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This was originally intended as a brief intro- )
‘f duction to the theory of waves scattered from a randomly ' ]
,ﬁ rough surface. Now it is no longer so brief, but still }

introductory. -

An alternate title to this report might be N
o "Selections from Bass and Fuks". The majority of the -
o material contained herein may be found in their excellent

' monograph "Wave Scattering from Statistically Rough
Surfaces"!. I have rearranged some sections, to indicate

their relationship and shortened others. The section on

composite surfaces contains results due to Brown?, which are

not in Bass and Fuks, with a derivation due to Dashen?3.

I have attempted to include what I feel are the -
most important forms of the average field and average
intensity for both large and small Rayleigh parameters. Then
1 have indicated, in the section on composite surfaces, one
way to combine these forms to give a result which I hope is
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e valid over a wide range of frequencies, angles, and'surface ii
E statistics.

E Shadowing corrections are included at the appro- o
- priate places, but no attempt to derive these results has o
f. been made. An excellent derivation due to Smith" is J
N recommended to the reader. Some suggestions as to possible .
f extensions of the use of shadowing are made, but their "

validity awaits additional verification.
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It should be noted that this primer gives a single-
bounce theory, describing a single encounter of a wave with a
rough surface. The multiple-bounce theory, necessary for
example in shallow water, is significantly harder. Attempts
at a theory have been made, based on a Green's function for a
waveguide with rough walls®, but little comparison with data
has occurred. A derivation of a loss per bounce using WKB
theory has proven useful in computing loss due to the rough
walls®,

Currently at SAI a multiple-bounce theory from the
moving ocean surface due to Dashen and Spofford is under
development, with promising results thus far. If the current
good results continue, it is very likely that this theory can
be extended to a multiple-bounce theory in shallow water,
including a rough bottom.

Following is a brief discussion of each section:
Section 1 briefly‘summarizes what everyone should know about
describing surfaces probabilistically. The reader should
scan this, to fix notation at least. Various important
relations are introduced here, for later reference.

Section II tries to relate Section I to reality, in
a brief discussion of some of the rough surfaces of interest
to an acoustician. A point made there perhaps deserves to be
mentioned here also. The type of description of a random
surface used in Section I certainly does not apply to all
surfaces. It seems to work well for the ocean surface and it
may be valid for the ocean basement. (Note that so little is
known about the basement power spectfa that with a 1little
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‘ ingenuity, one should be able to fit almost any basement "
\: scattering data. Talk about curve fitting!) However, this
5 description is probably not valid for ice surfaces. People
| concerned with radar scattering may have to cope with an even -
‘ wider variety of surfaces, buildings, tall grasses, trees,
§ each of which may require a different description. . ]
3 _
. Section IIl attempts a brief discussion of the
}; actual mechanisms of scattering. A little tolerance is :"
3 perhaps called for on the reader's part, for the author is a
{j - certainly no physicist. Even so, the rather simple-minded e
>~. concepts in Section III have provided some insight to the N
' author, and may prove helpful to the reader. ol
] M
? Section IV formulates basic solutions of the wave oo
equation and Hemholtz' equation. Again, this is necessary to i
o fix notation, define the appropriate Green's functions, - :
: reflection coefficients, etc. S
- Section V discusses scattering from a slightly -
0 rough surface, i.e., a small Rayleigh parameter. The solu-
" tion given is the first order term in a series, where the o
:.; Rayleigh parameter is the expansion parameter. The free :
- surface. is discussed first, followed by the rigid surface, =
) and then a general interface. 1In each case, the mean field -"I: "
N <U> = U is discussed first, then the average intensity R
X <juf{?>. In discussing the intensity, a natural division e
' occurs when the scattering surface is "small"™ or “large". -
Here "small" refers to a Fresnel zone on the surface, so that N
. across the scattering surface the incident wave has little or ZE:: ]
‘: no phase change. In the "large" case, where several Fresnel o
¥
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zones are illuminated, the curvature of the wave across the

surface must be taken into account. Typically, in the
"small®" case, a scattering kernel for a surface "patch®™ is
derived, and this kernel is simply integrated over the
illuminated surface in the "large" case. These distinctions
do not arise for the mean field, because, as shown, the mean
field propagates only along the specular path, relative to
the mean (horizontal) plane.

Section VI discusses surfaces with a large Rayleigh
parameter, and introduces the Kirchoff or tangent plane
approximation. The author has attempted to make clear what
assumptions, both physical and mathematical, are involved in
this approximation. Perhaps it is worthwhile emphasizing
here, as do Bass and Fuks, that this approximation is not the
first term in some perturbation expansion, but simply an ad
hoc approximation. Accordingly, no error estimate is
possible, the only question can be "Does it work?". The
solution does work in many cases, of  course, but these
remarks are worth keeping in mind.

In Section VI shadowing corrections are introduced,
as seems appropriate for very rough surfaces. The scope and
limitations of existing theory are indicated.

Composite surfaces are introduced in Section VII.
Expressions for the average intensity are derived, which are
simple, and, one hopes, valid for a wide range of Rayleigh
parameters., Shadowing corrections are indicated as needed.
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Finally Section VIII considers the power spectrum
of a moving rough surface, specifically the ocean surface,
rather briefly. The earlier results are extended to this
case in a fairly straightforward manner.
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8 A PRIMER ON ROUGH SURFACE SCATTERING - ——-’"ﬂ
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- I. DESCRIPTION OF A RANDOM ROUGH SURFACE’ :??f'}ii
=e]

':' The simplest description of a random surface o]
ks z = { (x,y,t) is obtained by assuming it is stationary in -
’ time and homogeneous in space, i.e., the probability of a -
-]
- certain height being exceeded is invariant under time and -
.. space translation, and the second order moments in surface __7:
:‘ height depend only on the differences of the space-time l‘j:’.;
arguments. The first order probability density function for i_f;f

i a stationary and homogeneous surface is independent of x,y
and t. Thus

I\--

~ ~o
> z e
Prob ({(x,y,t) < z) = [ wy (u) du, ~E

-lD .

| =
or : . '-'_'.'_'-'1

‘! Q..-
“ P(z < ¢(x,y,t) < z+dz) = wy(z) dz. oS
F We are concerned with perturbations over a plan'ar
N . oo
~ surface, (or a portion of a surface which may be regarded as
., planar, e.g., a portion of the lunar surface) and it is : -
N convenient to choose coordinates so the mean surface is at j.-f-:_-'
280. '.

o . e
In most of the applications involving scattering .\i:

f-:j from rough surfaces, it is assumed w; is Gaussian or :‘_-.f‘
normal, i.e., _ A

iz -z2 ¥
;29 1.1 =

£ w,(z) = e (1.1 o,
] o/ TR L.
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where o is the standard deviation or r.m.s height of the
surface around the mean value 0, 02=<{2>,

This assumption is quite often correct, in that the
sea surface has a nearly Gaussian height distribution®. oOn
other occasions, a Gaussian height distribution is assumed
for want of a better, Here the central limit theorem, and
the mathematical conveniences of normal distributions are two
motivating factors for this assumption.

Two such mathematical conveniences are as follows:

1) Linear combinations of normal random variables
are again normal. This means, for example,
that a Gaussian surface may be written as the
sum of two Gaussian surfaces.

2) Since differentiation also is a linear opera-
tion, it follows that the slope density
function for the random variables yx=%§ and

yy=%§ is also normal. For a fixed surface in a

suitable coordinate system,

2 2
1 -1 Y Y
walverty) = T exp(’z(—x; * _y_z)) o (12D
X'y T r
X b 4
where T_2 = <ac2> r?2 = <6C2> (< > denotes
X ox ' 'y oy '
expected value); and <%§ %é) = 0 in tiese
coordinates. For a moving surface, <(%€-)>,
d3& ¥ 3§ d¢
<3? 6x> and <3? 3§> also enter into the

covariance matrix in the exponent.

-2-

- -, P I A L P U o SO S S SETS I SR T S . U T S SR S LT I
2 e AT O \._'...,..,\ ~ \.,\'-.' Bt R N A O R N S MR

Ve ada ry s VR . PR AR el R R s A s A R A A ACAR A IR N O A

T

I

N N o

5 % s %



e
.
o
a

&
AN

Here the axes have been chosen to eliminate the

spatial cross-term in the quadratic form in the exponent of
w2. Because of the special nature of the time coordinate,
the space-time cross terms cannot be eliminated.

If the surface is isotropic, Px=Py=F, and

Y,) = exp (- == (v 2+v_2)) (1.3)

walreery 2nr2 ar2 X Y 7.

An additional important descriptor of a random
surface is the correlation function W, given by

1
w(x1ry1rt1ileY2rt2) = :3 < C(x1rY1rt1)C(x21Y2rt2) > .

If the surface is homogeneous and stationary, then
W depends only on the differences of the arguments above,
i.e.,

w(errT) = l; < c(x1lY]It)C(x1+xly1+Y't+T) > (1.4)
o .

Note that in this definition, W is normalized so
that wW(0,0,0) = 1,

An additional important density function is the two
point density function w(2) (z7,2z,;r,t) defined by

P(z; < C(;l,t) < z,4dz,, and
> >
Z; $ §(rj+r,t+t) < z,+dz,)

= w(z)(zl,zz;§,t)dzldzz. (t=(x,y), ;ls(xl.yl))

-3-
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For Gaussian surfaces, the following relation
between w{2) and the correlation function W is valid:

1

<>
Zyr2piE,T) = . . (1.5)
2102 1-W2(r,t)

2 _ 3 2
exp [- z, 2W(r,t)z1zz+zz_]
202 (1-W2(%,1))

w(2)(

An altern.tive description of the random surface
may be given in terms of the characteristic functions, which
are the Fourier transforms of the height probability density

functions:

+o ", iC(;,T)
£,0k) = [ w,(z) elkZ 37 2 <o >, (1.6)

i(k,z,+k.2z,)
19717272 dz.dz

>
;r,T) e 192,

L 7 (2)
fz(k1lk27rrt) = {{ w (21122

(1.7)

i(k1C(?1,t)+k2C(F1+§,t+r))
= < e >.

It follows from the relation between w(?2) and w

that
< C(§1,t) c(?1+§,t+c) > = o2W(Z, ) (1.8)
2
i > fz(k1,k2;r,¥)
3K, 3k, k =k ,=0.
‘4-
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A further relation, tc be used subsequently, is:

> -52 2 2 > .
£,(ky,kyiE,7) = exp [--2-(1:1 +k, +2W(r,1)k1k2)] (1.9)
(an identity valid for homogeneous and isotropic Gaussian
surfaces).

The spectral density, or power spectrum F(kx,ky,m)

is given by

> >
+e = i(ker-wt)
W(x,y,t) = iz Re {i dkxdky {, dwF(kx’ky'“)e , (1.10)

; = (kxlky)r ; = (x,Y).

For a fixed (homogeneous) surface, since W(;)=
W(-E), it follows that F(-f)sF(ﬁ). Furthermore F may be
taken as real, and by the Wiener~Khinchine theorem, F>0.
However, for a moving surface, F is not necessarily even in

k.

For the moving ocean surface, the first order dis-
persion relation for deep water gravity waves? implies that

F(k,0) = P (K) 6(w-u,), (1.11)
where Fy is the first order surface spectrum, and

w, = sgn(k )73k , kzskx2+ky2, (g=9.81 m/sec?).
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Even for the movirg surface, W(;,0)=W(-;,0), and
similarly, W(O0,t)=W(0,-T). These symmetries imply,
performing the w-integration

+ o
W(E,t) = —; [] ax dx

> > >
— 22 y F1(k) cos(k°r—w+1:). (1.12)

For a fixed surface, the corresponding relation is
> 1 +e > . > >
W(r) = — [J dk,dk, Fq(k) cos(k-r) (1.13)

> >
4+ + ik-r
= —— L{ dkxdky F,(k) e .

From the cosine transform of W(;,T), one can also
write directly

> »
+o i(ker-wt)
W(E,t) = — [ ak.dk. F(k,w) e (1.14)
02 e X ¥

if F(i,w) is now defined as

F(k,0) = 2[F,(K)6(0-u,) + P (-K)8(0ru)] . (1.15)

Both (1.11) and (1.15) are found in the literaturel?,
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- Now let Ea(kx,ky)=k(cos¢,sin¢), and T=(x,y)
3.\ = r(cos®,sin®). Then (1.12) or (1.14) becomes :I:j-}."
Y ALt
.. . -.."
= > 15 2m e
.y W(r,t) = - f dk [ kF.l(k,¢)cos(krcos(9-¢)-w+t)d¢, (1.16)
s 0 ] ' RS
and (1.13) becomes . .
R ;1 = 2% _:'.‘-::3.-
W(r) = — [ ak | kF, (X, ¢)cos (krcos(0-¢))ds. (1.17) RO
2 0 0 T
~ ‘ o
[ | If the spectrum is separable, i.e., Fjy(k,¢)=
o Fi(k)H(¢), then the ¢-integration may be possible. In ;;‘Z'\\'j
:: particular, if the surface is isotropic, then H=1, Eqizations -f:.-,_'-
1.16 and 1.17 reduce to T

W(E,t) = 2% [ kP, (k)J_(kr) cos(w.t)dk (1.18) -

v 62 0 ! ° *
¥ and .j:\f‘
w(z)= 22 | kP, (k)3 (kr)dk. (1.19) g

-t 2 (o] S
P o 0 A
et

o B
s If the surface is cylindrical or one- ot
dimensional, that is independent of y, then in (1.11) F,(i)a [

26

3; 6(ky)F (ky)6(w-w,), where now w =sgn(k,)/g[k,|. From (1.12) ﬁ%ﬁ
o 1 R
o W(x,t) = o _e{ P,(k,) cos(xk -w t)dk,, (1.20) re
NN

o and from (1.13), :'::_:
~ T
..:\:_

S .‘_:__
-7- ‘\
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23 Wix) = =1 F(k.)cos(xk,)dk (1.21y
«Ve T — 3 . e
.,:?:_: 62 -» 17 % X X ::'_.
o Just as 02=<{?> is an important parameter in -
NS discussing the height distribution, the notion of a corre- a
N
3§3 lation time <ty and a correlation length &5 are important 5
L -
244 in discussing the correlation function. -~
;:: Physically these describe a time (or 1length) ,
‘_\ interval over which different surface elements are corre- )
by . lated. On this scale the interaction of an incident wave i
e with these elements should be considered coherent. Con-
: lj::'; versely, over several correlation times or distances, the
:fj-f surface elements are uncorrelated, and interaction with an
incident wave is expected to be incoherent. e
~ B
:::: Naturally the transition from correlated to uncor- )
9y related is fuzzy, as is the definition of correlation times -
-:j'\ or lengths. A local definition, emphasizing small-scale
. roughness, is given by ""
-\.j_ .
o ) -1 -1\, 23%wo) -1
.\.:..: v2 W(0) = '1_2, Wh(0) = v g2 = 2. (1.22) o
O r (o] (o] (o) *
2 A global definition, involving all roughness .
- scales, is given by
-
. < +@ +o '2
2 *
w2 = [ wix,y)dxdy, {t = [ W(x)dx. (1.23)
f’l’ - - D
Izj N
.. A Y
3 '
S * One dimensional form. -
9", o
4 i
o -8-
:-:.: -:
Lt ~
e
! "_:
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. . These varying definitions essentially coincide if W
o is a Gaussian correlation function, i.e., in one dimension

.

Z

TS —? 2
i W(x,7) = exp(E— - -"—2). (1.24)
N = %o "o

\‘ L
SSU
:5 X For more general correlation functions, they need not agree.
iKY L . . .

RO (Indeed, the local version may not exist, if W does not have

second derivatives at 0.)

:::' :‘:.

< For a fixed surface, the dispersion of the
;I-_:_ N derivatives ?T:’ ?T; is related to the height dispersion, and
s correlation lengths by

o

\

.:: . 2 2] 22w 2 32w
o r,2 = o?|—(0,0)|, 1,2 = o?[—(0,0)]. (1.25)
A ax? b 4 dy?

.. ' For a general surface, a knowledge of wy and W does not
S

-; determine the higher-order statistics of the surface.
_-23 7 However, for a Gaussian surface, a knowledge of o2 and W does
'** completely specify all the higher moments of the surface,
RO which is another motivation for preferring to deal with
",- i Gaussian surfaces.
r. 7

AN

NI

< 7 A possible point of confusion should be mentioned
' - here. When speaking of a Gaussian surface, what is meant is.
NIRR that the height probability density function is Gaussian (and
A
NOR therefore so is the slope density function). The correlation
N ‘a function for a Gaussian surface may or may not be Gaussian,
P (and the ocean surface, for example, does not have a Gaussian
P correlation function).
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" II. ACTUAL ROUGH SURFACES ‘.
For the moving ocean surface, the Gaussian
" assumption is generally valid. Further, there are many semi-
3 empirical determinations of the power spectrum, (Pierson,
Phillips, Pierson-Moskowitz)!l, so some degree of confidence _-
is possible when describing the ocean surface statistically. -
See Tables 1 and 2 for typical parameter values., -
2 When dealing with a planetary surface, the ocean -
oy basement, or lunar surface, the Gaussian density assumption :;;
3 need not be valid. Considerable disagreement exists as to an .
8 appropriate choice of power spectrum or correlation function. ‘
P
‘ Many of the scienti‘sts studying radar backscat- :
! tering from the lunar surface assume a correlation function .
W of the formi? -~
; Wix,y) = e &'% W (w(x) = e e l) (2.1) :
- However, it has been shown that a correlation function for a -
reasonably smooth surface must have %1—7(0,0)=§—;'(0,0)=0, and o
’ also have second derivatives at (0,0)!3. (The non-existence s
- of V2W(0) implies that the surface has vertical faces.)
Clearly the form for W given above fails to meet these
‘; requirements. Nevertheless, such a function is still being
used, primarily because with the scattering model used, it is
‘\\', often possible to obtain a reasonably good fit to the data by
e a suitable choice of the parameter «a, -
¥ ' -
\ . It is quite possible that the scattering model .
3 used in lunar studies is inadequate, which perhaps explains

i

-10-
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why the above correlation function is used to fit the
data.

A kinder explanation, and perhaps a generally true
statement, is that while near 0, the correlation function
does have the required form (locally a Gaussian correlation

function)
. T 2 r 2
W(x,y) =1 --;- [—’;— x2 + —32'— v2] , (2.2)
o ]

<>
at larger distances, W may decay like e-alrl, rather than

»-2
et K,

Physically this implies that for such a surface,
the correlation length is determined by higher derivatives of
the surface, curvature, etc., rather than depending only on
r.m.s. height and slope, as does a Gaussian correlation
function,

Using the relation between the power spectrum and W
derived above, the correlation length using the first
(derivative) definition can also be expressed in terms of the
power spectrum, e.g., for a one-dimensional surface,

4o
22 - / Fylky)ky dkx,

F e S (2.3)

and the theoretical requirement that W''(0) exist implies
that ky? Pi(kx) must be integrable.

An easy way to meet this requirement in a model is
to assume that there is some cut-off wave number ko such
that

-11=-
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S Fi(k,) = 0, |k >k, (or F (£) = 0, |E]>k). (2.4)
Lo 1" 7x ’ X c’! 1 ’ c’ *
“ .
-
Such an assumption implies that there is some lower
- limit to the wave lengths present in a surface, or at least a f‘
' ..
”3' lower limit to the wave lengths which effectively interact
‘j with an incident wave. N
nNG o
' This is probably correct for the ocean surface. A
J: popular power spectrum for gravity waves is the Phillips '"
e spectrum, which in one-dimension, = ky~3. But there is a )
';? lower limit on the wave length of gravity induced waves, ="
b below which capillary waves are present, and the power
::3 spectrum for capillary waves decays more rapidly than that
;: for gravity waves, Capillary waves probably do not them-
:: selves interact significantly with an incident sound wave, <
but provide an energy transfer mechanism from the wind above =
- the surface to the gravity waves.
AN
B
A surface for which the integrability requirement
on ky?Pi(ky) is not met is that of icel“. The power -
::j spectrum for ice does apparently decay like kx"3, and this
N :
. holds true on very small wave length scales. Accordingly, a
\ notion such as correlation length has no meaning for an ice
" surface. Such a surface, (within the class of all surfaces), -
W is on the boundary of fractals, or diffractals, and may well ':jj
::: require somewhat different techniques to develop a scattering
e theory. ;f:
hlY -
A
- Ice surfaces, with many small fractures and nearly
:j::: perpendicular faces, are quite different from planetary
jl:'j surfaces, where weathering presumably has rounded the edges, .
o~ and filled in tiny fracture zones. Whether or not such ~4
o
) - - :\.
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processes, in one form or another, have occurred for the
lunar surface, or the ocean basement, is not clear.

There is no general consensus on a "typical" power
spectrum for the ocean basement, and some oceanographers are
reluctant to concede that such a notion has any meaning, due
to the presence of sea mounts, significant trenches and
ridges, etc. Opposed to this is the observation that data
(e.g., propagation loss as a function of range and frequency)
collected over several areas of the Pacific, (where a thin
sediment presumably allows interaction with the ocean base-
ment) exhibits a uniformity which suggests the same mech-
anisms are operating everywhere. If the scattering depends
on the power spectrum of the ocean basement, then presumably
there is a typical power spectrum.

An additional complication encountered when discus-
sing bottom interaction in thin sediment areas of the ocean,
such as .the Pacific, is the water sediment interface. In
regions where the sediment is on the order of 30 meters
thick, apparently the sediment is "draped" over the rough
basement, and follows a somewhat smoothed version of the
basement contours.

So if it is necessary to treat the basement as a
randomly rough surface, then presumably the sediment also is
randomly rough. This introduces significant complications
into a scattering model, as now a sound wave interacting with
the basement before returning to the water column encounters
three rough surfaces enroute, (with two transmission-
reflections, and one reflection).

As the scattering theory to be described here is a
single bounce theory, three encounters with rough surfaces

-13-
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presents difficulties. Even if the present theory could be
extended, and for example, three scattering kernels obtained,
whose iteration presumably would represent the scattering
effects, the numerical difficulties would in turn become
formidable.

One possible way to avoid this difficulty is to
model the sediment as a fluid, with a constant gradient in
the sound speed, (and frequency dependent attenuation) but
with an impedance match at the water sediment interface.
Then the transmission coefficient is 1, and the distortion
produced by refraction at the rough sediment surface can
presumably be lumped into the scattering produced when the
sound wave reaches the basement.

The result of this .assumption is a single bounce
theory, at least for incident waves approaching the sediment
above a certain critical grazing angle, For waves with a
grazing angle below -this, the equivalent ray turns above the
basement, and presumably the basement has little or no effect
on such waves.

One should also note that if the model allowed an
impedance discontinuity at the water sediment interface, many
additional phenomena would be encountered. Among these could S
be a combination of parameters producing a critical angle A

below which near total reflection occurs. Such a critical .
angle is well-defined for planar interfaces. It is con- “n
siderably more difficult to introduce such notions when the
interface is rough, and the notion of "grazing angle" now
must be interpreted in some average sense.

y
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. In thick sediment areas, such as the North
Atlantic, with thicknesses = 200 meters, it is very difficult
for an incident wave to reach the basement,.as almost all the
rays turn above the basement. And as attenuation in the
sediment is higher than in the water column, such waves are

- essentially damped before they can return to the water

column. So the basement interaction is not significant.
Further, in thick sediment areas, the water sedi-
N ment interface is gently undulating so that either the inter-
N face can be treated as planar, or perhaps as only a slightly
rough surface. Much of the data from this area can be
'i satisfactorly modeled without recourse to rough surface
] theory!®, so there is little need for a scattering model in
:;; thick sediment areas. -
.‘ Of course, how one determines that a thick sediment

model is no longer adequate, and a thin sediment scattering
~., model allowing for interaction with a rough basement is
;;' needed, is not very clear. One can conceive of a sediment of

an intermediate thickness, such that at longer ranges, the
. sound waves refract in the sediment, and turn above the base- R
‘ ment, whereas at shorter ranges, a significant fraction of -.'-f:
__ the sound energy in the sediment scatters off the basement. 3
3
& e
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' III. DISCUSSION OF THE PHYSICS OF SCATTERING

Before proceeding to a discussion of the various o
mathematical models for scattering, it is useful to examine

the physics involved. - ﬁ
X Consider a portion of an incident sound wave i
s scattering from a finite region of a rough surface. The ? h
» portion of the incident wave might be a beam, (and therefore »
2 the beam pattern must be considered), or it could be part of Q: .
. a larger wave. The region considered is presumed to be small ~o
2 enough so that the incident wave may be regarded as plane, Lo
4 yet large enough so that averaging over the surface region . .
i gives meaningful and representative results. . -
“ . o
e <. )
N If the incident wave ensonifies a large region of i }
N the surface, then the portion being considered here is part Ea
3 of the integrand of an integral over the large region. This .
A final result is then obtained by summing or integrating the

partial results.
»

o

7 Due to the randomness of the surface, such a sum is B
F incoherent. To fix our ideas in the following discussion, :
7. consider the intensity of a plane wave scattered from a ii .
’ finite region of the surface. ’
3 ' There are two different contributions to the A
‘ scattered field. One effect is the near-specular reflection . ?

around the specular path (between source and receiver) ﬁ: .

relative to the mean planar surface. Such an effect 3
3 dominates near this specular path. This reflection, often X
4 described as "glints", is due to specular scattering off
E large planar facets of the surface. When looking down at a :;
: I~
. -16- .; <
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™
Il sunlit ocean surface, the glints observed are from plane
" facets momentarily oriented so as to provide specular
. reflection from the sun to the eye. The strength of this
o component of the scattered field falls off rapidly away from
the specular path.

>

- A second component of the scattered field |is
- diffuse diffraction due to the small scale roughness of the
T surface. This effect is not as strongly angle dependent is
;? the first component described above, and accordingly tends to
r.: become the important component of the scattered field at
. scattering angles far from the specular angle.
ii

"Tends" was used in the preceding sentence because

:% as the surface becomes smooth, and approaches a plane, the
“ diffuse compdnent vanishes, while the "coherent component"

1 described earlier reduces to the specular reflection from a
l' plane. 1If, as suggested earlier, the theory is describing an
- integrand, to be integrated over some region, then this
.; coherent component must reduce to a delta function within the
. integral. Wwhen the integral is evaluated, the delta function
!! produces the desired specular reflection from the limiting
" plane surface.
. Going to the other extreme, as the surface becomes
- rougher, with steeper slopes, then the specular component is
i: weakened. This is because the planar facets are oriented
. over a larger range of angles, and accordingly fewer are
é; properly oriented for specular reflection between source and

receiver,

< '

K At the same time, for this increasingly rough
. surface, the diffuse component contains a larger fraction of
.
o, -17-
>
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the total incident energy, and as the surface roughness
increases, approaches a scattered field nearly independent of
angle. -

Some 1little sketches in Figure 1 borrowed from
Beckman and Spizzichino!® suggest this transition.

The first scattering component, or near specular
component described above is often referred to in the
acoustical literature as the "coherent field", while the

second is termed the "incoherent field". Both contribute to

the scattered average intensity, while only the coherent
field contributes to the mean pressure field, which pro-
pagates along the specular path.

The acoustical distinction between the therent and
incoherent fields is perhaps not entirely clear, particularly
when discussing the average intensity. However, there is a
genuine difference between the two fields, because it is

believed that different physical mechanisms give rise to
them.

The experiments which provide the most convincing
testimony to this involve radar backscattering from the moon.
Using time delay to determine which annulus on the moon is
illuminated by the radar pulse, and thereby determining the
angle of incidence, the following results are obtained.

Electromagnetic theory predicts that when a
circularly polarized wave is reflected from a plane, the
reflected wave is also circularly polarized, but in the
opposite sense. The radar return from the moon however has a
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. Figure 1. Transition from specular reflection to diffuse
. scattering. The surfaces are: (a) smooth,
RN - (b) slightly rough, (c) moderately rough, (d) very

rough. (From Beckmann and Spizzichino)
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A
component which is depolarized, that is, circularly polarized !
in the same sense as the transmitted wave. This depolarized
component is the incoherent component or diffuse component, ..
and the properly polarized component 1is the coherent
component. A comparison between the power in the polarized -
component and the depolarized component is shown in Figure -
217,  oObserve the zero or minimum delay occurs at normal
incidence, which for backscattering is the specular angle. ','f.:.
Note that the angular dependence of the depolarized component =
is much weaker than the polarized, and exhibits no spike near ':-.

N
the specular angle, as does the polarized component. n~

- |

o

m

o T:.
o
NN )
v
£ =
r.:: :‘
&)
o ]
P .
I p
L .
NS -20-

P’y

Pee

ifats
.

T
LI
w'ae
)

xa

v v
»
N

. .._.’.--..,.‘_-*-_-_ - Nt Ty

- Ly "\.' et -~
AP PN A ) '-:.'1'} At e Cada A Vars

—




‘aly

LS W W W

-
..‘.
a

e

\'.
A

!'!é

Pigure 2,

. ——

' 4

-

3
= ‘.bm
< )
-] °\{nncno senst
2 -l# .Q . (]
° N, °
e e
o4 ’ ° o
-'ﬁ o ‘O ° o
ozroumuo/ Se °
COMPONENT . %
-2 o . o
P (-]
[} °
[ ]
- ¢ ©
[ ]
o
[ ]

e o
4

—
4
|-

e
OELAY (mese)

A comparison of the expected or polarized com-
ponent P(t) of the echo power at_23 cm wavelength
and the depolarized component D(t). Note _the
absence of an initial spike in the curve for D(t)
corresponding to the gquasi-specular scattering
observed in P(t). (From Hagfors, 'Radar
Astronomy')
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7 Iv. PROBLEM FORMULATION AND BASIC RELATIONS ; »
A S
- Consider the wave equation for the potential U of a )
y sound field, .
2 1 62 2 )
V2y = — &= = -4nQ(R,t), SO
*e c? at?

where R = (x,y,2), ¢ is the sound speed, and 4rQ is the o
source density distribution. The velocity v and the pressure . Is

> p are given by if -
: ;
- 3 .
:‘: v=-0,p= ps—ttl ’ -
= |
A
N where p is the density of the medium. o
-~ N d
X We shall assume S
m T
A .* .
% -iwt -iwt :
o Q(R,t)=Q(R)e”"“", U(R,t)=U(R)e™ °", N
y so that we obtain the Helmholtz equation .
-
- v2u + k20 = -47Q(R), (4.1) D
v, * w
L) k = Ec
~
,. .:: o
3 For simplicity of exposition in the following, ¢ .
- will be assumed constant. Since the primary concern will be -
y the interaction of an incident wave at the surface, relative <

~§

to a distant source and receiver, corrections to be intro-

duced due to refraction are fairly obvious. For example, a =
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term %— representing cylindrical spfeading loss to a point on
the surface should be replaced by the correct spreading loss
along a suitable ray path from the source to the surface
position; an incident angle 6; of a wave arriving at the
surface should be related to the angle at the source that the
corresponding ray makes with the vertical, the wave number

k=w/c, uses the sound speed at the surface, etc.

The use of ray terminology already suggests that
the frequencies involved are high enough that a ray
description of the sound field makes sense, which gives a
lower limit of 100 hz, or perhaps 50 hz.

The basic relation governing solutions of (4.1),
derived using Green's formula, is
U(R) = [ Q(R')G(R,R")dR’
v

(4.2)
+ 1w [BRO GO -0mF R, Jar,

where R'eV, the volume containing the source Q and the
oOobservation point R, and reI, the boundary surface of V. %ﬁ
denotes differentiation with respect to the exterior normal
to the surface I, The function G is the Green's function, a

solution of (4.1) when Q=56(R-R'), 6 the Dirac delta function.

Considerable simplification of (4.2) can be
achieved by a suitable choice of the Green's function.
Suppose | is a plane surface. Then two convenient choices
are

eik'R-R" . eik'Rl-R"

G, (R,R") (4.3)

] o]
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where R, is the point obtained by reflecting R with respect
to the plane |, (if ] is the plane z=0, then R, = (x,y,-z)).

o Tae
« e

Then it results that -

3G, =
33-| =0, G.| =0, (4.4) 2
) )
(for } = {z=0}, %ﬁ = %%). S
Using either G4 or G-, (4.2) becomes
] [ ' 1 0] -
U(R) = ‘f, Q(R')G4+(R,R")AR' + = [ G4+(R,r)g5(r)dr, (4.5) ¥
)
or
3G.. 2
U(R) = | Q(R')G_(R,R")AR' - g= | U(r)gr(R,r)dr. (4-6) =
v
If the source function Q(R) is zero outside a

sphere of radius L, and if

2 .
R TR << " (4.7) X

then the source term in the expressions (4.2, 4.5, 4.6)

ld

satisfies : i
J Q(R") mw = d(R)f’-m ’ (4.8) =
v R-R'. jR]

where d(K) = J Q(R')e iK*R'gpr, g = f%T.
v
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The region of space where the inequalities (4.7)
are satisified is called the Fraunhofer zone relative to the
source, Equation (4.8) states that.at sufficiently large
distances, an extended source looks like a point source.

One can verify directly that a solution (4.1) with
Q(R}=0 is given by a plane wave, of the form

U(R) = Ael9°R, (4.9)

where g = (qx, Qys 4z), and ,q,z = k2,

One of the useful properties of plane waves is that i
a spherical wave, as in (4.8), can be represented in terms of
plane waves., 1In fact

9

ik|R +o i(xq_+yq +|z|q_) dq_d j
—'-g-}—e ‘-%ffe x yl"—-—”"q (4.10) 1
- qz 4

3

where q, = /iz-qxz-qyz. So when discussing a wave incident
upon a surface, if only a restricted region of the surface is
considered, the incident wave may be usefully modeled as a
plane wave.

For reference purposes, let us describe the
propagation of a plane wave in an infinite space, consisting
of two half-spaces, separated by the plane z=0, with density
and sound speeds p, ¢, for z>0, and p,, c, for z<0. Let U,
U, denote the corresponding potentials.

Continuity conditions at the interface lead to the
boundary conditions




-------

d
$2 = 5—, PU = p,U, (4.11)

(where %3 = %%, as before).

Let kX = w/R, ko = w/cy, K = (ky o ky, k,)
k(sinfécos ¢, sinbsin¢, -cos¢), K' = (kx, ky, -kz), K, 5
(kp,(sinéj,cos¢é, sin®,sin¢, -cosb,), where 6, 6, are the -
incident angles of the incident and transmitted waves )
respectively, and ¢ the azimuthal angle, relative to some )

. fixed vertical plane.

I

K, K', and K, are the wave vectors of the incident
reflected and transmitted waves, respectively (see Fiqure 3).
Of course, all these vectors lie in the same vertical plane
containing the source and the receiver at R, defined by the

5
azimuthal angle ¢. L
Snell's law defines 6, in terms of 6, namely .
sinf, - Sine
) c ’ -
?
. . igR*R
If the incident wave is Uy = Ae » then the ..
reflected wave is ;ﬁ
] | P - -
u_ = v(e)ael® "R, (4.12) -
and the transmitted wave is -
u, = w(e)aelk2°k, (4.13)
-
5;
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The field in the upper half-space is given by U, +

[
~
r

-
7,

-l‘.l

-

[

»

W

e

1S
.

V(8), W(6) are given by -
(py/p)cos® - /(c/cz)"’ - sin?e -~

vV = ’ (4.14)
(pa/P)cosb /(c/c2)2 - sin?e _‘

W= 2co8? . (4.15) e
(pa/p)cose + /(c/c2)2 - sin?e '

Let n = (pc)/(ppcy) denote the surface impedance _ @

(the ratio of the acoustic impedance of the lower half space R
to the upper). Then a perfectly free surface (pjyc,+0) _‘Z-'-
corresponds to n==2, and a perfectly rigid surface (pj,cy**) '
corresponds to n=0. =
The boundary conditions (4.11) for a perfectly free u

surface (py=0) reduce to ’
:

Us=0, (4.16) o

and the correspbnding reflection coefficient V = -1, (G- =

satisfies this condition.)

For a perfectly rigid surface, the boundary condi- v

tions are .
?Tg = 0, (4.17)

and the corresponding reflection coefficient V = +1, (G4
satisfies this condition.) u_:
~28- s
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. V. PERTURBATION SOLUTION PFOR SLIGHTLY ROUGH SURFACES
* ;
) A. Perfectly Free Surfacel®
()
. -4
o Suppose the rough surface z = {(r), r = (x,y) is L
. such that the boundary condition U(r,%(r)) = 0 can be ;'-,-:',‘_'—-_‘.;'
‘: approximated by :-j~.-;-.
& U(r,0) + &(r) &2 (r,0) = 0 (5.1) o
k-. ’ Tz ’ * AN
L") SAS
.:_\.‘_-.
B ) ~\.~‘.
2 Now represent U as the sum of a mean field and a Lie

fluctuating field, U = U + u, where <U> = T, <u> = 0. Also
assume <> = 0,

e e
5

Then averaging (5.1) and subtracting the resulting

. equation from (5.1) results in 2
L) -
2 - ;
" u(r,0) + BED) ¢(r) = 0 (5.2) .
- 'J“._‘
OO
\'.f:- Subtracting (5.2) from (5.1) and averaging gives :,\"
du ’ ree
? — . n.‘v
.:: U(r,0) + ‘3z (r,0)C(r)> =0 (5.3) '-_S*\
N ,:‘,.‘-:.
.. . du du N
.-_} In deriving (5.2), the term Fic' - <-O-EC> was NS
neglected. A sufficient condition for this (i.e., for 'u' .o
..: >> 'g’tzlc I s etc. ) ’ is . ._
- %
., - i 2%y 2 : SO
%El' ok /|1 (sin® + k’I) ] << 1 (5.4) s
\
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Here © is the angle of incidence, k is the acoustic
wave number, o is the r.m.s. surface height, ¢? = <C2>, and %
is the correlation length of the surface, as in (1.22).

For k& >> 2n, this reduces to

ok cosb << 1 (5.5)

For k& << 2%, this reduces to

okgF = 27§ = 27T << 1 (5.6)
where T = % = r.m.s. slope of §.
If sin® = 1, (near grazing) this reduces to

ok ¢%§ z g /2%5 << 1 (5.7)

The parameter 2ockcos® introduced in 5.5 is the
Rayleigh parameter.

a) The Mean Field

Using the Green's function G. in (4.4) for the
plane 2z=0, the boundary condition (5.3) results is (R =
(x,¥y,2), ' = (x',y') = (x'lY'ro))r

R eiklR—r'

u(R) = %? > ' U

z'=0 lR-r'I oz’

(r')&(r')dr’ (5.8)

Taking the 2z-derivative of (5.8), multiplying by
C(r), and averaging, the boundary condition (5.2) gives the
equation
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U(r) = ) lim f W(p)— (Tr+p)dp, (5.9)
z+0 3z2 z'=0 /""p—'2+22 dz"'

where r' = r+p.

Assume the incident field is a plane wave, so that
the mean field has the form
elK'R

Blr,z) = A{ + velK' "R} (5.10)

where K, K' are as defined in Section IV. (The fact that the
reflected wave is directed along K' results from inserting
(5.10) (with K' replaced by an abitrary vector) into (5.9).
That is, the mean field is directed along the specular path,
which is a result generally true.)

Using (5.10) to express U in (5.9), the resulting
equation can be solved for the reflection coefficient V,
resulting in the expression

V=-1+ 2cosenp(6,¢), (5.11)

where the "effective admittance”™ n, of the rough surface is
defined by

eikv"p|2+z2

_ iko? .82 37 ik *p
nu(8r0) = S lim — I Wlple™ L "de (5, 12)
o o
where kl = (kx, ky)o
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To evaluate (5.12) for a general W(p) would require
detailed knowledge of W. But if W depends only on lp', i.e.,
the surface is assumed isotropic, one of the integrations in
(5.12) can be performed, the 2z differentiation and limit
taken, with the result that

RIS A A A

- » iky
- = 1202 - ka2 e d .
: n,(0) = k%o iko (f) T [W(y)Jo(kysin®) ]dy (5.13)

- (The derivation of (5.13) depends in an essential
- manner on W'(0) = 0. The reader should recall the discussion
- on smooth surfaces, and the corresponding reguirements on W.)

Y

N I1f now the correlation length & is introduced as a
;: scale factor, W(y) = W(%), various limiting forms of (5.13)
~ are derived by Bass:
A

N For k& << 1, or equivalently 2%l << A,

;
Y . 2 [ ~

= 2,2 _ iko l d (x)

. 'ﬂu-kc -T—b{dex (5.14)
= T 1

- For k& >> 1, and (7 - 8) > —,

% n, ® k202c086, (¢ = % - 8 is the grazing angle) (5.15)

or, recalling 5.11, )

f V(8) = -1 + 2k202cos?e. (5.16) i%
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Finally, for kXX >> 1, and ki¢?2 << 1, (grazing
incidence),

2k202 -3xi/4 (1 AaW
n =T 22 e ] — (x)dx (5.17)
e 0 /x X

(5.16) will occur subsequently as a limiting form
in Section VI for surfaces with a small Rayleigh parameter,

b) The Intensity of the Fluctuating Field for a Free
Surface

Begin with the formula (5.8) derived earlier for
the fluctuating component of the field, u(R), except now
restrict the integral to the actual scattering surface S
ensonified by the incident wave, so
ik|r-r'| g
'R-r'l vz

e

u(e) = 4= &= é (r*)&(r')dr’ (5.18)

It is convenient to place the source at a height
z, above the surface, at (0,0,z,), and the receiver at (D,z),
see Figure 4. In Figure 4, ﬁl, ﬁz denote vectors connecting
an arbitrary point r of S to the source and receiver
respectively, (from the source, to the receiver). Then

R, = ‘ﬁll = /202+|r|2, R, = Iﬁ' = /z2+lD—rl2 (5.19)
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Then

> >
Ry =2y 2
= (L. = — = (D2X 2z
TR (Rl' R) Jo 8= R, (Rz ’ Rz) (5.20)

are the corresponding unit vectors.

From (5.11) it follows that the reflection
coefficient Vv differs from -1 by an amount which is second
order in the perturbation parameter (e.g., the Rayleigh

parameter). Accordingly U(R) in (5.17) may be replaced by
the planar result for a perfectly free surface, - for a point
source at (0,0,z3) given in (4.3), which in the present
coordinate system has the form

Jik|R-s|  _ix|r-s'|

Ug(R) = -—T§:§T— - ———T§:§TT (5.21)

where § = (0,0,23) is the location of the source, and S' =
(0,0,~2zy5) is the image source.

dUg ' elkR)
Then 3;-(r,0) = -2ikz, — for kzy >> 1.

R
Similarly, for kz >> 1, taking the z-éerivative in (5.18)
gives

k2 eik(R1+R2)zoz
u(R) = = J C(r)dr. (5.22)
S

R12R22
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(5.21) immediately implies

. k“zOZZz eik(Rl"’RZ-Rl'-RZ')
<|u(r)|2> = I/ <g(r)C(r')>dr ar',
2 2
n2 SxS R;?R,%R,'?R,"'

(5.23)

where R;', R,' are the norms of the vectors connecting the
point r' in S to source and receiver respectively.

Let p = r'-r be a new variable. Then <{(r)&(r')> =

o2w(p). Now if the dimensions of S are greater than
Lxrlys (the correlation lengths of (), the p integration
may be extended to infini (W(p) ~ 0 for Ipl >> Ry,

R2'2 2 R22. Finally, expanding the exponent in terms of p,
R +Ry - R' - Ry’ = [FE-ET] -0 (5.24)
2 1
if .
klxzcos29, klyz << M (5.25)

where M = 2R;R;/(R;+R,). Note that /M/kcos?@ and /M/k are
the (x-y) dimensions of the -Fresnel 2zone relative to the
source and receiver. So (5.25) implies that the field is
considered only in the Fraunhofer 2zone relative to
irregularities of dimension iy, 2y.
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Collecting all the above, (5.22) reduces to

a 25 2 .
. y_2 z "z ® s _ .
<ury|2> = X = | ——ar [ wee P, (526
T S R;“R; -
R z R
1 r e 2 _
(Recall that a = i—; = (—R—l-, -RT-) = (al, az], and ﬁ = R—z- =

(50 &) = (8,0 800

The consideration of various 1limiting cases is
useful in obtaining a deeper understanding of (5.26). Before
introducing these, recall the assumptions made in deriving
(5.26), namely (5.25), and the inequalities

L > & = max(lx,xy); min(l,/I;I)<< Ry, Ry; (5.27)

where L is a characteristic dimension of the scattering
region S.

Now suppose k& >> 1, large-scale irregularities,
Then, in (5.26)

+

-ik(B,~a )°p . (272 - = (2%)2 g(D-r _ £
-£ W(p)e 1 1l dp = (k—) 6(Bl al) (k ) 6(R2 Rl)'

(5.28)

recalling (5.20).

Note that «; = B; defines the point r = r, of
specular reflection in S relative to the source and receiver,
(see Figure 5).
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. In the opposite case, k& << 1, (fine irregqular-

ities), the exponent in the p-integral is small for all
angles, and

bRl IRt et b

h T -ik(B - ) *p * "

- [ W(ee 17717 Fde = [ w(p)dp = 2.2, [ W(E,m)dEdn

N = Ckxﬁy (5.29)
:E'. where C is constant, approximately one.

Here the scale factors 1y, iy have been intro-
duced, so that W(x,y) = ﬁ(;—, {—) = W(E,n).
x Y

- i) "Small"” Scattering Surface S

B Suppose in addition to (5.25) and (5.27),

3 '

- kAL cos?8, L << 2R R,/(R;+R,). . (5.30)

i (These inequalities are somewhat weaker than

: requiring that the entire surface S be in the Fraunhofer zone

F relative to the receiver. Bass refers to the region

" described by (5.30) as the spectral part:itio_n zone., )

F In this case, the r-dependence of the integrand in
(5.26) becomes so weak that the r-integrand may be approxi-

::‘_: mated by evaluating the integrand at an arbitrary point in S,

: and multiplying bylsl, the area of S.

E -

o ' In this case, it is convenient to reinterpret

lu(R)'Z, and rather than think in terms of a path connecting

_7 source and receiver, regard the expression in (5.26) as a

_ function of the incoming and outgoing wave vectors, in the

-::'. directions given by a,B, respectively. Here we regard «,B as

’ directed to the center of the small scattering surface S.

ot Denoting <|U(R)|2 > by J(«,8),

&
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the result is

4
J(x,B) = -—“2‘—2 |s|a,26,2F (k(B -0 )). (5.31)

R) “R,

F, is the spatial power spectrum of the surface, that is,
(see 1.13),

2 +® P
Fi(R) = —— [ [ W(p)e'¥"Pap (5.32)
(27)2  -o

The appearance of the vector k(B;-a;) as the
argument of F, in 5.31 implies that in first order perturba-
tion theory, the average intensity of the scattered field
depends upon only one component of the surface spectrum.
This is a type of spatial resonance. '

In the special case k& >> 1, estimating (5.32) by
(5.28), (5.31) reduces to

4k2q? 25 2
’ B eome—— 6 - .
J(a,B) R12R22 ,SIaZ Bz (51 al) (5.33)

so the long irregularities in the surface scatter only in the
specular direction, a; = 8.

Conversely, if k& << 1, from (5.29), the F;-term in
(5.31) ~ 0222, In this case the scattering is diffuse, and
is proportional to (ko)2 (k2)2,

ii) "Large" Scattering Surface S
Now suppose that the ensonified region S is so

large that some portion of S lies outside the spectral parti-
tion zone, that is, (5.30) is not satisfied.

-40-
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In this case, in (5.26), the r-integral over S must
be - evaluated. For reference purposes, (5.26) may be re-
written in terms of the power spectrum F, as

a,28 2F (k(B,-a)))

<Ju(r)|2> = ax* { o

dr (5.34)

A generalization of this result, for composite
surfaces, will be encountered subsequently.

Suppose k& >> 1, the case of large irregularities.
Then, using the estimate (5.28),

a 23 2
<Juiry|2> = 4k20? | ZZ

6(0-r
S R;%R,? R,

r
- iT)dr

Changing coordinates in the integral, (see Appendix
A for details), gives the result )

4k202a20 8o 2 2
<l“(R)l2> - z'%2 _ (2kocos®) . (5.35)
BoyZ(R1o+R20)2  (Ryg+Rzq)2
H;f Here @35, Bg, Rjgs, Ryg refer to the specular point
- . D-rg o Z
g‘ 33 in S, where R, R - 0, rg = D(;:EF)° Also a,o =
o = = cosé,
Rjo
Observe that in (5.35) the term in the denominator

which gives the spreading loss. between source and receiver is
no longer R;2R?, (compare (5.31)), but has switched to
(R; + R2)2, which gives the smaller spreading loss observed
- in specular reflection from a plane.
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Also note the occurrence of the Rayleigh parameter ¥
2kocos® (assumed small, recall) in the numerator of (5.35). )
Observe that here Lambert's law (sScattering ~ cos?3) is N
applicable. -
In the opposite 1limit, k& << 1, fine irregqular-
ities, (5.28) implies that 2
-
C(kL_)(k2 )(ko)2 e 282
<|u(r)|2> = X Y Z_Z ar (5.36) 5
ﬂz s Rlszz .-
Clearly in this case, the scattering is very ﬁ
diffuse, with the incident angle 6 of little importance, and ‘
the entire region S influencing the average intensity.
B) Rigid Surface!? -
L
Now suppose the initial condition is
) )
r,t(r =0 {5.37
Fﬁ( 1 & )) ’ ) ,
where the normal derivative 3/3n is given by .
8 _ ., & _ ., 2
- xB% ¥ (5.38) =
/ 2., 2
1+yx +yy J
X4 ¢ S
Here Yy * 3%’ Yy = T -
L
-42-
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Again represent U = U + u, the mean field plus a
fluctuating field. Assuming C(r) 1is suitably small,
expanding (5.37) in ¢, averaging and differencing, the

" B boundary conditions (to first order) for T, u become
NI
N 30(r,0) _ ... _ 3%y
: :\. T = <y Vru> C(b—;;> (5-39)
WA
G D du = 320
x (£,0) = y*9 T - {—o (5.40)
:’ /:n‘ rz- r 522
[
1. Here v = V.0 = (¥ )V=(a a)
2 r x' Yylr Vr ?x’ ¥y’
. a) The Mean Field for a Rigid Surface
‘, Using the Green's function G4 in (4.4) for the mean
j plane z=0, the boundary condition (5.40) results in . -
| & ik'R-r" -
1 e 32T(r") =
u(R) = / {t(rr)—"= - y(r")v_,T(x') }ar".
= z'=( |R-r" dz"' 2 r’
(5.41)
This expression for u(R) can be used in conjunction
- ':-;: with the boundary condition (5.39) to obtain an integral
- equation for U for z=0, analogous to (5.9) for the case of a

free surface. It is not particularly revealing, however, and

c\."._'\
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will be omitted. Nevertheless, if one assumes an incident

2 plane wave, with a reflected wave, as in (5.10), it can be RO
. shown that Snell's law continues to hold, that 1is, the ]
reflected component of the mean field U for an incident plane Tf g
E wave propagates along the specular path. -
3 - . o :
e If the surface is assumed isotropic, i.e., W(p)
\ depends only on |o|, the situation simplifies to the point
?f where a formula for the reflection coefficient V(8) can be
f: obtained, namely, (compare with 5.11),
' cos® - ng(e)
% vV(e) = Sos0 T 'ﬂg(ey. (5.42)
:: (8 is the specular angle between source and receiver.)
.
. The effective impedance ng is given by
/.
. 2.2 0?2 % ek 3
f ng(e) = k202 - J < {-x3sin6cos8J, (kysin®)W(y)
0
" aAW(v)r,:.3 2.+ 2 ksin® . 2.2
? + -3§x—[(1k y-k“sin“0)Jy(y) + ——;—-(1-1ky-k y )Jl(kysine)]}dy.
" {5.43)
-
| As before, letting the correlation length & be a ]
‘i scale factor, W(y) = ﬁ(%), various possiblities exist: A 3
- ' o
. For k& << 1 = J1
. iko2sin?e 7 1 ~ .
S ng(8) = =—p— g % Wix)ax. (5.44) 1
2 |
-.; 2 #
3 g
{ o
(4 S
" )
»
'S -
=
- o

ay
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5 For k& >> 1, ¢ = 5 - 8 > =L,
RECIPE kX .
SR .
- ng(8) = k202cosds, (5.45) '
. -
+ :-‘:
$ 7 or, referring to (5.42) h
.- '
N 1242 2
NS v(e) = 2k gcos' D (5.46)
‘ 14k 202cos 26 .
g
4 b
:3 )
j Finally, for k& >> 1, and near grazing, ¢/k{ << 1,
I

e )
" .
N 2 idn = ~
X n (8) = =2 43 e 1T [ - dW((i:;)dx (5.47)
3 & 9 222/7% 0 x3/2
" . A difference between the representation of the mean
O field for a free surface and a rigid surface occurs here X
::: . because the reflection coefficient V(6) for a rigid surface .
ij oy can have a pole near grazing, namely (see 5.42),
A ‘ cosd = -ng(e) (5.48)
::: } Since lng(e)l << 1 in the cases considered here,
v, a good approximation to a solution of (5.48) is given by
S setting ng = 0, and iterating, with the result that the
‘.\ l.‘ .
.Y angle 6p at which the pole occurs is given by
R :
L, ':\ ~ _ T .
G cosby = -n (3] (5.49) '
N ’
S |
y R ]
~
]
4t
. — -45-
o’ ’
:~ ’. -
-. ’-
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- The effect of the pole on U is as follows: For a L
Wy point source above the boundary and at large distances, the ?f 1
o~ '

= reflected component of U has the form, for 6 # ep, _ i
¥ -

s _ ikR 1

> U (R) = V() + 0(—). (5.50)

-t kR

where R= /x,2+y,2 + (z+z9)2 , and © is the specular angle
between the source (at (0,0,z;)) and receiver (at (x,y,z)),
see Figure 5,

DN P AL -
" il J'J“)'_"J':;‘J

N XN

But if V has a pole (when SEGP), then the
reflected component has the form

-

; _ (KR o — imstie
2 U (R) = Sg— (14n,(3) /8kR e [ e" at), (5.51)
o r R g s
o
where
A
~
ﬁ
> -
& 82 = 1%3 . ngz(g)[1+-—2E-]2 (5.52)
s ng(g)
- The following asymptotic formulas are valid for
- grazing incidence, ¢=0:
': z 2y
. * Note that R = (1 + ?H)Rlo = (1 + 3= )Ryp. See (5.35) and
<. after.
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T (&) = oikR 1+i/7s, ,sl << 5. 53)
’ R :13' 's' > 1,
2s

So if R, the position of the receiver, is such that
the specular angle 6:8p, and if s | is large, the reflected
mean field will experience additional attenuation.

However, 6 _ < ;, and as grazing incidence

P
approaches, ep < 6 %, the reflection coefficient approaches

1, the attenuation due to the pole disappears, and (5.50) is
the appropriate estimate,

In fact, as will be shown in the next section, the
average intensity for a rigid surface equals that for a free
surface, at grazing incidence.

b) The Intensity of the Fluctuating Field for a Rigid
Surface

The relevant formula for u(R) is (5.41), except now
restrict the integral to the actual scattering surface S, so

1 eik |R-r' ‘ , Bzﬁ(t')
B ey ey R o
- y(r')vr.ﬁ(r')}dr'. (5.54)

Introduce the same geometry as before, (see Figure
4), with Ry, Ry, a, B defined in (5.19), (5.20). As in the
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ol =
— "‘;'
i:’ case of a free surface, U may be replaced by the zero-order ;j
-_:‘:_:‘ aproximation U,, where
o . -
N . . eik R-8| ik [R-S' | %
:':"\:, UO(R) = —rﬁ] + ‘Wl (5.55)

d =
2y
\j’ - as before (compare 5.21), where S = (0,0,z;) = -S', provided
x{‘j .cos6+ngl > 0, so that Vz-1 is a valid approximation. '
WS Then (5.54) can be rewritten in the form 3
w’::‘: 2"
Mgy (1-a B ) ]

N 2
L wR) = £ [ L IR (RIMR) g )qp, (5.56)
™ S 182 ﬁ
"Z:::l_ But (5.56) immediately implies that .
N : N
v
, o2  (1-a; B )2 4 ~ik(B -a ) =
o <u(ry|?> = ko g L1 ar [ w(eye k(B ma ) ey, a
n2 s R)?R,? - -
= _ (5.57)

AN
A - Ll
The assumptions made to derive (5.57) are the some as in the

) free surface case, (5.25) and (5.27). =2
\ But (5.56) has the same form as (5.26), with e
(ezBz)2 replaced by (1-a;*B;)2, so estimates cor- o~
' responding to (5.31) through (5.36) are valid in the case of -
= a rigid surface also, with the above substitution. '
i ;
Note that (5.35) is valid for rigid surfaces also, o
> b t r=rq, i a = = 1-aq, *B h -

. ecause at r=rgo, 1.e., a ﬁJ.' "ozﬁoz -@p,*Bo,» as shown
-";\\ N
SSAN) -
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! at the end of Appendix A. So as remarked earlier, if the

- scattering area is large and kX >> 1, Lambert's law (5.35) is

@: j: applicable to both a rigid and a free surface (for a small

Ei - Rayleigh parameter, of course).
ol

_: . C) Surface with an Impedance Boundary Condition!?

S

- Assume the initial condition is

S (r,t(r)) = -iknU(r,&(r)) (5.58)

v

N R

S where n is the impedance at the interface between the upper

v and lower half spaces, and %3 is the normal derivative

>~

b defined in (5.38).

=

v

., —

" . Letting U = U+u as before, relatively few changes "
- occur. The boundary condition for U, 5.39, has a term -iknU

WA added on the right side. The effective impedance ng is

J . changed by the addition of the impedance n on the right side

i = of (5.43).

ﬁ - And finally, the expression a;28,2 for a free

? - surface, in (5.26), or (1-a;+B;)2 in (5.57) is replaced

' by a more complicated expression ‘F(a,B,k,kz,X,xz 2 given in

”. f: Appendix B. So the expressions in (5.31) through (5.36) are )
oo valid, with «, 28 2 replaced by lF,z. Note that in this case, ]

(5.35) becomes

[
IR
P

4k202|i‘(a0,p°)]2

SR <|urr)|? = . (5.59) N
3 Ve Bozz(R10+R2°)2

¥

\ ,.';
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L vI. SCATTERING FROM SURFACES WITH LARGE-SCALFE ROUGHNESS i
T :
o The Kirchoff method or tangent plane solution??,
:‘;-\.E'_ To discuss scattering from a rough surface when
- there is no small parameter available, the following approxi-

R s
O mation is useful. ”
;: Assume the surface is so smooth that at each point N
'\j: r of the surface S the wave field U(r) may be represented as
_:: the sum of the incident field Uj(r) and the field reflected =
. 2 from the tangent plane at r, that is, o
v '

T2 :

5 0(r) = (149U (r) s BREL o (1ov)mml(r) (6.1)

o~ olt)r =5n— YT .

- 3 . . o
Here 7~ is the normal derivative, and V is the "
N reflection coefficient.

Y .

2" : If one assumes further that the incident wave is a

plane wave at each point r of S, with a wave vector K =2
N .

:\:,:» depending on r, (6.1) becomes

LA

o

B U(r) = (14V(0))Uglr), 2ILEL = §(ReN)(1-V(8))Up () (6.2)

‘—. 0 * “3n 0 .

o | =
Z-:-_::j where N denotes the normal to S at r, © is the angle between
j,;;__: K and N, and the plane wave approximation is used for Uy, so
\' that the normal derivative = iK*N U,. =
J'\-"_'

,’,Z'_Cji." The above representation requires that ;jgl
o cos® >> (ka)=1i/3 6.3 =
o (ka) (6.3) "
T
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_.' where a is the local radius of curvature of S at r. This
condition results from the requirement that the tangent plane

:\ at r is a good approximation to S over a region whose
h dimensions are large relative to the wavelength of the
- incident wave.

N

Let the scattering surface S be complemented by a
plane S' and the hemisphere CgR', (see Figure 6) so that a
closed region is constructed containing all the field
sources. Then if R is an arbitrary point within the region,
by Green's theorem the field U(R) has the form

U(R) = Ug(R) + 4= [ {U(r)%—(eisz)
‘ S+8'+C,, "R,
ikR
- S 2 %EU(r)}dr. (6.4)
Ry

But since all the sources are within the region, it
follows that

~

ikR ikR
0
'}? s+s{+c {U°(r)%ﬁ(e~ 2) - 2 = 2 Fﬁuﬂr)}dr = 0. (6.5)
o R! R R
", 2 2
i;:': Subtracting 6.5 from 6.4, the result is
-y
. ikR
1 d (e 2
U(R) = Ug(R) +ﬁ[£ + s.{c H(u-ug)g5( = )
R' 2
< ikR
* .
- -2 2 %E(U-Uo)}dr. (6.6)

2
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The Kirchoff approximation consists in assuming
that on 8', U=U,, so the integral over S' is zero.

X

Further, assuming a radiation condition, that is,
ikR'

N |

at infinity both U and Uy~ R R'ECR.,the integral over

Rl
Cr' may be neglected. Using 6.2 to represent U-U, on S,

gives the result

e

ikR
U(R) = Uy(R) + -fﬁ é V(r)-g—n-(e = 2 up(r))ar, - (6.7)
2

where V(r) is used to indicate the dependence of the reflec-
tion coefficient on the local angle of incidence. Here r is
the length of ' along S, . as seen in Fig. 7.

If the source is taken as a point source, then 6.7
may be written

ik(R;+R,)
U(R) = Ug(R) + %i é V(r)%ﬁ [e—ﬁ——]dr (6.8)
1582

where (see Figure 7), R;2 = (zo~C(r))2+lr|2, R,2 = (z-%(r))?2
¢ per . 2

Now assuming kﬁl, k§2 >> 1, (the term used to
describe this is that the source and receiver are in the wave
zone relative to S), the integrand in (6.8) can be approxi-
X mated by -i(N';)exp(ik(§1+§2))/(ﬁ;iz) where N is the normal
to S at r, as shown for example in Fig. 6, and is given by




Figure 7
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Y = V. 0(r),N, = —L—, N, = —1 ., ana § = -kV(R,+R,).

/1+|yr)2 @ /1+'y'2 (6.9)

Referring to R;,R; defined in (5.19), and «a, B
=~ defined in (5.20), see Figure 4, if ko? << R, ,Ry*, then

R Ry = Ry + o,&, Ry = Ry = B,C, (6.10)
th o neglecting terms of order o2/(R;2+R,?).

_;:: :

LN -

Y Under the same assumption

g o

¢;

ARG g = g = -kV(R;+R,) = k(B-a) (6.11)
RAGEN

bty

o Using (6.10) and (6.11) in (6.8), and neglecting

the incident field U (R), then (6.8) becomes

.
]
L}

4

IS 0.(&"-‘ ‘.. »

3 V(r)(g,_-q,°Y) )
UR) = 35 éo ﬁlR: L exp(i[k(R,+R,) - q,%(r) ])ar, (6.12)

N

4

A% ] NN

"‘o
L]

z

3 -
]

where the integration has been taken over the projection Sy
of the surface S onto the plane z=0 (drg = Q%QX). Also,
z

s

’
£

‘J'.‘J Ol
P s
l.‘)

referring to 6.9, observe that (N°q)/Nz = q,-9,°Y. (As is

= - true throughout this paper, q, is the projection of g the
VR mean plane 2=0.)
o
':: oo
e
i ™~ * 2 2 2 2
e More precisely ko’ o, |2 << Ry, ko? [ |2 << Ry, o, | =
‘zj f; cos8, the local angle of incidence of the incident wave,
f4 ~ and Ile = cosd', the local angle of incidence of the out-
*; A going wave.
g |
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a) The Mean Field U

a) "Small" Scattering Area

Suppose the dimensions L of the surface S are less
than the dimensions of the Fresnel zone, that is

kL2cos?6 << R;, kL?cos2?8' << R,. (6.13)

Then in (6.12), k(R;+R;) = k(R,¢+Ry9) - g3 °* r, where Rjg.,
Ryp are the distances between a fixed position on S and the
source and receiver, respectively, and now g is a constant
vector, over all of S. (6.12) then becomes

-jelk(R1g+R20) '
Ule,B) = —qRroRg éoV(r)(qz-ql'Y)exp(-'l(ql-r+qzC(r))dl’-

(6.14)

Here U(a,B) rather than U(R) is used to in indicate that
(6.14) represents the field in the direction B after S is
illuminated by an incident plane wave with wave vector ka.

But as <y> = '0 and ¢ and y are independent, it
follows directly that
- ik(R)o+R20)
iqzve

Ote, ) = dmR gRzg

£1(q,) é e 19, Ty,
0

where f; is the first order characteristic function defined
in (1.6). But the integral above equals (2%)28(qi), and
gy = 0 only for the specular path connecting source and
receiver, so finally

LS

K.
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RS
R
. ik(R;4+R

\! Ba.5) = -1uqzV(z:::20( 10 20)5(ql)e-2k2°zcosze° (6.15)
E: where 6, is the angle of specular reflection at q; = 0. 1In

(6.15), f£f,(qz) was evaluated for a Gaussian surface, as
\- dz = 2kcos6, when q, = 0.
iﬁ (6.15) again asserts that the mean field propagates
< along the specular path. Further, the effective reflection
’e coefficient is V(Go)exp(-2k202cos290), so that the coherent
b component of the scattered field decays exponentially with an
. increase in the Rayleigh parameter. Note that (5.16) is .a
- special case of (6.15) for small Rayleigh parameter, for ©

away from grazing, and k2 >> 1.

b) "Large" Scattering Area

Now suppose S is so large that the inequalities in

o (6.13) are not satisfied. 1In this case, to discuss the mean
;: field, return to equation (6.8), rather than continue from
(6.12).

.
) Assuming z,, 2>§, the spherical waves in (6.8) may
:f be expanded in plane waves, namely,
- ikR;, ', +o _i(Ker+[zg-C(r)]K,) '

e i e z

§1 .= ﬁ {ﬁ JKZ dK (6.16)
| ‘ . and
‘—
“ ikR, , +o _i(K*(D-r)+[z-C(r)]K.)
2 S— 3 = — Z_aK (6.17)
-, R, aad z , ’

where K = (Rx,Ky), and Kz2 = k2- [ |2,

&
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As before, the normal derivative has the form given
in 6.9.

Using 6.9, 6.16 and 6.17 in 6.8, and projecting the
integration from S onto the mean plane S,(z=0), the result is

- . +o [R_+K'_~y*(K-K')] ..
8 i z -z <
; U(R) = Up(R) + [ vy ) T
X 1673 S, = Xz <z
exp{i[(K-K')*r + K'*D + zoK, + zK,'-C(r) (K, +K_ ') ]}dRAK' Jdr. -

(6.18)

To calculate U from (6.18), again use that <y> = 0, u
and { and y are independent random variables. For
simplicity, set V=1. The average of exp(-i(Kz+Kz')(C(r)) =
fl(Kz+Kz‘) as before, and the integral of exp(i(K-K')-°r)
gives (27n)25(K-K'). The final result is ®
U(R) = Ug(R) +3z | ——p——exp[i(K*D+(z(+2)K, ]dK (6.19) =

-0 z

Recalling that f,(2Kz) = exp(-2k202cos?6) defines
, the effective reflection coefficient in the previous section,
: (6.19) asserts that the mean field is the sum of the incident :?
field Uy(R) and the superposition of reflected plane waves,
arriving from different angles, and with their own reflection

) coefficient.
-
Let R' = /lDI2+(zo+z)2 be the distance from the
- mirror source (0,0,-2p3) to the receiver at (D,z). Then it :
% has been shown that (6.19) reduces to
e
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A D(R) = Uy(R) + exp(-2k202cos?6,), (6.20)
R'
o
| @ where 6, is the specular angle connecting source and
"':‘ . receiver, if
RO
RN 2{(ko)*sin?64+(ko)2(3cosB,-1)| << kR'. (6.21)
NN For (ko)? small, (6.21) reduces to
T Oy
W . )
"
N ~ E"_ << 1’ (6-22)
"n'.\ h R'
54
-‘:-':
:‘:\:“-' 2 which is a very weak restriction on o.
3 0
'\"' u However, for (kc)2 >> 1,and for ©; bounded away
ool from 0 and ©/2, that is,
g 8y >> and % - 8¢ << wpu (6.23)
e - 0 - 0 ’ .
o : ko ] 2(ko)
- h
S (6.21) is equivalent to
A
4,’?" r
AT
i A 2(ko)*sin?20, << kR', (6.24)
\,3 ::S which is a good deal more stringent than (6.22).
e
PR This is due to the fact that for (ko)? large, the
o ° effective reflection coefficient inside the integral in
:‘:L:fj (6.19) will vary rapidly over S unless (6.24) is satisfied.
a2
o e
Y .
SOANEES
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B) The Intensity of the Fluctuating Field

Returning to the representation of U(R) given in
(6.12), note that for large Rayleigh parameter, here written
Jz9, the main contribution to the integral will come from
the points of stationary phase, namely the points for which
Vr[k(R1+R2)-qzC(r)] = 0, that is

q,y +4q, =0, (6.25)
recalling that v = V,(, and a; = VpR;, B) = -V¢R,.

But the solution to (6.25), vy = -q,/q; defines
a point of specular reflection between the source and
receiver. So in (6.12), the term V(r)(gz-qg °y) may be
evaluated for y a solution of (6.25). Since qgz-9)°Yy =
|q‘2/qz, (6.12) becomes

o -i o) a(e)|? . -
U(R) v 3 J ——iT%%a;—l-exp(l[k(R1+R2) qzC(r)])dr, (6.26)

where V(r) now denotes the reflection coefficient evaluated
at the angle of specular reflection at the point r.

But from (6.26), the following formula for the
averaged intensity u results.

<!u(R)l2> = <|U(R)|2> - |<U(R)>|2

vv*' fg 2 jg* |2

(4%)%2 S¢ Sg RyR;'RyRy"q,Q,"

exp[ik(R;+R,=R;'- R,']s  (6.27)

[<exp(-iqzC(r)+iqz'C(r'))> - <e-iqzC(r)><eiqz'C(r')>]drdr'.
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All variables with primes refer to r'.

Let p = r'-r. Then, as before, see (5.24),

= [D=
R1+R2-R1"R2' = [-R-z—r - ;—1]‘9 = ql‘p, (6.28)

where quadratic terms in p are neglected, which is valid
under conditions to be specified subsequently.

Then, referring to (1.6) and (1.7), (6.27) becomes

v(r)|2|q(r)|* += . -
<|u(R)l2> S ‘ , ' ' J eld) p[fz(qz,-qz:p)
- flz(qz)]dpdr. (6.29)

In (6.29), the terms before the exponential in (6.27) were
evaluated at p=0, or r'=r. Conditions for the validity of
this will also be given below. Observe also that in (6.29),
the p-limits of integration are extended over the infinite
plane.

If S is Gaussian, the expression in the bracket in
(6.29) becomes (refer to (1.9)),

£2(9,,-9,30)-£,%(q,) = expl-q,26?(1-W(p)) ]-exp(-q,%02) (6.30)

The validity of all of the transformations and
approximations in going from (6.27) to (6.29) depend upon the
dimensions of the p-region over which the expression in
(6.30) diminishes, so that portions of the p-plane outside
this region may be neglected.
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For large Rayleigh parameter, (qzc)2 > 1,

expanding W(p) in a Taylor series, the result is that (6.29)
is valid for

knrx2 >> 1, kncoSZery2 >> 1 (6.31)

where R = R;, Ry, cos?0 = cos?0',*

Interpreting the inequalities in (6.31) geometri-
cally, the result is that for (qzo)2 >> 1, (6.29) is valid
if the region where specular reflections dominate substan-
tially exceeds in size the first Fresnel zone.

If now we consider the case (gz0)? << 1, the
expression in (6.30) reduces to qz202W(p), and in this case
(6.29) nearly coincides with (5.26). A factor |q[*/16 occurs
in (6.29), and a term k“az?B,2 in (5.26). These agree
when a;=8,, az=-B, (scattering in the specular direc-
tion), but not elsewhere, Further the conditions for
validity of (6.29) turn out to be (5.25) and (5.27), that is,
the region where specular reflections dominate must be much
smaller than the Fresnel zone.

Not only is (6.29) valid at reasonable ranges for
both large and small values of the Rayleigh parameter, but as
will be shown below, (6.29) reduces to the correct limiting
value as the mean slope of S approaches zero. Further, for
large values of the Rayleigh parameter, a limiting form of
(6.29) can be derived involving the slope probability density
function which agrees with results derived using an alterna-
tive approach to scattering.

* It can be shown that (6.29) holds if
(kR)2r, 3 >> 1, (kR)z(cosery)a >» 1,
which is weaker than (6.31).
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._ For all of these reasons, (6.29) is a fundamental
h result of scattering theory.

o

3 a) Small Scattering Surface

N Now suppose that the dimensions of the scattering
. surface S, and its projection S; are sufficiently small that
R the r-dependence in the integral in (6.29) may be neglected.

Then (6.29) becomes
i
™ w12 iso llal* +=

- e 19L°P(£,(q,,-q,:0)-£12(q,) Jdp
% J(a,B) = (4ﬂR1R2qz)2 2 238z 1 14,

. (6.32)
; Here as in Section V, the notation J(«,B) is used :f::f;
as a reminder that the average intensity is now a function of :.‘_::Z'
' the incoming and outgoing wave vectors, a« (in), 8 (out), and
) g = k(B-a). |Sg ] is the area of Sy. Z:;','.'_:
2 oS
For (gzo)2 >> 1, (6.32) is valid if :
. L cos® L cosé' _ L o
- —il ' X, <L I‘x; R;cos8, Rycosb' << T{; (6.33) :'_.-__.'.:-
R ' s
= where Lx, Ly are x-y dimensions of S§,. >
e
i For (gzo)2 << 1, (6.32) is valid if o
» XL, % cos?e kL, 2 e
» Xy
&3 —T—— < 1, —Lle <« 1, (6.34) E!".
- plus similar inequalities with R;,cosé replaced by Rj,cosb’'. o
LN
o (6.34) corresponds to the restriction (5.30), derived earlier :-j._:;
] for the perturbation solution. .
e -63- 1
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Now consider (6.32) for (gzo)2 >> 1. Then the
term f£,2(g;) = exp(-qgz2¢?) can be neglected. Further, as
soon as 1-W(p) becomes significantly different from zero, the
f, term (see (6.30)) is also essentially zero. So for large
qzo, only the region near p=0 needs to be considered.

But then, taking a Taylor expansion of 1-W(p)
around p=0, and evaluating the integral for large (qzo),
using the method of stationary phase, (or actually, Laplace's
method here), the result is

‘V'leollq'“ . 2%

J(a,B) =
(41:R1R2q2)2 qz2°2 W

xx Yy
2 2

¢ expl——(iroy + wqpy)] (6.35)
2qzza2 xx vy

=1

N i = = —---1 2
But setting Wxx(O) 2 5 Wyy(O) x 5" and Px =
X Yy

52/1x2, ryz = &z/lyz, (6.35) can be rewritten as

2 "
[ol2]soflal*

J(a,B) =
4R, 2R22qz‘0

2(vq)., (6.36)

where w;(y) is the slope probability density function defined
in (1.2), and Yy, = -q)/q; is the facet slope providing
specular reflection between source and receiver.

The derivation of (6.36) requires that
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o (9,002 > 1 if —3 < 1
S 2 e
o and | | (6.37)
s
aRA q
2 14ty 1

o .’ (qzc) >> (-q—zr) if zr— > 1.
Al
NN
RSEN Here T' = max(Tx, Ty).
f-"j DY Note that the expression in (6.36) is independent
"'::-;f e of k. This is due to the fact that (6.36) expresses the high
E\'j’ " frequency limit of the integral in (6.32).

“ Y
N 2 |
Lo Radar backscattering studies from the moon exhibit
}:_F o some frequency dependence, even near the specular direc-
o T tion?!, so to that extent (6.36) is not correct.
,‘_‘,_\ G Further, the derivation of (6.36) given requires
:&' “ very little information regarding W(p), only that second
::%1 u-' derivatives exist. (But see an alternate derivation of
L0 .
e (6.36) below.) So if the scattering depends upon more than
e ﬂ three parameters o, %y, ty, then (6.36) is too simple.
_';-‘ N
Pl =

.4
,..%! ,'_3 However, its very simplicity 1is appealing.
‘vl Further, the fact that the slope density function w, is
s evaluated at y, = -q;/qz is also interesting. A facet
A
RO with slope Yy, is such that the wave vectors a (from the
ER .
R source), and B (to the receiver) make equal angles with the
5 normal to the facet. So the reflection from such a plane is
specular reflection from source to receiver. Thus (6.36) can
l’—. .
o be interpreted as the product of a geometric term |q[*/qz",
:ﬁ: an area term, a reflection coefficient and a spreading loss
'.L ii term, all multiplied by the probability that there is a facet
65
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{. suitably oriented to provide specular reflection between L;‘
N source and receiver. !
Lty .-
2 :
A This is an expression of the idea that for a large _
: Rayleigh parameter, the scattering is due to glints from -
-::-:: properly oriented facets of the surface. And since the mean B
o plane is flat, <{> = 0, this probability is highest near the ‘
", mean specular path, so this term should dominate there. :'.:f
A (6.36) is of sufficient interest that an alterna- -
e tive derivation will now be given.
Begin with U(a,B) as given in (6.14). N
N
‘ ‘,{\3 Then
:«".‘: i ) 2 1 2 ' a3
‘ [u(a,B)|2 = = [ [ |v]2(q,ma ev)(a,ma o) 5
e exp[-iqg (r-r')+q, (¢(r)-C(xr")) Jdrar’ A
_ Now in the exponent, let {(r) = "§(r') = V,.L(r-r') = ~y*p,
" where p=r'-r as before. Neglecting the p dependence in ' -
.. results in a p integral of the form -
-(:':f : icq + .
P [e1(*q,1) %P, & (2ﬂ)26(ql+qzv). - (6.39)
'_:. again assuming that the integral is dominated by the contri- :f
3: bution near p=0, so the integral may be extended to the B
43“ infinite plane. EN
-'n* -t
T ‘N
N
oy Introducing (6.39) into (6.38), and then averaging
‘_C:Z?. _ with respect to the random variable y, the result is '.
N /
N
T v
N -66- *
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N J(a,B) = <'U(a,|3)‘2> = %-S-;ll:—zf,V‘Z(qz-qlw)26(ql+qzy)w2(v)d‘r
:J‘ 1 2
|vee)|2so]a|*
N = e o & wa(Yo)» (6.40)
R 4R “Ry%q,
~ where Y, = -q,/q; as before. 8, is the specular angle
‘-. relative to the normal to the facet with slope yg, that is,
. cosf g ='§|—;—cﬁ. In (6.39), use was made of the fact that
C: (qz-qj_"n,)2 = |q I“/qzz. The estimates required in deriving
(6.40) are precisely the inequalities (6.37) obtained in
; deriving (6.36).
I Note that in deriving (6.40), no mention was made.
A of the correlation function W. However, the underlying
.- premise throughout the whole section is that the surface S is
. smooth enough that the tangent plane approximation makes
) sense. But as remarked earlier, a reasonable smooth surface
,:-_ requires W to have second derivatives. So the derivation
leading to (6.40) is not more general than that for (6.36).
’! b) Shadowing for Small Scattering Surface??
b
¢ In deriving the above relations, such as the
- formula for |[U(«,B) |> in (6.38), the implicit assumption was
.'j: ' made that the entire surface S was illuminated, so that the I_{jij:-_
integration could be taken over the entire projected area .;I::_I:
- Sg. - "_
2 L
e However, for rough surfaces, with steep slopes, and
¥ near grazing, obviously some portions of the surface are in
" shadow, and do not interact with the incident wave. To ]

-7~
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3 o
{ correct this deficiency, a factor relating to the probability : P
o of being shadowed should be introduced. -
: =
.a The simplest way to introduce the shadowing cor- =
i rection is to assume no diffraction and modify (6.38) so that ™~
:: the integration is now over S${11%Si1)+ rather than S¢xSy, l::
- where Sill is the projection of the illuminated portion of S. -
N Continuing as above, approximating ¢{(r)=-C(r') = -y°p, and X
- using (6.39), we arrive at (6.40). But now, rather than '
" computing the average with respect to y using the density .
g function w,(v), the y average is computed using the effective
J slope density function we(y;x,B) which is the probability o
of the occurrence of a facet with slope y for which an ' '
. incoming ray a« is not intercepted by some other portion of L
s the surface, and. for which the outgoing ray 8 is likewise ‘_ by
> unshadowed. ‘ "
L Now the result is g
3 walvsa,B) = wy(Y)P(v;¢,B) (6.41) oo
) K
' where P(y;a,B) is the probability that neither of the rays a - "
A or f reaching the facet with slope y intersect the surface .~ -
; elsewhere. )
. S
The only case where theory has produced an evalua-
tion of P(v;a,B) which has been verified experimentally is -
- when a, B lie in the same vertical plane, the plane of ZE.
incidence?3. R

, Let a = (sinfcos¢, sinfsin¢, -cosb), and B =
(sin®'cos¢’', sinb'sin¢', cos®'), where 6, 6' are the o
incidence angle of a, B with respect to the normal to the )

DA - §
’-.'.r p
. ""gj—.' oo

: g
% mean plane, and ¢ ,¢' are the angles a, B make with respect -]
M to the x-axis, (see Figure 3). * !"
-68- S
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- If ¢' = n+¢ (backscattering) and U = max(0,6'),

. | P(y;a,B) = H(cotﬁ-vxcoswv sing¢) - . (6.41)
. Y 14A(F,0)

? If ¢' = ¢ (forward scattering)

P(y;a,B) = H(cote'-yxcosqa-y sin¢')H(cot9+yxcos¢+yysin¢)

y
N _ . ! . (6.42)
1+A(0,0)+A(0',4")

Here H(x) is the unit step function, 1 for x>0, 0
T for x<0. A(9,¢), for a Gaussian surface, is defined by

1 -a’

,.:.': A(B,¢) = ﬁ[é e 2 —aErfc(Er-z-)]. (6.43)
<.
' where a2 = cotze/(I‘xzcos%-!-ryzsinzﬂ.
- The difference between the two cases is as follows.
- In (6.41), (backscattering), if the lower ray is not
m shadowed, then certainly neither is the upper ray, that is,
te the two events {a not shadowed} and {8 not shadowed} are
. related, one is a subset of the other.

However, in forward scattering, (6.42), the
,":;Z assumption is made that the two events are independent, which
- seems reasonable in this case.
-
i No shadowing theory has been developed for an

. arbitrary relation between ¢ and ¢'. ' The difficulty lies in
L making the transition between two independent shadowing
events, and the totally dependent arfangement in
E backscattering.

i~ , -69-~
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In the absence of any analysis of the transition,
the suggestion has been made to use (6.42), treating the ’
events as independent, as long as B lies outside some wedge

containing «, i.e., as long as |[¢'-¢] > €5 > 02%. Presumably h
€eg need not be very large, e.g., n/12; although Bass suggests -
€Eq = -; For the reverse inequality, (6.41) should be used.

One further note, in the final form of (6.40), _:'_f
where w,(yg) is replaced by wea(vg;a,B), the step functions -
in (6.41) and (6.42) are one, as the arguments are positive. ::

- But when these results are extended to a large
scattering surface, these step functions will play a role. o

The shadowing theory presented thus far is based
upon the approximation in (6.38) of {(r)-{{(r') by ~-v*p. This
eliminates the random variable { in favor of vy. And the E
introduction of a correction for shadowing is reasonably well o
understood, when averaging over the slope vector vy.

However, as remarked earlier, the formula (6.32), —
(or (6.29)), seems more fundamental than (6.40), in that o
(6.32) will give either (6.40) or the perfurbation result

LS
(5.31), according to the size of gzo. But to the author's o
bR
knowledge, no shadowing correction has been applied to
(6.32). o

There is a formula for wg(&:;a,B) analogous to
(6.41), where weg(l;a,f) is the probability density function -
of the surface height, given that the rays «,B are not .
shadowed, namely. ~

We(C:Goﬂ) = w(L)P(L;a,B) (6.44) S

o
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! where
T & Y
¥ P(2ra,8) = (14A(8,0)+4(8%,00))[] wicryart Ao 01+A(O" 00 ]
- +
S « J/P(v;a,B)dY (6.45)

-0

The fact that P({;«,B) depends upon { will prevent
the averaging of the term ((r)-(r') giving £,, as before in
:':l (6.32)-

One suggestion for introducing a shadowing correc-

B

tion into (6.32) or (6.29) is to approximate an integral over
Sj11 as follows:

CARA
l‘l.‘.l

4 2.
. By TS
«’n A

-.

< [ { }lar> = [ p(e,B) <{ }>dr,
Si11 So

-

where P(a,f) is the probability of the rays «, B reaching an

W, illuminated portion of the surface independently of the
' height {, and slope Y.
g
2
For an isotropic Gaussian surface, and for «,B
gﬁ independently shadowed,
3
ron cotd!
o [ wa(v)dy
) -cot o
P(a,B) = . (6.46)
. . 1+A(0)+A(0")
;
If the shadowing of « and the shadowing of B are
j? dependent, then




cot®
[ wy(y)dy

P(a,B) = = , (6.47)
1+A(D)

where ¥ = max(9,9') as before.

The shadow corrected version of (6.32) is tﬁen .

J(a,B) = Jg(a,B)P(a,B), (6.48)

where Jg(a,B) is given in (6.32).

For a non-isotropic surface, the integrals in the i
numerator in (6.46) and (6.47) are replaced by the integral
of w2 (YxsYy) restricted by the step functions appearing
in (6.42) and (6.41), respectively.

B
b) Large Scattering Surface )
. <
If the inequalities (6.34) are not valid, so that a -
large region is involved in the scattering, then the ¢ -
integral needs to be evaluated. The result is -
C
<|u(r)|2> = Ii-i%-f—’dr (6.49) i
Sy 0 -~

|
where J(«,8) is given in (6.32), or for large (g0), in 3
(6.40), where no shadowing correction is made; or by (6.40) )
multiplied by P(y;a,B), or (6.48), which is (6.32) multiplied -
by P(a,B). =
4 It is interesting to consider the 1limit of ~
<lu(a)|2> as T2+0 (but letting kR+= so (6.31) is still )
satisfied). Let us write (6.49) in the form ;
-72- o
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£,(q,,-9,,:p)
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- £,%(q,) Jaear (6.50)

§
¥

As T'2-0, f, (see (6.30)) becomes sharply peaked at

< o Tt \
RS e
A .'-4-‘5_-"’,._'
Ml KT S
Al NN RS

i\ p=0, so

c e @ -3 . '-'_\-:‘

2 [ e P gy(q,q,50) - £12(q,) ]de = (27)26(q)) [1-£12(q,) ] 5
' (6.51) v

..'./".;
!

But as in (5.35) q1=0 occurs at the point of

R
>
e |
P,

. specular veflection with respect to the mean plane, namely at :
N -2z e
y 0 SRS
'. = . o l‘
Lo D (Zo +Z) ’ :‘::’:1

.~ Y

b
¥

-
. The result is

%l
.

l.). "7('
RN I

s

F 1 2,4f.2 \
S il - Flveeo |201-£, (9,)) 6.52) 33

) (Ryg+Ry¢) 2

/2

o’
s
’

- 'f‘f‘t‘
s % -"n‘-..:
"'l"'l"

3 !

.
(]

where we have used the fact that at qgq;=0, |q|=qz=ﬁz.
: Z9 X
8y, as before, is the specular angle at rj, cosfy = z— = sial

R
z 10 o |
Rzo.

)
2
»
€

When (gzo)2 >> 1, £,220, and (6.52) gives the e
:Ef correct limiting result in specular reflection from a plane.
-

In (6.52), the probability P(a,B)+1 as TI2+=, as
A(®)+0 as T'?+=,
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! VII. EXTENSIONS TO THE THEORY: COMPOSITE SURFACES?25 £
y
~ There are basically two solutions to the rough
surface scattering problem that have gained acceptance. One —
. is the perturbation solution (5.31), for a small Rayleigh .
: parameter, and the other is (6.40), for a large Rayleigh
; ,-
N parameter, using the tangent plane approximation. (Actually -
- (6.40) should be replaced by the shadowed version, with w,(Y) -
N replaced by we(v;a,B).) ' o
:: P
:C As has been remarked several times already, both -
* (5.31) and [6.40) can be obtained from (6.32). (At least the n
.: free surface perturbation solution can be obtained from .
. (6.32), to within a geometric multiplier, although since the ’
f;' rigid surface solution coincides with the free surface
solution at grazing incidence, perhaps the difference is ﬁ
,. slight.) )
fd
y However, (6.32) has not been used extensively as a =
" d
. scattering solution, probably because a Fourier transform -
- must be evaluated, whereas (5.31) and (6.40) are simple
:, function evaluations.
W .'_-;
3 N
Now (6.40 - 6.44), and (5.31) are valid in dif-
ferent, nearly complementary regions of the parameter space ;I:
(k,2,B,0), namely the geometrical optics solution is valid i
for large ko, near the specular angle, while the perturbation
solution is valid for small ko, and/or near grazing, away :
from the specular angle.
Clearly it would be desirable to have a simple o
solution which would bridge the gap between the two existing ” ;‘
» ) *
¢ -74- A
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' solutions, as the result would be a theory valid over all !_-.;'\9
- parameter space. Sii.
[ N
Y Note that the two sclutions are responding to QSE
- different features of the scattering surface. The geometri- l"f
N cal optics solution is describing specular reflection from {ﬁ;
properly oriented planar facets of the surface, while the &if
?? perturbation solution expresses the diffraction from smaller :&ﬁ
features of the surface. iy
= ]
- This notion led to the introduction of a composite e

surface, that is, expressing the surface as a sum of a large A

0

3
-
A}
“"
157
[J

and a small surface,

z o= L) = L(r) + T (r) (7.1) :

=

where in (7.1) and subéequently, the subscripts L and s refer é&

!
"
f

to the large and small surfaces respectively.

i :‘-'..\:
‘.' ‘! .I-.
T The idea here is the large surface contains the ot
planar facets, (long waves in surface), and superimposed on '5’}

!! these are the small ripples (short waves) responsible for j{}
diffraction. N

e Again note the utility of assuming a Gaussian S
:_': surface, for if both {p, and {g are Gaussian, so is g&.
e S
.. The first person to use this notion of composite ;ﬁﬁ
o surface was Kuryanov2®., He suggested modifying the small :ﬁ“
surface (perturbation) solution in two ways: i) Express the Z?x

;1 geometric factor in the solution relative to the normal to f}ﬁ
", AT
’ the large surface (N;, = N(vyp)), rather than in terms of A
AN

n i
. B
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the vertical normal to the mean plane; and ii) since the
orientation of the large facets is random, average the
modified perturbation solution in (i) with respect to Y.

Kuryanov wrote before an adequate shadowing theory
was developed, which limited his results. However, Brown?
recently independently rederived Kuryanov's results,
including shadowing.

An interesting way to develop Brown's results is

due to Dashen?. Begin with (6.32), repeated here for
reference.

vi2iso||g|® += _. . cq 242
J(a,B) = MEEII Je™ 91" Plexp(-q,0%(1-W(p))-e92 7 Jap.

(47R)R,q,)% -

(7.2)
Now (7.1) implies
o?W(p) = o 2W (p)+o 2W (p). (7.3)
Assuming (gz0g)? is small, then
exp(q, 20 2W (p)) = 1+q,%0 %W (p). (7.4)

—y 242
Then, neglecting the term e 92,°°" in (7.2), we can
write

MEEIE (7] emi9,tPea 20,2 (1= Wile)) g,

J(a,B)
(47%R)Rpq, )% -

(7.5)

e iq.sp, -q_20.2(1-
+ qzz j e iql p(e qz GL (1 wL(p)))'Uszws(P)dp]

------
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But the second term in (7.3), the Fourier transform
of the product, becomes the convolution of the transform of
the two factors.

Now suppose that (qzo)2 is large enough so that,
as in (6.35),

oL -g 26.2{1-w 2
-£ o-iree, -q, %0, (1 L(p))dp ='§E; Wor(E/Q,ia,B) (7.4)
z

where a shadowing correction has been introduced by using
wer, defined in (6.41), rather than w,j,.

Using (7.4) in the convolution form of (7.3), the
result is

2 M
MEEIIE
J(a,B) = o Yer(Yoia,f)
R)“Ry%q, (7.5)
+-’Vl2|$°“q : +}° Fi(a,(v=v¢) Jw ; (vsa,B)d
4R12R22 s lg qz Y=Yo eL Yia, Yo
recalling that vy = -q,/9z, and in the last integral the

dummy variable in the convolution has been set egual to
qzY-

On comparing the last term in (7.5) with (5.31), it
is clear that this term is a shadow corrected averaged
vergion of (5.31). In fact, if k& >> 1, then, (just as in




"1 3% e i vk, "yl . Rt M s CAE A LA LA T LW NN SRINE N NS SIS AR AR LR A O S N AN R DR S R Al
Aoy !
5 .
L et
e
g the transition from (5.31) to (5.33)), wepr{ysa,8) = 6(0), 0
N (as T'p2+0 also), and F,g(-9zYg) = 6(qy). Thus this
» term in (7.5) reduces to (5.33) also.
2
o Clearly this 1last term in (7.5) incorporates ~
- Ruryanov's notion of averaging the small surface result with
: respect to the slopes of the large surface. However, the
" geometric term |g[* is not included in the averaging.
_,,: Using a different approach, Brown included the o
- geometric term in the convolution. 1If (7.5) was modified by -
£§ taking the |[q|* term within the y-integral, written in the -
i form . -
- I 2 2.2 I 2 . 2
S A A A I A (X
o
this gives one interpretation of expressing the geometric g
':-j factor in terms of the slope Yy of the facet of the large
\ ' surface. ' =)
W . ",
A more fundamental version of (7.5) could be -
-jf provided by replacing the term |g l“ by the correct expression o
_r for the perturbation solution, i.e., azzazz for a free -
o surface, (1-a;*f,)? for a rigid surface, or more <
generally |§(a,5)|2. However, in line with Ruryanov's notion ‘
of expressing these factors in terms of the normal to the S
-, facet with slope Y, let a3z, B, be interpreted as the )
~" component along the normal N(y), and a;, B8] the perpen- "
- dicular component. o
That is, - i
{
: @, = (a°N), and @, = a-(a°N)N. (7.7) e |
i o
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Recall that N(y) = (1,-7)//|ylz+1.'

As remarked earlier after (6.31), [g|* should be
replaced by 16k*az2p,2. Accordingly, the second term in
{7.5) has the form

4k* V2| += -
e [ e (v)28,(1)2F g (a, (v=v5) Jwap (¥) Ay, (7.8)
1 2 -

This is essentially the form used by Andreeva et
al??, and before that Bachmann??, and Kuryanov?®, Observe
that in the integral wep, has been replaced by wyp, as
earlier Andreeva et al3l showed that at low grazing angles
the shadowing correction is not important, except poésibly at
very high frequencies. Since the modification and averaging
of jg|* over v is only a significant correction at 1low
grazing angles, it 1is consistent td replace wep by wjp

“above. Neither Bachmann or Kuryanov had a significant amount
of data with which to test their model. In reference 29,
however, scattering data for grazing angles from 3° to 10°

e

was available, at several frequencies and wind speeds, and
the corrections introduced in (7.8) (for the case of back-
scattering) produced a model which fit the data rather well.

-
\'sj
i
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\-"-}
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% |

Probably the various versions of the composite

“

A0
(PRI

surface solution, ((7.5), or the substitution suégested in
(7.6), or (7.7)), are all essentially equivalent, as
wep(Y:s,a,p) for moderate values of PL2 will be con-
centrated near y=0, where the above expressions differ very
little,
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One must observe, as does Brown, that the integral
term in (7.5) should include the step functions (see (6.41)
or (6.42)) in the definition of WerLr in order to be
rigorous. Other than complicating the evaluation of the
convolution, it is not clear whether the correction so intro-
duced is signficant. Some numerical experience would be
useful here.

A more interesting question relates to (7.1), the
division of the surface into large and small.

The basic assumption here of course is that
(k)2 >> 1, for otherwise the perturbation solution would
probably be valid.

Given this, the division of large and small is
given by dividing the spectrum at a value ks to be chosen.

F1(K)H(k,~|K]) . (7.9)

and

F1g(K) = Fl(x)n(|x|—k*) (7.10)

Recall H is the unit step function, one for posi-
tive argument, zero for negative.

Then
$+x

o, 2 = _i F1.(K)dK (7.11)
4o

o 2 = | P (K)AK (7.12)
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: W, (p) = —— [e!®"Kp, (K)AK, j = L,s. (7.13)

J g.2 J
" 3

) N

. -

; A With these definitions, (7.3) is clearly correct.
AN

L) (&

‘ Since q; is bounded by 2k, a sufficient condition
s W for (7.4) is (2kog)? << 1. And (6.37) gives conditions for
the validity of (7.4), with o, T replaced by o, Iy.

-

-

Note that if (gzo)2 >> 1, then for some k=
large enough, one can have both (qzdL)z >> 1 and (chars)2 <<
1. However, if 6, 6' are such that gz;+0, then obviously
(6.37) cannot be satisfied.

e’ lf)»);l 14
)

But if (ko)2 >> 1, then presumably it is possible
RS to define a suitable k« for 6, 6' bounded away from =n/2,
(so that qz is bounded below).

N E And if qgz*0, the standard perturbation solution
C i using the full surface spectrum F,(K) will apply.
S
- One further remark. Depending on the smooth-
5; f‘:: ness properties of F;g(K) in the neighborhood of K=q,,
; i the integral‘ in (7.5) or (7.8) could be expanded in an
: :"ﬁ asympototic series in Ty?2, I‘yz.
S That is, neglecting shadowing,
.
s 4o
N L origlagtr=vo) Jwo(via,Byay = By (q))P(vg)+0(T, 24T 2)  (7.14)
'Y
1N
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Given a smooth enough spectrum around q;, further ':

terms in the expansion begun in (7.14) can easily be )
supplied, via Laplace's method. A
So if |gq;| > k+, and F, smooth near q;, (7.5) -

can be approximated by function evaluations, eliminating the 2
need to evaluate integrals. As |q) Pk«, some attention -
has to be paid to the approaching cutoff in PF;g. :‘:‘
o
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. B VIII. SCATTERING FROM A MOVING ROUGH SURFACE?27

R
RO -
R Now consider a surface varying in time, z = {(r,t).
N m The basic assumption is that the variations in the surface
«:& - ¢(r,t) and slopes y(r,t) are small relative to the incident
e -

*i'; frequency wy and incident wave veloci.tytc = wy/k respec-
SR tively. Here the incident wave U, ~ e tW0%,

)

Such an assumption allows an immediate generaliza-
tion of (6.14), namely

retud oy
"‘.-3;52 ey
A

"%y
P .

hS

\ - _ieik(Rlo"’Rzo)‘intI

S OeBet) = R [V (9man)

\-.'-. ,\t

ST L .

20N exp(-x(ql°r+qzC(r,t))dr (8.1)
AN -

_\j’ ' As remarked several times before, such a formula
';j #i : will produce correct results for large or small Rayleigh
:‘_-i': T parameters, and will be the only form considered in this
. section.

.‘_'\' . Again, the dominant contribution to the integral
;j:.' \ occurs near the stationary int, v = -q,/q9qz and the

term gz-q °*y reduces to |q 2/qz as before. Here the
time variations of y(r,t) are assumed to be much slower than
that of the exponential exp(-igz%{(r,t)), so that the time
dependence in y may be neglected. For a small Rayleigh
parameter, the term gz-q °y = ,q 2/qz and may be taken
outside the integral if k& >> 1. This is because in this
case, that of a gently sloping surface, the field is con-
centrated near the specular direction.
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! The function of interest in the case of a moving ¥
= surface is the power spectrum of the field, defined by )
.....‘
N 1 ¥ * iwr :
- S(a,B;w) = == [ < U(a,B;t+T)U (a,Bst) > e dr.

‘ - (8.2) -
_\.3 Introducing (8.1) into (8.2), using the approxima-
i tions indicated, and proceeding as in Section VI in deriving -
- (6.32), the result is .
.{. -
2 4 ®
[vi2lso]la]* + | |
- S(a,Bjw) = > / exp(-ig, p+i(w-wg)1) -
N 2n(4nR)Ryq, )" == H
oY © £2(q,,-q,:p,T)dpd" (8.3)

_ N

N where f£,(4dz,-dz:p,%) = exp(-gqz202(1-W(p,t))) for a -
. Gaussian surface. ;.5
2 .
,, ‘_, The result in (8.3) could be shadowed by multi-
-_:: plying by P(«,B) as in earlier sections. This is consistent o
. with the time dependence of { and y, for the stationary =
'.,‘{5 assumption implies that the probability density function for i
$ ¢, and therefore for y, is independent of time.
\l
-

. Suppose (gzo) << 1. Then expanding f, in powers .
< of (gz0)?W, the result is | r
) = g,%n
- S(a,Bsw) ~ ] S, (x,B50) (8.4)
- n=0 nl h
o o
.;}:. where the term multiplying the sum is evident from (8.3), and v
l'

; -_a
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4+
S, (a,8;0) = [ exp(-ig)*p+i(w-wg)7)(o2W(p, 7)) dpds (8.5)

But as the Fourier transform of o2W(p,t) is F(K,w),
as given in (1.11) or (1.15), (8.5) asserts that S, is the
n-fold convolution of F. The first few terms are as follows:

So(a,Brw) = (2%)38(q,)8(w-wy) (8.6)

Sj(a,B;w) = F1(q))6(w-wo=b4(q,)) (8.7)
1 ¥

Sy(a,Biw) = > | FL(R)F1(q -K)8(ws(K)+wy(q)-K)=(w=ug) )dR

(2m)° ==, (8.8)

where K = (ky, ky), as before.

Sy, represents the spike directed along the specular
path, at frequency wg. For the moving ocean surface, if
F, (K) is assumed zero in some circle (interval) around K=0,
depending upon. the wind speed above the ocean, then §; will
also be zero in some interval around wg. S, is in general
not zero for w=w,, and will fill in the gap around the
central spike left by s,28,

Now suppose (gzo)2 >> 1. Then, as before, £,
decays so rapidly for W(p)#1, (p#0) that the inteéral in
(8.3) may be approximated by replacing 1 - W(p,t) by a Taylor
series in p and t. The result is that S is Gaussian in
nature,

((w-wg)-w )2
1 exp( n_) (8.9)
Aw/T (Aw)?

S(a,Bjw) =

-85~
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{ where vy
:‘::: D )
oy =2 2 o _oy 242D ¥
'_,-j. O =T (Aw) < = 2qz ‘g - (8.10) -&
i -
A Here D is the determinant of the Hessian matrix of W (with ~
“3} respect to Pyt py, and 1) evaluated at p=0, =0, and 4 is the
T 2x2 principal minor of D. D, is D, with the first row of D o
- replaced by (gq;, 0). The second derivatives of W needed =~
r-. above can be calculated in terms of F, and w,, see (1.12) or o
-~ g
L (1.16). -
1 |
- If the scattering surface is not small, so that the .
r integral must be evaluated, the result is
- ;:
. S(R,) =-,—-r1 | s(a,Bsw)dr (8.11) -
14 4 ’ .
SO SO —
m
p <
'.' Again, to obtain the correct normalization,
iy ] ] ~e
X particularly if S, is so large so as to include scattering ';
‘-i‘, near grazing incidence, (8.11) should probably include a )
e shadowing correction. =
X, "L
: Purthermore, if { is decomposed into the sum of a -
) R
:,. large and small surface, a composite surface form of (8.3)
- could be derived, which would combine the contributions to S
_-4: from the large surface (using (8.9) evaluated with respect to N
f’% ¢1), and the contribution to & from the small surface,
(using (8.4), evaluated in terms of {g), perhaps convolved '-::I
o with (8.9). 1In particular for low grazing angles, the term =
"4_' Fi1(q1) in (8.7) would be replaced by an integral as in .;::
:.ﬁj (7.8).
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APPENDIX A

r~l

= To evaluate the integral

m

o = [[8(£,(x,y))6(E2(x,y)) daxdy,

T introduce the new variables, u = f;(x,y), v = £,(x,y). Then
e dxdy = J-ldudv, where J is the Jacobian determinant
.. a(flfz) - Ifa 6 -1 -1 u=0 . h
o Iw| Then I = (u)8(v)JI~"dudv = J=° | _q7 using the
o fact that the mapping (x,y) * (u,v) is invertible at u=0=v.

-
L

"\‘.

To apply this to the evaluation of the integral
following (5.34) of the main text

D-r r
I = fj (— - —)dxdy (a.1)
R12R2 R Ry '

observe that

o _ X)-X X
. £,(x,y) = - ¢+ (A.2)
a /224(x,-x) 24y, -y) 2 /zglex2ey?
and
-y

~ £r(x,y) = T - RLI . (A.3)
3: Now f,=0=f, at r=r;, where
o 2o Zo
e ro = (Xos¥o) = gogz(X1/¥1) = Dggg (A.4)
l...
A _ By a simple calculation,
v
o

A‘1 .
s
¥,
N |
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R1%(ry) = ([p|2 + (zg+2)2) = (A.5)
(zo+2) 2 (zo+2)?2
2
Ry%(rg) = B2 (A.6)
(2g+2)2

Here B is the distance between the image source and receiver,
and is defined in A.5. Further, if J denotes the Jacobian
determinant for f£,, £, given in A.2, A.3, then

. B“z22z,2
J- = (A.7)
L=ty (z2o+2) 8
But then
1 1 1
I = J= = (A.8)
Rlz(ro)Rzz(ro) 'r'r° (z+zo)2
To =2y
Note that a, = (m, R—lo) = (aol, (loz) and By =
D-ro
z
Rzo ’ i'z_o') = (BOJ-' Boz)q Further'
ro D-rg D
"or TPl TR TRy B (A-9)

In addition
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(s |
‘J ]
- .._ From (A.11) and noting, from A.5 and A.6 that R;, +

::S ‘ R20 = B, A.8 becomes

YR

3%

S I = —1 = ! , (A.12)
(2+20)2 B, 2(R1g+R2o)?

" - E' ¢
EEN K
I )
t':_: o which is the desired result.
Using the relations in (A.9) and (A.10),

R 2
a0 1o« g, = 1- {pf2 o L2o*%) B 13
"I -Q b = - - '. = = Qa b A-
: E ol Pol . o2 oz ‘Poz ( )
-r: .. so that the rigid surface kernel and the free surface kernel
4{‘: o~ agree at r,.
»
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APPENDIX B

The function F(c'ﬂ) has the following form:

k(pa-p)V1-|8, |2

p/%22'k2|51|2 + kpp/1-|8, |2

2k2§(a,ﬁ) =

k2p,-k,%p
p2—p

o+ - k%,+8,] - kaz(1-V)/i22-k2]ali2}.

Here k,, p,; refer to medium below the interface.
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Appendix C

Representative parameter values for ocean surface using fully

developed Phillips spectrum,

F,(k) = B/k3, g/u? < k < kg (one dimension).

Then .

o = u? /B . .0049u? m.
292
ksu2
2r?2 =z g log ( 3 )

Here u = wind velocity, (m/sec), g = 9.81 m/sec?, B = .0046
is a dimensionless constant, kg is the cut-off between
gravity and capillary waves, kg = 2x/.3 m~!

Table 1
u(knots) u(m/sec) o(m) r 2(m)
10 5.1 .13 .096 1.35
20 10.3 .52 112 4.65
30 15.4 1.2 .120 10.0
40 20.6 2.1 . 125 16.8

Let k = 2=xf/c, £ in hertz, ¢ = 1500 m/sec.
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Table 2
Values of ko (k&), as u and f vary.
u (Knots)
f(Hertz) 10 20 30 40
100 .055 (.57)] .22 (2.0) .5 (4.2){ .88 (7.1)
200 <11 (1.1)] .44 (4.0)} 1.0 (8.4)} 1.8 (14.)
400 «22 (2.3)) .88 (8.0)] 2.0 (17.)] 3.6 (28.)
800 .44 (4.6)| 1.8 (16.)] 4.1 (34.)] 7.1 (56.)
1600 .87 (9.2)] 3.5 (32.)] 8.0 (68.){14.1 (110)
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