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ABSTRACT

Represent a time-shared computer system as a group of N termInals, each
having submission rate I and exponential (W) task durations, with tasks sub-
matted to a central (single) processor. There they are serviced in processor-
sIhrin& or time-sliced mode. It is shown that the R(t), the response tLme
conditional on t , the required processing time, becomes approximately normally
distributed as t increases. Similar results are derived when N increases.

Variations of the model conider control: an "Inside," processor-shared
queue swrvices at most c tasks, others queueing first-come first-served
"outside." Other possibilities are described and analyzed.

1. Introduction

The abstraction of computer capacity allocation knowr as processor sharing
is an attractive simplification of time slicing, sometimes called round-robin
scheduling. The idea is yell known (Kleinrock, 1976): given that J jobs or
program are at the execution stage, each receives service equal to one-Jth of a
time unit per time unit. In other words, if the chance that any single Job,
processed alone, finishes in (tt+h) is p114 o(h), (exponential-MMrkov
service), then the chance that a particular ("tagged") Job in the company of
(J-l) others finishes in (t,t+h) is 4(h/j)+ o(h) as h - 0. Processor
sharing of the above type tends to be equitable in that it permits short jobs
access to processing even if they arrive after, and queue with, longer jobs.

Apparently the first study of delays to arriving and queueing Jobs under
processor sharing was conducted by Coffman, Huntz, and Trotter (1970). They
assumed a steady state M/H/1 system with processor sharing, and were able to
determine properties of the response time, R , given the processing time
required by the arriving job. Other papers have also appeared.

! Ii Ill-
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A recent paper by D. kitra (1961) analyzes response time, K under the
assumption of a closed system. Idealize the behavior of a system of N termi-
mals and a single computer as a classical machine-repair situation: each think-
ing termInal (failure-prone machine) applies for computer service at rate A
and queued or waiting jobs &re served at rate ya as long as any jobs are
present. harkow assumptions are made throughout, so X(t) . the aumbcLr of jobs
at th. service stage, is a birth and death process with transition rates

1(t) Wj (t~b) - j + I: I h +o(h) (1.1)

.1(tGb) - j - I : p h +o(h)

* (tb) - j : I - (A i4v i)h + o~h)

and In particular A Uj- u(6i, a for j I I . otherwise being zero. Let
processor sharing ao4 ern service e fort allocation. In Micra (1981) thec dis-
tribution of response time is characterized. and the moments (e.a. mc-an and
variance) are found under Interesting conditions. such as that the tagagv4 job
requiring t time Units of processing arrives to fiad j - 1 accomrpanying, jobs;
the conditional response time, given only proccssing requirement t , is given
particular attention.

13 this paper the previous analysis Is generalized and extended. We intro-
duce the Idea of processor sharing in an arbitrary birth and death process en-
vironment, thus allowing quite general terminal-computer Interactionift to be
represented. In the process. the meaning of "system state at the noment of tag-
ged job arrival" Is clarified; see also recent work of Lovenberg and Reiser
(1961). Response time characteristics are computed under the assumption that
processor-sharing service rat&* are processor-state-dependent in a more general
way than that described earlier; this allows ror approximate representAtion Of
overhead penalties and also of job scheduling. Other characteristics. of tagged
job response are also studied, e.g. the accumulated processing work, WO~),
actually performed on that job by elapsed time i(t t a required processing
time) following job introduction; note that W(R) 9 , so the first passage of
1(i) to t Is actually the response time.

Although differential equations may be obtained for transforms of W(i)
under various Initial conditions, and hence, Implicitly, for Its distribution,
the results are far from being explicit and informative. However, central limit
theorems for additive functionals of MIarkov processes, or for cumulative pro-
cesses, allow the conclusion that the accumulated work accomplished by fixed
time i on a "long" job is approximately normally distributed (Gaussian). This
fact In turn allows the conclusion that the response time for a "long" job is
also approximately normally distributed. Additionally, the normal approximation
my he shown to be valid for our simple model-and probably f or others as well--
when the number of competing terminals becomes large, i.e. under heavy traffic
conditions. The quality of the normal aparoximations for finite job lengths is
currently being assessed by simulation methods.

In the latter part of this paper we describe queue control In a processor-
sharing environment. The expedient is to limit the total number of jobs allowed
simultaneous processor-shared service at an "Inside" queue, with any excess in
"first-come, first-served" status in an "outside" queue. Long jobs are also
shifted froms Inside to outside by a sampling mechanism. It Is shown that long
jobs ore favored by a small Inside span, c (c being the number simultaneously
processor-shared), while short jobs are favored by large c
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2. man Response Tin

Begin by describing differential equations tor the moan response time to be
aperienced by a tagted. particular, arriving job. Other smats satisfy very
siMilar equations.

(a) Conditioning on Required Time and System State.

Thsourjout what follows Harkovian assumptions are ade: service times
at the computer are Independent and exponential (u). Ceneralizations to phase-
type distributions are apparently possible.

Lot R refer to the response time of a newly arrived job, and

a (t) - zlafx(o) J . W() - c]. (2.)

the condltional epectation of response time, given thun the job is initially in
the company of j others (arrive# to (ind j - 1 prcsent) and requires "work"
or procesoing time equal to t . Lt 4 1h (reap. m.h) for wA4l! h tdentify ,
the Infinitesimal generator of the accou4ay.in proce s, so transition rates are
a0in (. 1).

Consider the possible syetvft changes In (O.h). and subsequently; theI "
following results occur: lt U j 0 -(j-1J

Dji) M -h * m(t - WJ ) I - (I

(2.2)
+ A b (t h)i#. h)'*he' t- h) +*o(h)

SJ jl ) ) -I
the t'ru r() repredue (b tractaloo of tiar th processor actually spends
processing w tn there are jobs being processed.

Allowing h 0 one finds the differential equations

1() (A a.)s W~ 4' 1 f () + a Mt) (2.3)

Weis to a standard system of linear differential equations with constAnt co-
eftlclents; initial conditions are e (0) - 0 for all j

(b) Conditioning .n Required Time.

If one removes the condition that X(O) t j in accordance with the
stationary distribution appropriat, for an atriving job it follows that the
expected response time is linear in the required processing time, t . This
holds for quite general birth-and-death process models, and not just for the
simple machine-repair setup; see Cohen 119793. Hofr is the derivation, in
oetline.

Firot, observe that the long-run distribution of 1(O) , the number of jobs
present Just after the tagged Job enters, is

i _ _ _ _ _ _
-



qj- €UJ.l I_ _ o #Ujsr() S - R.2.....N . (8.4)

1obe e Is selected so that the qgo su to one. small that
Igo Y " ' to the stationary distribution (assumed to exist) of the

tj -0 ee hI. .u

Narkov chat* X(t) defined by (1.1) with i, ,* Or() . This is intuicivoly
Syaresot, but a formal proof can be based e ter upon an .obodWdd Wirkov chtin
jfrudlatin. or upon the theory of additive tfunctlonus of a ?trkov process;
see palar ((1915). pp. 269-271). Ue distribution (qj) has also been &(vm

by Molly, (1919), p. 12.

be (2.4) go removie te condition tbat X(O) * j; put

nst) I(Z)MfIIx(o). 1(t) - ti * f q.j() . (2.5)

Them to term of the dif(frential equatloas (:.J); after multplying through by
J/r(J) m obtains (%(t) a 0)

Jo

j q"V --1

Thee It follow* that the lo-fron conditiomal expected response Cte is l10ar
to the Processing time requicrmot:

t) * q J eb(

Appemtly o such siple form exist* for Var[RIV(-) tj , altbough
Ottra (198) has given a formuls for a particular case. It viii be seen,
oewr, that the above vatiate is iadeed proportional to t If t Is large.

1. Ttal b-rk Cmpleted on a Tated M to Isa Fixed Tim

Tor attention aom to W(t) , the total work expended by the computer on
doe tagned job by time t after its arrival, giveo that the tagged job requires
metly t timw-vmts of work for totpletio. If bes the job arrives there
re 1(0) * J customers present, them

a-.t
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(a) ThM Laplace trIsfr of Wi).

re Is the dertation of a dlftorensgil equation for the Laplace
ifrm of V(V):

.li. O -I)(O) - j. i - ti f for j t (.2)

Ow argue to a mmmor analogou to the discussion prior to (2.2) to vrite a
baeck"d equaion for 0 h 4 t

sitso ;0 ) -s • l l / ) I-(4 j oil i f jOt-h; c)

* (,sr J)j)b1J))j (a.i-hjt) (3.3)

; . (e'sr(Pjhl'lj 1 (s.t-h~t) o(h)i bj-l1

lMAiNG to

-* sr(j)/j)j •j J jj.

lattial coditions are

*j(8,O;t) -tuie(O)iz(o) -J I t tJ a I * t 0 09 (3.5)

ifse iLtially W(O) - 0 , rqardless of the Job requirements or the LatiUal
allrtmit.

(b) A Cmetral limit theorem for W().

Sma tion of (3.1) shows that W(t) Inless of cotributiom
te werk auclated vhile the systm inhabits varios states during the period
(0,t). e sugests that, at least for Olong" jobs, I.*. sch that required
proesig time t ., a os e ca anticipate a searly-Norml distributlon for

O() . AM appropriate central lidt theorem that establishes this for finite
birtb-anddeat models cam be found in SEllsom ((1979), p. 121); call this
MWm R. Alternatively, one cam a*e use of the theory of cumulative pro-
eosee, ee Cox ((192), pp. 99-101); the latter developset 1 adaptable to
MMel ne general than the simple birth-and-death process.
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iS order to apply Theorew K redefine Cio InftcesLsal generator (1.1) co
desrlbe the behavior of the ac, Zi (i) of the tagged custoeLr; note
that the relevaot geerator Is now

t) - J V O(Wb) a j I t : h + o(h)

I1 +h + o(h) (3.6)

S 1(tth) * - 1 : uh * o(h)

I ujoj ",-) b* o(t) (.7)

I fsh) - : 1-( *O)h * O(h) (0.6)

for j * 0.1...... 1* - I • Tbr

ICO))u 1
W(s). * I 1('(u)) , ,L.", .. (3.9)

0 0 (u)

ad theof S. Kstats. that

v ) . - 5(o.1) ; (3.10)

the constanto , and e are "Ch that

0..1

J-0

2 1 1 ( ) .f 1 ) ..., f 3 '0 '1 ( 0 ) ( 3 1 2 )

S" f(1)

Where I* the present tase the deflaiti! of Is Implicit In (3.9), ad
Is the ntrim

. (Q;-d~~lI -Lv) (3.13)

I .,t



A being the Identity, and

ugo W! ';' (3.14)

J' o ";""",iW , W,; 1 ;,

k-rov are steady-state probabilities for the accompaniment, and I is defined
am follows:

Aol" I' ' , A0  - I- X/y

Av0  lily A * , I j/ (3.15)

vi + ; y max %
ii

(c) A central limit theorem for response time, R(t).

A graph of W() vs. x starts with W(O) - 0 and increases in
random straight-line setments until W(i) - t. The value of T at which this
occurs, 1(t) ! R(t), is the first-passage time to t of the work process
JW(is), t0) , and is the required response time, so

F(W(i)4t) - P(R(t)>} . (3.16)

Mw Invoke the previous theorem (3.10) concerning asymptotic normality of W(t)
ad a standard argument of renewal theoy, cf. Karlin and Taylor ((1979),
pp. 208-209) to ae that If t a Ci, + r4i4 x , then, as t - ,

S5- x from vhich it follows that

R(t) - at £ R(t) - t/C (D)
47t- MN(01) .(3.17)

7
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4* Itv Traffic Analysis of the Response Time of a Processor-Shared Job

Wes action invescigaces the problem of delay of a tagged job requiring
t mite of processing time when it Is accompanied by many others, i.e. is in a
eavUy loaded system. Restrict attention to the machine repair model In which
Xj - X(M-3) and u wU , and omit the effect of r(J), i.e. r(J) B I . Let

there be N terminals and one processor, with A being the expected terminal
think time (exponentially distributed), u a Nu' being the processing rate of
arriving jobs; A and a' are fixed but N Is large and the service rate
scaling by N to required in order chat queue alse be of order N

lim utilize the fact (Iglehart (1965), and Ga er and Lehoczky (1976)) that
if x(t) Is the number of Jobs at the processing stage at t then X(t) can
be approximated by a diffusion process:

X(t) " N &t) + of Y(t) (4.1)

wbere a(t) is a determinlstic function of time and Yt)) is. for the
present model, a particular Ornstein-Uhlenbeck process. It turns out that when

d-- - A(l-a(t)) - u' (4.2)dt

or

l-) - 1 - (4.3)

which is feasible if A • a' , i.e. under heavy traffic conditions. Furthermore

dy(t) - AY(t)dt + (l-elt)) u' dB(t) , (4.4)

((t),t 0 0) being the standard Wilener process. In the long run,

dy(t) - - ly(t)dt + *-," dB(t) . (4.5)

It is in the environment X(t) described by (4.1) that the tagged job enters.
It encounters competition for processor-shared service, and so Its accumulated
work completed by fixed time t Is essentially

(T) j du (4.6)

Apply the approximation and expand to second order term in N , the numer of
terminaals, to find



V(T) ftdo d 05 4 Y du (7
Y(U) ll| 0 i auO (u)[+ 0, o (au))

am slmplicity. ad to enable comparisons vith previous results. let
a(v) a a(-) , so the tagged Job arrives In the steady state. Upreseion (4.6)
them says that for the approximation advanced hers,

- y(u)du. 0 c v - t (4.8)

so the expected emount of work done on the tagged Job Is nearly TIE[X(-))
d the actual distribution of total work done is approxLmacely Gaussian

(integral of an Ornstein-Uhlenbeck process), vhere the Gaussian property results
from the assumption of many accompanying jobs, and not necessarily because the
tagged job Is long.

Standard calculations applied to (4.7) show that, as Tr

a, Y(uWdu] ft 0 and arif Y(udul at 120'1W)i. so the normal approximation to

asc - ted work 1(T) has the parameters

I U-)) a A • Ua()J * Aa (m)j4

from which It follows that the parmeters of the normal approximation to 3(t)

-a - (aC-)) €, Ix(-)J
I

(4.10)
02-42 (1(- sx(-)

W-3 ) 1( A 319(-)

Tbese formala state that If think (demand) rate I is very Large then, slte
212(o)) - U , the variance of response time dLmaishes, while of course expected
response time Increases like 1 . This is plausible since in extremely heavy

traffic all torinals cpete, and the tagged job gets a steady (l/N) t h of a
qumatm. for smeller A the expected response time drops vith 3[X(-)) , but
response time variance Increasas.

The above derivations are informative but not rigorous. Semigroup methods
of D rman (1979) can be applied to place the results on a mathematically solid
beals. 3hmrical assessment of the results is also of interest.

9



IS pMrical Comparisons

In this section a brief Investigatto is reported of the numerical agree-
mrAt between the very simple formulas from heavy traffic theory for the porn.-
egore of the accumulated work distribution and those of direct Markov-chain
Cumulative process theory origin.

?arameters of To.tal Work

Iampples. Let v - 1, 9 a 25, 50, with I varying.

V - 25

3ates(A): 0.01 0.0222... 0.05 0.10 0.15

(O.0O.) 0.77 0.51 0.16 0.067 .055

OwNffus.) - 0.20 0.067 0.055

*'OL.Ch.) 0.4" 0.75 0.22 .0045 0.00085

(Diffus.) - - 1.28 .0040 0.00079

x-50

iates(): 0.01 0.0222... 0.05 0.10 0.15

(OLCh.) 0.53 0.1.3 0.033 0.025 0.023

lofue.) - 0.20 0.033 0.025 0.023

2 ILCb.) 0.83 0.33 0.0011 0.000081 0.000026

(D/ffue.) - 6.48 0.00099 0.000078 0.000025

The diffusion approximation and Markov chain parameters agree remarkably
v*U when traffic is heavy (large A), but, as night be feared, diffusion fails

a rserably for small A .

6. ueue Control by Service Span and Interruption

In this section we consider queue control. The central processor nom has
fiate service sp, c , which may be maller than the number, N , of ter-

.uasale. This means that if there are i 4 c jobs in service they are served
as before "inside" at a rate mr(i) , vith processor sharing in effect. Now-
ever, If there are more than c Jobs simultaneously requesting service, only
e of them are served simultaneously, and at rate ur(c) , also with processor
sharing discipline. The others are queued "outside", vith "first-come, first-
served" service discipline.

10



IU there are more than c customers requesting service, the customers that
are in service "inside" experience independent service Interruptions at rate v.
Om service is interrupted, each job in service is equally likely to be moved
to the end of the queue; thereupon the job at the head of the "outside" queue
Imediately enters service. Both the imposition of the limited processor
sharing, imposed by c g N , and the interruption process are intended to control
queueing by adjusting the relative attention given to short and long jobs.

Narkovian assumptions are made throughout, so that X(t) , the number of
jobs requesting service at time t , is a birth and death process with transi-
tion rates given by (1.1).

(a) An Auxiliary Process.

Let R be the response time of a nevly arrived tagged job. Since the
tagged job may not be served until completion when it first enters service, it
Is necessary to introduce an auxiliary process {Y(t); t > 0) in order to study
1t.

In brief sumry, if there are i customers (including the tagged job) re-
questing service at time t and the tagged job is in service, then the state of
T(t) is (1,0) . If there are I : c customers requesting service at time t
and the tagged Job is not in service but is In the Jth position in queue, the
state of Y(t) Is (i,J) . One can nov describe the possible changes in Y(t)
In a time interval of length h ; details will be presented elsewhere.

Let

(t) - EIR IY(O) - (i,J) , W(R) - t] (6.1)

the conditional expected response time, given that the tagged job is initially
i the company of (1-1) others and either it is being served inside
(if J - 0) or it is Jth in the outside queue (if J > 0) .

Arguments similar to those of Section 2 yield differential equations for

a (IJt) W which can be solved numerically. A closed-form solution is compli-

cated and uninformative. It is possible to numerically evaluate the mean

response tin,

,,(t) - ZlW(R) - t] - J qli'J)l(ij)(t)

where q(jj) is the initial distribution encountered by the tagged job.

The man response time is not generally linear in t for this model. Note

that if c a N then this model is equivalent to that considered in Section 2
and hence as shown is Section 2, m(t) is linear in t for that special case.

(b) An Approximation to Expected Response Time.

A useful approximation to the expected response time for a Job requir-
Ing t units of work is obtained by the following argument. Assume that the
service rate for the tagged job is the same throughout its processing and is
equal to the rate that it experiences when it first enters the processor. Thus

t'l ' | I I1I



unitso poessing time if it enters when
the tagged job requires t* It unt of procesigte fI ne*wer W1)tbese are 14 c Jobs (including the tagged one) requesting processing. If

I 2 C 9 then t* - . If I c , then the number of service interruptions

duuing t is Poisson with rate . Each time service is interrupted, the
c Itagged job spends an expected amount of time (-) {v + Pr(c)]- in queue.

Thus the expected time spent in queue because of service interuptions Is

(i-c)()te[v + mr(c)]"1  If I ) c , the expected initial watt in queue until

the tagged job starts service is (1-c)[v + Pr()-1 . The resulting approxi-
mation to the expected response time is (see (2.4))

c It N
A - I q, r-- + q, rc (6.2)

jai i-c+l

+ I q,(I-c)iv + pr(c)- C[. it]

ic+l

Table i gives values for the expected response time, u(t) , and the above
approximation for various values of A, V, v. c. and t for r(J) B1 and
N a 25 terminals. The quality of the approximation (6.2) appears to be
excellent for all cases considered.

(a) Numerical Implications.

Aspects of the behavior of m(t) to be noted from the table are as
follows. If the amount of processing time required, t , is "saill", then
expected response time is minimized vhen c is maximized (here c - 25); that
is, when there is maximal processor sharing and no outside queue. If t is
"large", then expected response time is minimized vhen c - 1; that is, vhen
the processor is dedicated solely to the job that is being served, and other
jobs queue outside in turn. Note that Increasing the rate of service inter-
ruptions by changing v can either increase or decrease the expected response
time. depending upon Job time requirements.

These behavioral aspects also appear by taking derivatives of the approxi-
mote average response time A * In particular,

1

<0 if t<

a 1_
A -0 if t -,

>0 If t>--

If r(j) - 1 J 1 l,...,N, then A is decreasing in c If t I '; A is

increasing in c if t 1,and A is constant in c if t -.
12P
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71arlly. &rgumants similar to those in Section 3 vil show that the re-
8pouse ie Is approximately normally distributed when the required work Is
large. Agaim, details will be provided In later work.

13
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AMPZNDIX

To h.m (2.7) and (3.10) yield the sam value for i((R,(T) -c] for t

large for the cas p j r(j).

ra.t: q(j) • €- i
C 11O x 2

91 X J-1

Vence, U! m

C - 0 x ... x

j rlJ) l x " x m -

Since, p pr(J)

Ia y 1 o X

ia cy .1 " x x p

K 1
k tIPk J ,1 i "J + 1 .
k-1

Further, 
kIIP

C-a

I A0 x ... xA 1
Jai01- k-i

Hence,

SJ(A 0 X *. K Ad; A R i1A
imIk.1+l aj il £J-j+1 k

• - l k j , -l ' l I l - .'

j1 0 j )i-i i-1 k-j

where AixA0 - 1 by convention.
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Secoad:

00 (j+1)w'(0) .1 GO 0ti,.. (A1  I0

wbere
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A comparison of 4 with m shows that
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