
AD-A139 588 CRONUS: A DISTNRUTED OPERATINO SYSTEM U) 80L BRANEK /

AND NEWIMAN INC CAMBRIDGE MA R SCHANTZ ET AL NOV 83

BBN-5086 RADC-TN 83-236 F30602-81-C 0132

UNCLASSIFIED F/G91 NL

momhmhmmhhhu

96 L4-

1.25 16

MICROCOPY RESOLUTION TEST CHART

NATIONAL BREAU Of STANDARDS 1963 A

--of

W4-A

RADC-TR.83-236
Interim Technical Report #1
November 1983

AD Ai 39588
CONUS, A DISTRIBUTED OPERATING
SYSTEM

Bolt Beranek and Newman. Inc.

R. Schantz, E. Burke, S. Geyer. M. Hoffman. A. Lake. K. Pogran,
D. Tappan. R. Thomas, S. Toner and W. MacGregor

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

DTIC
ELECTEPM

MR3 01984 ,.

ROME AIR DEVELOPMENT CENTER F.
Q . Air Force Systems Command
cD Griffiss Air Force Base, NY 13441

0-05
LA €. ',9 0\

This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RADC-TR-83-236 has been reviewed and is approved for publication.

APPROVED: Y2- (,

THOMAS F. LAWRF NCL
Project Engineer

APPROVED:

JOHN 1. MARCINIAK, Colonel, USAF
Chief, Comm:nd and Control Division

FOR Ti: COKc*:ANDR

DONALD A. BRANTTNCtA.M
Plans Office

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organization,
please notify RADC (rOTD) Griffiss AFB NY 13441. This will assist us in
maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices
)n a specific dociment requires that it be returned.

UNCLASSIFIED
SECURITY CLASSI FICATION OF THIS PACE (M~en~ D-11ttne 0 ,__________________

CRONUS, A DISTRIBUTED OPERATING SYSTEM 8 Jun 81 - 30 Jun 82

5086

7.R.Scflatz, E. Burke, S. Geyer, M. Hoffman a.0CONTRAC R RAT1UMER#

A. Lake, K. Pogran, D. Tappan, R. Thomas F00-1C03

S. Toner, W. MacGregor

S. PERFORMING ORGANIZATION NAME AND ADDRESS Ill. PROGRAM ELEMENT, PROjECT. TASK
AREA a WORK UNIT NUMBERS

Bo lt Beranek and Newman, Inc. 63728F
10 Moulton Street 2300
Cambridge MA 02238 2300

1I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
November 1983

Rome Air Developukent Center (COTD) 13. NUMBER OF PAGES

Griffiss AFB NY 13441 236
*14 MONITORING AGENCY NAME & ADORESS(If differen.t from Ccontrolihn Office) IS. SECURITY CLASS. (of this MepoH)

UNCLASSIFIED
Same

1I15. DECLASSIFICATIONDOWNGRADING

/ASCH4EDULE

Of. DISTRIBUTION STATEMENT (of this Repor)

Approved for public release; distribution unlimited.

17. DISTRIUUTION STATEMENT (at the abstract entered in Block 20. It differenft from RePott)

Same

Is. SUPPLEMENTARY NOTES

RADC Project Engineer: Thomas F. Lawrence (COTD)

19. KEy WORDS (Continue on reversec side if necessar and Identify' by block number)

Distributed Operating System
Local Area Network
Virtual Local Network
Distributed System

20. ABSTRACT (Continue an, reerse side It necessary and identify' by block .omMbot)

- This report describes the primary functional capabilities which will be
designed into the Distributed operating System to be designed and
implemented. The goals include coherence and uniformity in the user model
of the system, survivability and integrity of the system function and
data, scalability of the architecture, resource management, component
substitutability, and operation and maintenance procedures. The concept
of a virtual Local Network, making it possible to substitute a variety of

DD I FO"1 1473 EDITION OF I NOV 65 IS OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION Of TIlS PAGE (W9.Os Disid EaIWOrE

UNCLASSIFIED

SECUmTY CLASSIFICATION OP THIS PAG9(lfm Data Sat= I

local area network vendor products in the architecture, is described.

Nl

UNCLASSIFIED

SECURITY CLASSIFICATIOU OF DAGErheI Date Ent.e

/:
.

Report No. 5086 Bolt Beranek and Newman Inc.

Table of Contents

11 Pnrojectio .vervie..... 2

1.2 Summary of Recent Project Activity.............o.... 3
1.3 Organization of This Report..'......... 4
2 Cronus Functional Definition and System

Concepts

2.1.1 Project Objectives..ooo... . 7
2.1.2 System Evrnet...................... . .. 11

2.2 Coherence and Uniformity o... o..ooo.o.... 17
2o2.1 The Outer System and Inner System Views.......... 18
2.2.2 DOS Cluster Physical Model... ... o.............. 23
2.2o3 Design Principleso . .. ooooo 25
2.2o3.1 Provide Essential Services System-Wide....9 ... 25
2.2.3.2 Utilize Recognized and Emerging
Standards

...* o4 6 .af ao o 66 oo a a o6 o . ao .6 a. a 6* o.99.9..6 26

2.2.3.3 Preserve Choices.oo........ o ... o...... 27
2.2.4 Specific Approaches....o- . .. o.o. .. o o~ 28
2o2.4.1 The Communication Subsystem................0 28
2.2o4.2 Generic Computing Eeet.......... 28
2.2.4.3 Standards Applicable to DOS Components.o..o... 29
2.2.4.4 Flexible Application Host Integration.9 9. 32
2.2.4.5 Comprehensive DOS Object Model _....... 33
2o2.5 A Summary of the DOS Architecture............... 35
?.2.5.1 Levell1: The Minimal System.-..... .oo...o ... oo 35
1.2.5.2 Level 2: The Utility System..oo ... o.... ooo.... 36
ao2o5.3 Level 3: The Application Systemoo......o.... o... 36
a.3 The DOS Functions and Underlying Conceptso....o. 37

2.3.2 System Access.......o. o o.. 43
2o3.3 Object Managememt. ...-... o 9 45
2.3o4 Process Management. o 47
2.3.5 Authentication, Access Control, and

Security
48

2.3.6 SymblcNin9 9 54
2.3o7 Interprocess Communication. .. 0................... 57
2.3.8 User Interface....,... ~ o9999999999999.000 59
2.3.9 Input / Output,... oo.........o 63
2.3.10 System Monitoring and Control..... 64
2.4 System Integrity and Survivability......o...... 65
2.4.1 Reliability Objectives,.... oooo............* 68

Report No. 5086 Bolt Beranek and Newman Inc.

* 2.4.2 General Approach 69
2.4.3 Specific Approach 70
2.5 Scalability...................................... 73
2.5.1 General Approach 74
2.5.2 Specific Approach 75
2.6 Global Resource Management 78

2.6.2 General Approach 79
2.6.3 Specific Approach 81
2.7 Substitutability of System Components 83

2.7.2 Approach: Use of Abstract Interfaces 84
2.7.3 Approach: Specific Interface Plans 85
2.8 Operation and Maintenance 89
2.9 Test and Evaluation 90
2.9.1 Coherence and Uniformity 0... 00-0. 92
2.9.2 Integrity and Survivability....... 0..........0..*. 94
2.9.3 System Scalability. 95
2.10 Relation to OSTAFlS Report................ 0.. 98
2.10.1 General Aspects of the 051 Model 98
2.10.2 OSI Identified Functions 100
2.11 DOS Glossary 103
3 Advanced Development Model Configuration
Selection

.... * & 0 ... 107I3.1 Local Network Selection Criteria 107
3.2 DOS Local Network Selection o 119
3.3 Generic Computing Element for the DOSo......o. 119
3.4 CMOS: A Constituent Operating System of

Cronus
. 0 *... 153

4 Initial System Design Acitvities 160
4.1 The Cronus Virtual Local Network 168
4.2 Cronus Unique Numbers o..................... o. 191
4.3 The Cronus Gateway 205
5 Implementing the System Ethernet

Interconnection
210

5.1 Cnetn utbsBsd600Ssest
the Ethernet

210
5.2 ConcingC7 C to th rnsEhre 215
5.3 MBB Interlan Ethernet Interface Preliminary

Specification

..*.o ~ ~ ~ ~ ~ ~ i-... 0.0 2

Report No. 5686 Bolt Beranek and Newman Inc.

FIGURES

The Generic Computing Element... 3
The Local Cluster Configuration................ 38
The InterCluster Environment 39
The DOS Security Envelope 52
Cronus Protocol Layering 163
A Virtual Local Network Cluster........................ 165

' ,--- ---r

orA

-iii-

I m| I -u 7 ZI

Report No. 5086 Bolt Beranek and Newman Inc.

TABLES

Internet Address Formats 169
VLN Local Address Modes 0.... 0000-00-009-00 170
An Encapsulated Internet Datagram 178

-iv-

Report No. 5086 Bolt Beranek and Newman Inc.

1 Introduction

This is the first interim technical report for contract

F30602-81-C-0132, entitled "DOS Design and Implementation.0 The

system being developed under this effort has been given the name

Cronus.

1.1 Project Overview

The objective of this project is to define, design,

implement and test an Advanced Development Model for a

distributed operating system. The DOS controls the interactions

among collections of computers interconnected via high-speed

local area network technology. The overall function of the DOS

is to integrate the various data processing subsystems into a

coherent, responsive and reliable system. The system is to

include the following functions: system monitoring, reliability

and survivability, access control and authentication, and a

uniform command language. In addition, the system is to provide

support for the following system services: uniform file system,

electronic mail message distribution, data translation, and

interactive access to remote programs.

The project activity can be subdivided into five major

categories:

-I-/-2

Report No. 5086 Bolt Beranek and Newman Inc.

1. DflLnijtil of the distributed operating system concept
and its functions as they apply to this effort.

2. Seletion of predominantly off-the-shelf hardware and
software components to represent the foundation of a
demonstration DOS system.

3. Deign of the DOS conceptual structure and its fusctional
elements.

4. Implementation of the design, culminating with the
integration of implementation units into a complete
Advanced Development Model for a distributed operating
system.

5. Ealuio of the concepts and realization of the DOS in
the environment of the ADM by means of test procedures
and practical demonstrations.

1.2 Summary of Recent Project Activity

Some of our major accomplishments during the first year of

the contract include the following:

Completion of the Cronus Functional Definition and System Concept
Report.

o Selection of the local area network technology to be used
in this project, including requirements and analysis of
selected and non-selected products.

o Selection of the various host components which comprise
the processing elements of the DOS, and which are each
selected to serve one or more roles in establishing a
credible and relevant demonstration environment.

o Procurement, installation and checkout of all system
components.

o Start of the first phase design for the distributed
operating system. This activity is continuing and is
expected to be completed during the next few months.

-3-

Report No. 5086 Bolt Beranek and Newman Inc.

o Establishing and stabilizing the programming environment
for each of the system components.

o Initiating the complete local network interconnect of all
system components using 10MB Ethernet through the
purchase of network products, customized hardware, and
customized software as appropriate.

o Integrating the local network into DoD standard IP and
TCP protocol services on each system component.

o Adapting ARPANET internet gateway software to be used as
a Cronus access path to the internet and to interconnect
multiple Cronus clusters.

Inaddition to the above work, we participated in and gave

presentations to the RADC Technology Exchange meetings held in

October 1981 and May 1982. We also gave a presentation to a

special local area network meeting convened at r ADC for various

*government agencies. This presentation covered the general

subject of local area base band networks, with particular focus

on the process of selecting a network for the Cronus project.

1.3 Organization of This Report

Our project has instituted an informal DOS technical note

series, as a means of improving intra-project communication,

recording key ideas, and making available intermediate results to

interested individuals outside the project. The rest of this

report describes our work in many of the above mentioned areas in

more detail, using the vehicle of a selected collection of DOS

notes. Section 2 is the Cronus Functional Definition and System

-4-

, ~ ~ ~ ~ ~ ~ ~ ~ ~ , I Al| | | " •. ..

Report No. 5086 Bolt Beranek and Newman Inc.

Concept report. Section 3 is comprised of a number of notes

concerning the selection phase of our effort. The notes discuss

the selection of the local area network and the concept of a

microcomputer based, multipurpose generic computing element.

Section 4 includes a description of certain low-level aspects of

the system design. One note describes a definition for a virtual

local network to be used as a base for substituting other local

networks in different instances of Cronus. Another note defines

a facility for generating system-wide unique identifiers to be

used as global ientifiers for system objects. The final note in

this section discusses the interconnection of our cluster with

the ARPA Internet using gateway technology. Section 5 includes a

number of notes discussing work in progress toward completing the

Ethernet/IP/TCP interconnect of the system components. This

section includes a note describing the design of a C/70 UNIX

Ethernet interface using an off-the-shelf Ethernet component as a

base. This same base may be used as a starting point for other

custom implementations.

; -5-

/

Report No. 5086 Bolt Beranek and Newman Inc.

2 Cronus Functional Definition and System Concepts

This section of the interim technical report reproduces the

Cronus system functional definition, also available as BBN Report

No. 5041.

2.1 Introduction

This report details the functional definition and system

concepts for Cronus, the local area network distributed operating

system being developed as part of the DOS Design and

Implementation project sponsored by Rome Air Development Center.

The report is the first project deliverable document, and is

intended as an overview of the system which we will be developing

under this effort. The functions and system concepts discussed

in this report are the results of a consideration of the current

state of distributed system technology and potential uses of the

system in a wide variety of command and control environments.

This report is not a design document. The design of a

system meeting the objectives described in this report will be

covered in later reports. However, the nature of the project

dictates that many design, implementation and even test and

evaluation approaches be made in a coordinated manner with the

system definition. Accordingly, these issues are also addressed

where appropriate in the present document.

-6-

Report No. 5086 Bolt Beranek and Newman Inc.

2.1.1 Project Objectives

The purpose of the Distributed Operating System (DOS)

project is to develop a distributed operating system for use in

command and control environments. The DOS development activity

can be subdivided into five major categories:

1. select the off-the-shelf hardware and software components
that represent the foundation of the DOS system.

2. Design the DOS conceptual structure, by defining: a) the
functions available to users of the system; b) models for
pervasive issues such as reliability, security, and
system control; and c) the top-level decomposition of the
DOS software components into implementation units.

3. Develo2 the implementation units defined in (2), until
they become complete, functioning programs in the DOS
Advanced Development Model (ADM).

4. I the implementation units into a coherent and
useful system, both by adjustments to the functional
definitions and by any optimizations necessary for
acceptable performance.

5. Evaluate the concepts and realization of the DOS in the
environment of the ADM, by means of formalized test
procedures and practical demonstrations.

The DOS will be designed as a general purpose system to

support interactive information processing. Thus, emphasis is

placed on adatability of the DOS structures along several

dimensions, for example:

- Reliability: essential services can be provided with high
reliability using redundant equipment, or with lower
reliability at lower cost;

- Accommodation: there are well-defined paths for integrating
any host under any operating system, and any special-

2 purpose device, into the DOS;

-7-

Report No. 5086 Bolt Beranek and Newman Inc.

- Scalability: a DOS cluster can be scaled from a few to
several hundred hosts, and adjust to a similar scaling of
the user population;

- Primary use: appropriately configured, a cluster may be
efficiently utilized as a program development system, an
office automation system, a base for dedicated
applications, or a mixture of all three;

- Access paths: the DOS services and applications can be
accessed from terminals and workstations attached to a
cluster directly, or through the internetwork;

- Buy-in cost: hosts and applications can be integrated into
the DOS environment in a variety of ways, that offer a
range of cost/performance points to the integrator.

The DOS concepts and the software modules that implement the

basic system services can be utilized in a wide variety of

possible hardware configurations, and in many different operating

regimes, to support the requirements of different applications.

This pl~ymorphous aspect of the DOS makes it difficult to

describe concisely; a complete description must examine each of

the dimensions of DOS adaptability. This document presents a

top-level view of the project objectives and DOS design goals;

further detail will be provided in system design documents.

With regard to DOS adaptability, we distinguish between

accommodation, the ability of the DOS to incorporate new host

types, new constituent operating systems, and new application

subsystems (services), and substitution, the replacement of a

hardware or software module critical to the provision of DOS

essential services. It is a project goal to achieve the widest

possible range of accommodation,i.e., to be able to integrate

-8-

- _ _ _

Report No. 5086 Bolt Beranek and Newman Inc.

many types of existing or future host, operating system, or

application subsystems within the DOS concepts. Substitution, in

contrast, will be much more tightly constrained, because the new

hardware or software module must correctly implement the external

interface of the old module in order for the DOS to continue to

provide essential services. Certain critical interfaces (e.g.,

the interface to the local network, GCE operating system support)

will be carefully defined to make substitution possible. Both

forms of adaptability, accommodation and substitution, are

important, but we expect accommodation to occur much more

frequently.

In general, the DOS design is influenced more by available

and projected technology than by the specific requirements of any

application, since to do otherwise would violate the general-

purpose nature of the DOS.

The temper of the DOS design is pragmatic. The project aims

to design, build, and evaluate a complete, useful system over a

period of about 3 years. The use of the DOS as a tool for its

own implementation is an important incentive to the developers to

be on time and down-to-earth.

The following problem areas are not considered to be

important project objectives:

1. Development of high reliability or fault tolerant
hardware;

-9-

Report No. 5086 Bolt Beranek and Newman Inc.

2. Development of minimal-cost solutions to distributed
processing problems;

3. Research into low-level communications hardware and
protocols;

4. Development of support for distributed, real-time
applications;

By stating (1) as a non-goal we emphasize the project

orientation towards software, rather than hardware, reliability

techniques. We note the mention of specific, non-fault-tolerant

commercial processors as DOS constituent hosts in the Statement

of Work; the implication that non-fault-tolerant machines will

often be included in DOS configurations is evidence in support of

(1) as a non-goal.

By stating (2) as a non-goal we express a bias towards

general-purpose operating system facilities. For some

applications, high-volume production (hundreds or thousands of

units) may be anticipated; economic pressures will then encourage

tailoring the systems to provide the required function at minimal

cost per unit. General-purpose systems, on the other hand, tend

to provide more functionality than is necessary for any

particular application. They are thus more cost effective for

small production volumes of application systems (their generality

makes programming less costly), and less cost effective for large

production volumes (since each replicated system contains unused

general-purpose mechanisms). Because simply achieving the

required distributed operating system funct~i is to a large

Report No. 5086 Bolt Beranek and Newman Inc.

degree still a research problem, we do not believe a major

emphasis on cost effectiveness is desirable or even possible at

this time.

By stating (3) as a non-goal we recognize the large

investments in low-level communication protocols and hardware

already made by the Department of Defense and the private sector.

In the interests of interoperability and a rapid rate of progress

on the other, higher-level issues of distributed operating system

design, we will directly utilize the DoD IP and TCP protocol

standards and commercial local network technology.

By stating (4) as a non-goal we identify a conflict between

the distributed operating system structures required for high

performance in real-time systems, and the structures which

support a modern, general-purpose computing utility. Again, the

project orientation is towards the more general-purpose concepts;

however, the presence of individual hosts in a DOS cluster

performing real-time processing is entirely within the DOS

concept of operation, and is readily supported.

2.1.2 System Environment

To define the focus of the DOS project it is useful to

classify distributed systems along architectural lines according

~-11-

Report No. 5086 Bolt Beranek and Newman Inc.

to the physical extent of distribution the systems exhibit. We

can identify three major architectural areas of interest:

1. Node Architecture

2. Cluster Architecture (1)

3. Inter-Cluster Architecture

Each of these is related to the emerging technology of

distributed systems, but the technology of distribution tends to

be different in the three areas, as explained below.

Node Architecture

The development of a processor architecture,
configuration, and operating system for a single bqAt or
processtaing n~dl is a large-scale undertaking, usually
accomplished by computer manufacturers. A host is
typically physically small (can be contained in one
room), is designed by computer hardware architects as a
single logical unit, and is concerned with maximum event
rates of approximately 1 to 1000 million events per
second. Although dual-processor nodes have been common
for some time, nodes with many-fold internal distribution
are just now becoming commercially available. The
structure and efficient utilization of such hosts is at
the forefront of computer architecture research.

Cluster Architecture

A clus~te~r is a collection of nodes attached to a
high-speed local network. At present, technology limits
the speed of local networks to approximately 1 to 100

(1) The term "cluster" is used here with the same meaning as in
BBN Report No. 4455, "Distributed operating System Design Study:
Phase 1". The term "cluster architecture" is synonymous with the
term IbINIDOS" in the OSI Report No. R79-045, "TAC C3 Distributed
Operating System Study Final Report"; similarly, "inter-cluster
architecturen is synonymous with OMAXIDOSO in the OSI report.

-12-

Report No. 5086 Bolt Beranek and Newman Inc.

megabits aggregate throughput, and the physical size of
the network to a maximum diameter of about 4 kilometers.
The host systems are made to work together through the
agency of the distributed operating system, which
provides unifying services and concepts which are
utilized by application software. The maximum event rate
at the DOS level is related to the minimum message
transmission time between hosts, and is on the order of
10 to 1000 messages per second. The cluster
configuration and applications supported by it are
typically under the administrative control of one
organizational entity.

Inter-Cluster Architecture

An inter-cluster architecture typically deals with
geographically distributed clusters (or in the degenerate
case, hosts) which are not under unified administrative
control. Because of administrative issues and the
greater lifespan of inter-cluster architectures, they
tend to be composed of parts from many different hardware
and software technologies. The communication paths
between widely separated clusters have much lower
bandwidth and higher error rates than local networks; the
maximum event rate for cluster-to-cluster interactions is
on the order of 0.01 to 10 events per second. In the
inter-cluster case, emphasis is on defining protocols for
interactions between clusters, and on the appropriate
rules for the exchange of authority (for access to
information and consumption of resources) between
clusters.

The boundaries between these areas are often indistinct, and

sometimes simply the result of unrelated design efforts.

Nonetheless each area has a unique set of requirements and

solutions for system design. For a given area, these aspects

combine to form an outlook that encompasses not just the

functional properties of a system, but also many *system level*

issues relating to development, administration, training,

operations, documentation, and maintenance.

-13-

,.

Report No. 5086 Bolt Beranek and Newman Inc.

The principle concern for the DOS project will be the

development of a system for a cluster architecture. Because a

cluster is composed of nodes and connected to other clusters the

the relationships between node, cluster, and inter-cluster

architectures must be considered in order to produce the DOS

cluster architecture. In certain specific but limited regards,

problems concerning node or inter-cluster architecture will be

important. For example, it must be possible to integrate a wide

variety of nodes into the cluster system, and the cluster system

must be able to interact with other clusters. Where feasible,

the design will accommodate existing standards in the areas of

node and inter-cluster architecture. Standardized node

components and standardized connections to the internetwork

environment will both contribute to the applicability and

longevity of the DOS design. However, it is outside the scope of

this project to attempt the development of unified approaches to

problems of distribution in all three areas, which would involve

addressing three different sets of issues.

It is important that the DOS project take full advantage of

the best available off-the-shelf component technology. A

"component" in this sense may be hardware (e.g., processors and

storage devices) or software (e.g., the commercial UNIX or VMS

operating systems, and the ARPA-sponsored internet gateway

software). The current technological trends should also favor

continued development of the components in applications apart

-14-

I " , -

Report No. 5186 Bolt Beranek and Newman Inc.

from the DOS project, so that the parallel evolution of node and

inter-cluster architectures can potentially benefit the DOS

cluster architecture. The DOS project can be expected, of

course, to provide useful concepts and services for the other

areas; synergism results from a blend of diversity and

commonality among the three architectural levels.

2.1.3 System Goals

The overall objective of developing a cluster operating

system can be broken down into a number of system design goals

along the lines of the characteristics the system should exhibit.

The resulting design goals can then be prioritized and used

during the design process as a means for focusing the design

effort and as a basis for making various design choices.

The system design goals for the DOS, in order of decreasing

priority are:

Primary Goals.

1. Coherence and Uniformity.

To be usable as a system the DOS must implement a
coherent and uniform user model.

2. o ,'vivability and Integrity.

The operation of the system and the integrity of the
data it manages must be resilient to outages of system

~-15-

__-____-_________I _______________ "__ I ~. -. --- . ".

Report No. 5086 Bolt Beranek and Newman Inc.

components.

3. Scalability.

It should be possible to configure the system with
varying amounts of equipment to accommodate a wide
range of user population sizes and application
requirements.

Secondary Goals.

4. Resource Management.

The system should provide means for system
administrators to establish policies that govern how
resources are allocated to user tasks, and it should
work to enforce those policies.

5. Component Substitutability.

The ADM DOS will be built on a specific equipment base.
The system should be structured to permit system
components to be replaced by functionally equivalent
equipment to the largest extent feasible.

6. operation and Maintenan~ce Procedures.

The system should provide features which facilitate
routine operations and maintenance activity by system
operations personnel.

Each of these design goals is discussed in more detail in the

sections that follow.

The distinction between primary and secondary goals is

methodological, and principally related to test and evaluation.

Each primary goal will be the subject of a well-defined

evaluation procedure, specified to the greatest extent practical

in advance of system implementation. For example, the tests for

survivability will include a prescribed set of failure modes to

Report No. 5086 Bolt Beranek and Newman Inc.

be artificially induced in the Advanced Development Model, and

the behavior of the system recorded. The success of the DOS

design in meeting secondary goals will not be so carefully

scrutinized; written evaluations will be prepared, but less

effort will be spent on planning the evaluations and producing

comprehensive tests.

2.2 Coherence and Uniformity

The DOS project aims to develop a coherence and uniformity

among otherwise independent application systems and computer

services attached to a cluster, in such a manner that the effort

required to develop composite applications from existing

applications, or to develop new, integrated applications, is as

small as practical.

This section discusses 'coherence and uniformity" as the

phrase applies to the DOS. First, an important dichotomy in the

domain of anticipated DOS applications is explained, and the

tensions that this dichotomy places on the design process are

described. Second, the cluster architecture is described in more

detail. Third, several design principles which are the basis of

the design process are presented and discussed as they apply to

the goal of coherence and uniformity. Finally, specific

approaches to some of the issues which are believed to be well

-17-

Report No. 5086 Bolt Beranek and Newman Inc.

unde±rstood at the current time are given.

2.2.1 The Outer System and Inner System Views

The interpretation of the phrase "coherence and uniformity"

is ultimately subjective, and should reflect the end-users'

opinions of the system concepts and realization. Thus it is

fitting that this section begin with a discussion of how the DOS

concepts might be used in different applications. Rather than

attempt a thorough treatment of the (very large) domain of

applications, two important classes of applications are

considered in the abstract.

The first class of application views the DOS as an external

entity, a supplier of services and communication facilities.

This orientation is referred to as the ouiter isysat yjgM of the

DOS, since the applications already exist or are built outside

the context of the DOS concepts of operation. The second class

of application is built to run in the DOS context, with full

knowledge of the DOS environment and a bias towards its full

exploitation. This orientation is referred to as the inner~

.aysite mir- of the DOS. The outer system view is most closely

related to the problem of achieving connections among existing

functional components built on heterogeneous hosts and operating

systems; the inner system view should prevail in the design of

Report No. 5086 Bolt Beranek and Newman Inc.

new, distributed applications, whether they are built on a

homogeneous or heterogeneous base.

We presume that applications satisfying an organization's

needs will often be developed independently of each other.

During their development, these applications will frequently come

to depend upon particular hardware and software objects in their

environment, e.g., the host instruction set, the host operating

system, and one-of-a-kind peripherals attached to a particular

host. The applications may reach operational status with no

explicit use of the DOS concepts, and they could be built either

on conventional, stand-alone hosts or on a host attached to a DOS

cluster.

At some point in time it may be necessary to form a logical

connection between application programs which have been developed

independently--that is, to achieve interoperability among the

functional components. There may be many obstacles to

interoperability; a few of the more prevalent and difficult

obstacles are:

1. Incompatible data structures;

2. Application interfaces designed for program-to-human
rather than program-to-program communication:

3. The absence of a suitable program-to-program
communication facility in the host operating system(s);

4. An inadequate structure for the transfer of authority
(for access to information and resources) between
programs;

-19-

Report No. 5086 Bolt Beranek and Newman Inc.

5. Poor reliability as the system becomes more and more
vulnerable to single-point failures;

6. Poor reliability due to high error rates on communication
channels between components;

7. The high cost of performance optimizations involving
several complex software components;

8. Disparate software development environments--both
automated tools and manual procedures.

In the outer system view, the primary role of the DOS is to

reduce these and other obstacles to interoperability, by

providing a core of common concepts and functions that become the

focus of component interactions.

As an example of the outer system view, suppose there is a

need to link a graphics display function executing on a personal

workstation to a database management system running on a standard

mainframe operating system. Initially, the database me..,gement

system and the graphics support may have no relationship to the

DOS whatsoever, relying entirely upon the hardware and software

resources of their own hosts. In order to accomplish the logical

link, the hosts must be physically attached to a DOS cluster,

communication software must exist on each host, and the

applications must be prepared to properly utilize the host-to-

host communication path. The DOS can assist this integration by

defining the common concepts required for the logical connection

to be formed. In this simple example the only requirement is for

communication, but in more complex situations the DOS may supply

other services (e.g., user authentication, data storage and

-20-

Report No. 5986 Bolt Beranek and Newman Inc.

encryption, terminal multiplexing).

The inner system view, in contrast, assumes that new

applications are constructed within the framework of the DOS and

use DOS mechanisms in preference to local host mechanisms

whenever practical. A new application designed from the inner

system perspective may or may not be distributed, and may be

built on homogeneous or heterogeneous machines and operating

systems. Whichever the case, by adopting the DOS conventions for

process control, file storage and cataloging, and process-to-

process communication (among others) such applications avoid many

of the interoperability problems listed above. In fact, the

process of building an application on the DOS inner system is

akin to program construction on a single conventional host, in

that the concepts of "process* and wfile" and *directory", to

name a few, are generally understood by all of the components to

mean the same thing. The new application not only achieves

uniform connections among its constituent pieces, but also

inherits the ability to interact with other inner system tools

which also conform to the common concepts. Thus inner system

applications enrich the DOS environment in an incremental way,

and form the basis for the continued orderly evolution of the DOS

environment.

The DOS inner system is unlike a conventional operating

system, however, because it addresses issues of distribution--the

-21-

Report No. 5086 Bolt Beranek and Newman Inc.

development of distributed programs, the possibility of

survivable operation through host redundancy, and the potential

for configuration scaling beyond the limits of shared memory

architectures. These system aspects motivate the development of

a powerful and coherent inner system architecture.

Brief examples will reinforce the distinction.

An example of an outer system view might involve two

components: a commercial DBMS running on a standard mainframe

operating system, and a workstation generating color graphics

displays. The objective of the application is to provide a

facility for online, color graphics displays of data stored in

the DBMS. This is an outer system problem, because the DBMS and

mainframe operating system (and quite possibly the workstation

operating system) are large and complex objects, maintained by

independent organizations, difficult to modify, and were

constructed with no awareness of the DOS. The most conservative

(least implementation effort) approach might use the DOS only as

a communication path, and achieve only minimal integration of the

mainframe host into the DOS.

An example of the inner system view might involve the

construction of a programming environment for a new

microprocessor. The DOS already contains many program

development tools--editors, compiler-compilers, linkers,

debuggers, etc. By adopting the DOS concepts for process

-22-

Report No. 5086 Bolt Beranek and Newman Inc.

interaction, many or most of these may be reused. (2)

A fundamental assumption of the DOS project is that both the

outer and inner system views are important and must be considered

in the design. Because the two views imply different system

requirements this represents a burden to the design process.

2.2.2 DOS Cluster Physical Model

Before discussing the major system design principles, the

equipment configuration for the DOS cluster is briefly reviewed.

The DOS cluster is composed of three types of equipment:

1. A communication subsystem. The subsystem consists of a
high-bandwidth, low-latency local network, hardware
interfaces between hosts and the local network, device
driver software in the host operating systems, and low-
level protocol software (the data link layer) in the
hosts.

2. DOS service hosts. These machines are dedicated entirely
to DOS functions, and exist only to provide services to
DOS users and applications. In general, they represent
modules with specific, system-oriented functions (e.g.,
archival file storage) and are not user programmable.
Requirements for the DOS service host types and operating
systems will be specified in the DOS design documents (3)

(2) The UNIX operating system is widely regarded as a good
example of the inner system view; shell programming, the
"makefile" facility, and other system facilities contribute to
the growth of UNIX systems by accretion.
(3) The DOS design will permit the substitution of different
service host types for the hosts actually used in the Advanced
Development Model; however, any substitution must meet minimal
requirements specified in the concept of operation.

-23-

-. Now,

Report No. 5086 Bolt Beranek and Newman Inc.

3. Application hosts. These may be general-purpose hosts
(e.g., timesharing machines) providing services to many
DOS users, or workstations providing services to one user
at a time, or special-purpose hosts (e.g., signal
processing computers) required by just one DOS
application. Application hosts are often user
programmable. In general, they have many characteristics
which are not under the control of the DOS; the DOS must
be sufficiently flexible to incorporate application hosts
of almost any kind.

Application hosts will be connected to the communication

subsystem in one of two ways: 1) directly, by means of a host-

to-local-network device interface; or 2) indirectly, through an

intermediary DOS service host called an acss machine. The

intent is that standardized access machine software and hardware

can reduce the integration cost for a new application host. The

electrical interface between the application host and the access

machine, for instance, need not be as complex as a local network

interface; it need only be mutually acceptable to the two

machines. (4) Access machines may have other functions as well;

they could play a role in the DOS security model, for example, by

isolating untrusted hosts from the (presumed secure) local

network. The tradeoffs arising in direct and indirect host

integration are not presently well understood; an exploration of

this topic is a DOS project goal.

General-purpose application hosts will usually operate with

(4) As a concrete example, the access machine planned for the
Advanced Development Model will utilize the HDLC protocol over an
RS-422 or RS-423 machine interface.

-24-

-- mass-

Report No. 5086 Bolt Beranek and Newman Inc.

standard operating systems (e.g., a Digital Equipment Corporation

VAX computer running the VMS operating system) which are enhanced

and/or modified to integrate the host into the DOS. Thus

application hosts will support some DOS software components, at a

minimum those required for communication with DOS service hosts.

Some DOS services may also be partially or completely Implemented

on application host to realize performance advantages (by

locating applications and required DOS services together) or cost

advantages (through resource sharing).

2.2.3 Design Principles

2.2.3.1 Provide Essential Services System-Wide

At the heart of the DOS concept is the availability of

selected, essential services to all of the applications in the

DOS. The coherence and uniformity of the DOS is directly

enhanced when applications and application host operating systems

embrace the DOS-supplied services as the single source of these

services. To the extent that applications and application host

operating systems choose to utilize parallel but incompatible

services, coherence and uniformity is lost.

At this time the essential services are believed to be:

-User access points (terminal ports, workstations) providing
a uniform path to all DOS services and applications;

-25-

Report No. 5086 Bolt Beranek and Newman Inc.

- Object management (cataloging and object manipulation) for
many types of DOS objects;

- Uniform facilities for process invocation, control, and
interprocess communication for application builders;

- Cluster-wide user identifiers and user authentication as
the basis for uniform access control to DOS resources;

- Cluster-wide symbolic name space for all types of DOS
objects;

- A standard interprocess communication (IPC) facility
supporting datagrams and virtual circuits;

- A well-designed user interface that provides access to all
DOS and application services;

- Input/output services for the exchange of data with people
and systems apart from the DOS;

- Host monitoring and control services, and additional
mechanisms needed for cluster operation.

2.2.3.2 Utilize Recognized and Emerging Standards

The DOS design will incorporate recognized and emerging

standards whenever practical at many levels of the system. The

adoption of standards both enhances the uniformity of the system

and contributes to the likelihood of pre-existing, compatible

interfaces. The longevity of the DOS concept of operation is

extended by attention to standards that are the foundation of

contemporary research and development activities; the possibility

of interaction with other projects to the mutual benefit of both

is maximized.

-26-

Report No. 5086 Bolt Beranek and Newman Inc.

2.2.3.3 Preserve Choices

The DOS design will preserve choices for the application

host integrator and the application builder.

There is a complex tradeoff between the cost of host and

application integration into the DOS, and the uniformity and

power achieved as a result of the integration. Although many

issues involved in the tradeoff have been identified, the problem

is not sufficiently well understood to make prescriptions

confidently. Investigation of this problem is an important

objective of the DOS project.

Part of the project's approach is embodied in Principle 3.

This principle requires that the DOS concept of operation

accommodate not just one, but a range of possible cost/uniformity

points.

Similar tradeoffs exist among the DOS services supplied to

application programs. For example, this principle applied to

interprocass communication implies that neither datagram nor

virtual circuit service is sufficient for all applications; the

DOS should provide both types of communication service.

In general, this principle requires that the DOS design

address the problem of how DOS installations will adapt to very

different configuration and application requirements.

-27-

Report No. 5086 Bolt Beranek and Newman Inc.

2.2.4 Specific Approaches

2.2.4.1 The Communication Subsystem

A high-bandwidth, low-latency local network (5) is the

backbone of the DOS. The DOS concept of operation will specify

the interface to the local network, so that alternate local

network technologies can be substituted for the particular local

network chosen for the Advanced Development Model, if they meet

the interface specification. The interface specification will be

as unrestrictive as possible, so that substitution is a real

possibility.

The local network will permit every host to communicate with

every other host in the DOS cluster, and will provide an

efficient broadcast service from any host to all hosts. The

local network interface specification may further restrict the

minimum packet size, addressing mechanism, and other local

network properties.

2.2.4.2 Generic Computing Elements

The concept of a Generic Computing Element (GCE) is

important to the DOS design (6) . A GCE is an inexpensive DOS
iU
(5) See DOS-Note 21, ODOS Local Network Selection".
(6) See DOS-Note 17, "A Generic Computing Element for the DOS
Advanced Development Model".

-28-

Report No. 5086 Bolt Beranek and Newman Inc.

host that can be flexibly configured, with small or large memory,

and with or without disks and other peripherals, as shown in

Figure 3. GCE's will be configured for, and dedicated to,

specific DOS service roles, such as terminal multiplexing, file

storage, access machines, and DOS catalog maintenance (7)

The GCE's are the basis for implementing the essential DOS

services in a uniform, application-host-independent manner.

Because the DOS design will specify the properties of GCE's and

also the software components (8) running on them, it is possible

to control the performance and reliability characteristics of the

essential DOS services. A configuration consisting of the local

network, some number of GCE's, and supporting the essential

services represents the minimum useful DOS instance.

Application programs can be constructed above the GCE

hardware and operating system; a single GCE host may support DOS

services or user applications, but not both.

2.2.4.3 Standards Applicable to DOS Components

The DOS design will utilize recognized standards in several

key areas; these directly contribute to both the coherence of the

(7) A single GCE may support several DOS services simultaneously.
(8) Perhaps the most important software component is the GCE
operating system, CMOS.

-29-

Report No. 5086 Bolt Beranek and Newman Inc.

DISSK

CONSOLE INTERAAC

INSPACEC FOR MORD

TheM GenTiANmDtiARleen
FigureL

-3'

C3/

, i

Report No. 5086 Bolt Beranek and Newman Inc.

DOS and interoperability with other computer systems. The

standards which have been identified as pertinent as of this time

are:

1. IP and TCP internet protocol standards. To the maximum
extent possible, IP and TCP will be used for host-to-host
communication within the DOS cluster.

2. ARPA standard gateway. The gateway between the ADM
cluster and the ARPA1ET will be an LSI-11 based, ARPA
standard gateway, developed and supported by BBN.

3. Ethernet. From the hosts' point-of-view, the local
network in the Advanced Development Model will match the
Ethernet transceiver cable compatibility interface (9)

4. IEEE 796 bus. The GCE hardware selected for use in the
Advanced Development Model is based on the IEEE 796 bus
standard for circuit board interconnection.

5. HDLC and RS-232C. These communication standards will be
used to connect hosts and terminals, respectively, to
GCE's within the cluster.

6. The programming language Ada. The military standard
language Ada will be exploited to the greatest extent
practical. (10) It's use will be determined by timely
completion of activities not under the control of the DOS
project.

Other standards may be applicable to DOS components and are

being considered for adoption by the project. Two areas in which

existing standards will probably be adopted, rather than

developed by the project, are the format of electronic mail

messages and the interface between GCE's and mass storage

(9) As noted above, the DOS concepts will not depend upon any
local network properties which are peculiar to the Ethernet;
Ethernet-compatible devices will, however, be easily added to the
Advanced Development Model.
(19) See DOS-Note 16, "Some Thoughts on the Selection of a DOS
Implementation Language".

-31-

Report No. 5086 Bolt Beranek and Newman Inc.

modules.

2.2.4.4 Flexible Application Host Integration

When a new host is integrated into a DOS cluster, it will

assume one of several possible h = roles The host roles will

occupy different points along the spectrum of integration cost

versus degree of adherence to the DOS unifying concepts. System

administrators are thus presented with a choice of integration

paths, and can tailor host roles to the needs of specific

applications.

When a host is integrated with minimum effort, little more

than a communication path between the host and other entities in

the DOS cluster will be present. This host will be able to

obtain many DOS essential services through the communication

path, but its resources may be unavailable to other DOS

processes. Further effort must be devoted to assimilate the host

partially or fully into the DOS object catalog, process model,I

and reliability mechanisms.

As defined above, the access machine concept is closely

related to the effort required for host integration. Minimal

effort integration will most likely be achieved through the use

of access machines. This host integration path will probably

result in lower throughput between the host and the network due

-32-

Report No. 5086 Bolt Beranek and Newman Inc.

to the presence of the access machine, but may be a desirable

approach on balance. For special purpose devices with limited

programmability, access machines may play the dual role of device

controller and DOS interface.

The host role is decided anew for each host in a cluster.

It is possible, for example, for two hosts which are physically

the same type of machine and which run the same operating system

to be integrated to assume different roles.

2.2.4.5 Comprehensive DOS Object Model

The DOS concepts will revolve around a group of basic object

types: files, processes, hosts, users, and messages, to name a

few of the more important. The DOS design will attempt to treat

all of these types (and others) uniformly, in accord with an

abstract object model. The abstract object model recognizes that

an object may be designated by one of three varieties of name:

1. Universal Identifier (UID). A UID is a fixed-length
bitstring. Every object in the abstract object model has
a unique UID, over the set of all objects in the cluster
and the entire lifetime of the system. A UID is always
an acceptable designator for an object within the DOS.

2. Address. An address is a bitstring composed of a
sequence of address portions. Each successive portion
serves to narrow the set of objects designated by the
address; the complete address refers to a single object.

3. Symbolic Names. People use symbolic object names to
designate DOS objects. Symbolic names can be context

-33-

Report No. 5086 Bolt Beranek and Newman Inc.

dependent (for example, relative to a directory) or
context independent. The symbolic name space is
hierarchically structured so that the logical grouping of
related objects is reflected in a similarity among their
context independent symbolic names. An object need not
have a symbolic name.

Normally, people will refer to objects using symbolic name's, and

programs will refer to objects using EJID's, addresses, and

symbolic names. The system will provide translation services,

the most important supported by the object catalog, to translate

among the three representations of object names.

UID' s, addresses, and symbolic names will be used in

different ways within the DOS. A UID is always a sufficient

object name, even for objects which can move from host to host

(11) , because it is completely context independent. An address

will usually represent the fastest access path to an object,

because its representation explicitly contains the routing

information needed to reach the designated object. Symbolic

names are most suitable for the user interface, but because the

other object designators are available programs need not deal, in

general, with variable-length symbolic object names.

A mechanism will be developed for constructing new,

composite abstract types from previously defined types. This

will allow objects with rich semantics to be built from simpler

(11) The DOS does not, in general, support movement of arbitrary
objects from one host to another; some specific object tye will
give rise to mobile objects, however.

-34-

Report No. 5686 Bolt Beranek and Newman Inc.

objects; for example, a Oreliablew file could be assembled from

several primitive files on different hosts, containing redundant

copies of the same information.

2.2.5 A Summary of the DOS Architecture

The commitment of the DOS design to support a wide range of

equipment configurations makes it difficult to give a concise

description of "the DOS". The system will have widely varying

characteristics for different DOS equipment configurations. It

is possible, however, to identify three levels of "DOS product"

which may help to clarify the boundaries of the design.

2.2.5.1 Level 1: The Minimal System

The minimal DOS system consists of the local network, a

small number of GCE's supplying essential services, and a at

integration guijde which explains how the owning agency can

integrate their own hosts into the DOS environment.

The minimal system supports the user registration and

authentication functions, and the essential services pertaining

to the user interface, the object model, the cluster gateway(s).

It also supports the basic system monitoring and control

functions present in any DOS instance. By itself, it does not

-35-

Report No. 5086 Bolt Beranek and Newman Inc.

provide a user programming environment, or the utilities

(electronic mail, text preparation, etc.) found in most

timesharing environments.

2.2.5.2 Level 2: The Utility System

The utility system consists of the minimal system, plus one

or more fully-integrated, general-purpose timesharing hosts

called uti.JJt hosts (the C/70 computers will play this role in

the Advanced Development Model). The utility system will be

suitable for developing new applications in the framework of the

DOS, and will support the utilities typical of a modern

timesharing system. The utility system will also support the

maintenance of its own software, and the software of the minimal

system.

2.2.5.3 Level 3: The Application System

The application system consists of the minimal system and

some number of application hosts, workstations, and special-

purpose devices. An application system may simultaneously be a

utility system, if utility hosts are present in the cluster.

Applications are generally developed in a utility system and

operate in an application system. Application systems,

-36-

Report No. 5086 Bolt Beranek and Newman Inc.

therefore, need not be capable of supporting their own software

development. Application systems are sometimes configured with

redundant components and operated in a high reliability mode.

Note that GCE's can be used for application programming; thus a

particularly simple application system consists of just the

network, the GCE's required to provide essential services, and

some number of application GCE's.

Figures two and three illustrate the components and the context

of the initial system configuration for the Advanced Development

Model being assembled at BBN.

2.3 The DOS Functions and Underlying Concepts

2.3.1 Introduction

Expected usage of the DOS can be divided into five

categories:

1. Applications;

2. Application development and maintenance;

3. System administration;

4. System operation;

5. System development and maintenance.

The system is intended primarily to support end

application usage (1). However, to adequately support end

applications it must also support the other categories of use.

-37-

Report No. 5086 Bolt Beranek and Newman Inc.

CMOs OS
"ALL OCE's Mel!!= Procesor EMNL RAE

160 ~ ~ ~ ~ ~~ 4 MM3 Dik30MDik(CIskntrfc

1 -- L -11 2Figure 2 ~

10 b Eheret -38---

Report NO. 5086 Bolt Beranek and Newman Inc.

ATEEMOAY

.IERIHOST

TCP.TETNE

TERMINAL CONENTATO

The nte~luser nvirnmeT
ARPANigur 3TERE

I-39

Report No. 5086 Bolt Beranek and Newman Inc.

Therefore, it should be possible for users working in each Of

these cases to perform their responsibilites by means of the DOS.

The goal of supporting these usage categories places requirements

on the functions the DOS must implement, and on the tools it must

be able to accommodate. This section discusses the DOS

functions.

The DOS system will provide functions in the following

areas:

- System access. The objective is to support flexible,
convenient access to the system from a variety of user
access points.

- Object management. The notion of a "DOS object" is central
to the user model for the DOS. The DOS treats resources,
such as files, programs and devices, as "objects" which it
manages, and which users and application programs may
access. The objective of the object management mechanisms
is to provide users and application programs uniform means
for accessing DOS objects.

- Process management. Like the object abstraction, the
"process" abstraction is central to the user model of the
DOS. In addition, it is useful as an organizing paradigm
for the internal structure of the DOS. The objective of
the DOS process management mechanisms is to implement the
oprocess" notion in a way that enables processes to be used
both to support the execution of application programs for
users and internally to implement DOS functions.

- Authentication, access control, protection, and security.
The objective is to provide controlled access to DOS
objects.

- Symbolic naming. DOS users will generally reference
objects and services symbolically. Symbolic access to DOS
objects will be supported by means of a global symbolic
name space for objects.

- Interprocess communication. The objective of the
interprocess communication (IPC) facility is to support

-40-

Report No. 5086 Bolt Beranek and Newman Inc.

communication among processes internal to the DOS, and
among user and application level processes.

-User interface. The user interface functions provide human
users with uniform, convenient access to the features and
services supported by the DOS resources.

-Input and Output. The objective here is to provide
flexible and convenient means for users and programs that
act on the behalf of users to make use of devices such as
printers, tape drives, etc.

-System monitoring and control. The purpose of the system
monitoring and control functions is to provide a uniform
basis for operating and manually controlling the system.

The principal goal for the DOS in each of these functional

areas is to support features that are comparable to those found

in modern, conventional, centralized operating systems, such as

Unix, Multics, VMS, and TOPS-20.

The development ot radically new types of operating system

functions and concepts, except for those required to deal with

the distributed nature of the system, is not a major goal of the

DOS effort. This position is motivated by two considerations:

1. It is important to avoid innovation in too many areas
when building a system. The important innovations
embodied by the DOS will result from addressing problems
posed by distribution. These problems span the
functional areas identified above. Therefore, most of
the effort must be directed toward making the system
operate in a coherent, survivable and efficient manner in
a distributed environment rather than toward developing
new operating system concepts.

2. However, unless the functions provided are comparable in
power and convenience to those found in centralized
systems, users will not choose to use the DOS. Thus, it
is important for the success of the DOS as a system that
it provide state-of-the-art capabilities.

-41-

Report No. 5086 Bolt Beranek and Newman Inc.

The rest of this section discusses the functional areas

identified above in terms of our objectives in each area, and

sketches some of the concepts and principles that underlie our

approaches for achieving the objectives.

Each functional area is discussed in a separate section.

However, it will become clear from the discussion that these

functions are not independent of one another. These

interrelationships occur across functional areas as well as

within them. For example, objects and processes are intimately

interrelated. A process is a type of DOS object, and access to

DOS objects is supported by interactions among processes.

Furthermore, internally the system is structured to combine lower

level functions and capabilities in one or more areas into higher

level functions and capabilities. For example, the relatively

higher level notion of reliable (multiple copy) file objects is

implemented by more basic (single copy) file objects.

This internal "involuted" structure of the system is

important. If the structure and interrelationships are designed

well, implementation can proceed in orderly and efficient stages

from the lower levels to the higher ones. Furthermore, the

resulting system implementation will exhibit internal order,

making it easier to maintain and to modify for adapting to new

requirements.

-42-

Report No. 5086 Bolt Beranek and Newman Inc.

2.3.2 System Access

The objective in this area is to provide users with

flexible, convenient access paths to the system.

The system will support a number of different types of

access points including:

1. Terminal access computers (TACs). A TAC is a terminal
multiplexer connected directly to the DOS local area
network. It acts to interface a number of user terminals
to the DOS. The software that runs on a TAC is entirely
under the control of the DOS. User programs are not
premitted to run on a TAC computer.

2. Dedicated workstation computers. A workstation is a
computer that is, at any given time, dedicated to a
single user. Workstations will be connected to the DOS
local network. Workstation hosts have sufficient
processing and storage resources to support non-trivial
application programs, such as editors and compilers, and
to operate autonomously for long periods of time. A
workstation may serve as its user's access point to the
DOS. User programs may run on a workstation.

3. The internetwork. The DOS local network is connected to
the internetwork by means of a gateway computer which is
a host on the DOS local area network. Users remote from
the DOS cluster may access the DOS through the
internetwork. Remote terminal access is accomplished by
means of a standard terminal handling protocol (TELNET)
which operates upon a lower level, reliable transport
protocol (TCP).

Because of the distributed nature of the system, user

interaction with the DOS is supported by software that runs on

one or more computers. This software includes two principal

modules. One module is responsible for handling the user's

terminal. Since this module will often run at or very "near* the

user's access point, we shall call it as the "access point

-43-

Report No. 5086 Bolt Beranek and Newman Inc.

agent". The other principal user interface module interacts with

the user at a higher level to provide access to DOS resources in

response to various user commands. We shall call this module the

"user agent". It is useful to think of the access point agent

and the user agent as processes. These agent processes interact

with other components of the DOS and with each other by means of

well defined interfaces and protocols. In addition, they play an

important role in insuring the reliability of user sessions.

The access point for a user session, in part, determines

where the access point agent and user agent processes run. For a

user whose access point is a TAC the access point agent runs on

the TAC, and the user agent runs on a shared host. The access

point agent for a user with a dedicated workstation runs on the

user's workstation computer, and the user agent may run on the

workstation or it may run on a shared host. Users who access the

DOS through the internetwork are allocated user agents that run

on shared hosts, and their access point agents may run either on

the (non-DOS) host used to access the DOS or on a host within the

DOS cluster.

Some DOS hosts may provide support for terminals directly

connected to them. It will be possible for users to access the

DOS through such directly connected terminals. These users will

be treated much like users who access the DOS through the

internetwork in the sense that the DOS will allocate user agents

-44-

Report No. 5086 Bolt Beranek and Newman Inc.

for them that run on shared hosts.

The standard user interface software (for users accessing

the DOS through TACs and the internetwork) will be written to

operate with CRT terminals that have cursor positioning

capabilities; in particular, this includes terminals that meet a

subset of ANSI standards X3.41-1974 and X3.64-1977, providing

cursor positioning and various other functions such as clear to

end of line, delete line, insert line, etc. More capable

terminal devices (e.g., workstations with graphics displays) can

emulate the standard terminal device to obtain a compatible user

interface. In addition, a means will exist for users with other

less capable terminal devices (e.g., printing terminals) to

access the system (e.g., by using the TELNET Network Vitual

Terminal or NVT as a lowest- common denominator terminal device).

In the latter case, some sacrifice in the quality, uniformity,

and power of the user interface is unavoidable. The user

interface is discussed further in Section 3.8.

2.3.3 Object !anagememt

The DOS will support a wide variety of objects. The

objective of the DOS object management mechanisms is to provide

access to DOS objects.

DOS object management will be based on the following

-45-

Report No. 5086 Bolt Beranek and Newman Inc.

principles:

- Every DOS object has a unique identifier. At the lowest
level within the system, access to a DOS object can be
accomplished by specifying its unique identifier and the
desired access to. an "object manager" process for the
object.

- The DOS will support a collection of transaction-based
object access protocols. These protocols will be type
dependent in the sense that there will be different access
protocols for different object types.

- Access to objects will be accomplished by engaging in the
appropriate access protocol with an object manager process
for the object. The interactions between the accessing
agent and the object manager will be accomplished by means
of interprocess communication (See Section 3.7).

- Input/output devices will be treated as DOS objects.
Consequently, input/output devices will have object
managers, and access to the devices will be accomplished by
means of interprocess communication.

- The DOS catalog (See Section 3.6) provides a means of
binding symbolic names to DOS objects. The catalog
supports a lookup function (a symbolic name-to-unique id
mapping) which enables objects to be accessed symbolically.

- The DOS will support a fixed set of basic object types
(such as "primitive" file, "primitive" process, etc.) . In
addition, it will support more complex object types (such
as "multiple copy" file, "migratable" file, etc.) which
will be built upon the properties of the basic object
types. Our design objective at this time is to develop the
framework for supporting more complex object types, rather
than to try to specify the semantics of those object types.

Files are a particularly important type of DOS object. The

storage resources of dedicated DOS hosts as well as certain

constituent hosts will be used to store DOS files. Symbolic

naming for DOS files will be implemented by the DOS catalog.

Each host that provides storage for DOS primitive files will

-46-

Report No. 5086 Bolt Beranek and Newman Inc.

also support the object manager which implements the DOS access

protocol for primitive files.

2.3.4 Process Management

As suggested above, the DOS will support the notion of a

process. Processes will be used both by the implementation of

the DOS and to directly support user applications. For example,

there will be processes responsible for implementing the DOS

object catalog and for implementing the DOS file system. In

order to support user processing activity, there will be

processes that execute standard tools, such as text editors and

language processors, as well as specific command and control

applications.

The objective of the DOS process structure mechanisms is

twofold:

1. To support the process concepts required to implement DOS
functions; for example, object management.

2. To provide a basis upon which to develop means for users
to initiate and control processing activity within the
DOS.

DOS process management will be based on the following

principles:

-A basic type of process ("primitive" processes) will be
implemented at a fairly low level; it will be bound to a
particular host, and it will bear no special relationships

-47-

Report No. 5086 Bolt Beranek and Newman Inc.

.or capabilities with respect to ot-her primitive processes.

-Primitive processes are DOS objects. As such, they have
unique identifiers, and may be catalogued in the DOS
catalog (See Section 3.6) . So called "server" processes
that provide services useful to a wide range of clients are
examples of processes which are useful to catalog.
Cataloging such a process enables it to be referenced
symbolically by the general population of client processes.

-More sophisticated process notions will be built upon the
primitive process notion. For example, the notion of
hierarchical process structures, where processes are
related to one another according to the manner in which
they were created, and where the relationship between
processes determines the types of operations a process can
perform on other processes, will be built upon the
primitive process notion. Similarly, "migratable"
processes (processes that can move from one machine to
another) will be built upon primitive processes.

-The system will support the notion of along lived"
processes. A long lived process is one which the system
will take steps to ensure exists over shut downs and
restarts of the system and of individual hosts. Server
processes will frequently be long lived.

-Process i/o and interprocess communication will be handled
in an integrated fashion. The notion of "primary" input
and output streams for a process will be supported, and it
will be possible to "link" processes together by connecting
the input stream of one process to the output stream of
another. Among other things, this will make it possible
for one process to act as a filter or translator for the
stream of data passing between two other processes.

2.3.5 Authentication, Access Control, and Security

The objective of the DOS in this area is to provide for

controlled access to DOS objects. The purpose of the DOS access

control mechanisms is:

1. To prevent the unauthorized use of DOS objects. For

-48-

Report No. 5086 Bolt Beranek and Newman Inc.

example, it is important to ensure the privacy of
sensitive data by preventing unauthorized users from
accessing it.

2. To ensure the integrity of DOS objects. The objective
here is to control the ways in which various objects may
be used.

Convenient and flexible means should be available to users for

specifying the types of access other users may have to their

objects.

The access control mechanisms will be designed to be strong

enough to protect the privacy and integrity of DOS objects

against accidental disclosure or misuse, and against attacks by

malicious, but inexpert users. it is extremely difficult to

protect against attacks by dedicated expert users, and it is not

a primary goal for the DOS to be invulnerable to such attacks.

There are two capabilities related to protection and

security that are not goals for the DOS:

- Prevention of denial of service. Denial of service occurs
when a user prevents or interferes with someone else's use
of the system or parts of it. A simple example would be a
user who seizes all the "job slt"on a timesharing system
by logging in many times, thereby preventing others from
accessing the system. Another example would be the
situation that might occur if a user could run a program
that floods the local area network with packets. This
would prevent other users from using the network. Although
the DOS will be able to prevent certain types of denial of
service, including those just described, it is very
difficult, in general, to comprehensively prevent denial of
service.

- implementation of the military security model. The DOS
will not implement multi-level security. The DOS would run
in a *system high" mode if it were used to process

-49-

Report No. 5086 Bolt Beranek and Newman Inc.

classified data. The DOS access control mechanisms could
be used, however, as a support for the Need-To-Know
security model, just as access control in commercial
single-host operating systems is used for this purpose.

Internally, the DOS will be organized so that much of its

operation is accomplished by means of processes. Many of these

internal DOS processes may be thought of as agents which act to

carry out user requests. The principal DOS access control

mechanism will be based on the identity of the agent attempting

to access an object. An important part of access control

procedures within the DOS will be to determine the identity of

the accessing agent and the identity of the user on whose

authority the agent is acting. Consequently, reliable

authentication of users and processes will be an important

element of the DOS access control mechanisms.

The DOS protection and security mechanisms will be based on

the following principles:

- Each DOS user will have his own unique identity which is
understood across the entire DOS system.

- Users of the DOS will be required to login once per user
session. In most cases access to DOS resources during a
session will not require additional hlogins* that involve
explicit user participation.

- User login will be accomplished in the conventional manner
by supplying a valid user login name and password.

- User passwords that are stored within the system will be
protected by means of a one-way (i.e., non-invertible)
transformation. A password check will be performed by
first applying the transformation to the password supplied
by a user and then comparing the result with the
transformed password for the user that is stored by the

-50-

Report No. 5086 Bolt Beranek and Newman Inc.

system.

- All attempts to access DOS resources will be subject to
access control checks prior to access.

- All attempts to access DOS objects, including those
initiated from access points which are external to the DOS,
will be treated by the system as being made on behalf of
some registered system user. In order to enforce the
appropriate access controls the object managers for DOS
resources must be able to obtain the identity of the
registered user from the accessing agent or to determine it
from information supplied by the accessing agent.

- We assume the existence of a "security envelope* which
surrounds the DOS local area network and some of the key
DOS components (see Figure 4). The security envelope
protects the network in the sense that access to the
network is controlled. This control is accomplished by
means of physical security, system hardware, and DOS
software. Unauthorized users (or hosts) are not free to
listen to communication on the network, and are not free to
send arbitrary packets. DOS components which are within
the security envelope may trust each other, and processes
outside of the security envelope are not able to masquerade
as trusted processes.

Figure 4 shows the possible relationships between hosts and

the security envelope. A shared host (typically a timesharing,

application host) will participate in the DOS access control

mechanisms by means of augmentation to its trusted "monitor" or

"supervisor" processes. Generic Computing Elements which supply

DOS essential services will be wholly contained within the

security envelope, i.e., untrusted applications are not permitted

to directly alter the programs resident in system GCE's.

Gateways attached to the cluster must "protrude" through the

security envelope, because they connect the trusted local network

to the untrusted internet; at a minimum, gateways must explicitly

mark all traffic entering the cluster as "foreign", in a

-51-

Report No. 5086 Bolt Beranek and Newman Inc.

PROCESSLONG-HAUL NETWORK

PROCESS

PROTECTION

DOMAINS

SHARED 4
HOST

23

/ oo/

GCE SERVICE, , /HOSTS

TRUSTED GATEWAY

WORKSTATION

~ACCESS
MACHINE

SECURITY PARTLY

ENVELOPE TRUSTED

WORKSTATION r SHADED HARDWARE/

SOFTWARE IS TRUSTED

The DOS Security Envelope
Figure 4

-52-

Report No. 5986 Bolt Beranek and Newman Inc.

trustworthy manner. Access machines may be used to connect

completely untrusted hosts to the cluster. In this case the

access machine would validate all interactions between the

untrusted host and the DOS components inside the security

envelope. Workstations attached to the DOS may either be fully

trusted, and hence inside the boundary of the security envelope,

or partially trusted. A partially trusted workstation is

presumed to contain some tamper-proof hardware and software

components that protect the DOS from anti-social behavior on the

part of the workstation.

It is desirable to provide means for a user of the DOS who

has the ability to access a particular object to pass (perhaps

limited) righcs to access that object outside of the DOS cluster.

This would enable a user of the DOS to permit others who are not

registered DOS users to access specific DOS objects in a

controlled fashion. The absence of this feature on ARPANET hosts

is a considerable impediment to -haring across host boundaries.

This will be accomplished by a mechanism which will enable a

DOS user to create a *capability* for a particular object (e.g.,

the ability to read a certain file) and then pass the capability

on to someone else. When a request to access an object is

accompanied with the capability for the object, the DOS may grant

access to the object after checking the validity of the

capability. To ensure that this feature does not compromise the

-53-

Report No. 5086 Bolt Beranek and Newman Inc.

privacy and integrity of DOS object, capabilities must be such

that they cannot be forged. To help ensure that registered DOS

users can be held accountable for their actions, it is desirable

that the DOS be able to deduce the identity of the user who

created a given capability.

2.3.6 Symbolic Naming

Naming is an important unifying concept for the DOS. The

means provided for naming objects is one of the most important

factors determining how easy and convenient a system is to use.

The DOS will implement a global symbolic name space for

DOS objects. This name space will have the following properties:

- The symbolic name for an object will be independent of the
object's location within the DOS.

- The symbolic name used to refer to an object will be the
same regardless of the location within the DOS that the
name is used.

- Common syntactic conventions will apply to symbolic names
for different types of objects (including files, devices,
server processes, etc.).

The symbolic name space will be implemented by means of a

DOS catalog data base (or simply "catalog"). The catalog will

implement a symbolic name-to-object mapping for the DOS objects

it catalogs. The catalog will not usually store the objects

themselves, but rather will store information about the objects.

-54-

Report No. 5086 Bolt Beranek and Newman Inc@

Information about an object will be stored in a catalog entry for

the object. This information will be sufficient to allow access

to the object. In particular, the catalog will store the global

unique identifier for each object it catalogs along with any

additional information required to locate the object within the

DOS. In addition, it will also maintain certain attributes of

objects it catalogs.

While in some sense the catalog can be thought of as a

logically centralized data base, it will be implemented in a

distributed fashion. In particular, the catalog will be

dispersed among a number of DOS hosts and some parts of it may be

replicated. It will be dispersed to ensure that the system is

scalable and that the catalog is reliable. while all of the

information in the catalog, even for very large configurations,

might fit on a single DOS host, it seems unwise to store it on a

single host. In large configurations the load placed on that

host would likely represent a performance bottleneck.

Furthermore, the cataloging functions would be vulnerable to a

failure of that single host. Parts of the catalog will be

replicated to ensure high availability of critical catalog data.

The symbolic name space and its supporting catalog will be

based on the following principles:

-The name space will be hierarchical. The name space
hierarchy can be thought of as a tree with labeled
branches.

-55-

Report No. 5086 Bolt Beranek and Newman Inc.

o The leaves (terminal nodes) of the tree represent
cataloged objects.

o The symbolic name for an object is the name of the path
from the root node of the tree to the node that
represents the object.

o Non-terminal nodes of the tree represent collections of
catalog entries and are called "directories*m .

o Directories are DOS objects, and they have names. The
name of a directory is the name of the path from the
root to the node that represents the directory. Thus,
the non-terminal nodes of the tree also represent
cataloged (directory) objects.

- A set of general operations for manipulating the catalog,
directories and catalog entries, independent of the types
of objects, will be provided.

- The catalog can be used to obtain information about an
object. However, issues associated with accessing the
object, such as access protocols and object representation,
are separate from the naming issues that are addressed by
the catalog.

- The catalog data base will be organized to efficiently
implement two types of lookup operations: symbolic name-
to-catalog entry, and unique id-to catalog entry. The
symbolic name lookup operation is supported for human
users. "hildcard" designators will be supported. The
unique id lookup operation is supported for programs.

- Operations which modify the catalog will be implemented as
atomic transactions in order to maintain the integrity of
the catalog in the presence of concurrent activity and
possible failures of system components.

- The catalog will have the ability to maintain "linkages" to
other name spaces. This is supported to permit name spaces
of constituent hosts to be (weakly) integrated into the DOS
symbolic name space. This will be accomplished by an
*etra name space" object which can be cataloged like
any other object. For example, it will be possible to
catalog the directory /usr/rjones/memos on some Unix DOS
host as a DOS external name space object. Coupled with
appropriate file access software on the Unix system, this
would permit a user to refer directly to files in the
cataloged directory from the DOS name space.

-56-

Report No. 5086 Bolt Beranek and Newman Inc.

-The catalog can be thought of as a (complex) DOS object.
As mentioned above, directories within the catalog are DOS
objects. Therefore, access to the catalog can be
controlled by the same mechanisms that control access to
other DOS objects. This accesd control will help ensure
the privacy and integrity of information in the catalog.
Access to the objects themselves are, of course, also
subject to access-controls.

-Components of the DOS may choose to cache catalog entries,
or the contents of entire directories, in order to support
lookup operations locally. This would be done to avoid the
potential overhead associated with interacting with remote
catalog data bases.

The catalog is an important component of the DOS. It will

be used not only to support the cataloging requirements of DOSI

users, but also to support the implementation of parts of the

DOS. For example, as noted above in Section 3.3 the symbolic

naming requirements of the DOS file system will be supported by

the DOS catalog.

Not all DOS objects will be cataloged in the catalog. It

will be possible to access uncataloged objects "directly" by

means of their unique ids.

2.3.7 Interprocess Communication

The objective of the DOS interprocess communication (IPC)

facility is to support the communication requirements of the DOS.

Requirements can be identified at two levels:

1. The system implementation level. The collection of
software modules that implement the DOS execute as

-57-

Report No. 5086 Bolt Beranek and Newman Inc.

processes on various DOS hosts. These processes must
interact to implement the DOS. These interactions are
supported by the interprocess communication facility.

2. The user application level. Some of the application
programs that execute in the DOS environment may be
structured as distributed programs. A distributed
program is one whose components may run as cooperating
processes on different hosts. The components of such a
distributed application program will need to communicate.

The IPC facilities that are available at the application level

will be built upon the system level IPC facility.

The DOS interprocess communication facility will be based on

the following principles:

- The IPC mechanism will support a variety of communication
modes including: datagrams and connections (i.e., reliable,
sequenced, flow controlled data streams).

- It will be built upon the standard DoD IP (internet), and
TCP (transmission control) protocols. This assumes that
the implementations of the DoD protocols that are used will
provide adequate performance (low delay, high throughput).
If they do not, it may be necessary to build the TPC
directly on the local network (Ethernet) protocol.

- Interhost and intrahost communication will be treated in a
uniform fashion at the interface to the IPC facility. That
is, the same IPC operations used for communicating with
processes on different hosts will be used for communicating
with ones on the same host. Of course, to achieve the
efficiencies that are possible for local communication the
IPC implementation will treat interhost communication
differently from local communication.

- Several levels of addressing will be supported by the IPC
facility. The details of IPC addressing within the DOS
have not yet been finalized. The fundamental issue which
is unresolved is what the addressable entity for the IPC
facility shall be; that is, to what will datagrams be
addressed and what will connections connect? One
reasonable choice would be for the process itself to be the
addressable entity. Alternatively, another abstraction,
the "port", could be introduced for this purpose. Ports

; -58-

Report No. 5086 Bolt Beranek and Newman Inc.

would be objects, and like other objects such as processes,
they would have unique ids and, if catalogued, could be
referenced symbolically by name. Regardless of the choice
for addressable entity, the IPC facility will permit
addressing by means of unique id and by means of symbolic
name. Other levels of addressing may also be supported.
At the interface to the IPC facility wherever an IPC
address is expected, any of the supported levels of
addressing (unique id, symbolic name) may be used.

- The ability of the IPC facility to deal with symbolic
addresses will permit it to support "generic" addressing.
This will permit processes to specify interactions with
other processes in functional terms.

- The IPC mechanism will provide means to directly utilize
some of the capabilities of the local network. For
example, the Ethernet supports efficient broadcast and
multicast. The IPC will provide relatively direct access
to these capabilities by supporting broadcast and multicast
addressing. To achieve the design goal of component
substitution it is important for the DOS system to be as
independent as possible of the specific characteristics of
the particular local network chosen for the ADM.
Therefore, care must be taken to avoid building
dependencies on the particular ADM4 network technology into
lower level DOS mechanisms, such as the IPC. If such
dependencies cannot be avoided, care must be taken to
minimize their impact on the DOS. In our opinion, this is
not an issue in the case of the broadcast and multicast
facilities, since many state-of-the-art local network
technologies support similar capabilities.

2.3.8 User Interface

The purpose of a user interface to the DOS is to provide

human users with uniform, convenient access to the functions and

services performed by the DOS resources.

* The user interface is software that acts to accept input

from a human user which it interprets as commands to perform

-59-

Report No. 5086 Bolt Beranek and Newman Inc.

various tasks and to direct output to the user which the user

interprets as the results of commands previously requested or as

unsolicited information from the system (or possibly other

users). As discussed in Section 3.2, it is sometimes useful to

think of the user interface functions as being provided by access

point agent and user agent processes.

- "Uuniform"l and "convenient" are subjective characteristics

which are hard to quantify. However, we can say in general terms

what we mean by these characteristics in the context of a DOS

user interface. By uniform, we mean that the manner in which a

user requests access to various functions and resources should be

similar regardless of the particular DOS components that

implement them. For example, the way a user instructs the DOS to

run a program should be the same (except for the name of the

program) regardless of where within the DOS the program will

execute. By convenient, we mean that a user should not have to

pay undue attention to the details of the mechanics of

establishing access to DOS functions and resources. For example,

in order to run an interactive program, a user should not have to

explicitly establish a communication path with the host that will

run the program. Similarly, to delete a file a user should not

have toexplicitly establish communication with a file manager on

the host that stores the file and instruct it to delete the file.

To be uniform and convenient does not mean that a user

-60-

Report No. 5086 Bolt Beranek and Newman Inc.

interface must make the network or the distribution of the system

invisible to users. In many situations users may want the

distribution to be transparent, and the user interface should

operate in a way that provides transparency. However, there will

be situations where it will be important for the distribution to

be visible to users, and for users to be able to exert control

over how the system deals with aspects of the distribution. For

example, to use the system to do their jobs, system operators and

maintainers will need to deal relatively directly with the

system's distributed nature. Furthermore, "normal" users, from

time to time, may want to control where programs run or files are

stored.

One of the ways the DOS will differ from most conventional

single host operating systems is that truly parallel execution of

user tasks will be possible. It is important that that a user

interface for the DOS provide means for to initiate, monitor and

control multiple concurrent tasks.

The development of DOS user interface functions will be

based on the following principles, many of which are particularly

well suited to interactive command and control environments:

-Since many user requests cannot be performed directly by
the user interface, the user interface acts on the user's
behalf to initiate activity by other DOS modules. The
nature of the interactions with other DOS modules is
governed by internal DOS "protocols" and interface
conventions, and is accomplished by means of interprocess
communication.

-61-

Report No. 5086 Bolt Beranek and Newman Inc.

-An important type of activity a user can initiate is the
execution of a program. In this case, the user interface
acts to initiate execution of the program and to establish
a communication path between the user and the programi. In
addition, means are provided to permit a user to switch his
attention back and forth between the executing program and
the user interface.

-The user interface will enable a user to initiate and
control multiple simultaneous tasks. In particular, a user
may have several application programs executing
concurrently.

-Although the user interface bears a unique relationship to
the rest of the DOS system, the underlying DOS system will
be organized so that much, if not all, of the user
interface functions can be written as application level
software.

-The part of the user interface that interacts directly with
the user to accept commands will be modularized in a way
that allows it to be replaced on a per user basis. At
login time, after the user is identified, the particular
user interaction module appropriate for the user will be
used. This will make it possible to accommodate users with
strong preferences for radically different styles of
interaction, simply by running different user interaction
modules.

-The user interface functions developed for the ADM DOS will
be designed to operate best with a high speed CRT display
terminal, with cursor positioning capability (See Section
3.2). It will make use of multiple "windows" on the
display surface. Separate windows will be used to display
user interactions with the separate activities being
controlled by the user. In addition, windows will be used
as necessary to display system status and user help
information. The ADM user interface will be tailorable to
accommodate a relatively broad range of individual user
preferences. This will be accomplished by means of a
number of internal "style" and "mode" parameters whose
settings control the way the user interface performs. The
settings for these parameters will be initialized from
values stored in individual user profiles and will be able
to be modified at the user's request during a user session.

-62-

Report No. 5086 Bolt Beranek and Newman Inc.

2.3.9 Input / Output

The term "input/output" is used here in a rather limited

sense to mean the process of getting data into and out of the DOS

cluster. The objective of the DOS in this area is to provide

flexible and convenient means for users and application programs

to make use of devices such as printers, tape drives, etc.

To support i/o adequately in its distributed environment the

DOS should provide:

1. The ability to refer to devices symbolically. For
example, users should be able to obtain listings of files
by means of "print* or 'list" commands which explicitly
or implicitly refer to a printer symbolically.
Similarly, programs should be able to direct output to a
printer by referring to it symbolically.

2. The ability to distinguish among and to refer to physical
devices. In moderate and large configurations there will
be more than one printer (or tape drive, etc). These
devices are likely to be located in different areas. It
is critically important that the tape drive from which a
program reads is the one that holds the right tape.
Similarly, when a user requests a listing it is important
for him to be able to control which printer will print it
so that the output is near his office rather than 1/2
mile away. Thus, one user's 'printer"f will not
necessarily be the same as another's. Furthermore, when
a user accesses the DOS from a different location then
normal, he should be able to rebind his 'printer" to one
of the printers that are near him.

The object paradigm developed above, which involves objects,

object managers, and object access protocols, is almost

sufficient to support DOS device i/o. In addition, the system

will provide means for a user to "bind" a particular symbolic

device name to a particular physical device.

-63-

Report No. 5086 Bolt Beranek and Newman Inc.

In summary, DOS support for i/o will be built upon the

following principles.

- Input/output devices will be treated as DOS objects. As
such, they will have unique ids and may have symbolic
names.

- Access to devices will be supported in the same way access
to other DOS objects is supported. Access will be
accomplished by interacting with an object (device) manager
in accordance with an appropriate object (device) access
protocols. The interactions will be supported by means of
interprocess commnunication.

- The notion of device binding will be supported by means of
the DOS catalog. This will permit users to bind symbolic
names to particular physical devices.

- Some types of i/o operations when suitably abstracted are
meaningful for files and for devices. Sequential i/o is a
good example. File-like interfaces for device i/o have
been shown to be useful in a number of systems. The DOS
will support file-like interfaces for certain i/o devices.

2.3.10 System Monitoring and Control

The purpose of the DOS system monitoring and control

functions is to provide a basis for system operations personnel

to operate and control the system.

The system monitoring and control functions will be built

upon the following notions:

-Two types of information will be gathered: system status
information; and information about the occurrence of
exceptional events. Status information will be collected
on a periodic basis as a normal part of system operation.
information about exceptional events will be collected as
the events are detected.

-64-

Report No. 5086 Bolt Beranek and Newman Inc.

- Status information and information about exceptional events
will be routed to an on-line display which system
operations personnel can monitor.

- The detection of certain exceptional events will trigger an
"alerting" mechanism to call the events to the attention of
operations personnel.

- It will be possible to (selectively) log the occurrence of
exceptional events in a event log data base.

- The DOS will support a system control protocol which will
make it possible for operations personnel to control the
system operation from a single point (e.g., operator's
console) as a DOS user. This protocol will provide means
to reinitialize the system (Oamn restart), to halt the
system, and to set parameters within various DOS components
which control aspects of the DOS operation.

- The status gathering facilities will be flexible and
comprehensive enough to support performance monitoring
experiments.

2.4 System Integrity and Survivability

Users of modern day computing facilities have come to

expect the integrity of their computing system and the data it

stores and manipulates for them, despite occasional system

component failures. The command and control environment in

particular requires the continuous availability of key

applications despite these failures. To the extent that

applications and access to applications come to depend on Dos

system functions to achieve goals of system uniformity, those

functions must be reliable and continuously available. Further,

the role of the DOS as the common software base extending

throughout the cluster, makes it a convenient and cost-effective

-65-

Report No. 5086 Bolt Beranek and Newman Inc.

place (from a programming standpoint) to support generalized,

system wide mechanisms for building survivable applications.

By avalabiLiUy we mean the fraction of scheduled up-time

during which a system is, in fact, able to deliver normal

services to its users. Continuous availability, then, refers to

the ability of the system to supply services without pause over

some relatively long period of time. The period is sufficiently

long to present a significant chance of component failure. Thus

a system design which achieves continuous availability must

employ some elements of fault-tolerant system design. By

intgrit.Y we mean the operation of the system in accordance with

its specifications while it is available, despite failures from

time to time which may render the system temporarily unavailable.

Maintaining system integrity is basically a matter of maintaining

the consistency of system and user state information ("stored

data"). The term survivability is virtually synonymous with

"continuous availability", although the emphasis is perhaps

different, "survivability" suggesting the possibility of violent

failure modes.

A goal of high (but not continuous) availability implies

attention to mechanisms for orderly system restarts, that will

preserve system integrity across system outages. The restart

process may be partially manual, and may involve relatively

lengthy integrity checks and system reconfiguration procedures

-66-

Report No. 5086 Bolt Beranek and Newman Inc.

(e.g., replacing a disk pack, restoring files from backup tapes).

Continuous availability, in our terminology, refers to the

ability of the system to automatically reconfigure itself or to

retry failed operations, in order to maintain the normal

semantics of a given function in spite of failures. In a

continuously available (i.e., survivable) system, a failure

manifests itself only as a tolerable performance degradation

and/or insignificant loss of data or function.

Our distinction between high and continuous availability

can be illustrated by the following examples. Operator invoked

reversal to a backup copy of a damaged file would constitute a

recovery measure suitable for a goal of high availability. in

contrast, designing a function (e.g. authentication service) so

that the system can automatically detect a host failure and

subsquently route requests to an alternate source of the

function, would be a mechanism for continuous availability. In

either case, the integrity of the system must be maintained

whenever system services are available.

At a minimum, key system functions and applications must

be highly available, and in many cases also continuously

available. Ideally, all system services would be continuously

available in the command and control environment. However, cost

and performance criteria may dictate that high availability is

acceptable for some functions, especially if the expected failure

-67-

Report No. 5686 Bolt Beranek and Newman Inc.

rate is low. Functions such as authentication, initiation of

user sessions, and access control must be continuously available

for the system to operate at all. Other functions (e.g., access

to selected application data) may satisfactorily be provided on a

highly available basis, whereas still other functions (e.g., data

collection for experimentation) need not be provided at all

unless all system resources are operating normally.

All three aspects, integrity, high availability, and

continuous availability, play important roles in the overall

effectiveness of the system for command and control environments,

and will be collectively referred to as system reliability.

2.4.1 Reliability Objectives

The reliability objective of an automated command and

control cluster is to provide reliable command and control

applications. The role of the "system" with respect to the

reliability of these applications is threefold:

- Ensure the "correct" operation of the system in the
presence of expected patterns of component failure and
subsequent restorations of service. Included in this is
that the system does not, under a broad range of failures,
lose or corrupt data that is essential to either its own
'correct" behavior or to the "correct" behavior of its
supported applications

- Provide key DOS system functions and access to those
functions in a manner which can survive a limited set of
system failures, and which is designed to support high

-68-

Report No. 5086 Bolt Beranek and Newman Inc.

availability.

-Provide DOS based mechanisms accessible at the user
programiming interface which are useful for constructing
reliable applications.

2.4.2 General Approach

Our approach to failure handling in the DOS is based on

first identifying the set of failure modes over which the system

is expected to maintain integrity and be continuously available.

The definition of each major DOS system function includes the

integrity and survivability characteristics to be supported

should the expected failures occur. Based on the reliability

properties of the specific system functions, other- functions

using them can then be built which are immune to the outages

handled by the abstract function.

The integrity and consistency of system functions are

derived from the careful ordering and synchronization of the

parts of the individual and parallel operations, and the grouping

of related parts into atomic operations that have coordinated

outcomes. DOS functional survivability always derives from

redundancy of one form or another, either in processing elements

and executable programs, or in data, or in time (operation

retries). Making the data accepted for storage by the system

resilient to component and storage media failures, in the sense

that data is not lost despite these failures, is one special case

S~~. ~69 _ _ __ _

Report No. 5086 Bolt Beranek and Newman Inc.

of the general redundancy concept.

The DOS architecture calls for hardware redundancy to

support all survivable functions. The approach is to provide a

homogeneous processing base for each particular survivable

function, as a means of simplifying the issues of fidelity and

coordination between the redundant elements. The role of the DOS

software is to support the replication of critical code and data,

to control the detection of failures, and to induce recovery

procedures. In some cases, such as transaction processing,

multiple redundant servers will be supported to share the

processing load in the absence of failures, as well as to provide

continued service during failures. In other cases, such as data

* processing application survivability, restart from a prior

consistent checkpointed state represents a powerful base on which

to build. In all of these cases, the presence of a homogeneous

processing base is essential in limiting the complexity of

implementation.

2.4.3 Specific Approach

We expect the key functions of the the DOS to be able to

recover from the following types of failures.

- Single host outage at arbitrary time without loss of non-
volatile memory. This comes in two forms, transient, in
which the host is restarted within minutes, and long term
(hours at minimum) during which the host is effectively no

-70-

5

Report No. 5086 Bolt Beranek and Newman Inc.

longer available. Transient failures of this sort are
expected frequently (a few times per day for large
configurations) while long term failure is relatively
infrequent (a few times per month).

- Single host outage at arbitrary time with additional loss
of long term non-volatile memory (e.g. disk crash). These
failures are always long term, and occur infrequently (a
few times per year).

- Operator controlled forced host shutdown, with ample
warning for proper shutdown preparation (e.g. down for
emergency or preventive maintenance). This occurs
relatively frequently (a few times per week).

- Transient pair wise communication failures. This is
predominantly a temporary failure, with the expectation
that subsequent retries over a sufficiently long interval
will succeed. This condition frequently occurs due to
temporary congestion, random noise, hardware and software
interfaces not designed for worst case timing conditions,
etc.

- Single host temporarily loses communication with the rest
of the system but continues to operate. This is the long
term version of the pair wise transient communication
failure pattern, across all pairs for this host. It occurs
relatively infrequently and can be the result of a
malfunctioning network interface. This single host
isolation represents the most likely pattern of network
partitioning which can be anticipated using current local
communication bus architectures.

- Any failures that can be made to look like one of the
above.

In general, handling failures involves techniques for

failure detection, reconstitution of remaining components into a

working system, and subsequent reintegration of temporarily

failed components back into the operational system after they are

repaired. The techniques selected to detect and recover from

these failures will vary depending on the expected duration and

relative frequency of the failure. Mechanisms selected to handle

-71-

i ./

Report No. 5086 Bolt Beranek and Newman Inc.

infrequent events can usually be of limited performance, and

include manual procedures. Mechanisms for frequently occurring

events must also take into account the performance

characteristics the solutions adopted.

The following techniques have been well studied and are

suitable for supporting various aspects of system reliability in

the DOS. (12)

- Redundancy of program, file, and processing elements as
sources of alternate site service;

- Atomic operations and isolation of partial results to
ensure the consistency of function and data;

- Stable storage and guaranteed permanence of effect to
ensure that data and decisions, once accepted by the
system, will not be lost;

- Checkpoint and restart to support backward error recovery;

- Timeouts to recoginze failure conditions and initiate
recovery activities;

- Status probes and status reporting to ensure current
operability.

In addition, the GCE concept of interchangeable parts is viewed

as a manual approach toward easily reconfiguring components for

continued support of important system functions by using parts

from less important functions utilizing a common hardware base.

It also serves to reduce the inventory of spare parts necessary

to achieve a satisfactory level of backup reliability.

(12) "Distributed Operating System Design Study: Final Report"
BBN Report No. 4671, May 1981.

-72-

Report No. 5086 Bolt Beranek and Newman Inc.

The following problems are not being addressed at this

time, except as a secondary consideration:

- Complete, extended communication outage within cluster;

- Arbitrary and general partitioning within the local
cluster;

- Loss of global (internetwork) communication services.

Handling these problems may be important to the command

and control environment. However, we believe that their solution

ig beyond the scope of the current effort.

2.5 Scalability

The objective in this area is system architecture and

design that is cost-effectively scalable over user population

sizes ranging from small configurations (e.g., tens of users) to

large configurations (e.g., hundreds of users). The aim is to

attain uniform functional and performance characteristics over

reasonably scaled versions of the system by adding additional

hardware and software capacity without introducing excessive

escalation of per user cost and performance or requiring redesign

of the system structure.

-73-

Report No. 5086 Bolt Beranek and Newman Inc.

2.5.1 General Approach

The scalability of a computer system is dependent on many

capacity and performance factors ranging from hardware component

interconnect structures to high level software resources

fabricated through systems programming. Due to the off-the-shelf

nature of many of the primitive system components being used and

the generalized nature of the eventual applications, efforts to

achieve system scalability must necessarily be focussed on the

scalability of the system functions supported by the DOS.

In general, system scalability and support for system

growth can be somewhat different things. Scalability is often

achievable by procuring "larger" units for larger configurations,

whereas growth is often associated with "additional" units over a

period of time. Clearly, addressing the growth issues can, in

many ways, subsume the scalability issues. One of the major

attractions of a distributed architecture is that it can

potentially support growth beyond the limits of conventional

systems and hence can attack large scale system scalability from

a growth standpoint. Additionally we believe it is operationally

and logistically more attractive to support scalability needs

from an incremental growth viewpoint in order to limit the number

of distinct parts and limit the effects of losing a single unit.

Our system concept for meeting scalability objectives relies on

five main points supporting system growth:

-74-

m - , I i mI :; .- - '- ' -.....

Report No. 5086 Bolt Beranek and Newman Inc.

1. Adoption of an inexpensive communication architecture
which makes it simple to include additional processing
elements.

2. Selection of modular, inexpensive DOS hardware so that
DOS processing elements can be added in small increments
as needed without grossly impacting total cost of the
system.

3. Careful attention to the potential size estimates for a
maximum configuration to ensure that software structures
can be made large enough (e.g. address fields) and that,
where appropriate, their implementation is partitionable
across multiple instances of the function which share the
processing and data load.

4. Avoidance of so-called N squared solutions which require
each element to interact with every other element. While
these approaches are usually acceptable for smaller
configurations, they often break down for larger ones.

5. Select application systems for inclusion in the
demonstration configuration which themselves scale
through a range of sizes.

2.5.2 Specific Approach

The selection of a bus communication architecture and

Ethernet in particular is in large measure based on providing a

simple, underlying basis for system scalability. The bus

architecture provides a simplified means for supporting a

hardware base in which every processing unit can a priori

communicate equally well with every other processing unit without

regard for routing, processor placement, and other such issues.

In addition, Ethernet can physically support large numbers of

processing units which can be added or removed at will, and can

also inexpensively support small configurations. An important

-75-

Report No. 5086 Bolt Beranek and Newman Inc.

non-goal at this stage of the project is the scalability of the

network communication medium itself. Any future work in this

area will be based on adding an additional Ethernet link to each

processing element (also a reliability measure) or on complete

network substitution.

Low cost incremental expansion also motivates the

selection of the M68000-based GCE, which will be used as a

buildizg block for many DOS functions. While it is too early to

tell the precise number of GCE's required for a minimum

configuration, our approach here is to support some degree of GCE

functional multiplexing to be used in small configurations, and

to make use of dedicated function units in larger or higher

performance configurations. The ability to -cale up or down also

played a role in selecting application hosts for the initial

demonstration environment. Both the UNIX and VMS subsystems are

or are expected shortly to be supported on a range of hardware

bases both larger and smaller than those for the current

configuration.

The VAX which was chosen as one of the major mainframes

of the system is a good example of a system which can scale over

a wide range. For the initial system, configuration will include

a VAX 11/750. Without any significant software or peripheral

changes, we could substitute any processor from the VAX family,

with presently includes the VAX 11/780 and VAX 11/782, with an

-76-

Report No. 5086 Bolt Beranek and Newman Inc.

increase in capacity of about two and four respectively. In

addition, a VAX 11/730 was recently announced which allows

substitution of a smaller and less expensive machine.

The choice of a C70 host represents another kind of

provision for scalability. In this case, the desire was to

include a computer running an operating system which ports to a

variety of machine architectures of varying sizes. The leading

candidate for operating system portability over medium to large

computers is UNIX, so we chose the C70, one of the most cost-

effective computers supporting UNIX. We expect that the

substitution of another UNIX system would require only a modest

effort.

Supporting system software scalability implies ensuring

adequate or adequately expandable address fields, table sizes,

etc. to meet anticipated needs of target configuration sizes. It

also implies including growth as a factor during the design of

the implementation of DOS system functions. There are two

distinct aspects of a distributed implementation of a given

function. One aspect is concerned with redundancy, as described

in the previous section. The other isconcerned with partitioning

responsibility for a function to provide support for a larger

client base. It is generally easier and hence more desirable to

4build a self-contained implementation of a function, than it is

to develop a partitioned implementation, since there are fewer

-77-

Report No. 5086 Bolt Beranek and Newman Inc.

error recovery considerations, and fewer resource management

considerations. However, to meet our scalability objectives,

some functions may require a partitioned design for supporting

large configurations, although they may also be run unpartitioned

for small configurations. The analysis of the need for a

partitioned implementation will be done at design time, on a

function by function basis. We expect that the exercise of the

expansion capabilities of the system will be sufficiently

infrequent to allow off-line, system reconfiguration time

approaches to many scalability problems.

2.6 Global Resource Management

In many computing environments, and most especially a

command and control environment, the administering organization

needs some degree of control over the ways in which system

resources are allocated to tasks to meet their processing

demands. This control is frequently provided by the ability to

designate some tasks as more important than other competing

tasks, and in the ability to effect automated resource management

decisions in an attempt to improve some measure of system

performance. These functions are often referred to as "priority

service" and "performance tuning" respectively. Most computer

systems provide some facilities in these areas and many provide

rather elaborate facilities which more than adequately address

-78-

/ S

Report No. 5086 Bolt Beranek and Newman Inc.

command and control needs within a single processing node. The

objective of this project is to provide support for sustaining

these elements of system control in areas that transcend a single

processing node.

2.6.1 Objective

The objective in the area of global resource management

is to augment the resource management facilities already present

on single node systems with simple, additional mechanisms for

supporting various policies of administrative control of

automated distributed resource management decisions. The

emphasis is on methods for ensuring the prompt completion of

impbrtant processing tasks and on the distribution of processing

load across redundant resources.

2.6.2 General Approach

Global resource management in a communications oriented

environment is an area where the system wide ramifications of

employing such techniques are yet not completely understood. As

a consequence, and because of the desire to achieve an

operational prototype in a short time frame, we are following a

simple, low risk approach. The focus of our effort is on those

aspects of global system control directly related to the

-79-

Report No. 5086 Bolt Beranek and Newman Inc.

distributed nature of the processing environment. In

particular, the DOS will focus on the coordination of the

priority handling of all parts of any single distributed

computation, and on the selection procedures for choosing among

replicated, redundant resources present in the DOS cluster. DOS

global resource management control will be applied only on large

grain decisions (e.g. initiation of a session, opening a file,

initiating a program) in an effort to simplify the system and

limit the communication and processing overhead that would be

required for finer-grained global decision making. We do not

anticipate the necessity for reevaluating these resource

management decisions at finer grains as a potential source of

further optimization. The system concept is that adequate

administrative control will be achievable by controlling the set

of tasks which may be competing for resources (load limitation),

and by controlling the pattern of use of specific instances of

the resource which they will be competing for. This is to be

accomplished by providing means for administratively limiting

the offered load and influencing both the resource selection

procedures (where a selection is possible) and the sequencing of

the use of the resource after selection using priority. The

insertion of DOS control points for limiting load, effecting

global binding decisions, and controlling order of service are a

sufficient set to carry out administratine policy. The low risk

nature of our effort comes in emphasizing simple mechanisms at

-80-

Report No. 5086 Bolt Beranek and Newman Inc.

*1 these points of control, which in some cases might prove to be

suboptimal.

2.6.3 Specific Approach

The DOS system model is based on active user agents

(processes) which access a wide variety of abstract resource

types, some of which are directly associated with physical

resources (e.g., a VAX processor), and others of which may have

distributed implementations built out of composite non-

distributed objects. All of the resource types have some form of

type dependent resource management software associated with them.

The following three~ points are important to our global resource

management concepts.

1. Every resource request has a "priority" attribute
associated with it which is derived from the initiating
agent. Although the resource management discipline will
be different for different types of objects, the intent
of the priority attribute is to provide an object type
dependent form of preferential access relative to the use
of the resource. Users will have a range of
administratively set priorities available for their use.
To ensure access to the system for potential high
priority tasks, system login is a "prioritized" request
and may result in preemption of a lower priority user,
should there be no additional slots. This is
accomplished by ensuring that the system "reserves'
enough capacity to always accept another login request.
If the priority of the potential new user exceeds the
priority of one of the current users, and if the login
would otherwise fail due to lack of available resources,
a lower priority user will be preempted in favor of the
initiation of a new job for a high priority user. Once a
job is initiated, the current priority of the initiator

Report No. 5086 Bolt Beranek and Newman Inc.

will determine how the task competes with other active
tasks. Other forms of load limitation will be added as
necessary as a means of administratively controlling
system responsiveness on available resources.

2. Automated DOS global resource management decisions will
be made predominantly when an agent accesses an object
which has multiple instances (e.g., multiple processors
able to execute the same code, multiple instances of a
file, etc.). The algorithms for making the selection
will be controllable by the "owner" of the composite
object. Control will be in the form of choosing from a
standard set of algorithms supported by the system,
making use of relevant available data which could include
object attributes, collected load data, previous
selection, first to respond to broadcast, etc.

3. We are assuming adequate network transmission capacity
when smoothed over reasonably short time frames (i.e. no
continual network overload). This assumption, which
seems to be substantiated by early available local
network operational experience, (albeit not in a command
and control environment) makes resource management of the
network bandwidth generally unnecessary at this time. If
scaled load projections indicate potential long term
overload situations, our approach for the Ethernet will
be to attempt to develop techniques for detecting and
limiting the effects of this situation. While it is
premature to discuss details of such techniques, a
promising approach is to attempt to establish a dynamic
network transmission priority level, forcing temporary
deferral of data transfers below this priority level, and
providing a means for raising the current level until the
overload subsides.

Using these mechanisms, controlling the processing activities of

the DOS cluster becomes a policy issue of selecting appropriate

priorities and parameters to maximize the ability of the system

to meet specific organization objectives.

-82-

.. Musa=":

Report No. 5086 Bolt Beranek and Newman Inc.

2.7 Substitutability of System Components

over the course of time and especially when deployed in

non-laboratory operating environments, we anticipate the need to

substitute alternative hardware and operating system components

which are more appropriate for their environment than those

selected for the ADM configuration. It is desirable to be able

to alter components in order to match the system characteristics

to the needs of operational command and control environments and

also to reflect changing availability and cost-effectiveness of

components. The ability to perform appropriate substitutions of

components in the DOS system is expected to expand the

applicability of the DOS system and to lengthen it's useful

lifetime.

2.7.1 Objective

The objective in this area is to design the system so as

to maximize the potential for component substitution in the

system hardware architecture at a later time. System components

which are candidates for substitution are the local area network,

the GCE configurations, the application hosts, and the gateway.

-83-

Report No. 5086 Bolt Beranek and Newman Inc.

2.7.2 Approach: Use of Abstract Interfaces

The intent of component substitution is to replace a

functioning unit with another one capable of performing basically

similar operations, but with other properties which make it more

attractive or appropriate than the original. For example,

substituting a fiber optic communication network for a coaxial

cable network might make sense for a command and control

environment concerned with portability or electromagnetic

radiation. While the basic communication properties of the two

systems are equivalent as far as the DOS is concerned,

environmental considerations might motivate the substitution.

Similarly, most computer systems can be made to perform a wide

range of tasks. However, some are judged better than others for

certain applications, and hence would motivate the selection of

different application hosts to suit the needs of particular

command and control applications.

Our approach for supporting component substitutablity is

to define and use appropriate abstractions of the substitutable

components as the entity incorporated into the DOS. The abstract

interfaces are based on common properties of a class of

interchangeable components, not on specific capabilities of a

single component. Except under special cirumstances? unique

properties and peculiarities of the hardware selected for the AD14

will be avoided in the definition of abstract interfaces, and

-84-

Report No. 5086 Bolt Beranek and Newman Inc.

where used will be isolated in the code supporting the

abstraction to facilitate emulations within other components.

Two additional implications fall out of this policy. We

must expect to lose some efficiency of implementation, since we

may need to avoid features that have been built into some

components explicitly to solve problems which we may encounter.

We expect this effect to be small. The second side effect of the

abstract interface should be increased productivity during the

development of the DOS, since an abstract interface is easier to

understand and work with. This is, in effect, the argument used

for higher-level programming languages and standards of all

kinds. The adoption of standards of various kinds, as mentioned

earlier, also enhances component substitutablity by providing

abstractions which are already incorporated into many product

interfaces.

2.7.3 Approach: Specific Interface Plans

This section presents a number of interfaces or models

which we plan to employ. While this list is not exhaustive, we

believe it captures the major interfaces on which the success of

substitutability will most depend.

The initia' version of the DOS is using the Ethernet

standard as a communication subsystem. We expect to be able to

~-85-

S - -

Report No. 5086 Bolt Beranek and Newman Inc.

switch between optical fiber and coaxial cable implementations of

the Ethernet as may prove desirable based on a cost and

availability basis. More importantly, our abstract network

interface will avoid using features of the Ethernet protocol

which are not common to local network technology. We expect to

use only packet transfer, broadcast, and possibly multicast in

developing the network abstraction. In addition, we expect to

use IP datagramservice as the lowest level IPC abstraction. This

enhances our independence of the underlying network, and makes it

easier to later substitute alternate communication subsystems

which can support the abstraction such as the Flexible

Intraconnect.

The GCE's represent the implementation base for a number

of important DOS functions. It is therefore critical that we

address the issue of substitutability for the GCE's. GCE

substitution has two aspects: one is the ability to substitute

another machine for the present GCE; the second is the ability to

substitute for parts of the GCE.

We plan to address the first problem, the ability to

switch GCE's at some future date, by programming in common high

level languages to the greatest extent possible. We are

focussing on two languages: C and Ada. C is a language

developed as part of the UNIX system with the goal of being

portable to a variety of machines. It has largely met that goal,

-86-

i;/

Report No. 5086 Bolt Beranek and Newman Inc.

although it requires careful attention to coding style to assure

the portability of programs written in C (13) .However, there

is the possibility of a better choice, Ada, being available in

the near future. Since Ada is a DOD standard language, its

availability on a variety of processors relevant to command and

control environments is assured. In addition, Ada is a more

modern and capable language, which should enhance our ability to

write code with minimal machine dependency.

Substitutability within the GCE is also a matter of

concern and attention. We are building the GCE strictly out of

off-the-shelf components using published and emerging standards

to minimize our commitment to any particular part of the GCE.

For instance, the GCE uses a Multibus bus and backplane, which is

supplied by a variety of vendors in a wide range of capacities.

The processor board is a design developed by Stanford and

licensed to at least four manufacturers, who are producing

compatible boards. In addition, with only software changes, the

type of processor board can easily be changed, since there are

probably more different processor boards available for the

Multibus than for any other computer bus. The use of the

tMultibus also assures easy substitution of memory, Ethernet

Controller, 1/0 ports, etc. It also assures that any as yet

(13) The choice of C was dictated by its immediate availability
and the software support already available for C on the GCE
processor, a Motorola 68090.

-87-

Report No. 5086 Bolt Beranek and Newman Inc.

unidentified needs for hardware interfacing can likely be met

with off-the-shelf components, due to the popularity of the bus.

Our ability to do general substitutions for application

hosts is based on our attempts to use portable languages, a

network (Ethernet) which will soon have interfaces available for

a wide range of computer systems, and the concept of a DOS access

machine. Use of portable languages in the DOS means that we may

be able to move software from one DOS host to another. The use

of an access machine as a means of connecting an application host

to the DOS is intended specifically to minimize the effort of

host substitution by maximizing the retained software in the

access machine GCE. Precisely which DOS functions can be handled

within the access machine GCE without incurring a similarly

complex interaction with the host is yet to be determined.

Finally, the most likely substitution to be made during

the course of our effort is a substitute for the ARPANET gateway.

We have adopted the use of an LSI-11 as the gateway to be able to

use standard, off-the-shelf ARPA internet gateways. A successor

to the LSI-11 gateway is currently being developed as part of

another BBN project. One aspect of our attempt to keep in step

with Internet community activities is an anticipated changeover

to a new gateway when that development completes. One of the

candidate architecures being considered for the future gateway is

the equivalent of the DOS GCE.

-88-

Report No. 5086 Bolt Beranek and Newman Inc.

2.8 Operation and Maintenance

It is desirable for the design of any computer system to

facilitate the operation and maintenance of the system. In our

opinion, this is one of the areas that has not yet received

adequate attention, predominatly because few extensively

distributed systems have reached operational status. Distributed

systems, and especially systems incorporating many heterogeneous

parts, are far more complex than their centralized, homogeneous

counterparts. Routine chores, such as adding new components to

the configuration, coordinating new releases of system software,

and initiating diagnostic routines, become much more complex in a

distributed system environment. The natural tendency to handle

* each component separately has shortcomings in the effort required

and the sophistication needed to correctly complete simple

maintenance activities. The reason for citing operation and

maintenance as a goal is our belief that the success of the

distributed system concept in Air Force command and control

environments will to some extent be dependent on the managemen~t

of the routine housekeeping chores associated with any computer

system.

The objective in this area is to simplify the operation and

maintenance procedures for the system so that these tasks are

manageable by personnel other than system programmers.

Simplified procedures do not necessarily mean automated

7AD-A139 588 CRONUS: A DISTRIBUTED OPERATING SYSTEMMU BOLT BERANEK 1
AND NEWM AN INC CAMBRIDG E MA R SCHANTZ ET AL. NOV 83

BBN_5 086 RADC-TR-83-236 F 3060 2-81-C-01 32

NCASIFTED FIG 9/2 N

EhhEChhhEE

pI

I II. ~28 12.5

!..

~f ~ 132 P22
2.0.

111I125 1Eg-

MICROCOPY RLSOLUTION ItSI iCHARI

NAIK)NAI H AU SIANDAHDS 1,1W A

............................

-Report No. 5086 Bolt Beranek and Newman Inc.

procedures (although many such functions, including those

mentioned earlier while discussing system control and monitoring,

will be automated), nor will they necessarily be as simple as in

current computer systems (the environment is quite a bit more

complex).

At this time, our approach to operations and maintenance

issues includes the following elements:

-The monitoring and control functions designated as part of
the system coherence objective address a number of automated
operations issues, and serve as a base of operations
support.

-The DOS will provide a number of other mechanisms (e.g.,
distributed file system, software tools) which can serve as
a useful foundation for developing simplified maintenance
and operations procedures throughout the system;

-As part of the test and evaluation phase, we will operate
and maintain the system, and are ourselves self-motivated
toward simplified operating procedures.

2.9 Test and Evaluation

One of the important aspects of introducing new system

concepts or approaches is the need to answer the question of how

successful they have been in meeting their objectives. The test

and evaluation phase of our project is intended to provide these

answers. We include a discussion of test and evaluation in this

Nearly" project documentation to emphasize our approach of

applying considerations in this area throughout the project.

-90-

Report No. 5086 Bolt Beranek and Newman Inc.

Test and evaluation should be more than an after-the-fact

activity and can be a positive factor in driving the design and

the implementation.

We can identifiy four distinct stages, spanning the project

lifetime, that are relevant to test and evaluation:

1. Setting goals. Section 3 outlined the approach and named
the three primary goals for which prior test and evaluation
methodologies will be developed, namely, coherence and
uniformity, survivability and integrity, and scalability.

2. Defining test and evaluation methodologies. In parallel
with the system design, test and evaluation procedures will
be developed for the three primary goals. Insofar as
practical, these procedures will each define a "figure of
merit" for their respective aspects of the design and
implementation, and an effective means for determining the
figure of merit. In some cases, the need to carry out
these tests may influence the system implementation to more
effectively support evaluation.

3. Extended system test. During the last few months of the
contract period of performance, the system will be
subjected .o an extended test phase. Opgrational testing
will be done by monitoring the DOS ADM as it is used by the
system developers and other groups which may be solicited
to build example application systems; synthetic teting
will be done through the use of synthetic workload
generators for reliability and scalability testing.

4. Reporting. The results of the extended system test will be
analyzed and judged by means of the yardsticks defined in
the second stage. Documentation will be prepared which
reflects the results of the test and evaluation phase.

The following sections discuss our current view of the test and

evaluation issue as it relates to each of the primary DOS goals.

-91-

: i , ... i :- I. m ...

Report No. 5086 Bolt Beranek and Newman Inc.

2.9.1 Coherence and Uniformity

A system is coherent if the system concepts "play togetherm;

coherence makes a system easier to understand and use. A system

is uniform if different components perform the same or similar

functions in the same or similar ways. Both coherence and

uniformity are largely subjective measures of a system, and thus

our test and evaluation procedures for this goal will be to

gather and analyze the subjective reactions of the user

population at the end of the extended test period. Users will be

asked to evaluate the system both on absolute terms (what they

liked and didn't like) and on a relative basis (comparing the

file system, for example, to the UNIX file system) . Users will

be asked to respond to questions in specific areas, and will also

be given an opportunity for open-ended comment. The user

statements will be collected, digested, annotated and presented

in an organized format (14)

We anticipate that the user population available for system

evaluation will consist of two, probably overlapping, groups:

the system developers, and one or more groups selected to develop

exemplary application and demonstration programs. There is, of

course, a special motivation in requiring the system developers

(14) The paper "Reflections in a pool of processors--an
experience report on C.mmp/Hydra", W. A. Wulf and S. P. Harbison,
AFIPS Proceeding of the National Computer Conference V47, 1978,
is an interesting example of an evaluation of this type, and will
serve as a model.

-92-

Report No. 5086 Bolt Beranek and Newman Inc.

to use the system in the normal course of their work--the

feedback path from user to developer is minimized. Design

decisions which cause great difficulties will be rapidly exposed

and revised. The system developers are also likely to be more

tolerant than other users of small arough edges", which means

that they can begin to use the system earlier, before the

polishing is finished. This practice generally encourages the

developers to be prompt, careful, and down-to-earth, because

their own productivity is at stake. A consequence of this is

that the initial services developed for the system will be

oriented toward the needs of the system developers. In many

cases (e.g., text editing) these services have utility in other

environments. In those cases where utility is limited to system

devlopers, they do form the foundation of supporting the

enhancement of the DOS system through it own facilities.

The system developers will further test the system design

through the implementation of some system services, such as file

archiving and command language interpreters, as application level

programs. The implementation of these services will test the

ability of the DOS to support such system functions without

resorting to modifications of the software within the DOS

security envelope. Minimizing the amount of software within the

security envelope is a problem analogous to minimizing the size

of a security kernel in a conventional, single-host operating

system; thus experience gained relating to this aspect of system

-93-

Report No. 5086 Bolt Beranek and Newman Inc.

extensibility is especially important.

The experiences of the system developers, however, are no

substitute for those of application programmers. Application

programmers can be expected to make demands upon the completeness

and accuracy of the documentation, for example, and to exercise

the system in ways that were not anticipated, or not often used,

by the developers. Because application programmers will lack

in-depth knowledge of the DOS implementation strategies, their

reactions are an important test of the user-level conceptual

models defined in the user manuals. Due to limited time and

effort, only small-scale examples will. be constructed during the

extended system test, but these can nonetheless be expected to

yield significant insight into the usefulness of the DOS design

and implementation.

2.9.2 Integrity and Survivability

The test and evaluation of integrity and survivability of a

system is one of the harder to perform. First, one must decide

what constitutes appropriate behavior in this area, and then one

must design (non-destructive) methods of test.

The first step in the test and evaluation procedure for

system integrity and survivability is to ensure that the failure

-94-

Report No. 5086 Bolt Beranek and Newman Inc.

modes identified in Section 4 can be artificially and easily

induced in the ADM. For the failure of a processor, for example,

this may mean simply that the processor can be either physically

or logically disconnected from the network.

The monitoring capabilities of the DOS will include the

maintenance of online error logs. These log files will be

utilized during the extended test phase to record naturally

occurring failures within the ADMS, as the DOS is used routinely

by the development team and application programmers. Errors

which cannot be automatically recorded because of the nature or

* extent of the failure will be manually recorded in an off line

* log.

Finally we intend to build one or more reliable

applications, and exercise the applications by means of

aritificially induced failures.

2.9.3 System Scalability

There are two important facets to the evaluation of DOS

scalability: function and performance. By scaling of function we

mean the ability of the various DOS mechanisms to scale to larger

configurations and user populations without regard to the effect

of scaling on performance. Typically, different mechanisms have

- 95-

Report No. 5086 Bolt Beranek and Newman inc.

different limits to scaling, which are determined by a sequence

of decisions during design and implementation; in a conventional

single-host operating system, these limits are often real

constraints on the range of applicability of the system. For

example, an operating system might limit the number of active

users or the maximum file size. The first, and easiest, part of

the evaluation of scalability is the identification and analysis

of these maximum limits to growth.

Even if it is functionally possible to scale the system

along some dimension, such as the number of active users, it may

be undesirable to do so on performance grounds. A thorough

evaluation of the effects of scaling on performance is not

possible within the period of this contract; nonetheless, we

expect to obtain some preliminary results by means of direct

measurements and performance modeling.

We are interested in two primary dimensions of scaling:

1. Workload scaling. Given a fixed DOS configuration and a
well-defined workload, how do the system response times for
different classes of users change as the user population
increases?

2. Configuration scaling. Given a well-defined workload and a
fixed-size user population, how do the system response
times for different classes of users change as the number
of service hosts is scaled?

One important constraint on the evaluation of scalability is

the size of the Advanced Development Model configuration.

Because we expect functional limits to the number of hosts, for

-96-

Report No. 5086 Bolt Beranek and Newman Inc.

* example, to be on the order of 1,000 (15) , but will have only

about 10 hosts (including DOS service hosts) in the ADM,

empirical tests of configuration scaling will be possible only

over a small portion of the DOS configuration space.

our approach to the evaluation of scalability with respect

to performance will be based on empirical performance data

obtained from the ADM, used as the basis for system models which

extrapolate to much larger workloads and configurations. By its

nature, this type of performance modeling cannot be extremely

precise, and tends to be more useful as a qualitative indicator

of feasibility rather than a quantitative predictor of system

performance. Analytic models can be constructed and evaluated

very rapidly, so they are an inexpensive tool to apply. We

believe they are the most appropriate modeling technique during

the early life of a system, when decisions are more apt to

concern gross changes in resource management strategies than

fine-tuning of algorithm parameters.

The DOS system monitoring facilities will be designed to

accumulate the performance data necessary for modeling during

routine operation of a DOS cluster. This performance data can be

collected during actual use of the system, or while system and

application functions are exercised by artificially induced

(15) The Ethernet specification limits the number of attached
hosts to approximately 1,099.

-97-

Report No. 5086 Bolt Beranek and Newman Inc.

workloads. At this time, it is not known whether data from

naturally-occurring workloads will suffice, or whether synthetic

workload generators will be required; this issue should be

clarified by the definition of the scalability test criteria

during the design and implementation phases of the project.

2.10 Relation to OSI TAFIIS Report

The OSI report (16) serves as a baseline for command and

control requirements pertaining to the development of a DOS. It

proposes a multilayer operating system/network model for a TAFIIS

(17) , composed of MAXI-DOS (global long-haul network) and MINI-

DOS (local net) layers. The DOS we are developing in this

project focuses primarily on the MINI-DOS issues.

2.10.1 General Aspects of the OSI Model

The OSI report identifies a set of services which should

be provided by the TAFIIS system.

- Composition and editing of data.

(16) John R. Thompson, Enrique H. Ruspini, and Christine A.
Montgomery. TAC CCC Distibuted Operating Systm Stu d final.
Report Technical Report OSI R79-045, Operating Systems, Inc.,
November 1979.
(17) Tactical Air Force Integrated Information System.

-98-

Report No. 5086 Bolt Beranek and Newman Inc.

- Search for data records.

- Define/maintain data base.

- Retrieve and output data.

- Routing of data between users.

- User aids/computation.

We agree that this set of functions is typical of the application

programs and processing load which the DOS will need to support.

The 051 report describes several aspects of the DOS which

provide starting points for much of our system concept and

design. In particular, they identify the following set of

mechanisms as pertinet to the development of a

* DOS:

- Directory services.

- Allocation of resources shared by multiple nodes.

- Scheduling of tasks involving interprocessor interaction.

- Access to global system software.

- Performance monitoring.

- Degradation handling and system recovery.

- Interprocessor communication.

- Multi-level data security.

With the exception of multi-level data security, which is beyond

the scope of this project, our system addresses each of these

areas. The first two items, directory services and sharing of

resources, are at the heart of our effort, since they are most

-99-

Report No. 5086 Bolt Beranek and Newman Inc.

critical to the design of a local network operating system, if it

is to operate as an integrated unit.

Our major extension to the OSI study is the detailed focus

on the MINI-DOS aspects of the architecture. The inclusion of

gateway functions to link instances of DOS clusters is a

preliminary step to addressing MAXI-DOS issues. Differences in

communication speed, delay, reliability and security in the

MAXI-DOS area change the nature of the network integration task,

maling it distinct from MINI-DOS system integration.

2.10.2 OSI Identified Functions

The OSI report identifies a number of important functions

of the DOS. In this section we briefly indicate our approach as

to these functions, and contrast them with potential approaches

suggested by the OSI report.

Interprocessor communication will be provided in the DOS

using Ethernet together with DOD standard interprocess

communication protocols. The Ethernet includes cable network

hardware together with a local net CSMA/CD protocol. Above the

Ethernet layer we will be using Internet Protocol (IP) Datagrams

and, where reliable connection-based transport is required,

Transmission Control Protocol (TCP). The use of IP and TCP

within the cluster assures a degree of IPC compatibility with the

-100-

Report No. 5086 Bolt Beranek and Newman Inc.

Internet community and with, other DOD systems. We selected a

high-bandwidth local network, since we believe high bandwidth,

low delay transmission is necessary in order to enable the DOS to

operate in an integrated fashion. The OSI report does not focus

on MINI-DOS interprocessor communication. It suggests only that

the MAXIDOS be capable of 10-50 Kb/second, similar to our ARPANET

gateway but two orders of magnitude less than the speed of our

local network.

esoure lanagemenj in the MINI-DOS is left unspecified

in the OSI report, except for indications that resource

management be tightly controlled and many appropriate strategies

may require a high bandwidth communication medium. In addition,

it is suggested in the report that resource management will

probably be centralized. We are, of course, providing a high-

bandwidth communication medium in the Ethernet. At higher levels

of abstraction MINI-DOS resource management implementations must

be distributed if the system is to survive component outages.

Security approaches within the MINI-DOS were not

specified, since the OSI report felt it was dependent on the

nature of the local net (cell, in the OSI terminology). Our

system concept calls for a general purpose access control and

authentication mechanism, which borrows from several traditional

access control schemes. However, we are not planning to implement

multi-level security.

; -101-

4 __

Report No. 5086 Bolt Beranek and Newman Inc.

Configuration management was regarded by the authors of

the OSI report as a problem largely restricted to the MAXI-NET

environment, where noisy channels might eliminate communication

capability and isolate local networks from each other. While

recognizing this problem, we believe that configuration

management is also an important issue within the MINI-DOS, where

individual host failures should not be allowed to disrupt the

local network. In our system concept, there are two levels of

configuration issues: the reconfiguration requirements resulting

from failed components (and of components brought back into

* service), and reconfiguration resulting from scaling of the

system, planned growth, and phasing in and out of generations of

* equipment.

The first type of reconfiguration, resulting from system

faults, can to a great extent be handled by automatic procedures.

These procedures require mechanisms which operate correctly

despite outages of components, and of mechanisms which perform

automatic reconfiguration when failures are recognized.

The second type of reconfiguration will be provided by

manual intervention. Manual updates to configuration tables will

be sufficient to accommodate many anticipated changes, and

careful, modular system design should enable us to keep more

radical configuration changes localized within modules.

Data Ras Mangmnt is recognized as an important

-102-

Report No. 5086 Bolt Beranek and Newman Inc.

function within the DOS cluster, but it is largely separable from

the design of the DOS itself, and therefore is outside the scope

of the present effort. The DOS will provide basic support for

data storage and access, including reliable file mechanisms,

which could provide a reasonable base for the implementation of

data base management systems. In addition, an alternate approach

to data base functions, dedicated data base machines, is now

emerging. This approach fits in well with our DOS system concept

of dedicated function components and we recommend that an

instance of such a system be considered for inclusion in the DOS

configuration. one of the issues we see concerns the potential

conflict of the "black box" nature of these machines, and the

desire for integration with other DOS system concepts (e.g.

resource management, reliability).

2.11 DOS Glossary

Abstract Object Model
Model of entities manipulated by the DOS which attempts
to treat a wide variety of differing system and user
entities in a unified manner. Types of DOS objects
will include files, devices, and processes. Associated
with each object is a unique identifier, and services
for cataloging and controlling access.

Access Point
Point of interface between the user and the DOS. The
access point for a DOS user may be a Terminal Access
Controller (TAC), a workstation, or a DOS application
host.

Address
Bit string representing the location at which an object

-103-

Report No. 5086 Bolt Beranek and Newman Inc.

may be referenced. Addresses often consist of several
con~catenated fields, representing a hierarchy of
containing alocations": Rome is in New York is in the
United States of America. A field designates a unique
location in the locale containing it; fields may be
reused in different locales: Rome is in Italy.

Advanced Development Model (ADM)
Physical instance of the DOS to be developed under the
DOS Design/Implementation contract; the ADM will
initially be used by the system developers.

Application Host
DOS host on which application programs run. There are
potentially many types of application hosts in the DOS;
in the ADM, two important types are general-purpose
timesharing hosts and GCE's dedicated to application
programs.

Capability
If a process possesses a capability for an operation
on an object, it may invoke the operation against the
object. Possession of the capability is proof of
authorization--no further access control check is made.

Cluster
The local network and its hosts. The cluster is the
main focus of DOS integration activity. A primary
characteristic of a cluster is its uniform high-speed,
low delay communication.

Essential Service
Service of the DOS required for the continued operation
of the DOS. Essential services are candidates for
continuous availability, which is provided through
redundancy.

Generic Computing Element (GCE)
A small computer system made up of interchangeable
parts upon which many DOS functions will be built. In
the Advanced Development Model of the DOS, GCE's will
be built using 68000 processors in a Multibus
backplane.

Integrity
Maintenance of system and application state information
in a consistent state, meeting the system and
application program functional specifications.
Emphasis is on the maintenance of system integrity
across failures, i.e., the phases of failure detection,

-104-

Report No. 5686 Bolt Beranek and Newman Inc.

isolation, and recovery.

Process
Model of the active agent or instruction execution in
the DOS. Processes in the DOS are objects, and will
provide a DOS-wide mechanism for addressing,
invocation, and control.

Primitive Process
Simple version of process which provides only a limited
set of control functions. It is presumed that any host
in the DOS will be able to provide a base for the
implementation of at least one primitive process.

Scalability
The capability of the DOS to grow or shrink in size,
within reasonable bounds. Scalability will be
supported by two means, the replacement of processors
with more (less) capacity and the addition (deletion)
of processors.

Security Envelope
Boundary around the DOS cluster delimiting the region
of the system within which security is ensured by the
use of unforgeable addresses and trusted agents.
Outside the security envelope, capabilities and
passwords will be used to authenticate DOS access.

Survivability
Ability of a system to continue to perform a given
function despite expected failures, with only
insignificant performance or functional degradation;
synonymous with "continuous availability".

Symbolic Name
Identification of a DOS object in a global name space
independent of the object's location or the location of
the reference. The symbolic name space is designed to
consist of character strings, and is easily manipulated
by the users of the system. A mapping is provided
through the catalog mechanism for translating symbolic
names to universal identifiers.

Universal Identifier (UID)
A fixed-length bit-string which identifies, or names, a
unique object. Every DOS object has a universal
identifier; no two objects have the same identifier.

Workstation
A computer which is dedicated to single-user-at-a-time

-165-

Report No. 5086 Bolt Beranek and Newman Inc.

operation, which provides both computational services
and an access point to the DOS. In the Advanced
Development Model, Jerichos will fulfill this role.

* 16

iI

Report No. 5086 Bolt Beranek and Newman Inc.

3 Advanced Development Model Configuration Selection

This section reports on the activity preceding the selection

of two important components of the cluster configurations: the

local area network and the generic computing element. Some of

the other elements of the initial configuration had been

previously fixed by the statemnent of work.

3.1 Local Network Selection Criteria

Introduction

This document attempts to describe the factors relevant to

the selection of the local network for the Distributed Operating

System Design/Implementation contract. Because the Concept of

Operations for the DOS is even now (October 1981) being written,

there is perhaps less "top-down" motivation for the requirements

than one might wish. Nevertheless, the local network must be

procured promptly, and the procurement task is complex enough to

warrant this semi-formal requirements document.

Although the terms "requirements" and "selection criteria"

as used in the title of this document might seem to be redundant,

they are not; rather, they express the separation of network

attributes into two groups. The nature of the DOS in general,

and the contract's Statement of Work in particular, impose some

-107-

Report No. 5686 Bolt Beranek and Newman Inc.

very definite requirements on the local network. For example, we

must have high bandwidth between DOS hosts. This requirement

disqualifies any local network whose only host-to-host interface

is by means of an RS-232 serial line (limited by the RS-232

standard to 19.2K bits/sec., maximum). On the other hand, we are

free to choose a local network of almost any architecture: ring

or bus, broadband or baseband transmission, and utilizing any

transmission medium: twisted pair, coaxial cable, fiber optics,

etc. The selection criteria will help us to choose among the

possibilities, on the basis of the factors most relevant to the

DOS.

Th~ De vQDelopet Environment

The computers used in the DOS development environment fall

into two categories: host computers, and Access Machines (AM's).

Some of the DOS host computers will be directly connected to the

local network, while others will be connected through the Access

Machines. The Access Machines will be relatively inexpensive

processors, such as LSI-ll's or Motorola 68000's, and will be

directly connected to the local network. The role of the Access

Machines in the DOS is discussed in somewhat greater detail in

Appendix A.

At this early juncture in the contract we cannot provide a

definitive list of the equipment to be connected to the local

network, nor can we give specific physical locations for the

-108-

Report No. 5086 Bolt Beranek and Newman Inc.

various hosts. As an indication of the environment we expect to

be constructed, however, we reproduce here the equipment list

from our proposal in one plausible geographical arrangement. In

this list, hosts connected to the local network through Access

Machines are indicated in parentheses.

1. C/70-1 AM-1 (Honeywell Level 6) AM-2 (Gateway function)

2. AM-3 (Jericho-l) AM-4 (terminal MUX) Network Development
Station lineprinter

3. C/70-2

4. AM-5 (Jericho-2)

Equipment within a group can be considered to reside within

a room, or separated by no more than tens of feet; the distance

from one group to another will be on the order of hundreds of

feet.

The C/70 is a product of the BBN Computer Corporation. It

is a microprogrammable machine with an instruction set oriented

towards efficient execution of the C programming language; it

operates under the UNIX operating system. A typical C/70

configuration includes memory up to 2MBytes, two 160MByte

removable-media disk drives, and a 32-line terminal multiplexer.

The Jericho is a personal computer developed by BBN to meet its

internal needs for powerful research computing engines. It

features 32-bit data paths, a bit-sliced processor, 16MBytes of

virtual memory space, a bit-mapped graphics display, and a

200MByte Winchester-technology disk drive.

-109-

-. ,/

Report No. 5086 Bolt Beranek and Newman Inc.

Reauirements Lrom ±t1e stteme of IWrk

The DOS contract's Statement of Work hands down several

requirements:

1. The local network should be "high-speed".

2. It must be interfaced to all of the computer systems in
the DOS demonstration environment.

3. "It is assumed that high-speed [local network hardware]
will be a commercially available off-the-shelf system...
This effort does not include development of the local
[network] hardware."

4. "The contractor shall include ... interface units to
interface the computers to the [local network]. These
units shall be programmable such that computers other
than those specified may also be added to the [network]."

The Statement of Work speaks specifically of an

"interconnecting buss"; ellipses and brackets have been used in

the quotes above to remove this apparent prejudice towards one

particular local network technology.

Like most requirements, the points above are subject to

interpretation. What, for example, should an "interface unit"

consist of? The Statement of Work speaks specifically of "buss

interface units". In a MITRENET-type network (a contention-bus

network operating over standard CATV equipment providing

terminal-to-terminal-port communication) a Bus Interface Unit or

BIU is a microprocessor-based device that provides an RS-232

interface to a terminal or terminal port on a host computer on

one side, handles all network protocol, and connects to the CATV

-10

Report No. 5086 Bolt Beranek and Newman Inc.

broadband modem on the other side. In the DOS, we require high-

speed access from the hosts to the local network, and this tends

to rule out RS-232 interfaces. More importantly, the DOS is

primarily concerned with host-to-host communication, and the use

of terminal interface standards (e.g., RS-232 or RS-449) for the

host-to-network interface is suspect. Thus our *interface unita

cannot be the same object as the BIU of MITRENET. Instead, we

must provide some analogous but more appropriate "interface unit"

for the host-to-network connection.

DSReuirements

Through distillation and interpretation of the requirements

given in the contract's Statement of Work, we arrive at these

requirements for the DOS local network:

Rl The local network must provide uniform functionality to
each attached host. That is, the functionality visible
to each host should be (at least potentially) the same.
This functionality must include a datagram or message-
style communication service.

At every point of attachment, there must be the potential
to use all of the operations of the local network: to
send and receive messages, perform control functions,
etc. If it is possible to establish special operating
modes that cater to particular devices (e.g., to operate
a lineprinter at a well-known port), it must be possible
to set or clear these modes for any point of attachment.

The local network may provide other services in
addition to datagram service; some of these are
listed below among the "selection criteria".

R2 The local network must provide interfaces to the
equipment (hosts and/or Access Machines) of the
development environment.

-111-

Report No. 5086 Bolt Beranek and Newman Inc.

This requirement expressly permits the network
vendor to use one "interface unit" to connect
to the network some or all of the items within
a physically proximate group; this may result
in a cost saving. For example, using the cost
figures given in Criterion below, if all of the
equipment listed in Group I in Section 2 above
could be connected to the network through a
single interface unit, the cost of the unit
could be as high as $16,875 without exceeding
the allowable average cost per host interface.

R3 The network must be "off-the-shelf . As discussed above,
we are not doing local network technology development
under this contract.

The local network will be a critical component of the DOS
implementation project; therefore, it is highly desirable
that the network hardware be as reliable, stable, and
understandable (modular and well documented) as possible.
In particular, the existence of identical or extremely
similar products in the field, and experiences of their
users, will be weighted heavily during the selection
process. Products with little or no proven track record
will be down-rated accordingly.

Because of the presence of the local network at the
lowest levels of the DOS architecture, it is extremely
important that the network be available when needed and
stable for the remainder of the contract. A sufficient
portion of the local network hardware to begin testing
Access-Machine-to-Access-Machine communications must be
delivered by 1 March 1982, and the remainder must be
delivered no later than 1 June 1982.

R4 The local network must provide an aggregate bandwidth of
at least 0.5 Megabits/sec. Further, the network must
provide a throughput of at least 0.5 Megabits/sec.
between a pair of communicating hosts, with low latency.

(We assume that only two hosts are active, one
transmitting data as rapidly as possible to the
other, which is receiving the data as rapidly
as possible. We assume that these hypothetical
processors are very fast, and that throughput
is restricted only by the host-to-interface-
unit bandwidth, interface unit overhead, and
network transmission bandwidth.)

(By "low latency" we mean that, on average,

-112-

Report No. 5086 Bolt Beranek and Newman Inc.

messages experience little delay due to
queuing, buffer-copying, etc. within the local
network system. When greater-than-average
delays occur they are due to heavy traffic
loading on the network, and not, for example,
to bandwidth allocation schemes that function
independent of network loading.)

This requirement precludes virtual-circuit-
only, RS-232-interface-only local network
products. In addition, it implies that high-
bandwidth interfaces are available for at least
the C/70 hosts and the Access Machine (see
below), assuming that hosts other than the
C/70's connect to the network through an Access
Machine.

How do we choose among several local network products that

meet our requirements? The criteria below define, in priority

order, the attributes of local network products that we will

evaluate.

Cl The local network product, and any custom-assembled
interfaces, must be commercially available to our sponsor
so that the DOS development environment can be replicated
at one or more sites designated by the sponsor.
Maintenance for the local network system (both hardware
and software, if any) must be available as well.

The total cost of the vendor-supplied local network
components and any special interfaces developed by the
DOS project staff should not exceed $60,000.

(A specific local network may have a higher
cost and still be acceptable, if it
incorporates features that would permit cost
savings elsewhere in the development
environment.)

This figure is stated as a criterion rather than as a
requirement because it is somewhat elastic. The project
budget allocated this figure, based on the cost of a
particular, representative local network system. This

• -113-

-- /

Report No. 5086 Bolt Beranek and Newman Inc.

representative system included:

a. two (2) C/70 interfaces

b. five (5) Access Machine interfaces

c. one (1) line printer (RS-232 or 8-bit parallel)

interface

d. one (1) network development station

The network development station is a standalone
microcomputer system consisting of a processor, floppy
disks, terminal, and network interface. It is capable of
supporting the development of any software internal to
the vendor-supplied network components. Additionally, it
might be used as the basis for network control and
monitoring during the normal operation of the DOS (e.g.,
bringing up or taking down various components of the
network).

other local network systems might not include one
physical component that performs all of these functions.
However, all of these functions are required of the DOS,
and must be supported; the cost of support will be
included in the cost of the local network. For example,
if the software development environment for the local
network software is not on a machine dedicated to the
DOS, the use of that machine by the DOS project must be
estimated and its cost added to the cost of the local
network.

Assuming a cost of $15,000 for the network development
station, the remaining host interfaces have an average
cost of $5,625. We do not require that the costs be
broken down in this manner; the C/70 interfaces, for
example, could be more expensive than interfaces to the
Access Machine.

C3 To the extent possible, the network interface hardware
for the primary DOS hosts should be available of f-the-
shelf.

The primary hosts in the DOS development environment are
the C/70's and the Access Machines. In the case of the

-114-

Report No. 5086 Bolt Beranek and Newman Inc.

Access Machines, a DMA interface to either the LSI QBUS
or the Multibus (depending on the chcice of Access
Machine) is required. It is doubtful whether any vendor
will have a high-bandwidth C/70 interface at hand.
C/70-to-local-network interfaces have been developed by
BBN in the past, and the existence of a demonstrated
interface design for connection to a specific local
network will be considered prima facie evidence that the
selection criterion can be met for the C/70 host.

Additionally, the existence of high-bandwidth interfaces
between the local network and (1) the BBN Jericho
computer, and (2) the Honeywell Level 6 computer family,
is desirable. Their presence is less important, however,
than that of interfaces to the primary DOS hosts.

To the extent that interfaces must be designed and/or
constructed by the DOS project staff, in-house
familiarity with the operation of the local network is a
selection criterion.

C4 Network bandwidth in excess of that called for by
Requirement is desirable.

In particular, it is highly desirable that the pairwise
bandwidth approach the instantaneous processor-to-disk
bandwidth of hosts in the development environment, which
is on the order of 10 Megabits/sec. Capacity above this
level is of lesser importance.

C5 The local network may provide functionality beyond simple
datagram service, provided this additional functionality
does not impair or degrade the performance of the
datagram service called for by Requirement . Some of the
services that might be useful to the DOS include:

a. broadcasting or multicasting of messages

b. virtual circuits

c. passive listening nodes

d. device handling (e.g., use of XON/XOFF)

e. access control to the network

-115-

• -I -

Report No. 5086 Bolt Beranek and Newman Inc.

f. flow control and buffering

g. terminal multiplexing

It is difficult to furnish a complete list in advance of
the DOS Concept of --jerations; the above list is merely
an example of features which might influence the
selection process. As was mentioned above, functionality
beyond the basic datagram service should not, insofar as
possible, alter the interface to or degrade the
performance of the datagram service. Flexibility of the
services is important, including the possibility of
custom alterations or additions to network software
during the course of the project.

C6 It is advantageous for the DOS local network to be
compatible with the local network used for another BBN
project, such as the Distributed Personal Computer (DPC)
project (using BBN's Fibernet) or the Command Center
Network project (using Ungermann-Bass's Net/One). It is
also desirable that the DOS local network be compatible
with one or more of the emerging local network standards,
such as the DEC-Xerox-Intel Ethernet or the standard
being formulated by the IEEE-802 committee.

Various degrees of compatibility are possible, and %ill
be evaluated in the specific context of this project.
For example, it is the intent of the DOS project staff to
cooperate closely with the DPC project. The DPC project
will be using Jericho personal computers connected by
Fibernet; thus, compatibility with Fibernet is desirable.
Ethernet compatibility is advantageous because of the
substantial commercial interest in Ethernet-compatible
products; some of these may eventually be included in the
development environment.

Appendix A

Access Machine

The role of the Access Machine in the DOS can only be fully

defined as the project proceeds. At a minimum, it provides a

convenient way to connect a new host to the DOS. As such it

provides a physical data path from the "interface unit" to a

-116-

Report No. 5086 Bolt Beranek and Newman Inc.

host, through two interfaces:

1. host-to-AM interface

2. AM-to-local-network interface

The DOS Concept of Operation will decide to what extent the

Access Machine has a larger role, performing more significant

algorithmic tasks as part of the DOS.

We have identified two candidates for use as Access Machines

in the DOS: the LSI-11 processors (either the LSI-11/2 or the

LSI-ll/23) and a Multibus board containing a 68000

microprocessor. Both are constructed around buses (the QBUS and

Multibus, respectively) that support DMA access by peripherals to

the processor's memory space. It is expected that a network-to-

AM interface would consist of one or more boards performing DMA

data transfer.

It is possible that either processor or both will be used in

the DOS. To some extent, the decision depends upon the

availability of interfaces to the local network. For purposes of

network evaluation, it is important that we understand the issues

involved in interfacing either type of system to the network.

The interface between the AM processor and the host it

serves deserves attention, as well. It may be possible to use a

standard communication line or bus interface, such as HDLC or the

-117-

Report No. 5086 Bolt Beranek and Newman Inc.

IEEE-488 Instrumentation Bus. If so, this would be extremely

desirable, as it would ease the task of connecting the AM's to

the various DOS hosts.

~-118-

*Report No. 5086 Bolt Beranek and Newman Inc.

3.2 DOS Local Network Selection

From August through October, Bill MacGregor and I along

with other members of the DOS project-team, pursued our search

f or a local network communications substrate for the Distributed

Operating System. Significant milestones were:

o Presentation to RADC, 4 August

o Publication of DOS-12, "Requirements and Selection
Criteria for the DOS Implementation Local
Network", 24 August

o Establishment of three "finalists", mid-September

o Final selection, early October

o Review with RADC, 24 November

We have selected the 10 Mb/s Ethernet for the DOS

implementation local network, using controllers (or "protocol

modules") primarily from InterLAN, Inc. This section lists the

candidates we considered, describes the selection process by

-119-

Report No. 5086 Bolt Beranek and Newman Inc.

which we eliminated the non-finalists, and the specific reason

for which we eliminated tach one, discusses the three finalists,

and, finally, presents our reasons for selecting ETHERNET

technology, and InterLAN as a primary vendor.

The reader of this document is assumed to be familiar with the

DOS-12 document noted above.

The Candidates

Our investigation unearthed seven candidate local network

products. This may seem like a small number, considering the

attention paid to local networking in the trade press, and the

number of product announcements and advertisements in various

journals. However, it is important to remember that most of

these products are aimed at what we term t r.mnali Uo

-in -R=t comunications, providing serial terminal port

(RS-232) interfaces for both terminal host connection. We

believe that this type of network product is completely

inappropriate for the DOS implementation network; we restricted

our search to those network products that offered the capability

of direct attachment to our DOS hosts.

In all, we investigated the following local network products:

o Net/One from Ungermann-Bass, Inc.

o ProNet from Proteon Associates

-120-

Report No. 5086 Bolt Beranek and Newman Inc.

o PolyNet from Logica, Inc.

o Fibernet from the BBN Research Computer Center

o ETHERNET products from several manufacturers

o Hyperchannel and Hyperbus from Network Systems
Corporation

o CATV-based systems from Sytek, Inc.

3
Relation to Air Force C Goals

DOS is a research project in the area of distributed operating

systems, not local network technology. Therefore, we are

constrained to use commercially-available, off-the-shelf local

network technology and products. At the same time, the research

goals of DOS require that we employ the most advanced local

network products currently available -- products that meet the

functional, performance, interface capability, and cost goals

that are outlined in DOS-12. We discovered, in the process of

evaluating available local network products, that the products

most advanced in these areas are aimed at the commercial

marketplace and are designed to commercial, rather than military,

standards. Essentially, this means that attributes traditionally
3

sought in C applications (such as robustness, physical

ruggedness of th p t:!p.ent and transmission media, provisien for

reconfiguration in the event of damage, etc.) have been given

short shrift by the designers of these commercial products.

-121-

Report No. 5086 Bolt Beranek and Newman Inc.

Products that 42 incorporate these attributes tend to be products

of more limited capability, from the point of view of DOS needs.

This would be a matter of considerable concern, if DOS, as

developed by BEN, were to be deployed in the field, either as a

demonstration system or on an operational basis. However, DOS is

to be a demonstration system operating in a laboratory

environment. Because of this, and because of the fact that DOS

is explicitly a distributed operating system, rather than a local

network, research project, we believe it is both reasonable and
3

proper to forego any attempt to meet the traditional C

requirements, in favor of the requirements established by the DOS

research goals; this is, in fact, what we have done.

What would it take to produce a DOS local network

implementation that .d~ez meet traditional military objectives?

We do not fogsee local network products with the appropriate

characteristics becoming available in the commercial marketplace

over the next few years. This is not because they are in any way

technically infeasible; rather, we see the commercial

marketplace, driven by quite qifferent forces, moving in a

direction different from that required to meet military

objectives. We see two ways of providing suitable local network
3

technology for a DOS implementation meeting C goals:

1. Through an R&D effort, state-of-the-art local network

-122-

Report No. 5086 Bolt Beranek and Newman Inc.

architectures, such as the contention bus or the token
ring, could be adapted to provide the characteristics
important for miliatry applications. This could
readily be done in such a way as to be compatible with
the computer hardware currently being selected for the
DOS

2. Through substitution of the Flexible Intraconnect.
This approach, already contemplated in the DOS
Statement of Work, would provide a local network

3
specifically designed and engineered to meet C
objectives.

We consider either of these alternatives to be a "next logical

step" in bringing DOS concepts out of a strictly laboratory

environment, where functionality is to be demonstrated, closer to

a deployable system.

The non-Finalists

Two candidates were eliminated from contention rather quickly,

due to cost and complexity considerations:

Network Systems Corporation

Hyperchann&1 was eliminated for two reasons. First, it is

expensive. Its data rate is in the tens of megabits range,

beyond what we need for DOS, and it is priced accordingly.

SeconC, its interfaces are complex. It is designed to

interconnect IBM1 (and other) mainframe CPUs and peripheral

devices, imitating channel interfaces and the like. Controllers

-123-

Report No. 5086 Bolt Beranek and Newman Inc.

are available for PDP-ll's and possibly several other

minicomputers that are not part of the DOS host complement;

development of interfaces for other hosts would be a very

complex, costly, and risky proposition.

Hyp , said to be a less costly system, is not yet

available. The Boston-area Network Systems Corporation sales

office was not willing to release any information about it, or

admit its existence.

Sytek's CATV-based products

Sytek's Sy±em 20 is primarily oriented towards

terminal-to-terminal-port communication, rather than the

host-to-host communication we desire for DOS; we eliminated it on

functional grounds. Syst. 40 makes us squarely face the

question: Do we want a CATV-based local network for DOS? Our

answer, after considerable thought, was a clear .ng; our reasons

are given in the Postscript to this note. For now, suffice it to

say that, as with the Network Systems Corporation products, cost

and complexity argue against a CATV-based system.

Two other candidates were eliminated after more careful

evaluation:

Fibernet (2 tI/s version) from the BDN Research Computer
Center (RCC)

-124-

6II

Report No. 5086 Bolt Beranek and Newman Inc.

The current 2 Mb/s Fibernet system is at the low end of our

data rate range. More importantly, it is currently interfaced

only to Jerichoes, LSI-ll's, and a special-purpose M68000-based

terminal concentrator. Other candidates offer both higher data

rates and a broader choice of interfaces. Moreover, the RCC is

interested in upgrading Fibernet to a 10 Mb/s version compatible,

in a functional sense, with ETHERNET. Therefore, the 2 Mb/s

Fibernet may be regarded as a "lame duck" candidate with a

limited future. Fibernet does have a place in the DOS local

network, however, as it is the only network to which the Jericho

machines are currently interfaced. Until this changes, the 2

Mb/s Fibernet will serve the Jerichoes in the DOS configuration.

Polynet from Logica, Inc.

Polynet is a commercial version of the Cambridge University

Ring Network that has become quite popular in the United Kingdom;

it was a promising candidate for DOS. Polynet offers network

interfaces for PDP-lI's (not relevant to DOS), LSI-ll's (relevant

to DOS) and Multibus systems (also relevant to DOS). In

addition, Logica offers the "network node", or controller, by

itself, without a host interface, which would meet our needs for

the C/70. However, Polynet presents a few problems: First,

there is no customer base in the U.S.; maintenance and support

could present problems. While the Logica, Inc. office in New

-125-

Report No. 5086 Bolt Beranek ard Newman Inc.

York is very helpful, they are not the ultimate source of

expertise in the product. Second, Polynet deals in

amini-packets" on the ring; each message is divided into packets

of two bytes each. In our judgment this scheme is better

suited to terminal-type traffic, where messages are likely to

consist of small numbers of bytes, than it is to the

file-transfer and transaction-type traffic that we expect to see

in the DOS. Mini-packets introduce a large number of overhead

bits into each message, compared to other network access methods;

this has the effect of reducing the available network bandwidth.

Thus, the 10 Mb/s Polynet mini-packet ring suffers in comparison

to the 10 Mb/s Pronet token-controlled ring discussed below.

The Three Finalists

Net/One from Ungermann-Bass, Inc.

Net/One is a proven, accepted product in the local network

field. We have used Net/One in a previous project at BBN, the

Command Center Network for the U.S. Navy (NAVELEY). In

particular, we bave desianed and built an interface for Net/One

to the C/70; using the 4 Mb/s version of Net/One, we obtained a 2

Mb/s throughput from the C/70 onto the Net/One cable.

Net/One does have several disadvantages, however. It is

primarily oriented toward terminal to terminal-port

-126-

Report No. 5086 Bolt Beranek and Newman Inc.

communication; we used it for host-to-host communication in CCN

with the aid of special software from Ungermann-Bass. The latest

version of Net/One is compatible with the 10 Mb/s ETHERNET.

However, Net/One's wNetwork Interface Unit', or NIU, contains a

Z-80 processor, and this processor is, in essence, interposed

between the terminal, or host, and the ETHERNET cable; this is

what distinguishes Net/One from what we would term a "pure

ETHERNET" system. The processor serves a useful purpose in the

intended terminal to terminal-port application of Net/One;

however, we seriously question its utility in an application such

*as DOS. In effect, it's "in the way"; we don't believe it's

appropriate, for the DOS environment, to have a processor between

the network and the host or access machine.

*ETE RNET products

Three vendors, InterLAN, Inc., 3Com Corporation, and Intel,

have announced ETHERNET board-level products for delivery in

early 1982. ETHERNET offers a number of potential advantages for

DOS: It's a -de fact standard; we can expect more vendors to

provide ETHERNET-compatible products as time goes on. This is a

potential benefit as DOS evolves and, perhaps, grows. 3Com is

marketing a PDP-11 interface and' an LSI-11 interface; InterLAN is

marketing PDP-1I, LSI-II, and Multibus interfaces. Intel is

currently marketing a Multibus interface somewhat oriented *o its

-127-

Report No. 5086 Bolt Beranek and Newman Inc.

iSBC series of microprocessor systems. As can be seen, there are

multiple vendors for functionally-compatibie interface products.

In addition, InterLAN will be selling its "ETHERNET Protocol

Module" daughter board as a supported product; this daughter

board would form the basis of a C/70 ETHERNET interface.

Pronet from Proteon Associates

Pronet is a commercial version of the 10 Mb/s "Version II Local

Network Interface" ring network developed under DARPA sponsorship

by MIT and Proteon. It is a well-thought-out token-controlled

ring network design that represents an alternative to the bus

networks that are popular in this country today. Pronet is the

cheapest of the alternatives, priced approximately $1000 per node

less than either of the other finalists. As in the InterLAN

ETHERNET product, Pronet's "network control" module is separate

from its "host-specific" module, making possible the design and

construction of a C/70 interface.

ETHERNET: The System of Choice

We eliminated Net/One because of its interposition of a Z-80

processor at a point at which we felt was inappropriate, and

because of its standard terminal to terminal-port functionality.

The choice was then between Pronet and ETHERNET. While Pronet is

4a very attractive product, we selected ETHERNET over Pronet for

-128-

Report No. 5086 Bolt Beranek and Newman Inc.

three major reasons. First, ETHERNET is an emerging, albeit Ae

facto, standard backed by three major corporations in the

computer field. It is clear that, whatever happens in the field

of local area networking, ETHERNET will have "staying power".

Second, ETHERNET products are already being marketed by multiple

vendors -- an advantage for continued DOS work. Third, we expect

that direct connection to ETHERNET will be supported by a growing

number of mainframe, minicomputer, and microcomputer system

vendors -- again, an advantage for the future evolution of DOS.

In addition, the BBN RCC is committed to upgrading its 2 Mb/s

Fibernet to a 10 Mb/s version compatible at the transceiver

interface level with ETHERNET. Thus,"Fibernet-E", as it is

termed, will use ETHERNET controllers, but will substitute a

Fibernet tap and fiber-optic cable for the ETHERNET standard

transceiver and coaxial cable. We believe this compatibility is

an advantage in our development environment at BBN, since we will

be using some of the services of the Research Computer Center.

For example, the RCC will provide us with communication

facilities for the Jerichoes over the 2 Mb/s "J-Net" Fibernet

system, "bridged" to the DOS ETHERNET via an LSI-II.

Use of ETHEflNET components for the DOS local network offers us

a choice: we can either use "standard" ETHERNET cable and

transceivers, or we can use the Fibernet-E system. Functionally,

-129-

Report No. 5086 Bolt Beranek and Newman Inc.

from the DOS point of view, there is no difference between the

two. Our final choice of transmission technology is likely to be

based upon environmental considerations. Regardless of the

choice we make, a replication of the DOS at another location

could use standard ETHERNET transmission media exclusively, with

no difference in functionality or in the ETHERNET controller

hardware or software.

InterLAN and Intel

3Com does not currently plan to offer their ETHERNET controller

as a stand-alone product, separate from the two host interfaces

they have announced. InterLAN does, however, thus making it

possible for us to construct a C/70 ETHERNET interface. InterLAN

is also the only ETHERNET vendor so far committed to marketing

all of the types of interfaces required for DOS. For this

reason, we have selected InterLAN as our vendor for the ETHERNET

uprotocol module" (to use InterLAN's terminology) and for the

interfaces to the DOS LSI-II's We will design and build a C/70

interface for use with the InterLAN protocol module. We have

selected Intel as our vendor for the Multibus ETHERNET interface

largely because it is available now; InterLAN does not expect to

have their Multibus product on the market until the second

quarter of 1982. We believe that this delivery schedule

advantage outweighs the potential disadvantage of using ETHERNET

-130-

Report No. 5086 Bolt Beranek and Newman Inc.

controllers of different manufacture, with slightly different

programming characteristics.

There are several additional advantages to selecting InterLAN

as our primary ETHERNET interface vendor. They are nearby,

located in Chelmsford, Mass. Because their product is a new

product, we believe they will be particularly responsive, should

we experience any difficulties. Also, we believe they will be

quite helpful to us in our effort to design and build the C/70

ETHERNET interface.

Postscript: Why not CATV?

CATV, or broadband, local networks are becoming quite popular,

especially in military environments. They offer greater distance

range, compatibility on a single transmission medium with other

types of services, and well-understood electromagnetic radiation

characteristics. These are all excellent arguments for the use

of a broadband local network in an operational or system

development environment.

However, along with the advantages of a broadband network come

significant costs. Some of these costs are "per-system" costs;

in a large network, these can be amortized over the large number

of nodes served. When a broadband local network is added to an

existing CATV system, these costs are essentially zero; most of

-131-

Report No. 5086 Bolt Beranek and Newman Inc.

the per-system cost is associated with the CATV system itself,

not the local network. However, per-node costs are also higher

for a broadband network than for a baseband local net; one must

pay for the ability to be compatible with other services.

Finally, data rates are lower on broadband nets than on baseband

networks; 2 Mb/s is an upper bound for products on the market

today, with development underway for 5 Mb/s products. In

contrast, all three of our 'finalist" local networks, and some of

our non-finalists, too, offer 10 Mb/s transmissiond rates.

As we discussed in Section 1 of this document, the DOS

implementation local network does not require the particular

features a broadband network offers: we don't need

longer-distance transmission, we don't need compatibility with

other services on the same transmission medium, and we have no

special concern about the electromagnetic radiation

characteristics of the system. Therefore, it is difficult for us

to justify the added costs that a CATV-based system imposes.

Essentially, these extra costs are:

o Higher-cost transmission medium (cable)

o Head-end equipment (power equipment, frequency
translator, RF test equipment)

o More complex (and therefore higher-cost) modems
(transceivers)

A final note: While this criticism of CATV-based local

-132-

Report No. 5086 Bolt Beranek and Newman Inc.

networks may seem a little cavalier, it is important to note that

the DOS local network is a communications substrate upon which

the Distributed Operating System is to be built; it is a vehicle

for development and not, itself, an object of development or a

demonstration of technology well-suited to a particular

environment.

-133-

Report No. 5086 Bolt Beranek and Newmian Inc.

3.3 Generic Computing Element for the DOS

Introduction

A large distributed computing system invariably contains a

number of small, dedicated function processors or "computing

elements" which perform a variety of tasks in communications,

back-end storage management, real-time device control, I/0

spooling, etc. These computing elements are typically tightly

bound to a specific role within the system, both in terms of

their hardware and software configurations. Cost-effectiveness

* of the hardware is a primary requirement, and the processor,

memory, and peripheral resources committed to a particular

L computing element tend to be just sufficient to meet the needs of

its role. For example, a small computing element often lacks

secondary storage (disks or tape), a time-of-day clock, and the

hardware to support memory management and virtual storage; these

resources are taken for granted on larger, general-purpose hosts.

A computing element may not contain any software distinguishable

as an "operating system" apart from the application software.

When it does, the operating system kernel is usually very small

(a few thousand bytes) , permanently memory resident, and tailored

to real-time programming. These small computer elements are not

generally "user programmable", but instead are considered

integral and often invisible low-level components of the system.

-134-

Report No. 5086 Bolt Beranek and Newman Inc.

As a consequence of their limited capacity and specialized roles,

the computing elements do not usually support their own program

development environment. Software is developed on a larger,

general-purpose host and down line loaded into the computing

elements in the form of binary program images.

The DOS Advanced Development Model (ADM) will contain

several computing elements of this general type. It is highly

desirable that the computing elements used enjoy a high degree of

commonality in several respects:

1. The processor architecture (instruction set) of the
computing elements.

2. The physical interfaces between the computing elements
and the ADM local network.

3. The physical interfaces internal to computing elements,
e.g., the processor-to-device-controller interface.

4. Software development tools, at least a compiler, linker,
and debugging support.

5. The operating system kernel, device drivers, and
communications support, e.g., Internet Protocol
implementation.

A computing element which attains the compatibility goals

above will be called a Generic Computing Element (GCE). Because

of the requirement for adapting the computing element hardware

and software to dedicated roles at minimal cost, a GCE is best

described not as a particular computer but as a collection of

interchangeable parts. The parts can be assembled into

application-specific configurations as needed.

-135-

Report No. 5086 Bolt Beranek and Newman Inc.

The need for standardized computing elements f or dedicated

applications has been recognized for some time. The Military

Computer Family (MCF) project was developed to obtain this level

of standardization for the widest possible range of military

applications. Arguments in support of the MCF can be applied to

the deployable systems which may evolve from the ADM, but the

development schedule of the MCF Nebula computer architecture

precludes its use in the ADM. Alternative hardware must be

sought for the near term development work performed under the DOS

Design/Implementation contract.

The benefits to be derived from the GCE concept fall in the

two major areas of hardware and software commonality. Hardware

commonality will assist the DOS project in several ways:

1. The ADM configuration will be alterable, by exchanging
parts among the GCE's, to provide different test
configurations. For example, a GCE employed as a
"network front end" or "access machine" could be easily
reconfigured by adding a disk controller and disk storage
to serve as a network file server.

2. The presence of several GCE's with common parts implies
the abilility to replace failed, critical components with
similar parts from less critical GCE's. For example, the
terminal multiplexer could be temporarily repaired with
parts from a redundant file server, until the failed
parts could be serviced by the manufacturer.

3. Common components mean simpler maintenance procedures and
less time devoted to familiarization by project members.
This is important both initially, while interfaces among
components are developed, and throughout remainder of the
project, as hardware failures are identified, diagnosed,
and repaired.

The expected benefits from commonality of software are even

-136-

Report No. 5086 Bolt Beranek and Newman Inc.

larger than those for commonality of hardware. The advantages to

be gained are:

1. A direct savings in programming effort results since many
software components will be developed only once, e.g., a
GCE operating system kernel, device drivers, and protocol
implementations.

2. An indirect (but nonetheless large) savings in effort
results from the commonality of support tools, e.g., a
compiler, linker, and debugging facilities.

3. Certain important reliability mechanisms are only
feasible among processors with common instruction sets;
the GCE's provide one instance of such commonality in the
ADM (other instances exist).

The following sections will explain the goals of the GCE

selection process and its outcome more fully.

Reguirements f&L a Generic Copingleme1~nt

The Generic Computing Element should satisfy these

requirements:

1. High performance at low cost. The GCE should utilize
state-of-the-art components to achieve high instruction
execution rates and provide a large physical memory.

2. Interface to the Ethernet. A high-speed interface
between the GCE and the Ethernet transceiver cable should
be commercially available.

3. Compatibility with standards. To the greatest extent
practical, the GCE should be organized around a
recognized standard for component interchangeability at
the circuit board level.

4. Flexibility and Modularity. A large number of GCE
component parts (e.g., disk and peripheral controllers,
communication interfaces) should be commercially
available, preferably from multiple vendors.

-137-

Report No. 5086 Bolt Beranek and Newman Inc.

Requirement (1) is dictated by the computational tasks

envisioned for GCE's (elaborated in a separate document) and by

the desire to use GCE's as a system structuring concept. If a

GCE is expensive relative to a timesharing host, for example, DOS

function implementations would tend to migrate towards the

timesharing environment. It is the intent that GCE cycles be

much less expensive than those obtained from "general purpose"

DOS hosts. (As an indication of the costs involved, a GCE

processor, Ethernet interface, cabinet and power supply will

represent an investment of about $10,000, almost an order of

magnitude below the cost of a small timesharing host.)

Requirement (2) is the result of our selection of the

Ethernet transceiver compatibility interface as a standard within

the DOS ADM.

Requirement (3) insures that the GCE components have the

longest possible life, and contributes to the possibility of

technology transfer from other military, academic, and commercial.

projects to the DOS ADM. The selection of interface standards

which are popular in industry allows the DOS ADM to benefit from

competition among the vendors of compatible components, for

example, in the areas of expansion memory and peripheral support.

This factor is particularly important in areas where technology

is moving very rapidly, as in the case of fixed-media Winchester

disk drives.

-138-

Report No. 5086 Bolt Beranek and Newman Inc.

Requirement (4) addresses the need to match GCE

configurations to the specific function performed. Components

should be readily available to produce GCE's with widely

different memory capacities and peripheral complements. Ideally,

a range of processor models with identical architectures but

different execution rates would also be available.

The PDP-i: = Merits And Limitations

The proposal for the DOS Design/Implementation contract

suggested that the VLSI implementations of the PDP-11 processor,

the LSI-11/2 and the LSI-ll/23, were candidates for the GCE role.

Indeed, the LSI-ll's have been commonly used in circumstances

requiring a GCE as defined above. The LSI-11 processors,

together with the QBUS circuit board interconnection standard,

satisfy most of the requirements for the GCE:

1. The LSI-11/2 and LSI-11/23 processors offer reasonably
high execution rates at low cost (for a processor,
memory, power supply, and packaging about $3,500 and
$5,500, respectively).

2. Ethernet interfaces for the QBUS are available or under
development by at least two manufacturers.

3. A de facto standard for compatibility with the QBUS
exists, and many vendors produce add-in memory and plug-
compatible peripheral components. The PDP-11 instruction
set represents another form of standardization; tools for
PDP-11 programming are readily available, and the
popularity of the PDP-11 insures a pool of experienced
programmers.

4. The LSI-11 has been used in the GCE role in the past, and
a wide variety of QBUS-compatible parts exist, e.g., the
1822 interface to ARPANET IMP's manufactured by ACC.

-139-

Report No. 5086 Bolt Beranek and Newman Inc.

Unfortunately, the LSI-l1 processors are severely limited by

the 16-bit address space of the PDP-11 architecture. Past

experience has shown time and again that this limitation can be

critical to the performance and functionality obtainable from the

processor. The Hydra project at CMU encountered the problem, and

coined the phrase "Small Address Problem" or "SAP" to refer to

it; they believed the SAP was a major burden to the Hydra

project. At BBN, long experience with the LSI-11 employed in

dedicated roles (e.g., gateways, terminal concentrators, and the

Packet Radio station) confirms that the problem is real and

unavoidable. The use of the PDP-11 architecture as the GCE

processor subelement would severely limit the utility of GCE's.

Current LSI-11 based applications (e.g., gateways) consume nearly

all of the address space; no space is left for enhancements

required by the the DOS Concept of Operation. The limitation is

sufficient to mandate the selection of a new processor

architecture for the GCE.

Having made the decision not to employ the LSI-11 in the

role of GCE, it nonetheless represents a useful benchmark for the

evaluation of alternative processors. A replacement for the

LSI-11 in the GCE role should offer a physical and logical

address space many times larger than the LSI-11, in order to

capitalize on the declining price of random access memory. The

roles envisioned for the DOS GCE's will require much more than

64K bytes of random access memory per address space. It is

-140-

. I4 -

Report No. 5086 Bolt Beranek and Newman Inc.

desirable, of course, that the GCE offer a higher instruction

execution rate than the LSI-1l's, but this property of the GCE is

of lesser importance.

The D=Generic omutng Element

The Internal CE Module Infac Standard

There are currently three widely recognized commercial

interface standards which might be considered to satisfy the

requirements for the modular internal structure of the GCE:

1. IEEE 696 bus standard (the so-called "S-100" bus)

2. QBUS, the LSI-11 bus standard

3. IEEE 796 bus standard (the Intel "MULTIBUS" registered
trademark of Intel Corporation)(18).

Standard (1) is the basis of a very competitive market,

primarily oriented towards small business systems. All of the

components necessary for the GCE are available within this

market, or will be in the near future. The IEEE 696 standard is

not the best choice for the GCE internal interface, however,

because: the IEEE 696 bus is inferior to the IEEE 796 bus

electrically and in the scope of the signals defined on the bus;

Ethernet interfaces, although planned, are not yet available; the

IEEE 696 circuit board form factor is more constraining than IEEE

796, requiring more boards and bus interface circuitry to

(18) MULTIBUS is a registered trademark of Intel Corporation.

-141-

Report No. 5086 Bolt Beranek and Newman Inc.

implement similar functions; no processor with capabilities

equivalent to those of the SUN workstation (see below) is

available for the S-100 bus.

Standard (2) is the foundation of the LSI-11 computer

family, which was eliminated as a candidate for the GCE processor

in the previous section. There is little motivation for the use

of the QBUS unless the LSI-1 is the processor of choice.

Standard (3), the IEEE 796 standard or "MULTIBUS", has

several important advantages. High-performance processing

elements are manufactured by several different vendors and are

reasonably priced. The first commercially available Ethernet

interface, produced by Intel, is compatible with the MULTIBUS;

shipments of this product have begun, and initial reports from

users are good. Like the other possibilities, there is an active

market surrounding the standard, with over 50 vendors producing

IEEE 796 compatible products with a wide range of functions

available. Disk controllers, communication interfaces, real-time

clocks, and many other MULTIBUS-@Icompatible modules are

available today. The introduction of new functional units

compatible with the standard will continue, e.g., Intel has

recently announced a first verson of the iAPX-432 processor on

two circuit boards which speak to the MULTIBUS.

Th142-

-142-

Report No. 5086 Bolt Beranek and Newman Inc.

Assuming that the GCE's are assembled around the MULTIBUS

interconnect standard, the choice of processor is constrained.

There are currently two candidates for this subelement of the

GCE, given our requirement for large (much greater than 64 KB)

address spaces:

1. Intel 8086 architecture (either 8086 or 8088 processor)

2. Motorola MC68000 architecture

Both architectures are available in several MULTIBUS-

@Icompatible forms. An MC68000 architecture has been selected

for three major reasons: first, the MC68000 processor

architecture has important technical advantages over the 8086

architecture@foot(Notably, the MC68000 views nemory as a single

large, linear address space; the segmentation approach used in

the 8086 family makes code generation more difficult, and

potentially less efficient, when random accesses to large data

structures are required.); second, a particular MC68000 packaging

(the SUN workstation processor board) is very well suited to the

project needs; and third, important software development tools

and functional modules (e.g., an assembler, a C compiler, a

real-time OS kernel, and IP and TCP protocol implementations) are

available and familiar to project members.

The MC68000-based SUN processor board chosen as the

processor subelement of the GCE was designed at Stanford

University, as a component for distributed system research. In

-143-

KReport No. 5086 Bolt Beranek and Newman Inc.

fact, the goals(19) stated by the SUN designers coincide

precisely with the requirements for the DOS GCE, viz:

The first goal was to use state-of-the-art technology
to design a high-performance, yet affordable
workstation. The result of this effort is a system
with the raw computing power of about 1/3 of a Digital
Equipment Company VAX11/780

The second goal was compatibility. We made a conscious
effort to base our implementation on current or
emerging industry standards

At the processor level, we have chosen the Motorola
68000 processor because of its 32-Bit architecture, its
unsegmented address space, the performance of its
initial implementation, and because of the large number
of second sources. At the system bus level and
packaging level, we have chosen the Intel MULTIBUS,
which is being standardized as the IEEE 796 Bus.
MULTIBUS, supported by more than 50 vendors, allows us
to purchase commercially offered components such as
disk controllers. Finally we have chosen the Ethernet
as our local area network because it appears that it
will be the dominant local network standard and because
it is available now....

Using a standard interconnection mechanism also makes
the SUN workstation highly modular and extensible.
This makes individual boards usable as standalone units
or in conjunction with other computing equipment. At
the same time, it becomes easy to configure systems for
a wide variety of applications

Quite apart from the similarity of GCE and SUN workstation

design goals, the SUN processor board has the characteristics

needed in the GCE processor element. The design details can be

found in the Stanford technical report and the manufacturers,

documentation; a summary will be given here. Ftom the point of

(19) Contained in a draft of a Stanford technical report entitled
RThe SUN Workstation" by A. Bechtolsheim and F. Baskett.

-144-

Report No. 5086 Bolt Beranek and Newman Inc.

view of the DOS, the most important features of the processor

element are:

0 an 8-MHz MC68000 CPU, executing with no wait states from

on-board memory,

o 256K bytes of on-board random access KOS memory,

o a memory management unit providing the basis for mapping
and protection in a multi-segment, multi-process
operating system,

0 provision for 32K bytes of PROM or EPROM non-volatile
storage,

o an on-board monitor ROM which contains down-line
load/dump routines as well as a primitive debugger,

o five timers, to support dynamic memory refresh and
process management,

o two serial communication ports, capable of operation at
up to 1 megabit,

0 full MULTIBUS/IEEE 796 compatibility, including
Multimaster capability.

The SUN workstation processor board is manufactured by at

least four vendors; two of these, at the current time, sell the

workstation only in completely assembled form (i.e., with disk

controller and disks, bitmap graphics interface, local network

interface, and packaging). Two vendors sell the processor board

as a separate item:

Pacific Microcomputers, Inc. Post Office Box A81383 San
Diego, California 92138 (714) 565-2727 (Model PM6BK)

Forward Technology Inc. 2595 Martin Ave. Santa Clara,
California 95050 (408) 988-2378 Attn: Paul Ray (Model
FT6 8M)

There are no known functional differences between the

-145-

Report No. 5086 Bolt Beranek and Newman Inc.

products of these two vendors.

Adtinal GCE subelements

Additional MULTIBUS-compatible boards will be installed in

GCE's as required by their specific roles in the ADM.

Procurement has begun on an initial test system, consisting of

the SUN workstation processor subelement, a MULTIBUS rack-

mountable chassis (i.e., cabinet, MULTIBUS backplane, and power

supply), and the following additional subelements described

below:

o an Intel Ethernet controller

o a 256K byte dynamic memory board

o an 8-line RS-232C controller

These components will be assembled and tested by project

members in order to gain experience with the GCE components and

its software development environment; they will finally become

the terminal multiplexer in the DOS ADM.

The Intel Ethernet Cnrle

As a consequence of the adoption of the Ethernet transceiver

cable compatibility interface defining the physical interface of

DOS hosts to the local network, the GCE's must contain Ethernet

controllers. Only one controller is currently available, the

-146-

Report No. 5086 Bolt Beranek and Newman Inc.

Intel iSBC 550 board set (consisting of two MULTIBUS-compatible

circuit boards). The iSBC 550 performs data transfers between

the Ethernet and the MULTIBUS address space via the MULTIBUS DMA

facility.

The Ethernet interfaces to hosts other than GCE instances

will probably be procured from InterLAN, Inc., for reasons

explained in a separate document. InterLAN also intends to

market a MULTIBUS-compatible Ethernet controller, and some

advantage might accrue from its use in the DOS ADM. However, the

product would not be available until March 1982 at the earliest,

with a possibility of significant delays beyond that date.

Because the Intel controller is available for early delivery (30

days ARO), and in light of the favorable reports from beta test

sites, the Intel controller was chosen for inclusion in the first

GCE.

The use of Ethernet controllers from different vendors is

potentially advantageous, since it forces an early test of

component interchangeability within the ADM.

Tb& 25AK Byte Memory Board

Because the Intel Ethernet controller performs packet

transfers to and from MULTIBUS memory via DMA, and because the

memory on the SUN workstation board is not accessible from the

MULTIBUS, some additional MULTIBUS memory must be present in the

-147-

Report No. 5086 Bolt Beranek and Newman Inc.

GCE. Due to the low cost of semiconductor memory relative to

other components, a large increment is still economical; the

particular 256K byte memory board chosen (model MM-8086D-256 from

Micro Memory Inc.) is representative of a large number of

suitable memory products.

The I-Line R-232C Cnrle

Like the memory board, the 8-line RS-232C controller (which

permits up to 8 terminals to connect to the GCE) was chosen from

several suitable RS-232C controllers from different vendors. The

board chosen (model B1018 from Central Data) happens to

accommodate8 lines, the number deemed necessary for the ADM

terminal multiplexer most similar controllers provide only 4

lines per board, and as a consequence the cost of 8 lines on two

boards would be slightly higher than the cost of the 8-line board

selected.

Budget fr the First

The purchasing of the components for the first GCE is still

in progress, but the current price estimates (quantity one) are:

SUN processor board $3,250

256K byte memory board $1,350

Ethernet controller $4,000

-148-

Report No. 5086 Bolt Beranek and Newman Inc.

8-line RS-232C controller $435

MULTIBUS chassis $2,120

$11,155

The Software Environment 2f

The choice of GCE hardware was preceded by a careful

consideration of the existing programs and development tools for

the LSI-ll, 8086, and MC68000 processors, as such software

relates to the DOS project. Although the most extensive in-house

experience is .ith the PDP-11 family, recent projects at BBN have

begun to make heavy use of the MC68000 processor. The relevant

software environment for the MC68000 can be divided into three

major areas discussed separately below: language support,

operating system support, and application programs which might be

incorporated into the DOS ADM.

Language Support

Assembly language and the C programming language are used

for MC68000 programming at BBN. The assembler and C compiler run

on the BBN C/70 computer under the UNIX operating system, and

object code is down-line loaded into the target machines. The

author of the MC68000 assembler is a DOS project member; thus the

project has expertise in the use and internals of the MC68000

support tools.

-149-

Report No. 5086 Bolt Beranek and Newman Inc.

Another document describes an approach to DOS software

development which would use a subset of Ada for some of the GCE

programming. This approach relies upon the existence of a code

generator for the MC68000, integrated with a subset Ada compiler

currently being produced at BBN but targeted to other machine

architectures, including the PDP-11 family. The straightforward

processor architecture of the MC68000, and its resemblance to the

PDP-11 architecture, suggest that the production of an MC68000

code generator is a task commensurate with the language support

effort budgeted for the DOS project. The feasibility of this

approach to GCE programming is still being studied.

0eratinla Systm Sg~por

GCE's will be configured to play different roles in the DOS,

with varying memory capacity and peripheral complements. It is

important that the GCE operating system be tailorable to the

various roles; in particular, the small configurations will be

GCE's without disks and with limited amounts of primary memory.

The applications running on these GCE's, such as the terminal

concentrator, are often performance sensitive.

The CMOS operating system(20) developed at BBN is well suited to

the GCE environment. By virtue of a modular design and

implementation in a high level language, C, CMOS in adaptable to

(20) Reference to CMOS manual.

-150-

Report No. 5086 Bolt Beranek and Newman Inc.

a variety of assignments. Like the GCE hardware, CMOS can be

tailored by including or excluding functional modules as

required. Special attention has been paid to the use of CMOS in

small configurations without secondary storage. Simplicity also

contributes to performance, since the process switching and

message transmission overhead is minimal; CMOS is useful in roles

where larger, general-purpose operating systems are not

appropriate.

The CMOS operating system currently provides four types of

services to application programs:

1. process management,

2. input/output management,

3. memory management,

4. system clock management.

In each case, conservative choices were made in the

selection features to be included, in order to maximize the

adaptability and portability of CMOS to different hosts and

applications. All of the CMOS functions are necessary to the DOS

applications; for some of them, it may prove desirable to enhance

CMOS. For example, CMOS does not currently support preemptive

process scheduling, although it could be easily added.

ARPpicat i Programs

Existing application programs for the MC68000, and also some

-151-

Report No. 5086 Bolt Beranek and Newman Inc.

C programs from the UNIX environment, are of direct interest to

the DOS project. The terminal concentrator built by the BBN

Research Computing Center is based on the MC68000 architecture,

and this software could be adapted for use in the DOS terminal

concentrator GCE. This software includes TCP and IP protocol

implementations, the protocols which will be widely used within

the DOS ADM.

Because software development tools are available for the C

programming language, the possibility of porting some software

from the UNIX environment to the GCE's will be considered.

(Notably, IP and TCP have been implemented in C by BBN.) This

software transfer is not immediate, since the process environment

in CMOS is quite different from UNIX, and much simpler; but for

some purposes it may prove a useful technique.

The selection of the GCE hardware and software components

involved the weighing of many system requirements, both technical

and administrative. Our approach has been cautious, but has

resulted in the definition of GCE components which will be

useful, economical, and have a lifetime extending well beyond the

period of performance of the DOS contract.

-152-

Report No. 5086 Bolt Beranek and Newman Inc.

3.4 CMOS: A Constituent Operating System of Cronus

CHO MW Crgnu: An Overview

The Cronus distributed operating system is based on a number

of hardware as well as software components. One of the more

important hardware components is the Generic Computing Element

(GCE). When the concept of the GCE was formulated, the immediate

question was what operating system would be appropriate for it.

At that point in time there were two options: take an established

time-sharing system like UNIX and try to mold it to fit the

constraints of the GCE, or take a simple real-time operating

system and enhance it to meet the requirements of Cronus. The

latter option was chosen, and CMOS became the GCE operating

system.

Prior to its introduction to the Cronus DOS project, CMOS

was under development at BBN as a real-time operating system for

several types of communication processors, such as gateways and

network terminal concentrators. A number of GCE applications were

similar to the applications CMOS was originally designed for, so

it was a natural choice for the GCE OS. In addition, an extensive

support environment for building and debugging CMOS applications

had already been developed under UNIX.

Although CMOS had to be ported to the GCE, this procedure

was greatly simplified by the fact that CMOS was designed to be a

-153-

Report No. 5086 Bolt Beranek and Newman Inc.

portable operating system, plus the fact that it had already been

ported to another 68000 based processor at BBN.

CMOs

CMOS is a small, simple operating system that provides the

following basic features:

o multiple processes

o interprocess communication/coordination

o asynchronous I/O

o memory allocation

o system clock management

The design and programming of CMOS have been guided by goals

of style, clarity, and consistency rather than a desire to

achieve ultimate efficiency. This is not to say that efficiency

issues have been ignored. CMOS is quite compact and efficient by

virtue of its simplicity. Design principles and programming

practices have not been compromised, however, for the sake of

saving every possible byte or cpu cycle.

CMOS is designed to be an "open" operating system. This

means that no distinct division exists between the operating

system and the application program. One can view the operating

system as a collection of library routines. The operating system

-154- J*

Report No. 5086 Bolt Beranek and Newman Inc.

can be easily extended by adding new routines and can be reduced

by excluding unneeded routines. The programmer is not confined

to the outermost interface presented by the operating system. If

appropriate, the programmer can directly access lower-level

interfaces.

CMOS is designed to be a portable operating system. The use

of a high-level language is, of course, the principal factor in

CMOS portability. Small size and simplicity are other important

factors. The design attempts to minimize the amount of machine-

dependent code and to segregate it into separate modules. The

I/O system design allows for easy replacement of device-dependent

modules.

CMOS Debuging

The first task in porting CMOS to the GCE was to establish a

reasonable debugging environment. Fortunately, a cross machine

debugger (XMD) had already been developed for 68000 target

processors.

XMD is a display oriented debugger based on the PEN editor.

Thus all of the commands and features of the editor are available

to the user in addition to the debugger specific commands.

Without going into great detail, PEN is a multi-window editor

with extensive capabilities for manipulating -multiple files and

edit buffers. XMD displays a special configuration of windows

-155-

Report No. 5086 Bolt Beranek and Newman Inc.

that are appropriate to debugging. This configuration consists of

a source window, a register display window, a breakpoint window,

and a window for displaying variables.

A specific module of XMD is responsible for communication

with the target processor. Also, a low-level debugger must be

resident in the target processor to interpret and execute

commands sent to it over the communication path. The

communication path in this case is a terminal line to the C70

UNIX host processor. The first step in getting XMD to work with

the GCE was to implement the low-level debugger for it. This

debugger was actually taken from another 68000 processor and made

to work on the GCE. Once the resident debugger was in place, XMD

was immediately functional with the GCE, and the task of porting

CMOS could proceed.

Porin theS I&j

As was mentioned earlier, CMOS was designed to be a portable

operating system. Apart from the devices, the machine dependent

modules of CMOS are few and simple. The task of getting CMOS to

work once XMD was functional was trivial compared to getting the

GCE resident debugger to work. The only areas where problems

needed to be fixed were in the console device and the machine

dependent part of the timer code. Of course, the fact that CMOS

had already been ported to a different 68000 processor helped

considerably.

-156-

Report No. 5086 Bolt Beranek and Newman Inc.

£k1OS Enhancements

Some enhancements and changes were made to CMOS after it was

added to Cronus. The first change was to the internal device

structure. The purpose of the change was to give the I/O system

more flexibility in dealing with the number of possible

relationships between hardware devices and the interrupts

generated by those devices. Without this change, the capability

of writing simple device drivers for CMOS would have been

severely compromised.

Another change was the addition of a name service

capability. This service was viewed to be generally useful to

CMOS for the run-time binding of string names to objects such as

processes and devices. The name space is hierarchical and there

is a notion of absolute and relative pathnames. In the presence

of some form of mass storage, the names can be made non-volatile.

Everything discussed to this point has been accomplished.

The remainder of this report will describe work in progress and

future enhancements to CMOS.

CM1Qs And Newoks

Access to networks will be provided to CMOS applications

from three levels. At the highest level, the user will be able

to open a TCP byte stream. The first application at this level

will be Telnet and terminal concentration software. At the next

-157-

Report No. 5086 Bolt Beranek and Newman Inc.

level will be an internet datagram service. This will be used to

implement inter-process communication between hosts as part of

Cronus development, as well as other standard internet protocols.

The lowest level will be a virtual local network interface (see

companion note). This interface will be local net independent,

but will allow local network specific information and commands to

pass through.

A CMOs EtherNet driver has been implemented for the GCE (see

companion note). TCP and IP are being adapted to the current

version of CMOs from older versions developed at Mitre. The

virtual local network interface remains to be developed.

The communication module in XMD will be changed to use the

EtherNet instead of a C70 terminal line. This will greatly

increase the flexibility and usefulness of XMD. Downloading will

be possible over the network, plus it will be easier to debug

multiple GCE's from one site.

rMOs and ik

Some Cronus services require that a mass storage device be

available to the GCE and supported by CMOs. The CMOs disk device

driver will provide physical storage block access for reading and

writing. To1e typical mass storage device will be fixed disk,

although above the driver, all mass storage devices will look the

same. CMOs will provide routines and system processes that

-158-

Report No. 5086 Bolt Beranek and Newman Inc.

support a "flat" (i.e non hierarhical) file system for inclusion

in the Cronus distributed file system. At this level files will

be accessed by a file identifier that resolves to a file

descriptor block. File hierarchy is achieved by binding file

identifiers to symbolic names in a hierarchical name space.

Cronus CMos Aplications

Since CMOS is the GCE operating system, it will be

supporting all of those Cronus applications and services to be

performed by the GCE. Included will be the following:

o Cronus Terminal Concentrator - A GCE having a number of
terminal interfaces and an EtherNet interface will supply
terminal access to other hosts on the network using
Telnet protocols based on TCP-IP.

o Cronus Symbolic Catalog - A GCE with a network interface
and a disk drive will provide a generalized name service
for Cronus.

o Cronus Host Access Machine - A GCE with a network
interface and HDLC standard communication interface will
serve to connect non-EtherNet hosts to the Cronus
cluster.

In addition to these specific services, the GCE may be a

site for running other user developed Cronus applications. This

will require a CMOS enhancement to be able to dynamically load

processes, either from mass storage or over the network.

Report No. 5086 Bolt Beranek and Newman Inc.

4 Initial System Design Acitvities

This section reports on a number of aspects of the Cronus

system design which have preceded the general system design.

4.1 The Cronus Virtual Local Network

Purpose Aad ScoQe

This note defines the Cronus Virtual Local Network (VLN), a

facility which provides interhost message transport to the Cronus

Distributed Operating System. The VLN consists of a client

iea specification and an implementation; the client

interface is expected to be available on every Cronus host.

Client processes can send and receive datagrams using specific,

broadcast, or multicast addressing as defined in the interface

specification.

From the viewpoint of other Cronus system software and

application programs, the VLN stands in place of a direct

interface to the physical local network (PLN). This additional

level of abstraction is defined to meet two major system

objectives:

Compatibility. The VLN defines a communication facility

which is compatible with the Internet Protocol (IP)
developed by DARPA; by implication the VLN is compatible
with higher-level protocols such as the Transmission Control

-160-

Report No. 5086 Bolt Beranek and Newman Inc.

Protocol (TCP) based on IP.

*Substitutability. Cronus software built above the VLN is
dependent only upon the VLN interface and not its
implementation. It is possible to substitute one physical
local network for another in the VLN implementation,
provided that the VLN interface semantics are maintained.

(This note assumes the reader is familiar with the concepts

and terminology of the DARPA Internet Program; reference [6) is a

compilation of the important protocol specifications and other

documents. Documents in [6] of special significance here are (1

and [4].)

The compatibility goal is motivated by factors relating to

the Cronus design and its development environment. A large body

of softwir'e has evolved, and continues to evolve, in the internet

community fostered by DARPA. For example, the compatibility goal

permits the Cronus design to assimilate existing software

components providing electronic mail, remote terminal access, and

file transfer in a straightforward manner. In addition to the

roles of such services in the Cronus system, they are needed as

support for the design and development process. The prototype

Cronus cluster, called the Advanced Development Model (ADM), will

be connected to the ARPANET, and it is important that the ADMI

conform to the standards and conventions of the DARPA internet

community.

The substitutability goal reflects the belief that different

instances of the Cronus cluster will utilize different physical

-161-

Report No. 5086 Bolt Beranek and Newman Inc.

local networks. Substitution may be desirable for reasons of

cost, performance, or other properties of the physical local

network such as mechanical and electrical ruggedness. The

existence of the VLN interface definition suggests a procedure

for physical local network substitution, namely, re-

implementation of the VLN interface on each Cronus host. Th

implementations will be functionally equivalent but can be

expected to differ along dimensions not specified by the VLN

interface definition. Since different physical local networks

are often quite similar, the task of "re-implementing" the VLN is

probably much less difficult than building the first

implementation; small modifications to an existing, exemplary

implementation may suffice.

The concepts of the Cronus VLN, and in particular the VLN

implementation based on Ethernet described in Section 4, have

significance beyond their application in the Cronus system. Many

organizations are now beginning to install local networks and

immediately confront the compatibility issue. For a number of

universities, for example, the compatibility problem is precisely

the interoperability of the Ethernet and the DARPA internet.

Although perhaps less immediate, the substitutability issue will

also be faced by other organizations as local network technology

advances, and the transfer of existing system and application

software to a new physical local network base becomes an economic

necessity.

-162-

Report No. 5086 Bolt Beranek and Newman Inc.

Figure 5 shows the position of the VLN in the lowest layers

of the Cronus protocol hierarchy. The VLN interface

specification given in the next section is actually a meta-

specification, like the specifications of IP and TCP, in that the

programming details of the interface are host-dependent and

unspecified. The precise representation of the VLN data

structures and operations can be expected to vary from machine to

machine, but the functional capabilities of the interface are the

same regardless of the host.

Transmission I User I
Control I Datagram I ...
Protocol I Protocol I

--------------------------------- I
Internet Protocol

(IP)
---------------------------------- I

Virtual Local Network
(VLN)

---------------------------------- I
Physical Local Network
(PLN, e.g. Ethernet)

Figure 5 . Cronus Protocol Layering

The VLN is completely compatible with the Internet Protocol

as defined in [5], i.e., no changes or extensions to IP are

required to implement IP above the VLN. In fact, this was a

-163-

Report No. 5086 Bolt Beranek and Newman Inc.

requirement on the VLN design; a consequence was the timely

completion of the VLN design and avoidance of the lengthy delays

which often accompany attempts to change or extend a widely-

accepted standard.

The following sections define the VLN client interface and

illustrate how the VLN implementation might be organized for an

Ethernet PLN.

The V=-to-Clint Inefc

The VLN layer provides a datagram transport service among

hosts in a Cronus cluster, and between these hosts and other

hosts in the DARPA internet. The hosts belonging to a cluster

are directly attached to the same physical local network, but the

VLN hides the peculiarities of the PLN from other Cronus

software. Communication with hosts outside the cluster is

achieved through some number of internet gateways, shown in

Figure 6, connected to the cluster. The VLN layer is responsible

for routing datagrams to a gateway if they are addressed to hosts

outside the cluster, and for delivering incoming datagrams to the

appropriate VLN host. A VLN is viewed as a network in the

internet, and thus has an internet network number. (21)

(21) The PLN could possess its own network number, different from
the network number of the VLN it implements, or the network
numbers could be the same. Different numbers would complicate
the gateways somewhat, but are consistent with the VLN and
internet models.

-164-

/, ;,

Report No. 5086 Bolt Beranek and Newman Inc.

to internet
network X

Ihostll IgtwyA lhost2[Ihost31

I I I I

I I I I

Ihost4l Ihost5l IgtwyBl Ihost6l

I
I

to internet
network Y

Figure 6 . A Virtual Local Network Cluster

The VLN interface will have one client process on each host,

normally the host's IP implementation. The one "client process"

may, in fact, be composed of several host processes; but the VLN

layer will not distinguish among them, i.e., it performs no

multiplexing/demultiplexing function. (22)

The structure of messages which pass through the VLN

interface between client processes and the VLN implementation is

identical to the structure of internet datagrams constructed in

(22) In the Cronus system, multiplexing/demultiplexing of the
datagram stream will be performed above the IP level, primarily
in conjunction with Cronus object management.

-165-

Report No. 5086 Bolt Beranek and Newman Inc.

accordance with the Internet Protocol. Any representation for

internet datagrams is also a satisfactory representation for VLN

datagrams, and in practice this representation will vary from

host to host. The VLN definition merely asserts that there is

one well-defined representation for internet datagrams, and thus

VLN datagrams, on any host supporting the VLN interface. The

argument name "Datagram" in the VLN operation definitions below

refers to this well-defined but host-dependent datagram

representation.

The VLN guarantees that a datagram of 576 or fewer octets

(i.e., the Total Length field of its internet header is less than

or equal to 576) can be transferred between any two VLN clients.

Larger datagrams may be transferred between some client pairs.

Clients should generally avoid sending datagrams exceeding 576

octets unless there is clear need to do so, and the sender is

certain that all hosts involved can process the outsize

datagrams.

The representation of an VLN datagram is unconstrained by

the VLN specification, and the VLN implementor has many

reasonable alternatives. Perhaps the simplest representation is

a contiguous block of memory locations, either passed by

reference or copied across the VLN-to-client interface. It may

be beneficial to represent a datagram as a linked list instead,

however, in order to reduce the number of times datagram text is

-166-

Report No. 5086 Bolt Beranek and Newman Inc.

copied as the datagram passes through the protocol hierarchy at

the sending and receiving hosts. When a message is passing down

(towards the physical layer) it is successively *wrapped* by the

protocol layers. Addition of the "wrapper"--header and trailer

fields--can be done without copying the message text if the

header and trailer can be linked into the message representation.

In the particular, when an IP implementation is the client of the

VLN layer a linked structure is also desirable to permit

/reasmbly of datagrams (the merger of several fragment datagrams

into one larger datagram) inside the IP layer without copying

data repeatedly. If properly designed, one linked list structure

can speed up both wrapping/unwrapping and datagram reassembly in

the IP layer.

Although the structure of internet and VLN datagrams is

identical, the VLN-to-client interface places its own

interpretation on internet header fields, and differs from the

IP-to-client interface in significant respects:

1. The VLN layer utilizes only the Source Address, Destination
Address, Total Length, and Header Checksum fields in the
internet datagram; other fields are accurately transmitted
from the sending to the receiving client.

2. Internet datagram fragmentation and reassembly is not
performed in the VLN layer, nor does the VLN layer
implement any aspect of internet datagram option
processing.

3. At the VLN interface, a special interpretation is placed
upon the Destination Address in the internet header, which
allows VLN broadcast and multicast addresses to be encoded
in the internet address structure.

-167-

Report No. 5086 Bolt Beranek and Newman Inc.

4. With high probability, duplicate delivery of datagrams sent
between hosts on the same VLN does not occur.

5. Between two VLN clients S and R in the same Cronus cluster,
the sequence of datagrams received by R is a subsequence of
the sequence sent by S to R; a stronger sequencing property
holds for broadcast and multicast addressing.

iN Addrsing

In the DARPA internet an nern address is defined to be a

32 bit quantity which is partitioned into two fields, a network

number and a local address. VLN addresses share this basic

structure, and are perceived by hosts outside the Cronus system

as ordinary internet addresses. A sender outside a Cronus

cluster may direct an internet datagram into the cluster by

specifying the VLN network number in the network number field of

the destination address; senders in the cluster may transmit

messages to internet hosts outside the cluster in a similar way.

The VLN in a Cronus cluster, however, attaches special meaning to

the local address field of a VLN address, as explained below.

Each network in the internet community is assigned a class,

either A, B, or C, and a network number in its class. The

partitioning of the 32 bit internet address into network number

and local address fields is a function of the class of the

network number, as follows:

-168-

Report No. 5086 Bolt Beranek and Newman Inc.

Width of Width of
Network Number Local Address

Class A 7 bits 24 bits

Class B 14 bits 16 bits

Class C 21 bits 8 bits

Table 1. Internet Address Formats

The bits not included in the network number or local address

fields encode the network class, e.g., a 3 bit prefix of 110

designates a class C address (see [4]).

The interpretation of the local address field of an internet

address is the responsibility of the network designated in the

network number field. In the ARPANET (a class A network, with

network number 10) the local address refers to a specific

physical host; this is the most common use of the local address

field. VLN addresses, in contrast, may refer to all hosts

(broadcast) or groups of hosts (multicast) in a Cronus cluster,

as well as specific hosts inside or outside of the Cluster.

Specific, broadcast, and multicast addresses are all encoded in

the VLN local address field. (23)

(23) The ability of hosts outside a Cronus cluster to transmit
datagrams with VLN broadcast or multicast destination addresses
into the cluster may be restricted by the cluster gateway(s), for
reasons of system security.

-169-

Report No. 5086 Bolt Beranek and Newman Inc.

The meaning of the local address field of a VLN address is

defined in the table below.

Address Modes YIN Local Address Values

Specific Host 0 to 1,023

Multicast 1,024 to 65,534

Broadcast 65,535

Table 2. VLN Local Address Modes

In order to represent the full range of specific, broadcast, and

multicast addresses in the local address field, a VLN network

should be either class A or class B. If a VLN is a class A

internet network, a VLN local address occupies the low-order 16

bits of the 24 bit internet local address field, and the upper 8

bits of the internet local address are zero. If a VLN is a class

B network, the internet local address field is fully utilized by

the VLN local address.

There are seven operations defined at the VLN interface and

available to the VLN client on each host. An implementation of

the VLN interface has wide latitude in the presentation of these

operations to the client; for example, the operations may or may

not return error codes.

-170-

" I- "

Report No. 5086 Bolt Beranek and Newman Inc.

A VLN implementation may define the operations to occur

synchronously or asynchronously with respect to the client's

computation. We expect that the ResetVLNInterface, MyVLNAddress,

SendVLNDatagram, PurgeMAddresses, AttendMAddress, and

IgnoreMAddress operations will usually be synchronous with

respect to the client, but ReceiveVLNDatagram will usually be

asynchronous, i.e., the client may initiate the operation,

continue to compute, and at some later time be notified that a

datagram is available. (The alternatives to asynchronous

ReceiveVLNDatagram are A) a blocking receive operation; and B) a

non-blocking but synchronous receive operation, which returns a

failure code immediately if a datagram is not available. Either

alternative may satisfy particular requirements, but an

asynchronous receive subsumes these and is more generally

useful.) At a minimum, the client must have fully synchronous

access to each of the operations; more elaborate mcchanisms may

be provided at the option of the VLN implementation.

OPLN RATION

ResetVLNInterface

The VLN layer for this host is reset (e.g., for the
Ethernet VLN implementation the operation ClearVPMap is
performed, and a frame of type "Cronus VLN" and subtype
"Mapping Update" is broadcast; see Section 4.2). This
operation does not affect the set of attended VLN
multicast addresses.

function MyVLNAddress()

Returns the specific VLN address of this host; this can

-171-

m i m i mim i i i~ m l m m---. ..-.. ..

Report No. 5086 Bolt Beranek and Newman Inc.

always be done without communication with any other host.

SendVLNDatagram(Datagram)

When this operation completes, the VLN layer has copied
the Datagram and it is either "in transmission" or
"delivered", i.e., the transmitting process cannot assume
that the message has been delivered when SendVLNDatagram
completes.

ReceiveVLNDatagram(Datagram)

When this operation completes, Datagram is a
representation of a VLN datagram sent by a VLN client and
not previously received by the client invoking
ReceiveVLNDatagram.

PurgeMAddresses()

When this operation completes, no VLN multicast addresses
are registered with the local VLN component.

function AttendMAddress(MAddress)

If this operation returns True then MAddress, which must
be a VLN multicast address, is registered as an "alias"
for this host, and messages addressed to MAddress by VLN
clients will be delivered to the client on this host.

IgnoreMAddress(MAddress)

When this operation completes, MAddress is not registered
as a multicast address for the client on this host.

Whenever a Cronus host comes up, ResetVLNInterface and

PurgeMAddresses are performed implicitly by the VLN layer before

it will accept a request from the client or incoming traffic from

the PLN. They may also be invoked by the client during normal

operation. As described in Section 4.2 below, a VLN component

may depend upon state information obtained dynamically from other

hosts, and there is a possibility that incorrect information

might enter a component's state tables. (This might happen, for

-172-

Report No. 5086 Bolt Beranek and Newman Inc.

example, if the PLN address of a Cronus host were changed but its

VLN address preserved--the old VLN-to-PLN address mappings held

by other hosts would then be incorrect.) A cautious VLN client

could call ResetVLNlnterface at periodic intervals (every hour,

say) to force the VLN component to reconstitute its dynamic

tables.

A VLN component will place a limit on the number of

multicast addresses to which it will simultaneously "attend'; if

the client attempts to register more addresses than this,

AttendMAddress will return False with no other effect. The

actual limit will vary among VLN components, but it will usually

be between 10 and 100 multicast addresses. Components may

implement limits as large as the entire multicast address space

(64,511 addresses).

The VLN layer does not guarantee any minimum amount of

buffering for datagrams, at either the sending or receiving

host(s). It does guarantee, however, that a SendVLNDatagram

operation invoked by a VLN client will eventually complete; this

implies that datagrams may be lost if buffering is insufficient

and receiving clients are too slow. The VLN layer will do its

best to discard packets for this reason very infrequently.

Guarantees are never absolute--there is always some

-173-

Report No. 5086 Bolt Beranek and Newman Inc.

probability, however remote, that a catastrophe will occur and a

promise be broken. Nevertheless, the concept of a guarantee is

still valuable, because the improbability of a catastrophic

failure influences the design and cost of the recovery mechanisms

needed to overcome it. In this spirit, the word *guarantee" as

used here implies only that the alternatives to correct function

(i.e., catastrophic failures) are extremely rare events.

The VLN does not attempt to guarantee reliable delivery of

datagrams, nor does it provide negative acknowlegements of

damaged or discarded datagrams. It does guarantee that received

datagrams are accurate representations of transmitted datagrams.

The VLN also guarantees that datagrams will not "replicate"

during transmission, i.e., for each intended receiver, a given

datagram is received once or not at all. (24)

Between two VLN clients S and R in the same cluster, the

sequence of datagrams received by R is a subsequence of the

sequence sent by S to R, i.e., datagrams are received in order,

possibly with omissions.

A stronger sequencing property holds for broadcast and

multicast transmissions. If receivers Rl and R2 both receive

broadcast or multicast datagrams Dl and D2, either they both

(24) A protocol operating above the VLN layer (e.g., TCP) may
employ a retransmission strategy; the VLN layer does nothing to
filter duplicates arising in this way.

-174-

Report No. 5086 Bolt Beranek and Newman Inc.

receive D1 before D2, or they both receive D2 before Dl.

DftaXAbj& Characteristics of A Physical Local Newok

While it is conceivable that a VLN could be implemented on a

long-haul or virtual-circuit-oriented PLN, these networks are

generally ill-suited to the task. The ARPANET, for example, does

not support broadcast or multicast addressing modes, nor does it

provide the VLN sequencing guarantees. If the ARPANET were the

base for a VLN implementation, broadcast and multicast would have

to be constructed from specific addressing, and a network-wide

synchronization mechanism would be required to implement the

sequencing guarantees. Although the compatibility and

substitutability benefits might still be achieved, the

implementation would be costly, and performance poor.

A good implementation base for a Cronus VLN would be a

high-bandwidth local network with all or most of these

characteristics:

1. The ability to encapsulate a VLN datagram in a single PLN
datagram.

2. An efficient broadcast addressing mode.

3. Natural resistance to datagram replication during
transmission.

4. Sequencing guarantees like those of the VLN interface.

5. A strong error-detecting code (datagram checksum).

Good candidates include Ethernet, the Flexible Intraconnect, and

Pronet, among others.

-175-

Report No. 5986 Bolt Beranek and Newman Inc.

A T4 Implementation Based on Eternet

The Ethernet local network specification is the result of a

collaborative effort by Digital Equipment Corp., Intel Corp., and

Xerox Corp. The Version 1.0 specification [3] was released in

September, 1980. Useful background information on the Ethernet

internetworking model is supplied in [2].

The Ethernet VLN implementation begins with the assumption,

in accordance with the model developed in [2], that the addresses

of specific Ethernet hosts are arbitrary, 48 bit quantities, not

under the control of DOS Design/Implementation Project. The VLN

implementation must, therefore, develop a strategy to map VLN

addresses to specific Ethernet addresses.

A second important assumption is that the VLN-address-to-

Ethernet-address mapping should not be maintained manually in

each VLN host. Manual procedures are too cumbersome and error-

prone when a local network may consist of hundreds of hosts, and

hosts may join and leave the network frequently. A protocol is

described below which allows hosts to dynamically construct the

mapping, beginning only with knowledge of their own VLN and

Ethernet host addresses.

The succeeding sections discuss the VLN implementation based

on the Ethernet PLN in detail, as designed for the Cronus

prototype currently being assembled by Bolt Beranek and Newman,

-176-

Report No. 5086 Bolt Beranek and Newman Inc.

Inc.

Datagra Encapsulation

An internet datagram is encapsulated in an Ethernet frame by

placing the internet datagram in the Ethernet frame data field,

and setting the Ethernet type field to "DoD IP".

To guarantee agreement by the sending and receiving VLN

components on the ordering of internet datagram octets within an

encapsulating Ethernet frame, the Ethernet octet ordering is

required to be consistent with the IP octet ordering.

Specifically, if IP(i) and IP(j) are internet datagram octets and

i<j, and EF(k) and EF(l) are the Ethernet frame octets which

represent IP(i) and IP(j) once encapsulated, then k<l. Bit

orderings within octets must also be consistent. (25)

yLN Speific Add ing Moe

Each VLN component maintains a virtual-to-physical address

map (the VPMap) which translates a 32 bit specific VLN host

address (26) in this cluster to a 48 bit Ethernet address. (27)

(25) See [11 for a lively discussion of the problems arising from
the failure of communicants to agree upon consistent orderings.
(26) Since the high-order 22 bits of the address are constant for
all specific host addresses in a cluster, only the low-order le
bitF of the address are significant.
(27) The least significant bit of the first octet of the Ethernet
address is always 0, since these are not broadcast or multicast
addresses.

-177-

Report No. 5086 Bolt Beranek and Newman Inc.

0 1 2 3

- 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

i Destination Address

I Destination Address (contd.) I Source Address

I Source Address (contd.)

I Type ("DoD IP") I

IVersioni IHL IType of Servicel

Total Length I Identification

JFlagsI Fragment Offset I Time to Live I Protocol I

Header Checksum I Source Address

I Source Address (contd.) I Destination Address

I Destination Address (contd.) I

I Data

I Frame Check Sequence

Table 3. An Encapsulated Internet Datagram

-178-

Report No. 5086 Bolt Beranek and Newman Inc.

The VPMap data structure and the operations on it can be

efficiently implemented using standard hashing techniques. Only

three operations defined on the VPMap are discussed in this note:

ClearVPMap, TranslateVtoP, and StoreVPPair.

Each host has an Ethernet host address (EHA) to which its

controller will respond, determined by Xerox and the controller

manufacturer (see Section 4.5.2). At host initialization time,

the local VLN component establishes a second host address, the

multicast host address (MHA), constructed from the host's VLN

address. Represented as a sequence of octets in hexadecimal, the

MHA has the form:

A B C D E F

09-00-08-00-hh-hh

A is the first octet transmitted, and F the last. The two octets

E and F contain the host local address:

E F

000000hh hhhhhhhh
A

MSB LSB

When the VLN client invokes SendVLNDatagram to send a

specifically addressed datagram, the local VLN component

encapsulates the datagram in an Ethernet frame and transmits it

without delay. The Source Address in the Ethernet frame is the

-179-

V

Report No. 5086 Bolt Beranek and Newman Inc.

EHA of the sending host. The Ethernet Destination Address is

formed from the destination VLN address in the datagram, and is

either:

- the EHA of the destination host, if the TranslateVtoP
operation on the VPMap succeeds,

- the MHA formed from the host number in the destination VLN
address, as described above.

When a VLN component receives an Ethernet frame with type

"DoD IP", it decapsulates the internet datagram and delivers it

to its client. If the frame was addressed to the EHA of the

receiving host, no further action is taken, but if the frame was

addressed to the MHA of the receiving host the VLN component will

broadcast an update for the VPMaps of the other hosts. This will

permit the other hosts to use the EHA of this host for future

traffic. The type field of the Ethernet frame containing the

update is "Cronus VLN", and the format of the data octets in the

frame is:

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

I Subtype ("Mapping Update") I Host VLN Address

I Host VLN Address (contd.) I

When a local VLN component receives an Ethernet frame with type

"Cronus VLN" and subtype "Mapping Update", it performs a

-180-

_ _ _

Report No. 5086 Bolt Beranek and Newman Inc.

StoreVPPair operation using the Ethernet Source Address field and

the host VLN address sent as frame data.

This multicast mechanism could be extended to perform other

address mapping functions, for example, to discover the addresses

of a cluster's gateways. Suppose all gateways register the same

Multicast Gateway Address (MGA, analogous to MHA) with their

Ethernet controllers; the MGA then becomes a "logical name" for

the gateway function in a Cronus cluster. If a host needs to

send a datagram out of the cluster and doesn't know what specific

gateway address to use, the host can multicast the datagram to

all gateways by sending to MGA. One or more of the gateways can

forward the datagram, and transmit a "Gateway Mapping Update"

(containing the gateway's specific Ethernet address) back to the

originating host. Specific gateway addresses could be cached in

a structure similar to the VPMap, keyed to the destination

network number. (28)

The approach just outlined suggests that all knowledge of

the existence and connectivity of gateways would be isolated in

the VLN layer of cluster hosts. Other mechanisms, e.g., based on

the ICMP component of the Internet Protocol, could be used

instead to disseminate information about gateways to cluster

(28) Because the Cronus Advanced Development Model will contain
only one gateway, a simpler mechanism will be implemented
initially; the specific Ethernet address of the gateway will be
"well-known" to all VLN components.

-181-

Report No. 5086 Bolt Beranek and Newman Inc.

hosts (see [71). These would require, however, specific Ethernet

addresses to be visible above the VLN layer, a situation the

current design avoids.

3LN Broacas And~ Mutcg Addresing Modes

A VLN datagram will be transmitted in broadcast mode if the

argument to SendVLNDatagram specifies the VLN broadcast address

(local address = 65,535, decimal) as the destination. Broadcast

is implemented in the most straightforward way: the VLN datagram

is encapsulated in an Ethernet frame with type "DoD IP", and the

frame destination address is set to the Ethernet broadcast

address. The receiving VLN component merely decapsulates and

delivers the VLN datagram.

The implementation of the VLN multicast addressing mode is

more complex, for several reasons. Typically, each VLN host will

define a constant called Max-Attended, equal to the maximum

number of VLN multicast addresses which can be simultaneously

"attended" by this host. MaxAttended should not be a function

of the particular Ethernet controller(s) the host may be using,

but only of the software resources (buffer space and processor

time) that the host dedicates to VLN multicast processing. The

protocol below permits a host to attend any number of VLN

multicast addresses, from 0 to 64,511 (the entire VLN multicast

address space), independent of the controller in use.

-182-

Report No. 5986 Bolt Beranek and Newman Inc.

Understanding of the VLN multicast protocol requires some

knowledge of the behavior of existing Ethernet controllers. The

Ethernet specification does not specify whether a controller must

perform multicast address recognition, or if it does, how many

multicast addresses it must be prepared to recognize. As a

result Ethernet controller designs vary widely in their behavior.

For example, the 3COM Model 3C400 controller follows the first

pattern and performs no multicast address recognition, instead

passing all multicast frames to the host for further processing.

The Intel Model iSBC 550 controller permits the host to register

a maximum of 8 multicast addresses with the controller, and the

Interlan Model NM10 controller permits a maximum of 63 registered

addresses.

It would be possible to implement the VLN multicast mode

using only the Ethernet broadcast mechanism. This would imply,

however, that every VLN host would receive and process every VLN

multicast, often only to discard the datagram because it is

misaddressed. More efficient operation is possible if at least

some Ethernet multicast addresses are used, since Ethernet

controllers with multicast recognition can discard misaddressed

frames more rapidly than their hosts, reducing both the processor

time and buffer space demands upon the host.

The protocol specified below satisfies the design

constraints and is especially simple.

-183-

Report No. 5086 Bolt Beranek and Newman Inc.

A VLN-wide constant, MinAttendable, is equal to the

smallest number of Ethernet multicast addresses that can be

simultaneously attended by any host in the VLN, or 64,511,

whichever is smaller. A network composed of hosts with the Intel

and Interlan controllers mentioned above, for example, would have

MinAttendable equal to 7; (29) a network composed only of hosts

with 3COM Model 3C400 controllers would have Min_Attendable equal

to 64,511, since the controller itself does not restrict the

number of Ethernet multicast addresses to which a host may

attend. (30)

The local address field of a VLN multicast address can be

represented in two octets, in hexadecimal:

mm-mm

From Table 1, mm-mm considered as a decimal integer M is in the

range 1,024 to 65,534. When SendVLNDatagram is invoked with a

VLN multicast datagram, there are two cases:

1. (M - 1,023) <= MinAttendable. In this case, the datagram
is encapsulated in a "DoD IP" Ethernet frame, and multicast
with the Ethernet address

09-00-08-00-mm-mm

A VLN component which attends VLN multicast addresses in
this range should receive Ethernet multicast addresses in

(29) MinAttendable is 7, rather than 8, because one multicast
slot in the controller must be reserved for the host's MHA, as
described in Section 4.2.
(30) For the Cronus Advanced Development Model, Min_Attendable is
currently defined to be 60.

-184-

, I I , I I I - - "..

Report No. 5086 Bolt Beranek and Newman Inc.

this format, if necessary by registering the addresses with
its Ethernet controller.

2. (M - 1,023) > MinAttendable. The datagram is encapsulated
in a "DoD IP" Ethernet frame, and transmitted to the
Ethernet broadcast address. A VLN component which attends
VLN multicast addresses in this range must receive all
broadcast frames, and filter them on the basis of frame
type and VLN destination address (found in the IP
destination address field).

There are two drawbacks to this protocol that might induce a

more complex design: 1) because MinAttendable is the "lowest

common denominator" for the ability of Ethernet controllers to

recognize multicast addresses, some controller capabilities may

be wasted- 2) small VLN addresses (less than MaxAttendable +

1,024) will probably be handled more efficiently than large VLN

multicast addresses. The second factor complicates the

1 0 assignment of VLN multicast addresses to functions, since the

particular assignment affects multicast performance.

Reiblt Gua ae

Delivered datagrams are accurate copies of transmitted

datagrams because VLN components do not deliver incoming

datagrams with invalid Frame Check Sequences. The 32 bit CRC

error detecting code applied to Ethernet frames is very powerful,

and the probability of an undetected error occurring "on the wire"

is very small. The probability of an error being introduced

before the checksum is computed or after it is checked is

comparable to the probability of an error in a disk subsystem

before a write operation or after a read; often, but not always,

-185-

AD-A139 568 CRONUS: ADISTNRUTED OPERATING SYSTEM(U BOR T BERANEK 2
ANDNEWM AN INC CAMRIDGE MA N SCHAN Z ET AL NOV 8 3

DNLS FIE BN 5 086 RADC-R N 83 236 F306 02 _81-C-D132 0 2

NSIFE Ehhhh9/2hNIL

I Lmh~h.hf

1j1I""

1.25 11l'.4 1 .

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU Of STANDARDS 1963-A

.1

_______A

Report No. 5086 Bolt Beranek and Newman Inc.

it can be ignored.

Datagram duplication does not occur because the VLN layer

does not perform datagram retransmissions, the primary source of

duplicates in other networks. Ethernet controllers do perform

retransmission as a result of "collisions" on the channel, but

the "collision enforcement" or "jam" assures that no controller

receives a valid frame if a collision occurs.

The sequencing guarantees hold because mutually exclusive

access to the transmission medium defines a total ordering on

Ethernet transmissions, and because a VLN component buffers all

datagrams in FIFO order, if it buffers more than one datagram.

On a philosophical note, protocols such as IP and TCP exist

to provide communication services to extensible sets of clients;

new clients and usages continue to emerge over the life of a

protocol. Because a protocol implementation must have some

unambiguous knowledge of the "names" of the clients, sockets,

hosts, networks, etc., with which it interacts, a need arises for

the continuing administration of the assigngd nwnbers related to

the protocol. Typically the organization which declares a

protocol to be a standard also becomes the administrator for its

assigned numbers. The organization will designate an office to

assign numbers to the clients, sockets, hosts, networks, etc.,

-186-

Report No. 5086 Bolt Beranek and Newman Inc.

that emerge over time. The office will also prepare lists of

number assignments that are distributed to protocol users; the

reference [4] is a list of this kind.

There are three organizations responsible for number

assignment related to the Ethernet-based VLN implementation:

DARPA, Xerox, and the DOS Design/Implementation Project; their

respective roles are described below.

DARPA

DARPA administers the internet network number and internet

protocol number assignments. The Ethernet-based VLN

implementation does not involve DARPA assigned numbers, but any

particular instnc of a Cronus VLN is expected to have a class A

or B internet network number assigned by DARPA. For example, the

prototype Cronus system (the Advanced Development Model) being

constructed at Bolt Beranek and Newman, Inc., has class B network

number 128.011.xxx.xxx.

Protocols built above the VLN will make use of other DARPA

assigned numbers, e.g., the Cronus object-operation protocol

requires an internet protocol number.

The X rox Ethernet Administration Office

The Ethernet Address Administration Office at Xerox Corp.

administers Ethernet specific and multicast address assignments,

-187-

Report No. 5086 Bolt Beranek and Newman Inc.

and Ethernet frame type assignments.

It is the intent of the Xerox internetworking model that

every Ethernet host have a distinct specific address, and that

the address space be large enough to accommodate a very large

population of inexpensive hosts (e.g., personal workstations).

They have therefore chosen to delegate the authority to assign

specific addresses to the manufacturers of Ethernet controllers,

by granting them large blocks of addresses on request.

Manufacturers are expected to assign specific addresses from

these blocks densely, e.g., sequentially, one per controller, and

to consume all of them before requesting another block.

The preceding paragraph explains the Xerox address

assignment policy not because the DOS Design/Implementation

Project intends to manufacture Ethernet controllers (I), but

because Xerox has chosen to couple the assignment of specific and

multicast Ethernet addresses. An assigned block is defined by a

23-bit constant, which specifies the contents of the first three

octets of an Ethernet address, e for the broadcast/multicast

bit (the least significant bit of the first octet). The

possessor of an assigned block thus has in hand 2**24 specific

addresses and 2**24 multicast addresses, to parcel out as

necessary.

The block assigned for use in the Cronus system is defined

by the octets 08-00-08 (hex). The specific addresses in this

-188-

Report No. 5086 Bolt Beranek and Newman Inc.

block range from 08-00-98-00-00-00 to 08-00-08-FF-FF-FF (hex),

and the multicast addresses range from 09-00-08-00-00-00 to 09-

00-08-FF-FF-FF (hex).

The Ethernet Address Administration Office has designated a

public frame type, "DoD IP", 08-00 (hex), to be used for

encapsulated internet protocol datagrams. The Ethernet VLN

implementation uses this frame type exclusively for datagram

encapsulation. In addition, the Cronus system uses two private

Ethernet frame types, assigned by the Ethernet Address

Administration Office:

Name ZV

Cronus VLN 80-03
Cronus Direct 80-04

(The use of the "Cronus Direct" frame type is not described in

this note.)

The same Ethernet address and frame type assignments will be

used by every instance of a Cronus VLN; no further assignments

from the Ethernet Address Administration Office are anticipated.

TheDOS Degfl/Implementation PLojet

The DOS Design/Implementation Project assumes responsibility

for the assignment of subtypes of the Ethernet frame type "Cronus

VLN". No assignments of subtypes for purposes unrelated to the

Cronus system design are expected, nor are assignments to other

-189-

* \

Report No. 5086 Bolt Beranek and Newman Inc.

organizations. The subtypes currently assigned are:

H= Subtype

Mapping Update 00-01

REFERENCES

[i]
"On holy wars and a plea for peace," Danny Cohen, Computer,
V 14 N 10, October 1981, pp. 48-54.

[21
"48-bit absolute internet and Ethernet host numbers," Yogen
K. Dalal and Robert S. Printis, Proc. of the 7th Data
Communications Symposium, October 1981.

[3)
"The Ethernet: a local area network, data link layer and
physical layer specifications," Digital Equipment Corp.,
Intel
Corp., and Xerox Corp., Version 1.0, September 1980.

(41
"Assigned numbers," Jon Postel, RFC 790, USC/Information
Sciences Institute, September 1981.

[51 "Internet Protocol - DARPA internet program protocol
specification," Jon Postel, ed., RFC 791, USC/Information
Sciences Institute, September 1981.

[61
"Internet protocol transition workbook," Network Information
Center, SRI International, Menlo Park, California, March
1982.

[71
"IP - Local Area Network Addressing Issues," Robert Gurwitz
and Robert Hinden, Bolt Beranek and Newman Inc., (draft)
August 1982.

-190-

i : . , -"L " i: i : : . . . I : :'

Report No. 5086 Bolt Beranek and Newman Inc.

4.2 Cronus Unique flumbers

o And ScoQp

This note describes a facility in the Cronus operating

system for the generation of unique numbers (UNO's). The UNO

generator may be regarded as an abstract object which exists

continuously throughout the life of a Cronus configuration, and

is accessible to system and application processes. Processes may

issue requests for UNO's at any time, from any of the hosts in a

Cronus cluster. The purpose of the UNO facility is to guarantee

that any requesting process is promptly supplied with a UNO.

There are several reasons for designing a unique number

generator as a low-level component of the Cronus system. Unique

numbers will be used to name objects, for example, files,

processes, and hosts. They can be used as transaction

identifiers to permit the detection of duplicate requests or

responses resulting from retry mechanisms. Unique numbers are

freely available to application programs, to serve as cluster-

wide names for objects in the application domain.

The usefulness of UNO's stems from the simple property that

no two requests by client processes ever obtain the same UNO,

over the entire lifetime of a Cronus cluster. Considering that

UNO's can be generated rapidly (on the order of 1,009 per second

per host) and that a UNO is relatively small (64 bits), they form

-191-

Report No. 5086 Bolt Beranek and Newman Inc.

an effectively inexhaustible supply of machine interpretable names

for objects supported by Cronus hosts.

Two important consequences of this property are:

1. when UNO's are used to name objects, the object manager
need never concern itself with the possibility that the
name space will be fully consumed;

2. when UNO's are used to name objects of several kinds, any
name can appear in any context with no further information

* required to disambiguate an object reference.

These are important advantages of UNO's for naming Cronus

objects. The same arguments apply to objects realized within

application programs, objects which may be invisible to Cronus.

* Given an implementation designed to satisfy Cronus system

requirements, it is desirable and straightforward to provide

access to the UNO facility to application programs. Doing so

obviates the need for application programs to construct similar

name generation facilities of their own (at considerable cost),

and assists the integration of system and application concepts.

Because UNO's are expected to be widely used, it is

important that they are easy to store and manipulate. For this

reason the particular UNO generation scheme chosen produces

fixed-length UNO's. With a length of 64 bits or 8 bytes, UNO's

are comparable in size to short symbolic names, and can be easily

stored and manipulated on byte-oriented, 16-bit-word, and 32-

bit-word machine architectures.

The client processes which obtain UNO's from the facility

-192-

Report No. 5086 Bolt Beranek and Newman Inc.

are distributed on different hosts, and thus the production of

UNO's requires a generator which is logically centralized (i.e.,

two generators without knowledge of each other in the same Cronus

cluster might generate the same UNO). Because we desire the

facility to be continuously available with high probability, the

implementation of the UNO generator facility is physically

distributed.

The UNO facility is a very low-level component of Cronus

because it is required to construct other relatively low-level

facilities such as the Operation Switch (to be described in a

forthcoming DOS Note).

As explained in the implementation section below, the UNO

facility is composed of two types of software components, a

relatively simple component, the SmallStepper, on every Cronus

host, and a more complex component, the LargeStepper, residing on

a few Cronus hosts called gengrator hosts. The production of a

lengthy sequence of UNO's on one host is the result of

cooperation between the SmallStepper component on that host and

at least one LargeStepper component, usually remote.

One important goal of the UNO facility is to allow hosts

without non-volatile storage to generate UNO's with a simple

mechanism and with minimal delay. Because all Cronus hosts are

expected to use the UNO facility, the implementation of the

SmallStepper component is part of the integration cost of every

-193-

Report No. 5086 Bolt Beranek and Newman Inc.

host. This cost is small because the SmallStepper component is a

simple mechanism; the most difficult aspects of the reliability

problem are treated in the design of the LargeStepper components.

Delay in satisfying UNO requests is minimized by a design which

requires synchronization between SmallStepper and LargerStepper

components only infrequently; most requests can be satisfied

locally and quickly.

High reliability is another important goal of the UNO

facility, both in the sense of continuous availability and

consistent restarts should all of the redundant generator hosts

fail or be shut down at the same time. We will assume only that

* at least one generator host retains its non-volatile state (e.g.,

a disk file) across an outage of all generator hosts, in order to

automatically resume the production of UNO's when that host is

restarted. (31) A manual procedure will also be described to

allow a restart of the UNO facility if AU. generator hosts lose

non-volatile storage; initial UNO facility startup is a special

case or this situation.

This note does not describe the way UNO's are stored and

used by clients of the UNO generator, and in particular it does

not define the way UNO's are used to refer to Cronus objects. A

(31) As detailed in the section on implementation, clients may
continue to obtain UNO's from SmallStepper components for some
period ot time even if all generator hosts are unavailable;
eventually, however, requests for UNO's must fail or block unless
at least one generator host is operating.

-194-

Report No. 5086 Bolt Beranek and Newman Inc.

Cronus Universal Identifer (UID) consists of a UNO and additional

information related to the object, for example, the type of the

object.

Unigue Number Characteristics

A Unique Number is a 64 bit quantity whose concrete

. representation is dependent upon the host programming language

and machine architecture. In C, for example, storage for two

UNO's might be declared by

typedef struct{f
char byte[8];

IDNO;

UNO aUNO, another_UNO;

on systems which represent one character in eight bits. (32)

Viewing UNO's as abstract objects, they possess a small set

of associated operations defined in the next section. One

operation on UNO's, the "movew or "assign" operator, is not

explicitly described below. Instead it is assumed that the host

language provides one or more suitable primitives for this

operation. In C, a possible coding is

for (i = 0; i < sizeof(UNO); i = i+l)
aUNO.byte[i] a anotherUNO.byte[il

(32) Note that the C/70 stores a character in ten bits; the C
structures required to describe UNO's on the C/70 will be
different from the structures given as examples in this note.

-195-

+?+ - i I+ + ++I + I + I I

Report No. 5986 Bolt Beranek and Newman Inc.

More efficient codings may exist.

The central property of the UNO abstraction is that two

distinct invocations of the GenerateUNO entry point will never

yield the same UNO as their results. By "distinct invocations'

we mean successive invocations by the same DOS process, or

invocations by two different DOS processes anywhere in the DOS

cluster. Whether or not two UNO's are "the same" can be tested

using the OrderOfUNOs operator (or perhaps by a direct bit-wise

cowparison, depending upon the UNO representation). Calls to the

GenerateUNO entry point by processes in different DOS clusters

may, in fact, yield the same bitstring; UNO's are universal only

over the domain of a single cluster.

UNO's have two other useful properties. The internet host

number of the machine which generated a given UNO is contained in

a field of the UNO bitstring, and can be extracted with the

OriginOfUNO operator. All UNO's generated by the same host are

strictly ordered by time of creation, and can be compared using

the OrderOfUNOs operator. UNO's generated by different hosts are

not comparable; OrderOfUNOs will detect and indicate this

situation to its caller.

The UNO size, 64 bits, was derived from assumptions about

the maximum number of UNO's that could be generated over the

lifetime of a Cronus cluster. We assume that the maximum number

of hosts in a cluster is 1024, and the maximum lifetime of a DOS

-196-

Report No. 5086 Bolt Beranek and Newman Inc.

cluster is 100 years. The implementation strategy will impose

constraints upon the rate at which UNO's can be generated (fewer

than 1000 per second per host) and on the rate at which a host

can leave and reenter the cluster-wide UNO generation mechanism

(about once every 10 seconds). The latter constraint effectively

increases the boot-up delay of a Cronus host by a few seconds

while it initializes its SmallStepper component.

Operatio 2n l'

There are three primitive operations on UNO's (in addition

to assignment, as mentioned above); these are the ONLY operations

on UNO's which should be used by clients of the UNO generation

facility. As will be described in the implementation section,

UNO's have additional internal structure as a consequence of the

generation technique, but this structure is implementation

dependent, and should be regarded as subject to change in the

future. The interface operations defined in this section will

most often be available as procedure or system calls to a client

process; in the C language they might appear as follows:

BOOLEAN GenerateUNO(unoptr) UNO *unoptr;

Generate a new UNO in the structure pointed to by unoptr

and return TRUE, otherwise return FALSE.

HOSTNUM OriginOfUNO(unoptr) UNO *unoptr;

Return the internet address of the host which generated the
UNO *unoptr, unless the UNO is well known, in which case
return UNDEFINED.

-197-

Report No. 5086 Bolt Beranek and Newman Inc.

UNOORD OrderOfUNOs(unoptrl,unoptr2)
UNO *unoptrl, *unoptr2;

Compare the UNO's *unoptrl and *unoptr2, and return a
result indicating equality, or the ordering between the
UNO's, or declare them incomparable.

The types BOOLEAN, HOSTNUM, and UNOORD can be defined:

typedef int BOOLEAN;
#define TRUE 1
#define FALSE 0

typedef int HOSTADDRESS; /* internet host address */
#define UNDEFINED 2**32-1 /* UNO is well known */

typedef int UNOORD; /* UNO comparison scalar result */
#define UNOEQ 1 /* unol=uno2 */
#define UNOLT 2 /* unol<uno2 */
#define UNOGT 3 /* unol>uno2 */
#define UNOINCOMP 4 /* incomparable */

The implementation strategy attempts to insure that these

operations are continuously available, and will complete

successfully unless the invoker's host fails during the call.

GenerateUNO may fail (return FALSE) if all generator hosts are

down or inaccessible for a long period of time; it is then at the

discretion of the client to retry the operation immediately or

after some delay, or to handle the failure in some other way. (A

FALSE return from GenerateUNO is expected to be an extremely rare

event.) An implementation of the SmallStepper component will

guarantee that a GenerateUNO request always completes in a small,

bounded amount of time, unless the client's host fails during the

request.

A small portion of the UNO space is reserved for "well known

-198-

Report No. 5086 Bolt Beranek and Newman Inc.

UNO's". These UNO's will never be returned by the GenerateUNO

operation; some number of them will be statically associated with

primitive objects in the Cronus system. For these UNO's the

result of the OriginOfUNO operation is the value UNDEFINED, a 32

bit quantity which is not a valid internet address. When one or

more ot the arguments of OrderOfUNOs is a well known UNO, the

result is always UNOINCOMP.

Implementation

The structure of a UNO as visible to the implementation has

three fields: HostNumber, HostIncarnation, and SequenceNumber.

In C, the structure might be declared:

typedef struct: {
unsigned HostNumber: l; /* bits */
unsigned HostIncarnation: 32; /* bits */
unsigned SequenceNumber: 22; /* bits '/I

A UNO with a HostIncarnation field equal to zero is a well known

UNO. The HostNumber and SequenceNumber fields of a well known

UNO are manually selected, arbitrary constants.

SmallSteDper Cgmone

When the GenerateUNO operation is invoked, control passes

from the client to the SmallStepper component which resides on

the client's host. The SmallStepper component enforces mutual

exclusion (i.e., executes in a critical section) while responding

-199-

Report No. 5086 Bolt Beranek and Newman Inc.

to client requests, and while performing incarnation number

updates based on transmissions from LargeStepper components. The

SmallStepper will create a new, properly formed UNO triple and

return it to the client by storing the internet host number of

this host (HostNumber), this host's current incarnation number

(HostIncarnation), and a sequence number (SequenceNumber) into

the UNO structure, provided that a current incarnation number is

available. If no current incarnation number is available, the

SmallStepper component will return FALSE.

Most invocations of GenerateUNO will cause the SmallStepper

to increment a 22 bit sequence number stored in fast memory, and

combine this with the host number and current incarnation number,

also resident in fast memory, to form the UNO. This is a simple

operation and can be done very rapidly.

Normally the SmallStepper maintains two (33) incarnation

numbers in fast memory, the current incarnation number and the

next incarnation number. If a GenerateUNO request causes the

sequence number to overflow, the next incarnation number replaces

the current incarnation number, and the sequence number is reset

to zero. The next incarnation number will be "refilled" as soon

as the SmallStepper receives a broadcast from a LargeStepper

component. If the sequence number overflows and no next

(33) A SmallStepper may receive and queue more than two
incarnation numbers in advance of need.

-200-

Report No. 5086 Bolt Beranek and Newman Inc.

incarnation number is available, the current incarnation number

becomes unavailable, and GenerateUNO returns FALSE.

It is an assumption of the Virtual Local Network (VLN)

interface that internet host addresses are administratively

assigned and "wired in" to each Cronus host (e.g., programmed

into an EPROM or stored in Stable Storage on disk). A UNO

generator software component obtains the host address of its host

from the VLN interface.

The SmallStepper component obtains a new incarnation number

passively, by listening for the next datagram transmitted on a

well known multicast channel. This incarnation number becomes

the current incarnation number if it was previously unavailable,

else the next incarnation number if it was unavailable, else it

is discarded. The LargeStepper components periodically (about

once a second) transmit a new incarnation number on the channel;

each number is guaranteed to be strictly greater than all

previous incarnation numbers transmitted. Because UNO's

generated on different hosts are distinguished by the HostNumber

field, it is acceptable for several SmallStepper components to

receive and use the same incarnation number from the multicast

channel.

The separation of the SmallStepper and LargeStepper

components removes the necessity for reliable, non-volatile

storage at each host; the problem is now reduced to the

-201-

Report No. 5086 Bolt Beranek and Newman Inc.

generation of a monotone incarnation number stream by the

LargeStepper components. This problem is simpler because the

LargeStepper components need only be present on a few hosts (the

generator hosts), and it is reasonable to expect these hosts to

have homogeneous architectures and operating systems, and non-

volatile secondary storage. Note that this implementation

strategy relies heavily on the sequencing and non-duplicating

properties of the Virtual Local Network supporting host-to-host

communication; see DOS Note 26 for further details.

LargeStepper mnents

* A subsequent DOS Note will discuss the implementation of

LargeStepper components in depth. The paragraphs below convey

the flavor of the approach, but they are not intended as a

convincing argument that the LargeStepper components are, indeed,

a reliable source of monotonically increasing incarnation

numbers.

LargeStepper components can operate independently, i.e.,

without active acknowledgements from their peers. In its

nominal, "homeostatic" condition, a LargeStepper component

alternates between Passive and Active phases. The transition

from Passive to Active is driven by a local timer, and the

Passive phase will be about ten seconds in duration. The

transition from Active to Passive occurs after a new incarnation

number has been generated by this LargeStepper component, or if

-202-

Report No. 5086 Bolt Beranek and Newman Inc.

the incarnation number generation is aborted by another, higher

priority LargeStepper component, also in its Active phase. A

static priority ordering for all LargeStepper components is

derived from their host numbers.

In its Passive phase, a LargeStepper component receives two

types of messages, and transmits none. One type of message

received is the "I am here" message periodically emitted by every

host; the LargeStepper component infers from the reception of an

"I am here" message that its local network receiver is operable.

The second type of message received is the "Intention" message

produced by other LargeStepper components in their Active phases.

Receipt ot "Intention" causes the LargeStepper to increment its

local copy of the incarnation number counteK. (34)

When it enters the Active phase, a LargeStepper first tests

to see that it received at least one "I am here" message since

its last Active phase; if not, it enters an "Offline" phase

awaiting manual intervention. If the receiver passes the test,

the LargeStepper broadcasts a series of "Intention" messages

containing the next incarnation number. Finally, if it has not

received an "Abort" message from any other LargeStepper, this

component updates its local copy of the incarnation number and

multicasts the number on the channel received by SmallStepper

(34) As will be explained in detail in Part II, the LargeStepper
does not increment it local incarnation number until it has
received several "Intention" messages from the same source.

-203-

I SI

Report No. 5086 Bolt Beranek and Newman Inc.

components. The LargeStepper then reenters the Passive phase.

If a LargeStepper is in its Active phase, and it receives an

"Intention" message from a lower priority LargeStepper, it will

transmit a series of "Abort" messages to the lower priority

component.

The LargeStepper components will rely upon maximum elapsed

time bounds for message transmission and LargeStepper transaction

processing for correct operation. The UNO facility design as a

whole relies on the sequencing and non-duplication properties of

the Cronus Virtual Local Network.

t
This overview has omitted issues in several areas, such as

assumptions about host and network failure modes, the specifics

of phase transitions, and the startup of individual LargeStepper

components. These issues will be treated in Part II.

A Justification of the 4 it U Length

The 64 bit length of UNO's is justified by the maximum rate

at which UNO's might be generated and the expected maximum size

and lifetime of a single Cronus cluster. We assume a maximum of

1,024 cluster hosts, hence the 10 bit HostNumber field. We

assume a maximum incarnation number generation rate of 1 per

second, and a maximum cluster lifetime of 100 years or slightly

less than 2**32 seconds, hence the 32 bit HostIncarnation field.

-204-

....I- i I I I I i : I

Report No. 5686 Bolt Beranek and Newman Inc.

The proper size of the SequenceNumber field is slightly more

difficult to gauge. It should be large enough to guarantee that

a SmallStepper component will not force a client to wait for a

multicast incarnation numer as a result of sequence number

overflow. Assuming a maximum GenerateUNO request rate of 1,000

per second, and a minimum HostIncarnation multicast rate of 0.1

per second, sequence numbers of at least 10,000 should be

permitted. However, if the sequence number can grow larger a

SmallStepper may continue to generate UNO's without frequent

renewals of the incarnation number. A SequenceNumber field width

of 22 bits allows SmallSteppers to generate UNO's at a maximum

rate of 1,000 per second for about 1 hour, and for a much longer

period of time at the lower request rates we expect in practice,

without renewing the host incarnation number.

4.3 The Cronus Gateway

The Cronus Gateway forms an important, but low level, part

of the Cronus system architecture. It provides a communication

path between the hosts that make up a Cronus cluster and hosts in

the rest of the Internet Catenet, including other Cronus

clusters. The BBN-Cronus Gateway provides a direct connection

between three networks, the Cronus Ethernet, the BBN Fibernet,

and the ARPA-Net, and an indirect pather through other gateways

to the rest of the Catenet. Creating the gateway involved

-205-

Report No. 5086 Bolt Beranek and Newman Inc.

several considerations.

o It must be a complete gateway. This means that it must
communicate with the other gateways in the Catenet so as
to be able to find the proper path to other networks and,
conversely, to allow other hosts to find the path to the
Cronus network. As gateway-gateway protocols are
presently evolving this means that the code must also
evolve in order to track the protocol changes.

o It should require little software maintenance. The
purpose of the Cronus project is to create a distributed
operating system. The project is not involved with
research on gateway architecture.

These, somewhat contradictory, goals have been achieved by

basing the Cronus Gateway on the Cruuent Arpanet standard gateway

code as off-the-shelf technology.

The gateway can be considered as consisting of two parts.

1. The standard gateway code, which process Internet
packets, and can be regarded as a black box.

2. The local network interfaces, which convert local packets
to Internet packets, and vise versa. These routines must
be developed for each new network type the gateway is to
be connected to.

In general protocol changes will affect only part 1. This

means that the Cronus Gateway can track changes in the protocols

(and improvements in the code) simply by rebuilding with the

latest version of the standard code.

In the Cronus Gateway's case part 2 consists of three

modules; one each for the Fibernet, Ethernet and Arpanet

interfaces. The Arpanet module is also part of the standard

code, so only the Fibernet and Ethernet and Ethernet modules had

-206-

Report No. 5086 Bolt Beranek and Newman Inc.

to be developed.

To illustrate the functionality of these modules let us

trace a packet from the fibernet interface to the Ethernet

Interface. Note that the code is actually structured as a set of

processes, one for each interface, and I/0 occurs asynchronously;

this discussion ignores the details of now packets are passed

between the modules.

1. The packet is received by the hardware, and accepted at
interrupt level. If a hardware error occurred during the
receipt the buffer is flagged. The packet is passed to
the fibernet input processor.

2. The packet is checked (at process level). If a hardware
error occurred the packet is discarded, otherwise the
local leader is checked. If the leader is not valid for
an Internet packet the packet is also discarded,
otherwise the local leader is removed and the packet is
passed to the Gateway code (black box.)

3. In this case the gateway code decides the packet should
be send out through the Ethernet interface. It therefore
passes the packet, and the Internet address of its next
destination, to the Ethernet output processor.

4. The output processor must transform the internet packet
into a local packet. It does this by pre-pending a local
leader.

In the Ethernet case this involves a non-trivial operation
-- determining the appropriate local destination. The
problem is that Ethernet controller addresses are often
set by the manufacturer, and there is no simple
transformation between an Internet address (32 bits) and
an Ethernet address (48 bits). Therefore the Ethernet
routines maintain a translation table between the two.
When the Ethernet output processor wishes to send a
packet it checks the translatin table (using a hashing
function). If a translation for that address exists,
then it is used as the local destination address.
Otherwise a multicast address is created by concatenating
a 38 bit constant with the low 10 bits of the Internet

-207-

Report No. 5086 Bolt Beranek and Newman Inc.

address(35). By convention each host on the network
which wishes to receive Internet packets must listen for
both its physical address, and the appropriate Multicast
address.

The rest of the local leader is created
straightforwardly using the gateway'[s Ethernet address
as the source and the type field (assigned by XEROX)
meaning the packet is of the Internet protocol.

5. Finally the packet is passed to the hardware, and output
onto the network.

The reverse path (Ethernet to Fibernet) is similar, but differs

in detail in steps 2 and 4.

When the Ethernet input processor receives a packet it may be one

of 3 types.

1. The packet may be an Internet packet, with the correct
physical destination address. In this case the packet is
passed directly to the gateway.

2. The packet may be an Internet packet, but addressed to
the gateway's Multicast address. This would happen if
another Ethernet host wished to send a packet through the
gateway, but didn't know the gateway host's Ethernet
address. In this case a 'REDIRECT' packet is broadcast
to all hosts. A REDIRECT packet is distinguished by its
type field, and is used to inform other hosts on the
network of the correct address translation for the
gateway's Internet address. The original packet is then
passed to the gateway.

3. The packet may be a REDIRECT originating from another
host. In this case the information is used to update the
translation table, and the packet is discarded.

The Fibernet output processor is considerably simpler than

the Ethernets. Since a host's Fibernet address is a subset of

(35) It is sufficient to use only the low 10 bits, since an
Ethernet is restricted to a maximum of 1024 hosts.

-208-

Report No. 5086 Bolt Beranek and Newman Inc.

its Internet address there is a simple mapping from Internet to

local addresses.

In conclusion: the primary goal in creating the Cronus

Gateway was to get maximum functionally, from minimum effort.

The only modules that were developed specially for this gateway

were those required by the peculiar hardware environment. Later

projects using the same hardware can avoid even that much effort.

To further dimish maintenance needs, the modules developed will

be turned over to the Arpanet gateway developers for integration

into the standard sources.

-209-

' I I I I -, , , : , " - ...-

Report No. 5086 Bolt Beranek and Newman Inc.

5 Implementing the System Ethernet Interconnection

This section discusses aspects of the design and implementation

of the Etnernet interface for the M68000 GCE and the C/70 UNIX.

5.1 Connecting Multibus-Based 68000 Systems to the Ethernet

INTRODUCTION

One important part of the Cronus Distributed Operating System is

the "Generic Computing Element," or GCE. This is a Multibus-

based microprocessor system, which in the current implementation

uses a Motorola M68000 processor. GCEs are envisioned as low-

cost hosts which can be used for a variety of applications,

including terminal concentrators, file servers, and "Access

Machines" which can be used to interface a new host into the

Cronus system using standard commercial serial communication

interfaces.

A current project task is to connect the GCE to the 10 MBit

Ethernet which is being used as the communication substrate for

the initial Cronus implementation. This note describes the

features of the Multibus Ethernet controllers that were chosen as

candidates for inclusion in the GCE component of the Cronus

system. Because the GCE is a Multibus-based microcomputer, the

choice of controller is limited to (currently) three

-210-

Report No. 5086 Bolt Beranek and Newman Inc.

possibilities: the Intel iSBC 550, the Interlan N13010, and the

3Com 3C400.

The Intel controller was originally chosen, as it was the only

controller available at the time (early 1982) . We obtained one

of the Intel boards and began writing a driver for it. While

working on the driver, we noticed some possible performance

limitations in the Intel controller, and new product

announcements which were coming out at that time caused us to

look into possible alternatives. As a result of this, the 3Com

controller was selected as an alternative, to be used in the

remaining GCEs.

COMARION E TNFLJ. & 1CQO1 CONTROLLERS

The Intel iSBC 550 and the 3Com 3C400 Ethernet controllers

represent widely varying design philosophies and goals. The Intel

controller consists of two boards, is microprocessor-based, and

attempts to deal in a reasonable manner with multiple host

processors on a single Multibus by using a message-passing scheme

to communicate with other processors. This last may appear to be

an advantage, but the result is that in single-processor systems

(as the GCE is), the host software is much more complex than it

is for the 3Com controller, which has no microprocessor

controller, and is a much more straight-forward design for single

host systems with its status register and transmit and receive

buffers which are mapped directly into Multibus memory space.

-211-

Report No. 5086 Bolt Beranek and Newman Inc.

There have been a few problems with the iSBC 550 controller

besides the problems of complexity introduced by the message-

based communication. One of these problems is that the

controller was designed for use with Intel processor boards,

which means that it orders bytes differently than the 68000,

which is the processor used in the GCE. This means that the

6 8000 must swap bytes in a message before handing it to the

Ethernet controller, and results in each packet being copied

twice: once by the 68000 to swap the bytes, and once by the

controller's 8088 to load the transmit buffer or deliver data

from the receive buffer. The 3Com board, on the other hand, has

a switch which indicates the byte-ordering scheme it is to use,

and since its transmit and receive buffers are located in

Multibus memory space, only a single copy operation need be

performed on a packet. Thus, the achievable throughput should be

higher with the 3Com board than with the Intel boar-.

Probably the most annoying problem with the Intel controller is

the lack of proper documentation for communicating with the

board. Again, because the controller was designed with only

Intel hosts in mind, Intel will supply code for their processors

to communicate with the controller. other processors require

custom implementations of the communication facility, but the

documentation supplied with the board is wrong in several places

and inadequate in others. Further, the iSBC 550's microprocessor

does not do sufficient error checking on the messages passed to

-212-

Report No. 5086 Bolt Beranek and Newman Inc.

it.

other differences between the two vendors' boards are:

1. As noted, the Intel controller consists of two boards
(though it has been referred to above in places as if it
were a single board), while the 3Com controller is a
single board. Because the 3Com controller has fewer
parts and interconnections, it is likely to be more
reliable in the long run. Also, the 3Com controller uses
less power than the Intel controller (5A max vs. 9A max).

2. The Intel controller provides no way to change the
board's Ethernet address. This will make building a
system with multiple Ethernet controllers in the same
Multibus chassis more difficult, as all such controllers
should ideally have the same address. Also, swapping
boards in order to debug or fix a hardware problem
becomes more difficult in most applications, though this
should not be a problem in the DOS, due to its use of
Internet addresses and a dynamic lookup table to
translate to Local network addresses. The 3Com
controller requires that the host processor supply the
Ethernet address, and provides a "hint" in ROM which is
mapped into Multibus space, which the host may either
choose to use or to ignore, so this board would not cause
any problems in a system where it is important to be able
to interchange controllers without changing Ethernet
addresses.

3. Older versions of the Intel controller are sensitive to
the type field of a received packet, requiring the user
to specify which Data Link Types he is willing to accept.
This is contrary to the Version 1.0 Ethernet
specification, which states (in Section 6.2.2) that the
type field is to be uninterpreted by the Data Link Layer
(the controller implements the Physical and Data Link
Layers of the network). This has been fixed in later
versions, but the 3Com controller is (according to the
documentation) completely insensitive to the type field.

4. The Intel controller requires that the system have memory
in Multibus memory space. The 3Com controller contains
its own memory for transmit and receive buffers, and this
memory may be mapped into Multibus memory or I/O space.
This reduces the cost and size of a minimum
configuration, but could be a problem in large Multibus
systems, where the necessary 8K byte block of contiguous

-213-

Report No. 5086 Bolt Beranek and Newman Inc.

memory (I/O) locations might not be available.

5. The Intel board does Multicast address recognition, but
only for a maximum of 8 addresses. The 3Com board does
no Multicast recognition, and will simply deliver or not
deliver all Multicast-addressed packets to the host.
This means that the host must do any necessary Multicast
recognition, which could preclude the use of protocols
which make heavy use of the Multicast feature.

6. The 3Com board does not calculate the retransmission
backoff interval, instead generating an interrupt to the
host, which must calculate the backoff and load it into a
register on the controller. 3Com claims that "The
processor overhead to support backoff in software is
minimal. Studies show that Ethernet packets typically
experience collisions less than 0.03% of the time." The
Intel controller does the backoff calculation and
retransmission automatically.

Both boards apparently have problems receiving a string
of back-to-back packets. According to David Boggs of
Xerox, the Intel board can handle no more than three
back-to-back packets, while the 3Com board can handle
only two.

CURENT STTU

We have had major problems in getting the Intel controller

working. Intel has been unable to resolve these, and as of this

date (July 1), the driver for the Intel controller is still not

working. The problems we encountered with the Intel controller

caused us to attempt to speed up delivery of the 3Com

controllers. While awaiting receipt of the new controllers, a

driver was written, based on the documentation supplied to us by

3Com when we placed the order. The driver interface was

originally specified with multiple controllers in mind, and so

looks the same to the application program whether the actual

controller is an Intel or a 3Com. Besides the "expected" entry

-214-

II

Report No. 5086 Bolt Beranek and Newman Inc.

points for sending and receiving packets, the driver also

contains entries for reporting statistics, such as the number of

packets received with bad checksum and the number of packets

which experienced collisions on transmission.

Two 3Com controllers were received in late June, 1982, and

within a week of receipt were sending and receiving packets. The

driver for the controller is currently being debugged.

5.2 Connecting C/70 TCP to the Cronus Ethernet

Introduction

This note describes the effort underway as a part of the

Cronus Distributed Operation System project, to connect a BBN

Computer Corporation C/70 Unix system running TCP to standard 10

Megabit/second Ethernet. The BBN Cronus local area cluster

includes a pair of C/70 UNIX systems interconnected to each other

and other cluster hosts via the Ethernet. The C/70 is a general

purpose microprogrammed minicomputer designed for efficient

execution of the language C, and runs the UNIX operating system.

An implemention of TCP has been written in C and is currently

providing service to a number of network host machines at BBN.

The C/70 currently has no hardware or software support for an

Ethernet attachment. The C/70-Ethernet effort is therefore

broken into two tasks: integrating the required interface

-215-

Report No. 5086 Bolt Beranek and Newman Inc.

hardware and writing the software I/O drivers.

Ha~rdware dgsign

Before we go into the hardware design, the C/70 I/O design

philosophy should be summarized. One of the goals in the design

of the C/70 was to make the individual I/O controllers as simple

as possible. Microcode would then be written to do much of the

work normally found in I/O controllers. Since the machine has a

fast microinstruction execution time (135ns) and extensive effort

went into development of the C/70 microprogrammable architecture

and microcode development and support tools [1,2,31, this was a

reasonable approach to take.

The C/70 uses two methods for the transfer of information

between 1/O devices and the CPU. The first method is for the

device to cause a microinterrupt and have the microcode read or

write the data to or from the device. This method is analogous

to programmed I/O in a traditional minicomputer. The second

method is called pseudo-DMA. With this method, the I/O

controller begins the transfer of a small block of data (16

words) by causing a microinterrupt. The service routine microcode

tells the controller to proceed with pseudo-DNA. Then the I/O

controller and the CPU enter a tight loop transfering data across

the I/O bus. The number of words to be transferring is fixed in

advance.

-216-

Report No. 5086 Bolt Beranek and Newman Inc.

The decision as to which method is to be used has a definite

impact on the type of I/O controller one designs for the C/70.

Generally single-transfer I/O is used for "slow" device such as

communication line interfaces while pseudo-DMA is used for high

performance devices such as the disk controller.

The design of the Ethernet interface hardware was driven by

several DOS project goals. The primary goal was the desire to

use off-the-shelf local network technology. Two other goals were

high throughput and short delivery time. Since no Ethernet

interface board currently exists for the C/70, some amount of

hardware development would be necessary to interface to the C/70

I/O bus. The first goal strongly suggested that we buy a

commercially available Ethernet controller instead of designing

one specifically for the C/70. We chose the Interlan NM10

Ethernet protocol module, based on availability, performance and

price. It has been designed to be customizable for many of the

microcomputers and minicomputers currently on the market and

therefore was not locked into one vendor's I/O protocol. In

particular, it is used as a "daugther boardm in Interlan's own

host-specific Ethernet interface products.

The NM10 interface presented us with two problems. The more

important one was that its host parallel transfer protocol is not

an etficient way to transfer data to and from the C/79. This

problem was dealt with by designing a pseudo-DMA interface for

-217-

Report No. 5686 Bolt Beranek and Newman Inc.

the C/70. The other problem is that the NM10 also doesn't

specify the byte data transfer time. We were therefore required

to design our interface to make all transfer, both data and

control, asynchronous.-Timing independence is handled in the

hardware for psuedo-DMA; however, reading and writing NMl0

registers require the microcode to handle the timing

independence.

The interface board, called the MIENI (for MBB Interlan

Ethernet Interface) has been designed, fabricated, and is being

debugged. While the testing and debugging are not yet complete,

the MIENI will currently perform many of its functions. After

hardware debugging is complete, the microcode will be tested.

* Concurrently with hardware design and testing, significant

effort has gone into documenting the C/70 Ethernet interface to

facilitate programming, production, and maintenance. This

documentation is approximately 70% complete.

As stated earlier, the C/70 is designed to have the microcode

do much of the work in an I/0 transfer. Although the C/70

architecture and software tools enhance the microcode development

process, the microcode for the MIENI is rather complex. Most of

the complexity is caused by the timing independence problem

mentioned earlier. To read or write one internal NM10 register

-218-

Report No. 5986 Bolt Beranek and Newman Inc.

the microcode must inform the NMI of the transfer and wait for a

microcode interrupt when the operation is complete. Such

transfers are very common in the MIENI packet transfer operations

and this increases the microcode size and complexity.

The desire to minimize processor intervention in network

transfers also adds complexity to the microcode. To decrease

necessary intervention, the microcode is designed to allow the

user to chain many buffers together for scatter-gather transfers.

This approach greatly loosens the requirements for high level

macrocode interrupt latency at the expense of microcode space and

complexity.

The microcode is completely written and awaits the hardware

for testing. Along with this microcode, a macrocode program has

been written that can exercise all the features of the microcode

in a controlled environment.

Mcoogdrivers

The final phase of this task is develpopment of the macrocode

software necessary to connect the microcode routines to TCP.

This software is broken up into two modules, the device driver

and the packet encapsulator. The job of the device driver is to

handle the data coming from and going to the microcode. This

involves servicing interrupts, keeping buffers queued on the

input side and handing incoming packets to the higher levels.

-219-

Report No. 5086 Bolt Beranek and Newman Inc.

This device driver has been completed.

The packet encapsulator is the software module that knows how

to take TCP Internet packets and append Ethernet addresses before

shipping them to the microcode. It also handles routing table

updates. The basic problem is to map the 32 bits of an Internet

address into the 48 bits of Ethernet. This is done by keeping

routing tables with the correct Ethernet address for a given

Internet address. There are simple protocols described in a

companion note to get routing information when the network comes

up. This second module is approximately 80 percent complete.

The debugging of the packet encapsulator and macrocode device

driver are waiting for the microcode device driver to be tested

and debugged.

References

(1] M. F. Kraley, et. al., "Design of a User Microprogrammable
Building Block," Proc. 13th Annual Workshop on
Microprogramming, December 1980.

[21 S. Geyer and A. Lake, "Development Tools for User
Microprogramming," Proc. 14th Annual Workshop on
Microprogramming, August 1981.

[3] R. Weissler, M. Kraley, and P.Herman, "MBB Microprogrammer's
Handbook," BBN report No. 4268, August 1980

-226-

Report No. 5086 Bolt Beranek and Newman Inc.

5.3 MBB Interlan Ethernet Interface Preliminary Specification

INTRODUCTION

This document provides a functional description of the hardware

module used to interface the Interlan NM10 Ethernet protocol

module to the Microprogrammable Building Block (MBB) series of

BBN computers. The NM10 protocol module implements the 10 Mbps

Ethernet version 1.0 data link and physical channel functions,

and additionally performs data buffering, address recognition and

filtering, diagnostic functions, and network statistics

collection.

The MBB Interlan EtherNet Interface (MIENI) couples the NMI0 into

the MBB I/O system by providing MBB I/O bus address decoding,

priority interrupt encoding, control signal mapping, and data

buffering necessary to connect the NM10 to the MBB in a high

performance configuration. In addition, diagnostic and self test

features have been included to aid in testing and fault

isolation. The MIENI, with the NM10 as a daughterboard, appears

to the microcode as a standard MBB I/O interface, with

addressable control, status, and data buffer registers, and

microinterrupts to indicate important events.

The MIENI is being developed as part of the Distributed Operating

System (DOS) project, where it will be used to connect C/70 UNIX

-221-

Report No. 5086 Bolt Beranek and Newman Inc.

systems to other minicomputers through a high-speed local network

for distributed operating system research. MIENI is one part of

a larger system effort to effectively couple the C/70 Unix system

into a high-speed local network, so that remote operations made

on the user's behalf over the network do not incur large

performance penalties relative to local operations.

Following a detailed evaluation of available technologies, the

Ethernet local area network architecture was selected for use in

DOS due to its high performance, cost-effectiveness,

availability of interfaces for relevant host computers, and

multi-vendor support. The Interlan NMlO was chosen as the

starting point for a C/70 Ethernet interface due to its

(relative) availability, and its use of a host-independent

interface which could be merged into the underlying MBB I/O

system. This interface, called the Interlan Standard Module

Interface (ISMI), is an 8-bit bidirectional data path controlled

by 5 handshaking lines. There is the likelihood that Interlan

will produce a line of local network interfaces (ringnet, IEEE

802, improved Ethernet, etc.) which will be plug-compatible with

the network-independent ISMI interface. By designing to the ISMI

standard (rather than making the MIENI-to-ISMI interface specific

to the NM10) we can take advantage of their future network

product offerings.

-222-

Report No. 5086 Bolt Beranek and Newman Inc.

Here we simply list the major design issues and goals which must

be addressed by the combined hardware, microcode, and Unix device

driver system for C/70 Ethernet support in the DOS context.

o Programming compatibility with Unibus Ethernet interface
used elsewhere in DOS on DEC VAX and PDP-11 hosts

o Minimum amount of CPU servicing necessary per data
transfer

o Minimum propagation delay through MIENI buffering
o Full Ethernet 1.0 compatibility
o Need to run disk transfers and Unix while network I/O

active, and theLefore the need for interrupt throttling
o MBB design philosophy of minimum hardware for I/O
o Timescale for development (operational by June 1982)
O Minimum complexity of design for full-scale production
o Conversion from 8-bit NM10 data to 20-bit MBB format
o Maximum use of programmed logic for ease of change
o Small initial build
o Ease of testing and online diagnosis

nevicntions

The MIENI functions available to the microprogrammer can be

broken into two groups: high-speed transfers of data blocks

requiring optimized pseudo-DMA microcode, and control operations

which generally involve reading and writing interface registers.

Control operations are used to set up the block data transfers,

and it is also possible to circumvent the high-speed data path

hardware to manually transfer data, byte by byte, to and from the

NMI. Both classes of functions use microinterrupts for

efficient event signalling.

DESIGN ALTERNATIVES

Da path Delign

-223-

Report No. 5086 Bolt Beranek and Newman Inc.

From issues listed in section 3, it is apparent that the primary

tradeoff in the hardware design is performance versus development

time and cost. The following discussion of design alternatives

centers on the MIENI high-speed data path design, as the MBB and

NM10 bus interface control logic is common to all designs.

Referring to the NM10 specification, it might be suggested that

the minimal data path design of putting no buffering in the

MIENI, and having all interface complexity handled by the

microcode is the ideal solution. Due to the lack of critical

timing information from Interlan, however, the interface would

have to be polled or would interrupt the processor on a

character-by-character basis, which would have severe performance

implications. This is not a bug on Interlan's part however, as

they have specified a general interface which should not be tied

specifically to the NM10. For example, it is unspecified how long

it will take for a new data word to be available from the NM10

Receive Buffer when a word is read by the MIENI. This means that

the microcode cannot assume a priori how long to wait between

data transfers, which is critical if multi-megabit transfers are

to be handled while other Unix functions are in process (disk

transfers, etc.)

The other extreme, putting a microprocessor in the interface

between the NM10 and the MBB, is completely against the

philosophy of the MBB I/O system, and is unnecessarily complex

-224-

Report No. 5086 Bolt Beranek and Newman Inc.

for this application, due to the amount of processing already

done by on-board the NMl0. It would eliminate the need for the

microcode to manipulate the NMl0 internal registers, but that is

a small savings compared to the development costs.

Therefore we have implemented an intermediate solution,

consisting of the minimum amount of FIFO buffering necessary in

each direction of data transfer to allow efficient pseudo-DMA

block accesses. The NM10 bus, FIFOs and MBB I/O bus interfaces

will be controlled by a collection of programmable logic elements

(PALs and PLAs). More elaborate versions of this approach have

been used in the MBB disk interface (MDI) and MBB Ungermann-Bass

interface (MUBI). Since we still need to access the NM10 control

and status registers to issue commands, two basic modes of

transfer are provided, referred to as Pseudo-DMA Block mode, and

Transparent Character mode.

Another issue which impacts the interface design is the need to

convert the 8-bit data format of the NM10 to 20-bit MBB words.

The conversion could be done in hardware, microcode or software,

and the design implements the conversion in hardware on the

grounds of increased performance. To be specific, each 20 bit

MBB word is broken into two 10-bit half-words, and the data

octets or bytes to be transferred over the Ethernet are packed

two to a word, right-justified within each half-word.

-225-

T

Report No. 5086 Bolt Beranek and Newman Inc.

The alternative of implementing a byte packing and unpacking

routine in software has been judged to be an excessive

computational task for even moderate network traffic loads. It

would be nice to be able to do the conversion in microcode during

the pseudo-DMA transfers, but having to manipulate the MBR

effectively doubles the length of time to transfer two 8-bit

datum. Details on microcode and interface control sequences

which allow comparisons of the different byte-manipulation

options is contained in an attached document. We have worked out

a preliminary design for the control logic to do the multiplexing

and demultiplexing in the middle of the FIFOs, at the cost of a

20-pin PAL in each direction.

-226-

MISSION
Of

Rawe Air Development Center

.sef ected aco a a i VO,'aLar 0' 5 ,'orvippd C:.qt
* ComrrdflLcatioo, 1 a t 'It .chrc'

a nd e 'l 5, t c N7 as e (C t c moc(plr

u' n a {bv i t FSa- 4 cos5. hc-ES

n t The'ItI llt

vefa lj:la~ ')c 31L

