ergs/cm?%. This energy is nearly four orders of magnitude
larger than the failure energy estimate based on ambient stress field changes.

Similarly, if we consider the ambient strain energy. WN,. stored in the

.o

g . ME A s
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%
3 medium per unit volume, and take the change in this quantity after failure to
>, be an estimate of the energy per unit volume available for inifiation of failure,
‘:: then if the average ambient stresses determine failure energies, we would have
‘x to have _
L) 1 -
N Lo~ M) =1 55§58 .
>
B .
2‘.: Here, as previously, pL, is the energy per unit volume required for failure and
0&") is the average tectonic stress. Hence, with the average ambient stress
y taken to be 500 bars as an extreme, we have, for a total loss of shear strength
N at the failure boundary:
PN
- pLo~ M) =5 x 10° ergs / cm®
- :
-

Thus, with this quite different method of estimating the energy for failure, we '
obtain essentially the same, very low, transition energy estimate when reason-
able estimates of the largest average ambient stresses are used.

Clearly, one conclusion that must be made is that the failure energy
inferred, using reasonable upper limits for ambient stress field changes result-

T ing from earthquakes, is so small that it cannot be a valid estimate for the
energy required for failure in the earth. Nevertheless, it is even more certain
that tectonic stresses must be responsible for failure in the earth and so we are

forced to conclude that stress concentration effects, both transient, during
failure growth, and quasi-static, prior to failure initiation, are the relevant
stress levels supplying, the very local, high energy levels required for failure.

Indeed, in the dynamical situation, where we are concerned about the
energy required for continued failure growth, the failure gone already exists
and it can be viewed as an inclusion in the medium having drastically different
elastic properties than the surrounding rock. Such an inclusion will produce
very large stress concentrations in the surrounding medium in the near vicinity
of that part of its surface having large curvature, for example near the edges of
an ellipsoidally shaped failure inclusion. For a growing inclusion corresponding
to the expanding failure zone, the stress concentrations are dynamically
changing and transient, but certainly very large at the ends of a long thin
failure transition zone with a width of a few millimeters. Indeed, for such an
inclusion, stress concentration factors of 10 to 100 could be expected. In this
case, the initial tectonic energy. which as we have seen has a low value per unit
volume, is focused by the failure zone itself. Here, the strain energy is dynami-
cally transferred through the propagation of stress waves from other parts of

] the medium to the ends of the failure zone. We know that this spatial




redistribution of internal energy is assured because the system is totally :
{ governed by the necessity of maintaining dynamical equilibrium with the inclu- b
sion zone and so must satisfy boundary conditions at the failure inclusion sur-
- face that demand stress distributions that approach those for the static limit,
X . these being characterized by large stress levels at inclusion edges. Therefore,
. the process of stress relaxation, acts to increase the stress levels and strain
. energy levels near the high curvature edges of the inclusion and to decrease

the stress and strain energy elsewhere, with the very local and large energy
e increases at the inclusion edges being accounted for by part of the energy .
reduction in the rest of the medium and with the “excess” strain energy reduc- y
tion being radiated to the far field. Now the energy momentarily stored at the .

2 edges of the inclusion must be large enough to supply the energy required for !
failure and when this occurs the failure zone will grow. s
\ The dynamical condition for failure growth at a rate Up is, in fact, given by
4 equation {1?.’). s0 that we can estimate the magnitude of the transient stress

> concentration required to continue the failure process at some specified rate.
In particular, if we consider failure progressing at or near the shear velocity in
the medium with total loss of shear strength occurring, then the magnitude of
the dynamical (shear) stress drop |Ac| must be given by

lac| = Vt:te ] = pv, V2L, (17)
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where, as in equation (13), we have used |Ao| to represent the square root of
" the traction jump across the failure surface.

‘ . . Since the failure process requiring least energy will be initiated first and
A -~ will prevent stress concentrations adequate to trigger other failure processes
" requiring higher activation energies, we must consider the process with the .
lowest energy value, Ly, in order to estimate |Ac|. In this regard, it seems that )
the lowest energy process that has been proposed as a mechanism leading to .
failure is a temperature increase in a water saturated rock medium sufficient g
to drive the local effective stress to zero. Under the supposition of very low
tensile strength for the material, then only a small tensional stress would resuit .
. in failure. This phenomenological mechanism, proposed by Raleigh and .
Evernden (1982) on the basis of quite a different set of arguments than those 5
considered here, would require the presence of free water and very low permea-

. bility in the rock. However, both conditions are likely for the material in tec- .
3 tonically active regions. (Arguments for free water and high pore pressure
- bnsed) on geochemical and other evidence are given, for example, by Fyfe et al.,

. 1878. T

For this phenomenological mechanism to operate it is necessary to also

o propose a secondary mechanism that would rapidly convert the transient elas-
a tic strain energy at the edge of the failure zone to heat and produce the
required increase in water temperature. Such a mechanism would quite cer-
tainly have to be a microscopic process, activated by the high dynamic stress
levels. Numerous mechanisms are actually possible, particularly when we
\ recognize that the material is extremely heterogeneous on a microscopic level
y and, therefore, would be expected to contain microscopic stresses from 10 to
100 times the local average stress, which is already at a much higher level than

the ambient tectonic stress (by another factor of from 10 to 100) due to the

R m:‘.L.. e

"stress focusing” at the edge of the failure zone. Thus we can expect extremely

» high stresses at the edges of grains and pores which will activate highly dissipa- R

-, tive flow and cracking in the material on the microscopic level. In fact, it would ‘
' be likely, or at least possible, that the material could locally melt if water wasn't '
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present, but in the presence of free water then the heat produced by the non-
linear and highly dissipative processes would rapidly raise the fluid tempera-
ture and with it the fluid pressure. During this process the high microscopic
strain energy levels, and the average local strain energy level, would drop
rapidly as non-linear plastic flow relaxed the stress. When the local interstitial
fluid pressures reached the level of the maximum principal stress in the rock
matrix or exceeded it, then the already locally weakened and microscopically
flowing material could catastrophically yield, or fail, with the localized zones of
flow and microfracture connecting throughout an element of material volume.

This particular process of failure would have a relatively low energy of
activation, that is a low failure transition energy Lo. In this regard, Raleigh and
Evernden (1982) estimate that the pressure increase required in the water
would be of the order of the average ambient tectonic stress, since the water
would be initially at a pressure about equal to the least principal stress in the
rock matrix. Therefore a pressure increase of the order of 100 bars would be
required. This would occur with about 5°C increase in temperature. Now if the
transient strain energy stored in an element of volume at the edge of the
failure zone is essentially all converted to heat by the microscopic processes of
plastic flow and microfracture (with associated stress relaxation due to this
deformation and flow) then the amount of energy required to raise the tem-
perature by 5°C in a water saturated rock matrix is about equal to the total
energy required for failure, that is, equal to Lg in our notation. Thus, for this
process

Lo =(5°C) (4 x 107 ergs/cal) (.25 cal /gm/°C) = 5 x10” ergs /gm

where .25 cal/gm/*C is a representative specific heat for the predominantly
rock mediurmn. Certainly this is a low energy when compared to the energy per
gram required for melting, which is of the order of 10° ergs/gm or larger.

Now, given that this process requires an energy. L, of about 5 x 107
ergs/gm, thea we can use the relation (17). which expresses energy conserva-
tion at the expanding failure surface, to obtain an estimate of the magnitude of
the stress concentration required for the failure process. That is, we require

|Ag] = py, VELg ~ 3(3 x 10°) V10P = § kb

Thus, when the ambient tectonic stress is of the order of 100 bars, then stress
concentration factors of the order of 100 are required in order to achieve the
required transient stress levels in the lower kilobar range. This can only be
achieved with thin failure zones, so that even this relatively low energy process
of failure demands stress concentrations of such high levels, relative to the
ambient stress, that only thin failure zones are predicted to be possible. Such
thin transition zones are, of course, what are observed for earthquakes, where
new fault zones are commonly observed to be of the order of millimeters in
thickness. Therefore, in this regard at least, these inferences are consistent

with observation. We aiso note that the inferred kilobar stress levels are of the.

same order as are observed in rock mechanics experiments for failure at high
dynamic strain rates.

The probable situation that must occur prior to the initiation of failure is
likely to be similar to the description of the dynamical growth of the failure
gone. In this case, however, there is no pre-existing failure surtace and no
(rapid) dynamical stress readjustments taking place to concentrate the stress.
However, it is clear that some process of stress concentration is necessary in
order to initiate failure in view of the previous energy considerations. In this
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case, with quasi-static stresses involved, it is likely that much lower stress lev-
els are sufficient to activate non-linear creep and flow processes on a micros-
copic level, particularly when water is present. Therefore pre-existing hetero-
geneities within the medium, on a macroscopic scale, eould serve to concen-
~ trate the very slowly increasing average tectonic stress, eventually to a level
- required for activation of creep and micro-scale fracture processes. Since
these mechanisms would be expected to be activated in a heterogeneous
manner spatially, then the resulting spatially non-uniform local weakening and
flow of the material could be expected to increase the stress levels even further
at those points where the material was stronger and more resistant to such
deformation. At such points stress levels could reach higher levels on a shorter
time scale and new microscopic processes, requiring higher stress levels, could
be activated. At some stage, with the assumed presence of stronger zones
allowing the eventual concentration of quite high stress levels, one would
expect that a new increment of load accumulation within the highly stressed
strong zones would exceed the threshold for activation of a new set of micros-
copic deformation mechanisms. This could trigger rapid and intense deforma-
tion and weakening, producing a small very weak zone which would serve as &
stress concentrating inclusion on 8 macroscopic scale. Once this occurred
then the dynamical process described earlier could serve to continue the
growth of such a zone, sustained by the elastic energy released from the sur- )
. rounding medium and concentrated at the inclusion edges. In this view of the
- initiation and growth of a failure zone then, it might be expected that there

! would commonly be a "starting time period"” during which the failure growth was 9
" relatively slow. ' This time period of initiation could, however, be quite short in
. duration, with dynamical stress concentrations rapidly driving the failure

growth rate to the shear velocity level.

As a final observation, it is appropriate to point out that the rupture rate,
‘Ug. can be expected to be highly variable spatially. Thus, for example, while the
shear velocity appearing in the equations specifying Uz can be nearly constant
spatially, the traction or stress magnitude jumps, and the ratios for partial and {
total stress drop magnitudes, can be expected to vary in a manner related to
the heterogeneous spatial variations of the ambient stress field. In addition, 4
the partial stress drop magnitude might be expected to vary in 2 manner
dependent on relatively subtle material properties (¢.g., water content and/or
mineralogy). Therefore these results suggest that while the dynamics of the i
spontaneous failure processes resulting in earthquakes obey some (superfi- (
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cially) simple basic relations, these same relations, when combined with our
knowledge of the heterogeneous makeup of the medium, predict that the
failure process can be very complex, with highly variable rupture rates and
stress changes not only possible, but quite likely to occur. Therefore we
expect, and in fact observe, that large earthquakes involving large spatial rup- '
ture zones will be very complex and produce seismic radiation fields that
reflect highly variable stress drops and rupture rates along the failure zone.
Indeed many large events look, seismically, like multiple events with "bursts' of

_ seismic radiation observed from different areas of the failure zone as it

. expands with variable speed. Further, it is likely that small events would have
the same character, but with such extreme variations taking place on a smaller
spatial scale and thus on a shorter time scale, so that these effects would be
seen in the seismic radiation at higher frequencies, and likely to be observed
only in the near or regional distance ranges from the event.
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Relaxation Theory Models for Earthquakes

The results relating the rupture rate to the intrinsic shear velocity in the
medium and the stress drops occurring during failure have significant implica-
tions for modeling of this type of seismic source. Specifically, we can simplify
the computations implied by (8) and (9) very substantially if we can initially
specify the rupture velocity function in a manner consistent with the boundary
conditions, rather than be forced to calculate this function using the boundary
conditions (2) and (3) jointly with the field relations (8) and (9).

Thus, since the rupture rate can be simply related, by equations (14) or
(15), to the intrinsic medium properties and the dynamical stresses under some
rather reasonable general assumptions, the following approach has been used
in modeling earthquakes for purposes of predicting the properties of the radi-
ated seismic field (see also Archambeau and Scales, 1984, for additional
details):

(1) An initial prestress field is specified and, for convenience in bandling
the required integral evaluations in the dynamical solution, the field is
described analytically in terms of the associated initial displacement,
expressed in vector spherical harmonics.

(2) A failure zone geometry and time history of evolution is specified in
terms of a rupture rate function Up, with Up prescribed in a form
compatible with one of the equations (14), (15) or (18).

(3) Static solutions for the equilibrium displacement field of an inclusion,
having the geometry specified in step (2), are obtained either numeri-
cally or, when possible, analytically. The solution is expressed in
terms of a vector spherical harmonic expansion, so that it has an
analytical expression compatible with that used for the initial dis-
placement field, and such that the integrals in (8) and (8) may be most
easily evaluated.

(4) The expansion, in vector harmonics, of the rate of change of the
equilibrium field (i.e., the expansion of the quantity 8u*(x,.fo)/ 8to
where x; and ¢4 are the source coordinates and time variables) is then
used, in the integral result (8), to evaluate the initial value radiation
field w.{)). This field is expressed in vector spherical wave functions,
and may then be used as a "starting solution” in (8) to obtain higher
order approximations for the field, given by w). In all of this, Up is
employed in the form specified in step (2).

This (approximate) solution procedure can be specified guantitatively
using the formalism developed in the section on "Mathematical Foundations™.
In this regard the static initial displacement, as well as the equilibrium dis-
placement field in the vicinity of an embedded inclusion, are solutions of the
static elastic equation

Veu + -1—_1—2-0—7(711) =0

where o is Poisson's ratio for the material. We can treat the medium, as an
spproximation, as uniform and extending to great distances from an inclusion
of variable size, such that its dimensions are relatively small (or very small)
when computing the initial displacement field, but larger and of variable dimen-
sions when computing the equilibrium field for the expanding failure zone. We
then take the origin of coordinates at the center of the initial {(small) inclusion,
and at the same point for computation of the growing inclusion solutions.
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Further, we require the stress field to assume a prescribed functional form or
value at great distances from this origin such that, whatever the size of the
{ inclusion, the equilibrium stress field must approach this value (or functional
form) at great distances from the inclusion. '

«

o

" In this case all the equilibrium displacement fields, including the initial dis-
‘_ . placement field associated with the prestress state, can be expressed in the
N © form:

0(x) = T [aim M (r0) + om N (o) + i Fon ()] + 00()
o m
;'::f where u(® is the displacement associated with the stress prescribed at great
i distances from the origin. Here M;,, N;;, and Fj;, are exterior vector harmonics,
which are eigenfunctions of the Navier equation for the static displacement
. field. In particular, with y = 4(1 - g),
% Mi, = 5% VITTFTICum (%%, ¢0)
®
3 i = 75D [VITF I Bin (B0, 90) = (¢ + 1) Pun (85, )]

Fioim =75 lﬁ;—ll VITT+I) By (9. @) + $7+_;-—1) UPym (Bg, vo)]

The vector functions Pyn, Byn 8nd Cyn. are the classical vector spherical har-

~ monics. The coefficients ay. fim and 7im are constants which depend on the
- dimensions of the inclusion and for the growing inclusion, therefore, these
p.- coefficients are parametrically dependent on time, since the dimensions of the
. inclusion are prescribed by the rupture rate, Uz, and change with time accord-

ing to the time integral of Uy.

The initial value field u® is defined as the difference between the equili-
brium field for the growing inclusion (at any time) and the initial value field.
Thus, using the previous general expression for these equilibrium fields we

‘.-'
:j have, after subtraction,
T
3 () = 3 [adMin (o) + BENG(E) + 78 Fin(r)] (182)
' m
[~
2 where
:f-j af(to) = amm(to) = aff)
s Bin(to) = Bim(to) — AR (18b)
d ¥ (to) = 7im (to) — 7%
.
';- These coefficients, as noted, are (implicit) functions of the source time variable
N £o. Here af, etc. are the constant coefficients associated with the solution for 1
N the static prestress condition prior to failure zone growth, while a,, (2p). etc., )
r are the coefficients in the solution for the inclusion of dimension determined i
v by the failure zone growth rate function Up. 1
:-' With the rupture rate prescribed, or approximated, for example, by a func- {
‘-j tional relation such as (from equation 18),
\
3

< q
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where v, is the elastic shear velocity and |Ac| is the magnitude of the (partial)
stress drop at the failure boundary while |0, | is the magnitude of ambient

- stress at the same point just before failure, then we can prescribe the evolution

of failure growth and consequently the time dependence of the coefficients in
(18). (This prescription of the time dependence of the equilibrium field coeffi-
cients is in numerical terms when the failure zone inclusion has g general
geometrical shape.) Clearly, if we take the stress drop magnitude |[Ac| to be
proportional to the ambient stress |0, | then Uy is a constant and proportional
to the shear velocity. This approach has been often used in the past, and some
results using this hypothesis are discussed later. On the other hand the stress
drop can (reagonably) be taken to depend non-linearly on the ambient stress,
for example |Ac| o Cg |0, | + C;|04 |2 with C, and C, constants. In this case
the rupture rate would vary directly with the ambient stress level, that is we
would bave : : : -

Un v [Co + €, 1o ]

In this case the rupture growth would speed up in zones of high initial stress.
As will be pointed out later, there is some observational evidence that this

- ocecurs.

" In any case, based on plausible hypotheses, it is possible to define a rup-
ture rate compatible with energy and momentum conservation and to thereby
determine & time history of the failure zone development, and to also express
this time history in terms of variations for the equilibrium field expansion coef-
ficients afh. fin and y%, in the equilibrium field u®.

Now we have that the dynamic field is approximated, to first order, by the

relaxation integral term given in (8). In terms of the Fourier transformed ver-
sion of this field, using the results and inner product notation given in the sec-
tion on "Mathematical Foundations” (equation 12), we have

an@f) =40 Fy, [(pa.,u:. &'t),] (19)

where f;, denotes Fourier transform operator with respect to £, the source
time. Here, using the previous results for u®, we have that

. daim Ll ~ . Oyim
PO, u =3 [a ot Min(ro) + p 5 Nim(ro) + -ﬁmm]

Further, the transformed Green's function G(r.ry: ») has the eigenfunction
expansion given in the section on "Mathematical Foundations” (equation 8):

tmn

o+ Yiraoh vi(r.aoD) ]

”‘ = (u;l')' l
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: with ¥ and 97 spheroidal and toroidal vector eigenfunction for a layered

spberical earth model, expressible in terms of linear combinations of the classi-
o cal vector spherical harmonics Py,., Bsn 8nd Cy,, multiplied by Haskell-
Py Thompson matrices involving spherical Bessel functions.
: B Using these expansions in the approximate solution, in (18), for the
- ? dynamic field then leads to* ‘ '
alm: Mo

- - ) - ¥ (rmof)

" l) — R o ¢ St ————
: ratxe) =to T T J o= 180 |] O]Nw | ¥ onoh) )y i ope

: Vom||  (Fim: |
. M r
j ) - prt J L4 (r-n”h -taty
: +{p et (ro.nel) )y T GoDE[P o
i y Five:
(20)
* Here the inner product form is used to denote both a vector inner product and
it a functional inner product corresponding to an integration over the volume
W V(‘o); that is:
> L , : M
K B il BT
' ) Fim:
- vf Pl - 9 dz,, '[ PN ¥ 42, '[ PFim: - ¥* d%2¢
() ty to)
o
{ We have also used matrix forms in (20) to be able to write the results in more
» compact, yet explicit, form. Here and elsewhere the dagger (}) denotes the
> transpose of a matrix. Thus, in (20), the expanded matrix and inner products
when written out give:

~ am: Mion

» 0 _ 8afm: _
: Bty [P |CpfNiw| (¥ = T L oMV d

» : 0 _ LI (R
& o Yim: Fiwm'
» 08w - s 87im- - ]

:: + 'ﬁ:'"{;, PNim ¥ d°zp + 22, '{u) PYim-¥'dz,,

)

; and analogously for the term involving the toroidal eigenfunctions.

The inner product integrals over V(to) can be evaluated using the orthogo-
nal properties of the vector spherical harmonics Py, B,y and C,. since both

The summation convention is applied only to coordinate indices, while explicit summation is
specified, when appropriate, for the "mode indices™, L. m M and l';m ",
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the eigenfunctions and the vector solid harmonics are linear combinations of
these functions. In particular, for a thin failure zone the inner products can be
approximated by the relation:

Mo s Wiik
(P Niwm:| « ¥*(ro. a0f*?) >'“ = |sWEL| Submm: (21)
Fiv: L AUN

where the "weight functions” s W5 involve only integrals over the radial coordi-
nate, which are, in general, functions of the source time variable ¢4 due to the
time dependence of the region of integration V(Zp). Here the symbols §y- and
8w’ are Kronecker delta functions having zero value unlessl =il'and m =m".
Thus the eigenfunction expansion of the radiation field for a growing thin
failure zone becomes, using (20) and the previous relation:

o |20%8n | [s iR (20) ¥ (rnof)
- 4nfr, ) =40 T | [ |88 | |s MR (L0) «oar, o — aof)'
. tman ||-- "'7..” ’m(‘o)

Foe a‘.ap.n r’lmt(‘O)
+\f B¢ Bit | |7 Wilih(to) e o at,
N 0147in r M3 (to) T

’r(rm vt’)

| =Gal® (22)

The structure of this eigenfunction expansion for the source radiation
field has some noteworthy features, in particular the weight functions g Wf)
and ¢ Wif) are all independent of the source properties since they only involve
inner product integrals of the spherical earth eigenfunctions with solid vector
harmonics. (Thus, for a given earth model, they only need be calculated once,
and can be used for any source calculation.) All the source information is car-
ried in the coefficients involving time derivatives of the equilibrium field expan-
sion coefficients a$,. #i. 7. These coefficients are, therefore, the fundamen-
tal "descriptors” of the source and, in an inversion procedure designed to infer
source properties, are the unknowns to be determined.

We can consider the entire Fourier transform of the matrix product of the
weight functions times these coefficients to be the transform of a scalar func-
tion. That is, we can define
[ !

e a"“"n S”&‘n‘\)‘(to)

Glwn () = [ [0 88| |5 MSEA(L0)]| e 0 ato (23a)
8¢ yin ] s Wil (to)

e 0| [ mis (o))
Gl (&) = [ (8,88 | [r WBEA(L0)| @70ty (23b)

- k0..7:,. r Wi (to)
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> and rewrite the result (21) in the simple form: :
. G fen(®) G ()
§ an¥Nr, 0) = t0 ”g’ F -Gl ¥V (rmof) + ”,——_(‘Wi’(r..oh (24)
> e :
7 " In the time domain the inverse Fourier transform, with respect to the time vari-
"able £, is easily obtained using the residue theorem, by noting that the

integrand on the right side in (22) has simple poles at + 4@f and + .. This
gives: )

", 4l )(rt) = - 12 [6&..(,.»[) v(raowf) cos,oft

~ mn

D + Gfon (w]) ¥(Emod) cosuvft] (25)

I Clearly. from (24) and (25) the coefficients @F., and @, are the quantities

that may be determined from observations. Then the relations in (22) are those
that can be used to infer first order source properties from observations. Here

] the weight functions are known while the "equilibrium coefficients” are to-be
determined in such an "inversion” procedure. On the other hand, computation
of the "equilibrium coefficients” for a particular source geometry and timne evo-

f Jution is all that is necessary to completely specify a theoretically predicted -
g dynamic field from source.
o In case the integrals for the weight functions, defined in (21), are over a
. region which is fixed in time, then the weight functions will also be independent
2 of the source time £,. For some source geometries this will be a good approxi-
y mation, or will be, in other special cases, exact. In any case, when these weight
", functions are independent of £, or nearly so, then (23) simplifies to: ‘
y G [s mh
0 ~
g Al (w) vt g:,, s W2,
é o) o M 26)
25:?»1 70N (
GLn (o) o8, | |r MR
N ) e Wi
.l
‘.
N This is a particularly simple result which is easily applied for the inference of
source properties from observations or for the direct computation of theoreti-
L cally predicted radiation fields from source models.

From our previous considerations of the elastic wave radiation from earth-
quakes, we have that corrections to the first order result given by (24) are
obtained by computing the "scattering integral”, given in equation (12) in the
section on "Mathematical Foundations”, or from integrals such as (9) in the
present section. In terms of the inner product notation, the second order solu-
tion which accounts for "scattering” (and absorption of energy) on the failure
surface is given by:

af)(r.v) = 20 (rw) + Fi, [(ul"- Gms),,. = (réPnp. T >.v.}

KAl 4
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Here all the functions on the right side are known since the eigenfunction
expansions are used in all the transformed Green’s tractions and displace-
‘ments, while (23)-(25) explicitly specity uf!) and r{} from their definitions.
While this form can be manipulated into an expansion like that for the first
order field #{!) from the source (Archambeau and Stevens. unpublished, 1980)
it is not worthwhile to give these complicated resuits here, since they do not
need to be used in the subsequent discussion. That is, we need only consider
the first order predictions of the elastic radiation from earthquakes relative to
explosion sources in order to quantify their differences.

The results given here bave all been expressed in terms of expansions in
the eigenfunctions of a spherical earth model. Similar results can be obtained
for plane layered earth models, wherein the expansions are in terms of eigen-
functions in plane layered geometries (Archambeau and Stevens, unpublished,
1980). This expansion form is suitable for predictions {(and source property
inversion studies) when the source to receiver distances are less than a few
thousand kilometers.

.. Results from model calculations using this type of approximation pro-
cedure have provided predictions of seismic radiation from theoretical sources
that are reasonable dynamical approximstions of earthquakes. An important
feature of these models is that they are expressed in terms of the fundamental
physical variable controlling the dynamics of these natural sources and so it is
poasible to infer both the basic properties of the seismic field and its variations
in terms of such physical parameters as those describing the final dimensions
of the failure zone, its rate of formation and prestress. As distinct from
kinematic representations, these dynamical solutions do not involve any
assumptions of the time history of the displacement or stress field at the
failure surface, or "fault plane”. The dynamical modeling does, however,
require specification of the initial stress field and some general assumptions
regarding the physics of the failure process involved, such as the assumption of
the loss of shear strength in the material after failure.

: One of the simplest models that can be investigated is one in which the ini-
tial prestress is taken to be uniform in the medium and the rupture rate to be
constant and near the medium shear velocity. Various rupture zone geometries
have been considered for this uniform prestress case, all of them corresponding
to some type of ellipsoid of revolution generated by simultaneous expansion
and translation of spherical failure zones (e.9. Archambeau, 1968; Minster,
1973). While this type of model is the most elementary that can be considered,
- it does allow the radiation fields to be evaluated analytically, so that the depen-
¥ dence of the seismic field on the various source parameters can be evaluated
and described by analytic means. Most important, however, is the fact that we
can expect predictions from these elementary models to provide a description
of the essential first order features of the seismic radiation associated with
natural earthquakes. Further, we also expect that the relaxation source

™
g

:f,;  theory, when considered in the limit in which a spherical rupture gone is
NG created "supersonically”, will provide a good first order determination of the
L seismic radiation released tectonically by an underground explosion in an ini-
T tially stressed medium. (For details of the modeling of explosion induced tec-
;; tonic release see, for example, Archambeau and Sammis, 1970; Archambeau,
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" Analytical Results for Simple Relaxation Theory Models of Tectonic Sources

To illustrate the procedure used to construct relaxation theory models and
to provide an example of the (analytical) form of the seismic field produced by
such models, we will summarize the mathematical results for the simple

- translating and expanding spherical failure zone models.

: In order to simplify matters, while nevertheless maintaining sufficient gen-
: grality for purposes of describing important properties of the seismic field, we
will consider a homogeneous, pure shear initial stress field as a representation
of the (average) prestressed state of the medium. Further, this prestress field
will explicitly be assumed to be uniform to great distances from the coordinate
origin (Le., the point of initial failure in the medium) and so, in effect, to be uni-
form to infinity. This will allow us to extend the source region, and specifically
the integration over the zone in which stress relaxation takes place, to infinity
and to thereby simplify the Green's function representation of the tectonic
source. (In some of the past work on relaxation source representations, for
example, by Archambeau (1988, 1872) and Minster (1973), the region in which
relaxation of a homogeneous prestress was allowed to contribute to the seismic
radiation field was restricted to a spherical volume of radius K. This was done
on the grounds that, in the earth, the prestress was not homogeneous and that
the zone of initial stress was in any cese finite and not infinite as is implicitly
assumed when a homogeneous initial stress is used. While these observations
concerning the prestress must certainly be true, the approximation of the
situation in the earth by the use of a "cutoff’ in the homogeneous prestress
model is not a very accurate one. In particular, subsequent work by Stevens
"(1981) has shown that failure induced relaxation. of heterogeneous prestress
does produce seismic - radiation having spectra that are similar to that
predicted using a homogeneous prestress along with the "&, cutoff factor”, but
it cannot be said that the approximation gives an accurate representation of
the Jow frequency radiation, nor does it show the high frequency complexities
that can occur when the prestress is strongly heterogeneous. Therefore, in the
present discussion we will develop the radiation field predictions for the com-
pletely homogeneous prestress case, which provides a good first order
representation for earthquake radiation fields, and then discuss some of
Steven's results, among others, for the non-homogeneous case, contrasting
them with resuilts from the homogeneous case in order to show how a spatially
confined, heterogeneous initial prestress modifies the predictions.)

For the case of a homogeneous pure shear prestress the mathematical
description can be developed in terms of the dilatation and rotation potentials,
and is relatively simple.* Specifically, the dilatation, x,. and vector rotation
fields, x, are defined by

IE use of these "physical potentials” is limited to the pure shear prestress case and can-
Dot usually be used to represent more general cases, where the prestress is arbitrary. This
s becasuse these potentials, when obtained from (27), do not alweys represent the entire
elastic field in the static case, 90 that the static values of the dilatation and rotation poten-
tials do not fully describe prestress or equiiibrium stress states in all situations. It hap-
peons, in the pure shear prestress case, that the static dilatation and rotation potentials can
completely represent the equilibrium stress state, but this is a special case. In the general
prestress case the displacement field itaelf must be used along with the appropriate dynam-
sl Green’s function integral equation, with results as given earlier. If potentials are to be
used, however, then the Lamé¢ potentials, defined by @ = V9 + V X ¢, are required. In this
latter case the lamé potentials 1% and ¥ satisfy ordinary wave equstions and the analysis
proceeds in the same way as it does for the dilatation and rotation, with formal results that
are only different by constant factors.

,
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x=(xn-x.-xa)=%"u

<% % =Va (27)
A5
::5_ .
~F The equation of motions for an isotropic and homogeneous medium, with negli-
= gible body forces acting, is
. 6fu = yfVx, — 20V x x) (28a)
L
23 with v, and v, the compressional and shear velocities in the medium. There-
3, fore the equation of motion can be used to compute the acceleration from
£ these potentials. If the Fourier transform with respect to time is applied to this
relation, then the relation is:
11 2 -~
E=—[EVX‘+[-E—..-]V$(§ (28b)

where k, = 0/ v, and &k, = 0w/ v, are wave numbers for compressional and shear
waves. Thus displacement transforms can be computed from the potential

i ; . transforms using this relation. -
6 It is not difficult to show that the equation of motion is satisfied if the
: :* Curtesian componsnis of y and the scalar potential x, all satisfy wave equations
3 of the same form (Archambeau, 1988). In particular, the potentials must
A satisfy:

b~ 1

VX = 5 0xa=0 (29)
2 ve

-s::

N wherea =1, 2, 3, 4 and

29

Oa) = (. Xae X8+ Xo)

WX

is used to denote any one of the four potentials. Here also

(va) = (v, ve. v, vp)

."““".

is the corresponding shear or compressional velocity associated with the indivi-
dual potentials.

The advantage of the use of these potentials is that the eigenfunction solu-
tions of the wave equations in (29) are scalar wave functions with well known
properties (see, for example, Morse and Feshbach, 1953) and are easily manipu-
lated, as opposed to the much more complicated and cumbersome vector wave

.
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~y functions associated with the elastic equations of motion. Further, as will
.:j become apparent, the radiation field is conveniently separated into purely
P compression waves (x,) and shear waves (x) by this potential decomposition.

.

The Green's function solution of (29) corresponding to the volume relaxa-
tion source term, or initial value integral term denoted by wi!? in equation (8),
is simply (Archambeau, 1968):

4'. [ 34

&) oxs «)

_é xsl)(l‘ct) = ‘—"1;?{4!0 '{.) [of—o %I:—o'dro (30)
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where I®)(r.t:rp.to) is the scalar Green's function for the wave equation. The
volume integral is over V(ty), the volume outside the failure zone. This result is
completely analogous to the first order solution (wf)) discussed earlier and
given in equation (8). The potential x7 appearing in this integral solution
corresponds to the change in the equilibrium value of the potential y,, as a

. function of the source time variable o, due to the (spontaneous) creation and
growth of the failure zone. This function is completely analogous to the equili-

brium displacement function u® and can, in the present case, be computed
from it, using the potential definitions.*

The limit on the integral over the source time, fo, is t* =t + ¢, with ¢> 0
and small, where ¢ is introduced simply to avoid singular points in the Green's
function. However, if tg> 75, with 75 the total time duration for formation of
the failure zone, then x? does not vary for such £, values, since the failure zone
does not change or grow, and then the derivative of x? will vanish. Therefore
the integral over the source time £, has an upper limit equal to 7, when £ > 7.
In general we will consider the case in which the observer time £, measured
relative to the beginning of failure, is larger than the time 7. In this case we
will replace the limit by 74 and explicitly note that this representation is valid
fort > 7,.

The use of the index (a) with the Green’s function is to indicate that

slightly different Green's functions must be used for the rotation potential
components, x;, § = 1, 2, 3, than is used for the dilatation potential x,. In par-

‘ticular, to compute the direct radiation field from a relaxation source, we can

use the infinite space Green's function, and in this case:
é(r*/v, 1%
f.

e, t: 1y, to) =

where §(z) denotes a Dirac delta function and
r*=|r-rl

t*=t ~tg

with r and ¢ receiver coordinates and time. Here the Green's function for
a = 1, 2, 3 involves the shear velocity in I'®), while the compressional velocity is
used when a = 4.

The Fourier transformed integral solution corresponding to (30) is
obtained by taking transforms with respect to the observers time t. Thus

;.‘,"(r.w) = ‘j x$N(r.t) et dt

is the transformed potential. Applying this operation to (30), and taking
account of the properties of the Dirac delta function, we have for t > 7q:

(1) tw T ot o0z | « e
[ o —— .
X (rw) = T {c dty y‘(;) Bty | ve dro:t > 7 (31)

As noted earlier, the dilatation and rotation potentials do not always completely describe
the equilibrium state U® when the potential definitions in (27) are used for static field com
putations.
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" This spectral representation is most useful for the evaluation of the potentials,

- for the source displacement field. This procedure is, as before, an approxima-

. sphers with the same final dimensions and growth characteristics.)

" in terms of two functions of time: d(t,), a function describing the movement of

as compared to the time domain representations, and (31) is generally the form
that l):n been used. (See, for example, Archambeau, 1664, 1968 and Minster,
1973. ‘

. The integral representation of the potentials can be evaluated using a pro-
ocedure which is equivalent to that described earlier for approximate solutions

tion to the complete dynamical solution, wherein we specify the rupture
growth, rather than solve for it using the boundary conditions and the equation
of state for the material. (Further, for this example, only the initial vajue field
x{" will be obtained, with the scattered field contributions given by x{* with
n = 2 completely neglected.)

One way of specifying failure zones is indicated in Figure 1. In particular,
the simple spherical zone can be made, to expand and translate in such a way
that the time evolution of a natural or explosion induced failure process can be
approximated. (Clearly, a thin disk or ellipsoid would be a more preferable
geometric shape to use for simulation of an earthquake failure zone, rather
than a sphere. However, the moving expanding sphere has the advantage of giv-
ing relatively simple closed form analytical results for the potentials, while the
other geometries produce much more complex and cumbersome results.
Further, as indicated by Minster (1873), when comparisons are made, the radia-
tion field predictions for models with "thin failure zone" geometries do not
differ in any fundamental way from those using a tangentially szpanding

-+ For a spherical zone at any time £, we can parameterize the failure zone

the center of the sphere relative to a fixed coordinate system, and R(to). the
time dependent radius of the sphere, as indicated in Figure 1. By adjusting the
time dependence of these two functions, we can obtain time evolutions such as
those illustrated in the three lower insets in Figure 1. (This parameterization is
equivalent to a full specification of the rupture velocity function, U, as a func-
tion of time and position.) Of the three models shown, the uniformly expanding
sphere has been used to model tectonic release effects associated with explo-
sions in prestressed media (e.g., Archambeau, 1972) while the tangentially
expanding sphere and moving sphere models have been used to approximate
earthquake failure zones by Minster (1973) and Archambeau (1968), respec-
tively. Of the latter two model types, the tangentially expanding model leads to
the most accurate approximate representation for earthquakes.

Now the equilibrium displacement field in the elastic medium surrounding
a spherical cavity in a homogeneously prestressed medium is, from Landau and
Lifshitz (1959) for example:

. 3 o |1 R¢ o 1
= ety 000 527 [ o st [

e
- ) '
5/4 off rerer r ]

Here, of) is the constant prestress existing prior to the introduction of the cav-
ity. o is Poissons ratio, u is the elastic rigidity of the medium and Ry is the
radius of the spherical cavity. If we specify the prestress to be a constant pure
shear field, with:
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p! f!.hrc 1. Coordinate systems used to describe the geometry of a translating

- and expanding sphere. The primed coordinate system moves with the center

of the sphere vhile the fixed coordinates,with origin (0),are used

to locate source points Q in the system r, 6 ., ¢ and observer points

P 4n the system r, 6, ¢. .The lower three insfts T1lustrate three
geometric models for failure gones using translating/expanding spheres.
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- off =ofd =0ofd =0

then this solution can be used to represent the equilibrium displacement field
around a spherical inclusion in which the shear strength vanishes (1 = 0 inside)
and in which the compressibility matches that of the medium outside the inclu-
sion. In this case, the associated potentials x? can be shown from (27) to have
the form, in the coordinates r'g, 9'p, $'o in the frame 0' in Figure 1:

xre. £o) = [;_l:r 'i-;o {a {8cosm gy + 0f8sinm po] Pg{cosd’) (32)

where the coefficients a{8) and bf8). a = 1, 2, 3, 4, are:
(8 oy 1 1
s ofY - 5ol — T of8

3 1
3 o -1
> off 0 < °f8

]

5[(1-0) = 8,40]

[Gg-l(to)] = T u(7-50) Bt 0 % af 7:.' of
| o ofp 0
b o Lo

0 Foff -3off
0 —-;-0[8’ ]

o o Goff

piskea) = ZEZ 200 )

L

with §,,=0if a # 4, and 634 = 1 if a = 4. Here the potential function index (a)
numbers the rows vertically from 1 to 4 in the matrices, while m = 0, 1, 2 is the
column index running from left to right. (This result is given by Archambeau
(1984, 1968) with a multiplicative factor of 1/2 missing from the rotation poten-
tial coefficients. Minster (1973) gives the correct results, but omits a minus
sign from the coefficient af¥. The result given here is from Harkrider (per-
sonal communication), who gives the general result for ofY) 2 o3 # 0{9 2 0 In
this general case the following additional coefficients are non-zero in the

matrices aft) and b8f8): aff = -;-(aﬂ’ -ofY), aff = %(2053) -of - o).

alff = 3 (off) - off). b =— 3 (off ~off). and b = 5 (off) ~ off)). In the
case of a pure shear initial stress, these coefficients all vanish.)

With this description of a "spherical inclusion equilibrium field, we can
express the equilibrium field at any source time ¢y, for any of the failure zone
evolutions in Figure i, by using an appropriate radius function R(t;). The field
s0 expressed will, however, be in the moving coordinate system, with origin 0’
and spherical coordinates r’, ¥', ¢'.

The movement of this coordinate frame is a simple translation relative to
the fixed coordinates with origin O, and is described by the function d(ty).
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Thus, to use this description of the equilibrium field x2 in the integral represen-
tation of the dynamic radiation field, in (31), it is necessary to either express
the field x? in terms of the coordinates of the fized reference frame (ro. 0. @o)

_and evaluate (31) as it stands, or to evaluate the integral representation for the
: dynamic field in the moving frame, with source coordinates (rg, %, ¢o) and
" observer coordinates (r', ¥', ¢'), and to then transform the dynamical results

back to the fized reference frame. The former procedure was used by Archam-
beau (1968), while Minster (1973) used the latter. We shall follow Minster’s pro-
cedure since the results are somewhat more general and compact than the
alternate expansion.

The first step in evaluating (31) is to express the infinite space Green's
function in the integrand in terms of spherical wave-functions referenced to
the coordinate system which moves with the expanding spherical zone of
failure. This is a classical result (¢.g.. Morse and Feshbach, 1953), and has the
form:

et fi(karo) M (kor):ir' > 7

1(kar) Rk aro) i 7 <7

e
. re

= —ik, f: (2t + 1) P(cosy')
im0

where (r’, ¢, ¢') are source point coordinates in the moving frame, correspond-
ing to the point Q in the figure. The angle ¥' is measured between the vectors r'
and ry. (The vector p, from the origin 0' to the observer's point P is not shown
in Figure 1, but vectors r and r to the point P have the same relationship to the
coordinate systems at 0 and 0' as do the vectors ry and ry for the source point
Q). The Legendre function, involving the angle 7', has the expansion (Morse and
Feshbach, 1953).

m)

Alcory) = 3 2~ tmo) ool

b B l'(cos ) FIY(cos ;) cosm (5" — v3)

which involves the basic observer and source point coordinate angles ', ' and
Op. po- Here 8mn denotes a Kronecker delta function. Hence, these two expan-
sions allow us to express the Green’s function in separated form in terms of the
source and observer coordinates in the moving frame. Now, using this Green’s
function expansion and the solution for x2. the equilibrium potential field for
the spherical inclusion as expressed in (32), we get, from (31}, the integral solu-
tion:

k! = " dR(to) 4w,
e 8

2{;(214-1){ at

Eew) = 474 5o muo

0

[ede) corm g + bR sinme;] PR (cos i) A(cosy) sind;avsde;
0

o7

N T Qilkaro) | n T R Er)
. h‘(')(k.‘r )n{o’ "'—'—.;— dro + j‘(k,r ) .'[ "6 d"'o] ] dtg

for the dynamic field due to relaxation effects, for observer times ¢ > 7p, where
7o is the time necessary for the complete formation of the failure zone. Here
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1 we have factored out the time dependence term from the multiple coefficients
N aj%) and 548) in (32). so that a %) and b %) are the time independent coefficients
's: defined by:
3 - (a)
& [ait0) = F(eo) (o)
E . ] ,
- [b422e0) = Pceo) (o)
i
N Observing that the orthogonality of the Legendre functions is such that:
' e w .. |cos mwa . , , ]
o .{ J P,(cosy’) Pg (cosvg) sinmp; sin¥gddgdyg =
y 4 cosmy'
Ll
Ba1 T (c0?) sinmp’] 6iz
g
. where
-~ o122
2 Gie=l1,1=2
,_. then we have that :
. ~ EE 2 0 dRS(to)
. (1) = == —_—00 tute o e ]
: X% (re) ve ‘i.o { a, * {[u&. cosmg
3 v k M
% + bi@linmp‘] PP (cosd’) Ih[" (k.r*) [ 15(—‘3'—")- dro
2 Ay To
%
. : = Rf® (k,r . :
+ gulkr) J AL kaT0) dro] ] at,
- r To
:::j The spatial integrals involving the spherical Bessel function and Hankel func-
- tion sre standard integrals which may be evaluated from:
) »
Sia(kaa)  Jioy(kad)
- ~{1+1) = -
! ,[("o) b/ (k."o) '8"'0 (k.a )c-x (kb )¢ 1
N
: » B (kaa) A (kD)
%‘ "“01) = h- a - -~ a
l .[('o) hi(k,ro) '34"'0 (k.a )1-1 (k.b )a =1
: Using these relations and the Wronskian relation for the spherical Hankel and
N Bessel functione given by (e.9., Abramowitz, 1964):
. i
L6 $i(kr) A8 (kr) = A (kr) 4,y (kr) = - T
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then we can put the result for ;,‘," into the form:

~ar, o S BT 4i(kaR(t0) [dRS(to))
XN 0)= — t -{ ‘k.R(‘o; d‘o" )

Y L)

oy

atea

Wl

L)
atat

N
A

. {[agg) cosmp' + b sinm '.] PP (cosd’) hf® (k.r .)] oot dt,

+ [;1;]_‘[:' ,L., [%‘:)- cosmg' + d:“:'l linmp']P?(cosd') e e, (33)

SLE S
LLLLLS C LIRS ¢ % 0 9 9 (% 2 R 0 o

- where, in the final integral term, we have reintroduced the original multiple
coefficients, af&l(t,) and b [8)(to). associated with the equilibrium field x2.
Now we observe that the final integral is not a propagating field but actu-

ally corresponds to the Fourier transform of the changing initial value field x7,
times the Fourier transform of a step function which accounts for the factor of

ITIJ multiplying the integral. Thus this term results from the time dependence

of the initial value field as the failure gone is created and corresponds to the
change in the potential due to the changing reference state. These reference
- state changes are, by choice, measured relative to the (fixed or static) final
\ [ equilibrium state in the formulation of the original integral solution given in
i (22), and s0 this term accounts for the fact that this final equilibrium is not
, achieved until dynamic relaxation of the stress bas taken place everywhere in
" the medium. ‘Hence, the term functions to keep track of the instantaneous
- equilibrium state relative to this final reference state.

The first integral term in the expansion for x‘(,‘,’ is a propagating wave field,
in view of the presence of the spherical Hankel function, and corresponds to
the radiation field that would be measured. We are therefore interested in the
detailed form of this field from the dynamical standpoint, rather than in the
second integral term, and will simply omit the second integral from further con-
sideration.

The form of the dynamical term in x{" is that of a quadrupole radiatorin a
moving coordinate frame (r', ¢', p'). However, the coordinates in the moving
frame implicitly depend on the source time f, since the moving frame is
defined to have its origin at the center of the expanding/translating sphere
with radius and position depending on £g in some parametric fashion. To bring
# out this dependence explicitly, and to evaluate the integral over the source
i time £y, we need to express the wave field in the fized coordinate system

(r. 9, ¢) indicated in Figure 1. That is, we must transform the expression for
~ the quadrupole radiation field in the moving frame to an equivalent multipole
.. ~ field in a fixed reference frame. To do this we can use the addition theorem for
. spherical wave functions, as employed by Minster (1873). In particular, for the
. translation by d(t;) of the moving frame along the £ axis of the fixed reference
frame, as shown in Figure 1, Minster shows that the spherical wave function of

order l = 2 transforms between the moving and fixed frames according to:

A (k) PP (cosd) f;,':: = (-1)™ \/ E&z-w?)l!! ,12;, ,.‘,g,,

2 aa"a"x"id

[RR RSt Nl o RS
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when r* > d(to)-

- Here the coefficients ¢;{v. 1|2, m) are related to Clebsch-Gordan coeffi-
cients, where in genera:

eiv.lin.m)=(-1)i* v+ 1)(a + 1) (@2n + 1) X-(lym O |nm) (1 v00|nD)

' N
2224

A

]

The symbols ({vm 0| nm), etc., on the right are the Clebsch-Gordan coeffi-
cients, and since they are tabulated (s.g., see Edmonds (1957) or Abramowitz
and Stegun (1985)), their computation presents no problem. The relation, as
noted, is valid when 7' > d(¢,). When r' < d(£g). corresponding to the very near
field distance range, then another form of this expansion must be used (see
Minster, 1973 for details). However, our main interest is in the far, or inter-
mediate, distance range, so that the expansion given here is sufficient.

Substitution of the expansion for the “moving quadrupble field" in terms of
a fixed reference frame, wherein a translational aspect of rupture zone growth
is includead, gives finally:

X, w) = ,)'3 Y [489w) cosme + B(w) sinmg] - P(cos 8) Ak r)
=0 wm=d

(34a)
when r > d(tg) and £ > 75. Here
Al () EE a2 vet et (Vv + 1) (21 4+ 1) = Fm )
B = 5 iy O sV Gemi ot (V01 2m)
T ut, [AR(to) | Fa(kaR(t0)) agdy
(lvOOlZO)-{c ‘I—=; %R(ey) Jkad(to)) dto |, (a)|  (34D)

We have, therefore, that the radiation field due to the relaxation effects
associated with failure, when expressed in terms of the potentials x{!
corresponding to the scalar dilatation 43: = 4) and vector rotation (a =1, 2, 3).
is a multipole field whose coefficients A2’ and B§2 are (independent) functions
of frequency, which depend on the growth rate of the failure zone through the
functions R(¢,) and d(ty) for the particular parameterization used here, as well
as upon the initial stress state of the medium and its elastic properties.
Clearly, the case considered bere is special, since it has been assumed from the
onset that the prestress was uniform and pure shear and that the failure zone
was of a type described by a translating and expanding sphere. However, it is
nevertheless true that the radiation field from any source can be expressed in
the form of (34a), and it is only the multipole coefficients that change form as a
function of the detailed nature of the source.

The specific form of the result obtained in (34) will depend on the choice of
the functions R(t,) and d(¢,). Once this choice has been made, the evolution of
the failure zone is completely defined and the integral in (34) can be evaluated.
This integral is seen to be a Fourier transform, involving products of spherical
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Bessel functions. In general it is evaluated numerically by the Fast Fourier
Transform (FFT) method. (See Minster, 1973, however, for methods of analytical
evaluation.) Limiting analytical forms of the integral, at large or small values of
frequency @ for example, can be obtained without much difficulty in specific
cases of interest and Minster (1973) provides examples. We shall use these
results later, in the section on "Scaling Laws", to provide a description of the
seismic radiation in terms of basic event parameters, such as rupture rate,
prestress and failure zone dimensions.

The case of rupture zone evolution illustrated in Figure 1 are among those
that have been used to model tectonic radiation effects from both earthquakes
and underground explosions. As mentioned earlier, of the models illustrated in b
Figure 1, the tangentially growing spherical failure zone model produces radia-
tion field predictions that are considered to most accurately approximate
earthquake radiation fields. In this case the choice for R(¢o) and d(¢y) is con-
strained by:

-
.
.

u!,

e 2l

CA A

N

P

d(to) = R(to)

e

and; for uniform growth, consistent with the uniform prestress, then
d(to) + R(tp) = 2R(to) = Unto

is the necessary choice based on our earlier considerations of proportionality
of rupture rate to prestress level, while Uy is a constant rupture rate. In this
case the multipole coefficients for the potentials in (34) are given by:

o (AR 3 ower , L @y 1) (@4 1)
[Btw("’) =;-v-l-2| (-1t e - 5

. =m m
l+m) (2-m)

{tvmoO|2m)(1v00]20)

(35)

wRe/v, b Gy
. { exp {—21'. [‘U./ Un]z ]zj,(z) Jfz) d=z :&)]

where R is the final radius of the spherical failure zone. It is important to
notice that the rupture rate appears in the result through the ratio (v,/ Ug)
and so the radiation field is only affected through the ratios of the intrinsic
slastic velocities to the rupture velocity. This also shows that P and S waves will
bave differently shaped radiation spectra, since this ratio and the integral limit
have different values for the two wave types.

The integral in (35) can be evaluated as a Fourier transform, or since the
Bessel functions are a finite series of sines and cosines multiplied by polynomi-
als in (1/z), the integrand can be expanded to a finite series and evaluated
term by term. The results will be discussed in later sections.

The case of 8 uniformly expanding spherical failure zone illustrated in Fig-
ure 1 is also of considerable interest, not only because the result turns out to
be simple and easy to understand, but also because it can be used to model tec-
tonic release effects associated with an explosion. In this case, d(ty) =0, and
the results in (34) reduce to (see also Archambeau, 1972):
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3_']‘)(1'. W)= t‘ [AL‘.‘?(Q) cosme + B8 linmp] PP (cosd) AP (k.7) (38a)
where:

FYOIC) MY Ra g dR(to)) #,(kR(¢ ads

[mw]‘ Ve "‘“'[ a‘.' }”f,,mf,i” dto [a;u:] (86%)

with R, the final failure zone radius, R(tg) = Upto and Up < v,.

If the rupture rate is less than the elastic velocities in the material, then
these results apply. If the failure process is driven by a shock wave from an
explosion however, then the rupture rate can be greater than the intrinsic elas-
tic velocities and then wz must use the “instantaneous source” integral
representation, equivalent to equation (8) discussed earlier. In this case we get
the somewhat different result:

) 2 [ o

where the rupture rate Ug = v, is assumed constant and Ry is the radius of the
final failure zone. (This result follows from (38b) if we insert
R(to) = RoH(to = Ro/ Ur). with H denoting a step function.) These results can
also be expressed in terms of elementary functions if we use the identify:

’l(:) g_1_[.sm_::
-———: )

(38c)

o]

In any case, the results in (36) show that the seismic radiation to be expected
from the production of a spherical failure zone in a uniformly prestressed
medium, with the prestress being a pure shear field, is a pure quadrupole field,
baving a simple double couple force equivalent. The characteristics of the radi-
ated spectrum are also very simple, and in later sections we shall illustrate the
important properties of these spectra using these and similar results.

Results and Predictions from Relaxation Theory Modeling

Figure 2 shows results obtained by Minster (1973) for the displacement
spectra, for compression (P) and shear waves (SV and SH), from a simple, uni-
form prestress, relaxation theory model employing a tangentially expanding
spherical failure zone. These results correspond to the initial value fieid, and
do not include the effects of scattering from the failure surface.

The important first order characteristics of the spectra illustrated here
are however: (1), the large difference in P and S wave spectral levels, with the S
wave production nearly a order of magnitude larger at all frequencies. (2). the
difference in ‘corner frequencias” (that is, the frequency at which the spectral
roll-off at high frequenciss clearly begins) between the P and S wave spectra,
with the S wave spectra having a significantly lower corner freguency. (The
spectral holes, evident in the spectra at one of the azimuths, are primarily due
to neglect of the boundary scattering terms in the solution and are essentially
removed when scattering is taken into account in the solution.) (8), the far
Jield spectra, for all wave types, tends to flatten at frequencies lower than the
corner frequency for each wave type (P or S), this occurring when the prestress
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corgesponds ts 8 prestress of approximately 100 bars
(10° dynes/cm?). The rupture rate is taken to be constant
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is uniform (or nearly uniform) to large distances from the failure gone. These
three properties of the radiation spectra are important distinctive characteris-
tics of tectonic relaxation sources and are among those most clearly observed
for earthquakes. '

Figure 3 illustrates the effects of rupture rate on the shape of the
compressional (P) and shear (SH) wave spectra from & model similar to that of
Figure 1. Here. in addition to the previous three observations concerning the
wave spectra, it is clear that the corner frequencies and high frequency spec-
tral slopes, for both P and S waves, are strongly affected by changes in the
value of the rupture rate, denoted as ¥ in the figure. In particular, this figure
illustrates two additional important features, namely: (4) The corner freguencies
Jor both P and S waves are directly proportional to the rupture rate. Further,
(5): The high fraguency spsctrum of the Pwave varies asymptotically as w™ for
high rupturs velocitiss near the shear velocity of the medium, while the S wave
spectrum falls off as ™ at high frequencies for such high rupture rates. For
{owsr rupture velocitises, both the P and S wave spectra show guite wide fre-
guency bands, immediately adove their corner fregquencies, where the specira
vary as o~} to w™® befors assuming stesper slopes at yet higher frequencies.

Comparisons between spectra with different failure zone dimensions, such
as those of Figures (2) and (3), shows that: (8) 7he spectral levels all scale as
the cube of the failure zone length when the failure sone surface area increases
os the square of the length (which is usually the case for small evenis). The
spectral levels increase as the square of the failure sone length when the length
is allowed fo increase without changes in the other foilure gone dimensions
(which is most likely for very large sarthquakes). In addition: (7) The corner
Jrequencies of the P and S wave spectra vary inverssly with the (final) length of
the failure zone. ‘

Figure 4 shows compressional and shear wave radiation patterns displayed
at three different frequencies. The important radiation field properties illus-
trated here, which can be added to those previously described, are: (8) The
radiation patterns at low frequencies, that is, below the corner fregquencies for
sach wave type, are dominated by o guadrupole term (having a double couple
Jorce agquivalent), while at frequencies above the corner frequency, for each
wave fype, the patterns are strongly distorted by higher order multipole contri-
butions which are associated with rupture propagation. The distortion of the
patterns is such that the patterns rolate toward the direction of rupture propa-
gation at freguencies above the "torner frequency” and more of the high fre-
guency energy is radiated inside a cone along the rupfure plane in the direction
of rupture propagation.

The properties described constitute the most basic and robust features of
the seismic radiation predicted for earthquakes, and they have a reasonably
good correlation with observations. In cases where we can’t be absolutely con-
fident that the earthquake data is consistent with a predicted feature, it is
because other effects, such as anelastic attenuation, scattering, or ordinary
wave propagation effects in an uncertain structure, preclude definitive verifica-
tion due to ambiguity of interpretation, or simply because the observed data is
too limited or is too contaminated by noise.

In addition to the characteristics so far described, there are effects that
will arise from strong departures from uniform prestress conditions. This will
show up, as was already indicated, in variations in the rupture velocity and
stress drop during the growth of the failure zone. Jf these variations are strong
enough, then we can simply view the event as a superposition of several nearly
constant stress drop events each with a rupture rate scaled appropriately, as
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indicated by equation (18) for example. Then we would have spectral charac-
teristics, for each one of these “events”, which behave as previously described, 1
with the complete seismic field from the variable stress drop event being a
linear superposition of all the "component event” spectra, with appropriate
time or phase delays added of course.

In this regard, Figure 5 shows a model of the San Fernando earthquake, by
Bache and Barker (1977), which employs a multiple-event superposition of
relaxation theory sources. In this case two source models with variable stress |
drop and rupture rate were employed. The near field model predictions for the
ground motion at the nearby Pacoima Dam site are shown to be in good first
order agreement with the observations at this location. However, in view of the
departure of the predictions from the observations after about 8 seconds from
the start, it seems evident that a third shallow "event”, intersecting the free
surface, could be added to the model to give a more complete fit to the entire
observed time series. Nevertheless, the tirst six seconds of the observed ground
motion is predicted reasonably well by the model.

We observe that the detailed nature of the departure of the predicted and
observed ground velocities shows that the true velocity is more complex than
that predicted, with relatively small high frequency variations in the recorded
ground velocity that are only fit by the model in an average sense. This indi-
cates that the event actually has fine scale variations in stress drop and rup-
ture rate that involve spatial fluctuations in these variables on a scele length of
hundreds or tens of meters, as well as on the scale length of kilometers, as

‘ represented in the model.

In spite of the lack of fine scale detail, thns simple "double event” model
qQuite accurately predicts the observed teleseismic radiation from this earth-
quake. Figure 8 shows observed far field seismograms at 10 locations, with the
theoretically predicted results superimposed, as the darker lines, on the obser-
vations. Comparison of the upper figure results, for the "event 1" of Figure 5 .
alone, with those in the lower figure where both "events” are included, shows
the improvement in the fit to the data when the two event model is used. It is
also quite clear that a third "event” at shallow depth is needed to obtain a good
fit to the data beyond 10 to 15 seconds after the first energy arrival. In any
case the data is considered to be well fit by the average "double event"” model
for the first 10 to 15 seconds, particularly when we take account of the lack of
very detailed information regarding the crustal structure at the various
receiver sites, so that some deviations are due to local site structure inaccura-
cies rather than source model inaccuracies. The lower frequency content and
parrower band width of this data, compared to the near field data shown in Fig-
ure 5, allows this model, which clearly does not account for fine scale variations
v in stress drop and rupture rate, to provide a good fit to the far field data.

A somewhat more elaborate model made up of, say, three such "events”
and with some of the more major fine scale stress drop-rupture rate fluctua-
~ tions included could undoubtedly be found that would give a more detailed fit
to the entire wave field from the earthquake. However, for the purpose of this
discussion, it is sufficient to be able to point out that models based on relaxa-
tion source theory give rather detailed fits to observed data when plausible
earthquake stress drop and rupture rate variables are used, and secondly that
comparisons with well recorded near and far field data show conclusively that
both large scale and fine scale spatial variations in the basic event parameters
(including the failure zone geometry) occur and are highly significant, particu-
larly for the high frequency radiation fields from these events. The example
shown here also demonstrates that approximations using a superposition of
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relaxation source models (each with an approximate solution of the formal
source representation theory for a simplified geometric failure zone) can be
used to make good "first order” predictions. (For details of the source theory
epproximation, as well as the wave propagalion methods used, see Bache and

Barker, 1877.) .

It is, however, also possible to compute relaxation source theory models
with spatially heterogeneous initial stress fields specified. Results from one
such computation, by Stevens (1881), are shown in Figure 7. In this case the
rupture zone is simply specified to be spherical and to be formed "instantane-
ously”, so that the model actually conforms to an explosion produced failure
zgone in a heterogeneously prestressed medium. Nevertheless, the features of
the predicted seismic radiation from this model, that are solely due to the
departure of the prestress from homogeneity, are easily discerned. In particu-
lar: (9) Both the P and S wave spectra have a guadrupole spectral component
that is the same as that for a source of the same geomeiry dut with uniform
presiress squal to the spatial average of the non-uniform prestress field.
Specifically, this quadrupole field component has a flat spectral level at fre-
guencies below the corner freguency and has corner frequencies and high fre-
guency spectral slopes that scale in the same manner as was described for the
uniform prestress case. n addition however, the source has higher order mul-
tipole components that are entirely due to the heterogeneily of the initial stress
Jield and produce interference effects which are superposed on the quadrupole
Jield in such a way as fo produce peaked spectra, which are particularly
apparent near nulls in the quadrupole radiation pattern. 7he relative strength
of the higher order multipoles is directly proportional to the deviation of the
heterogeneous stress level from the mean stress and the contributions fo the
radiation field are most significant at and above the quadrupole spectrum
or a given P or S wave type. The larger the spatial extent of
the deviation in the initial stress from the mean, the lower will be the frequency
at which there will de a significant non-guadrupole contribution fo the radia--
tion field.

Figure B illustrates how a strong prestress heterogeneity can produce an
"apparent corner frequency” in the observed spectra from a tectonic source
which is more representative of the characteristic dimension of the zone of
high stress than it is of the maximum dimension of the failure zone. This exam-
ple is again from Stevens (1881), and illustrates the radiation induced by the
creation of a spherical failure zone (e.g.. as might be produced by an explosive
shock wave) in a strongly inhomogeneously stressed medium. In this case the
prestress is created by insertion of a fixed ("locked") dislocation in the material
at a variety of distances from the spherical failure zone, with the dislocation
therefore producing the initial stress field and the relaxation of this stress, due
to creation of the spherical shatter zone with vanishing rigidity, producing the
elastic radiation. As is *hown, when the dislocation is at a distance of ten times
the shatter zone radius (R;) from the center of this failure zone, then the pres-
tress in the vicinity of the failure region is fairly uniform and a "normal",
predominantly quadrupole spectrum is produced with a corner frequency
approximately equal to the rupture rate (here taken as the P wave velocity in
the material) divided by the radius of the failure zone. However, when the dislo-
cation is located at a distance of 1.1 R, and so very near the failure zone boun-
dary, then the quadrupole gpectrum is strongly perturbed by the addition of
higher order multipole terms arising from the strong spatial variability of the
initial prestress. These higher order multipole terms are seen, at least in this
case, to produce high ‘requency contributions, at and above the quadrupole
corner frequency, which result in a much higher apparent corner freuency.
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This "spparent” corner frequency implies a characteristic dimension, when
interpreted in terms of a length divided by rupture rate, which is of the order of
the radius of the high stress zone surrounding the static dislocation rather
than the (much larger) radius of the failure zone itself. Furthermore, when
both the spectral amplitude and phase are used to obtain the time domain
seismograms corresponding to this situation, it is found that a large high fre-
guency pulse appears with a time of arrival, determined by the phase spectrum
and associated groups delay, that corresponds to a source of energy in the
vicinity of the dislocation. Therefore, even though the dislocation displacement
discontinuity is fixed for all time, the energy is clearly found to arrive from the
dislocation. This, on reflection, would be expected from a volume relaxation
source where the energy is released from the medium itself, and would be most
evident when strong heterogeneities in the prestress exist.

From the standpoint of predicted characteristics of the radiation from
earthquakes, it is therefore important to keep in mind that: (10) Both the Pand
S waves can have spectral properties that reflect the characteristics of strong,
nearbdy, stress concenirations, in particular very high stress levels can produce
large energy arrivals within the P and S wave trains which produce apparent
corner fregquencies of the composite spectra of the train that are more charac-
teristic of the dimension of the siress concentration than of the failure zone
dimension. However, the snergy arrival(s) producing this ‘perturbation”in the
P or S wave amplituds spectra have travel timses appropriate to energy released
Jrom the location of the stress concentration, which may not be the same as the
location of the point of initiation of failure (the hypocentsr), and so such energy

.may frequently arrive in the P or S wave coda after the first arriving energy,
although it could, in fact, constitute the first arriving pulse if the hypocentral
‘gone was {nitially an intensely stressed sone, * -

Sciling Laws for Earthquakes Based on Theoretical Results

The predicted properties of the seismic radiation from these dynamical
models can also be obtained analytically if we consider the asymptotic behavior
of relaxation source model radiation, such as described by equations (34)
through (37). This approach provides gquantitative relations which, while
approximate, are valid to first order and can be used as scaling laws for the
radiated spectrum for earthquakes. That is, we can scale the spectra for one
particular tectonic source into the spectra for a different source with a dif-
ferent stress drop, rupture length and rupture velocity using these relations.

Since the theory predicts results that are different for the compressional
and shear waves radiated by tectonic sources, we will treat the spectra for
these wave types separately. Most of the following results are from Archambeau
(1968, 1972) and Minster (1978), and details omitted here can be found in these
references, particularly in Minster (1978).

In order to simplify the results, without losing any essential generality, we
consider the case in which the prestress field is homogeneous and pure shear,
with only the initial stress component ¢{$ nonzero. Then, using the expression
(34) for the radiation in the limit of low frequencies and in the far field (so
ky7 >> 1), we have for the compressional (P) wave field (Minster, 1878):

- ') av
lim TiPr, ) ~ 1:“17 _2;)0 of [;L’T] «®" 5in2¢ cos¢ (37)

where the asymptotic result has been expressed in terms of the radial com-
ponent of the displacement spectrum &{P). Here o is the Poisson's ratio for the
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. material in the region surrounding the failure zone, 4 is the elastic rigidity in
" this zone, off the prestress, vp the compression wave velocity st the source,

o :‘: @/ vp is the wave number and L is the maximum dimension (or "length") of
S feilure zone. This limiting form of the low frequency far field radiation
ot - shows that the field has a simple quadrupole form which is directly proportional
Y " to the prestress and the cube of the rupture length.
Using this low frequency result along with asymptotic results valid at h%gh
S frequencies, we can define a “P wave corner frequency” 8 (or off) = 217 "))
. as the point where the two asymptotic spectral results are equal. In addition,
- we can specify the high frequency behavior of the spectrum from the high fre-

.

N guency asymptotic results. Since the high frequency asymptotic relations are
. rather complex we simply summarize their consequences when used, along with
(37). to define a "corner frequency” and the high frequency behavior of the P-
wave spectrum, at frequencies above f‘(’ ). We have:

N

% 1/8

\1 2Ur [3v8

) — ————

for the angular "corner frequency” relation, and
o

e 1

i ) ~ o

?ﬁ mld‘}’l 0[",].1'&01; Up <vp

5 (39)
W lim [P ~0 || when a2y,

- : T3 o RETP

fos;
3\‘;- for the very high frequency asymptotic behavior of the far field P wave spec-
'}: : trum as a function of frequency. Here Uz is the rupture rate and the notation -
I" o ':T for example, is to be read as “the order of 1/¢*". The behavior at lower
X frequencies, but such that o 2 w{f), where the frequency is near but somewhat
:'_: larger than the corner frequency, is such that:

2 lim |4 ~0 [-‘T , for Up <vpand lh=vp (40)
M “ 0’"”) @
iﬁ:;: Thus, the P wave spectrum decreases with a slope near u™® at frequencies above
) ©§P) and, when the rupture rate Uy is less than the compressional velocity, then
e this slope increases to »™® at yet higher frequencies. As the rupture rate
::-:" approaches the compressional velocity in value, the frequency at which the
=2 spectrum assumes a w™® behavior moves to higher frequencies, such that when
3 the rupture velocity actuelly reaches or surpasses the compressional velocity
“ "« (e.g. as for failure caused by a shock wave), then the frequency at which o™
- behavior occurs is infinite. Further, the spectral decay beyond the corner fre-
N ‘quency u}’ ) is strongly influenced by the ratio of Up to vp, and is essentially
- independent of the rupture dimensions. When the rupture rate is much less
- than the shear velocity, and therefore very much less than the compressional
— velocity, then the spectral decay ranges from w™! to ©~% over a broad frequency
W band and the corner frequency predicted by equation (38) is not very accurate.
‘;: This behavior is illustrated in Figure 3, and was also noted earlier.

\$s These results are appropriate for a uniform prestress field and, as was

24-" fllustrated and discussed earlier, prestress inhomogeneities, particularly strong
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stress concentrations, can affect the spectrum near and above the corner fre-
quency so as to cause peaking and corner frequency shifts. These effects will
nearly always arise from later arriving energy within the P wave train, and so
the first arriving P wave pulse will typically have a simpler spectrum, with
characteristics most closely matched by the results predicted in (37)-(39). It is
only when the spectrum of the entire P wave train is considered that compli-
: ocated interference of arrivals in the train produces strong perturbations in the
~  total P-wave spectra.

Using these results we can construct approximate scaling laws for the P
wave spectra between different sources having different fault length, stress
drop and rupture rate parameters. These relations are accurate and useful
when the rupture rate is less than, but fairly near, the shear velocity in the
medium, which appears to be the usual case for failure in the earth, as was
noted earlier. The relation (37) also holds for the "supersonic” failure rate,
when Up = vp. However, the corner frequency estimate is less accurate for a
very low rupture rate process, and the usefulness of the relation in (38) for the
corner frequency is minimal in this case. Nevertheless, with these provisions,
the results given in (37) through (39) provide the following scaling relations for
the-P wave spectra from relaxation models of earthquakes:

(1) The spectral level of the far field P wave at low frequencies, below the
corner freguency, is independent of freguency and rupture rate and this
Jlat level scales with fault dimension according to:

—r‘-)-:;,;(:) ‘ = [L—I;'r: w < wif) (41)

where A{’)(w) denotes the low frequency spectral amplitude level of a
reference event, while A(”(o) is the flat spectral level of an event with a
different failure zone dimension, but with all other source parameters the
same as the reference event. This result is most accurately obeyed when
the failure zone has a second dimension, ¥, comparable in size to L, that is
of the same order of magnitude. Further, it is assumed that ¥ changes
proportionally with L. If this is not the case, then a somewhat more accu-

rate scaling relation is:
AP)(o) WLt
= | c——
A (0) WQLE
In the case of a spherical failure zone, of radius R, then
AP o) R
= —
AN (@) | Ro
(2) The spectral level of the entire P wave spectrum scales directly with the

Pprestress, and so:
wPNw) g
@) " 1o (42)

where I'ﬂ”l denotes the entire P wave amplitude spectrum for a reference
event while, |&”)| is the spectrum for an event having a different homo-
gensous (shear) prestress magnitude, but with all other source parameters
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the same as those for the raference svent. (Here it is assumed that the
shear stress drop at the failure boundary is total so that the scaling rela-
tion is given in terms of the initial prestress. }f the stress drop at the
boundary of the failure zone is partial, then the stress quantities in (42)
denote shear stress changes across the failure zone boundary.)

‘

N
;C (3) The corner frequency, £{P), for the compressional wave spectrum from the
source scales directly as the ratio of rupturs velocily to failure zone length,
and in particular for rupture rates near shear velocity in the medium (the
most common situation) then:

P AR A
AR A

178
J."’S%[-ZL] %;—] e 862 [—Zi]. Up vs and o=%—

Further, event spectrum scaling relative to a reference source, with
“corner frequency” denoted by (7 (P), is given by

'y Ay 24 42

* ,‘.'v o 'L.n

(3

S5 . We note that once the scaling laws in (41)-(43) have been appropriately
< . applied to the spectrum of a reference event, then the proper flat spectral level
O at low frequencies will have been established for the new event, along with its
< sppropriate corner frequency. Then, for P-wave spectra, there will be a rather
short frequency band above fP) where the spectrum decays, roughly as »™°,
, before achieving the predicted w™® decay at higher frequencies. However, since
> the rupture velocities of natural events is such that Up £ vg < vp, 80 that Uy is
N significantly less than vp, then the spectrum achieves a »™ slope quite rapidly

. with increasing frequency. (This behavior is illustrated in Figure 3 by the P-
AN wave spectra with rupture velocity Up = 3.45 km/sec and Up = 3.0 km/sec.)
e Thus, assumption of a ratio of the rupture rate to compressional wave velocity
establishes the spectral decay for frequencies above the corner frequency and

) since this ratio is always significantly less than unity for natural earthquake (or
,‘r: spontaneous) failure, then the first equation in (39) applies and the w2 spec-
.$. tral decay holds over nearly all of the frequency band where f > f.(”. In this
$: way then, the first order spectrum of the compressional wave field can be esta-

blished with reasonable accuracy over the entire frequency range.
As noted earlier however, when the rupture rate is controlled by a high

";: speed shock wave, such as is produced by an explosion, then the rupture rate is

N close to the compressional wave velocity and a »™* spectral decay rate beyond
.:Z: the corner frequency will occur.

. Therefore, the scaling laws, plus knowledge or assumption of the rupture
- rate, can be used to provide an estimate of the entire P-wave spectrum gen-
" erated by the relaxation of tectonic stress in the medium surrounding a natural
e:',‘,‘ or explosion induced failure zone. Of course, in view of the previously discussed
,;- predictions and observations concerning prestress concentration effects, the
o~ spectrum produced by scaling will not include the perturbative effects of inho-
TN mogeneous prestress. However, the scaled spectrum should be a good average
- (or smoothed) representation in general, and only in (rare) cases of gquite
. strong prestress concentrations will significant deviations occur. Further, even
K- when strong prestress concentrations do occur, they will most often be mani-
15 fested in the later arriving energy within the P wave train and will not signifi-
-'= cantly affect the first arriving energy. Thus, for predictions of the first arrival
K
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energy, the scaled spectra should usually be quite accurate.

The structure and form of the S wave spectrum produced by a tectonic
source has some important differences from the P-wave spectrum. In particu-
lar, the expression comparable to the far field P wave spectrum at low frequen-

cies, given by equatior%?). is: o _ '
' s ~ S(1-0) (1%} ar
.l'i«nga" *)(r.w) 18u(7 = 50) |usr|®  COs20 sing (44)

Here ﬂf) represents either the ¥ or p displacement component and vg is the
shear velocity. This field has a quadrupole form and also has a flat spectral
amplitude, as did the P wave. However, the ratio of the low frequency ampli-
tude of the S wave, 4A5(w), to the same amplitude function for the P wave is
easily seen, from (37) and (44), to be given by:

Aw) wf1-0]_ vp I’
ij(:;)L-E[l-Za]- vs | (45)

Therefore, a particular tectonic source will have a low frequency S wave ampli-
tude spectrum that is larger than the P wave spectrum by a factor equal to the
cube of the ratio of the P to S wave velocities in the medium. For a typical solid
this factor is about 3v3 and so represents a very significant difference. (A
difference in P and S spectra of about this order of magnitude is clearly
observed for earthquakes, so that this prediction is well supported by direct
observations.)

In addition, the predicted S-wave spectra can be shown to have a corner
~frequency given (approximately) by:

/8
o= 22 128 (s8)

Thus the corner frequency for the S-wave spectra is different than that for P
waves, and is lower because of the dependence on the ratio of vg to U, as com-
pared to the P wave corner frequency, which has the same form but depends on
the (larger) ratio of vp to Uz. In the usual case, when the rupture rate is near
the shear velocity value in the material, then

sv3 |y U
745 o r [TR = 459 [TR]: Up Svs

this value is about 30% lower than the P wave corner frequency for the same
event.

The high frequency asymptotic behavior of the S wave spectra is given by:

1
Lim 2§ ~0 [;',-] : when Up <vg
X (47
‘1.1;:} 2§5)| ~0 [;,—] i when Up 2 vs

4
- Because of the fact that the asymptotic behavior is different for the different
ranges of rupture velocity, and since the rupture rate is usually of the order of
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the shear wave velocity (§.e., Ui is only slightly less or egual to the shear velo-
city), then the S wave spectra will have a very broad frequency range within
which the spectral decay varies approximately as »"%. This is in contrast to the
P wave spectra, for which the spectral band within which the ¢ decay applies
is just above w? and is quite narrow, while over most of the range, where
® > of’), the decay is w™®. Thus, when the rupture rate is close to the shear
welocity in the medium, then the S wave decay is 0™ out to quite high frequen-
cles, relative to wf%), before it assumes a o® decay. When the rupture rate is
larger than the S wave velocity, then the S wave spectral decay is »™ for all fre-
quencies above wf5). Observationally, the S wave spectrum should appear to
have a o™t decay, while the P wave spectrum will decay as ©™? in essentially all
cases except for very slow rupture rates, or for rupture rates near or at the
compressional velocity. The latter situation probably only applying for explo-
sive shock induced failure.

Based on the resuilts in (44)-(47) the following scaling laws generally apply
for S wave spectra: _
(1) The spectral level of the for field S wave st low frequencies, below the

corner freguency, is independent of the rupture rate and freguency, and
the flat level scales with fault dimension according to:

AA‘(;)’-((%?)- = [L—I;-].; o<l (48)

where A§(w) denotes the low frequency spectral level of a reference
event, while A/°)(w) is the low frequency spectral level of an event with a
different failure zone dimension, but with all other source parameters the
samne as the refersncs svsnt. When the second largest failure zone dimen-
sion, W, is not of the same order as L, or does not change proportionally
with L for the events, then a more accurate relation is:

Ao wLE
AP@) " [ Wolé

_For spherical rupture zones, then (48) holds with L the diameter of the
spherical region. Finally, the low frequency S wave spectral level is related
to the P wave spectral level by

APNw) [2
APNw) |vs

where vp and vg are the compressional and shear velocities in the medium
surrounding the failure zone.

(2) The spectral level of the entire S wave spectrum scales directly with the

prestress, and so:
WS w o®
T = 1o “2)

where 63") denotes the entire S wave amplitude spectrum for a reference
event, while %S) is the spectrum for an event having a different homogene-
ous (shear) prestress magnitude, or a different homogeneous stress drop,
but with all other sourcs parameters the same as those for the reference
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' (3) The corner frequency, £§%, for the shear wave spectrum from the source
y scalss directly as the ratio of rupture vslocity to failurs sons length. For
1 rupiure rates near the shear velocity, as is usually the cass:

o : s :

; 1 |Un][3v¢
ST T T

The ratio of P to S wave corner frequencies for a particular event is:

g 1 _[vA)?
R 722 )

Ty
n’::

Further, event spectrum scaling relative to a reference source, with
“corner frequency” denoted by (97 5), is given by

= a2 R
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: Comments concerning the effects of strongly inhomogeneous prestress (or
] . stress drop) on P wave spectra apply with equal force for the S wave spectra as
well. However, in both cases the scaling laws and asymptotic relations will ordi-
X narily hold in an average sense, 80 that the relations given here are quite use-
0 ful.

XAX

Figure 9 provides a graphical summary of the predicted spectral charac-
teristics for the compressional and shear waves from sarthguakes. In this fig-

f.c ure the prestress (or stress drop), denoted as |o|, and the failure length, L, are
Y left arbitrary, so that the absolute amplitude scale is in arbitrary units. How-
o ever, the rupture rate is assumed to be close to the shear velocity in the
S medium, which is the most commonly occurring situation in the earth, while the

ratio of fault length to rupture velocity is taken to be unity. (Thus, for exam-
ple, since Up mvs and with vs = 3.8 km/sec, then L = 3.8 km.) Finally, the

" Poisson's ratio for the material is taken to be 1/4, which is also typical. The low
2 frequency amplitude asymptote for the far field P wave has been normalized to
En, unity in the plot.

M With the choice vg = 3.8 km/sec, then vp = 8.4 km/sec, Ur = 3.8 km/sec

and L = 3.8 km are required, under the assumptions used, to obtain the spectra
- in the lgure. Using the relation shown for Ap(w), with a prestress of 130 bars

x 1.3%x10' dynes/cm®) and a rigidity of 3 x10!' dyne/cm®, so that
- : 0|/ u = 4.3 x 107 is the strain magnitude, we have:
& ' Ap(w)  10° om sec
Since the P wave displacement spectrum at a radial distance |r| is given by
- P
- 1P w)| = A"( ) sin 26 cosp
4
y

: from equation (37), then the low frequency spectral level at a distance of r = 10
~ km from the 3.8 km failure zone is

|€5P) | pax = 1 cm ~gec; ¥ = 10km
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Hence if the amplitude scale in the figure is in cm-sec, then the spectra shown
are appropriate at a distance of 10 km from a 3.8 km fault, with failure occur-
ring at a uniform rupture rate of 3.8 km/sec in a medium prestressed to 130
"bars. The elastic velocities vg = 3.8 km/sec, vp = 8.4 km/sec and rigidity
:g = 3 x 10! dynes/cm® are appropriate to the middle crust of the earth in most

- areas {(e.g.. from 10 to about 25 ki depth). Further, with the rupture rate near

the shear velocity and the ratio of rupture rate to fauilt length unity, then the
corner frequencies of the spectra will be at .662 Hz for the P wave spectra and
at .459 Hz for the S wave spectra. (However, these corner frequency values do
not depend on the absolute values of L, Uz and vs, but only on their ratios.)

Figures 10a. and 10b. illustrate an application of the scaling laws to P and
S-wave spectra, for the case in which only the rupture length varies. Only the
far field spectra are indicated and only the smoothed form of the spectra are
indicated. Also it is assumed that the prestress field is nearly homogeneous,
with a relatively small stress concentration near the initial rupture point giving
the slightly peaked spectra indicated. (The "peaking” in the spectra will be a
function of azimuth in general and only a typical azimuth is indicated here.) In
any case, for rather "small” rupture lengths with L € 10 km, then we expect the
rupture surface areas to be proportional to L2 and that the L? scaling law for
amplitudes can be applied. Since the corner frequency for both P and S waves
scales inversely with L, then as a consequence of these two scaling laws, the
locus of corner frequency points will lie along a straight line with a £ ~® slope in
these plots. . Since the P wave spectrum has a £~ high frequency asymptote for
rupture rates near the shear velocity, then the spectra for P waves will also
approach and lie along this "scaling line” at frequencies above the corner fre-
quency. Therefore, all the events will have the same P wave spectral levels at
high frequency, since they all approach the -9 gcaling line. However, S wave
spectra have a f ~® asymptotic behavior over a wide frequency range above the
corner frequency, and so the S-wave spectra will not approach the scaling line
except at extremely high frequencies, which are usually outside the range of
seismic observation.

Figure 11 illustrates the applicable spectra scaling for variable average
stress drops or changes in the average prestress level. Here we assume that
the prestress (or stress drop) is quite homogeneous and that the changes in
stress are confined to changes in the average value. For such changes, both
the entire P and S wave spectra scale directly with the magnitude of the stress
and hence the scaling line of the corner frequencies is vertical. Here we show
only the far field P wave spectra since the S-wave spectral scaling is identical.
In addition, the near field spectral contributions also scale directly with the
stress magnitude and so behave exactly like the far field.

The vertical scaling line for prestress or stress drop changes will be modi-
fied if the rupture rate is proportional to the stress drop or prestress. This
possibility was discussed earlier and is quite likely for failure processes in the
earth. If this is the case, then the stress scaling must be combined with the
rupture velocity scaling law illustrated in Figure 12. As shown in Figure 12, the
scaling line for the corner frequencies for P wave spectra is a horizontal line.
Further, the high frequency spectral slope can change from f =%, for Up < vs. to
7% for Up >vp. Also for very low rupture rates there is a frequency range
above the corner frequency within which the spectral slope is low, varying from
J-'to £ %in a continuous fashion.

If we were to combine the rupture rate scaling with the stress drop scaling,

as would be required for rupture rates proportional to stress drop, then we
would expect to see a corner frequency locus defining a scaling line that had a
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positive slope (eg.. ® or f° say) rather than a vertical scaling line, and the
spectra for higher stress drop events would have a higher corner frequency
than those for lower stress drops. Further, one could expect to observe slight
chahges i high frequency spectral slopes. As noted, this bebavior is more
likely than not to occur in the earth, and should certainly be considered when
applying the scaling relations.

The scaling relations in Figure 12, as well as in Figure 11, are applied only
to far field P wave spectra, however, the situation is nearly identical for the S-
wave spectra except for the fact that the high frequency asymptotic behavior is
different for the S-wave. This difference does not lead to any fundamental
changes in the S-wave spectral scaling results however.

. -The applications of the scaling laws in Figures 9-12 have been limited to
rather "small” tectonic sources, that is to events with failure zone dimensions
that are small enough that we can expect that the surface area of the failure
gone will scale as L®. This probably applies to events with L £ 10 km. However,
for much larger events, we certainly do not expect that the area is proportional
to the square of the length or maximum dimension of the failure zone. Thus for
large events, with rupture zones of the order of hundreds or thousands of
kilometers, the second largest dimension, W, would be expected to be nearly
fixed in value and independent of length of these large failure zones. In this
case, the surface area of the failure zone would scale as L, rather than as L%,
and the scaling relation for the low frequency amplitude would be proportional
to L® rather than to L% This would have the effect of producing a lealing line,
for the corner frequencies of both P and S wave spectra, that varied as £~ with
failure zone length for the very large events. Thus, while this line varies as f 3
for small events with L £ 10 km, it would be expected to vary as f % for very
large events, certainly for events with L 3 100 km. In the intermediate range,
where 10 g L £ 100 kmn, the variation of the slope of this scaling line should be
between £-? and f %, with the variation being continuous between the two,
reaching these slopes smoothly at the extreme values of L, near 100 km and 10
km, respectively.

A consequence of this scaling of the spectra with failure zone dimension is
that the P and S wave spectral levels will cease to increase, at frequencies
above the corner freuency, even though the failure dimension L continues to
fncrease. This occurs, as already shown in Figure 10a, for P wave spectra at
even the smallest L values. On the other hand, as shown in Figure 10b, the S
wave continues to have larger high frequency spectral levels with increasing L.
for the lower L value range. However, for L values that are large, the amplitude
scaling law varies as L%, rather than as L%, and the scaling line has a f 2 slope,
so that in this large L range the high frequency S wave spectra will cease to
increase with increasing L. That is, as in the case for the P wave spectra in the
low L range, there is "spectral saturation” in the high frequency range for S
wave radiation and the high frequency S wave spectral level will not increase
with increasing L.

As will be emphasized later, this high frequency "saturation” for P waves
leads to a cut-off in the body wave magnitude (m,) measured from P waves,
where increases in the rupture dimension L do not result in an increase in the
body wave magnitude measured at 1 Hz. This, of course, arises from the fact
that the body wave magnitude is defined as the logarithm of the one second
period P wave amplitude. Thus, when the corner frequency is significantly less
than 1 Hz, then the 1 Hz point will be on the £ -3 asymptote of the P wave spec-
trum and all events with larger failure zone lengths will still have (very nearly)
the same spectral amplitude at 1 Hz. Hence there will be no change in the
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magnitude beyond this limiting value and one will observe a body wave magni-
tude cut-off. Observationally, this clearly occurs for body wave magnitudes
somewhat above magnitude 8. (This corresponds, roughly, to a failure zone
dimension L of the order of 10 to 15 km.) On the otber hand, when the failure
zone dimensions become very large, with L of the order of 100 km and more,
then both P and S wave high frequency spectra saturate above their corner fre-

. quencies. In this case measurements of a surface wave magnitude (Ms) defined
in terms of the logarithm of the (vertical component) Rayleigh wave amplitude
at .05 Hz, will also cease to increase with increasing failure zone dimension.
Thus, there is a surface wave magnitude cut-off which will apply to very large
tectonic events. Such a cut-off has not been conclusively verified observation-
ally, but should eppear at an Ms value somewhat above Ms = 8. For such large
events then, neither m, nor Ms will give a measure of the size of the event, or
its energy.




