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ABSTRACT

Represent a time-sharcd computer system as a group of N terminals, each
having submission rate ) and exponential (u) task durations, with tasks sub~
) mitted to a central (single) processor. There they are serviced in processor-
sharing or time-sliced mode. It is shown that the R(t), the response time
conditjonal on t , the required processing time, becomes approximately normally
distributed a8 t increases. Similar results are derived when N increases.

Variactions of the model consfder control: an "inside," processor-shared
gueue avrvices at wost c tasks, others queucing first-come first-served
"outside.” Other possibilities arc described and analyzed.

1. Introduction

The abstraction of computer capacity allocation knowr as processor sharing
is an attractive simplification of time slicing, sometimes cslled round-robin
scheduling. The idea 13 well known (Kleinrock, 1976): given that § jobs or
programs are at the execution stage, each rcceives service equal to one~jth of a
time unit per time unit. In other words, if the chance that any single job,
processed alone, finishes fn (t,t+h) fs uh4 o(h), (exponential-Markov
service), then the chance that a particular (“"tagged") job in the company of
(J-1) others finishes in (t,t+h) is u(h/§) +o(h) as h + 0, Processor
sharing of the above type tends to be equitadle in that it permits short jobs
access to processing even 1if they arrive after, and queue with, longer jobs.

_ Apparently the first study of delays to arriving and queueing jobs under
processor sharing was conducted by Coffman, Muntz, and Trotter (1970). They
assumed a steady state M/M/1 system with processor sharing, and were able to
determine properties of the response time, R , given the processing time
required by the arriving job. Other papers have also appeared.




A vecent paper by D. Mitras (198l1) analyzes response time, R , under the
assumption of a closed system. ldealize the behavior of a system of N termi-
nals and & single computer as a classical machine-repalr situation: each think-
ing terminal (failurc-prone machine) applies for computer service at rate ) ,
and queued or wvaiting jobs are scrved at rate u as long as any jobs are
present. Markov assumptions are made throughout, so X(t) , the aumber of jobs
st the service stage, is s birth and death process with cransition rates

X(t) = ) +» X(t+h) = § + 1 ¢ l’h + o(h) (1.1)

< X(t+h) = § -1 : u.h+ o(h)

¥y
<+ X(t+h) = § : 1 - (lj+vj)h + o(h)

and in particular A = A(N-J), u,*u for § > 1 , othcrwise being zero. Let
processor sharing go‘etn service c’fort allocatfon. Ia Mitra (1981) the dis-
tribution of response time is characterized, and the moments (¢.g. mcan and
variance) aro found under intercsting conditfons, such as that the tag;cd job
requiring t time units of proccssing arrives to find J - 1 accompanying jobs;
the condfitional responsc time, given only proccssing requirement t , is given
particular sttention.

In this paper the provious analysis is generalfzed and axtended. We intro-
duce the idea of processor sharing in an arbitrary birth and death process cn-
vironmsnt, thus allowing quite general terminal-computer interactions to be
represented. In the process, the meaning of “system state at the mowment of tag-
ged job arrival” is clarified; see also recent work of Lavenberg and Reiser
(1981). Response time characteristics are computed under the assumption that
processor-sharing service rates are processor-state-dependent {n a morc general
way than that described carlier; this allows for approximate represcntation of
overhead penalties and also of job scheduling, Other characteristics of tagged
job response are also studied, e.g. the accumulated processing work, W(z) ,
actually performed on that job by clapsed time :(t < t = required processing
time) folloving job fatroduction; note that W(R) = t , s0 the first passage of
W(t) to t 4is actuslly the response time.

Although differential equations may be obtained for transforms of W(1)
under various initfial conditions, and hence, fmplicitly, for its distribution,
the results are far from being explicit and informative. However, central limst
theorems for additive functionals of Markov processes, or for cumulative pro-
cesses, allov the conclusion that the accumulated work accomplished by fixed
time t on a "long” job is approximately normally distributed (Caussian). This
fact fn turn allows the conclusion that the response time for a "long" job is
also approximately normally distributed. Additionally, the normal approximation
may be shown to be valid for our simple model--and probably for others as well--
when the number of competing terminals becomes large, i.e. under heavy traffic
conditions. The quality of the normal approximations for finite job lengths is
currently being assesscd by simulation methods.

In the latter part of this paper we describe queue control in a processor-
sharing environment. The expedicnt is to limit the total number of jobs allowed
simultancous processor-shared service at an "inside” queue, with any cxcess in
"first~come, first-served" status in an "outside” queue. Long jobs are also
shifted from inside to outside by a sampling mechanism. It is shown that long
jobs are favored by a small inside span, ¢ (c being the number simultaneously
processor-shared), while short jobs are favored by large ¢ .
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2. Jsan Response Timee

Begin by describing differcntial equations for the mean response time to be
experienccd by a taggyed, particular, srriving job. Other moments satisfy very
similar cquatioans.

{(a) Conditioning on Required Tims and Systes State.

Throughout vhat follows Markovian assumptions are made: service tiwmes
at the computer are independent and exponential (u). Ceneralizations to phase-
type distridbutions are appavrently possible.

Lot R czefer to the respoasce time of & nevly arrived job, and
»(t) - Z(r]x(0) = §, W(R) = ¢} , 2.1)

the conditional eapectation of response time, given that the job is infcially inm
the company of J others (arrives to find § - 1 present) and requires “work®
OF procossing time equal to t . let A h (resp. o h) for small K identify
the infinitcsimal gencrator of the ucoq‘auylm: procols. $0 transition rates are
es 10 (1.1).

Consider the mo(blc’syum changes ia (0,h), and subsoquently: the

- YUY
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folloving results occur: llct ‘:
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The term r(j) ceptesents the fraction of time the processcr actually spends
processing vhen there ate | jobs being processed.

Alloving h - 0 one tinds the differential equations

su )R () + A m 1 (®) 4:"-’_

EU) o vge) =1 -
8 (8 =1 - Oy tupdage) +amy,

3N 10 - (2.3)

This is a standard system of linear differential equations with constant co-

efficients; initisl conditions are -,(0) «0 tor all j .

(d) Conditioning " Required Time.
1f one removes the condition that X(0) = § in accordance with the

otationary discribution appropriat. for an arriving job it follows that the
axpected response time is linear in the required processing time, ¢t . This

- holds for quite general birth-and-death process models, and not just for the

siaple machine-tepair sctup; see Cohen (1979). Here is the derivation, in
owtline.

First, observe that the long-tun dhtﬂbuuo'n of X(0) , the sumber of jobs
present just after the tagged job enters, is

e s e —rp——
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where ¢ 15 selected so that the q"n oum to one. Recall that
..Ol
. o Wl
3 (] '1"2"‘”3
Marhov chaim X(t) defincd by (1.1) with u, = ur(J) . This is (ntuicively
spparvent, but a formal proof can be based o‘mer upon an cwbedded Markov chain

formulation, or upon the theory of additive functionals of a Narkov process;
see Qinlar ((1975), pp. 269-271). The distribution (q’l has also boen given

by Kelly, (1979), p. 12.

is the statiomary distribution (assumed to exist) of ths

Use (2.4) to remove the condition that X(0) = §; put

afe) = l‘(o’lllll((l). V(R) » ¢) = ’i'qj-j(t) . 2.5

Then in terme of the differenctfal equactions (2.)); after sultiplying through by
3/t()) one obtains (m,(t) & 0)

8 d o Ny
L] - -
»'(t) i‘ -(‘J—' 7Y * ,zl q,-&” { (lj"u’)l,(t) . 1,-mm w,nj.l(t)l

.3
- ’21 .'T&y " b4 (20"

Thes it follove that the long-run conditional expected response time is lioear
ia the processing tise trequirement:

|
2(0
BIRJW(R) = t) = ¢ }, &y et[‘,—({-‘%—)—)} . .7

Apparently no sech simple form existe for Var[R|W(R) » t]) , although
Nitra (1981) has given a ftormula for a perticular case. It vill be seen,
however, that the above vatiance is indeed proportional to t if t 1s large.

3. Zotal Work Completed on & Tagged Job fo a Fixed Time

Tuta attention now to W(t) , the total work expended by the computer on
the tagged job by time t after its arrival, given that the tagged job requires
exactly t tise-saits of work for completion. If wvhea the job arrives there
are 2(0) = jJ customers present, then




\J
{0
uv) -‘ TGF e, 20) =321, (3.1)

(a) The laplace tramsform of W(t).

Nere is the derivstion of a dif{ferential oquation for the Laplace
tramsforms of ¥(1):

0G0 - B k0 e g, ko), for §>21 (3.2)

Now argue in s sanner analogous to the discussion prior to (2.2) to write a
backward equation: for 0 <« h < ¢

) = (a-SFEIN/Y, 0 ~ .
.".0‘0‘) (e ,ll (‘j‘lﬁ,’h",(.of h.l’

| s (e OFUIN/Y,~ b,y (s,3-Bit) & o(h) ,

' ’
} leading to
é
—J % = ~ = i
& “3 » ’y + st(j)l))oj . 1,0,ﬂ . vtyp - (3.4)

1aitisl conditions asre
05(0,0:0) = gle MO 50« s, ko)1, er0, (3.5)

since imitially W(0) = O , regardiess of the job requirements or the imitisl
eaviroament.

(M) A central 1limit ctheorem for W(t).

Exsminetion of (3.1) shows that W(t) 1involves sums of contributions
to work accummlated vhile the system iohsbits various states during the period
(0,1). This suggests that, at least for "long" jobs, f.e. such that required
processing time t +» » , one can anticipate a nearly-Normel distribution for
W(s) . An sppropriate central limit theorem that establishes this for fimite
birth-esd-death models can be found in Keilson ((1979), p. 121); call this
heoren K. Alternatively, one can make use of the theory of cumulative pro-
cesoes, see Cox ((1962), pp. 99-101); cthe latter development is adaptable to
nodels more genersl than the simple bitth-and-death process.

— = -




In order to apply Theorem K redefine the infinitesimal generator (1.1) to
describe the behavior of the accompaniment, X'(t) , of the tagged customer; note

that the relevant generator is now

2'°(t) = ) «X'(2¢h) = § ¢ ) ; l;h + o(h)
' x’ﬂh + o(h) 3.6)
* X'Cith) = § -1 : v;h + o(h)
4 u’”['j-ej)h * o(h) (3.7)
- X'(teh) = ) : I~(A] ¢ u;)h + o(h) (3.8)
for ) =0,1,2,..., W «K-1_. Then
 § |
- . _ £(X' (v)*1)dy
w(v) ‘I’ £(X* (u))dw : ‘!’ ') ¢ ) (3.9)
and theorem K  states Lhat
()]
=L ko, ; (3.10)
o/t
the constants { and ¢° are such that
.O
(= f(J)vJ' 1.11)
§=0
o = 216(0), €(1) ..., 0 (W) )ep £(0) (3.12)
0
!i & [t '
0 e £((n*)

where in the present case the definition of ()
A 1s the metrix

2-tarput -0

is implicit 1o (3.9), and

(3.13)




4 being the identity, and

L}
1
k=l  mpome s

(3.14)

L
Oe
=
| =X )
e
-
.
o

Arrovs are steady-state probadilities for the accompaniment, and A 1is defined
as follovs:

AO.I - \6/Y » Ao.o -] - A(')/y
Mager SN0 e A Tl Ay L vy (3.15)

vj-13+uj; Y ™ max v

(Vo - xal VNQ - U;‘.)

(c) A central limit theorem for response time, R(t).
A graph of W(:) vs. 1 starts with W(0) = 0 and increases in
random straight-line segments untfl W(1) = t. The value of T at which this

occurs, 1t(t) £ R(t), 1is the first-passage time to t of the work process
{W(t), 120) , and is the requircd response time, so

P{W(t)<t) = P{R(t)>t} . (3.16)

Rov invoke the previous theorem (3.10) concerning asymptotic normality of W(t)
and 8 standard argument of reneval theory, cf. Karlin and Taylor ((1979),
ppP. 208-209) to see that {f ¢t = £t 4 Vo<tx , then, a8 t =+ = ,

t ~% - /__’n‘t x , from vhich 1t follows that

R(t) ~ at £ R(t) - ¢/t (2) N(O,1) . (3.17)
8t /0 .
p t




4. Beavy Traffic Analysis of the Response Time of a Processor-Shared Job

This section investigates the problems of delay of a cagged job requiring
t umits of processing time vhen it is accompanied by many others, i.e. is in a
heavily loaded system. Restrict attention to the machine repair model in which
‘j ® A(M-]) and "j =y , and omic the effect of r(j), l.e. ©®(j) =1 . Let

there be N terminals and one processor, with 2t being the expected terminal
think time (exponentially distributed), u = Nu' being the processing rate of
arriving jobs; A and u' are fixed but N is large and the service rate
scaling by N {s required in order that queue size be of order N .

Mow utilize the fact (lglehart (1965), and Gaver and Lehoczky (1976)) that
4f x(t) 1s the number of jobs at the processing stage at t then X(t) can
be approximsted by a diffusion process:

x(e) = ¥ a(e) + N y(e) : (4.1)

where a(t) 1s a deterministic function of time and ({y(t)} 1s, for the
present modal, a particular Ornstein-Uhlenbeck process. It turns out that when
| )

48 o s(tma(e)) - v’ (4.2)
or
a(w) = 1 - %% (4.3)

vhich is feasible if ) > u' , 1i.e. under heavy traffic conditions. Furthermore

dy(t) = - av(t)dt + /A (1-a(t)) + u' dB(t) , (4.4)
{B(t),t > 0} being the standard Wiener process. In the long rum,
dy(t) = - Av(t)dt + 257 aB(e) . €4.95)

It 18 in the environment X(c¢) described by (4.1) that the tagged job enters.
It encounters competition for processor-shared service, and so its accumulated
work completed by fixed time 1t jis essentially

x(u) °

b 4
W) = ‘f, Ldu_ (4.6)

Apply the approximation and expand to second ocrder terms fn N , the number of
terminals, to find




- —

\ du ¥ ds ¥ Ay (u)du
w(s) —_— - .7
A " u(u)[x +—:-‘l"l&- ..£ Ma(u) {a (Ma(u))?
ae

Por simplicity, and to enable comparisons vith previous results, let
alv) = a(=») , so tha tagged job arrives in the stcady state. Expression (4.6)

then says that for the spproximation advanced hers,

(4.8)

"0 = [ ST - an@n? [ v, osrse

00 the expected amount of work done on the tagged job is nesrly <t/E[X(=)) ,
and the actual discribution of total work done is approximacely Gaussian
(integral of an Ornstein-Uhlenbeck process), vhere the Caussian property results
from the assumption of many accompanying jobs, and not necessarily because the

tagged job is long.
Standard calculations aspplied to (4.7) shov that, as T + »
h L
ll£ Y(u)du) >0 and Var[] Y(u)du) > (2u'/22)1, so the normsl approximation to
0

sccumulated work W(t) has the parameters

.. ‘ 2. .o ' - 2
CmET N wmET T TG «.9

from which it follows that the parameters of the normal approximaction to R(t)
are

.= % o [Na(=)] o E[x(=))

D 1 2 M- Eix(=
“'%‘h@)"%:{x(-)i'f‘ Tx=7 ) -

These formulas state that if think (demand) rate ) 1s very lsrge then, since
B[x(=)]} = B , the variance of response time diminishes, vhile of course expected
tesponse time increases like K , This 1s plausible since in extremely heavy

traffic sll terminals cowpete, and the tagged job gets a steady (lll)s-! of a
quantun. For smaller ) the expected response time drops with E[X(»)] , but

Tesponse time variance increases.

(4.10)

The above derivations are informative but not rigorous. Semigroup sethods
of Berman (1979) can be applied to place the results on a mathematically soltd
beeis. Mmerical assessment of the results is also of interest.
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'S. Bussrical Cowparisons

)

In this section a brief investigation 1s reported of the numcrical agree-
meat between the very simple formulas from hcavy traffic theory (or the param—
eters of the accumulated vork distribution and those of direct Markov-chain
cwnulative process theory origin.

Parameters of Total Work

Exsmples. let u =1, ¥ e~ 23, 50, vith ) varying.

Be2S
Retes()): 0.01 0.0222... 0.05 0.10 0.15
[ R- %) 0.77 0.51 0.16 0.067 .08S
(Diffus.) -— - 0.20 0.067 0.055
e2(u.cn.) 0.44 0.7 0.22 .0045 0.00085
(Diffus.) - - 1.28 .0040 0.00079
]
h‘.‘(‘): 0.01 o.ozzzcoc o.os o.lo o.ls
tOLCh.) 0.53 0.13 0.033 0.025 0.023
(Diffus.) - 0.20 0.033 0.025 0.023
e2(u.cn.) 0.83 0.33 0.0011 0.000081 0.000026
(Diffus.) -— 6.48 0.00099 0.000078 0.000025

The diffusion approximation and Markov chain parameters agree remarkably
well vhen traffic 1s heavy (large 1), but, as might be feared, diffusion fails
miserably for small ) .

6. Queue Control by Service Span and Interruption

In this section we consider queue control. The central processor now has
finite service span, c¢ , vwhich may be smaller than the number, N , of ter-

-minals. This means that if there are i < ¢ jobs in service they are served

as before "inside"” at a rate ur(i) , vith processor sharing in effect. How-
ever, if there are more than ¢ jobs simultancously requesting service, oanly
¢ of them are served simultaneously, and at rate ur(c) , also with processor
sharing discipline. The others are queued "outside", with "first-come, first-
served” service discipline.




~

If there are more than ¢ customers requesting service, the customcrs that
are in service “inside" experience independent service interruptions at rate v.
then sarvice is interrupted, each job in service is equally likcly cto be moved
to the end of the queue; thereupon the job at the hcad of the "outside" qucue
immediately enters service. Both the i{mposition of the limited processor
sharing, imposed by c < N, and the interruption process are intcnded to control
queueing by adjusting the relative attention given to short and long jobs.

Markovian assumptions are made throughout, so that X(t) , the number of
jobe requesting service at time ¢t , is s birth and death process with transi-

tion rates given by (1.1).
(a) An Auxiliary Process.

Lat R be the response time of a newly arrived tagged job. Since the
tagged job may not be served until completion when it first enters service, it
1s necessary to introduce an auxiliary process {Y(t); t > O} in order to study

R.
-

In brief summary, if there are 1 customers (including the tagged job) re-
questing service at time t and the tagged job is in service, then the state of
Y(t) is (1,0) . 1If there are 1 > ¢ customers requesting service at time ¢
and the tagged job {s not in service dbut is in the jth position in queue, the
state of Y(r) 1s (1,3) . One can now describe the possible changes in Y(t)
in a time interval of length h ; details will be presented elsewhere.

Let

-“.”m = E[R [Y(0) = (1,]) , W(R) = t] , (6.1)

the conditional expected response time, given that the tagged job is initially
in the company of (i-1) others and either it {s being served inside
(1€ § = 0) or it is jth 4in the outside queue (if J > 0) .

Argusents similar to those of Section 2 yield differemntial equations for

l(1 j)(t) which can be solved numerically. A closed-form solution is compli~
1 ]

cated and uninformstive. It is possible to numerically evaluate the mean
Tesponse time,

a(t) = E[R|W(R) = t) = q n (c) ,
I 1§j (1,3) (1,1)

vhere q(1 1 is the inftial distridbucion encountered by the tagged job.
]

The mean response time is not generally linear in t for this wodel. Note
that 1f ¢ = N then this model is equivalent to that considered in Section 2
and hence as shown 1is Section 2, m(ct) 1is linear in ¢t for that special case.

(b) An Approximation to Expected Response Time.

A useful aspproximation to the expected response time for a job requir-
ing t wunits of work i{s obtained by the following argument. Assume that the
service rate for the tagged job is the same throughout its processing and is
equal to the rate that it experiences when it first enters the processor. Thus




o
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the tagged job requires tt = ;%%T units of proceseing time 1f 1t enters when
these are 1 < c jobs (including the tagged one) requesting processing. If
i>¢c, then tt = ;%fy . If 41> ¢, then the number of service interruptions
during t 1is Poisson with rate % « Each time service is interrupted, the

tagged job spends an expected amount of time (i-c) [v + ut(c)]-l in queue.
Thus the expected time spent in queue because of service interuptions is

v -1
(1-c)(;)t*[v +ur{e)] © . If 4> c, the expected initial waic in queue until

the tagged job starts service is (i-c)(v + u:‘(c)]-1 . The resulting a x{-
sation to the expected response time is (see (2.4)) ne appro

A= i 9%y t:) + ]
gsy °F fec+l

4 s (6.2)

N
- ~1lj_wvt
+ 1-£+1 q (t-c) [v + pr(c)] [r(c) + 1] .

Table 1 gives values for the expected response time, m(t) , and the above
approximation for various values of A, py, v, c, and t for r(j) =1 and
N = 25 terminals. The quality of the approximatfion (6.2) appears to be
excellent for all cases considered.

(¢) Numerical Implicatioms.

Aspects of the dbehavior of m(t) to be noted from the table are as
follows, 1f the amount of processing time required, t , is "small", then
expected response time is minimized when ¢ 1is maximized (here ¢ = 25); that
is, vhen there is maximal processor sharing and no outside queue. If t 1is
"large”, then expected response time i{s minimized when ¢ = 1; that is, when
the processor is dedicated solely to the job that is being served, and other
jobs queue outside in turn. RNote that increasing the rate of service fnter-
ruptions by changing v can either increase or decrease the expected response
time, depending upon job time requirements.

These behavioral aspects also appear by taking derivatives of the approxi-
mate average response time A . In particular,

<0 1f t < %-,
a = .-1—
F;Al 0 if t 5
>0 1t ¢ > 1,
L »
If r(jJ) =1 J=1,...,N, then A 1is decreasing in ¢ 1f ¢t < %; A 1is
1

increasing in ¢ 1if t > %-, and A is constant in ¢ if ¢t = ; .

12




Finally, arguments similar to those in Section ) will show that the re-
spouse time is approximately normally distributed when the required wvork is
large. Again, detatls will be provided inm later vork.

13
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APPENDIX

To show (2.7) and (3.10) yield the sames value for E({R[W(Y) = ¢} for ¢
large for the case uj = ur(y) .

First: q(y) - e¥ iy
.ec lo R ,,0 X \j:l
* ‘.1 R oo X uj-l ¢
Bence, lijzl;é’-yqj
- A X x A

o LN j-l
gup T up X eee X,y

. Since, by - ur(j)
-. = Qg XXy
BR® Cu Z 3 . X 3
3= 1 J
- E 3G x eee @A, J) ; M
R g1 0 S PO
k=1
Further, ® by
c = 2 kel .
A, % x A Ty
§=1 0 -1 k-jk
Hence,

JOA, % e x A, ) T u
jzl 0 -1 [k-j+1 k

nR=y

Ay % eoe X2, DT p
jzl 0 -1 [k-j k

wvheres Alxxo = 1 by convention.
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Second:

. ‘1 X se0 XA
* .—-——————-—L [ ] -
() Wy % e X iy (3+1)v' (0) j~o0,1,... (a, =2

wvhere

since

(Xl X ... % XJ_I)LEJ u

o
"[i j(ll X ,..%x )
j=1

31

A comparison of £ with m shows that

™
L]
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