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I. INTRODUCTION

During the past fifty-six months our work consisted of technical

efforts in the areas of dielectric waveguide mode and array studies, a

quantitative study of mechanism for producing diffraction gratings in

crystals exhibiting photorefractivity, and electron scattering, transport

and energy deposition in solids. These efforts resulted in the construc-

tion of mathematical models and accompanying computer programs which

will be described in the following sections (Volume I). The computer

program listings are provided in Volume II.

V

'p

.. . . ° , o

sq.. T o e J - ? . M,[ ' . ' '.'< . -. . . . . .- . . - . . -
5 . .. . . . . . . . .. . . . . . . -.. .- . , - - .- , - - . . - - .. -



II. MODES OF DIELECTRIC WAVEGUIDES AND ARRAYS
OF DIELECTRIC WAVEGUIDES

1. Introduction

A substantial effort was devoted to the study of the properties of the

modes of various constant-index dielectric waveguides and systems of such

guides. This portion of the work can be broken down in the following
manner:

1) Use of an integral-equation technique to find the modes of two-
medium step-index waveguides of arbitrary cross-section, using
the scalar approximation.

2) Use of the integral-equation technique to find the modes of arrays

of parallel guides of arbitrary shape and arbitrary orientation in

the cross-sectional plane. The scalar approximation was used here
as well.

3) Use of the integral-equation technique to find the modes of single
guides with three concentric regions of differing refractive index.

4) Use of a variational calculation to approximate the modes of simple
composite systems. In particular, the problem of a circular con-
centric configuration (the "multiple-layered" or "core-ring" guide)
was treated with emphasis on multimode operation. The problem of
two adjacent circular guides was also considered.

The usefulness of establishing the propagation properties of the various
waveguiding systems mentioned above has been understood for many years.
Simple two-region guides are used for optical communications and remote
sensing systems in hundreds of ways, and also have microwave applications.
Arrays of guides, particularly in single-mode operation, are the key ele-
ments of switches, modulators, and other devices having a multitude of ap-
plications. Multilayered guides are also finding their way into new systems.
In particular, tube guides and W-profile guides have superior dispersion
characteristics; and concentric core-ring guides are being explored for

duplex transmission and secure-communication purposes.

The integral-equation technique offers the opportunity to solve for the

modes of all these configurations within a uniform framework. Also, since
it is indifferent to the shape of the guide cross-sections encountered, it
applies to a variety of situations which normally would require separate
formulations. (The need to study non-circular cross-sections derives from
problems involving imperfectly-formed near-round cores, purposely-designed



elliptical cores, and rectangular or near-rectangular shapes used in inte-
grated optics---among others.) For these reasons we have carried through
the analysis and developed several FORTRAN programs to deal with the most
important configurations. The programs have not been combined into a single
software package, but this could be accomplished with a modest effort.

The effort reported here was restricted to the scalar, or weakly-
guiding, approximation which is appropriate for most optical wave-guides.
However, as indicated in Reference 1, the integral-equation technique can
be extended to obtain the full vector solutions for the waveguide modes,
and as such is also applicable to microwave problems and problems involving
the polarization of optical signals.

The formulation we have developed is basically a two-dimensional one,
and as such does not apply to guides or arrays which have geometrical var-
iations in the longitudinal direction.

The direct results of the computations described below are the normalized
propagation curves and the spatial mode patterns. Once the physical parameters
of a system---the wavelength, the guide dimensions, the geometrical con-
figuration (in the case of an array), and the indices of refraction---
are specified, these quantities and others which can be derived from them
can be obtained. The latter include dispersion, beat-lengths, and power
transfer among elements of arrays.

The principle scientific accomplishments of this work have been pub-
lished in References 1-5. They include, apart from the numerical data
themselves:

1) the demonstration of the efficacy and usefulness of the integral-
equation technique and the variational calculation;

2) the development of an ability to study modal properties of compli-
cated systems which could not otherwise be treated;

3) the simplification of the computations for relatively modest
systems, like the two-region elliptical core waveguide, which
can be treated by other means (e.g., separation of variables)
at a gruesome cost in complexity;

4) the evaluation of evanescent-field crosstalk in circular con-
centric core-ring guides, leading to the recognition that:

a) the crosstalk is due almost entirely to the modes nearest
cutoff, and

b) the crosstalk is extremely sensitive to changes in the
physical parameters of the system;

3
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5) the direct comparison of modal properties of guides as their
shapes are varied continuously; and

6) the confirmation of many results from previous work of other
authors, production of the only reliable estimates of errors
resulting from approximations which are required by their tech-
niques, and identification of general circumstances in which
these errors may or may not be significant.

Most of the results that we present involve elliptical and rectangular
cross-sections, but calculations for other shapes were also done.

Section II is organized according to the four divisions indicated
at the beginning of this introduction. The formulation of the various
problems in terms of integral equations is similar and relies upon the
same basic ideas. As a consequence, much of the discussion of Section 11.2,
although not repeated, applies to Sections II.3 and 11.4.

2. Isolated Step-Index Guides

2.1 The Basic Integral Equation

The general procedure of the integral-equation technique is to derive
a,. an integral representation for the various field components that is equiv-

alent to the appropriate differential equations inside and outside the
guiding regions and that guarantees as well that the boundary conditions
are satisfied. These differential equations for the field components in-
side the guides have a known set of solutions which can be considered a
set of basis functions. The field components can be expanded in series
of these basis functions, with unknown coefficients. On introducing the
expansions into the integral representations, they become sets of linear
(matrix) equations whose matrix elements involve the basis functions in
line integrals that are taken over the boundary of the cross-sectional
shape. This is the only way the boundary enters; there is no need to match
interior and exterior solutions across it. Since the set of matrix equa-

*! tions is a homogeneous one, it has solutions only for certain allowed values
of the parameters involved.. One of these parameters is the propagation
constant which we seek.

The description above applies to guides of index nI embedded in

a medium of smaller index n2 9 with no other restrictions on the magni-
tudes of n1  or n2  In practice, however, it is very common for n1

'I.

a..%



7.

* to be very close to n2 . In this "weakly-guiding" case certain vectorial

aspects of the general procedure outlined above become simpler, and in
fact the problem can be reduced in a good approximation to a scalar one.
We have therefore concentrated on this scalar formulation and based our
numerical calculations upon it.

The geometrical arrangement which we assume for isolated step-index
waveguides is shown in Fig. 1. The cladding (n2) is assumed to be in-
finite in extent. In all that follows, we assume that the t- and
z-dependence of the solutions corresponding to wave propagation along the
guide is entirely contained in the factor exp(ikgz-iwt), kg being the
propagation constant to be found. With the definitions

and

IL IL- I 

l l)

Y

A I

A

Fig. I The cross-section of a cylindrical dielectric waveguide
parallel to the z-axis. The interior is denoted by A,
and the boundary curve by L. The outward normal to the
cylinder is n and the unit vector tangent to L is t.
The positive z-axis is out of the plane of the paper.

5
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one can immediately show from the wave'equation that the electric field
(and, separately, each component of it) satisfies

-93 ) Eof -As;A A N3O

where is the two-dimensional Laplacian. The magnetic field B() satis-
r.0 fies the same equations. Of course, as is well known, the propogation!constant satisfies the inequality k~kg9>k2 for guided modes, so y1 is real

and y2 is purely imaginary.

.The basic idea of the scalar approximation is that the longitudinal
field components (Ez,Bz) are small compared to the transverse components,
and can in fact be neglected. This is a consequence of the nearly-vanishing
difference between n1 and n2 , because under those conditions the only
waves which can be guided by means of total internal reflections are those
whose propagation directions are very nearly parallel to the longitudinal
direction (z). It follows, as is explained in some detail in References 1
and 2, that a single field function can be used to represent any transverse
field component and that this (scalar) function satisfies the boundary
conditions imposed by the nature of the problem. The integral equation
for this function, t , is

- Ia V .1(1

where the integration is over the interior area and g2(p,p ) is the
Green function satisfying

+ t f &f-) 
(5)

Its equivalence with the Helmholtz equations, Eqns. (3a) apd (3b), can
be demonstrated by acting on both sides of Eqn. (4) with V2 + y2 and

2
using Eqn. (5). Because of the delta function, one gets two separate
equations depending on whether $ Is inside or outside the guiding region.
That the boundary conditions are satisfied follows from the properties
of the Green function <1>.

An alternative form of Eqn. (4), which leads to simpler computational
procedures, results from converting the integral over the interior area

.pd

.5,

4,
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* to a line integral over the boundary, using Green's second identity. For
any point ' in the interior,

where .- represents the outward normal derivative at points p ,

on the boundary.

Eqn. (6) represents the general formulation of the waveguide problem
for single guides. It is still necessary to introduce explicit expres-

sions for g2 .
t , and ?-o, in order to reduce the equation to a useful form;

and then one must perform the required integration and solve for the actual
propagation constants and fields. However, those explicit expressions
are completely general in form---that is, they are not dependent on the
geometry or the values of the physical parameters involved. As a result,
the method is applicable to any configuration for which the weakly-guiding

condition obtains. It is true that the more bizarre shapes may require
a lot of computational work---due to poor convergence of series---but the
generality of the method is not diminished by this fact. In truth, a great
many very different configurations may be treated quite economically within
this framework.

Eqn. (6) is of further importance because the procedures leading to
it are easily generalized to apply to N separate guiding regions embedded
in a single cladding. Such arrays of guides could be viewed as a single

.4 guide with very peculiar boundaries (with infinitesimally thin "fins" con-
necting them, for example) and Eqn. (6) would therefore be written as a
sum of line integrals (over the different boundaries) instead of a single
integral. Insofar as such configurations fall into the "bizarre" category,
at least within the class of "single guides", convergence would generally
be poor. In fact, it is advantageous to introduce N separate coordinate
systems, each with its origin within a different core. This results in
N separate homogeneous equations like Eqn. (6), each one a sum of N line
integrals. Nevertheless the ideas behind this procedure, which is laid
out in Sec. 11.3, are exactly the same as those given above.

2.2 Equivalent Linear Equations

To proceed from Eqn. (6), the starting point, two of the things we
need are an assumed general form for the solution, 0(t. and an appro-

2 7



priate representation of the Green function for Helmholtz' equation. The
Green function is

where Ho is the Hankel function of the first kind of order zero. The
representation we choose is one which converges for p<p', and which can
be derived by application of Graf's addition theorem <6> to H.:

In this equation, Jt and H, are Bessel and Hankel functions of order 1.
qR. is the Neumann factor, equal to 1 for £= 0 and 2 otherwise. This
choice is dictated by the fact that Eqn. (6) applies to observation points
p which lie in the interior region, while the "source" points, p • lie
on the boundary. Thus, in terms of any coordinate system whose origin
is in the interior, there is at least one point, 0 , (e.g., that at the
origin) satisfying the inequality for all possible values of I%, no mat-
ter how peculiar the boundary. The representation, Eqn. (8), will there-
fore converge for all the integration points we will choose as we perform
the line integral indicated in Eqn. (6).

The complementary representation, valid for p>p', is needed together
with Eqn. (8) to treat the problem of multiple guides (arrays). We set
it down for future reference.

For t we assume the most general solution of Helmholtz' Equation
for the interior region:

where the C and are expansion coefficients. Of course, for many cases
of importance, symmetry considerations allow one to eliminate some or most
of the expansion coefficients by inspection. This is discussed in Sec. 11.2.3,
but for now we continue with our outline of the general formulation.

• . ,
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In the two dimensions presently under consideration, an arbitrary
point pl is specified by components (p,o). The boundary L is some curve,
p(*), parameterized by the angular coordinate. As a result of this param-
eterization, the unit vector perpendicular to the boundary is given byI i : 1 I$* -(i

q7 Using this and the expression for the gradient in cylindrical coordinates,
we find the normal derivative at the boundary to be

a ,-+ A. dbil1

When this operator is put into the integral equation (using primed co-
ordinates, of course) the differential path length dL drops out in favor
of do. As a result, therefore, of being able to express the boundary as
some differentiable function p(O), the line integral becomes a simple one-
dimensional integral over the angular coordinate which is quite suitable
for calculations.

We have not considered boundaries for which p(o) is multivalued or
nondif ferentiable.

. (Eqn. (11) can be derived by writing the tangential unit vector on
the boundary, E, as

A Air'a + e )

% and requiring tin 0 and i.i- 1.)
.

The application of the normal derivative to the infinite series for
4K01) and g2 (,) is straightforward, and the manipulation following the
introduction of these derivatives and functions into Eqn. (6) is merely
tedious. However, the fact that each term in the Green function expansion,
Eqn. (8), is separable into a factor containing the primed coordinates
and a factor containing the unprimed coordinates is of great importance
because it allows all the functions containing the unprimed coordinates
to be drawn outside the integral. The left-hand side of the equation then
reduces to a sum of terms each of which consists of one of these functions
multiplied by a constant coefficient (a line integral). These functions

.-
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are all of the form J 9 (y2 p)cos(10) and .Jt(y2p)sin(to) and as such con-

stitute a linearly-independent set whose coefficients, because the inte-

gral equation is homogeneous, must separately be equal to zero. Thus,

the single integral becomes a set of simultaneous equations. The unknowns

in these linear equations are the coefficients, Cs and D s , of the field

expansion, Eqn. (10). It is our job to write these equations, simplify

them wherever possible, and then specify a means of solution.

To see how this develops, we record the results of some of the inter-

mediate steps without much further comment on the mathematics. The nor-

mal derivatives are

.ut

•1. r ,S's +,

of' T ILO~ Are9 o
'

+ (Ya1 PIA" .e'Jg,44f, -W06

where the primes on the Bessel and Hankel functions indicate differentiation
with respect to their arguments and are not to be confused with the primes

on the coordinates, which have a completely different significance. The

integral equation attains the form,

As we indicated previously, equations of this form can hold in general---

that is, for arbitrary points ---only if the coefficients are separately

equal to zero:

" (rTl,)
-. S.= ° a -. *.,

2o'
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(S21 is identically zero for t= 0.) They are

L

.

4_ [,., ',I.T, N.' 1)C Sov4,'S

G2~- aiSL)e I.Jl~ ~ovk4 (E (l1t

where the terms in brackets labelled by "2" and "4" in Eqn. (18b). are

identical to those in the brackets in the corresponding positions 
in

Eqn. (18a). They can be rearranged by grouping the field-expansion co-

efficients Cs and Ds. In fact, if we make the definitions

90 ta '), r (VIO .f ,, Y. ,t.,, ,o ,,,frq (I,)
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Eqns. (17) become

S'I [ C + sbL , , .. ,

vat a C['V,, • bT,,l -0
In matrix form this is

, - 0

"V T )"
The condition that a set of homogeneous linear equations, such as this
is, have a solution is that the determinant of the matrix be zero. The
final equation in the general analysis is therefore

U2.

2.3 Symmetry Considerations

At this point, we pause to assess the simplifications which can be
made if the contour representing the boundary between the core and the
cladding demonstrates certain symmetries, as happens in most practical

12
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guides. The preceding discussion is general, and as a result the equa-

tions are a little more cumbersome than is usually necessary. The only

reason for writing this section in this manner is that all our previous

publications, particularly those on arrays, have taken the simplified
approach from the start, thereby avoiding setting down the general
formulation.

The most important simplification occurs in guides which have a single

reflection axis, which we may define as the x-axis or the 4= 0 direction.
In this case, all the matrix elements Uts and V., are identically zero.

This can be seen, with some travail, from the fact that the integrands

change sign as goes to -0, causing the 0 to r portion of the integral

to cancel the r to 2w part. Because of the resulting block diagonal form

of the matrix, Eqn. (22) splits into two separate systems of equations

which can be solved for the Cs or the Ds coefficients. Equivalently, we

could have started at Eqn. (10) with either the cosine or sine expansion in-

stead of the more general combination, using the rationale that the field

function can only be asymmetric (cosine) or antisymmetric (sine) function
of position.

If there is a second orthogonal reflection axis (the y-axis), a fur-

ther simplification derives from the fact that unless the indices t and

s are both even or both odd, the matrix elements R9s and T s are also

zero. In this case, the 0 to n/2 integration cancels the n/2 to r part.

Then, to solve the matrix equation

ok)(C) -- 0a,

for example, one could reorder the rows and columns so as to group all

the even coefficients together and all the odd coefficients together.

Again what results is a block-diagonal form which breaks apart into two

separate systems of equations, one solving for Co, C2 , C4 .... and the

other for C1 , C3, C5,... Equivalently, for such guides, we could simply

have started at Eqn. (10) with any of four field functions---"even cosine",

"odd cosine", "even sine", or "odd sine" expansions---and obtained the

requisite matrix equations as separate cases.

Needless to say, most waveguide cross-sections which are of interest

to experimenters---e.g., ellipses, rectangles, and special cases thereof---

have this two-fold symmetry, and the field functions corresponding to all

the modes of such guides fall into one of these four categories. All of

the programs we developed to obtain the final results demand, as input,

the specification of one of these categories, and then proceed to find

4 -all the solutions (modes) corresponding to the requested expansion.

¢, 13
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•' _ If in addition there is a third reflection axis (e.g., = /4), even-

index matrix elements for which I and s do not differ by an integer multi-

ple of four are zero. That is, R02= R = 06 ' •••2 0, but R0 4 , R2 6,...

are not (necessarily) zero. The consequence of this is that, for example

for guides with square cross sections, the "even cosine" and "even sine"

series each split into two separate series, with indices 0,4,8,... and
2,6,10... The odd series are not affected, so there are six possibile

sorts of expansions for these cases.

The last case is that of the circular cross-section for which (R)

and (T) are diagonal matrices (and in fact are equal to each other so that

sine and cosine series yield the same modes exactly). Each field "expansion"
therefore has only one term, which may be indexed by any integer. The

integral equation formulation reduces, analytically, to the well-known
set of transcendental equations whose solutions have been available for

many years < 7>.

2.4 Computational Considerations

We have yet to address some of the practical requirements which allow

one to take Eqn. (23)---or some reduced form of it, whatever is allowed
by symmetry conditions---and solve it numerically.

One requirement, obviously, is to truncate the set of equations and
the series within them at a finite number, M. It turns out that, except
for circular guides, three terms are generally needed for three-place ac-

curacy in the propagation constant. For highly elongated (e.g., 10:1)
cross-sections, or for much greater accuracy (six figures) it is necessary
to go to at least six terms.

Another requirement is to write F s and Eis in terms of real rather

than complex functions, and to eliminate the derivatives of the Bessel
and Hankel functions. It is also useful to define normalized parameters
for the propagation constants and the index-of-refraction differences,
since then we can specify the system in terms of fewer parameters and com-
pare different cases more readily. It is sensible to discuss these to-
gether, since the normalized parameterization involves terms containing
i -

To fully specify the problem one needs to know the vacuum wavenumber,
ko; the size and the shape of the guide; and the indices of re-

fraction, nI and n2 '

14
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It is convenient to specify the size of the guide in terms of a single
linear parameter, such as the radius of a circular guide or the length
of one side of a rectangular one. We choose to label this "characteristic
dimension" by the symbol b, and to take it to be the semi-minor axis of
the guide, for all cross-sections demonstrating two-fold symmetry. Defi-
nition of the shape, for most regular perimeters, can then be given by
one or two more parameters. We define the aspect ratio, R, to be one of
these. It is the ratio of the semi-major axis to the semi-minor axis.
Any ellipse or rectangle, for example, is defined by its semiminor axis,
b, and its aspect ratio; a square is a rectangle with Z= 1. Later in

* this section we describe a particular function which we have used for the
perimeter.

We define a normalized frequency, B, by

If we give'a value for this quantity at the beginning of any calculation,
we eliminate the need to independently specify k n i, n2, and b. (B

is positive and is related to the commonly-used parameter, V, by V = WB;
6, which is defined by Eqn. (25), is also common notation.) We also de-
fine the normalized propagation constant,

which satisfies the relation 0 < P2 < 1. With these definitions and
E.qns. (1) and (2), one can show that the arguments of the Bessel and
Hankel functions appearing in f and E are given by

- (276)

Thus the matrix elements are complicated functions of the unknown propa-
gation constant, P2 . The problem is then specified when B and what-
ever parameters (besides b, which drops out) define the shape of the guide
are given. It can be considered solved when suitable values of P2  are

*found that the determinantal equation is satisfied.

There is still some algebra to endure before the matrix elements arecast in real form. The derivatives of the Bessel functions in F and

EIs are eliminated by the use of recursion relations:

T: - (21a)
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We also use the Modified Bessel functions of the second kind instead of
the Hankel functiuns:

H,.K

With these substitutions and modifications, Fis and E s can be written
as

*. ~ ~ ~ ~~ ~6 ,r) •r*' :s -?21' KSP f,)., ,r.
6 V-4L

.1

S)A T11B~ 1043.L

>.--

The matrix elements, Eqns. (20), are computed directly from these expres-
sions. The powers of J. are dependent on I alone. Consequently they
are a constant factor in each row of the determinant, and can be ignored.

A few further comments will serve to describe the specific choices
we have made for the evaluation of the elements of the determinant and
the solution of the determinantal equation.

First of all, we have concentrated on guides with two-fold reflection
symmetry. In fact, throughout our work we have used for the perimeter
the function <8,9>

.~ 4 (34)

where T is the aspect ratio and N is a parameter defining the actual
shape. This gives a figure with a short axis (along , r n/2) of 2b
and a long axis (along 4 - 0,r) of 2Rnb. In general, for arbitrary R,

16-9. % , " .??'''" . - :...:.. . . ;% . .. .: 7 ;. . .. ;. , '/ : ' , , '



S. V. .1 .... .

Eqn. (31) describes a rectangle if the parameter N is chosen to be

infinity and an ellipse if N= 1. Shapes with 1 < N <O are called
"superellipses" and can be regarded as a continuous deformation of an

ellipse into a rectangle as N increases. Those with N < 1 give a

variety of other shapes <2>. From Eqn. (31), 3 can be obtained an-

alytically. A quick inspection of Eqns. (30a) and (30b) also reveals
that b drops out of F and E everywhere, making the numerical

specification of this parameter unnecessary.

Rectangles are well represented by Eqn. (31) when N is chosen to

be 20 or greater. The rounding of the corners is barely noticable for

N= 20 and the numerical results for the modal parameters differ negligibly
from those found using larger values of N.

Since we concentrate on guides with two-fold reflection symmetry,
we are solving, at any time, either of the equations

det(R) = 0 (32a)

det(T) = 0 (32b)

where (R) and (T) are M by M matrices and, in each case, the matrix ele-
ments are evaluated numerically and are indexed either by even values of

Z and s or by odd values. Because of this symmetry, the integralt, need

be done only over the interval (0, w/2). With the transformation, z = cos(20)
they become susceptible to Chebyschev integration <10>, which takes equally-

spaced points over the range (-1,1) with equal weights. That is, to eval-
uate any integral like those of Eqns. (20), we take

5 Ih- 1 (+(L *)) 5 X E 4 .)
-s

where

Thus the n values of O(zi) which we need to evaluate the integrands

in Eqns. (20) are
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, '. .'.a, . ". . . . . . . ' , . . - . . - .



and the integration is especially simple to perform. Generally, 50 inte-

gration points are sufficient for accurate results, unless the truncation

order is high. The correctness of the roots depends most strongly on the

order of truncation, and secondly on the number of integration points taken.

Since all the possible roots, p2 , corresponding to guided modes are

limited to the range 0 to 1, one chooses a small number of points spaced

throughout this range and tabulates the determinant at these points. In
our programs, the determinant is found with a standard matrix-inversion
subroutine using Gaussian reduction with complete pivoting <11>. The roots

fall between pairs of consecutive points at which the determinant has op-

posite signs, and can be found accurately by using various root-finding
algorithms.

It is important that the table entries be spaced closely enough to-

gether that two roots not fall within one interval.

The root-finding algorithm we have developed works well when con-
secutive tabulated values of the determinant are of approximately the same
magnitude, as is the case with M < 3, and also when they change extremely

rapidly with p2 , as is typical with M > 3 (and for the array problems).
If (and only if) consecutive table entries differ by more than two orders

of magnitude, a half-interval search <12> narrows the range within which

the root may fall. Then we use a bracketing version of Muller's method

<13,14> to locate the root to any desired accuracy. Muller's method,
which is an inverse parabolic interpolation scheme, converges very rapidly

in the neighborhood of the root. The method of Regula Falsi <15>, using
inverse linear interpolation, is almost as fast for most examples we
tried.

Once each root (p2 ) is determined, the matrix elements are recom-
puted and the coefficients (Cs or D ) are determined. Since the equations

are homogeneous, one coefficient is arbitrary (and is set equal to unity)
and M - I equations are solved by matrix inversion. The arbitrary co-
efficient is chosen to be the one corresponding to the largest diagonal
matrix element, since this coefficient (as it turns out) almost always
appears in the most important term in the field expansion. Usually, but
not always, the first term in the series is the most important one.

A FORTRAN program to perform these calculations (program TRUNCN, the

use of which is described elsewhere in this report) required about 20000 CM
words and was run on a CDC-6600. The minimum execution time for a single
root occurs when 1-term truncation (exact for circular guides) is used
with only three or four table entries (as when the root location is known
approximately beforehand). For four-place accuracy, less than a second

* '6
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may be required. For higher orders of truncation, the cost in time in-
creases much less rapidly than N2 because of efficient recurrence compu-
tations for the Bessel functions. Twelve modes of a 2:1 elliptical guide
(4-term truncation) have been located in 1.7 times the time required for
12 modes of a circle.

2.5 Results

ofp The numerical results which we have obtained mainly consist of plots
of P2 versus B for different cross-sections, and curves giving the field
intensity in the interior. We also demonstrate the efficacy and economy
of the method by considering the effect of truncation at various numbers
of terms, and compare our results with those of other authors.

We concentrate primarily on rectangular and elliptical guides. We
have used a special notation to designate the various modes. For rectangles,

it has the form RX where X indicates one of the four field expansionsn

discussed in Sec. 11.2.3 and n specifies which mode, among all those de-
rived from that field expansion, is being considered. X = I corresponds
to the even cosine expansion; X = II, to odd cosine; X = 111, to even
sine; and X = IV, to odd sine. Within each group, the modes are ordered
according to the value of B at which they cut off. RI designates the

I
fundamental mode (even cosine expansion, "cutoff" at B = 0). For ellipses,

x
this notation is En .n

2.5.1 Rectangular Cross-Sections

For rectangular waveguides having aspect ratios 1 < A < 2 we have
located all the modes in the range 0 < B < 4. The first dozen or so are
plotted for B < 2.5 in Figs. 2-5 for different aspect ratios.

* Due to the considerations of Sec. 11.2.3, we can write the field
expansion, Eqn. (10), for the RI mode of a square---the fundamental mode,

I

which does not cut off---as

fit) .(,) , + .... ( ) 44_

whereas for a rectangle with 1 > I the expansion is

C -i CLT2)f)CM-( * 1#()W(t3 4....
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The convergence of these expansions is rapid for both the square and rectan-
gular guides. For the square guide, Table 1 gives the values of p2 obtained
for this mode after truncation of Eqn. (32a) at 1, 2, or 3 terms for selected
values of B. Clearly, the two term truncation is only a small improvement,
in terms of locating the roots. on the single-term result, which is obtained
by setting R 00 0 in Eqn. (32a). Moreover, the extra work involved in
taking three terms leads to no gain whatsoever. In view of this, it is
reassuring that the ratios of the second term of the field expansion to
the f irst (C 4J14/C 0J10), and the third to the first (C 8J 8/C 0J 0) show that
the J3 term is dominant for this mode. The term ratios listed in the 5th
and 6th columns of Table 1 were evaluated on the perimeter at the middle
of one side (that is, p- b, * 0). Since J 4 and J8become smaller as

p decreases, the term ratios are generally greatest at the perimeter and
4'as such constitute the "worst case" for convergence. (For B - 3 at (P,*)=

(0.5b.0) the term ratios are -0.007 and <1i- 5 . respectively. The intensity
is 0.576.)

Table 1 also lists the field intensity at p - b, *=0, normalized
to a value of 1 at the center of the guide. For the more tightly bound
cases, (higher B), the field drops off to a few percent at the edge, where-

.. as for weakly bound cases (smaller B) the intensity is still appreciable
4' there, indicating that a greater fraction of the beam is extending beyond

the guiding core. One can also see that for those cases in which the
second term (C 4J14/C 0 10  makes the largest percent contribution to the

2 ~~~Term Ratios at Itniya_ Perimeter (#- 0) Intenitea

B ITerm 2 Terms 3 Terms C 4 34 /COJO CS38 /C0 30  0)

C'3.0 0.9511 0.9546 0.9546 -0.314 0.0006 0.023

2. 5 0. 9329 0.9371 0. 9372 -0. 266 0.0009 0.032

2.0 0. 9023 0. 9072 0. 9072 -0.2 13 0.0005 0.04 6

1.5S 0. 8442 0. 8497 0. 8497 -0. 153 0. 0005 0. 076

1.0 0.7122 0.7175 0.7175 -0.089 0.0004 0.143

4,0.5~ 0.3263 10.3290 0.3291 -0.029 0.0003 0.371

Table 11.1. Results for the dominant (noncutoff) R I mode of the
weakly guiding square guide. Listed values of p2 were
obtained after a 1-, 2-, or 3-term truncation of the
field expansion. Term ratios derived from the 3-term
solution give C 4 j 4 cos4o/C 03 0 and C 8 18 co s8o/C 0 10 at
p b, * 0. The field intensity at p- b, * 0
Is also given. The intensity at p -0 is 1.

_4"
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field, the total field is small; whereas for weakly bound cases the second
term is a much smaller fraction of a considerably larger field. (Similarly,

in the interior, the percent contribution of the second term drops quickly

as the field intensity increases.) Viewing the guide as a whole, therefore,

all terms beyond the first one make unimportant contributions to the total

intensity for the dominant mode of the square guide. The same holds true
for rectangular cross sections.

In Fig. 6 the field intensity is plotted as a function of p/b for

this mode both along a line through the center of perimeter (0 00) and
along a diagonal ( = 450).

We also obtain good convergence of the field expansions for the re-

maining (cutoff) modes. Table 2 compares the 1-, 2-, 3-, and 4-term
truncation results of Eqn. (32a) or (32b) for the first several modes
of the square. Comparing the 2- and 4-term truncations, we see that only

two terms are required for an accuracy of 0.01 in p
2 for 7 of the first

13 modes of the square. As for the remaining modes, three terms are

sufficient to bring the accuracy to within 0.01, except fo the degener-

ate R -R mode, which is accurate to within 0.02.
2 2

Table 2, which also lists the mode designations, specifies in its

last column which term is dominant in the field expansion. This is indi-

cated by the underlined value. Thus, we see that for most of the modes

the first term does dominate, and it is this term used alone in Eqn. (32a)

or (32b) which produces the 1-term truncation result in Table 2. For ex-

ample, R2 2  0 was used for the RI mode, T2 2  0 for the R I I , T =0
22 322 1 44

for the R I I and either RlI or T11 = Ofor the degenerate RII-RIV mode.
3 1 11

The observation stated above concerning the RI mode is generally applic-

able to these other modes. That is, for many modes the higher terms in

the expansion are comparable in magnitude to the first term only where

the field intensity is small; otherwise, they are negligible.

Bowever, there are some modes for which the second term in the field

expansion is the most important one. For example, the field intensity

of the RI mode of the square guide is plotted in Fig. 7. It shows peaks
o e 4

at two different radial distances from the center. In the peak near the
origin, the C0J0 term turns out to be the dominant one, but in the second

peak the first term ratio has values ranging up to 20 and is consistently

greater than 1, showing the C4J4 cos4 term is the most important one

, there. For this mode, setting R4 4 - 0 produces the 1-term truncation

25
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result shown in Table 2. Another example in which the second term pre-
dominates is the degenerate RIV-RII mode. Here, the 1-term truncation

, r2 2
result was obtained by setting either R33 or T33 ' 0. In such cases as

these, it is obvious from a perusal of the Table 2 results that a 1-term
truncation is inadequate for proper convergence and that a least three
terms in the expansion are necessary.

*" _.III

The mode R 2 is an example in which even though the first term is
2

dominant, the other terms are still making a significant contri6ution.
* ..*From Table 2 one can see that here, also, three terms are required in the

expansion.

IMode
Designation 2

This 2 B at P atB=2 Expansion
Work Goell CutoI I Term 2 Terms 3 Terms 4 Terms Indices

I E.Y 0.9023 0.9072 0.9072 0.9072 0f4,8,...

1 2 1 0.70 0.7546 0.7614 0.7688 0.7695
-R - 2,! 

1E3x 5...TV 
EX,

1M EX Y 1.04 0.6107 0.6321 0.6323 0.6323 2,6, 10,...1 2 2
RI EX.y 1.10 0.5037 0.5410 0.5457 0.5458 0,4,8,...

2 3 1
II EX Y 1.17 0.5390 0.5446 0.5446 0.5446 6. 6, 10,....
3 ,

2V E2 1.41 0.3383 0.3754 0.3850 0.40715..

JR }1,3,5,...
Si1.62 0.2300 0.2230 0.2461 0.2447 --

IRF  1.,3, 5,...
3

R4 1.74 0.0784 0. 1508 0.1892 0.1902 0,4,8,...

i"-R I ]]  1.81 0.0591 0.2118 0.1240 0.1243 2.6, 10,....
2

B111I 1.87 0.0914 0.1091 0.1089 .0.1089 4.8.12,....

Table 11.2. Values of the propagation constant, p2, for B - 2 for the first
13 modes of a square guide, obtained with determinants up to
order 4. Nodes are ordered according to the value of B at cut-
off. Our mode designation and Goell's are listed, and the domi-
nant term in the field expansion is indicated by an underlined

. expansion index. With 1-term truncation, the dominant term only
1 is used.

em*0'28
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Tables 3 and 4 give the same type of information for the R = 2 rec-
tangle as Tables 1 and 2 did for the square. One would expect the con-
vergence at a given order of truncation to become increasingly worse for

higher and higher modes. This is borne out in Table 4. Here are shown
the effects on P2 of truncating up to seventh order for the first 13 modes
of the R - 2 rectangular guide at a fixed value of B. These results
demonstrate that either a 2- or 3-term truncation is sufficient for an
accuracy of 0.01 or less in P2 for 7 of 13 modes of this rectangle.

Furthermore, for the first mode of each family (that is, R1 ), the single-

term truncation provides accuracies in P2 ranging from 0.04 to 0.14. As

in the case of the square, the 1-term truncation results shown in Table 4

were obtained by utilizing only the dominant term in the appropriate deter-

minantal equation, Eqns. (32a) or (32b).

For rectangular guides, our results agree quite well with those of

other authors <16,17,18>. In Figs. 2 and 5 we show some points taken from

Goell's paper <16> which appears to use the most reliable approach other

than ours. For the 2:1 rectangle and the dominant mode (Ex,Y in Goell's
1 1

notation) there is no discernible difference between his curve and ours.

For several other modes there are nearly uniform differences of less than

0.07 in p2 . That is, the curves are adjacent and parallel, and certainly

correspond to each other. For the square guide, the same type of results
have also been found.

Many qualitative features which can be seen in our Figs. 3 and 6--

such as the splitting of RI and Rl (square) near cutoff and the crossing
2 3

1V R (rectangle)--are also present in Goell's curves, although

II Ix'y
there are numerical discrepancies. Only with the R I (E2 2 ) mode of the

rectangle are there discrepancies greater than 0.1 in P 2 .

p2
Intensity at

B I Term 2 Terms 3 Terms 4 Terms =0 = w/2

3.0 0.9512 0.9732 0.9726 0.9711 0.007 0.023

2.5 0.9333 0.9628 0.9607 0.9597 0.009 0.031

2.0 0.9035 0.9444 0.9406 0.9402 0.013 0.047

1.5 0.8488 0.9074 0.9022 0.9021 0.023 0.075

.0 0.7354 0.8170 0.8116 0.8118 0.047 0.142

0.5 0.4456 0.5149 0.5122 0.5124 0.155 0.355

Table 11.3. Results for the dominant (noncutoff) R 1 mode of the

weakly guiding 2:1 rectangular guide. Listed values

of p2 were obtained after a 1-, 2-, 3-, or 4-term

truncation of the field expansion. The field intensity

at two points on the perimeter is also given. The field

Intensity at 0 0 is 1.
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*With the square guide, all the odd modes are degenerate in pairs

(sine and cosine) because of symmetry. (See Fig. 2 and Table 2.) More-

oeecpforRIand _RI1 those even modes in which the first term

dominates are degenerate in pairs away from cutoff. This can be seen clearly
oe except for R and modes. Furthermore, if the B-axts were extended to

2 1
in Fig. 2 for the moe. Futemre2fte--xsReeeteddt

23 III

larger values, then this degeneracy would be more apparent for the R 2 -R 3

modes, as well as for higher modes which are not shown.

As a result of the foregoing, one could take a linear combination
of the field expansions for two of these modes and derive an intensity
pattern corresponding to neither of the individual modes, but rather to
the combination. In fact, with our technique this would automatically oc-
cur if one did not recognize the simplifications implied by the symmetry and
therefore effect the separation of the field expansions at the beginning. In
Goell's Figure 5, intensity patterns for those modes which are degenerate re-
flect this combination of what appear-especially for the even indices-to be
distinct modes. For rectangular cross sections (R > 1) our field intensity
patterns agree with Goell's (see his Fig. 6).

2.5.2 Elliptical Cross Sections

The same calculations which were performed for rectangular guides were
repeated using circular (R = 1) and elliptical (R > 1) cross sections.

The propagation constants of the circular guide, which are the same
(that is, degenerate) for the sine and cosine modes, derive from single-
term truncation. They are shown over the range 0 < B < 2.5 in Fig. 8.
As R increases from 1 to 2, the sine and cosine modes split and shift. The
results of ellipses with R = 1.2, 1.5 and 2 are depicted in Figs. 9, 10, and
11, respectively. These modes are qualitatively very similar to those of

. their rectangular counterparts shown in Figs. 3, 4, and 5. In fact, if one

makes correspondence Ex - R x , then the order in which the first dozen modes
n n

of the elliptical guides reach cutoff is nearly the same as the order for the
rectangular guides. Moreover, the actual values of B at cutoff are similar
for the two shapes for all R. Table 5 gives the actual values of B at cut-
off for ellipses with 1 < R < 2 and also, for comparison, for the rectan-
gular guide with R - 2. Furthermore, the correspondence between the EX~m

and R modes extends to the field configurations, which comprise very similar
m

V'., patterns.
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Values of Bat Cutoff For

Mode For Ellipse Rectangle Mode
Designation I = 1.2 ( = 1.5 2.0 A = 2.0 Designation

E0 0 0 0 0

,F E 1  0.78 0.68 0.58 0.48 0.42 RIH1

IVV
E I V  0.78 0.74 0.72 0.67 0.60 R1

I I

E1 .23 1.07 0.89 0.72 0.64 2

1 1.28 1.22 1.18 1.15 1.08 1
3i R 3

EIV 1.65 1.48 1.30 1.13 0.95 RIV22

E 11.65 1. 59* 1. 48* 1. 37* 1.18 RH112 3

En1.77 1. 46* 1. 22* 0. 96* 0.87 2r

1 .77 1.72 1.68

12.03 1.82 1.52 1.20 1.12 H4i 4

E111  2.03 1.83 1.60 1.35 1.14 RI II
2 1112

Table U1.5. Values of B at cutoff for elliptical guides with
4e, different aspect ratios and for a rectangular guide

with R =2. Asterisks indicate where the designa-

tions E and E should be interchanged.

%
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The qualitative similarities between modes of the rectangular and el-
liptical guides approach numerical agreement as the aspect ratio becomes
large. In fact, for R - 10 the first few modes of either shape guide are

*' virtually indistinguishable for B > 1.5. In general, the propagation con-
-* stants for either differ by more than 0.03 only very close to cutoff.

In Figures (12a) through (12u) we present contour plots of the field
intensity, I0($)J2, for a variety of modes of circular guides and 2:1 el-
lipses. The field maxima are in the center of the oval or circular shaped
contours.

In Figures (12a-c) the fundamental E mode of the circular guide is
1

drawn for different values of B. The most tightly bound mode (12c, cor-
responding to the largest B) shows the Ereatest concentration of the field
within the core. For smaller B (12a) th! field does not diminish greatly
between the center and the core-cladding interface, indicating that a sub-
stantial field intensity is found in the cladding. Figures (12d-f) indicate
the same thing for elliptical guides.

Figures (12g) and (12h) demonstrate, using the E mode of a circle,

that even a substantial increase in B (from .79 to 1.27, for a mode that
cuts off at B = .78) does not change the field intensity pattern greatly.
This is generally true (e.g., Figs. (12i-J) and (12k-1)) for modes other
than the fundamental mode, and it is even true of the fundamental mode for
values of B which yield propagation constants, P2 , greater than about .2.

For circles the E mode is the same as the E mode, except that the

pattern is rotated 900 and the maxima appear on the y-axis. Obviously there
is no physical significance to this difference. However in Figures (12j)
and (12k), which of course do represent distinct modes for the elliptical
cross-section, a qualitative similarity can be seen when comparison is made

with the corresponding E1 and E modes of the circle.

In Figures (12m-u) some higher-order modes are depicted for various
values of B.

Our results for circular cross-sections are the same as those previously
reported <7, 19>. This is the result of the fact, noted earlier, that the
one-term truncation of our equation set is analytically equivalent to the
simple transcendental equation derived for circular guides. For elliptical
cross-sections, however, there are discrepancies between our work and that
of Yeh <19>. The problem is that Yeh lists what appear to be two different,
but degenerate, modes for the circular guide; eHE11 and 0HE1 1 in his notation.
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Fig. H1.12 Contours of constant intensity inside the core
region for various modes of the circular and 2:1

elliptical guides. The regions near the centers

of the oval or circular shaped contours possess

the maximum intensity, with each successive re-

4 ceding contour denoting a 10% decrease in in-
tensity. The B values corresponding to

each figure are (a) 0.25, (b) 0.5, (c) 1.27,

(d) 0.18, (e) 0.33, (f) 0.85, (g) 0.78, (h) 1.27,
(1) 0.49, (J) 0.73, (k) 0.68, and (Z) 0.85.

The modes of the circular guide which are de-

generate are designated within parentheses.

3.

38

. . . . .. . . .'. . . . .. . ,' ... . & , . . ... .' . .. - - ' , ' , .. *.'.*, 4,' *- . * '. ,. '. 7.._" - -. :. , , ,! ,'



-77:7 -7. 777 -77 - - -. a

EE
2 E3

Ell

a. U IV

Fig. 11.12 The B values are (mn) 1.27, (n) 2.0, (o) 2.75,
(cont.) (p) 0. 85, (q) 1. 85, (r) 1. 5, (s) 1. 5, (t) 1. 85,

and (c) 1.8B.
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Then, as the circle deforms into an ellipse, he shows each of these modes
becoming a nondegenerate mode, with the propagation constants of one mode
being greater in magnitude than those of the circular guide and those of
the other mode being less. However, we find just one dominant mode (EI)

I
for the circle which does not split into two modes as R increases. In
addition, our results for this single noncutoff mode agree very well with
a perturbation calculation of Eyges <18>. Furthermore, Yeh's data for an
elliptical guide having an aspect ratio of 2.164 do not correspond at all
to our results for either an = 2 ellipse (plotted in Fig. 11) or an
R = 2.164 ellipse. Hence, we are unable to correlate our results with

.5.5 his.

2.5.3 Other Results

We have used our technique to study the propagation modes of guides of
certain other shapes obtainable from Eqn. (31), mostly with R = 1. Among
these are superellipses with N = 2 and W = 5, and a cusped shape deriving
from N = 0.3. These are described in Reference 2. They show few quali-
tative differences from the results described in Sections 2.5.1 and 2.5.2.

There are many similarities between the elliptical and rectangular
guides, so it is no surprise that all the measurable characteristics of
the intermediate superelliptical shape (the propagation constants, field
configurations, cutoff values,.order of the modes, dependence on R, con-
vergence of the series) fall between those of the former shapes. In fact,
for N = 2 and R = 1, the superellipse is closer to the square than the

.-:' circle in all respects, and for ir = 5 it is practically indistinguishable
from the square. For A - 1 the modes all shift in a smooth and orderly
manner as N changes from 1 to 30.

The convergence of the series is marginally better for the elliptical
shape than for the superellipses and rectangles.

The cusped shape (ff < .5) is quite different in appearance, and the
characteristics of the modes reflect this. The order in which the modescut off is quite different, as are the propagation constants themselves.

In view of the fact that our results for the rectangle and square
agree quite closely with those of Goell and the fact that his point-matching
method requires the evaluation of a determinant of order 4M, with 3 < M < 9,
the economy of our method becomes obvious. Furthermore, unlike the differ-
ential equation approach utilized by Goell, our integral representation

040
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technique avoids the necessity of having to use a coordinate system
dictated by the guide's cross-sectional shape as well as the special
functions characteristic of that system. This means that in the case

of the elliptic guides, for example, one need not be forced to use el-
.4 liptic cylinder coordinates nor the complicated Mathieu functions as-

sociated with such coordinates.

3. Arrays of Step-Index Guides

3.1 Introduction

We wish to consider a general array of N parallel guides embedded
in a uniform cladding of infinite extent. The guiding regions, dis-
tinguished by the superscript or subscript i, have indices of refrac-

tion nl(i ) and cross-sections Ai . The cladding region has an index n2

Any or all of these regions may guide electromagnetic energy. The prob-
lem is to calculate the properties of all the waves which can propagate

in the entire system.

The traditional way of approaching this problem is to first cal-
culate the properties of the regions, Ai , individually by some means
and then to account for the influence of the evanescent fields of each
individual region on the waves in any other regions which they may over-
lap. This two-step process, best exemplified by coupled-mode theory
<20,21>, is successful in predicting the properties of some arrays with
two guiding elements, e.g.. two adjacent circular cylinders. However the
difficulty of doing this for arbitrary geometries is twofold: it re-
quires the fields of the individual regions, which may be difficult or
impossible to obtain in analytical form---or even numerical form; and
it then requires the integration of these fields over the areas of all
the other regions. Moreover the boundary conditions may be satisfied
for each region separately in the first step, but there is no such re-
quirement for the array as a whole at the end. The resulting solutions
are therefore approximate field amplitudes rather than the normal modes
of the system. This means that the poorest approximation occurs when
two or more regions are quite close together, which is generally the
configuration which is most important and interesting.

The integral-equation technique does not have these disadvantages.
One does obtain the normal modes, and they are found in a single step
without separate procedures for separate regions. In fact, a solitary
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waveguide is a special case of the general array, or any array can be
viewed as a single guide with a very complicated cross-section. Be-
cause this technique is indifferent to the cross-sections, these really
constitute a single kind of problem, at least in principle.

This is not to say that the technique solves every possible problem.
There are probably very extreme and peculiar geometrical configurations
for which the field expansions will not converge. And the analytical
and computational cost of calculating the modes of large arrays lacking

1 any convenient symmetry simplifications might be prohibitive. Nevertheless
it does yield the normal modes of a great many configurations which can-
not be otherwise solved at all, and it generally does so quickly and
efficiently.

The general procedure of the integral equation technique is, as
for single guides, to derive an integral representation for the field
components which is equivalent to the differential equations inside the
guiding regions and in the cladding and which guarantees that the bound-
ary conditions are satisfied. The principal difference comes about in
the assignment of separate coordinate systems to each core region. This

% allows the line integrals about the locus of source points, p , on each
perimeter to be performed without heroic efforts. However, in order to
reduce the integral equation to terms containing the basis functions in
the observation points, p. (e.g., Eqn. (16)) it is necessary to express
these basis functions in some commonly recognized coordinates. It is
therefore crucial to have transformations which relate the basis func-
tions in the various coordinate systems to each other. It is obvious
that the more complicated these coordinate transformations are, the more
difficult it is to write down and solve the linear equations for the
system. Symmetry considerations are therefore very important.

The most common problem is that of two guides with reflection sym-metry. This problem is simplified considerably if the line joining the

origins of the two coordinate systems is coincident with a reflection
'Ua axis of each guide. A further simplification of great importance oc-

curs when the two guides are identical--- that is, they have the same
shape and the same index of refraction. Therefore, at the point where
the basis function transformations must be introduced, we will special-
ize the analysis to the two-guide problem and then indicate how the two
above-mentioned simplifications make life easier. Later on, we will
write down the formulation for the general array.

Sb

3.2 Equations for a General Array

Since, at this stage, we wish to consider a general array of
guides, the problem can initially be written as N+1 Helmholtz equations,

42
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almost exactly as in Eqn. (3):

0 pin AV i I....N (37a)
Eqn.

a (Ta o in cladding (37b)f 
I

The notation will be to place a superscript or subscript (i) on each
quantity which is uniquely associated with the ith guide, and to denote
the coordinates of the ith system by subscripts---e.g., (pi, i)---so

as not to conflict with the primes. (Both the notation and the analysis
follow Section 11-2 quite closely.) The scalar function

satisfies all these equations. For p inside some core region, A. , this

is equivalent to

Eqn. (39) is quite similar to what we had before except that now there is
a separate line integral equation for each of the N possibilities de-
noted by j, and the left-hand side of each equation consists of a sum of
N terms. We have already put the subscript i on the normal derivative,
indicating the implicit dependence on the particular contour over which

.4each integral in the sum is to be performed. The general solution, 4(),
will also be written as a different expansion in each coordinate system:

I . (?) ~4c =.s 4 1)
.4 It is the representations of the Green functions, Eqns. (8) and (9), that

must be considered carefully since it is here that the coordinate 4
appears.

.4 Consider, among the N equations, the jth one, in which the ob-
servation point Is (near) the origin of the jth coordinate system. This
same point, p, appears in each of the line integrals which, of course,
are each performed in the coordinate systems centered in their respective
guides. The geometry of this situation, which is illustrated in Fig. 13,
makes clear the need for representations of the Green function which

-converge regardless of whether p >p0 or p< p'. That is, in the jth
term of the sum appearing in the jth equation, we have the situation
which characterizes the single-guide problem: the observation point, p, is
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closer to the origin than all the source points p , and Eqn. (8)
is used for g 2 ( , ). But in the N-1 terms in this sum for which

* iij, the opposite situation occurs: the source points p , which

lie on the other perimeters, are closer to the origins of the co-
ordinate systems in which these integrals are being performed than
the observation point, which is still within the ith guide. In
these cases, Eqn. (9) must be taken for g2 (Pp ).

(It is possible to imagine closely-spaced elognated guides in
which p>p for only some of the points on the ith perimeter, and
p < p' for others. For most geometries, this does not occur.)

From the foregoing, it is clear that for each equation there is
one line integral in which Eqn. (8) is used for the Green function,
and N-i in which Eqn. (9) is used. The formulation involves all N
equations simultaneously, and each of the N guides becomes the special
(jth) one in one equation.

Before proceeding, it is worth noting that the two represen-
tations of g2 (, b) are the same algebraically except that the Bessel
and Hankel functions are exchanged. In Eqn. (8) the unprimed coordin-
ates are in the argument of the Bessel functions; in Eqn. (9) they are
in the Hankel functions. One can thus write the analog of Eqn. (15)

by inspection.

Consider, once again, a single one of the N equations, Eqns. (39),
denoted by the index j . To proceed, one inserts the expressions for
4( ) and its derivative into this equation using a separate expansion
for each line integral in it. One substitutes the expressions for 92
and its derivative into each term, using the appropriate representations.
The obvious analogs of Eqns. (14) and (15) are used for the derivatives.
After much manipulation, the result for this single equation takes the
form

((An

The first two terms, of course, result from the jth term in the sum
and are exactly the same as the corresponding expressions in Eqn. (16),
except for the superscripts and subscripts which distinguish the jth
coordinate system. The last terms, on the other hand, come from those
integrals performed in coordinate systems other than the jth one, and
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as such constitute the departure from the single-guide analysis pre-

viously considered. Also, the basis functions in the unprimed coord-

inate appearing in these terms are Hankel functions instead of Bessel
functions, as a consequence of the exchange of H and J, in the
second representation of the Green function.

ii The coefficients S(J and S are

Te cf2 are exactly the same as before, hav-

ing been derived by an identical analysis. They are given, respectively,

* Vby the right-hand sides of Eqns. (18a) and (18b) with the understanding

that superscripts (j) should appear on the coefficients CS and Ds and

*on Y1, and furthermore that all references to the coordinates (P',4O)

imply the jth coordinate system. (E.g., the integration is over d.)

The other coefficients are

i4 .4 ;4 c 31-.9f

-(T 1vwT '"ao~'- s, %

S 
(L

where "2" and "4" in Eqn. (42b) are the same as the corresponding terms

in Eqn. (42a).

Before introducing the basis function transformations, we make some

definitions which allow us to write the coefficients S.2  through S4

more compactly. First of all, quantities Fs(p) and Es(P ,-) are

Adefined exactly as in Eqns. (19) with the exception that y now carries

".4
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the superscript (i) and the coordinates have that as a subscript. In

addition,

q t1 -, To- (YST T , (A(

A . ):"i

Furthermore the matrix elements R (  UO )  V ) , and T( j ) are defined
is' s is is

as in Eqns. (20), except that superscripts or subscripts (j) apply to

Fis, E s, and the coordinates whenever they appear. To deal with the

nonprivileged terms designated by (i) rather than (j), we write

:[ c (t,) C.s t , Q, , 4 5 O k4. sill 14.(1 t ' , - . AL.6A W, kl, t i.)

..

j o' GZ CM "SC4 a S- 4 ,

V L, IS

via .14-~- ~ Sk1 WJfSTZ j $ , CO 4iS. .

Then the coefficients can be written in compact form:

I.,. 
l ,,ee1' , t ,

,,,. ,' I ,''
W. + () T"

* 9 
two

'o

%b -
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a=. -- -

3.3 The Two-Guide Problem

3.3.1 Linear Equations for Two Guides

In order to make use of Eqn. (41), or rather the N equations which
all have that form, it becomes necessary (finally) to introduce the trans-

formation functions for the unprimed coordinates' basis functions. Since
the general transformations make things quite complicated, we begin with
the example of just two guides.

Assume that the central points which are chosen for the origins of
of the two coordinate systems are separated by a fixed distance d. We
may then without prejudice choose the x-axes of these systems to be co-
linear, as in Fig. 14a. With this choice, one can take advantage of the

7. following expansions <6>:

)os r-+.) • ",,
a,. as

NW

to relate the functions containing the Hankel functions and P2 with

* those containing the Bessel functions and p I This is another form of

Graf's addition theorem, which relates cylinder functions of integer or-
der to Bessel functions of the first kind, when the arguments can be
given in terms of the sides and interior angles of a triangle such as
is drawn in Fig. 14a.

Alternatively, we may wish to not restrict the orientation of
the two guides' coordinate systems with respect to the line connecting
the origins. In this case, illustrated in Fig. 14b, the same theorem
has the more complicated form

•- (V?(,

For the two-guide problem, there is no advantage to the second choice
(unless, possibly, the guides have reflection symmetry about the two
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Y2

. w2 xis x 2

n2

, Fig. Il:14(a) The coordinates of a point p in a two-guide
array with the x-axes of the coordinate sys-

~tems chosen to be co-linear so as to simplify

the transformation functions.

P Y2

a1

ylt ' 
0 x _2

, , "n [1) n j 2

4-

A

Fig. II.14(b) The coordinates of a point p in a two-guide
array with the x-axes chosen to take advan-
tage of the symmetry of the indivdual cross-
hsections.
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x-axes; even then it is marginal). For cases in which there are more
than two guides which are not in a line, however, the more complicated
expression must be applied.

Eqns. (46) allow us to express the requisite function of p , given
in coordinate system #2, in terms of coordinates (pi, ' 1). By making use

of trigonometric identities and properties of the Bessel and Hankel func-
tions of negative order, we convert these equations to

H zr ~~keik k(a.

k.

14 a V. v ) 6:S4.Ya Pkt UZ (Ifra MOlY

where the constant coefficients depend on the distance, d:

These expressions can be used in Eqn. (41). For the two-guide case, how-
ever, there are two such equations to be considered. For the first one

SX (1) (1 (2) (A -

(p in A J=l, i=2) we need S19' 9. .S3(.  and S 4  and functions of p

given in the first coordinate system (as in Eqns. (48)). For the second

equation (p in A2, j=2, i=I) we not only need S(
2 ) )---that is, the

2d1V 4Z. 

same integrands integrated over different perimeters---but also the func-
tions of P must be written in the second coordinate system. This re-
quirement forces us to obtain a parallel set of transformations by ex-
changing the coordinate systems, or by letting *l go into r-O2 and vice
versa in Eqns. (46). The result is

kz r
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where

Now, with the introduction of the Kronecker delta 6kt, the two ver-
sions of Eqn. (41) can be written down as

k- Laok = t JL.

1.1 .w

These equations can be satisfied in general only if the coefficients of
each of the basis functions, Jk(y2P1 )cos(k~l), Jk(Y2Pl)Sin(k~l).

k(2P2co~k ),and Jk(y2P2)sin(k 2) is zero. For each value of k,
therefore, there are four separate equations. (In principle, k runs
fro. 0 to .) Inverting the summation order in k and £, this leads to

4~,, s4- ,,. ,.... (S3 )

i i"
3t

+ si)4IkT-

ta o o o

4~I 51
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Now, in a manner not much more complicated than that leading to Eqn. (16),

we have converted the two integral equations into a 4-fold infinity of

linear equations in the coefficients C (1)s D 1  s  and D (2)s  With

truncation at some suitable number of terms, M, the use of Eqns. (45),

and some algebraic manipulation (e.g., exchanging the 2 and s summations,

reordering the coefficients) the linear equations work out to be, in
matrix form,

I'I. , gl Cs

V6I ; (.1 ~ itPi 1Am#
-.,, .-- a ..

- -* Lao .L -- "
Ik liAg '

t RUi Age UI

AkA3 I It U I

where we have symbolized each submatrix by its (ks) matrix element and

each vector by its (s) element. In Eqn. (54) each of the submatrices is

M by M, and each of the four vectors of coefficients is of length M.

This equation has a solution when the determinant of the matrix is zero.

Thus, as before, we will vary the propagation constant appearing in the

matrix elements until the determinant vanishes, and then evaluate the

coefficients for those conditions.

The summation over Z which appears in each matrix element in the

4J upper right and lower left quadrants must also be truncated at some value,

M'. We find that a value between M and 2M is usually sufficient. For

circular guides, M' = M because of the diagonal property of (R), (U), (V)

and (T).

, 3.3.2 Normalized Parameters for the Two-Guide Problem

'When we considered the single guide, we were able to specify the

'a physical parameters of the problem by giving the normalized frequency,

~B, and the parameters (9, R) describing the guide's perimeter. The

"1characteristic dimension", b, conveniently dropped out.
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In the array problem the two guides will in general differ in their

indices of refraction, sizes, and shapes. It thus becomes necessary to
specify several additional parameters: a second normalized frequency, a
second set (N, R) for the shape, a second "characteristic dimension" to
determine the size, and also a distance d separating the (origins cen-
tered within the) two guides. Moreover, the question of how to define

the 1) (2)
the normalized propagation constant is reopened, unless 

n = n 1

With these considerations in mind, it becomes convenient to define
a "special" guide, which is identified by the super- or subscript (1)
and is the one with the greatest value of nI. Thus with the definition

kIL IL

p2 retains its range of 0 to 1, since the limits on the propagation con-

stant, k , of the normal modes of the array are k and k( ), the latter
g (2) 2 1

being greater than k Moreover, the characteristic dimension of this

special guide, bI, will appear in the different normalized frequencies

which are defined to account for the index-of-refraction differences:

With these definitions one can show that the quantities y1 i) and y are1 2"

where i- 11 in Eqn. (57b) should not be confused with the index i desig-

nating one guide or the other. Thus, if n(I) = n(2 ) , the two values of y

are the same. The differences between the guides enter when y1p is calcu-

lated. Let us write, for the ith perimeter,

53 1,2
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where gi(*i) might be the "superellipse"l formula indicated In Eqn. (31)

with parameters N and Ri , or some other function. We define the ratio
I .

of the semiminor axes by

Then we have, for p on the ith boundary,

Moreover, the argument of the Hankel functions appearing in the trans-

formation coefficients and B3 is

From the above, one can see that b serves as a "unit distance", with

b2 and d appearing only in their ratios to bl. From now on, we will

assume that d is in units of bI and drop the latter from Eqn. (61).

Reduction of the quantities in the matrix elements to real form is

only slightly more complicated than in Section 11-2.4. As before, the
recurrence relations, Eqns. (28), eliminate the derivatives of the Bessel

and Hankel functions. The Hankel functions of complex argument are con-
verted to Modified Bessel functions of the second kind using Eqn. (29).

The Bessel functions of complex argument are converted to Modified Bessel

functions of the first kind by using

jI(ix) - i I Ix) (62)

Then Eqns. (19) and (43) become

54
. . . •,*••- " .

NOW ,.:, • ; 2: ; S ,: ,'....,....,,.,...., . .:: ..... ,.



,jl ,l "J ,, "-a 'i " " ",
'  ' ' " 

, .-7 ..-. , ,, - . ..-- ' - .. ." ' -'" - -. . ~.. . . . . .

4-4

.1.

, The Kb..s (1 6,tYon coefTicientI trc

T[-Sa

IB P

444

fL)*- i- ' ' ) { ,,(a) -___ ) - Vr

f 11.

The transformation coefficients become
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with %, and )ik£ related to them as in Eqn. (51).
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"~.Now the only remaining task is to combine the powers of i properly.

Consider, for simplicity, a reduced form of Eqn. (54):

al

let P,()O

We note from the definition of (R), Eqn. (20a), and from Eqns. (63) that
•the (ks) matrix elements of the submatrices on the upper left and lower

right are all real quantities multiplied by i- (k+). Similarly, from
Eqns. (44a) and (64) the (Is) matrix elements of R(l) and -(2) are real

quantities times i and from Eqns. (65a) and (51) the transformation

coefficients a and T kI contain the (-k+t-l) and (k-i-i) powers of

i multiplied by the real part of aki * Powers of i can now be removed

completely by multiplying each row of the matrix by i(k+l), since it
turns out) only even powers are left after this operation. If we change

our notation slightly so that (R), (R), (a), and (n) refer explicitly to
the real factors which are built into these quantities (e.g., Eqn. (65a)

without the i(ki+1) for ck£) and if we symbolize each submatrix by

its (ks) matrix element, Eqn. (66) can be written entirely in terms of

real quantities:

0 
I 1.{

,-k I ,, , -CL" )!z 0
(#L'4t R S

One can readily show that (U), (V), and (T)'behave like (R), and the

corresponding quantities with bars like (R), and the (B) like (a). It is

therefore easy to generalize from Eqn. (67) to a final real matrix equation

"* rfor the general two-guide problem, with all coefficients C.1)D(2 ) as

unknowns. In other words, if in Eqn. (54) we take Rks, .... OTks and

" ...k. . ...... "WE to mean the real factors contained in the most 
recent equa-

tion specifying each of these, and if we multiply by (-1) inside each

sum in the upper right quadrant, and if we multiply each matrix element

on the lower left by (-1)k we get the final real matrix equation for the

two-guide problem.
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3.3.3 Special Cases for Two Guides

Consider the general case once again. When the distance, d, between
the guides is much greater than the guide dimensions the transformation
coefficients a, B , n , and p become small because of the Hankel func-
tions defining them. In such cases the top right and lower left subma-
trices go to zero and Eqn. (54) splits into separate matrix equations for
(1) (1) (2) (2)

CS,2 D, . and C 2 , D 2 . By physical reasoning, this amounts to sepa-

Y, rately solving for the modes of two distinct isolated waveguides. Mathe-
matically, each part of Eqn. (54) is equivalent to Eqn. (22) applied to
one guide or the other.

When one or the other of the guides has reflection symmetry about its
x-axis (or y-axis) the corresponding submatrices (U), (V), (U), and (V)
are all zero. If both guides have this property the equations split com-

pletely and the solutions for CM and C(2 ) (cosine expansions, as
(1) (2) S s

Eqn. (66)) and D (I and D 2  (sine expansions) are obtained independently.5 5

If, in addition, both guides have a second axis with reflection symmetry,
half of the matrix elements of (R), (T), (R), and CT) are also zero and the
cosine and sine solutions split into even and odd series.

As with single guides, these separations could all have been effected

from the beginning.

For circular cross-sections the (R) and (T) submatrices are diagonal

and the sums in the matrix elements at the upper right and lower left have
only one term each.

In the special case for which the two guides are identical, and have
a plane of symmetry between them, as in Fig. 15, we can simplify in a dif-
ferent way. We can assert, a priori, that the solutions, Eqn. (40), be

symmetric or antisymmetric about the plane. That is, the solutions 0)1) 1)

must be equal to plus or minus 0(2) (p2,1T-02). "his can happen if and only

C ( I ) =(-I) s C ( 2 )  (68a)

S S. symmetric solutions

D = (-l) s+ 1 D  (68b)
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or

CM (-1) C (69a)

( s s(2 antisymmetric solutionsD(1) = (-1) D(  (69b)
S

Then, if we specify which class of solutions we wish, these relations can be
used to eliminate half of the equations in the general set.

Alternatively, we can start from the general set and derive Eqns. (68)
and (69). The fact that the identity of the two guides simplifies the mathe-
matical relations expressed in Eqn. (54) and leads to Eqns. (68) and (69)
shows that the symmetric and antisymmetric solutions are implied by our form-
ulation. To demonstrate this, consider the real equation for the cosine
solutions, Eqn. (67). If the guides are identical, as in Fig. 15, the ma-

trices (R ) ) and (R(2)) are identical except for a factor of (-1) k+ s which
enters the (ks) matrix element because of the transformation

and has to do with the direction of integration about the cross-sections.
(This can be derived quickly from Eqn. (20a) using trigonometric identies.)
That is,

R (2) (-1) k+s (1) (70)Rks Ns

with a similar relation for the (R). Theii Eqn. (67) can be rewritten as

kI 43 --- R ~ ~ 4 C~S)-
,=.- - - . = O

I , I Sc . it *( (

The operations leading to Eqn. (71) are purely formal. They can be carried

further by multiplying the rows of the lower submatrices by ±(-I) k . Then,

with Sks defined as Z R (1) and Cs  ±(-1)sC(2) the equation takes

the form

SR CS 0 (72)

An equation like this has a nontrivial solution if and only if (C) and (C)are identical vectors. To show this, assume that they differ by an arbitrary
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vector, (c): (C) = (C) + (E). Writing the matrix equations separately, it
immediately follows that

(S - R)(c) = (0) (73)

This has a nontrivial solution if the rank of (S-R) is less than the matrix
--dimension, M. (S) and (R) being different, this cannot be. Therefore

(e) H (0), (C) and (C) are the same, and Eqns. (68a) and (69a) follow with
the appropriate choice of sign. The relations between the sine coefficients,

D (1) and D (2 ) , can be proved in an analagous manner.
s s

The final form of Eqn. (72) with (C) = (C') shows how to collapse the
2M by 2M set into the M by M set (which we would have derived if we had
started by assuming Eqns. (68) and (69)) because it is equal to two copies
of

aag

This is the very important equation that is to be solved for the cosine solu-
tions of the two identical guides with reflection symmetry about the common
x-axes. The corresponding equation for the sine solutions is

(-, too 4 )

It must be remembered that we have explicitly written (and thereby cancel-

led out) all powers of i and thus dropped them from expressions for all

the matrices. Also, without reflection symmetry about the common x-axis,
the U and V submatrices reappear, and the general 4M by 4M system only
collapses into a 2M by 2M one. In any case, however, the identity of the
two guides reduces the size of the system of equations by a factor of two,

and antisymmetric modes by choosing one sign or the other.

3.3.4 Results for Two Guides

3.3.4.1 General Discussion

The principal goals in carrying out this work were to (1) calculate
the modal properties of some of the more important configurations in which
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coupled guides are used; (2) demonstrate the efficacy of the integral equa-
tion technique for arrays; and (3) identify situations in which this tech-
nique is capable of providing significantly better results than other ap-
proaches and, conversely, those situations in which other approaches are
quite accurate. In view of these goals, we have concentrated primarily
on the two-guide problem, both because of its importance and because other
techniques have not (with one exception) been applied to anything else.

We have calculated the modes of arrays consisting of circles, el-
lipses, and rectangles in various combinations, all with their axes of

.symmetry coincident with the line between the origins (y = 0 in Fig. (14b)).
The series converge quickly for all cases we tried, including some combin-
ations of elongated cores. The integral equation technique is clearly an
efficient and versatile way to correctly calculate these modes. We be-
lieve that extending the effort to more complicated situations (y - 0,
cores without symmetry) would allow us to demonstrate similar virtues, the
cost merely being the computation of more matrix elements and Bessel func-
tions. The same applies to N-guide systems, with N > 2. In that context,
we have restricted ourselves to consideration of a line of up to six iden-
tical guides, which is discussed in Section 11-3.4. We do set down the
general formulation for N guides, however.

Regarding the comparison with other authors, discussed below, we find
that we agree completely with that formulation <22> which calculates, as we
do, the normal modes of an array. We also find, not surprisingly, that
coupled-mode theory provides quite accurate results except when the guide
separations are quite small.

* To obtain results for the two-guide case, two FORTRAN programs were
J written. The first, IDGS, solves for the symmetric and antisymmetric modes

of identical guides. The second, NIDGS, is used for the non-identical two-
guide problem. The means of using them are described in another section of
this report. The numerical techniques employed are virtually the same as
for TRUNCN, and have been described in Section 11-2.4.

Since other authors use V for the normalized frequency, we have ex-
pressed our results in terms of this parameter also (V = wB). 6, given

in Eqn. (25), is also used for the index-of-refraction differences.

3.3.4.2 Results for Two Identical Guides

In discussing the normal modes of the array consisting of two identi-
cal cores with a plane of symmetry between them, it is illuminating to re-
late them to the modes of the isolated individual guides. Thus, if the
guides, numbered 1 and 2, are far apart they do not affect each other, and
there is a modal solution in which the wave amplitude and propagation con-
stant are characteristic of a single-guide mode centered on guide number 1.
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We label this solution *C(l). There is of course another solution with the

same kind of single-guide mode centered on guide number 2, i.e., *O(2). As

in quantum mechanics, two solutions with the same propagation constant (en-
ergy) but different wave amplitudes are called degenerate. A linear com-
bination of degenerate solutions is still a solution with the same propa-
gation constant, and we can form two special linear combinations: a com-
bination 4S that is symmetric under reflection about the plane of sym-
metry (interchange of guide numbers 1 and 2) and a combination 4A that
is antisymmetric, given by

OS = 0(l) + 00(2) (76a)

A =  ( 1) - (2) (76b)

Thus, for every mode of the individual isolated guide, these two combina-
tions will approximate two modes of the widely spaced composite guide. As
d decreases, however, and the tails of the isolated-guide modes begin to
overlap, 0S and 0A will cease to be solutions in the overlap region,

and it will be found that the exact symmetric and antisymmetric solutions
will differ from the single-guide solutions, as will the propagation con-
stants. It is said that the single-guide modes split. In fact, the ap-

S. proximate wave functions, Eqn. (76), can be used in, say, a variational
calculation to calculate this splitting.

In this light consider Fig. 16, in which P2 is plotted versus V for
two identical circular guides of radius unity separated by varying dis-
tances d. In the families of curves shown there, the central solid lines
represent modes for d- - and, more specifically, those modes of an iso-
lated single circular guide for which 0 = J (y p)cos sO. The single-guide
modes correspond respectively to s = 0, 1, and 2 for the uppermost, middle,
and lower family of curves.

The dashed lines above and below these single-guide modes are the
corresponding symmetric or antisymmetric cosine modes for the values of
d that are indicated. The symmetric mode curves all lie above the single-

J.. guide curve, and the antisymmetric ones all lie below. Note that the split-
ring of the symmetric and antisymmetric modes is not uniform; for a given
d, the symmetric curve is not necessarily the same distance above the single-
guide mode as the antisymmetric curve is below it. Furthermore, the domin-

" .nant mode is the lowest-order symmetric mode; all the other modes cut off.

.0.
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9

In Fig. 17 we plot the propagation constants of the first two modes de-
rived from the sine expansions for identical circular guides. Each of these
modes is degenerate, in the 'Zimit d- • with a cosine mode in Fig. 16.
For smaller separations, the proximity of the two guides clearly affects the
modal properties of the sine and cosine modes differently. This is not sur-
prising, in view of the field configurations of the large-separation modes,
which are like those given in Figs. 12g and 12m. In the case of the modes
cutting off between V = 2 and V = 3, the cosine modes (Fig. 12g) have their
maximum intensity along the x-axis, which is the region where the guides are
closest together. The sine modes' intensity maxima are along the y-axes,
away from the region of proximity. There is less distortion of the d--- w

fields in the latter case, and apparently this results in smaller changes in
the propagation constant. In the case of the modes cutting off near V = 4,
however, the sine and cosine modes have identical field patterns in the limit
(Fig. 12m). This undoubtedly accounts for the similar behavior as the guides
are brought closer to each other.

It should be pointed out that, if we had chosen the y-axes to be co-
linear instead of the x-axes, the behavior differences between the sine and
cosine modes we have discussed would be exactly reversed.

For comparison of our results with the work of others we begin with1that of Wijngaard <22>, who considers two circular guides, not necessarily
* identical, and solves the problem by an extension of the standard matching

techniques for a single guide. Although Wijngaard's equations are formu-
lated for the general vector case, some of his numerical results are given
for weakly guiding cases, where 6 goes to zero, and are therefore compar-
able with ours. For example, fcr identical touching circular guides at
V = 3.5, his result for the quantity V(1 - p2)1 for the first antisymmetric
cosine mode is 1.9341; ours is 1.93412.

A second comparison with Wijngaard is possible in terms of a parameter
other than the propagation constant, the beat wavelength Y• We briefly
introduce it here since much of the discussion of two identical guides in
the literature is phrased in terms of it. Suppose that two identical guides

are a large but not infinite distance apart so that they are weakly coupled.
And suppose that at z = 0 one of the guides is excited with an amplitude
characteristic of a mode of a single isolated guide. A question of interest
is how the amplitude changes as a function of distance down the guide, i.e.,
how the power in one guide becomes coupled into the other. This question
can be answered approximately in terms of the symmetric and antisymmetric
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modes of Eqn. (76) and their corresponding propagation constants and'A' g
k'A . Thus consider the following expression for the field amplitude as~g"
a function of z:

(77)
S (Al

At z- 0 this is IP(0) 000(l) so that it corresponds to an excitation in

which guide number 1 is excited in its single-guide mode and guide number 2
is not excited at all. But, at a certain distance z= L down the guide,
such that

[k(S) k (A)]L n, (78)

we have

4 )(L) = 4¢(2)exp[ik (S)L, (79)
g

which corresponds to an excitation of the single-guide mode of guide number 2.
That is, all the power is now associated with this second mode. This dis-
tance L over which this power transfer takes place is the coupling length.
The beat wavelength 'AB is that distance that is required for the original
amplitude to be restored (except for a phase factor) and is equal to 2L.

Following the method of Wijngaard <22> it is convenient to define a
normalized beat length y by

= 6nl- (80)

where X is the vacuum wavelength. This can be expressed in terms of our
(S)~ (A)normalized propagation constants, for small 6, by writing k and k in
g g (S)-terms of them, using Eqn. (55), expanding the square roots, forming 1k

(A) 62 gk(A), and neglecting terms in 62. The result is

-
2- 2(p [1S(P 2  P2) - 1 2 6 -L (Ps + PA) (81)
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Wijngaard's calculation of y as a function of V for &--0 (presented in
his Table 2) agrees with our results [using Eqn. (81) with 6 = 0] to the
three significant figures given.

Although we have motivated the introduction of the beat wavelength
by an approximate treatment, the operational definition, Eqn. (78), should

be considered as involving the exact propagation constants k(S ) and k(A )

g g
rather than those obtained by using Eqns. (76). Also, there is an obvious
approximation in specifying the total field as the sum of only two modes
(even the correct S and A modes) and consequently obtaining a simple
periodic function of z for the power distribution. Nevertheless, this
approximation allows us to connect our results with those of coupled-
mode theory because those results are expressed in terms of constants
coupling pairs of modes individually.

In the coupled-mode theory, the field amplitude in each guide is ex-
pressed as a sum of isolated-guide modes, with expansion coefficients a func-
tion of z. As an approximation to this sometimes intractable series, the ex-
pansion in each guide may be limited to a single term. Then, if at z = 0
guide number 1 is excited with a single isolated-guide mode and guide number
2 is not excited at all, the solutions of the equations-the expansion coef-
ficients--are sinusoidal in z. The resulting beat wavelength is expressed
in terms of a normalized coupling constant K that for two identical circu-
lar guides with 6--+ 0 has a simple analytical form <20,21>. The relation-
ship between K and "B is

K - K- () (82)
B

We can, of course, derive an expression for the right-hand side ofa2 ad2

Eqn. (82) in terms of PS PA by using our beat wavelength and the re-

lationships expressed in Eqns. (80) and (81). If we call this equivalent
coupling constant K, we find that

1 2 2)(3
K V(P - P _ 1 2 !  (Ps + P 2) ] 1 (83)

We can now compare this with the results of coupled-mode theory. There is
only one superficial difficulty: the quantity K depends only on V and the
guide separation d, whereas our comparable result K depends on 6 as well.
Happily, the dependence on 6 is small when 6 is small. Therefore our com-
parisons with coupled-mode theory are made by setting 6 = 0. We note that
small corrections must be made for finite 6.
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In Figs. 18-20 we compare our results with those of coupled-mode theory
for identical circular guides. The coupling constant K (solid lines, com-
puted directly from the formula in Refence 21) and our equivalent results from
Eqn. (83) are plotted versus d for fixed values of V for the dominant modes
(Fig. 18) and the second pair of modes (Fig. 19). The complementary results
are given in Fig. 20 for the dominant modes by plotting y from the coupled-
mode theory (solid lines) and our values of (P2 - P2)-1 versus V for fixed

S A
d.

Over most of the range of parameters that we have investigated, our
results are in excellent agreement with those of coupled-mode theory. To iden-
tify what differences there are, we emphasize small values of d in Figs. 18
and 19 because it is there that the weak-coupling approximation is most tenu-
ous. We observe that, except for the smallest values of V on each graph, the
only notable discrepancies occur when d< 2.15; that for some values of V the
agreement is practically perfect even for small d, whereas for others the dis-
crepancies are as much as 20%; and in Fig. 19, that our points may fall above
or below the coupled-mode results, depending on V. In Fig. 20, we find sub-
stantial discrepancies only near those values of V for which the first anti-
symmetric mode cuts off, a value that of course depends on d, and for touching
guides (d = 2). In the latter case, the barely noticeable difference of less
than 4% at the right-hand edge of the plot, where V= w, grows considerably
larger (to 20% at V= 27r) as the normalized frequency increases.

' The discrepancies associated with the smallest values of V encountered
in Figs. 18-20 are not surprising, even for guides that are relatively far a-
part, in view of the tendency of the fields of all modes to spread substan-
tially outside the core regions in these cases. This makes it risky to ig-
nore single-guide modes other than the two primary ones, as is generally done
in the coupled-mode approach.

The discrepancies in y associated with large values of V and d_2 arise
from the fact that, although coupled-mode theory in principle expands the field
inside each guide in a linear combination of modes of the isolated guides, in
practice this combination is restricted to a single mode of the isolated guides.
For fixed V and increasing d this approximation obviously becomes better and
better. By contrast, for d fixed (especially at small values) there is no
reason to suppose that for increasing V the single-mode approximation becomes
increasingly accurate. In fact, the true field in the interaction region is
rather poorly represented by the linear combination for all values of V. This
is more obviously true for identical square or identical rectangular guides,
but it holds for identical circular guides as well.

For values of V below the value at which the antisymmetric mode of any
chosen pair cuts off, there can be no interference. Because coupled-mode
theory does not yield the propagation constants directly, however, this point,

3
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.4Fig. 11.18 Normalized coupling constant from coupled-
mode theory (solid lines) and the quantity

22* 114 V(PS PA)(points) plotted versus d

for the first symmetric and antisymmetric
modes of a composite system consisting of

* two identical circular guides.
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Fig. 11.19 Same as Fig. 18 except the second symmetric and
antisymmetric modes are used. These correspond
to dashed lines of the second family of Fig. 16.
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Fig. 11.20 Normalized beat length from coupled-mode

theory (solid lines) and the quantity

(Ps P2)-1 (points) plotted versus VS A

for the first symmetric and antisymmetric
modes of a composite system consisting of
two identical circular guides. Cutoff of

the antisymmetric mode occurs near the
left-most dot in each case.
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at which computed values of the beat wavelength become meaningless, is obscure.

In Fig. 20, we emphasize this possible error by deliberately extending the

coupled-mode calculations (solid lines) to values of V below this cutoff

point, which is close to the left-most of our computed points for each of

the four pairs considered.

We have done similar calculations for pairs of square and pairs of rec-
tangular guides and compared them with published results where possible. The
best agreement is with the coupled-mode calculations of Marcatili <17> for
tightly bound modes of square guides. What discrepancies we find in these
cases closely parallel those indicated for V > 3 in Fig. 18; that is our
equivalent coupling constant is larger than his for d < 2.15. His approxi-
mations are not good near cutoff, so extensive comparison is not possible.

In Figs. 21 and 22 we show the first two cosine and sine modes, re-
spectively, of identical square guides. These modes are qualitatively very
similar to those of the circular guides shown in Figs. 16 and 17. Since for
small separations (d--+2) somewhat more of the guiding regions are in close
proximity to each other than for comparable separations of circular guides,
the splitting of the corresponding modes is slightly greater. One should
note that for d= 2 the modes plotted are identical to those of a single
rectangular guide with R = 2, given in Fig. 5. That is, the first sym-
metric mode corresponds to the RI mode, the first antisymmetric mode to

the RII mode, and so on.
1

As a final example we show in Fig. 23 the propagation constants for
some modes of a pair of rectangular guides.

Also of interest are the field configurations. In the present scalar
theory we can exhibit these configurations by plotting contour curves of the
squared amplitude in the cross-sectional plane. Such plots are shown in Figs.
24 and 25 for two square guides for the symmetric and antisymmetric modes that
derive from the dominant mode of the isolated guide. What is striking about
these modal amplitudes of the guiding pair is how quickly, as the guides are
separated from touching, they begin to resemble in each guide the modes of iso-
lated single guides. For the symmetric case, for example, the field config-
uration for the touching guides is markedly different from what would exist
in each isolated guide. But separating the guides by only 2.5% of one side
(d = 2.05) produces a definite resemblance to single-guide modes that be-
comes pronounced at d = 2.25 and is practically perfect at d= 3.0. Similar,
but even stronger, remarks apply to the antisymmetric mode.
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cmi*(i5aoO

d=2.2

IR-, d=3.oo

Fig. 11.24 Contours of constant squared amplitude

*2 for that symmetric mode of a com-
posite system, consisting of two square
guides, that derives from the dominant
mode of an isolated guide. The ampli-
tude at the center of the pattern has
magnitude unity, and on successively
larger contours .2 changes by 0.1.
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d=2.05

d=205

d=3.00

Fig. 11.25 Same as Fig. 24, but for the anti-
symmetric mode.
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3.3.4.3 Results for Two Dissimilar Guides

We have found the solution of Eqn. (54) for a variety of configurations
involving two dissimilar guides. The most interesting case is that of circu-
lar guides of different size and the same index of refraction. Host of our
results were obtained for such examples. In fact, as for identical guides,
the general features of composite systems, consisting of pairs of guides of
various shapes, are similar to those consisting of two circular guides. We
have demonstrated, however, that the technique works quite well for dis-
similar ellipses, squares, rectangles, and combinations thereof.

As with identical guides it is convenient to correlate the modes of the
guiding pair at finite separation distances with the modes of the pair at in-

finite separation. These latter are of course the modes of the isolated in-
dividual guides. Thus, for d infinite, there are two sets of solutions of
Eqn. (54) or, say, Eqn. (66). In one of them, the coefficients C(2) are all

s (1)
zero, and the propagation constants and the nonvanishing values of C ) are

those that correspond to modes of the isolated guide number 1. For the second

set of solutions, the C(1) are all zero, and the modes are those of the iso-

lated guide number 2.

For finite separations, the modes have properties which are exemplified
in Figs. 26 and 27. In Fig. 26 we show computed results for cosine expansions

2-
in which P is plotted against V for various interguide distances for a var-
iety of modes of a composite system consisting of guides with radii of 1.00 and
1.05. V is defined in terms of the radius of the smaller guide. Since the
guides are only slightly different in size, the general similarity between
Fig. 26 and Fig. 16 (for identical guides) is not surprising. The main dif-
ference is that in the present case the modes at infinite distance do not ap-
pear as degenerate pairs. In each pair of solid lines in Fig. 26, the upper
line represents a certain mode of the larger guide in isolation, whereas the

p. lower line corresponds to a mode of the smaller one.

To give some idea of the convergence of the interior expansicns, Eqn.

(40), as the distance d decreases from infinity, Tables 6 and 7 give C 
l 's

and C'2) for modes that become the dominant modes of these two guides in

isolation.

In Fig. 27 we present propagation constant curves for a pair of circles
with radii of 1.00 and 1.25 (V defined in terms of the former) in order to
make some general observations. First of all, as a contrast to Fig. 16 and
(to a lesser extent) Fig. 26, some of the composite system modes are barely
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d 3.00 2.25 2.05

P 2  .7894 .7894 .7965 .8157

c 1 0 .03S .438 .630
0

c .006 .106 .281

C( )  0 .oo6 .118 .352

SCM 0 .010 .212 .702
3

C 0 .020 .495' 1.846
4

C(2)1 1.000 1.000 1.000
0

C(2) 0 -0.000 -.078 -. 294
I

CM 0 0.000 .083 .352* 2

C ( 2 )  0 -0. 000 -. 146 -. 693

C(2) 0 0.001 .342 1.824
-A

Table 11.6. Coefficients C(l) and C(2 ) for the first mode of
S s

the composite system of Fig. 26 for different
values of d and V- 4. This mode evolves into
the dominant mode of the larger guide in isolation.
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d * 3.00 2.25 2.05

P2  .7727 .7726 .7688 .7626

C (1) 1 1.000 1.000 1. 0000

C(I) 0 -. 000 -. 039 -. 101

0c) 0 -. 000 -. 038 -. 096
2

C(I)  0 -. 000 -. 059 -. 1483

0 0 -. 001 -. 121 -. 293

4 2) 0 -. 045 -. 553 -. 797

C()0 -. 008 -. 125 -. 2361

C(2 .21
2 0.007 .115 .1

3 2 -. 011 -. 181 -. 333

C(2 ) 0 .021 .376 .691
4

Table 11.7. Coefficients C (1) and C (2 ) for the second modes
s 5

of the composite system of Fig. 26 for different
values of d and V- 4. This mode evolves into
the dominant mode of the smaller guide in isola-
tion.
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distinguishable from the isolated-guide modes away from cutoff, even for the
touching distance. This illustrates the often observed fact that the charac-
teristics of the composite modes are weakly dependent on d when the isolated-

. guide propagation constants are not the same or close in value. Also, there
is a gap between each pair of isolated-guide modes, and unless the two guides
have very different physical characteristics, there is no composite mode in
this region. The gaps diminish as the guides become more similar. These
general characteristics are typical of various two-piece composite systems
that we have investigated, consisting of combinations of squares, rectangles,
circles, and ellipses in certain orientations.

There is not much to be learned from plots of the sine modes of the sys-

tems described in Figs. 26 and 27. Except for the separation between the two
d = modes, the curves for these cases are much like those in Fig. 17. For
the modes that cut off near V = 4, the d = 2.05 and d = 2.25 (touching) cases
are almost indistinguishable, on the scale of these drawings, from the respec-
tive d= curves. It is generally true that the greater the difference insize (and hence in unperturbed-mode propagation constants) between the two

guides, the smaller is the deviation of the composite modes from the isolated-
guide modes. This pattern is more pronounced for some modes, however, than
for others.

A few comparisons with Wijngaard's work <22> for different-size circular
guides is possible. For touching guides with a radius ratio of 1:1.3,6 = 0.1,
and V= 3.5, his Table I gives jz= 3.3609 for his II mode. Our comparable

result is 3.3641, which suggests that the weakly guiding approximation is use-
ful even when 6 is not close to zero. For this same configuration with V = 2,
the ratios of the y components of the field at the center of the two guides
are, for his 10 and I modes, 0.616 and -1.690, respectively. Our ratios
turn out to be 0.36 and -1.28, which are of the same order of magnitude and
sign.

3.4 Final Equations for a General Array

In this section we set down the formulation which is required to com-
pute the modes of a general array of guides using the integral-equation tech-
nique. One could use such a formulation, for example, to solve a system of
three guides arranged in some triangular pattern, or four guides at the cor-
ners of a square or rectangle. Except for calculating the modes of a linear
array of identical guides (a configuration which is greatly simplified by
symmetry) we have not made use of this derivat'lon.

The analysis proceeds from Eqn. (41) almost exactly as in the two-$ guide example, with the same definitions of matrix elemrnts and the same
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manipulation required to convert them 1o real quantities. The only important
difference comes in the transformation functions. Since we cannot automatically
take y to be zero (see Fig. 14b), Eqn. (47) is needed to derive the transfor-
mation functions for the various coordinate systems. The main effect of this
is to connect the H cos(£E) functions in one system with the Jkcos(k ) and

Jksin(ko) functions in the others, ratler than just with the former as was

previously the case. (The same is of (ourse true of the H sin(k4) functions.)

This forces us to write the transformations connecting the ith and jth co-

ordinate systems as

ILvt1 o wd0i Tk(*V1J%i f, 4- J S* W)
kao

HL(isi

where the coefficients a and B of course did not appear previously. There
is an analagous set of equations expressing the basis functions in the ith

- ij-ij
system in terms of those in the jth system, with coefficients 'E 'kE

rjij -iij
pkt' and Lkt - After conversion to real form (times powers of i) the coef-

ficients are

4. Kj)* 'Wk? k 4)

I 4 )SA,%IL
; !!
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where, for easy viewing, we have left off the (ij) superscript on all the
coefficients and the (ij) subscript which is obviously implied for the dis-
tance d between the centers of the two coordinate systems. For y= 0, these
expressions simplify to the point where the transformations are the same as
in the previous section.

The implications of all this are that the ij j terms in Eqn. (41)
are, for each value of i , twice as numerous as before. Thus when the
homogeneous equations are written as constants times the basis functions,
the constants contain an extra sum, involving the coefficients a, , )j, or

' r1. The logic, however, is exactly as before: the coefficients of each of
the basis functions Jk(yPl)cos(kl). ,Jk(y 2 N)sin(k N) must be separ-

ately equal to zero.

It is sufficient to simply write down the final matrix equation. It
appears on page 85 as Eqn. (86). With the truncation at M terms, the matrix
is 2NM by 2NM in size.

Returning briefly to our discussion of the transformation functions, we
pA. should point out that the formulation given in Eqns. (84) and (85), and im-

plied by Fig. 14b, may not necessarily be the simplest for all cases involv-
ing a non-linear array. Consider, for example, a configuration consisting
of three arbitrarily-shaped guides arranged with their "centers" at the
apexes of an equilateral triangle. The transformation functions turn out
to be simpler if we choose the x-axes to be oriented at 1200 with res-
pect to each other, than if the axes are parallel as in Fig. 14b. Similar
considerations may apply to other special cases, but the details will be
different in each case.

3.5 Linear Arrays of More Than Two Guides

3.5.1 General Considerations

The simplest configuration involving more than two guides is that in
which the origins of the N coordinate systems are all in a line. The form-
ulation of the previous section is then excessive, as (E) = ( ) = 0. Never-
theless the equations can be quickly written from the general expression. If
we consider guides which have reflection symmetry about the comaon x-axis,
and only the cosine solutions, they are
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This equation can be solved directly. On the other hand, if there is a
plane of symmetry perpendicular to the common x-axis, simplifications which
are completely analagous to the two-identical-guide case are possible. Sup-
pose, for example, N = 6. If the guides are numbered from left to right,
and if guides 1 and 6, 2 and 5, and 3 and 4 are identical in pairs (shape,
orientation, distance from the center, refractive index) then the solutions
can only be symmetric or antisymmetric about that plane. As with the two-
guide case, one can a priori relate the sets of coefficients in pairs. Al-
ternatively, one can simply relate the matrix elements of the corresponding
guides. Viewed either way, the 6M by 6M set contains redundancies, the
coefficients are connected by relations like Eqns. (68) and (69) and the
set reduces to 3M by 3M:

--------------------------------------
I '---

t 3  f . : i.. . . . . . . . . . . . . ...

LL C- . I 0(- 14--------

m a. 1 
1M5 0C

where, as before, the symmetric (+) and antisymmetric (-) cases must besolved separately. For any even number of guides the procedures, if not

completely obvious, are at least straightforward.

A
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For an odd number of guides with a plane of symmetry bisecting the

middle guide, the equations contain redundancies as before, but not exactly
in pairs. This is because the coefficients of the field expansion in the

middle guide are not related to those in any other guide. Thus, for example,

for N = 5 the 5M by 5M system collapses to 3M by 3M, with vectors of co-

efficients (C(1)), (C (2)), and (C(3 ) ) to be determined. For symmetric solu-

tions, however, one can see that C(3) = 0 for s odd, and for antisymmetric

solutions C(3 ) = 0 for s even. Therefore, the number of unknown coeffi-
s

cients is exactly halved by the symmetry considerations, as when N is even.

From a programming standpoint, it turns out to be easier not to reduce

the dimension of the array to 2 M from 3M (for N=5). The mathematical ef-

fect of this is to retain one or more equations (depending on M and whether

the symmetric or antisymmetric modes are sought) which, written out, are the
same as 0 = 0. It comes about because, in certain rows of the matrix, all

terms are zero except the ones which multiply the zero coefficient. The

result is the inclusion of one spurious root with each set of N proper

roots. This extra root is equal to that which one would obtain for the mid-
die guide in isolation, using the same truncation order.

If one did reduce the dimension to 2 M, it would be by reordering the
matrix into a block-diagonal form and dropping the portion responsible for

the spurious root. Similar considerations apply to any odd-N array with
such a plane of symmetry.

3.5.2 Results for a. Linear Array

We have calculated the modes of an array consisting of identical equally-

spaced guides of various shapes. Insofar as the results are qualitatively
very similar for different shapes, we confine our discussion to those derived

for circular guides, a configuration which has been discussed by Meltz and

Snitzer <23> using coupled-mode theory as a starting point.

As for the two-guide case, it is illuminating to introduce the quali-

tative nature of the results by following the changes in the system of Nguides as it is assembled, so to speak, by bringing the guides together from

infinity. Suppose that each of the identical guides supports a certain mode,
say the dominant one, with propagation constant kwor P. As the distance

between the guides decreases and the composite guide is formed, this propa-

gation constant splits in general into N different propagation constants
characteristic of the N-fold guide as a whole:

2 2 2 2
P P 1 '..""C P P P2'' N,

k."- k (1) k (2) k(N) (89)
g g g g

.
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Each propagation constant is associated with a mode that is symmetric or anti-
symmetric with respect to reflections about the central plane of symmetry.

Figure 28 shows the propagation constants, as a function of V, for an

array of six touching circular guides as well as the six-fold degenerate

modes corresponding to infinite separation. The "splitting" of each un-

perturbed mode into six composite modes is evident, as is the noncutoff

property of just one (the lowest-order) composite mode. For this first

set the symmetric and antisymmetric modes alternate, with the dominant mode
being symmetric. For the second set shown, the symmetries also alternate

but an antisymmetric mode is the "top" mode. Similar results are obtained

for configurations with odd numbers of guides, with the "extra" mode being

symmetric for the lowest-order group.

By steps that are similar to those used to derive Eqn. (81), we ob-

tain the following approximate relationship for the propagation constants
of a set of N modes:

k (r)g- k1 6 ( P  2 PI+ )1 6  1  (- 2 + P2 . (90)

9 g 2i 1i6 r Go~ 2[ r O

Equation (90) will be used to help make a comparison between our

numerical results and the results predicted by Eqn. (7) of Ref. 23. The

latter approach associates a single-guide mode with each element of the

array, with a strength or amplitude that is to be determined. The propa-

gation properties of the array depend on the overlapping of the tails of

these individual fields. When a nearest-neighbor approximation and the re-

sults of coupled-mode theory for two guides are used, the result for a linear

array is

k(r) -k r__'
g g = cos N , (91)e.2Aa +

where 2Aa is the coupled-mode result for the difference between the propa-

gation constants, kg and k(A ) of the symmetric and antisymmetric modes

of a pair of identical guides. That is,

2A8 = k ( S ) - k ( A )  (92)
g g

The amplitude associated with the mth individual guide and the rth mode

(Eqn. (8), Ref. 23) is

[ ) 2/(N + 01sn m i(93)

bma
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(S (A)
From Eqn. (90) we can directly write an expression for k - k(9g g

-'-k(S) R (A) 1 2  2 1 1 2 2
% k. - k - P ) 1+ i- 2(PS + PA ) ")(94)g g 1 (94)2

If we then divide Eqn. (90) by Eqn. (94), we have a result that is directly
comparable with Eqn. (91). Since our calculations are for weakly guiding

systems, we set 6 0 and obtain, for an N-guide array,

-(r) p2 2
k r) ~k 9 r -PO

k(S) k(A) 2 2

g g A
In Fig. 29 we plot the dominant-mode splittings obtained from the right-band

side of Eqn. (95)(solid lines) and the right-hand side of Eqn. (91)(dashed
lines) for N between 1 and 6, for four different cases. Figs. 29(a) and 29(b)
correspond to fairly tightly bound modes (V = 5), whereas Figs. 29 (c) and 29(d)
give results for a smaller normalized frequency (V = 2.5). From the uniformity
of the discrepancies between the solid and dashed lines in Figs. 29(a) and

%29(b), it seems clear that (for tighter-bound modes, at least) the major source
of error is the failure of coupled-mode theory to predict the correct eigen-
values for-two guides (particularly the asymmetric splitting) rather than the
extension of those results to three or more guides. The fact that the uni-
formity is less evident in Figs. 29(c) and 29(d) suggests that the nearest-

neighbor approximation may also contribute to the discrepancies for the more
-.. weakly bound modes. We should point out that, in terms of the actual eigen-

values, the agreement is quite good, especially for the cases with d = 2.25;

% S the fact that we normalize (by dividing by 2A8) in order to obtain a uniform
scale does exaggerate the appearance of the discrepancies in some cases. We

* *(N) (1also note that the values of the maximum splitting, k - k (') agree much

-A 6more uniformly (within 0.6% for all cases considered) than the individual
values of the eigenvalues, k(r), do.

- It is also of interest to compare the prediction of coupled-mode theory
with the present results for the field amplitudes. To be complete, this would
require a point-by-point comparison at various locations in the guide array.
Instead, we have chosen to compare the fields at the center of each guide for
N 4, V 5, and various values of d with the amplitudes given in Eqn. (93).
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Fig. 11.29 Results for modes of composite systems consisting of
N identical circular guides uniformly spaced along a
line. The solid lines, corresponding to the right-
hand side of Eqn. (95). represent our numerical re-
sults; the dashed lines, from the right-hand side of
Eqn. (91), represent the predictions of the coupled-
mode theory <23>. These modes all derive from the
dominant mode of an isolated guide. (a) V-5, d-2;
(b) V-5, d-2.25; (c) V-2.5, d-2; (d) V-2.5, d-2.25.
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-. 75. 47 - -7, -7 -. 7- -. **.-..... . rv- J i

Mode f d Guide #1 Guide #2 Guide #3 Guide #4

2.00 .510 1.000 1.000 .510

1 2.25 .580 1.000 1.000 .580

2.50 .606 1.000 1.000 .606

P )  .618 1.000 1.000 .618
m

2.00 1.000 . 770 -. 770 -1. 000

2'2.25 1.000 .660 -. 660 -1. 000

2.50 1.000 .630 -. 630 -1. 000

-M 1.000 .618 -. 618 -1.000
Tn

2. 00 1. 000 -. 499 -. 499 1. 000

3 2.25 1.000 -. 579 -. 579 1.000

2. 50 1. 000 -. 606 -. 606 1. 000

A(3 )  1. 000 -. 618 -. 618 1. 000
M

2.00 .794 -1.000 1.000 -. 794

4 2.25 .661 -1.000 1.000 -.661

2.50 .630 -1.000 1.000 -. 630

A .618 -1.000 1. 000 -. 618

Table 11.8. Field amplitudes at the centers of each guide (m) in a linear array
of four identical equally spaced circular guides, normalized to a
maximum of 1.00, for each mode (r), various guide separations,
and V= 5. Also given, for comparison, are the amplitudes A(r)

of Eqn. (93). For d- 3 our field amplitudes equal A to three
4.... significant figures for all m and r.
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In each case we have normalized the maximum field to a value of unity. The

results are given in Table 8. One would expect to find the best agreement
4 1P for large d since then the condition of weak coupling is best satisfied.

This expectation is confirmed: for d= 3.0 we find exact agreement to three

decimal places between our results and Eqn. (93). For smaller d, however,
discrepancies begin to appear. Nonetheless, even for d = 2.0, which cor-
responds to touching guides, the difference is not more than about 20%.

Similar results are obtained for N other than N = 4.

3.6 Summary

We have presented an integral-equation formalism that is useful for
obtaining the modes of a completely general array of parallel optical wave-
guides, provided that the weakly guiding condition holds. The method is ap-
plicable to guides of any cross section in any orientation. We have pre-
sented numerical results consisting of complete propagation curves for cer-
tain cases of interest and have calculated beat lengths for pairs of iden-
tical guides, as well as field configurations. Our results have been com-
pared with those of coupled-mode theory, and our calculations indicate that
the latter provides good accuracy in most cases. We have shown that for
pairs of identical guides, there can be serious errors in coupled-mode cal-
culations near cutoff of the antisymmetric mode and for guides that are
touching or close together and have presented curves for K and y that
may be uded to estimate the size of these errors.

4. Multilaycred Step-Index Guides

4.1 Introduction

The last class of dielectric waveguides to which the integral equation

technique has been applied is that of isolated structures containing three

concentric regions with different refractive indices. Reasons for finding

solutions of this sort of problem vary from such simple ones as assessing
the effect of thin cladding on normal fibers to more complex ones like calcu-
lating the properties of fundamentally different types of guides (e.g., the
ring guide). We refer to such entities indiscriminately as "multilayered"
guides.

Among the multitude of problems which fall into this category, we have
restricted ourselves to two: that in which n >n 2  n3 (the "cladded guide")
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-Fig. 11.30 Index of refraction profile for multilayered guides,

from the origin to the outer layer along some radial
path determined by a choice of *. For = 1T/2 the
boundaries are at p - b12  and pm b23. (a) the clad-

ded guide; (b) the ring guide.
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and that in which n 2> n I = n3  (the "ring guide"). For these two cases, il-
lustrated schematically in Figs. 30(a) and 30(b), we are interested in guided
modes confined to regions 1 and 2, respectively. As before, the weakly guid-ing condition is assumed, the outer medium (n3) is infinite in extent, and
the boundaries L and L2 3 may be arbitrarily shaped (except that each
region must be simply connected and entirely enclosed by the one(s) out-

.. side it).

Unlike the work presented in Sections 11-2 and 11-3, no systematic ac-cumulation of results was obtained as part of this contract effort; rather,
we sought only those results which were needed to check programming func-
tions. References 24 and 25 can be consulted for more detail on the for-
mulation and for such results as have been gathered. We hasten to point
out, of course, that. limiting cases (e.g., n2 = n3  or L3--- for the
cladded guide; L1 2- 0 for the ring guide) have been correlated both ana-
lytically and numerically with the single-guide results to which they reduce.

Separate programs were developed to solve for the modes of the cladded
guides and the ring guides. These are called COAX and HICOAX, respectively,
and the techniques they embody are very similar to those described in Sec-
tion 11-2.4 for program TRUNCN. In a later section we discuss the way to
use these programs.

4.2 Outline of the Formulation for Multilayered Guides

The differential equations which must be satisfied by the scalar field
function, 0 , in the three regions (denoted by i ) are, much as before,

V )$(P) = 0 i - 1,2,3 (96)

where y. and the quantities entering into it are defined in exact analogy
with Eqns. (1) and (2). One integral representation which satisfies these
equations is

.4 
(77)Ti (4NA +9 (11a j)Jqa 1 ,') JA'

AL X

where the Green function satisfies

SV + y2 )g 3 ( ,P) 
(98)

3
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For p outside of region 3, Eqn. (97) is equivalent to

zS (? f. ~IV f 3 ')

where the integration is taken over all points p in the inner two regions.
As before, the equivalent line-integral equation, by Green's second identity,
is

I1I'rr .i' - 3(4'

with the integration being taken over the L23 boundary just inside the

second region.

Another integral represgnlation can be written by analogy to Eqn. (97)
using the Green function gI(PC) which satisfies Eqn. (98) if Y3 is re-

placed by y1 " Ultimately, for points p not in region 1, this becones

C J IL~ i 12 ~D -It)3f 4. 11

The original area integrals having been over A2 and A in this case, the
line integral is taken over L1 2 just inside region 2. (The portion of the

4 line integral at infinity contributes nothing.) Thus in Eqns. (100) and
(101) we have a pair of equations both of which require a representation of
the solution, *, appropriate for the middle region. One of them is valid
for points p in regions 1 and 2, the other for points 2 and 3. This sug-
gests that in Eqn. (100) we should use a representation of the Green func-tion (the exact analog of Eqn. (8), replacing y2 with y3) which converges
for p<p', and apply it to points near the origin, while Eqn. (101) is use-
ful far from the origin and requires a representation (Eqn. (9) replacing
2with y1) converging for p>p'.

One principal difference between the present application of the in-
tegral-equation technique and that for simple guides and arrays is the ex-
pansion of the field function. In those problems the expansion was ap-
propriate for regions containing the origin, and those terms in the general

"."-
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solution of Helmholtz' Equation which blow up at the origin were required,
explicitly, to have zero coefficients. Here we must take the full expansion:

S Le S.

Then, in general, there are four sets of coefficients to be determined, un-
like the simple guide problem where there are only two.

The manipulation of this field function, the Green function repre-sentations, and their derivatives after their insertion into Eqns. (100)and (101) is completely analagous to that encountered in Section 11-2.2.

This time we end up with

4-4

' J _ C 4 S

ODo

where Sif , $2 V S 3, and S4 9 are not the same as before but are just as
complicated. For each value of k, each of these coefficients must be zero,
as tjie sets of H basis functions are of equal stature with the J ones.

Thus we obtain a four-fold infinity of linear equations in the coefficients
AS, .. D S . Insofar as the analysis leading to the definitions of the coef-
ficients Sit,. . .5 4 ---and also their reduction and simplification---closely

mimics that of the previous sections, we resist the great temptation to set
it all down in detail. Rather, we will only define our parameters for the
two special cases we have considered, write the final determinantal equa-
tions for each, and wind up this section with a few general comments.
Moreover, given that most interesting cases involve guides with reflec-
tion symmetry (both L and L23 ) we will treat the sine and cosine series

I.< individually, writing separate equations for the A and CS, or B and
S S

D.

... 98'.
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4.3 Equations for the Cladded Guides

4.3.1 Parameterization

For the cladded guides with nl> n2  n3  the guided modes are contained

in region 1 for the most part, so the field expansions we obtain (in region 2)

are not as interesting as those for other examples. We proceed by direct ana-

logy with Section 11-2.4, defining the normalized frequency in terms of the

"characteristic distance" b 2 of the 1-2 boundary:

& -Ik IL

Then the quantities y2p' and y1p ' which appear in S and S 4(take our

word for it) are

To deal with the third region with its differing index of refraction, an
additional parameter must be introduced. We write

2n3
6 1 --- (107)

13 2
n1

which is analagous to the expression, Eqn. (104), for 612(n 3 replaces n.,.

The quantity y3p' is then

FI (log)

99

oiI
.,-,".
4........, ",''., ', ,, ' .t % ".-,. '. ,. .- % . . .. ' . -- ,. . . .•. ,-.•.-, , .-.-. . ,,,. . . . ,,..

',04r ,., Zt T% .-, ,,L% , ,.,. :. .- . ', ", ,. , . - . ' ' ,' - .". .- . .- - ,-,,'_." .. .



The abbreviation w is useful but should not be allowed to obscure the

presence of P 2 (W2 > P2). In the special case 612613 (n2 = n3). y2 and

y 3 are obviously the same. This corresponds to the two-medium guide

treated in Section 11-2.

4.3.2 Cosine Solutions

Under the assumptions stated earlier, the coefficients relevant for
cosine solutions are

Szo

Sc

where

_9.=, to&, 4 q At C01 .9-~ I It
f -

44

aa

II&
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4. Of course, the Pis matrix elements are not to be confused with the propa-

gation constant, P

We define

A = iSA (113a)
s S

This is done in order to incorporate the factors of i (which, s being the
column index, cannot be cancelled across rows of the matrix) which appear in
Eqns. (111) and (112) into the coefficients. The final matrix equation is

(; Q~ ) (114)

where (M), (N), (P), and (Q) now stand for real factors appearing in Eqns. (110).
The submatrices in the upper two quadrants consist of line integrals about the
2-3 boundary; those in the lower half depend only on the 1-2 boundary. The
solution of the corresponding determinantal equation yields the propagation
constant and, ultimately, the coefficient vectors (A) and (C). These vectors
are entirely real, since the matrix is real. The field expansion, of course,
contains terms like (As J s(Y2 P) + Cs H s(y2 p))cos(s ). Since y2 p is pure

imaginary, it is convenient to change the Bessel and Hankel functions to
Hodified Bessel functions of the first and second kind, respectively (as
in Eqns. (29) and (62)). In the end the useful form of the field expansion
works out to be

4.3.3 Sine Solutions

If the sine solutions are sought, the coefficients are

.. r -BS 4 b ° 1 --- IGO-)
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V The matrix elements are defined differently from Eqns. (110), with

f f -

F ,.,* (1 17a)
N is cussion l ns.j)sL l elS (117b)

; - anis coefficient vectors r epl c n (A) and C) a, E (117c)

v. 44 eia Conidset - 1W 411 (1 17d)

but Fits.Is are the same as in Eqns. (111) and (112). From this point
the discussion leading to Eqns. (114) and (115) has an exact parallel, with

sin(sO) replacing cos(so).

case n 2 = n 3, the M) and (N) submatrices are constant and zero, respectively.
~(This is easiest to show for a circular 2-3 boundary; clearly in this limit

the shape of L 23 is irrelevant.) Because of these facts submatrix (P) in
.- :* 'Eqn. (114) does not have any influence and the coefficient vector (A) is zero.i~i::Thus the (Q) submatrix has sole responsibility for determining the modal prop-
i'.- atties. One can show that its determinant is the same as that of the (R) sub-
. _.,matrix in Eqn. (22), which is the only relevant entity when cosine solutions
_ of the simple two-medium waveguide are sought (e.g., Eqn. (32a)) . We thus

obtain the same propagation constants as we did for the single-guide problem
,.:.discussed in Section 11-2. The only difference is that we then obtained the

interior field expansion when we solved for the coefficients; now, as a re-
sult of the (A) vector being zero, we obtain the exterior expansion. (Note
that the (A) coefficients in this case correspond to the (C) coefficients in
the earlier derivation.) In fact, the cladded guide formulati *on, taken in

-...-. this limit, complements that for the single guide by providing this exterior4.3.4,expansion.

case 2T he limit b2-- a ( results, again, in a constant (M) and zero (N),
wn (nth the same consequences: the single-guide eigenvalues are returned

.~. ",. 'discussed in Section-.1-2. The only difference-is.that we then.obtained.the
'-.-.., interior.'. ." field.. expansion ". whe we-solved'fo the.*coefficients;. now, as...'. .'.'.' .' a re-.%
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4.4 Equations for the Ring Guide

4.4.1 Parameterization

For the ring guide, where n2> n1 = n3, the guided modes are found

within region 2. Thus the quantity Y2 p' which appears in the argument 
of

the Bessel and Hankel functions of the field expansion, Eqn. 
(102), is real

rather than imaginary. It is useful to express the Hankel function in terms

of its definition as a linear combination of Bessel functions 
of the first

and second kind, the latter also being known as the Neumann 
function and

denoted by Y . The reason for this is the Hlankel functions of real argu-

ments are complex while Neumann functions are real. Eqn. (102) can thus

be re-expressed (considering only cosine expansions) as

where the coefficients serve the same purposes as before but are algebra-

ically different.

Using this as a starting point, everything that was said about 
the

cladded guide applies exactly to the ring guide, up to the point 
where the

normalized parameters are introduced. Here we regard the 2-3 boundary as

the significant one, as it is the outer edge of the guiding region. 
Con-

sequently we write

kL2 (IZa. 22-I % 1

and we end up with

The additional parameter needed to account for nI is 621, from which

b.4

41.0

~104
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but since our example only involves n= n3  this is equivalent to y3p

and y1p is in fact given by Eqn. (121b).

4.4.2 Cosine Solutions

There are no differences whatsoever between the equations for the
cladded guide and the ring guide except those due to the definitions of

2
B and P , and those resulting from the use of the Neumann function. The
latter removes factors of is which appeared in the previous example. We

definet41 
P

,-..
".%' *C- r

,.'y

kBP 10)

S . 123C

-r t 6
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Then the matrix elements appearing in the final equation for the cosine
solution are those given in Eqns. (110) using these definitions for
Ft ,...,GRs. There is no need to redefine the coefficients of Eqn. (118)
ang the result is

(; :) ( 0= (125)

4.4.3 Sine Solutions

To obtain a final equation for the sine modes (replace As, Cs , and

cos(s) with Bs, D., and sin(s ) in Eqn. (118)) we simply use Eqns. (123)

and (124) in Eqns. (117). The result is

( 0 (126)
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4.4.4 Special Cases

The limiting cases for the ring guide do not teach us anything beyond

what those of the cladded guide did. Taking L 1 2-+O yields the single-

guide results much as the limit L2 3----+ did for the cladded guide. The

only difference is that the lower submatrices become zero (P) and constant
(Q) rather than the upper ones, as a consequence of the L12 boundary being

pushed to an extreme. Letting nI------n 2 (using Eqn. (122) rather than (121b)

for yIp') also yields the isolated-guide equations. In both cases the coef-

ficiencs multiplying the Neumann functions in the field expansion vanish.

5. A Variational Approach to Composite Systems

5.1 Introduction

The problem of two or more coupled waveguides, which can usually be
solved completely by use of the integral-equation technique, also yields
to certain simpler, but approximate approaches. One of these is a varia-
tional calculation very much like that used to solve the helium-atom and
hydrogen-molecule-ion problem in the '20s. The idea is that if the wave-
functions (modes) of the pieces of the composite system, viewed as separate
entities, are known, then the corresponding function for the composite system
can be constructed as a linear combination of these. The coefficients of
the linear combination can be determined by minimizing the energy (propa-
gation constant) with respect to the coefficients. The analogy with quan-
tum mechanics works because the time-independent Schroedinger Equation for
a particle in a potential field has the same form as the two-dimensional
Helmholtz Equation which must be solved for the waveguide problem.

In this section we discuss two simple calculations which use the vari-
ational technique. The first is the problem of a concentric core-ring guide
with circular symmetry (Fig. (31)) and the second is that of two identical
adjacent circular guides. Both of these configurations can be solved by
other methods which give results which are exact in principle (e.g., boundary-
matching for the core-ring configuration) or at least very accurate <3,22>.
The variational technique, however, provides insight which is often lacking
in more computationally-intensive approaches. It is also very accurate for

many situations. And it can be extended to more complicated systems (e.g.,
multiple-ring guides). It has proved very convenient for the study of
tightly-bound modes in core-ring guides <4> and we have used it to arrive
at quantitative estimates for evanescent field crosstalk for this config-
uration <4>.
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Fig. 11.31 A simple multilayered guide with a core (c) of radius a
and a ring (r) with radii c and d. The indices of re-
fraction are also given in each region.
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5.2 Basic Equations

To illustrate this approach, we suppose that the composite system is
comprised of two distinct sections, A and B, whose normalized field functions,

4 and B' are known. For the moment we do not specify the geometrical ar-

rangement, but we suppose for simplicity, that the index of refraction nI in-

side each core is the same, and that that of the cladding, n2 is the same

everywhere. In general, also, A and *B may be sums of field functions of

all modes of A and B.

The wave amplitude is written as

'(p,z) = t(P)e g (127)

where k is the propagation constant of the composite mode, to be found.
g

The equations which the composite field must satisfy are

(V+k I _kg) O'(P) =(V + Y1)O(p) = 0 inside A, B (128a)

(V -k ) D(p) (V + Y2 )O(p) - 0 in cladding

where kI = konI , k 2
= kon2  and k = 2r/X , is the vacuum waveler-th,

and k is the propagation constant of the composite mode. Defining, as is
g

conventional, the normalized frequency V and the normalized propagation

constant P2 by

V =kd(n 2  n2)  kod (129)
0 1 2o 1

2 2
p2 -k (130)

2 2
I -1k 2

.4'
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these equations become after some manipulation

-V2 - 0(p) -(V/d) 2 2  inside A, B (131a)

-V2 ( --(V/d) 2 (p) in cladding (131b)

Here d is some characteristic dimension of the guide. From this, the analogy

of the waveguide problem to that of a particle of energy -(Vid) P in a po-
2 2tential well of depth -(V/d) is clear. P and 0 are, of course, to be

determined.

We begin with known functions A and *B defined over all space, which
OA B 2

satisfy equations exactly like Eqn. (131) with their own eigenvalues, P22 A'
and PB For example, A satisfies an equation like Eqn. (131a) in the core
region A and one like Eqn. (131b) everywhere else. These we refer to as

the "unperturbed" fields since, for example, *A would completely describe

the modes of the system if region B were cladding rather than core--which
is to say, if the second core region were absent. The equivalent potentials,
U A(p) and U B(O) are equal to -(V/d) 2  in each core region, respectively, and

zero elsewhere.

The composite field is taken to be

D (P = CA*A(O0 + CB ) + r B('p)] (132)
A ABYB(P) -C[YA'p

where the constants are to be determined.

Consider the "energy" of the system under consideration:

E______ fiq4. . U4(f T 3 rId
5~ E I'4 (133)

This expression is exact if an exact wavefunction is used for 0(p),
and is a variational or stationary one if an approximate wave function is
used. In the latter case, Pauling and Wilson <28> show, for the quantum-
mechanical particle, that E is an upper bound on the true energy of the

110
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P€. composite system provided that 0 is a linear combination of the field func-
tions which satisfy Schroedinger's Equation for the potentials UA and UB.

The best estimate to the true energy is then obtained by minimizing E with
respect to the coefficients in the linear expansion.

For the waveguide problem, the coordinates T over which the inte-
gration is performed are simplY the cross-sectional area; and the composite-
mode propagation constants, P , are those values of -(d/V) 2E correspond-
ing to the minimization condition

(134)0 -

Briefly, to make use of this, one plugs Eqn. (132) into Eqn. (133) and e-
valuates most of the resulting terms by making use of the fact that OA and

.B are normalized eigenfunctions of (-V + U ) and (-V + U ) respec-

tively. This leaves certain integrals which must be evaluated for the par-
ticular geometry at hand, but which are independent of CA and C Eqn.

(133) then reads

= .Cic. H. (135)

* where the sums extend over the two terms, A and B, and Aij and Hij are

the "matrix elements" of 1 and H(p) between 0i and *j, obtained by in-
s tegrating over the infinite cross section. Of course, A AA = 1B =  be-

. cause the unperturbed wavefunctions are assumed to be normalized. (H(p) is
given in Eqn. (133)). Then, applying the minimization conditions, Eqn. (134),
to Eqn. (135), one arrives at a 2x2 set of homogeneous linear equations in
the coefficients which is, in matrix form,

HAA - E 2 ,) t 5  C

o (136)

5% 111
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The matrix elements are given by

d') HM ,-A " B, o- A, (137a)

2 - A - P2 = 2B~ pdpdO - P2 (3a

Id\2 f 2 d )-P2 (3b
V HBB = JB- PB (A)B  pdpd - PB

H.2  = KA A2= f &ACdda  -AN (137c)

d A = - 2 = fB ABpdpdO - 2 (137d)
.AA

where A=AAB =f ABPdPdE = ABA . (133)

With H= 2 (HAB + HBA) , (139)

the composite-system propagation constants can be calculated from

2 () 2  HBB 2 A ± [(HA-%B)2 + 4(9-HA)(J'HB)](
,2 = E = 2(140)

2 (1-A)

As one would expect, there are two separate modes. Corresponding to each of
these is a pair of coefficients, C and C , which can be determined from

A B9
Eqn. (136) and the normalization condition on 0. We choose to use the second
form in Eqn. (132), and arrive at

HAA - E
r = (141a)

H - EA

C = (1 + 2Ar + r2) (141b)

In this manner, C becomes a normalization coefficient and r reflects the
ratio of the importance of *B and *A in the composite field. This is con-

venient for examining the behavior of the composite modes as certain param-
eters are adjusted. Note that different values of C and r are derived for
each of the two composite modes.
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The foregoing is a straightforward application of simple ideas, and
it applies to any geometric configuration in which two distinct regions
guide energy. The extension to three or more such regions is a little more
complicated, algebraically, but is quite easy conceptually. The difficulties
obviously arise when evaluation of the integrals is done for specific con-
figurations, and this is as true for two regions as for three or four.

5.3 Equations for the Core-Ring Guide

In this section we record the expressions which are needed to evalu-
ate the solutions for the core-ring guide, which is depicted in Fig. (31).
Insofar as regions A and B become the core and ring, respectively, we
will denote various quantities by subscripts c and r rather than A and
B. Among these are two shorthand expressions which make the equations
slightly less cumbersome,

2 =  V( - P 2 = C,r (142a)

'4

B= VP i  i = c,r (142b)

2 2where P and P are the unperturbed-mode propagation constants.c r

Because of the weakly-guiding condition which we h'. assumed from the
4 start, the field functions *c of the isolated circulat tote can be %ritten,

using either cosine or sine functions, as <29>

|r

.t+, ( f 10 :C -S CL

(143)

where 0 is now the angular coordinate and d is the "characteristic distance"

appearing in V (Eqn. (1.29)). The factor w1 is

wI = i(a c a/d)/K (Bc a/d) (144)
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The normalizing coefficient is found by integrating *c over all space,
and is given by

To derive this, it is necessary to make use of the eigenvalue equation which
results from matching the field and its derivative across the boundary p= a:

A&

In Eqn. (145), 6 is the Kronecker delta and P is the normalized propaga-
ofisthescoreemodevunder

tion constant of the core mode under consideration. A is positive by virtue
of the fact that the two Bessel functions always have opposite signs.

For the ring guide,

i TIA JAJ+ W , 4)1Io3 Q Cr

. (.1, r

I'

A,.

The constants w2, w3, and w4 can be found in closed form in terms of the
2,

geometrical parameters and the ring-mode propagation constant, P r by

boundary-matching at p- c and p- d. This is an algebraic mess and since
it is always easier to compute these quantities numerically when they are

1.%* 
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needed we have not gone through the manipulation required to obtain analy-

tical expressions. The normalization constant is given by

-I

AZ('+Sao) / 4 ,. 43 NO

where

I4c ~X~~cd ~ (PrC/)It,i Ar/)1 (0410.

*V. Ia* ,j(f

A-"

1442 -- wegg_ 3"(4) +6f) QI(2Tiit

12(5

-N-(.IrCI1) Y%*% ((CjIf -TAJM (it C/j)Y 4 (jeL 1) *V& t tre)IAZ1

Using these results, the evaluation of the integrals appearing in
Eqns. (137) is a straightforward, albeit tedious, exercise. The results
are

4 E 1 ~.v'~LK(4 -

2Te: A.I A" I_ OL)

",1
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4L (Isoc)

++

Also. A can be evaluated in closed form, as

where

* ,-0+40 'Ax W 3 R U

+ %. + A tw .LPJ- rt .Ir)f) -S of Yq(rI S 6

+ 4,£44r)'t(F~j S,'L+ ja a, YOA4 i(s.) +kJ1
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Using these results, Eqns. (140) and (141) can be evaluated. The modal
properties of the composite system derive directly from these 'uantities.
Section 11-5.4 is devoted to a discussion of these results for the core-
ring guide and their implications for the estimation of evanescent-field
crosstalk.

Program VAR was used to obtain these results. The means of using

this program is given in Section 11-6.

5.4 Results for the Core-Ring Guide

5.4.1 Illustrative Results

We have obtained results for various geometrical configurations of the
core-ring guide which consist mainly of plots of p2 against V, and field-
intensity distributions. Much can also be learned from the dependence of the
parameter r on the physical parameters, so our discussion will focus on this
quantity.

To check the validity of the variational results, we have compared them
with those obtained from the boundary-matching solution. The most interest-
ing modes of the multilayered guide are those constructed from a corg-mode
and a ring-mode having nearly the same propagation constant. Since arbitrary
choices of all the waveguide parameters will lead to coincidences of thissort only by chance, we have studied the modal spectra as a function of the
parameter V. As V is varied, there comes a point where P2 and P , the

core- and ring-mode propagation constants, are the same. Initially, we con-
fine our attention to results from such regions.

With this in mind, consider Fig. (32) which shows (dashed lines) the
propagation constants for a pair of azimuthally-symmetric (R=0) composite
modes of the guide of Fig. (31) for which a/d and c/d equal .2 and .8,
respectively. The solid lines are the separate core- and ring-mode eigen-
values, and boundary-matching results for the guide as a whole are indicated
by dotted lines. We see from that figure that the agreement of the approxi-
mate eigenvalues and the correct ones is excellent over most of the range
considered. We have also found that at higher normalized frequencies where
higher order modes are encountered, the agreement improves still further.
Moreover, the eigenvalues of the composite system hardly differ from those
of the unperturbed system (separate ring and core guides) except in the re-
gion near cutoff (where V is smallest). The expanded scale of the insert
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Eigenvalues of first mode Eigenvalues of second mode

V BM VP CMT BM VP CMT

* 9.5 .7738 .7733 .7741 .7015 .7009 .7019

9.0 .7595 .7590 .7604 .6750 .6742 .6760

8.5 .7445 .7439 .7461 .6441 .6431 .6461
8.0 .7286 .7279 .7314 .6076 .6063 .6113

7.5 .7118 .7110 .7163 .5647 .5629 .5711

7.0 .6938 .6929 .7008 .5138 .5110 .5246

6.5 .6744 .6733 .6849 .4530 .4484 .4708

6.0 .6532 .6517 .6685 .3799 .3719 .4090

5.5 .6297 .6274 .6509 .2921 .2764 .3384

5.0 .6030 .5995 .6312 .1874 .1540 .2590

4.75 .5880 .5836 .6200 .1289 .0777 .2161

4.5 .5717 .5663 .6074 .0687 - .1715

2Table II. 9. Eigenvalues, P of the first two azimuthally symmetric modes
of the guide with a/d=.4, c/d-.6 as a function of V. Results
were obtained using boundary-matching (BM), the variational
calculation (VP) and coupled-mode theory (CMT).
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shows that when the core and ring eigenvalues are the same, the composite
modes are quite close to each other as well. In that region, the varia-
tional results are indistinguishable from the correct ones, even on the
expanded scale. These general characteristics also hold true for other
waveguide parameters, in particular for those for which the difference
(c-a) is smaller and the overlap of the ring and core modes is therefore
greater. It is only in the regions near cutoff, where the approximation
represented by Eqn. (132) is most tenuous, that the variational results
deviate from the exact ones. Even here, the eigenvalues and field ampli-
tudes are incorrect by only a few percent. These points are illustrated
in Table 9, which compares the values of P2 for two composite modes as

* calculated by the boundary-matching method and the variational method.
Anticipating the results of Section 11-5.4.2, we also include in this
table the eigenvalues obtained from coupled-mode theory.

The amplitude functions of the composite modes are of as much in-
terest as the propagation constants. These wave functions are charac-
terized by the values of r which determine the linear combinations in
Eqn. (132). We can write an expression for r , which is

-~- y(I _,2) r[1+ y2 (.I~r )--(153a)

-Y + (+y2)3 (153b)

where y is defined by

c r (154)
"X + X

C r

Recalling that the subscripts A and B have become c and r respectively,
Eqn. (153a) can be derived from Eqn. (141a) by using Eqns. (137) and (140)
and neglecting terms in (Jc-Jr) and A(Jc+Jr) compared to (Kc+Kr). Jc

and 3r always have the same sign, as do Kc and K , and these approxima-

tions are good even in the single-mode region. Eqn. (153b) results when,
in addition, A is neglected in comparison to unity.

L61*
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Eqns, (153) are important because they illustrate the fact that the
two possible values of r are functions of a parameter, y, which changes

dramatically in the regions where P _P2 When iy=0, r=±i. When I-YI >> 1,
the values of Irl are much larger and much smaller than unity, so the com-
posite modes very nearly resemble the ring and core modes, respectively.

* In short, the regions which we have been discussing, which have substantial
field amplitudes in both the core and the ring by virtue of Irl being on

the orthe of unit~y, exedonly tothose values of Vfor wh cr c

or, equivalently, those for which lrVZ 1.

As an illustration of what has just been said, Table 10 lists values
of 1', as a function of V, for the first two Z=O modes of the guide with
ald=.2. c/d=.8. The exact values, computed from Eqn. (141a), differ only

"V. beyond the third significant figure from those which result from Eqn. (153a)
for these cases. Even Eqn. (153b) is quite a good approximation over most
of this range.

One can see from the results in Table 10 that the field amplitudes
of the two composite modes parametrized by the two values of r are sen-
sitive functions of V. For larger normalized frequencies, however, we en-
counter behavior which is much more sensitive still. In Fig. (33), we plot
the field amplitudes of some composite modes which are constructed from
k=O modes other than the fundamental modes of the core- and ring-guide.
The guide with a/d=.3. c/d-.7 has a region where JyJZ 1 when V-37.8.

9. *.In Fig. (33a), the separate core- and ring-mode amplitudes are drawn as a
function of p. In Figs. (33b)-(33d), the two composite modes are given for
V=37.8091, 37.8022, and 37.8009, respectively. One can see that in Fig. (33b),
the two composite modes are predominantly core and ring modes. In fact, one
mode has r--.11, while the other has r-9.3. In Fig. (33c) there is a more
substantial contribution from the ring and core respectively. In Fig. (33d),
V was chosen so that the field functions are nearly C±$ (disregarding the
normalization constant). It is clear that the modes in Figs. (33b) and (33d)
are completely different from each other despite the minute change of only

.. . ...0082 in V, a fractional difference of about .02%. it is also clear that it
is not possible to specify V to such accuracy for any practical fiber, given
the-inevitable uncertainties in the core or ring radii, to say nothing of the
uniform circularity of the cross-sections. This point must be considered
in any discussion of realizable multimode multilayered guides.

..

5.4.2 Power Transfer by Composite Mode Pairs; Comparison with Coupled-Mode
Theory

In the previous section we demonstrated that the variational calcula-
tion is accurate enough, in the interesting region where r the core-mode and
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V p-p 2  IYI r r

Eqn. (140) Eqn. (I53b)

11.0 -.0215 3.1 - .171 - .158

6.859 6.325

S 12.0 -.0061 1.8 - .263 - .257

3.975 3.8BB

12.2 -.0034 1.2 - .370 - .365
i 2.772 2.738

12.3 -.0022 .80 - .485 - .481

2.094 2.078

-. 12.4 -.0009 .36 - .703 - .700

1.432 1.428

12.478 .000045 .02 - 1.019 - 1.019

.981 .981

12.5 .0003 .13 - 1.136 - 1.137

.878 .879

12.6 .0015 .69 - 1.896 - 1.906

.522 .525

12.7 .0026 1.3 - 2.944 - 2.972

.333 .337

12.8 -0037 2.0 - 4.180 - 4.236

.233 .236

12.9 .0048 2.8 - 5.654 - 5.751

.171 .174

13.0 .0059 3.7 - 7.3o05 - 7.459
.. 131 

.134

14.0 .0151 19.6 -37.25 -39.25

.024 .025

*t Table 11.10. Exact (Eqn. (140)) and approximate (Eqn. (153b)) values of r for
the modes depicted in Fig. 32, for a range of values of V. The
isolated-guide propagation constant differences and parameter hyi
(Eqn. (154)) are also given.
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Fig. 11.33 Field amplitudes for normalized composite modes with
_=O when a/d-.3, c/d=.7, as a function of radial
distance. Hashed areas depict the radial extent of
the core and ring.
a. Separate core (0) and ring (0 ) modes when V=37.8009

c r
b. Composite modes from variational calculation with V-37.8091
c. Same as b, for V-37.8022
d. Same as b, for V=37.8009. Modes are nearly propor-
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r'Q.

ring-mode propagation constants cross, to construct the composite modes of

the multilayered guide. To obtain the overall power distribution (and the
power redistribution) one must invoke some initial condition on the field
at z=O and compute the interference of these modes as they propagate along
the guide.

Before discussing power transfer for arbitrary core excitations, we
introduce a simple model which embodies many of the features which appear
in the more general calculation, and also facilitates the comparison with
results from coupled-mode theory. It makes possible the calculation of
power transfer when the guide is illuminated with an amplitude at z=O
which has the general features of interest: a substantial amplitude on
the core and little on the ring. The limitation of the model lies in the
very specificity of the excitation, which is taken to be some modal ampli-
tude of the isolated core-guide.

Suppose then that a linear combination of the two composite modes
propagates along the guide:

tot p,) - ¢ ik D2  2(p)e (155)
(P )-3 1 1(p)e + g 2(~ g

The coefficients can be chosen so that at z=O the comtination reduces to
O(p):

jt(P 0 ) - () (156)

It is easy to verify that the appropriate linear combination is:

tot 4(ik 1 ) ikA (2) .
~' (s.z) - 2  r Tr(~ IO.)e 9 2 - o r' 0,~)e g (157)
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i The absolute magnitude squared yields the intensity, or power distribution,
as a function of z (and One finds that

tll " ." 2 a0n c € ~ 2 + (]" T)c (158)

(1.

Ther asthe manitde osqared6 yed thinnsyopwrdistbuin

'a. r (158)
C.(F:-rr )

• -jr122/(I'2 2 ] (159b)

eand the beat wavelength is

2w- ko) - (16o)

Eqn. (159b) results from Eqn. (159a) by the use of Eqn. (153a).

In the special case in which the isolated-guide propagation constants
are the same (resulting in r +1 , = -1 or vice versa) the distribution

is:

• -j . 2 cos2 .2 Sin2  TZ (161)

which clearly expresses the oscillation of power within the guide.

Eqns. (158) and (161) give the power distribution in the cross-section
as a function of z. For this rather idealized situation, one can therefore
calculate the power transfer between regions, or crosstalk, resulting from
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the overlap of the evanescent fields of'the isolated-guide modes. This
term requires some definition. By core-to-ring crosstalk, we mean the
amount of power contained in the ring when unit power is initially "put
into" or "associated with" the core. (The complementary definition is
appropriate for ring-to-core crosstalk, but we are not concerned with
this at present.) The crosstalk is therefore determined by integrating
the power distribution over the area of the ring.

Defined this way, the crosstalk is obviously a function of z. It
is more useful to talk about the average crosstalk, obtained by averaging
over z for an integral number of beatlengths <30>, or an upper limit on

the crosstalk, obtained by letting z X B . In either case it is necessary

only to integrate Eqn. (158) over the ring, use the previously-established
values of Kr and J, and evaluate the terms which result. In the case

r 2
described by Eqn. (161), the upper limit on the crosstalk is 4r integrated

over the ring, which is nearly unity. In the general case we can easily
compute the crosstalk without approximations. However, in most circum-
stances the 42 term dominates, so a crude estimate for the upper limit

r
can be obtained by simply calculating Ir1r2a[. Because Ay is almost

always much less than unity, rI r2 --1 (as can be shown from Eqn. (153a))

and the upper limit on the power transfer is, very roughly,

X (162)
X l+y=

Thus, we confirm that the crosstalk is greatest in those regions discussed
in Section 11-5.4.1 where IyI Z 1, and much smaller otherwise.

At this point it is appropriate to make a comparison between the
variational calculation and the results of coupled-mode theory (CMT). In
fact, the former reduces to the latter when the integrals Jr' J c and h

defined in Eqn. (137) are set equal to zero, as a consequence of the fact
that (K r+K c) is equivalent to the coupling constant of CMT <30>. In

Table 9, the eigenvalues of the first two azimuthally symmetric modes of a
system with a/d-.4 and c/d=.6, obtained by these two methods, are compared

with those obtained by the boundary-matching technique. One can see that,
for lower values of V for which both approximate methods are in error, the
variational results are closer to the correct ones. For larger values of
V, both methods are excellent approximationis, becoming better as V in-
creases. If one changes the geometrical configuration by increasing the gap
between core and ring, and hence decreasing the overlap, the CMT eigen-
values improve somewhat.
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zV 4.3

aid .3 c/d .7 a/d =.4 c/d =.6

VP BM Off VP BM (T

4.5 - 1.99 2.29
4.75 1.98 2.18 2.48

5 2.56 3.03 3.43 2.24 2.41 2.69
6 4.85 5.02 5.31 3.57 3.66 3.85
7 8.73 8.80 9.00 4.45 5.56 5.68
8 15.95 15.98 16.12 8.22 8.26 8.33
9 27.84 27.83 27.95 11.80 11.83 11.85

10 35.74 35.72 35.77 15.89 15.91 15.90
12 30.331 30.333 30.331 23.10 23.12 23.08
14 27.169 27.168 27.169 27.64 27.66 27.63

4.

Table II.11. Normalized beat length, C, obtained from boundary-matching
(BM), the variational calculation (VP) and coupled-mode
theory (CMT), for azimuthally-symmetric modes of guides
with a/d-.3. c/df.7 and a/d=.4, c/d=.6.
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V.4

In Table 11, we present a comparison of the normalized beatlengths,
m obtained by the different methods. is defined by

8n (163)

where 6 can be found from Eqn. (129). 'B is obtained in terms of the
2 2composite-mode normalized propagation constants, P1 and P2, by using

Eqn. (130) for the two values of k2  expanding the square root and ne-
glecting terms in 6 (which is small because of the weakly-guiding as-
sumption). One thus obtains

1 (164)

Use of this normalized parameter obviates the need to specify n1 , n 2, and

A individually.

For all of the configurations we have studied, the variational calcu-
lation provides an approximation to the boundary-matching results which is
better than, or at least as good as, the results from CMT. This holds true
whether one measures the agreement by the eigenvalues, the field amplitudes,
or the power contained in the different regions. Of course, both methods
are quite accurate most of the time. The configuration used in Table 9 was
chosen to emphasize the discrepancies between all three methods. For most
modes not in the cutoff region, both approximate methods will give results
for the eigenvalues which are correct to four significant figures or better,
and field amplitudes which are within .5% of the actual values.

5.4.3 Power Transfer with Several Modes

In the previous section we discussed core-to-ring crosstalk in the
limited context of just two interfering modes and the rather specific ex-
citation given by Eqn. (156). In this section we relax these conditions.
The principal result will turn out to be that for many situations the
crosstalk is predominantly due to the interference between the two com-
posite guided modes which are nearest cutoff. This fact greatly simpli-
fies the task of estimating core-to-ring crosstalk due to evanescent-
field coupling.

,4" -.4 128
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We will write the initial excitation as a sum of all the guided modes,
evaluated at z-0. Without the radiation modes, these do not comprise a
complete set, so the assumed initial excitation is only approximately re-
produced. (With eight or more guided modes, however, quite reasonable rep-
resentations of some trial excitations were obtained.) Also, by assuming
an ideal guide, we neglect the effects of mode-conversion as vell as all
other contributions to the crosstalk resulting from processes (e.g.,
scattering) other than evanescent-field coupling.

We proceed by analogy to the previous section, Eqns. (155) - (158).
The total field is written as a sum over all, rather than just two, guided
modes.

-tot ik W 2

I (Dz) - 0 q (p)e g (165)

q

The right-hand side of Eqn. (156) is replaced by an arbitrary initial con-

dition, *o( ). The q th amplitude is, because of the orthonormality of

the guided modes,

'p.!

D J# ] )*o()p)dpd8 (166)
q 0 ( p

with 0 being a composite mode of the form given by Eqn. (132). The power
q

distribution is obtained by taking the square magnitude of Eqn. (165).

As before, the power transferred between core and ring results from
interference between pairs of composite modes. This can be visualized by
simply isolating pairs of terms in the series of Eqn. (165). One obtains,

2 2in the power distribution, terms like D 24 as well as cross-terms contain-qq
Ing cos( 2wz/XB), where AB is the beatlength for different modes, q and q.

With the inclusion of many such pairs, the z-dependence of the power distri-
bution, and hence the crosstalk, becomes very complicated. If, however, we
are satisfied with an upper limit on the evanescent-field crosstalk, we may
calculate the "worst case" by replacing cos(27rz/ X) with unity everywhere.

Then for all values of z, the power in the ring must be less than the re-
sulting integral, X:

~ID~~Pdde4 ~ qq OO~Pa~BI1(167)
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A useful and interesting example is an initial excitation consisting
of a uniform circular spot of radius a' centered on the axis;

S1 ,p 
(168)00

0 p>as

* This choice eliminates from Eqn. (165) all modes with k;0. We assume a'5 a,
so the coefficients Dq can be evaluated analytically from Eqn. (166):

•~~e + A.( ) w,
,%r . an W J T.rn

where A and A are given by Eqns. (146) and (148) for £=0, a and0 0 c r
are given by Eqns. (142) and Cq and r are related as in Eqn. (141b).

Then X can be computed from Eqn. (167). We present the results as X in
units of decibels:

I O.Eo'g X (170)

Typical results are given in Fig. (34) where X is plotted against V for
the guide with a/d=.3 and c/d=.7. The two curves represent two different
spot sizes: a'/d=.05 and a'/d-.30.

In the region 35<V<44, eight guided modes contribute to the sum. In
the region 45<V<55, ten such modes are included. The extra two modes which
cut off at V-45 account for the discontinuities in the solid curves at
that frequency. The dashed lines represent the values obtained for X when
these two additional modes are not counted, and the magnitude of the gaps
between the dotted and solid lines (15 dB or more) indicates that the total
evanescent field crosstalk (the solid lines) is dominated by the contribu-
tions of these two modes. It is also true that in most of the region
35<V<44, X is dominated by the two composite modes nearest to cutoff: if
the other six were not even considered, the curves would shift by a few
dB at most.

130

4-

,d~ * i .* *.~t * .. ~. . . . . * . .- ~ *4 4. ...



I.

0 0

o qoo '$4
I S0 *44

-4
. N 0

LO 0 N .j

u t

'-4 0

- -f) 4 i

0

0~ o0

L i

4 , 1

44 A)

* W I

u 0L

S4

LO > >. 0

o

, I)0 c 6

ao",*4 -4 .,4 .4

I I 4 U0

0 Vl

-0 C C

U 0. 0

C) -4

~0

|. | I ).

LO 41

II x

~131

S"q-'" " /"? "II" "w"';:""""ow.. "'"



45.

.141

* 03

(db)d

1341



The only regions where these generalizations are not valid are in the
two "resonance" regions (V - 37.8: see Fig. (33) and Sec. 11-5.4.1; and
V - 52.6) where the propagation constants of an isolated-core mode and an
isolated-ring mode are nearly the same. The composite modes responsible for
these resonances happen not to be the ones nearest cutoff. However, even
though their evanescent fields do not overlap as strongly as those of the
modes nearer cutoff, the near coincidence in their propagation constants
allows a large power transfer to take place. The narrowness of these two
peaks is another illustration of the sensitivity of the modal properties
of the guide to the physical parameters contained in the normalized fre-
quency. The fact that these resonance peaks fall short of 0 dB is due
to the failure of either amplitude, D q to approach unity for these spot

excitations.

It seems clear, intuitively, that the crosstalk estimate, X, should
be sensitive to the spot size. This is confirmed in Fig. (35), where
Is plotted against spot size for several values of V for the guide with
a/d=.3, c/d=.7.

Two points about the numerical values of X need to be stressed.
First, even neglecting the resonance regions, there is a very strong V-
dependence in the crosstalk, with variations over many decades. Not sur-
prisingly, then, the crosstalk is very sensitive to how near the highest-
order modes are to cutoff. For a given geometrical configuration, once
one has calculated the isolated-guide modes of the core and ring---whose
eigenvalues are very close to those of the composite modes-the regions
of high or low crosstalk can be identified from the plot of these eigen-
values versus V. That is, high cross-alk occurs when two modes are close
to cutoff, or when the isolated-guide eigenvalues coincide. Because of
the great variations in X, these regions can be determined simply by
inspection.

The second point is that the crosstalk parameter, X, is extremely
low-in the range -60 to -80 d2---o,,r a large portion of the curves of
Fig. (34). For V>55, there are regions where it goes even lower still.
Even though these numerical values are estimates rather than exact results,
one may be confident that the orders of magnitude for the evanescent-field
crosstalk are coirect, at least as an upper bound. Although there may be
errors in the coefficients, Dq, as a result of neglecting the radiation

modes, it is unlikely that these will be order-of-magnitude errors. Also,
mode conversion may take place, with power transferred into nonazimuthally
symmetric guided modes which have not been considered. In order to increase
the overall crosstalk, however, the power would have to be scattered from
lower-order -0 modes to those few modes which might be nearer cutoff than
the highest-order X-0 mode. If such preferential scattering into a new
mode should occur quite strongly, one would expect a large increase in
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only if the new mode were much closer to cutoff or if (fortuitously) it were
resonance with another composite mode with the same azimuthal symmetry.

These results have been presented to indicate what factors may influ-
ence crosstalk caused by evanescent-field coupling. In practical guides,
this effect may be masked by crosstalk from competing mechanisms. None-
theless, it is useful to have established an upper limit for it, and to
indicate the kind of configurations for which it may contribute importantly
to the total power transfer.

As we have mentioned, the sharp peaks in power transfer in the reso-

nance regions are due to the near-coincidence of p2 and p2 . In realizable
c r

guides, the parameters determining these quantities cannot be expected to
remain perfectly uniform over great distances. By introducing a model in
which the propagation constants vary slightly with z, Arnaud <31> shows
(for adjacent fibers) that a significant reduction in crosstalk can result.
The same argument, applied to the problem at hand, suggests that the peaks
in Fig. (34) could be severly diminished.

5.5 Adjacent Coupled Guides

We have applied the formulation introduced in Section 11-5.2 to
another composite system, consisting of adjacent identical circular wave-
guides. Insofar as accurate solutions for this problem have already been
attained using the integral-equation technique (with program IDGS), the
variational calculation was only carried far enough to demonstrate its
viability.

Because of the symmetry of this configuration, the two unperturbed-
mode field functions are the same, as are the eigenvalues. Rather than

2 2 2calling the latter P and PB we denote them by the single value P2.

The integrals JA and JB in Eqns. (137) are also the same, as are KA and
KB (and we drop the subscripts).

As a result, Eqns. (140) and (141) simplify considerably. It is
easily shown that the two values of r are +1 and -1, corresponding to
symmetric and antisymmetric modes respectively. The composite modes are

'
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and the corresponding eigenvalues are

,,"%,• :-(• _ ,
I-A

which correlates with the results of Section 11-3.3.4.2 when one determines
that K and J are both negative, and IKI is much greater than IJl. That is.
the propagation constant for the symmetric mode lies above that of the un-
perturbed modes, while the antisymmetric one lies below. One can also see
from Eqns. (172) that the variational calculation predicts an asymmetric
splitting, which we observed earlier (e.g., Fig. (16)).

The comparison with coupled-mode theory (CMT), which predicts a sym-
'metric splitting, is easily accomplished if we observe that the integral K

in Eqns. (137) is proportional to the coupling constant C which is de-

fined in Eqn. (19) of Reference 20. In fact, the CMT result for the split-
ting between the symmetric and antisymmetric modes, and consequently for the
beat-length, is reproduced if J and A are set equal to zero in Eqns. (172)

and the normalized propagation constants are converted to k(S  and k(A).g g
We thus are led to the conclusion that while MT and this variational cal-
culation are both approximate methods, the latter embodies features which
make it more accurate. This conclusion is reinforced by recalling some of
the discussion in Section 11-3.5.2, in which we observed that the main
weakness in the linear-array calculation of Meltz and Snitzer <23> was
the failure of CMT (their starting point) to predict the asymmetric split-
ting in the two-guide case.

For the record, we record the values of J and K which we used to
calculate the approximate composite modes. They are

- ", ' V,, ., l.,35
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where the Bessel function arguments a and 0 are the same as in Eqns. (142),

V is defined in terms of the guide radius, a, the normalizing constant is

and d is the center-to-center separation of the guides. Since these integrals

both require the integration of the external field representation of guide #2
over the area of guide #l, it is necessary to introduce basis-function
transformations like those we used in the array problems (e.g., Eqn. (46)).
This accounts for the presence, in Eqns. (173) and (174), of the Modified

Bessel functions of the second kind with the arguments Od/a.

The full analytical evaluation of A is difficult, and was not deemed
worth the effort for this example. An approximate result, involving the
overlap integrated only over the areas of the two cores rather than all
space, was used for such results as were obtained. In view of this ap-
proximation, however, and the scattered nature of the results, we choose
to omit them from this report. The principal result we derive from this
exercise is that the variational technique, like CMT, is a viable approx-
imate approach to the coupled-guide problem.

136



6. Use of the Programs

6.1 General Comments

In this section we describe the means by which one may use the various
FORTRAN IV programs relating to the modal properties of waveguides. That is,
we describe the input parameters for each program and give the job control
language required to run them on the CDC-6600 at AFGL, the machine on which
they were developed. Many of the programs are quite similar in structure,
a fact which is reflected in similar input and job-control requirements.

The program listings are given in Volume 2 of this report. The user
may refer to comments found in the listings for supplemental information.

All of these programs require Bessel functions of one sort or another.
To obtain them, we have selected a package of subroutines from the AMOSLIB
library <26>. These subroutines were developed with the 60-bit CDC word in
mind, and return values which are correct to at least twelve significant
figures. Even with such great accuracy (which is unnecessary for our pur-
poses; 5 or 6 figures is usually sufficient) they are faster than subroutines
from other packages we have tried. They have been used in all programs ex-
cept LIDGS, which has not been converted from the Scientific Subroutine
Package (SSP) routines previously employed <27>.

6.2 Function

The purpose of all these programs is to solve for the modes of various
guiding systems. The program output is therefore the values of the normal-

ized propagation constants, p2, and the sets of coefficients which specify
the field expansions. From this the power distributions can be obtained, as
can the unnormalized propagation constants, k , and other quantities of

interest.

Program TRUNCN solves for the modes of isolated two-medium step-index
waveguides having reflection symmetry about the x- and y-axes.

Program IDGS solves for the modes of an array consisting of two iden-
tical guides having reflection symmetry about their common x-axis, and about
their respective y-axes.
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Program TWOGS solves for the modes of an array consisting of two guides
of different sizes and shapes, having the same index of refraction, ni, re-

flection symmetry about their common x-axis, and reflection symmetry about
their respective y-axes.

Program LIDGS solves for the modes of an array consisting of N iden-
tical equally-spaced guides oriented in a line, each with reflection sym-
metry about the common x-axis and about their respective y-axes.

Program COAX solves for the modes of the isolated cladded guide, as-
suming reflection symmetry about the x- and y-axes.

Program HICOAX solves for the modes of the isolated ring guide, as-
suming reflection symmetry about the x- and y-axes.

Program VAR solves for the modes of a four-region core-ring waveguide
system with circular symmetry using a variational calculation. The index
of refraction is assumed to be the same in the core and the ring.

6.3 Input Parameters for the Integral-Equation Technique Programs

6.3.1 Organization

Of the programs listed in the previous section, all but VAR perform cal-
culations based on the integral-equation technique. As a result, many of the
input parameters are similar or identical. The following discussion, which
does not apply to VAR, identifies them and provides a brief description of
them.

The input parameters are contained in a single data record which is
part of the input stream. They can be loosely categorized either as program
parameters (quantities which govern the numerical procedures utilized in the
program) or as physical parameters (quantities needed to describe the phys-
ical configuration which is being considered). In each program the program
parameters are read at the beginning of the code from the first data-card
image in the data record. The physical parameters are read (at FORTRAN
statement number 1) from the second card-image.

SAfter these first two data cards are read, the problem specified by
these parameters is solved. Control then returns to statement 1 and another

138



card-image containing physical parameters for another configuration is read.
Each successive physical configuration is solved using the original program
parameters.

When a blank card-image is encountered at statement 1, control skips
to the end of the main program, where the previous results are tabulated.

Then control returns to the original read statement at the beginning and the
whole process repeats. A blank card at that point directs the program to
cease execution. Thus, the programs can deal with any number of cases in
one job. (Actually, only 20 separate configurations fit into the arrays
reserved for tabulating results, so this limits the number of sets of phys-
ical parameters that can be treated before a new set of program parameters is
read.) Note that the proper means of terminating execution is with two con-
secutive blank card-images in the data stream.

All the program parameters and physical parameters are input with for-
matted read statements.

6.3.2 Program Parameters

Table 12 lists the program parameters required for the six programs, and
the format in which they are to be read.

NOT is the number of terms and equations taken before truncation of
each submatrix. It is denoted by M in the text. The maximum values of NOT
and the size of the determinant (using integer arithmetic) are given in
Table 12. There is no default for NOT. Typical values range from I (cir-
cular cross-sections) to the maximum for isolated guide programs, and from
5 to the maximum for array programs.

NT2, which applies only to the array programs, is the number of terms%, in the sums over Z appearing in some matrix elements. It is denoted by M'
%' in the text. (See the end of Section 11-3.3.1.) Permissible values lie be-

tween NOT and 2*NOT. When all perimeters are circular, NOT should be
chosen; otherwise NOT+4 is typical. Default value is NOT.

7I (S in several programs) specifies the minimum accuracy, 10- , to
- within which each root is to be determined. The root-finding algorithm is

good enough that the uncertainty which actually results (and which is printed)

is often considerably less than this. Default for I is 3.

NP2 is the number of entries in the initial table of determinantal

values. (See Section 11-2.4.) Permissible values range between 2 and 50.
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Default is 10. Larger values should be used if roots are likely to be closely-
spaced, to prevent two or more roots from falling between consecutive table
entries.

NOP is the number of points used to do numerical integrations. Maximum
value is 200 points. The default value is 50, and this is generally suf-
ficient unless very high accuracy is required. For cases in which all cross-
sections are circular the numerical integrations can be done analytically.
In such cases NOP can be set equal to 1, and the programs will compute the
matrix elements properly.

IDIAG is a diagnosis code, used mostly for troubleshooting, which acti-
vates or inhibits the printing of quantities calculated at various stages of
the computations. These quantities are different for different programs.
Permissible values are 0 to 5. Program listings should be consulted for
details.

NOG (LIDGS only) is the number of guides in the linear array. Per-
missible values are 2 through 6. There is no default.

-K
K (LIDGS only) gives the accuracy, 10 , to which the Bessel functions

are calculated in the SSP subroutines. Default value, which is usually suf-
ficient, is 5.

6.3.3 Physical Parameters

Table 13 lists the physical parameters read at FORTRAN statement 1,
and the required format, for each integral-equation technique program.

SC (integer) determines whether cosine (1) or sine (2) solutions are
sought.

L (isolated-guide programs only) is the index of the first term in
the field expansion to be used. For example, with NOT=3 and SC=l, the
odd cosine expansion with indices 1, 3, and 5 will be obtained if L=1.
If L=O the even cosine expansion with indices 0, 2, and 4 will be obtained
(unless the aspect ratio is unity; then the indices are 0, 4, and 8).

D (array programs only) is the center-to-center separation between
adjacent guides, denoted by d in the text and given in units of b . The

smallest reasonable separation is the touching distance, which depends on
the aspect ratio(s). This distance, the default, is given by RI+SZ*R2 in
TWOGS and 2*R in IDGS and LIDCS. (See below.)

N (NI, N2) (real) is the superellipse index, N (Ni N2 for programs

with two different cross-sections) appearing in Eqn. (31). See Section 11-2.4
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or Reference 2 for a discussion of useful values. Also see Table 14. De-
fault values are unity, resulting in elliptical (or circular) cross-sections.

R (RI, R2) is the aspect ratio R (R1, R for programs with two dif-

ferent cross-sections) appearing in Eqn. (31). The distance from the origin
to the edge along the x-axis is R, in units of the characteristic distance.
Default values are unity.

SZ is the ratio of the "characteristic dimensions", b, for two dis-
similar cross-sections. In TWOGS this is the quantity denoted by r2  in

Eqn. (59). Default is 1. In COAX it is the ratio of the outer semiminor
axis (b23) to the inner (b12) and as such is always greater than unity.

In COAX, default is 10 or some value smaller enough than 10 to prevent
underflow in certain functions. In HICOAX, SZ is the ratio of the inner
to the outer semiminor axis and is less than unity. Default is zero in
HICOAX.

B is the normalized frequency and must be positive. Default is unity.
Values of B greater than 15 or so may cause underflow or overflow problems,
but this depends on the program and several other parameters (e.g., NOT).

PMAX, PMIN is the range of values of p2 over which the initial table
is computed. That is, values of the determinant are calculated at NP2

equally-spaced points between PMIN and PMAX. Default values are I and
0.

DST (array programs only) is a vector whose first element is D and
which gives different interguide spacings. That is, if one wishes to solve
several configurations which differ only in the spacing, one can put several
values of d on a single card-image. This is done for the sake of program
efficiency as well as convenience because during the initial table calcu-
lations those components of the matrix elements which do not depend on d
are used for all cases. As a result, they are not recomputed as they are
when a new card-image is read. If there are zeroes or blanks in one or
more of these fields the program ignores them.

QQ (COAX only) is the ratio of the numerical apertures, and is equal
to 613/612 (See Eqns. (104) and (107).) Default value is 40, which is ap-

propriate for n3=1 (air) if n =1.475 and n =1.465. QQ=1 implies n2=n3 ,

or an infinite cladding.
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6.4 Job Control Language

All of the programs described above require input data on TAPE5, which
is equivalent to INPUT. A data record is therefore required in the input
stream. Results are written to TAPE6, which is equivalent to OUTPUT.

Each of these programs resides on a file in UPDATE format. These
files also contain most of the subroutines which are required for the re-
spective programs. The exceptions are the Bessel function subroutines,
which are stored on their own separate UPDATE file. (The exception to the
exception is LIDGS, whose file contains its own Bessel function subroutines.)
These files have been provided on magnetic tape to the technical personnel
at RADC.

The format allowed by UPDATE, which is a CDC utility, is useful be-
cause it allows one to make changes in the program or in one or more of the
subroutines without recompiling the rest. It does require, however, another
record in the input stream. In the example given in Table 15 which is ap-
propriate for TRUNCN, we assume that TRUNCN and its subroutines in UPDATE
format reside on a mass-storage file called TRUN. Moreover, we assume that
the entire contents of this file and also the contents of the file contain-
ing the AMOSLIB Bessel function routines have been compiled and submitted
to the CDC utility EDITLIB, which creates a special binary or library
image of all the routines. The files containing these libraries are assumed
to be on mass storage, as TRUNLIB and BESSELFUNCT.

In Table 15 the record following the first end-of-record mark (7/8/9)
directs UPDATE to pick the main program from the original file and write
it to COMPILE. Program alterations could be specified in this record, if
necessary. The record following the second 7/8/9 is the data record.

In the example given, three single-guide configurations are to be
solved. The first is for the even cosine modes of a square guide (N=30. R=l)
with propagation constants less than .5, for B=2. The second is for all the
odd cosine modes of a square with B=2. The third is for all the sine modes
of a 2:1 ellipse (9=1, K=2) with B-2. In each case a 4-term truncation is
used, 4-place accuracy is demanded for each root, 10 initial table entries
are specified, 50 integration points are used for each integral, and no
special diagnostics are printed.

* To run programs other than TRUNCN the UPDATE directive specifying the
program name and the data record must be different. Also, of course, the cor-
rect permanent files must be attached. For LIDGS it is not necessary to use
LIBI because the necessary Bessel functions are all on the original program
file.
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In Table 16 a possible data record for IDCS is given. Four cases are
solved. They all seek all the cosine modes of an array of two square guides,
the center-to-center distances being 2, 2.25, 2.50, and 3. The first of
these is the touching distance and therefore results in the modes of a 2:1
rectangle. (Note that one does not specify even or odd expansions for array
programs.) The matrix is 5 by 5, and internal series are truncated at 9
terms. Some diagnostics are printed.

Memory requirements for each program in octal words are given in
Table 12. The time requirements depend on the number of cases and the trun-
cation order, but single cases can usually be run in a few seconds on the
CDC-6600.

6.5 Program VAR

Program VAR solves for the modes of a four-region concentric core-
ring waveguide system with circular symmetry, using a variational approach.
The input parameters are L, A, C, B, PSI, PS2, and IDIAG, and are described
in the following paragraphs. They are read at FORTRAN statement number 1.
The format specification is (15,2F5.2,F7.4,2F9.7,15). One card-image spec-
ifies all the information needed to solve a single physical configuration.
Up to 40 cases can be treated in one job. The record containing the data
card(s) is part of the input stream. A blank card terminates program ex-
ecution.

L, a non-negative integer, specifies the order of the unperturbed
modes.

A (a in the text) is the radius of the core (see Fig. (31)). This is
given as a fraction of the outer radius of the ring, d.

C (c in the text) is the inner radius of the ring, also given in
units of d. Obviously O<A<C<I.

B is the normalized frequency, equal to V/r.

PSI, PS2 are the normalized propagation constants, P2 and Pr of the
c r'

two unperturbed modes which contribute to the composite modes being sought.
They must be determined by some procedure such as boundary matching or by
use of TRUNCN and HICOAX.

IDIAG is a diagnosis code which can take on the values 0, 1, or 2.
It activates or inhibits the printing of various quantities which are cal-
culated at different stages of execution.
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Program VAR has been delivered in UPDATE format, so the procedures
for using it are practically identical to those given in Section 11-6.4. The
Bessel functions are from AMOSLIB. In fact, Table 15 is a completely satis-
factory example, except that permanent files containing the UPDATE source
and EDITLIB binary versions of VAR (e.g., VAR and VARLIB) must be attached,
the UPDATE directive is *COMPILE VAR, and the data record is different.
Table 17 gives an appropriate data record for three configurations involv-
ing the unperturbed fundamental modes of the core and ring guides (t=O).
In each case the core radius is .3 and the ring inner radius is .7. Sep-
arate values of B are selected in each case, and different intermediate
quantities are printed in each case.

*.4
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[-.

< .5 Cusped Cusped

N .5 Square Parallepiped

.5 < N < I Subcircle Subellipse

- 1 Circle Ellipse

> i Supercircle Superellipse

N c Square Rectangle

o-

q

Table 11.14. Cross-Sectional Shapes Resulting
from Different Choices of the
Superellipse Index, N, and the
Aspect Ratio, R.
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JOBOI . 1234 USER
ATTACH(OLDPL,TRUN, ID=USERMR=1)
UPDATE(PCD)

a-. FTN(ISL,R=3)
ATTACH (LIB 1, BESSELFUNCT,ID=USER, MR= 1)
ATTACH (LIB2,TRUNLIB, ID=USER,MR=l)
LIBRARY (LIB 1,LIB2)
LGO.

* 7/8/9
*COMPILE TRUNCN
7/8/9

4 4 10 50
1 0 30.0 1.00 2.00 0.50
1 1 30.0 1.00 2.00
2 1 1.00 2.00 2.00

6/7/8/9

Table 11.15. JCL for Program TRUNCN

7/8/9
5 9 4 10 50 3
1 2.00 30.0 1.00 1.50 1.00 0.00 2.25 2.50 3.00

-S

7/8/9

Table 11.16. A Data Record for IDGS

7/8/9
0 0.30 0.70 1.0000 .0273 .1959 0
0 0.30 0.70 1.5000 .1934 .3271 1
0 0.30 0.70 2.0000 .3774 .4384 2

7/8/9

Table 11.17. A Data Record for VAR
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III. QUANTITATIVE STUDY OF A MECHANISM FOR PRODUCING

DIFFRACTION GRATINGS IN CRYSTALS

EXHIBITING PHOTOREFRACTIVITY

1. Introduction

The following report summarizes the work which was done on the photo-

refractive effect problem during the summer of 1982. The first section

outlines the physical problem in a qualitative manner. The second gives

the mathematical formulation, while the third describes (briefly) the soft-

ware, the implementation of the boundary conditions, and various procedures

used in the program. The last section gives some of the results obtained.

How to use program GRATING is described in the program listing; examples

and listings have been furnished under separate cover.

The physical problem and the beginning of the mathematics involved is

presented in Reference 1. An attempt has been made to avoid repeating con-

tents of that report, except in a cursory manner when necessary.

The problem involves the "writing" of a permanent diffraction grating
in an electro-optically active crystal by imposing a laser-beam inter-

ference pattern upon it. The grating can also be "erased" by imposing a

constant illumination upon the crystal. We assume that the material under

consideration has both occupied and unoccupied optical donor levels well-

isolated within a forbidden gap. Electrons can be excited from occupied

levels to the conduction band by the incident light. The conduction-band

electrons can diffuse through the crystal, migrate under the influence of

an electric field, and recombine with empty donor levels. The problem is
one dimensional: no spatial variation occurs except in the z direction.

The photovoltaic effect is not considered here.

A simple picture of the processes occurring is as follows. At time

zero, when there are no conduction electrons, light with a certain spatial
intensity pattern begins to shine on the crystal. This produces conduction

electrons due to photoexcitation, with a greater density building up at

places where the light is more intense. These electrons drift (under the

influence of an applied field) or diffuse away, and also recombine with
empty donor levels. Because the net effect of the drift is to remove elec-

trons from the regions of higher density, recombination occurs preferen-
tially at points of low light intensity. This upsets the initial charge

neutrality of each local region, causing a net negative charge density in

regions where recombination occurs faster than photoexcitation, and a net
positive charge density in the other regions. The distribution of "space-

charge" which is thus built up modifies the local electric field and the
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4,. resultant drift of the electrons. Eventually an equilibrium is attained,
with a large z-dependent electric field existing inside the crystal. This
slightly modifies the refractive index of the crystal, due to the electro-
optic effect.

The stated problem is to evaluate the local electric field in thecrystal as a function of space and time, so as to be able to determine

the modification of the refractive index. This is to be done by setting
up and solving the nonlinear differential equations for the conduction-

4, electron density, and the occupied donor-level density. The solutions areto be determined numerically for various values of the physical parameters.

2. Formulation

2.1 Definitions of fields

n(z,t) = number of conduction electrons per unit volume

"N (Zt) - number of occupied donor levels per unit volumee
N +(zt) w number of empty donor levels per unit volume

p(zt) - space-charge density

E(z,t) - local electric field

J(z,t) - local current density

I(z) - light intensity pattern

2.2 Initial Conditions

n(zO) 0 0 (no thermal excitation of conduction band)

N e(z,0) N eo (independent of z)

N+(z,0) N (independent of z)
.4,+ +0

P (z,0) - 0
E(z,0) - E a constant applied electric fieldapp
J(z,O) 0

.4q

153

4 4. .- ... .. . * . ..- . . .. .. .- .. . . . . . .-.- . . . . . .



:., ~ ~ ~ -. 7.i.;.. 3 .r .i.77rL -  -T T77777 .., ... .;- ... .... ,. j %, i . .
1w.•

r,"

2.3 Basic Equations (see Reference 1; z and t-dependence are assumed for
all fields)

N + N N + N (donor levels do not migrate) (1)

p e(N+ N - n) - e(N - n) (definition of space-charge) (2)
aE

C = 4 xp (Gauss' law; c = dielectric constant) (3)

an. _j + dJ I
n + dz e (charge-continuity) (4)a, t at dz e

J = +epnE + eD an (5)-=z
Ne .r n N+ (6)

t e N+o

The last of these equations(b) represents changes in donor-level densities
due to photoexcitation and recombination; y (z) and Tr are the respective
rates for these processes. The next-to-last equatiof5) gives the current
due to drift and diffusion. D is the diffusion constant and p is the
electron mobility, also a constant.

2.4 Differential Equations

• 'Combining the basic equations leads to

an D n an '4-n~ e (., 2  + ) JZE nNn + - nyr- nN (7a)az2 z C2 1  e , l+

,4 diffusion drift photoexcitation recombination
4.

at I e r

[ The photoexcitation rate, yI(z), is proportional to the light intensity.
Assuming I(z) isan interference pattern,

Y() W <Y > (1+ Mcosk)m <T 1 Y ~ z (8)
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The photoexcitation process leaves its imprint on the final spatial distri-
butions, so ultimately we will take 27/k as "unit distance". Similarly,

the dielectric relaxation time characterizes the duration of the process,, so the inverse relaxation rate ( Ydi)-l will eventually be taken as "unit

"
S. time". (See Reference 1, and below.) Meanwhile it is necessary to elim-

inate N+ in favor of Nes and evaluate the electric field due to space-

charge. The dependent variables are normalized by taking

R Npn - Np 9a

u - <n> v < n> (9b)

where <n > is defined in the list of quantities given below. Then thea E
space-charge field at z canbe found by integrating -z-, or p, from -- to z.

11he result for the total field (t-dependence understood) is

E(z) -Ea X (z) - Eap p + J 7(z') -udz' (1)

E~) Eppp p- 0 \

where -z is the left boundary. This makes the first equation into a non-

- linear integro-differential equation. To avoid the difficulties accompanying

-. a complete treatment of the space-charge contribution to E, we will merely

write it as X and evaluate it at each step based on information from the
kprevious steps. This approximation will be discussed in 111.3.5. The equa-

tions become

au D- 22 + (E + d + Ydj(uV -u ) + F(z)(r-<Yi>v)-yrU(l+1 v) (Ila)

a - Fpp, () (yr-<l > v) -r u 0 + 2 -
<Y >

* r

av <j

where d- (e2a)

Nd (12a)::---<yj>

< n> TYr  Neo (12b)

R +- (12c)

.4'
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The mean excitation rate, <yl> can be written in terms of the mean intensity

<I> plus the optical cross-section and wavelength, but for the purposes at
hand it is sufficient to specify it independently (in units of Ydi' of course).

The same is true of the recombination rate y r It is also convenient to

specify E and D in terms of drift and diffusion distances, A Eand A D

respectively (defined below). Then, letting z and t go into kgz and Ydit,

and thereby scaling distance and time to the units given above, the final
equations become

a = A 2CGjU+ (B + X(z 2 UV U2 + F(z) [G 1-G2 -u +R G2V] (13a)

uv FMI G L. JG 2J 1b

where

C2 Yr(1a

Tdi

G2 YI(14b)
* 2  ,=

Ydi

A k !A (14c)

2

B -&L E  
(14d)

2 2

X(z)- dz(v(z') - u(z')) (14e)

-Z o

F(z)= I + cos2rz 0 M : 1 (14f)

UI
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The diffusion and drift distances have been introduced through the use of

yrA E Papp  (14g)

D - A2 Y (14h):D r
One can see that the coupled equations can be solved if the constants G1, G2,

A, B, M, and R are specified, if the boundary conditions and initial con-

ditions are given, and if adequate provisions are made for incorporating
the space-charge contribution, X(z). These six normalized input parameters
are the only physical parameters the program will need for input, except
for those defining the boundaries.

3. Software and Numerical Procedures

3.1 GRATING

The complete software package consists of program GRATING and associated
subroutines which were vritten during the term of the contract, and packages

*. PLOTN and PDECOL. PLOTN is a general-purpose line-printer plot subroutine
written by ARCON personnel some time ago. PDECOL (described below) is a
general-purpose partial-differential-equation package obtained from the

4' International Mathematical and Statistical Library (IMSL). It consists
of subroutine PDECOL and 18 other subprograms. PLOTN and PDECOL have

been incorporated into the overall program structure with as few changes
as possible. In fact, the only changes in the IMSL routines appear near
line 825 of subroutine PDECOL and are surrounded by comment-cards consisting
of "$" symbols.

Instructions for the use of GRATING, PLOTN, and PDECOL are included
in coments in the program listings. Listings and examples have been

* provided under separate cover.

3.2 PDECOL

The package PDECOL is being used to solve the coupled nonlinear eq-
uations. This package, written so as to take advantage of the 60-bit word-
size in CDC computers, is described in Reference 2. The class of problems
amenable to solution through its use are those with N coupled equations in
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the form

f(t,Z,'USU Ou) (15)tz. zz

with boundary conditions which can be written as

bu,u z )  Z(t) (16)

for each boundary. In these equations, u stands for the dependent variables
' to be det:ermined:

u M (ulu 2 ... uN) (17)

uz stands for the space-derivative of each component of u, and u is thezz
second space derivative. Initial conditions are of course also required, and
they must be consistent with the boundary conditions.

In the probler at hand, N = 2 and l = (u,v). The two equations at the
end of the last section are clearly of the required form.

PDECOL is a package designed to take advantage of some very general
and successful algorithms which have been developed to solve ordinary dif-
ferential equations (ODEs), to solve the general class of partial differ-
ential equations (PDEs) described above. A very much-simplified description
is as follows. The user defines a spatial discretization appropriate to his
problem. Certain spline basis functions, with an order which the user may
select, are used to approximate the dependent variables in each of these
intervals, separately. That is, each component of I is written as the
product of certain coefficients, c, which depend only on time, and the
known basis functions which depend only on z. These approxlmate solutions
are required to satisfy the original differential equations at certain
"collocation points". The result is a set of ODEs in the form

(A- - g= (t. c' (18)

The number of these equations is proportional to both N and the number of
spatial intervals chosen. The coupled ODEs are solved by integrating in
time, using well-established procedures. One thus obtains, for a single
output time, a set of coefficients, c. These are used to evaluate the
actual solutions, u. One then advances the output time to a larger value
and repeats the process as often as is desired. The end result is sets
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of solution values (u,v, in our case) evaluated at whatever points, z,
the user chooses, with each set corresponding to a user-selected instant
in time. In the present case, it is necessary to utilize well-chosen
sets of solution values at the end of each step (at least) in order to
perform the integration for the space-charge field which is indicated
in Eqn. (14e).

We refer to the user-selected times as "output times" to distinguish
them from the "working times" selected by the package. Further discussion
of these appears in III.3.7.

3.3 Boundary Conditions

In the present formulation of our problem, we assume a periodic illum-
ination function F(z) which is symmetric or antisymmetric about zero. The
initial thought is therefore to impose periodic boundary conditions at the
endpoints (-zoz ). These are four separate equations represented by

u (-z) f (Z) (19a)

U (-Z = 0)o(z) (19b)

So long as z is (at least) half integer and F(z) has the form given in

Eqn. (14f), such conditions will properly describe the physical situation.
The asymmetry introduced by the applied field may cause physical distributions
(e.g., p) to be shifted in phase with respect to the illumination. (See
Fig. 1). However, for half-integer or integer values of z , these distri-0

butions will still satisfy Eqns. (19). We note that closed circuit conditions
prevail so that currents flowing out one end enter again at the opposite
boundary.

Unfortunately the equations above do not fit the form demanded by PDECOL,
Eqn. (16), since they combine the requirements at the left and right bounda-
ries. There are no known solutions or constraints valid for all time at any

., point where the illumination varies with z, unless diffusion and drift are
absent. Indeed, the whole objective is to obtain solutions resulting (prim-
arily) from the combination of drift and a spatial variation in illumination.
Therefore, in order to use this package, it is necessary to specify the prob-

.lem a little differently. We may modify the illumination function so that it

15
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hardly varies in the region adjacent to the two boundaries, as shown in
Fig. 2 and in this equation:

1 + M cos (27z+ Izi < Z B (20)F(z) = (20) zl_<Z
1 ± M exp (_W31z-zBI2) ZB <IzI <

In Eqn. (20), *, z , and the signs in the lower expression must be
chosen so that F(z) is continuous and F'(z) is zero at t xB * may take

on the values zero and ± r/2. In the former case, the pattern is sym-
metrical about zero; in the latter, antisymmetrical. The argument of the
exponential is such that the integral of F(z) from z B to - equals the
integral of a quarter-cycle of the sinusoidal portion of the curve.

With the use of this light-intensity pattern, it becomes logical to
stipulate that Neumann conditions hold at the boundaries; that is, the space-
derivatives of all the fields must be zero. This supposes that the boundary
is "far enough" away from any region where spatial variations do exist for
an equilibrium to be attained. To establish just how far is "far enough"
it is necessary to ask what process could cause a gradient in the electron
or donor-level densities in the first place. The photoexcitation and re-
combination processes depend on the populations themselves, but not on their
gradients. (If gradients already exist, these processes may change the
populations at rates which depend on z-for example, recombination occurs
faster where n is greater-but if the illumination is constant they will
not produce gradients by themselves.) On the other hand, diffusion and
drift do have a directional preference. For example, if there is a high
concentration of electrons at z < zB, they will diffuse preferentially

toward the right boundary. As they do some of them will recombine with
empty donor levels. The resultant electron population will therefore de-
crease with increasing z. The diffusion distance AD can be seen, from its

definition, to incorporate the recombination rate. Only if the recombin-
ation time is small compared to the time required for electrons to migrate
to the boundary will the effect of the higher concentration be dissipated.
Therefore, if the diffusion distance is much less than (z - ZB), the

gradients will be small at the boundaries. As similar considerations ap-
ply to electron drift under the influence of the electric field, the con-
ditions

AD << (z ° -zB) (21a)

A E << (zo -zB) (21b)
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are sufficient to establish the validity of the boundary conditions at ±zo

au a 0  2Y - (22a)
z az (22b)

The preceding considerations suggest a different formulation of the
boundary constraints. The existence of a nonzero net charge density, p,
at any point in the crystal depends on the possibility of the migration of
electrons from a region where the photoexcitation rate is higher to one
where it is lower. Since the photoexcitation rate does not vary with z
near the boundaries, it follows that p a 0 at the boundaries. This can

be expressed as

u(z o ) - V(Z 0 (23a)

0 0

with a similar requiremcnt at -z. In addition, however, we can specify

that the gradient of either u or vbe zero at ±zo , e.g.

° 0
(23b)

4 ZF

This (Eqns. 23) is the form in which we will write the boundary conditions.
Referring to Eqn. (16), we find

b - u -v (24a)
1

b 2 u (24b)

and Z - (0,0).

3.4 Initial Conditions

From the definitions of uand v, and the conditions listed in 111.2.2.
one can easily see that at the initial time, t 0 0, the requirements

u(zO) - 0 (25a)

v(z,O) - 0 (25b)

must be satisfied.
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3.5 Evaluation of the Space-Charge Field

We have pointed out, in the discussion prior to Eqns. (11), that it
is necessary to evaluate the space-charge field at the nth step (corres-
pondlng to time t) based on information from previous steps. That is,
X(z,t) appearing in Eqns. (Ila) and (13a) is the integral of p(z,t), but
p is known only at previous steps corresponding to earlier times. The
manner in which values of X(z,t) are selected is very important because
these values affect the convergence of the PDE package results. In fact,
poor estimates of X(z,t) cause an accumulation of errors which either de-
grades the solutions directly or causes the time increment selection pro-
cedure to use inappropriate jumps. In either case, execution terminates
with an error flag.

At the beginning of the nth step, an array of "anticipated" values of
X(z,t) is used in Eqn. (13a). After the nth step is complete, an array of
"actual" values is determined by numerical integration of the newly-obtained
p(z,t). (The different elements of the array correspond to different values
of z.)

The anticipated array at step n is obtained from the actual arrays at
steps n-I, n-2, and n-3 by simple polynomial extrapolation. The results,
as measured by the average absolute difference between the actual and anti-
cipated values, are significantly better with quadratic extrapolation (three
points) than with linear extrapolation (two points) and much better than
with no extrapolation (one point). More importantly, the program operates
more efficiently when more points are used for extrapolation. That is,
fewer time increments are needed to satisfy a given error threshold, and
the program runs faster. Conversely, with no extrapolation, convergence
may simply not be obtained.

This is a point which is important enough that one should consider
making improvements in the extrapolation procedure even beyond what has
already been done. As we shall see, the time-dependence of the space-
charge field during both the write and erase modes can often be approxi-
mated quite well by an exponential for all values of z. For short times,
even a linear approximation is quite good, but the largest errors come
for later times when (1) the program is automatically selecting larger
time increments and (2) the "true" exponential time-dependence is less
well approximated by the extrapolation procedure used here. Therefore,
it might be advantageous to build in alternative schemes for anticipating
the space-charge field arrays. At least one of these schemes should assume
an exponential time-dependence for X(z). It would be a simple matter to
compare the various methods as the program proceeds and select whichever
of them is most successful in predicting the space-charge field.
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3.6 Erase Mode

The simple illumination pattern given in Eqn. (20) is assumed to have
been turned on at time zero and left unchanged thereafter while the grating
is being written. Ultimately a steady-state condition is reached. It is
possible, by changing H, 0, or the baseline intensity (unity) to instantly
alter this pattern and thereby begin a new mode of operation. In the
program, the intensity pattern is defined in function LGT.

In GRATING, the erase mode is modelled by setting M equal to zero
after the grating has already been written. Physically, the constant il-
lumination preferentially excites electrons to the conduction band in the
regions where they are most numerous (p < o). The electric field removes
them from these regions, the ultimate effect being the neutralization of
the space-charge and the consequent erasure of the grating.

Numerically, the solution arrays obtained in the write cycle are ac-

curate to 4, 5, or even 6 significant figures at any time. (This depends
upon the program parameters and the physical parameters which have been
selected.) Since the field and the charge distribution are increasing
monotonically in time, the accumulating error reflects only the most re-
cent steps. In the erase mode, the opposite is true: the overall decrease
in these amplitudes causes the relative errors to increase considerably,
even if the absolute errors, which are mostly built in during the write
cycle, remain approximately constant. The end result is that, by the time
the space-charge and the space-charge field have dropped off by 3 or 4
orders of magnitude, the program results for the details of their z-depen-
dence become questionable. Nevertheless, despite the appearance of this
noise in the late-time erase results, the overall picture of the erase
mode is quite accurate.

It would also be possible to "rewrite" rather than simply erase the
grating. This could be accomplished by any number of means. One simple

way would be to change 0, in Eqn. (20), by w/2 or w so that the bright and
dark regions are shifted from their original positions. This facility has
not been built in to GRATING, however.

3.7 Working-time Increments

The process of integrating the ODEs in Eqn. (18) is done in discrete
steps of working time, which are usually selected by PDECOL. These incre-
ments are chosen to be as large as possible subject to accuracy constraints
imposed at the beginning by the user. In normal operation, they never de-
crease; rather, they remain fixed for several steps until certain criteria
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are met, at which time a larger step size is tried. The fastest operation
occurs when PDECOL is allowed to run freely with its own choice of incre-
ments. In such cases, the working time and output time never coincide.
Once the working time skips past the current output time the program pauses
to obtain the solution arrays by interpolation, and then proceeds as before
upon assignment of a new output time.

It is possible (by use of the input variable INDEX - see PDECOL listing)
for the user to cause the working time to coincide with the output time at
the end of each output time step. The difficulty here is that the last
working time step is then simply what is required to hit the output time
exactly. This may happen to be a very small increment, and in such cases
the succeeding working time steps are scaled upward from this rather than
from the much larger previous increment. An unnecessarily large number of
working time steps can therefore be used to reach the same conclusion in
the end.

It could be desireable to do this if certain difficulties are being en-

countered-for example, if the anticipated values of the space-charge field

at certain steps are sufficiently in error to cause degredation of the re-

sults. Then, because of the smaller steps in time, the results of the ex-

trapolation procedure described in Sec. 111.3.5 would be improved. For

- cases tested so far, it has not been necessary to use such a scheme.

As will be seen in Sec. 111.4.2, the initial buildup of the conduction-
electron density is very rapid. It occurs on a time scale on the order of

10- 8, so the initial working-time steps, DT, must be very small (a couple
orders of magnitude below this, at least). If the user does not set DT

small enough, the program may be able to correct for it but will waste time
doing so.

The final steady state is not reached until t >>l, so it is an es-
sential requirement that the program be able to automatically graduate
from small steps to much larger steps as conditions dictate. Even when
PDECOL steps up the time increments freely, 100 to 300 steps may be required.
Since these working-time steps are normally independent of the choice of out-
put times, the latter can be set only for large values (t 1) if desired.
By so doing, however, one loses the ability to study the early-time evolution
of the fields.

At the beginning of the erase mode, the working-time steps must once
again be constrained to be small. (The reason is the same as at the be-
ginning of the write mode- the conduction-electron density is changing
rapidly.) This is accomplished by use of INDEX. (See comments in the
program listing.)
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4. Results

4.1 Introduction

The main results which were derived from GRATING during its testing
phase are presented in this section, mostly in graphical and tabular form.
The physical distributions of primary interest are the space-charge and the
space-charge field, which are given as functions of z for various values of
t and different values of the input parameters. Many although not all of
the results are for the zero-diffusion case (A = 0) because for large t
the final distributions can bje checked against analytical results. The
growth of the field in time is also shown for certain parameters to il-
lustrate the time scales involved.

An overview of the essential results can be derived from Figs. 3, 6,
and 8. They give, respectively, the growth of the space-charge field as a
function of time for different modulation factors; the space-charge field
as a function of z for different times; and the space-charge itself as a
function of z for different modulation factors.

The results given in this section are derived using an illumination
function with 0 =, z - 2 and z = 5 (see Eqn. (20) and Fig. 2). TheB 0
values of the input parameters used were---unless otherwise stated---A = 0,
B.- .016, R = 1, G1 M 2.5 x 10

7 and G .01625. These are referred to as

the "standard parameter set". Except for the assumption of no diffusion,
these values were derived by assuming initial concentrations of 100 ppm
for full and empty optical donor levels and an applied field of 10 kV/cm
and then using formulas given in Appendix B of Ref. 1. Later we demon-
strate some of the effects of separately varying the diffusion length, the
drift length (the applied field), and the initial ratio of filled to empty
traps. The results reported here do not in any sense constitute an ex-
haustive study of the parameter sets which are physically reasonable for
crystals of interest, or even for any single type of crystal. They are
presented to show the simplest dependences on the various parameters.

There are several input quantities, required to run the program, which

are not physical parameters but rather are program parameters. These are
discussed in the comments in the program listing. Default values, given
there, were used for all of these for the results given below---except
NINT, which is the number of spatial intervals between -z and +z . We

found that for the standard parameter set and M < .6, NINT = 100 was
adequate. For M > .7 larger values of NINT (e.g., 200) were required.
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All results reported below were done with either 100 or 200 intervals. If
more cycles are specified in the interference region, of course, larger
values of NINT will again be required.

.4. Variations of the other program parameters did not materially affect
the results for those cases tested.

4.2 Time Scales

There are two time scales which must be considered during the buildup
of the charge distributions from their initial values. This results from
the fact that the times required for the transport of electrons over signi-

* ficant distances is much greater than the time the individual electrons
remain in the conduction band before recombining with empty traps.

- The buildup of the conduction-electron density from zero to a more
or less steady state is reached very quickly. The competing mechanisms
which balance each other out are photoexcitation and recombination. (At
any instant, the transport mechanisms which serve to redistribute the
charge are a minor perturbation.) This time scale is on the order of

(G)-~0(0-8 ), as can be seen from the following short-time approximation
which is valid for many situations (see Sec. 111.4.6):

u(z,t) = F(z)[1 - exp(-Glt)] t << 1 (26)

After this initial rapid buildup is achieved, the effect of the gradual
net movement of electrons into the dark regions eventually becomes felt.
The conduction electron density, u, remains approximately fixed at F(z),
but the positive charge density, v, is being altered continuously by the
steady transport of electrons until it reaches values much greater in
magnitude than unity. The time scale on which this buildup of the space
charge (v-u) occurs is that of the dielectric relaxation time---which is,
by our definition, unity and therefore vastly greater than the time scale
on which the conduction-electron density buildup occurs.

In the time range (G)-I << t << 1 the space-charge field is still

swamped by the applied field and the conduction-electron density is nearly
constant in time, so the conditions which control the transport mechanisms
(drift and diffusion) are time-invariant. The charge buildup therefore
proceeds at a constant rate. The charge distribution and field pattern
reflect the sinusodial space-dependence of the illumination function.
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When the space-charge field becomes comparable to the applied field
(t - 1), the drift mechanism is altered and the preceding comments do not
apply. The ultimate z-dependence of the space-charge (and the space-charge
field) depends on the physical parameters used, but it is generally not
sinusoidal.

These considerations will be discussed and exemplified in some of
the following sections.

4.3 Time Development of the Space-Charge Field

Figures 3 and 4 show the buildup of the space-charge field as a
function of time for cases with no diffusion. What is plotted in these
two figures is the amplitude of E and the maximum value of E , re-

spectively, in units of applied field. (The amplitude of Esc is defined

as the difference between the maximum and minimum values.) These quan-
tities are given for various values of the modulation factor to illus-
trate the dependence on the "strength" of the interference pattern.
Clearly, for a given material, the steady-state condition is reached more
quickly for small values of M. Also the field strengths ultimately at-.
tained are much smaller for smaller M.

For large values of M, the maximum field attains values many times
greater than E . It should be recognized, however, that for these

app
." cases the assumption of zero diffusion is more critical because of the

extremely sharp peaks in the charge density which are the cause of these
large values for E s. Also, for the same reason, convergence of the algor-

ithm is more tenuous and, as mentioned earlier, a finer spatial discreti-
zation (determined by NINT) is required.

For the case of zero diffusion, the steady-state values of E canSC

be derived easily from the basic equations. Since all the time derivatives
are zero, and D = 0, one can see from Eqns. (4) and (5) that the current density
has a constant value equal to J - epn(z)E(z). But, assuming no saturation0

takes place (N+/N ~ NeINeo - 1 for all z), Eqns. (7b), (8), and (12b)

establish that n(z) - <n>F(z), so that

E.) )E + E ( 0(27)

app sc W f z F--n (27)
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This holds everywhere, including places where E = 0 and F(z) = 1, so thesc

quantity in parentheses in Eqn. (27) is simply E and the space-charge
app

field is given by

E (z) E 1 Eapp + Mcos kz (28)
sc appF()h ap H cos k z)

From Eqn. (28) the minimum value of Esc, the maximum value, and the ampli-

tude can easily be found by using appropriate values of k z. The analy-g

tical and numerical results for these values are compared in Table 1 for
various values of M, with t = 10 chosen to represent the steady state for
the numerical calculations. Agreement is excellent except for M > .6 where
a larger value of t is needed.

Another useful result has been obtained empirically for the zero-
diffusion case. This result is expressed as

(E )E (1 -el ) (29a)
( sc-max 1 - M app

M Y (I-e 7 t )  (29b)
sc mi n +M app

where y, = 1 - M and y 2  1 + M, and can be used to calculate curves such

as are drawn in Figs. 3 and 4.

For the erase mode, the time-dependence of the decaying space-charge
field is given in Fig. 5, where the ratio of the maximum values of E atsc

time t and at time t is plotted. (t is measured from t , the moment the0 o

interference pattern is destroyed and erasure of the grating commences.)
Unlike the circumstances during field buildup the time constant is not a
function of the modulation factor. In fact, the time dependence is given
almost exactly by exp(-t) for most cases. For values of R considerably
greater than unity, however, the decay proceeds slightly faster.

4.4 Spatial Distributions

Figures 6-10 show the space-charge field and the space charge itself
as a function of z for several different cases. Fig. 6 gives the dis-
tribution (for the standard parameter set) at t- .1, 1, and 10. At the
first of these three times the space-charge field is still much smaller
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than the applied field and the charge buildup is proceeding at a constant
rate (see 111.4.2). The field pattern is almost exactly sinusodial, like
the illumination pattern. At t= 1, the space-charge field is beginning
to influence the electron transport. At t = 10 the steady state has been
attained and the field pattern bears no resemblence to a sinusoid.

Figures (7a)-(7c) show, for different modulation factors, the space-
charge field for t = 10, which represents the steady state or (in the cases
of M > .7) a nearly-steady state. Clearly the greater modulation factors
cause larger maxima.

The curve with M = .7 was derived using 200 spatial intervals. The
x appearing above each maximum represents numerical values obtained with
NINT = 100, which gfIves too few intervals. The resulting discrepancies

are all less than 2% (the worst cases are at the maxima) but close in-
spection reveals that they increase as one goes from negative to positive
values of z. This increasing error occurs because the charge density is
not determined on a fine enough grid in areas where its space derivative
is very large (see Fig. (8b)). This in turn degrades the values of P
which are obtained and, additionally, causes the numerical integration
of P; which gives the space-charge field, to be inaccurate. The result

is that the charge density in the negative and positive portions of the
periodic distribution do not exactly cancel, as they should when inte-
grated. Then as one integrates from -z to z an accumulating error

builds up with each period. Thus, maxima which attain successively higher
values are indication of a need for a larger number of intervals. Another
clear indication of such an occurrence is that the space-charge field at
z - + z (the "residual field"--see Sec. 111.4.6) not only be nonzero (be-

cause machine roundoff will inevitably produce some "field") but also be a
significant fraction of the maximum field.

Figures (8a)-(8c) give the space-charge distribution as a function
of z for the same conditions as prevailed for Figs. (7a)-(7c). The
charge is given in units of <n>. The differences between these distri-
butions result from the different modulation factors and can be explained
by the differences in the gradient of the light intensity, which is much
greater for larger values of M. That is, when M = .1 the contrast in
intensity between the "light" and "dark" regions is small, whereas when

M - .9 it (and the consequent difference in the photoexcitation rates) is
much greater.

Consider the M = .1 curve in Fig. (8a). The peaks of the light
intensity are at z - 0, ± 1, and ± 2 and the minima are at ± .5 and ± 1.5.

The drift distance is small compared to the interference-pattern spacing
(unity). The applied field is positive so electrons are drawn to the left.

.,
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At the intensity maxima (and minima), just as many electrons are drawn into
these regions as are drawn out of them, so the net charge there remains zero.
To the left of each maximum, the net result of the transport is to draw e-
lectrons into the region; to the right, the effect is to draw electrons from
it. Both differences result because of the gradient in the light intensity,
which produces greater or lesser numbers of photoelectrons in the regions

from which they are being drawn by the applied field than in the regions
*. . into which they are being drawn. (The peaks at +2.15 represent the net

movement of negative charge to the left.)

V,

%4
For the larger values of M in Figs. (8a)-(8c), the striking result

* is how the positive and negative charge peaks build up on either side of

the light-intensity minima, and how these peaks are so much closer to-
gether for the larger modulation factors. This spatial distribution of
course explains the large peaks in the space-charge field, and the shal-
low troughs. The extremely sharp dropoffs in p near the light-intensity
minima for M > .7 also explain the need for greater spatial discretiza-
tion for these cases.

Figures (9) and (10) compare, for M = .5, the zero-diffusion case
with a case in which A = .064. This assumed diffusion distance is thus
four times greater than the drift distance due to the applied field. As
one would expect, it causes the charge distribution beyond the ends of
the interference pattern to be more negative than before. It also shifts

-the positions of the maxima and minima of the charge distribution and
- augments the magnitudes of these extrema. In general, for large diffusion

rates the space charge distributions become quite complicated.

4.5 Effect of Varying R

The limited number of runs in which R was var.ed showed that no dif-
ferences from the standard cases resulted from taking R less than unity
(down to 10-3). For R > 100, however, differences do show up. Apparently

for large values of R most traps are filled and recombination is inhibited,
at least in comparison to the R - 1 case. Preferential recombination must
occur significantly more strongly where the traps have been emptied already,
which leads to a diminished field. The charge shifts to the left more for
larger R, reflecting the difficulty of finding empty traps after migration
from the intensely-lit regions. As a consequence, very careful consider-
ation must be given to the assumptions relating to the boundary conditions,
because for these cases a significant nonzero charge distribution may ex-
tend into the constant-illumination region. In fact, future testing pro-
cedures should be devised to assess the validity of the program results
for this limit.

C.1
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Figures (11)-(13) show some of the effects of varying R. Except for

R, the standard parameter set is assumed, with M = .5. Fig. (11) shows

the growth, in time, of the amplitude of the space-charge field. Fig. (12)

shows the space-charge field for R = .001, 1, and 1000, and Fig. (13) gives
' a portion of the space charge distribution for many values of R between

1 and 2000. In each case the largest values of R cause Esc and p to have

nonnegligible values farther out into the constant-illumination region than

in the standard case.

4.6 Miscellaneous Results; Limiting Case

One important assessment of the efficacy of the program is found by
calculating what we call the "residual field" at +z . Our assumption has
been that at the edge of the crystal all influences of the varying light
pattern have dissipated, and both p and Esc are zero. Since Esc(z) is
obtained by numerically integrating p(z) from -zo to z, and since physi-
cally the charge must be conserved within the crystal, an estimate of the
errors introduced by the numerical procedures we employ can be obtained

by calculating the residual field, or the space-charge field at +zo, and
seeing how it differs from zero. For most cases tested, the ratio of
Esc(Zo) to the maximum value atained by Esc within the crystal was less
than 10-3.

Table 2 gives some information about the effect of varying the param-
eters on the program's performance. The column labelled Eres/Emax is the
residual-field ratio discussed above, evaluated at t = 10 which is nom-
inally the steady state. "CPT" refers to the execute time, in seconds,
required for the write mode of the program to run from t = 0 to t = 10.
(The program was run on a CDC-6600.) In general, the erase mode took about
as much time as the write mode.

With any complicated set of equations, it is useful to be able to

reduce them to special cases for which the solutions can be found an-
alytically, as a check on the program and the overall procedure. In this
case, one can eliminate the drift and diffusion terms by striking out the
first four terms of Eqn. (13a). The right-hand sides of Eqn. (13) then
become identical, and it is easy to see, by using the initial conditions,
that u and v are also identical. Of course, since those terms are ex-
actly the ones responsible for the migration of negative charge, it follows

that there ought to be no separation of positive and negative charge - a
condition represented by p E 0, or u- v E 0. Nevertheless, as a check
on the program it is useful to find the solution for u. This check is
useful only for the short time-scale discussed in Sec. 111.4.2.
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Substituting u for v in the second equation leads to

du
d- au 2 -bu -c (30)

which can be integrated directly:

4/. u(t)du ft

4 ______ jdt' - -t(31)

We have defined a, b, and c, which are constants with respect to time, as

a -. RG 2  (32a)

b - C1 + F(z)C2  (32b)
(32c)

C - -F(z)C .3

Since R, Gi, G2 and F(z) are all positive, b
2 - 4ac > 0 and the indefinite

integral is(
3)

(b2 - 41c)2Au' + b - (b - 4ac)h

2au' + b + (b" 4ac)1

After applying the initial condition (u - 0), making some convenient defini-
tions, and doing a little algebra, one arrives at

In + Clu - -(b'- 4ac) t  (33)
+ c"u

where

S  b(1-a) 0 (34a)

_ 2act > 0 (34b)
=b(l+ a)

Sb(b - 4ac) - h < (34c)
V.
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If 0 < c'u < 1, this reduces to

u'zt) - 1 - f(t) (5u('0C I + ell f (t) (35)

where

f(t) - exp (b' - 4ac)' (36)

and, of course, c and c" contain the z-dependence.

One special case of interest occurs when G >> G2 and G1 >> RG2 •

These conditions are typical of the crystals discussed in Ref. 1. In this
case, the square roots which appear can all be approximated with a Taylor
expansion. Eventually one obtains

u(z,t) z F(z) - exp (37)

which is accurate to 0 (G2/GI) or O(RG2/GI), whichever is larger.

Program GRATING produced results agreeing with Eqn. (37) to at least

five significant figures for each case tested.
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MAX(Es) MIN(E sc -M MAX-MIN 2MM
E 1-M E 1+M E M-H

2
app app app

1
3 .5000 .5 -.2500 -.25 .7500 .75

.40 .6665 .6667 -.2860 -.2857 .9523 .9524

.50 .9975 1 -.3338 -.3333 1.331 1.333

.60 1.482 1.5 -.3758 -.375 1.857 1.875

2/3 1.943 2 -.4005 -.4 2.344 2.4

Table 111-1. Numerical and analytical results for the steady-
state space-charge field for the zero-diffusion
case and various values of the modulation factor.
Numerical values were derived using the standard
parameter set and t= 10.
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NINT M A B R CPT E /E,., sec)res max
(sec)

100 .1 0 .016 1 140 1 x 10-
7

.3 140 7 x 10-4

.5 140 2 x 103

.7 150 1 x 10 -2

.9 155 8 x I0 -

200 .7 0 .016 1 300 3 x 10- 4

.9 310 4 x 10
- 3

Op0 .5 01 nir10 10- 5

VLV 1. SOJ 4U x - 4

.032 150 2.4 x 10

.048 165

.064 165 3 x 10 -3

.080 165 4 x 10-

200 .080 290 4 x 10-
4

C.-4

100 .5 0 .016 1 140 2 x 105

100 140 4 x 105
500 180 1 x 10-6

1000 230 3 x 10- 3

2000 315 3 x 10-

200 1000 490 1 x 106

Table 111-2. Peformance of program GRATING for various
parameter sets, as measured by execution
time required to reach t = 10 (CPT) and by
the residual field ratio (See 111.4.6).
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-Z -3 -2 -10 12 3 z z

Fig. 1 Ideal illumination function F(z) with M .5 (solid line) and

with a phase-shifted distribution (e.g., p(z)) superposed.
z =3. 5.

* F(z)

-3-2 -10 12 3

*Fig. 2 Illumination function F(z) used in the program, with M.1 .5,

o=0. =8 2, and z = 5 (off scale). F(z) is given in Eqn. (20).
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app M .

0 2 4 6 8 10

Fig. 3 Amplitude of the space-charge field as a function of t for
* various modulation factors, M.
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rig. 4 Maximum value of the space-charge field as a function of t
for various modulation factors, M.
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!0
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0
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!0
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0

0
000

00
0oo

1 2 3 4

t

Fig. 5 Maximum value of the space-charge field during the
erase mode, as a function of t. Time is measured

from the moment the erase mode is initiated.
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Fig. 6 The space-charge field, E as a function of z

4sc

for three times. Note that the scales differ.
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.. 5 E

appEE

sc 0 M =.5

app

.25 E
app

25

-.5Eapp' -3 -2 -1 0 1 2 3

Fig. 7 (a) The space-charge field as a function of z for the
steady-state. Modulation factors are .1, .3,
and .5.
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9.

2E 2
app N

1.5 E
app

E
app

E
Sc

.4

' .5 E
app

M .7
0

4%

-5 E app

-3 -2 -1 0 1 2 3
'4.

Fig. 7(b) The space-charge field as a function of z for the
steady-state. Modulation factor is .7. These results
were obtained with NINT = 200. The x marks above
each peak give the maxima obtained with NINT - 100
and represent the most extreme deviations in the
curves obtained in these two ways.
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2 x 1o6  _

So -~.

,-

I x 106-I x 10 6 _

.5 x 10 6  I0 M -. 3

-. 5 x 10

".4
-. 25 x10 6

£.9.

0M
-. 25 x 106

I !I I I I z

-3 -2 -1 0 1 2 3

Fig. 8(a) The space-charge, p, as a function of z for the
steady-state, in units of <n>. Note the different
scales used for each curve. Modulation factors are.1, .3, and .5,
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Fig. 8 (b) The space-charge, p, as a function of z for the
4" steady-state, in units of <n>. Note the different

i" scales used for each curve. Modulation factors are
P 7 and .8.
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Fig. 8(c) The space-charge, P , as a function of z for
the steady-state, in units of <n>. Modulation
factor is .9.
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!Fig. 9 The space-charge fedas afucino zfrth

~steady-state for two different diffusion-drift

distances. Except for A, the standard parameter
mll set is assumed with M ,- .5.
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Fig. 10 The space-charge, p as a function of z for
the steady-state for two different diffusion-
drift distances. Except for A, the standard
parameter set is assumed, with M = .5.
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IV. ELECTRON TRANSPORT

A. SOLUTION OF THE ELECTRON TRANSPORT EQUATION
BY THE METHOD OF DISCRETE ORDINATES

1. Introduction

Solutions of electron transport problems were obtained by the method
of discrete ordinates (SN) using both computer codes written by ARCON

*personnel and discrete ordinates codes orginally written for the solution
of neutron transport problems in nuclear reactors. It was found that
developing and using our own discrete ordinates codes provided us with
the means and insight to take advantage of the powerful S transport
codes, available from the nuclear engineering fifil. Devefopment of the
ARCON SN codes led to our adaptation of ONETRAN , the finite element,
multigroup, discrete ordinates computer code (developed at Los Alamos
National Laboratory), to the solution of electron transport problems.
With both the ARCON codes and ONETRAN we were able to obtain electron
energy and charge deposition profiles in metals which compared very well
with other methods of transport calculation, Monte Carlo and semi-analytical
approximation, as will be shown. We begin this discussion with an out-
line of the method of discrete ordinates (SN).

2. The Method of Discrete Ordinates-General Discussion

The basic discrete ordinates (SN ) algorithm was orginated by Carlson
and Lathrop(2). The original work was performed to solve neutron transport
problems. Indeed all major efforts in SN have been directed toward neutral
particle transport (this includes photons) due to the high level of interest
in nuclear reactor flux calculations and shielding studies. Since electron
and photon transport in plane geometry are of interest here, we shall con-
sider the one-dimensional version of the discrete ordinate form of the
transport equation. This restriction facilitates illustration and does not
impose severe limitations on applicability since many experimental situations

involve infinite or semi-infinite slab geomerty.

In plane geometry, the time-independent transport equation for the
particle flux is

19-
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where 4(x,ji,E) is the particle flux (particle number density times their
speed;in the formulation of the electron transport equation, 4 is the
number density), x is the position coordinate in the transport medium
(see Fig. 1), P is the direction cosine of the particle trajectory with

respect to the x-axis, and E is the particle energy. The total interaction

cross section is denoted by o(E), while the cross section for scattering
from direction 1j' to direction V is denoted by aS(p',IjE). The last term,
Q(x,p,E) is the inhomogeneous source term to account for particle sources

which are independent of *.

In the method of discrete ordinates (or S method) the angular variable,
p, is discretized into a small number of directions or rays. The transport
equation is then written for each ray. Each of these equations, which in-
cludes the scattering or re-direction terms for ray-to-ray transfer, can
then be solved by either a finite difference apDroximation scheme for the
spatial derivative terms. (An alternative, discrete ordinate method other
than S involves the treatment of the spatial dependence by a procedure in
which he set of discrete ordinate differential equations is solved directly
by the matrix eigenvalue method.

Discretization of the angular variable is accomplished by selecting a
set of, say, K discrete directions or rays, 1k' k=1,2,... ,K and corresponding
quadrative weights wl, w2 .... w., which will be used for numerical integra-
tions over angle. (The wost freruent choice for this set of directions and

weights is the Gaussian quadrature set since the angular integrations are

exact for the order of Legendre series expansion of the flux. The transport
equation, (Eqn. 1) is then evaluated at each of the discrete directions, Pk'
so that the K discrete ordinate equations are

-(X

@ ,)

I6.
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Figure 1. One-dimensional slab geometry4/_.

Figure 2. Spatial mesh for discretzaton of

discrete ordinates equations
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At this point it is opportune to suppress the energy dependence of the
variables in Eqn. 2. In fact, energy dependent problems are solved using
the multigroup approach in which the range of particle energies is divided
into a number of energy groups and the discretized transport equation is
then solved using "group-averaged" quantities (flux, cross sections and

A sources) for each group. The down-scatter or up-scatter of particles from
one energy to a state of lower or higher energy is accounted for by the in-
clusion of group-to-group transfer terms which are treated as effective
absorptions in the transport equation for a particular group from one group

* .and reappear as source terms (in accordance with particle conservation con-
siderations) in one or more of the other group transport equations. Multi-
group SN computer codes are structured in such a way that the sweep through
all energy groups is called "outer iteration" while the iterative process
for the solution of the spatial dependence of the flux (to be discussed
next) is known as "inner iteration". If only down-scattering is present,
i.e. scattering from a group of higher energy to a group of lower energy,
as is the case for electrons and photons, only one outer iteration is
necessary. It is by this method of energy discretization that explicit
energy dependence is removed from the discrete ordinate equations.

This multigroup approximation method then allows us to focus our
attention on the numerical solution of the one-speed or "in group" transport
equation. If for simplicity we omit an index denoting the energy group
under consideration, Eqn. 2 now takes the form

9¢ s ) + (3

where it is to be understood that the notation ,o,Q now refer to quantities
for a particular energy group, and the source term Q includes "in-scatter"
sources from other groups.

The spatial discretization of Eqn. 3 is accomplished by the introduction
of a spatial mesh x,x, . xI, where xI is the midpoint of the i-th mesh cell
(see Fig. 2) The oundaries of the i-th cell are denoted by x.. These
must also be made to coincide with material boundaries, for obvi6hs reasons
(i.e. variation of cross section values with material; inposition of boundary
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conditions). If the spatial cell width is defined for the i-th cell as

-;- X,'-. ,

then the finite differenced form of Eqn. 3 can be written as

AXi

where the superscripts refer to quantities in the i-th spatial cell, and

the subscripts refer to the k-th angular ordinate. The quantities
are the flux values at the edges of cell i, while the quantities * and Q
are the average values of the flux and source terms for cell i. Clearly

. Eqn. 5 cannot be solved without further information, since it is a system
of K equations with (21+1)K unknowns [(I + 1)K values of the cell edge
fluxes plus IK values of the cell average fluxes]. What is needed here is
a means for relating cell-edge fluxes to cell-average fluxes.

2.1 The Diamond Difference Approximation

The simplest scheme for reducing the number of unknowns is given by
the "diamond difference"(2) approximation in which the cell-center flux is
taken to be the simple average of the cell-edge fluxes, or

Then Eqn. (5) becomes
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where the source term on the right, Sk is the sum of the in-scattering
source term plus the fixed source term; that is

.
i4L (i;A A~ + Q*

-'-.

ii
The solution process of Eqn. 7 is an iterative one. It is assumed that Sk

, . is known. Eqn. 7 is solved for the edge fluxes with either a forward or

backward sweep through the spatial mesh, depending on the boundary conditions
and direction of p k" The diamond difference approximation is then applied i
to obtain the cell center flux values from which an updated estimate of Sk

-a.. is obtained. Then the entire process is repeated as many times as is
necesary for convergence of the flux to be achieved. The convergence
criterion is usually of the following type:

where, for the n-th iteration, 4i 'n is the cell edge scalar flux given by

for the n-thth /0(u4

k='

and c is a small number, usually in the range 10
- 3 to 10- 5

Because of the spatial differencing approximation (Eqn. 6), there are
now (I+I)K unknowns in the set of IK equations given by Eqn. 7. This to-
gether with K boundary conditions (values of the angular flux at the
boundaries) provides sufficient information for a solution. One may solve

Eqn. 7 explicitly for either Vk or i+ :

'i - C _ _ _ _ _ _ _ _ _
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The choice of which of these equations to use, the positive sweep, Eqn. Ila,

or the negative sweep, Eqn. l1b, depends on whether the particular angle k
is forward or back directed. That is, if one knows the value of the

incoming flux, *k' (pk>O) at the left boundary of the slab (x=O), then it
3/2 5/2 IA

is necessary to use Eqn.1Ha to obtain k 4 k .... for ik>O. Then on

the reverse sweep (k> 0 ) the known flux value on the right boundary, *k+
I- I 13/2 11

is used to initiate this sequential calculation for - k-2 .k Ink k k"

general, it may be said that Eqns. Ila, Ilb are used on an alternating basis,
the first for k>0 and the second for k< 0

The above solution scheme, utilizing the diamond difference approxima-

tion, is the basis for many discrete ordinates computer codes. The ARCON
transport code, BEAMSRC:, makes use of it in calculating charge distribu-
tions, backscatter and transmission current fractions, and energy deposition

profiles resulting from an electron beam incident on Aluminum. Another
ARGON SN code, UNISORC, also utilizes the diamond difference approximation

to calculate particle fluxes resulting from distributed sources in one and
two material region slab geometry. Some results obtained with these codes
will be shown in a later section.

2.2 Coarse Mesh Rebalance

ARCON discrete ordinates codes as well as most standard SN codes make

use of a convergence acceleration device known as coarse mesh rebalance.

The principle employed here is that of invoking particle conservation at

coarse spatial mesh intervals to correct for accumulated spatial discreti-

zation and flux extrapolation errors. The rebalance computation is usually

done after every iteration early in the SN calculation and then on an

intermittent basis, perhaps every five or ten iterations, for the re-

mainder of the calculation. We have found that solution convergence speed

can be increased by as much as a factor of two when this procedure is

employed.

The particle conservation equations for coarse mesh rebalance are

obtained as follows(3): the fine mesh grid is divided into a number, H,

of coarse mesh intervals of equal size 6x such that (see Fig. 3)

6x AX, (12)

where, as before, I is the total number of fine mesh cells of width Ax

(for the sake of simplicity we restrict ourselves to a one-material medium
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of constant fine mesh width Ax - extension to multilayered media is
straightforward). The particle

A X
1 .2 3 4" + 3 +-----)-3 -3

Jj I

Figure 3. Coarse mesh overlay configuration
I=16, _=4

M
currents crossing the m-th coarse mesh cell boundaries are given as j±
where the (±) denotes crossing the right (+) and left (-) boundaries,
respectively. The j± are defined in terms of the angular fluxes at these
boundaries by

*mj~j and dm;1(ij p (13)
0 -

In our SN programs, these integrals are evaluated by Gaussian quadrature.
Then for the configuration of Fig. 3 the particle balance equations
are

U j + j2 +6X =S 16x (cell 1)+" a

(J uret-rs - 3 +ngSx (cell 2)
+ + a(14)

03-j 3 ) - (j 2  i 4  + Cy 1) 6X = S36X (cell 3)+j3 + a
4'-j3 4) _(j 3  + CY D4 X= S4 6X (cell 4)

+ a
net flow across removal sources
cell boundaries term (scattering

plus fixed)

+a00

Inou N  rorms hee negas reealaedbyGusinzuartue

Then fr theconfiuratin of ig. 3the prticl baane qutin



vF .-. r .-. W.M % .6 - ..

were, in the above equations, a is the absorption cross section and the

a are the sums, over all fine mesh cells in coarse mesh cell m,

of the cell - center scalar fluxes and sources. These balance equations

would be exact if the 0 6x and Sm6x were defined as true integral quantities

6¢dx and /sdx, but since spatial discretization'is inherent in the

flux and source computations on the fine mesh, such integrations would
not significantly improve the calculation.

In actual fact, the j+ do not satisfy Eqn. (14) due to discretization
errors. They can however be forced to satisfy a similar set of relations
if they are multiplied by a set of rebalance factors, fm, which are
actually measures of the extent to which deviation from particle con-
servation is present. When this is done, the balance equations become

f4( +I - j-1) + f2J_2 + 0af1 06x = S16x

do ~ f2(J+ 2 _ i _2) - f j+ I + f j - 3 + Cy f 2 26X = S2 6X ( 5j2 ~.. a 2 (15)

f3(j+3 j_1) + f2j+
2 + f 1_4 + oa c33X = S3Sx

f 40+4 - j-4) - f3+ + oa f 4"'6x = S46x

In these equations the unknowns are the rebalance factors fmS and the
solution is readily obtainable via matrix inversion. The next step is
to multiply the fine mesh angular flux values by their appropriate re-
balance factor. The SN calculation then continues using these "corrected"
flux values.

In the ARCON S codes one has the choice of using or not using the
coarse mesh rebalance option. If it is used, one may then choose the
number of coarse mesh intervals desired as well as the number of iterations
between rebalances. An interesting consequence of using coarse mesh re-
balance is the following: the iterative solution of Eqn. (5) can be
thought of as an order-of-scattering development. That is, each iteration
corresponds to an order of scattering. This, however, is no longer true
when coarse mesh rebalance is used, and while convergence of the solution
will in general be obtained more quickly with it, the converged solution
itself may be slightly different (4th place and beyond) as a result.

The Los Alamos code, ONETRAN, implements coarse mesh rebalance only
by specifying the coarse mesh cell boundaries to be coincident with the
material boundaries of the scattering medium. Thus, for a one material
medium, coarse mesh rebalance actually amounts to whole system rebalance.
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2.3 The Finite Element or Linear Discontinuous Flux Extrapolation Scheme

There are, in addition to diamond difference, several flux extrapolation
schemes of higher order approximation. The principal advantage in using
these schemes is that converged, stable flux solutions may be obtained
using a coarser spatial mesh than that required for the diamond difference
solution of the same accuracy. Another advantage is that the computation
of negative fluxes (an obviously non-physical numerical artifact), while
not uncommon in the diamond difference case, occurs with much less frequency
when a higher order scheme is used. When negative fluxes do occur, in
diamond difference codes the standard fix-up procedure is to reset the
negative flux values to zero and then proceed to the next iteration. The
number of iterations required to achieve convergence is increased accoidingly,
thus prolonging the length of the overall computation time. This problem
can be particularly severe when the flux is sharply increasing or decreasing
over a short distance, such as may occur at or near a material interface.

Since we make extensive use of ONETRAN in our electron transport
calculations, the linear discontinuous scheme, implemented in ONETRAN,is briefly discussed here. The flux and source functions within a mesh

cell are expanded in terms of a set of piecewise linear basis functions.
It is also assumed that the flux and source functions are discontinuous
at the mesh cell boundaries. Eventually, in practice after a sufficient
number of iterations, the magnitude of the discontinuity becomes small
as the problem converges and is in fact inconsequential particularly if
cell center rather than edge fluxes are of interest. The explicit

equations for the cell edge fluxes as they are coded in ONETRAN are (for

Ilk> 0)

'~1L

~'~.

2 0
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where the quantities 0± , Ob are as shown in Fig. 4,ZI
.46

-e

CELL G- I CELL L. L 1 l

Figure 4. Linear discontinuous representation of the angular flux
in the i-th mesh cell. The . indicates actual value of
angular flux on the mesh cell boundary. *b is the
angular flux from the previous mesh-cell boundary.

b
with k being the cell edge flux (right edge) calculated for the (i-l)the
cell and S i L

k 9 Sk are obtained from their corresponding 0 values as in

Eqn. 8. Similar expressions apply for the left-directed sweep (k<0).

In general, higher order flux extrapolation schemes are either positive
(negative fluxes never occur) or near-positive (negative fluxes very seldom
occur). Thus negative flux fixup is unnecessary. Since the linear dis-
continuous scheme is near positive, ONETRAN does not perform negative
flux fixup. (There is an option in ONETRAN where diamond difference is
used in which case negative flux fixup is done.)

2.4 The ARCON Discrete Ordinates Code Collection-SNARC

Discrete ordinates codes were written at ARCON for the purpose of testing

discrete ordinates algorithms and investigating the feasibility of applying
S N techniques to electron transport problems. Since most, if not all,
pre-packaged S codes such as DTF69(9) and ONETRAN(-) were written to
incorporate a gigh degree of flexibility (i.e. the inclusion of plane,
spherical and cylindrical geometries, elaborate cross section mixing
packages) for use in a large number of neutron applications, it was found
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" that these codes were unnecessarily large and complicated to use (for
rapid job turn-around) as a test bed for electroti transport algorithms.
For this reason, a collection of smaller codes, SNARC, was written.
This set of codes can be classified into three general categories, a
code for handling problems involving particle beam sources (BEAMSRC),
boundary sources with specifiable angular distributions (ONEDSN) anduniformly distributed sources (UNISORC). The beam source code is con-
structed to perform multigroup calculations. All three codes employ the
diamond difference approximation and apply only to plane or slab geometry.
These codes can accept as input either a scattering or redistribution
probability function in analytic form or Legendre coefficients of series
approximations to the redistribution function. Validity of implementation
of the S algorithm by these codes has been tested against published
benchmar solutions. We will now show examples of the results obtained.

2.4.1 Program ONEDSN

Our first example is a comparison of the results of ONEDSN with the
analytical calculations of Ishiguro(4) who obtained transmission fractions
and flux distributions through single and double slabs for isotropic and
anisotropic scattering using Case's method.(5) Table 1 shows our results
alongside those of Ref. 4 for the case of anisotropic scattering in two
adjacent slabs, each of unit thickness, with unit incident flux whose
angular distribution is given by

on the vacuum surface of the left slab (Fig. 5)

Figure 5. Problem geometry for comparison of ONEDSN
calculations with Ref. 4•
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The two media are characterized by their different albedos, c =0.9,
c 2=0.8 and coefficients of scattering anisotropy, b1 and b . 6ur
angular redistribution function is given by 2

Four cases were studied: b =b =0.0 (isotropic scattering); b1=0.0,
b =05b=0.5,b=O.0; b =6.5,b2=0.5
2 '1. b2=0 1 2

TABLE I

Comparison of O.EDSN calculations with those of
Ishiguro (Ref. 4 )

Y, ON~.b-W R.-. ON.IDSM ef."/ O .iEMN Refr.. - OF D.P Rg.f-

9APPY1/ ~.D 2-P~DV~ 1/0M /-?7,71/ 2-CI43 .I4 .Ptlf /.,PP23

14 0.7527 P-7542 0.700 0.7543 O.9e'o9 0.Js~tf 6-fZS M.J

F4t'eovMA A..2kof 0.Ziotf e.713 0.263 P2747 AV.277 .215r 4.2?S
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The transmission results are identical to the fourth decimal place. The

flux error tolerance used in the ONEDSN calculations was 10

In addition to these cases, ONEDSN results were also obtained for
a plane isotropic flux source and a plane cosine flux source on the
left surface of both single and two slab media. The flux and emergent
currents were compared with Ref. 4, and agreement was found to be ex-
cellent. It should also be pointed out here that neither coarse mesh
rebalancing nor negative flux fixup was employed here. ONEDSN represents
our simplest SN code version. A code listing is provided in Vol. II.

2.4.2 Application of Program BEAMSRC to Henyey-Greenstein Scattering

The next example of the performance of the ARCON SN code is a comparison

of results obtained using BEAMSRC for a monodirectional particle beam inci-
dent on a slab with published data (Van de Hulst, Ref. 6 ) obtained with
Case's eigenfunction method. The angular redistribution function is given
by the Henyey-Greenstein formula( 6)

F;7

where g is the asymmetry factor (0:g51.0),

.44

andE(k 2 is the complete elliptic integral.

*11
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In Table 2 we present comparisons of transmission and backscatter fractions
for the cases of a normally incident beam on two slabs of thickness T=1.0
and T=2.0 mean full paths, for two g values (0.5 and 0.75), and two albedo
values (c=1.O, c=0.4). The notation (a,bc,d) in this table refer to the

I following four cases of spatial and angular discretization:

a) I= 50, K=12
b) I= 50, K-24
c) 1=100, K=12
d) I=100, K=24

where I and I are the total number of spatial mesh cells and discrete
angular ordinates, respectively (as defined earlier in Sec. 1.1). In
these, as in all BEAMSRC calculations, coarse mesh rebalance and negative
flux fixup were used.
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TABLE 2.

Comparison of BEAMSRC transmission and
backscatter fractions for Henyey-Greenstein
scattering with those of Van de Huist (Ref. 6)
for a normally incident beam.

ALBEDO = 1.0 ALBEDO = 0.4

TRANSMISSION BACKSCATTER, TRANSMISSION BACKSCATTER

BEAMSRC REF. 6 BEAMSRC REF. 6 BEAMSRC REF. 6 BEAMSRC REF. 6

4-4
Is , a) 0.82596 a) 0.17404 a) 0.48875 a) 0.02769

C) c b) 0.82597 b) 0.17403 b) 0.48865 b) 0.02751
0.82389 0.17612 0.48244 0.02688

Sc) 0.82491 c) 0.17509 c) 0.48862 c) 0.02789
W d) 0.82492 d) 0.17508 d) 0.48853 d) 0.02770

,.. a) 0.92292 a) 0.07708 a) 0.52289 a) 0.01074
* ~~ c b) 0.92325 b)0065b) 0.52300 b .16

E 10.92126 0.07874 0.51656 0.01050
PQ c) 0.92194 c) 0.07806 c) 0.52297 c) 0.01083

d) 0.92227 d) 0.07773 d) 0.52308 d) 0.01069

z in a) .68367 a) .31633 a) .22850 a) .032160
oob) .68375 b) .31625 b) .22844 b) .031963

C41 .67970 .32030 .22021 .03100
Sc) .68163 c) .31837 c) .22805 c) .032514
d) .68170 d) .31830 d) .22800 d) .032314

a) .84140 a) .15860 a) .26738 a) .012605
4 ~ b) .84196 b) .15804 b) .26754 b) .012451

o.83682 .16318 .25710 .01228

S c) .83885 c) .16115 c) .26718 c) .012778
rn ool d) .83940 d) .16060 d) .26734 d) .012622

The listing of BEAMSRC provided in Vol. 11 is the final version and con-
tains screened-Rutherford rather than Henyey-Greenstein cross sections.

208



2.4.3 Application of Program BEAMSRC to Electron Transport Problems

In the treatment of electron transport problems, program BEAMSRC was

. run in both the one-group and multigroup modes. The one-group calculations
were performed for two reasons. The first of these is that a set of
calculations by Morel( 7) exists in the literature for the case of an
electron beam normally incident on Aluminum, so that direct comparisons of
flux and transmission fractions 4re possible, thus further validating the
SN algorithm used in the ARCON codes. Secondly, the successful operation

of a multigroup electron transport code depends in large measure on the
.X validity of the one-group algorithm.

A

2.4.3.1 One-Group Calculations

The model assumed for electron scattering is given by the following
expression for the screened Rutherford cross section for elastic nuclear
scattering(g*).

% F -, ,\

where

T = kinetic electron energy in mc2 (electron rest-mass) units

Z - atomic number of the transport medium

N = Avogadro's number
a

r = e2 /mc2 (classical electron radius)

A - atomic weight of the transport medium

n - atomic screening constant

w - cosine of the scattering angle.

The units of the cross section are (cm /g). The screening constant n is
given by the Moliere formula( 7)

0.
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The angular dependence of the scattering cross section has an anisotropic
character which increases with electron energy. This anisotropy is
severe enough to cause either numerical instability or very slow con-
vergence in SN calculations. In order to circumvent this difficulty, a
device for removing the anisotropy known as the "extended transport cor-
rection is used. (I) Briefly, the effect of the transport correction is
to separate out the delta function component (no angular deflection) from
the scattering cross section, leaving behind a more manageable (weak
anisotropy) angular behavior for the cross section. To demonstrate this,
we expand the angular part of the scattering cross section in a Legendre
series as follows:

• , (/,,(X+0 el (P+X (A "FL 0+',(P (23)

where the a are the Legendre coefficients of o(V,ji') given by

,% ,

and the P are Legendre polynomials. Then if we resolve the series in

three terms such as

_-, 210
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we find that if the value of L is chosen such that (o-aL) is sufficiently
small for Z>L, a condition not difficult to satisfy, then the second term
is negligible compared with the first. The third term is identically
0L6(1-P) , and we have

Since the 6 function does not contribute to the scattered flux (this can be
verified by substituting the above expression into the transport equation), it
need not be considered further. If we then define the transport corrected
cross section coefficients as

then

1 -,

The Legendre coefficients for the screened Rutherford cross section are
most easily evaluated using the following expressions(

7 )

IC1
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where the total scattering cross section ao is given by

n is the screening constant (energy dependent), and the C£ are related

by the recursion equations

CO =

61 ,e ) 04 f2-

i

The. e(pesio -o the OA she

Given that the anisotropy of the scattering cross section can be

handled in a feasible manner as shown above, the problem of dealing with

a monodirectional beam source requires attention. The difficulty arises

when one tries to relate the purely mathematical representation of a

delta function in angle to a numerical representation suitable for in-

corporation into the S N discrete angle formulation. In fact, the delta

function requires an impractically long (if not infinite) Legendre in

angle for an adequate representation. To circumvent this difficulty, the

unscattered beam source is replaced by a once-scattered source, spatially
distributed across the scattering medium, thus removing the problem of
having to devise a numerical method for handling delta functions. The
once-scattered source is introduced into the SN calculaton as any other

4Zl;
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spatially distributed source would be, and the unscattered flux due to the
incident beam is treated separately analytically. The expression for the
once-scattered source distribution, Ql(x,11), is obtained by direct
substitution of the unscattered flux, *u(x, ), into the collision
density kernel integral. That is

where a *(p,p ) is the transport-corrected scattering cross section. (The
subscript 'u' is intended to denote "unscattered".)

The expression for the unscattered flux resulting from a monodirectionally
incident beam along direction lio(=cos 0O)is(see Fig.6)

where X is the total transport-corrected electron mean free path given by

E LVCrfeft

Figure 6. Geometry for electron beam discrete
ordinates transport calculation

213 .

m=U



$1

where oa and C are the electron absorption (actually energy downscatter)

cross section and albedo, respectively.

where the Legendre expansion

has been substituted for the scattering cross section. The expression,
Eqn. 36, for the once-scattered source is not difficult to evaluate.
Furthermore, the unscattered flux expression as given by Eqn. 34 is
already in a useful form for obtaining the dose contribution due to direct
radiation. The once-scattered source formulation for handling monodirec-
tional beam sources is not only used in program BEAMSRC. We also employ
it in conjunction with ONETRAN. In fact one of the principal functions
of BEAMSRC is that sections (or subroutines) of it provide pieces of
code that serve as input data preparation modules for our ONETRAN electron
transport calculations.

A set of nine BEAMSRC runs were made for three electron source energies,
0.01, 0.1, and 1.0 Mev, normally incident on three thicknesses of Aluminum.
These runs correspond exactly to the set of runs reported in Ref. 7.
Comparisons of scalar flux values calculated using BEAMSRC with Morel's
results are shown in Figs. 7, 8, 9. The agreement is excellent for all
three source energies.

2.4.3.2 Multigroup Calculations

In multigroup S calculations the energy group widths, AE, are

usually obtained by Nividing the total energy range of the particle by the

number of groups. This simple criterion need not necessarily apply in the
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Figs. 7, 8, 9 (Frem Rf. 7). Scalar Flux comparisons for normally incident
electrcn beams (Energy = 0.01 MV, Fig. 7; 0.I MeV, Fig. 8; 1.0 MeV, Fig. 9)
cn Alumninum slabs. 71ve 's and +'s correspond to Monte Carlo and SN (DTF69)
calculations of Ref. 7. e a's represent the BEAMSRC results.
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case of the electron transport. For a given change AE in electron energy,
the average distance or change in pathlength that the electron travels
within that energy interval can differ by as much as a factor of 20 in

Aluminum over the electron energy range 200 keV down to about 3 keV.
This is due to the variation of the material stopping power with energy.

Program BEAMSRC was used as a test bed to determine whether or not

adoption of a variable energy group width would be of significant ad-

vantage. A criterion was devised for determining the energy group widths

in BEAMSRC for which the probability of absorption was the same for all

groups (i.e., a constant albedo). Results are shown in Figure 10 for a

20 group test run of BEAMSRC. A 200 keV electron beam was assumed normally

incident on an Aluminum slab approximately one electron range in thickness

(0.04 g/cm2). A Gaussian quadrature set of 12 angles (S12 calculation)
and a 50 mesh cell spatial discretization were used. The curve shows the
BEAMSRC results for the energy deposition profile, while the histogram
was obtained with the Monte Carlo code, TIGER of the Halbleib and
Vandevender( 10). The TIGER calculation was made using 10000 electron case

histories. The maximum estimated standard error was 4 percent.

It can been seen from Fig. 10 that the energy disposition profiles
obtained by the two methods, SN and Monte Carlo, agree fairly well until
about 0.15g/cm 2 penetration depth. Beyond this point, the SN curve is

consistently higher than the Monte Carlo histogram. This seems to in-
dicate that the variable energy group width scheme may not be optimal
at least when used in conjunction with the diamond difference and coarse
mesh rebalance of BEAMSRC. As will be shown in section 2.5 a constant
energy group width used in conjunction with the finite element spatial
differencing scheme of ONETRAN produces better agreement with the Monte
Carlo result.

In addition to energy disposition profiles, it is also possible to
obtain flux curves as a function of electron energy with the SN method.
An example of a BEAMSRC multigroup flux calculation is shown in Fig. 11
where a 20 keV electron beam was assumed normally incident on a gold

target of thickness 0.75 g/cm 2 . The calculation was performed with 20
energy groups, each group having the same albedo. The direct, or un-
scattered, flux, a decaying exponential is not shown. It can be seen
that as the electron energy decreases, the flux asymmetry also decreases,
a consequence of multiple scattering.

Program listings of ONEDSN, BEAMSRC and UNISORC, an SN code for

spatially distributed sources, are given in Vol. II.
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Figure 10. Comparison of Energy Deposition Profiles as Calculated
by BEAMSRC and TIGER for 200 keY Electron Beam normally
incident on Aluminurm.
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2.5 Electron Transport Calculations with ONETRAN (1)

Perhaps the most important benefit that was derived from the writing of
the SNARC programs (BEAMSRC in particular) was that it greatly aided us in
applying ONETRAN to electron transport problems. The process of writing
and debugging our own SN code enabled us to decipher workings of the
ONETRAN code by comparing, iteration-by-iteration, the results of ONETRAN
(using the diamond difference option) and BEAMSRC for the same problem.
Furthermore, the BEAMSRC code provided us with a set of routines for calcu-
lating cross sections and source distributions, which we have combined with
a set of interface routines to translate these quantities into a ONETRAN
compatible input data form. Thus, we have the capability of running ONETRAN
for electron transport problems with a minimum of complication. For example,
to run a single slab beam problem, the only input data required are the incident
beam energy and angle, slab thickness and material, the number of energy
groups, the number of spatial mesh cells, and the order of the angular dis-
crete ordinate approximation. With slight variations of this "front-end"
code (which we have named ONETRIN) for ONETRAN, we are able to run spatially
distributed electron source problems, problems with electron sources with
uniform and non-uniform angular distributions located on slab surfaces, and
two material interface problems. A program listing of ONETRIN is provided
in Vol. II.

Minor modifications were made to the ONETRAN output routines to print
out the results in compact form and to generate data files suitable for
CRT plots, printer plots and energy deposition calculations.

Examples of energy deposition profile results obtained with ONETRAN
for electron beams normally incident on Aluminum slabs are shown in
Figures 12-16. The incident beam energies are 0.01 MeV (Fig. 12), 0.05
MeV (Fig. 13), 0.20 MeV (Fig. 14), 0.50 MeV (Fig. 15) and 1.0 MeV (Fig. 16).
In all cases there are three curves shown corresponding to 10 group, 20
group and 40 group ONETRAN calculations. The histograms are Monte Carlo
results obtained with TIGER(10 ). The Monte Carlo program was run with
10,000 electron case histories. The slab thicknesses were chosen to cor-
respond to approximately 1.1 electron ranges. As can be seen, the agreement
between the ONETRAN curves and the TIGER histograms is very good across the
entire range of source energies, and as one might expect, increasing the
number of energy groups results in improved agreement between the two
methods of calculation. In all cases, extended S12 calculations were
performed using the transport corrected screened Rutherford cross sections
(Eqn. 32). The down-scatter or group-to-group cross sections were cal-
culated using the stopping power formula of Rohrlich and Carlson (11 ). As
can be seen, this choice of cross section and stopping power expression
seems adequate for the Aluminum calculations. However, some of this suc-
cess may be fortuitous for the following two reasons: 1) Aluminum is a low z

-1

219 :

- . . ..

a- . .I



' " ' ' ' ' " ' *' : ' 7. 7.i

material, so that errors due to using the screened-Rutherford cross section

rather than the Mott cross section are not as serious as would be the case

for high z materials; and 2) the Monte Carlo calculations take straggling

into account while the SN calculations do not. A straggling effect is pres-

ent in the SN calculations, but it's presence is not legitimate. There is

artificial straggling due to the energy discretization, an artifact of the

SN algorithm and has nothing to do with physical straggling.

Figure 17 shows this straggling effect. It is a plot of the energy
spectrum of electrons transmitted through a slab of Aluminum of thickness
0.02g/cm2 (-0.5 electron range units) resulting from a 200 keV slant beam
(cos0 o= .916667, see Fig. 6) incident on the slab. The histogram re-
presents the TIGER Monte Carlo result in which physical straggling due to
inelastic collisions is accounted for. If straggling were not included
in the Monte Carlo calculation, that is, if electron energy loss were ac-
counted for only by continuous slowing down, the histogram upper limit
would end abruptly at approximately 149 keV. There are five SN trans-
mission curves in the plot, correponding to 10, 20, 40, 60 and 80 groups.
As would be expected the artificial straggling effect due to energy dis-
cretization is reduced as the number of energy groups is increased.

Figures 18 and 19 show electron energy deposition profiles in gold
for electron beams with slant incidence given by cosOo = 0.916667. The
source energies are 0.2 meV (Fig. 18) and 1.0 meV (Fig. 19). As in the
Aluminum case, three curves are shown in Fig. 18, corresponding to 10, 20
and 40 groups. Also, as before, the SN results are compared with a TIGER
Monte Carlo run. The agreement here is not as good as was found in the
Aluminum case. We feel that Mott cross-sections( 12) rather than screened-
Rutherford would improve the agreement. We plan to install a Mott cross-
section package into our SN electron transport code in the near future
in order that high-z materials be treated more correctly.

The two curves in Fig. 19 were both obtained with 40 group calcu-
lations. The dotted curve is the energy deposition profile for an SN
calculation with the stopping power expression given by the Rohrlich
and Carlson formula(1l). The dot-dash curve was obtained using a stop-
ping power corrected for radiative (bremsstrahlung) energy loss. Neither
curve matches the Monte Carlo result in an entirely satisfactory manner.
In fact, the addition of the radiative stopping power correction seems to
exacerbate the problem. The discrepancies shown here clearly point out
the necessity for adopting a more physically realistic model for the
scattering cross section such as Mott, particularly for the higher
electron energies (>1 meV) in high-z materials.
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IV. ELECTRON TRANSPORT

B. SOLUTION OF ELECTRON TRANSPORT PROBLEMS
BY THE MONTE CARLO METHOD

1. Introduction

As was true in our discrete ordinates electron transport work (see

Section A), solutions of electron transport problems were also obtained
by the Monte Carlo method, again using computer codes written at ARCON
as well as TIGER(10), one of a series of computer programs written at
Sandia National Laboratories to perform coupled electron-photon Monte
Carlo calculations. We obtained electron transmission and backscatter
fractions, energy deposition profiles and charge deposition profiles in
metals and polymers with both the ARCON codes and TIGER. Sample com-
parisons of our Monte Carlo results with experimental measurements of

transmission and backscatter fractions as well as TIGER energy deposition
profiles are given in the following subsections. Also a description of a
Monte Carlo code designed to calculate energy and charge deposition near
material interfaces at deep penetrations (- 10 mean free paths) in slab
targets will also be described. Work on this program is incomplete,
however we believe that there is some value in describing its structure
and presenting code listings even in this developmental phase since parts
of the program may be found suitable for incorporation into future Monte
Carlo efforts.

We shall begin with a description of MCEL, the ARCON single scat-
tering low energy electron Monte Carlo program. Then we shall proceed with
an account of MULTSCAT, our multiple scattering Monte Carlo program which
is applicable to low energy electron transport and has been found to yield
valid results at 200 keV. The discussion will continue with a description
of MCINTF, the Monte Carlo irogram intended for application to dose pro-
files at material interfaces deep inside thick slab targets. Finally, we
shall show examples of charge deposition profiles calculated with the
TIGER code for a polymer, C H O, and comparisons of these results with

experimental results obtained at RADC.

€£
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2. Program MCEL A Single Scattering Monte Carlo Code for KeV Electron
Transport

2.1 Objective

To solve the transport problem for a beam of electrons (20-50 KeV)
incident on a metal slab using the screened-Rutherford single scattering
formula. A provision is made to include the effect of inelastic scatter,
if necessary. A listing of MCEL is given in Vol. II.

2.2 Quantities Calculated

1) T(t,E) - transmission fraction (or current normalized to unit
particle incidence) as a function of slab thickness, t, and
energy, E.

2) B(t,E) - backscatter fraction (or current normalized to unit
particle incidence) as a function of slab thickness, t, and
energy, E.

3) T(t) - transmission fraction as a fraction of slab thickness, t.

4) B(t) - backscatter fraction as a fraction of slab thickness, t.

5) FT(t,E) - transmitted flux (normalized to unit particle incidence)
as a function of slab thickness, t, and.energy, E.

6) FB(t,E) - backscattered flux (normalized to unit particle incidence)
,* as a function of slab thickness, t, and energy, E.

The above six items are calculated for 10 preset values of t over the
ranges of 0 to 500 nm in Au and 0 to 1500 nm in Al. There is a provision
for user selection of the t values. The energy dependence of these func-
tions is given, in histogram form There are 20 energy bins of equal width
(0.05 x E., E = source energy).

0

Every Monte Carlo output quantity listed above is accompanied by a
one- or two-digit integer from 0 to 99 (estimates greater than 99
are shown as 99) which is the best estimate of the statistical standard
error expressed as a percent of the final value.
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g2.3 Principles of Operation

'.This single scattering Monte irlo algorithm for electron transport
utilizes the screened Rutherford 18 5: cross-section formula in conjunction

'q with the continuous slowing down approximation. A beam of electrons of
i energy Eo is assumed incident (at arbitrary obliquity) on a metal (Al or

Au) target. The penetration distance, As, the point of first collision is
'4• . :calculated as

As - -X(.)LnE ,(38)

where X (E) isa the total mean free path of the electron with energy E, and
&is a random number uniformtly distributed on the interval (0, 1). The

:J," total mean free path, or rather its reciprocal, the total cross-section
-' y(E) is given by the screened RutherfordJ8) formula

S°

~~~L-t'* "7" IL

.:'.where the quantities T. Z, A, Nag rot n are as previously defined in'.Eqn. 22 (Sec. A.2.4.3.1).
When the coordnates of the collision site have been determined, the

new value of the electron energy and the scattering angle are computed.
tIn the energy calculton the followsng stopping power formula of

. Rohrlich and Carlson 1 1 ) is used

wtere mco electron rest mass tb5le MeV),

n[e(rg + 2)]i/(sr+ a) i (electr on velocity)o/C,

s10-6Z(9. 76 . - -, ()

V: and
F(T) Is a rado- (n o d +st n] (he i ( )
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Then the electron energy at the point of collision, Ef, is given approxi-

mately by

where Ei is the electron energy at the point of previous collision.

The scattering angle is computed by Monte Carlo sampling of the

following screened-Rutherford angular distribution.

where V is the cosine of the polar scattering angle, w, and p is the azi-
muthal scattering angle.

After the first collision, when the new electron energy and scattering
angle have been determined, the electron is translated to the point of next
collision using Eqn. 38. to determine the distance As, and the above pro-
cedure is repeated until the electron escapes from the medium, or the
electron energy falls below a designated cut-off value, or the maximum

allowed number of collisions (user specified) has been reached.

2.4 Description of Routines

2.4.1 MCEL (' Main Program)

This program calls the various subroutines necessary for the calcu-

lation and performs the timing function for each case history. Every
case history is initiated by the main program, and after the user requested

number of case histories (NMAX) is run, the main program halts the cal-
culation. The time elapsed for each case history is noted. The average
run time for (NMAX/1O) case histories is updated every time another
(NMAX/IO) histories are completed. A test is performed after each

average update to determine if enough time has been allowed (on the input
card) by the user to complete the requested number of histories. If the
time remaining is insufficient, the calculation is terminated, and the re-

sults obtained up to that point in the calculation are saved on a permanent
file for processing at a later time.
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2.4.2 SETRUN

This subroutine initializes the various parameters necessary for the
Monte Carlo calculation. It consists of DATA statements specifying:
1) default values of the coordinates and angular orientation of the incident
electron beam; 2) default values for the material thicknesses for Al and
Au; 3) density values for Al and Au. Input data cards follow these DATA
statements. The number of such cards is variable depending on whether
some of the default values given in the data statement are to be overwritten.
Basically, the information to be read in consists of a specification of the
number of histories to be run (NMAX); the maximum allowed number of
col.lisions per case history (MAXCOLL); a debug printout parameter
(NPRNT : 0/1 = off/on); a flag parameter (INPUT : 0/1 = no/yes) to read
the INCODE array (explained below); a flag parameter (NSLABS : 0/1 =
no/yes) to read in the slab thickness array (THICK) and override the de-
fault values (the units of THICK are nm); the target material selector
(MAT : 1/2 = Al/Au); a paremeter to elect the inlastic scattering option
(INEL : 0/1 - no/yes); time limit for the run in seconds (TLIM);. incident
beam polar angle cosine (CTHO); incident beam energy in KeV (EO); low
energy cut-off value (ECUT) in KeV. The input code array, which is read
in if INPT = 1, consists of the following; (INCODE (I) : 0/1 = off/on - I = 1,
read random number generator seed; I = 2, read source point coordinates.

This subroutine also calls subroutine ESET to initialize the energy
dependent parameters (i.e., scattering cross-section, stopping power, etc.).
All of the input information is then printed out. This subroutine is called
only once.

2.4.3 ESET

The purpose of this subroutine is to calculate the stopping powers,
screening parameters and screened-Rutherford scattering cross-sections
(see Eqns. 39-41) for a table of 100 energy values ranging from the source
energy down to the cut-off energy. If the stopping power formula yields
a positive value before the cut-off energy (ECUT) is reached, the table is
truncated to the lowest energy value corresponding to a negative stopping
power, and ECUT is reset to that value.

2.4.4 SETHIS

Each time a new case history is begun this subroutine is called to
initialize the electron trajectory parameters such as coordinates (X, Y, Z),
angles (CTH, STH, CPHI, SPHI), energy (EGY), collision counter NCOLL,
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pointer index for trajectory characteristics table (LCHR), termination
flag for history (IFLAG). A call to entry point CROSS is also made to
initialize the total mean free path for the incident electron.

2.4.5 PENET

The primary function of this subroutine is that of translating the elec-
tron position to the point of next collision and calculation of the new elec-
tron position coordinates. For this Monte Carlo algorithm, the inter-
collision distance is computed according to Eqn. 38. In addition, PENET
also performs the function of checking to determine if the electron case
history should be terminated. This condition can occur in either of two
ways: 1) the electron can exit from the scattering medium (transmission
or backscatter); or 2) the maximum allowed number of collisions (MAXCOLL)
has been reached. In either case, the history termination parameter
(IFLAG) is set equal to 1.

2.4.6 ENERGY

When a collision has taken place, the energy of the electron at the
point of collision is calculated using the continuous slowing down approxi-
mation (Eqn. 42). If the effect of inelastic scattering is to be included,
the inelastic cross section (13) is calculated and added to the screened
Rutherford cross-section. A determination is then made of whether
elastic or inelastic scattering has occurred. This is done by comparing
a random number, E, uniformly distributed on the interval (0.1) with
the probability of elastic scattering, P as follows:

- If < -Pe.4, elastic scattering,

X. P 4 inelastic scattering,
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The total mean free path, X, is then given by

if elastic scattering is considered (INEL = 1) in the calculation.
Otherwise

.4

2.4.7 ANGLES

After the coordinates of a collision site have been computed by
PENET, and the new electron energy and mean free path have been
computed by ENERGY, -the change in direction of motion of the electron
is determined. The cosine and sine of the scattering angle, w, are com-
puted as follows:

Inelastic scatter(13);

Let Elow  = min [.02 KeVE cutoff] (47a)

k E Elow (47b)
E -Elo

w
4%

then w - k E lo w /(k- " Elow) , (47c)

and sin w - /E (47d)

% E

cost , (47e)

where is a random number uniformly distributed on the interval (0,1).
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Elastic scatter;
The probability density function for elastic scatter is given by

where U - cosw.

Let the probability of an individual scattering event with scattering angle
w be a random number, f', uniformly distributed on (0,I).

then

-,7

which results in the selection of w as follows;

- 3

Inspection of Eqn. 50a shows a correspondence between cos w and 4,
That is,

= 0. cosw - 1 (total backscatter),

= 0.5 cosw=lrl+rJ

' 1.0 cosw - 1 (total forward scatter).

Since the scattering is assumed to be isotropic in azimuth, the
azimuthal displacement p (RHO) is taken as

p = 27i, (51)

k"36
.4

.1"o
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where * is uniformly distributed random number on (0,I). The post

collision polar angle functions, cos 8, sin e, (CTH, STH) are then com-

puted from the pre-collision values cos 01, sin e,, (CTHI, STHI) as
follows

The corresponding azimuthal values cos 0, sin 0, (CPHI, SPHI) are
calculated from the pre-collision values cos 0I, sin 0I, (CPHI, SPHII) by

_el rs,/J .

where

2.4.8 SCORE

After an electron undergoes a collision, the z-coordinates, incident
polar angle cosine, post collision angle information, electron energy and

collision number are recorded in the trajectory characteristics buffer

array (STO). If the case history is to be terminated (IFLAG 0 0), this

fact is recorded by multiplying the collision number by -1.

2.4.9 PROC

This subroutine processes the electron trajectory characteristics.

It is called after each case history is completed. Each time another
(WAX/10) histories are finished, all of the quantities itemized in sec-

tion II are calculated. A running average of these quantities and a run-

ning tally of the statistical standard error associated with each of these

quantities are maintained. After all NMAX histories have been com-
pleted, PROC prints out the final values and also writes them on a perma-
nent file which can be used later on for plotting and analysis.
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2.4.10 STATS

A computation of the statistical standard error for every Monte
Carlo output quantity is performed by this subroutine. If the total
Monte Carlo computation of the quantity x, is divided into N batches(N - 10 in this case), then the best estimate of the statistiCal standard
error, expressed as a percent of the final value, is given aa(1O).

~J-

%where,,

V.,'.

i and

The XC's are the values of the quantity obtained from each batch.
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2.5 Comparison of MCEL Results with other Calculations and
Experimental Data

Several MCEL calculations were made for low energy electron beams
incident on Aluminum and Gold slabs. A sample calculation is that of
a 20 keV electron beam normally incident on Aluminum. The quantities
T(t.E) and B(tE) , the transmission and backscatter fractions as
functions of slab thickness t and electron energy E were calculated as
well as their respective totals; over all energies. T(t) and B(t).
Figure 20 shows a comparison of the T(t) calculated with MCEL. 0, with
the Monte Carlo data of Reimer and Krefting(14) and the experimental
data of Kulenkampff and Spyra(14 ). Figure 21 shows the corresponding
backscatter data. As can be seen. the agreement is good.

Atl

t0

Ezxptnme't 9
9 - E XCII. 6

a Admee-Co

* t So 2C 0 60 0 OO&pM2

Figure 20. Figure 21.

Comparison of Electron Transmission Comparison of Electron Backscatter Fractions
Fractions for Aluminum Films (repro- for Aluminum Films (reproduced from Ref. 14).duced from Ref. 14). Incident electron energy 20 keV.

Incident electron energy - 20 keV.44
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3. Program MULTSCT - Multiple Scattering Monte Carlo Code for KeY
Electron Transport

3.1 Objective

To solve the transport problem for a beam of electrons incident on
a metal slab.

3.2 Quantities Calculated

1) T(t,E) - transmission fraction as a function of slab thickness
t, and energy, E.

2) B(t,E) - backscatter fraction as a function of slab thickness, t,

and energy, E.

For the above two items, the maximum slab thickness t is taken
to be approximately 1 electron range unit. The transmission and
backscatter fractions are calculated for 20 user selected t values.
The energy dependence of these functions is given in histogram
form. There are 10 energy bins of equal width (0.1 x Eo, E0
source energy).

3) T(t) - transmission fraction as a function of slab thickness, t.

4) B(t) - backscatter fraction as a function of slab thickness, t.
The same t values are used here as in items I and 2.

5) W(z) - energy deposition profile (KeY) histogram for the slab of
maximum thickness (-1 range unit). The slab is divided into 20
zones defined by the thickness values, t (user supplied). Theenergy (KeV), normalized to unit particle incidence deposited in

each zone is given. The energy flow (KeV) in both the forward
and back directions across the zone boundaries is also given.

6) TI(tE) - Legendre coefficients of the transmission angular distri-
bution as a function of slab thickness, t, and energy E. The
same values of t and E apply as for T(t,E). The TI are coef-
ficients of the Legendre expansion

where p is the cosine of the emergent polar angle. For trans-
mission p > 0.

240

A.



7) Bt(tE) - Legendre coefficients of the backscattered angular distri-
bution as a function of slab thickness, t, and energy, E. The same
values of t and E apply as for B(t,E). The B are coefficients of
the Legendre expansion

1.

8) NT,t(E/E) - Emergent energy distribution, Transmission. This

function is defined for the 20 slab thicknesses t used in item 1
and 20 histogram intervals E/E of width 0.05. This information
is contained in the T(t,E) array but the energy resolution thereis twice as coarse as that given here.

9) NB(E/E0) - Emergent energy distribution, Backscatter. This

function is defined for the maximum slab thickness (essentially
infinite), and the same 20 histogram intervals E/E as defined
for item 8.

10) F (UE) - Angle-energy moments matrix for emergent electrons
t,n,m

transmitted through a slab of thickness t.

F:: -a

4There are 20 such matrices corresponding to the 20 values of t

selected for item 1.

11) FB (PE) - Angle-energy moments matrix for emergent electronsnm
backscattered from the maximum slab thickness (essentially
infinite).

12) Q(z) - Charge depositoi profile histogram for the slab of maxi-
imum thickness. The sla3 is divided into 20 zones defined by the
thickness values, t (user supplied). The charge, normalized to
unit charge incidence, deposited in each zone is given.

241



Every Monte Carlo output quantity listed above is accompanied by a one-

or two-digit integer from 0 to 99 (estimates even greater than 99 are shown

as 99) which is the best estimate of the statistical standard error ex-

pressed as a percent of the final value.

3.3 Principles of Operation

The ARCON multiple scattering Monte Carlo algorithm for electron trans-

port is based on the method of Curgenven and Duncumb
( 15) which was further

developed by Love, et al.(1 6 ) and Myklebust et al.( 17). The Bethe range

corresponding to the energy, E , of the incident electron beam is divided

into 100 equal trajectory steps. The electron energy at the midpoint of

each step is computed by a fourth-order Runge-Kutta integration of the

stopping power formula (Eqn. 40).

A beam of electrons is assumed incident on the face of a semi-infinite
scattering medium. Every Monte Carlo case history is allowed a maximum of
100 collisions. The actual number may be less if the electron is back-
scattered out of the medium. The scattering angle, w, after each collision
is computed as(16 )

where w is the minimum scattering angle for the incident electron with

energy 0 E , E is the electron energy, and is a random number uniformly
distribute3 on the interval (0,I). The authors(16)supply an expression for
tan (w /2) in terms of the bulk backscatter fraction, n. This expression
which Is independent of energy in the 5 to -40 KeV range, a least-squared
polynomial fit resulting from several Monte Carlo runs for a wide range of
materials, is given as

272 (..) (46
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After every collision, the electron energy is decremented to the value

obtained by integration of the stopping power formula corresponding to the

total electron trajectory length. The electron penetration depth, z, polar
angle direction cosine with respect to the z direction, cose, and the

collision number are stored in an array sufficiently large to contain this

information for the entire electron case history. The particle is then

assumed to travel in a straight line for another path increment (0.01 x

range) along the direction indicated by the angles 0 and 0, where t is the

azimuthal angle. The above procedure is repeated unless the electron either

escapes from the medium (backscatter) or undergoes 100 collisions.

The energy and charge deposition profiles for these calculations are

computed for a pre-specified set of spatial zones by the simple device of

counting the number of particles and total energy current flowing into

and out of each zone.

3.3.1 Incorporation of Electric Field Equations

Energy loss in electron transport calculations is accounted for by

the Bethe model. The quantitative measure of the energy loss mechanism,

interaction with atomic electrons, is provided by the stopping 
power calcu-

lation. To within a good approximation, the energy has over a small

trajectory segment, As, for kilovolt electrons can be given by

WAS E+, -.F /'~s

where En and E n+ are, respectively, the pre-and post-collision electron

energies for the n-th collision, - i~is magnitude of the stopping power
n

.' at energy E , and As is the pathlength increment between collisions (for" this algoribm, As - 0.01 x total electron range). Now if an electric field,

say C, is applied along the z-direction, the resulting force, Fz, 
exerted

on the electron will be

243-_

,@243

a' . . .. .•... .... ......... , .- . .. ... , .. , . '.. .4',:' ,4:. ,N ,: .

.. ., w . ./. . ,.., . ,,? . , .,, * * .. , - ,% ,~ 'a *, .



-i. . ,; * , . .,,-_, , . ,**4 . ! *.. . .. - .. .. ... ..

'1r ..

The resulting electrostatic energy contribution, Ee3 to the electron kinetic
energy will be

I" (/ )

where As' is the distance traversed between collisions. Note that the
quantity As' is used here rather than As, since strictly speaking the
intercollision distance is altered by the presence of the electric field.
However, to first order, we may take

Then with the inclusion of the electrostatic energy term (Eqn. 61), the
energy equation (Eqn. 59) becomes

In addition to the above, we may also account for the small change in
energy due to an incremental amount of deceleration or slowing down re-
sulting from the increase in the intercollision trajectory step size. If
the electric field is applied along the z-direction (Fig. ,22),

then the incremental change in pathlength is approximately given by

AS-d AS ' ~ P

where Az is electron displacement due to the presence of It can be
shown from elementary considerations that

24-..
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Figure 22. Diagram of electron trajectory correction
due to presence of an electric fi-eld.

i ~ where E is the electron kinetic energy. T f Eqns. (64) and (65) are com-

bined to yield an approximate expression for As', and then if As' is

substituted for As in Eqn. (63), the result is

; 4

,,-._..-"
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Figurabene 22.tDiagramiof electron traecdtory co rtio tagoih
duert to preenc of ann elcticf)ld
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03.4 Description of Routines

% tThe MULTSCAT routines will be described only if they differ substantially
from their counterparts, in MCEL (Section 2). Reference will be made to the
corresponding subsections of Section 2 for those subroutines that are es-

sentially the same as the MCEL subroutines. A program listing of MULTSCT
is given in Vol. II.

3.4.1 MULTSCT (= Main Program)

(See Section 2.4.1)

3.4.2 SETRUN

This subroutine initializes the various parameters necessary for the
Monte Carlo calculation. It consists of DATA statements specifying:
1) default values of the coordinates and angular orientation of the in-
cident electron beam; 2) density values for Al, Cu, Au*; 3) bulk back-
scatter fractions for Al, Cu, Au*. Input data cards follow these DATA
statements the number of such cards is variable depending on whether some
of the default values given in the data statement are to be overwritten.
Basically, the information to be read in consists of a specification of the
number of histories to be run (NMAX); the target material (MAT ; 1/2/3 =
Al/Cu/Au; a debug printout parameter (NPRNT : 0/1 = off/on); input code
(INCODE (I) : 0/1 = off/on-I- 1, read bulk backscatter fraction; I = 2,
read target thicknesses; I = 3, read random number generator seed); time
limit for the run in seconds (TLIM); incident beam polar angle cosine (CTHO);
incident beam energy in KeV (EO); low energy cut-off value (ECUT) in KeV;
electric field force in eV/cm (FORCE).

This subroutine also calls subroutine ESET, which calculates the path-
length vs. energy table for 100 multiple collisions and returns a value for
the Bethe range corresponding to the incident electron energy.

All of the input information is then printed out. This subroutine is
4called only once.

* Density and backscatter fraction data for mylar and/or lucite can be

substituted for any of these materials.
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3.4.3 ESET

This subroutine calculates a table of electron energies vs. pathlength
for 100 equal trajectory steps. This calculation is performed by Runge-
Kutta integration of Eqn. (40). The tangent of the minimum scattering
angle (TBO) is also completed according to Eqn. (58). The Bethe range
(RTOTAL) for the incident electron energy is taken from a table of values(lI)
(RBETHE) which is entered in the form of a DATA statement for 20 energv
values, ranging from 10 to 150 KeV, for three materials, Al, Cu, Au. In
the case of mylar and lucite, these values are entered directly into the

code via replacement statements.

3.4.4 SETHIS

(See Section 2.4.4)

3.4.5 PENET

The primary function of this subroutine is that of tanslating the elec-
tron from its present position to the point of next collision and calculation
of the new electron position coordinates. For this Monte Carlo algorithm,
the intercollision distance (DRB - RTOTAL/100) in the absence of an applied
electric field, is fixed in subroutine ESET. If the applied electric field
has non zero value, a correction term is added in accordance with Eqn. (65).
In addition, PENET also performs the function of checking to determine if
the electron case history should be terminated. This condition can occur in
either of two ways: 1) the electron can exit from the scattering medium
(transmission or backscatter); or 2) the maximum allowed number of collisions
(MAXCOLL = 100) has been reached. In either case, the history termination
parameter (IFLAG) is set equal to 1.

3.4.6 ENERGY

When a collision has taken place, the post-collision electron energy
is selected from a table of energy vs. collision number supplied by sub-
routine ESET. An energy correction term is added for the applied electric

field (Eqn. 66), if one is present.
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3.4.7 ANGLES

After the coordinates of a collision site have been computed by PENET,
the change in direction of motion of the electron is determined. The cosine
and sine of the scattering angle are computed by making use of Eqn. (57).
Specifically, tan2 (w/2) is calculated, and then cosw, sinw (COM, SON)
from

the algorithm for determining the post-collision polar and azimuthal tra-
Jectory cosines (6, *) is exactly as described in Section 2.4.6, Eqns.
51-53.

3.4.8 SCORE, PROC, STATS

(See Sections 2.4.8, 2.4.9, 2.4.10)

3.5 Comparison of MULTSCT Results with other Calculations
and Experimental Data

The validity of the semi-empirical nature of the MULTSCT algorithm,
namely the dependence of the multiple collision scattering angle on the
bulk backscatter fraction for a semi-infinite medium, was tested for two
different situations. In the first case a 200 keV electron beam was as-
sumed normally incident on an Aluminum slab, while in the second instance
a 20 keV electron beam was assumed normally incident on a Gold slab tar-
get.

Figure 23 shows a comparison of the energy deposition profiles for
the 200 keV beam case as calculated by MULTSCT and TIGER. While the
MULTSCT program does not contain nearly as much physics as does TIGER, it
should be noted that the agreement is nonetheless very good. It should
also be noted that the TIGER calculation requires about 9 times the com-
putational effort of MULTSCT, and one MULTSCT run yields transmission and
backscatter data, such as energy and angular distributions as well as total
emergent current fractions, for up to 20 slab thicknesses.
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Figure 23. Comparison of Energy Deposition Profiles as Calculated
by MULTSCAT and TIGER for 200 key Electron Beam Normally
Incident on Aluminum.I_.
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The MULTSCT total transmission and backscatter fractions (+) for the
20 keV beam incident on Gold are shown in Figures 24 and 25, respectively.
These plots, taken from Ref. 14, also contain the Monte Carlo data of Reimer
and Krefting(o)( 14) and the experimental data of Spyra and Kulenkampff(x)( 14).
The agreement is fairly good, better for the transmission case than for the
backscatter.

3.6 MULTSCT Simulation of Polymer Irradiation by Electrons

The MULTSCT program was used to simulate the polymer irradiation due
to the incidence of a monoenergetic electron beam at the surface of a mylar
slab(1 5). Ten program runs were made with incident energies ranging from
20 keV to 2 keV in 2 keV increments. Energy deposition and current density
profiles were obtained for these cases. Examples of these curves are shown
in Figures 26 and 27. The calculations of Ref. 18 provide a good example
of the utility of a program such as MLLTSCT from which a large number of
data could be obtained at a relatively reasonable cost. MULTSCT was also
used to estimate the effect of the space charge induced electric fields in
the mylar dielectric relative to the stopping power of the material. No
noticeable effect due to space charge electric fields was found in our
results.

Figure 26. (18 ) Current density of 10- 9  Fur .(18 ) Doert u o1 - 9

Ac incident electrons inside the mylar. A/cm2 incident electrons.
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Figure 24. Comparison of transmission, T. as a function of film thickness

for 20 keV electron beam incident on Au (reproduced from Ref. 14).
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Figure 25. Comparison of the backscatterng coefficient n as a function

of film thickness for 20 keV electron beam incident on Au

' (reproduced from Ref. 14).
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4. Program MCINTF, a set of Three Monte Carlo Programs to Treat the
Interface Dose Problem for Electrons in the I MeV Energy Range.

4.1 Objective

To decrease the computation time and increase statistical accuracy
of the Monte Carlo Method in calculating electron flux, current and energy
deposition profiles near a material interface located deep within the
scattering medium. Since these codes are in the developmental stage, i.e.
they have not been tested for a realistic situation, only the principles
of operation and a list of the quantities calculated will be given here.
Code listings are provided in Vol. II.

4.2 Principles of Operation

The basic idea is that of using the transmitted electron current
through a very thick slab (e.g., 1 cm Au) as a source function for a Monte
Carlo calculation in a very narrow region surrounding a material interface
(e.g., Au - Al), perhaps 10 mean free paths thick on either side. When
an electron is found to escape from this narrow region its reflection
probability, backscatter energy and angle distributions from a nearly

"infinite" (e.g., several electron ranges) Au or Al slab are sampled.
The electron is then forced back into the Monte Carlo region. This pro-
cess of forcing is repeated until the statistical weight (product of
successive total albedo values) of the electron falls below a predeter-
mined cut off value. This procedure may yield accurate interface flux,
current and dose values with a significant saving in computational effort.
This is due to the fact that the Monte Carlo calculation is confined to a
narrow region about the interface thus making it possible to obtain "good"

statistical accuracy. Naturally, the success of this scheme depends
heavily on the accuracy of the infinite medium albedo functions and the
quality of the cross-section data. For testing purposes, the scheme has
been exercised with physically unrealistic cross-section data to expedite
the programming and testing processes. The results of the tests are
promising, and indicate that the introduction of realistic electron cross-

section data would be justified.

Basically, there are three separate Monte Carlo codes. The first,
BIGSLAB, is used to generate transmission and albedo distributions of
electrons scattered out of very thick homogenous media (Au or Al). This
code serves the dual purpose of providing both the source functions (from
the transmission data) for input into the Monte Carlo calculation for the
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interface region (the second code) and the albedo data, also to be used
in the second code, for forcing the electrons back into the interface
region.

The second Monte Carlo program, INTFC, accepts the transmission
distribution data from BIGSLAB as a source function and performs a
standard single scattering Monte Carlo calculation of the electron trans-
port in the neighborhood of the material interface. When an electron is
scattered out of this region of approximately 10 mean free paths on either

side of the interface, INTFC then makes use of the albedo distribution
S' data from BIGSLAB to reflect the electron back into the Monte Carlo region.

The third Monte Carlo program, MCSPLIT, is the benchmark program
with which the accuracy of the above described procedure is evaluated.
This program makes use of a well known statistical biasing technique
called history splitting(3). This technique is commonly used in deep pene-
tration problems. MCSPLIT is a straightforward single scattering Monte
Carlo calculation of electron transport in a very thick medium (Au - Al)
with the material interface deeply imbedded. The electron beam is
assumed normally incident on a surface of the medium. Normally this
is the Monte Carlo situation which the procedure involving BIGSLAB and
INTFC is designed to circumvent because of the cost and difficulty of
obtaining meaningful results at the interface. The accuracy of such a
calculation can be improved considerably by the technique of history
splitting if detailed knowledge of particle transmission and backscatter
in a tightly confined region is desired. When an electron reaches the
neighborhood of interest (i.e., crosses a defined boundary known as a
splitting plane) it splits into n identical particles each with weight W/n,
where W is the incoming weight. The Monte Carlo procedure is then car-
ried out on each of these fractional particles independently. The ad-
vantage is that n times as many particles are processed in the region of
interest while the total statistical weight is preserved.

Description of the quantities calculated by the three programs BIGSLAB,
INTFC, and MCSPLIT are given below.

4.3 Program BIGSLAB , Quantities Calculated

1) T(t,E) - transmission fraction (or current normalized to unit
particle incidence) as a function of slab thickness, t, and
energy, E.

2) T(t) - transmission fraction as a function of slab thickness, t.

3) B(t,E) - backscatter fraction (or current normalized to unit particle
incidence) as a function of slab thickness, t, and energy, E.
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4) B(t) - backscatter fraction as a function of slab thickness, t.

5) FT(tE) - transmitted flux (normalized to unit particle incidence).

6) TT(t) - transmitted flux as a function of slab thickness, t.

7) F (t,E) - backscattered flux (normalized to unit particle incidence)

as a function of slab thickness, t, and energy, E.

8) F (t) - backscattered flux as a function of slab thickness, t.
B

The above 8 items are calculated for 10 values of t ranging from 0 to
approximately 100 mean free paths or more evaluated at the source
energy. There is a provision for user selection of the t values. The
energy dependence of these functions is given in histogram form. There
are 20 energy bins of equal width (0.05 x EO , E W source energy).

9) pT(E) - average value of the cosine of the emergent polar angle of

the transmitted electrons as a function of emergent energy, E.
(Two tables are given for this quantity. The first has 20 energy

bins of width 0.05 E , and the second has 10 energy bins of width
O. IE.

00

10) (sinOcos )T - average value of the x direction cosine of the trans-

mitted electrons as a function of emergent energy, E. (As in item

9 above, two tables are given).

11) TI(E) - Legendre coefficients of the transmission polar angle distri-

bution as a function of energy, E. There are 10 energy bins of width
0.1E . Only transmission through the slab of maximum thicknes is

0
considered. The T are coefficients of the Legendre expansion

where PT is the cosine of the emergent polar angle. For trans-

mission, U T> 0. An improvement in this formulation is planned

for the future, that of expansion in terms of P (2p -1). Fewer

terms should be required to achieve the same accuracy.
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12) T+(E), T6 (E) - Spherical harmonic coefficients of the trans-
.* mission angular distribution. These coefficients are listed for

the same 10 energy bins as given in item 11. Again, only trans-
mission through the maximum slab thickness is considered. The
T Rare the coefficients of the expansion (19): .

4** where

and )j~(,~' n

distribution of the transmitted electrons. Clearly, if the in-
cident electron beam is normal to the surface of the scattering
material, there will be no f dependence in the transmission
angular distribution. Hovever, this information would be useful

*for slant incident beams. For the purposes of providing a source
", function for program INTFC, knowledge of the T 0 coefficients is

sufficient at the present time.
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13) ALIB"I,*B) - Infinite Medium albedo for 10 energy bins of width

0.1 Eo, as a function of J13 and 0B where Is. - cos%, B and

*B being the backscatter polar and azimuthal angles respectively.

There are 10 uB bins of width 0.1 and 12 bins, of width 30
degrees.

14) A1I1iBt) - Infinite medium albedo for 10 energy bins of width 0.1E o.

The same VB bin width applies here as in item 13.

15) AI(E) - Legendre coefficients of the albedo polar angle distri-

bution as a function of energy, E. There are 10 energy bins of
width O.1E . Only backscatter from an infinite medium is con-
sidered. The A 9 are the coefficients of the Legendre expansion

where PB is the cosine of the emergent polar angle of backscattered

particles. For backscatter, 11 < 0. An improvement in this for-

mulation is planned for the future that of expansion in terms of
PI(211t.l-1). Fewer terms should be required to achieve the same

accuracy.

16) A (E), A-(E) -. Spherical harmonic coefficients of the infinite

medium albedo angular distribution. These coefficients are listed
for the same 10 energy bins as given in item 15. The A Am are the
coefficients of the expansion

j+
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where C

and the are as defined in item 12,

4

These coefficients, Aim, in principle, provide all of the necessary

information for adequate description of the albedo angular distri-
bution for infinite medium backscatter. The dependence is neces-
sary here because albedo information for off-normal incident beams
must be collected. If enough cases of various incident obliquities
are run, this should provide adequate albedo angular information
to be used in program INTFC for forcing electrons back into the
Monte Carlo region with approximately correct backscatter directions.

Every Monte Carlo output quantity listed above is accompanied by
a one or two-digit integer from 0 to 99 (estimates even greater
than 99 are shown as 99) vhich is the best estimate of the statis-
tical standard error expressed as a percent of the final value.

4.4 Program INTFC , Quantities Calculated

1) J (E,Vi) - positive direction electron current (normalized to
unit particle incidence) across the material interface plane as
a function of energy, E, and polar angle (v.r.t. plane normal)
cosine, p.

2) J +(0j) - total of J +(E) over all energy bins.

3) J (Ep) - negative direction electron current (normalized to
unit particle incidence) across the material interface plane
as a function of energy, E, and polar angle (v.r.t. plane nor-
mal) cosine, I.

4) J-(P) - total of J (E,P) over all energy bins.

5) F (Ep) - positive direction electron flux (normalized to unit
particle incidence) across the material interface plane as a
function of energy, E, and polar angle (w.r.t. plane normal)
cosine, 1.
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6) F +(P) - total of F +(E,u) over all energy bins.

7) J+(E) - Legendre coefficients of the polar angle distribution

~of the Legendre expansion

7) as l a functphein hof ny .Thc r coefficientsofhepstv

direction, electron current angular distribution. The ) I are

are the coefficients of the expansion

where JL(E) CE

and the Yi are as defined for the BIGSLAB program.

9) JM(E) - Legendre coefficients of the polar angle distribution of
Mu(E,a) as a function of energy, E. The J are coefficients of

the Legendre expansion
q

- +~
10) 1 -+ (E), J-(E) - (same as item 8, but for negative direction

electron current).

*" All of the above energy dependent quantities are defined for 10 energy
bins of equal width O.IE. The p-dependent quantities are defined for
10 U-bins of equal width 0.1.

Z5

258



4.5 Program MCSPLIT , Quantities Calculated

1) J+(E,11,z) - positive direction electron current (normalized to
unit particle incidence) across detector planes located at 3
values of z, as a function of energy, E, and polar angle (w.r.t.
plane normal) cosine, V.

2) J+(p,z) - total of J+(EP,z) over all energy bins.

3) J-(E,p,z) - negative direction electron current (normalized to
unit particle incidence) across detector planes located at 3
values of z, as a function of energy, E, and polar angle (w.r.t.
plane normal) cosine, p.

4) J-(P,z) - total of J-(E,pz) over all energy bins.

5) F +(E,p,z) - positive direction electron flux (normalized to unit
particle incidence) across detector planes located at 3 values
of z, as a function of energy, E, and polar angle (w.r.t. plane
normal) cosine, U.

6) F+ (P,z) - total of F +(E,p,z) over all energy bins.

7) J+(E,z) - Legendre coefficients of the polar angle distribution
L+ +of J (E,U,z) as a function of energy, E. The J are coefficients

of the Legendre expansion

1L0-~ j1)4& (06

8) J.(E,z), J (E,z)- spherical harmonic coefficients of the

positive direction, electron current angular distribution. The
ji +M are the coefficients of the expansion

Y +e Y f) +

.-
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where 3 +(E'. z) Et

and the Y are as defined for the BIGSIAB program.

9) 1t(Ez) - Legendre coefficients of the polar angle distribution

of-J (E,p,z) - as a function of energyE. The J are coef-
ficients of the Legendre expansion

10) J3 (E,z), J-(E,z) - (same as item 8, but for negative direction

electron current).

All the above energy dependent quantities are defined for 10 energy
bins of equal width O.IE o . The -dependent quantities are defined
for 10 U-bins of equal width 0.1.

The three z values at which the above 10 quantities are evalu-
ated _rrespond to the material interface plane and two additional
detector planes, one on either side of and close to the material
interface.
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5. Application of the TIGER (10 ) Monte Carlo Code to the Determination
of Charge Deposition in Electron Irradiated Polymers

Electron irradiation experiments (18) performed at RADC yielded measure-

ments of electron beam current profiles in the polymer C6H90. Six such ex-
periments were made corresponding to normally incident electron beam en-
ergies of 0.4, 0.6, 0.8, 1.0, 1.2 and 1.4 MeV. Simulations of three of
these experiments the 0.4, 1.0 and 1.4 MeV cases, were performed using
the TIGER code from which energy and charge deposition profiles were cal-
culated. The charge deposition histograms for the three cases are shown
in Figures 28a,b,c. The smooth curves are least-squares spline fits to
the histogram data. The smoothing algorithm(2 0) used performed piecewise
cubic polynomial curve fits to the data points while taking into account
their estimated errors (supplied in the TIGER runs). The smoothed Monte
Carlo results were then numerically integrated using adaptive Simpson's
rule(2 1) to obtain the charge fraction values corresponding to the ex-
perimental penetration depth bins. The agreement between theory and ex-
periment was found to be excellent. Table 3(18) shows the comparison for
the 1.0 MeV case. It was also found that the energy deposition profiles
obtained with TIGER agreed well with those calculated using the Tabata

(2 2 )

curve fit algorithm. The comparison of the energy deposition profiles for
the 1.0 MeV case is given in Table 4. More complete tables are given in
Ref. 18. The complete program listing (program CHDP) for these calculations
is given in Vol. II.
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Figure 28. (Ref. 18) Monte Carlo histogram results
fitted to smoothed sp0lne for (a) 1.4 4e,

(b) 1.0 MeV, (c) 0.4 MeV, electron beams
normally incident: on C 6R 9 0.
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Table 3(18) Table 4( 18 )

Comparison of Charge Deposition Comparison of Energy Deposition Data (21)
Fraction in C6H90 Sheets of Width for Monte Carlo and Published Algorithm

for 1.0 MeV Electron 10.7 mg/cm2  Techniques for 1.0 MeV Electron Beam

Beam Source Source

D[PIH BIN
LIMIlj MONT[ EXP. ITger

(mq/cm ) CARLO )(0/cm? smoothed Referenceal
bin Monte Carlo

0.)0.7 -. 0031 -. 0072 midpoint I_1___
10.7-23.4 -. 001 .0003 [09/cm?] IHcVINglcm2)) 1*Pqlcm2 )
21.4-32.1 .001 .0026
32.-42.8 .,03 .0039 . .83 2.02
42.8-53.5 .004 .OOr,4 15. 1.88 2.06
53.5-64.2 .006 .0067 25. 1.98 2.12
64.2-74.9 .007 .0081 35. 2.07 2.19
74.9-85.6 .008 .0096 45. 2.15 2.28
84.9-95.6 .009 .0137* 55. 2.26 2.38

0.S 4* 4.002 4.0003 65. 2.38 2.48
0.-- -.- 4 3 75. 2.48 2.58

95.6-106.3 .011 .0118 85. 2.61 2.69
106.3-117.0 .012 .0139 95. 2.74 2.79
117.0-127.7 .014 .0152
327.7-138.4 .016 .0193 105. 2.87 2.89
138.4-149.1 .017 .0183 115. 2.99 2.98
149.1-)59.8 .020 .0232 125. 3.10 3.07
159.-170.5 .022 .02411 )3. 3.23 3.14

± 26*  4.002 *.0007 145. 3.30 3.21
1-355. 3.37 3.25

164.3-175.0 .023 .024P 165. 3.42 3.29
175.0-)r.5.7 .025 .0256 175. 3.45 3.31
185.7-).%a.4 .028 .0277 185. 3.47 3.31

j 196.4-267.1 .030 .0300 395. 3.46 3.29
207.1-217.8 .033 .0323
237.r-228.5 .036 .0345 205. 3.45 3.75
228.-229.2 .039 .0366 215. 3.42 3.20
239.2-249.9 .041 .03886 225. 3.36 3.13

" 3** .1.002 *.0004 235. 3.29 3.04
245. 3.21 2.94

249.2-?S9.'V .043 .04306 255. 3.11 2.82
259.9-270.6 .045 .0427 265. 2.96 2.69
270.6-281.3 .047 .0433 275. 2.80 2.55
281.3-292.0 .049 .0443 285. 2.64 2.40
292.0-302.7 .050 .0452 295. 2.47 2.25
302.7-333.4 .050 .0468
313.4-324.1 .019 .0474 305. 2.27 2.09
324.3-334.0 .047 .(4i43* 315. 2.05 1.92

- 4* 4.00? *.0(04 325. 1.82 1.76
335. 1.6) ).60

324.8-335.5 .047 .0453" 345. 1.39 1.44
335.5-346.2 .044 .0420 355. 3.14 1.28
346.2-356.9 .040 .0392 365. .916 1. 14
356.9-367.6 .036 .0358 375. .692 ..O
367.6-378.3 .031 .0317 395. .516 .833
378.3-389.0 .025 .0273 395. .361 .647
389.0-399.7 .019 .0224
399.7-410.4 .014 .01770 405. .261

4*.4.435. .162 .384- 4 2 05 425. .093 .294
-43S. .050 .223409.7-420.4 .00 .0)406 445. .026 .369
420.4-43.1 .006 .0095 455. .010 .27
431.1-441.3 .004 .0 63 455. w3 .094
44.-452.5 .002 .00i9 465. .003 .094
452.5.-463.2 .001 .0021 475. .002 .070
463.2-473.9 .000 009
473.9-484.6 .0004

. 484.6-49S.3 .0001
6* 4.003 4 31
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