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INTRODUCTION

This was originally intended as a brief intro-

duction to the theory of waves scattered from a randomly

rough surface. Now it is no longer so brief, but still

introductory.

An alternate title to this report might be
"Selections from Bass and Puks". The majority of the

material contained herein may be found in their excellent

monograph "Wave Scattering from Statistically Rough

Surfaces" I . I have rearranged some sections, to indicate

their relationship and shortened others. The section on

composite surfaces contains results due to Brown2, which are
not in Bass and Fuks, with a derivation due to Dashen3 .

I have attempted to include what I feel are the

most important forms of the average field and average

intensity for both large and small Rayleigh parameters. Then

I have indicated, in the section on composite surfaces, one
way to combine these forms to give a result which I hope is

valid over a wide range of frequencies, angles, and surface

statistics.

Shadowing corrections are included at the appro-

priate places, but no attempt to derive these results has

been made. An excellent derivation due to Smith4 is

recommended to the reader. Some suggestions as to possible

extensions of the use of shadowing are made, but their

validity awaits additional verification.

iv Iv .-.
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It should be noted that this primer gives a single-

bounce theory, describing a single encounter of a wave with a
rough surface. The multiple-bounce theory, necessary for

example in shallow water, is significantly harder. Attempts

at a theory have been made, based on a Green's function for a
waveguide with rough walls 5, but little comparison with data

has occurred. A derivation of a loss per bounce using WKB

theory has proven useful in computing loss due to the rough

walls6

4- cCurrently at SAI a multiple-bounce theory from the

*-- moving ocean surface due to Dashen and Spofford is under

development, with promising results thus far. If the current

good results continue, it is very likely that this theory can

. be extended to a multiple-bounce theory in shallow water,

including a rough bottom.

Following is a brief discussion of each section:

Section I briefly summarizes what everyone should know about

describing surfaces probabilistically. The reader should

scan this, to fix notation at least. Various important

relations are introduced here, for later reference.

Section II tries to relate Section I to reality, in

a brief discussion of some of the rough surfaces of interest

to an acoustician. A point made there perhaps deserves to be

mentioned here also. The type of description of a random
| surface used in Section I certainly does not apply to all

surfaces. It seems to work well for the ocean surface and it

may be valid for the ocean basement. (Note that so little is

known about the basement power spectra that with a little

v4..
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ingenuity, one should be able to fit almost any basement

scattering data. Talk about curve fitting!) However, this

description is probably not valid for ice surfaces. People

concerned with radar scattering may have to cope with an even

wider variety of surfaces, buildings, tall grasses, trees,

each of which may require a different description.

Section III attempts a brief discussion of the

actual mechanisms of scattering. A little tolerance is

perhaps called for on the reader's part, for the author is

certainly no physicist. Even so, the rather simple-minded

concepts in Section III have provided some insight to the

author, and may prove helpful to the reader.

Section IV formulates basic solutions of the wave

equation and Hemholtz' equation. Again, this is necessary to

fix notation, define the appropriate Green's functions,

reflection coefficients, etc.

Section V discusses scattering from a slightly

rough surface, i.e., a small Rayleigh parameter. The solu-

tion given is the first order term in a series, where the

Rayleigh parameter is the expansion parameter. The free

surface is discussed first, followed by the rigid surface,

and then a general interface. In each case, the mean field

<U> - U is discussed first, then the average intensity

<IUj2>. In discussing the intensity, a natural division

occurs when the scattering surface is "small* or "large".

Here "small" refers to a Fresnel zone on the surface, so that

across the scattering surface the incident wave has little or

no phase change. In the "large" case, where several Fresnel

vi -
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zones are illuminated, the curvature of the wave across the

surface must be taken into account. Typically, in the

"small" case, a scattering kernel for a surface "patch" is

derived, and this kernel is simply integrated over the

illuminated surface in the "large" case. These distinctions

do not arise for the mean field, because, as shown, the mean

field propagates only along the specular path, relative to

the mean (horizontal) plane.

Section VI discusses surfaces with a large Rayleigh

parameter, and introduces the Kirchoff or tangent plane
approximation. The author has attempted to make clear what

assumptions, both physical and mathematical, are involved in
this approximation. Perhaps it is worthwhile emphasizing

here, as do Bass and Fuks, that this approximation is not the

g first term in some perturbation expansion, but simply an ad

hoc approximation. Accordingly, no error estimate is

possible, the only question can be "Does it work?". The
solution does work in many cases, of course, but these

remarks are worth keeping in mind.

In Section VI shadowing corrections are introduced,

as seems appropriate for very rough surfaces. The scope and

limitations of existing theory are indicated.

Composite surfaces are introduced in Section VII.

Expressions for the average intensity are derived, which are

simple, and, one hopes, valid for a wide range of Rayleigh
parameters. Shadowing corrections are indicated as needed.

vii
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Finally Section VIII considers the power spectrum 'I

of a moving rough surface, specifically the ocean surface, €

rather briefly. The earlier results are extended to this

case in a fairly straightforward manner..-
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I,* A PRIMER ON ROUGH SURFACE SCATTERING .

I. DESCRIPTION OF A RANDOM ROUGH SURFACE'

The simplest description of a random surface

z C C (x,y,t) is obtained by assuming it is stationary in

time and homogeneous in space, i.e., the probability of a
certain height being exceeded is invariant under time and
space translation, and the second order moments in surface

p.

height depend only on the differences of the space-time
arguments. The first order probability density function for

a stationary and homogeneous surface is independent of x,y

and t. Thus

z
Prob (C(x,y,t) z) - f w1(u) du,

or

P(Z 4 C(x,y,t) 4 z+dz) 9 wj(z) dz.

We are concerned with perturbations over a planar
surface, (or a portion of a surface which may be regarded as

pl&nar, e.g., a portion of the lunar surface) and it is
convenient to choose coordinates so the mean surface is at

Z-0o.

In most of the applications involving scattering

from rough surfaces, it is assumed wI is Gaussian or

normal, i.e.,

z2

-1-
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where a is the standard deviation or r.m.s height of the

surface around the mean value 0, 2 u<">.

This assumption is quite often correct, in that the

sea surface has a nearly Gaussian height distribution8 . On

other occasions, a Gaussian height distribution is assumed

for want of a better. Here the central limit theorem, and

the mathematical conveniences of normal distributions are two

motivating factors for this assumption.

Two such mathematical conveniences are as follows:

1) Linear combinations of normal random variables

are again normal. This means, for example,

that a Gaussian surface may be written as the

sum of two Gaussian surfaces.

2) Since differentiation also is a linear opera-

tion, it follows that the slope density

function for the random variables yx=b-c and

ey is also normal. For a fixed surface in a

suitable coordinate system,
2e

weYY - F . 2 .) (1.2)
2( yx y rx ry

2 2y 2  2
where r = , 2 = < -, (< > denotesx <TX*_> y T
expected value); and < 0 in these

coordinates. For a moving surface, <(1)> -

<L -> and < S -LC> also enter into the
at Fx at by

covariance matrix in the exponent.

-2-
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Here the axes have been chosen to eliminate the

spatial cross-term in the quadratic form in the exponent of

w2. Because of the special nature of the time coordinate,

the space-time cross terms cannot be eliminated.

If the surface is isotropic, r =r =, andx y,.

W2LYxYy) - L exp (- 2+ (.+Ty2)) (1.3)
2ur 2  2 2  •'

An additional important descriptor of a random

surface is the correlation function W, given by
--.

W(XlFYj~tj;X2,y2,t2 ) =__< C(xllt)(2Y,2 ""..2
2 11 1t )(2y 12 >
a2

If the surface is homogeneous and stationary, then

W depends only on the differences of the arguments above,
* i.e.,

W(x,y,T) < C(xl,Ylt)C(x1 +x,y 1 +y,t+ ) >. (1.4)
a2

Note that in this definition, W is normalized so

that W(0,0,0) = 1.

An additional important density function is the two

point density function W(2 ) (zlZ 2 ;r, ) defined by

P(z1 -C C(+,,t) 4 zj+dzj, and

( (jr+r,t+ ) ( z2+dz2 )

Z2

W(2)-9• ( lIzz 2;rT)dzzdz2. (r (x,y), rjlxjyj)) _

'A -3-
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For Gaussian surfaces, the following relation

between W(2 ) and the correlation function W is valid:

(2 (zl 'z2 ; 't) = (1.5) _2" o"2  /1-W 6() T,,)..:

z 2 _ 2W(rizlz 2+z21.exp 2 2 .,,

2a 2

An altern.tive description of the random surface

may be given in terms of the characteristic functions, which
are the Fourier transforms of the height probability density j

functions:

+cc
f1 (k) = -D w1 (z) eikz dz = <e >, (1.6)

i(kI z I+k 2 z2 )
f2(k11 k2;,T) - ff w( 2)(z 1 z2 ;r, ) e dz1dz2

(1.7)
i(kl 1  , t )+k2C( (r 1 +', t+. ) )

= <e

It follows from the relation between w(2 ) and W

that

< C(rl,t) C(r1+r,t+T) > = a2W( ,) (1.8) -

f (kl,k 2 ;r, )

1 2 k1=k2=O

-4-
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U A further relation, to be used subsequently, is:

32 2+

2 e2; 1- 1 2 -1 ~ri 1 2 )] (1.9)

IP (an identity valid for homogeneous and isotropic Gaussian
surfaces).

The spectral density, or power spectrum F(k ,k ,W)
x y

is given by

W~~,-c L Re f f dk dk f dwF(k ,k ,W)e ,(1.10)

2 -~ x y x y

=(k ,k ),r =(~x y

P or a fixed (homogeneous) surface, since r)

W( -r) , it follows that F(4i))=F( ) . Furthermore F may be

taken as real, and by the Wiener-Khinchine theorem, F>O.

However, for a moving surface, F is not necessarily even in

For the Moving ocean surface, the first order dis-
persion relation for deep water gravity waves 9 implies that

where Fj is the first order surface spectrum, and

* w+ sgn(k )g k -cik 2+k 2,(g-9.81 m/sec2)
+x x y

-5-
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Even for the movirg surface, W(r,O)-W(-r,O), and
similarly, W(O,l)=W(O,- ). These symmetries imply,

performing the w-integration

Wr,)= -2 If dk dk F1( ) cos(i*r- r). (1.12)

For a fixed surface, the corresponding relation is

1+0,

W(r) - - ff dkxdky F ) cos(' +) (1.13)

~m0

I +0 + *'

f Jf dkxdky F1(k) e-
a 2 _, O.

From the cosine transform of W(r, ), one can also

write directly

W(r,'=) - ff F(,)dk dky (w e. 40)

a2 X y

if F(Lw) is now defined as vi+

F(,w) = -.[l()6(W-W) + Fl1(-)6(w+w +)] ( (1.15)

Both (1.11) and (1.15) are found in the literature1 °.

-I6

4.
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Now let i=(k ,k )=k(coso,sino), and r=(x,y)x y
= r(cose,sine). Then (1.12) or (1.14) becomes

= 1

I dk f kF1 (k,O)cos(krcos(e-O)-w+ IdO, (1.16)
2  o 0-

and (1.13) becomes

W(r) = 1 dk f kF (k,O)cos(krcos(-0l)dO. (1.17)(2 0o ....
0oS

U If the spectrum is separable, i.e., F1 (k,)il

P1(k)H(O), then the 0-integration may be possible. In
particular, if the surface is isotropic, then WE. Equations
1.16 and 1.17 reduce to

W(rr)= -! kF1(k)Jo(kr) cos(w )dk (1.18)
0-2 0 1 0+

and

W(~)~27 kF1 (k)Jo(kr)dk. (1.19)
~2 0

IIf the surface is cylindrical or one-

dimensional, that is independent of y, then in (1.11) F1(i)=
6 (ky)Fl(kx)(w-w+), where now w+=sgn(kx)glkxl . From (1.12)

W(x,T) - F1 (kxl cos(xkx- +)dk x , (1.20)

and from (1.13), . .

-7-
• .%'.*
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W(x) f- F1(kx)cos(Xkx)dk x ._ _  (1.21) -

Just as a2=<C 2 > is an important parameter in

discussing the height distribution, the notion of a corre-
lation time zo and a correlation length 1o are important

in discussing the correlation function.

Physically these describe a time (or length)

interval over which different surface elements are corre-
lated. On this scale the interaction of an incident wave

with these elements should be considered coherent. Con-

versely, over several correlation times or distances, the
surface elements are uncorrelated, and interaction with an

incident wave is expected to be incoherent.

Naturally the transition from correlated to uncor-

related is fuzzy, as is the definition of correlation times

or lengths. A local definition, emphasizing small-scale

roughness, is given by F

- 1 (w~o 62W(o) -

V W(O) )2, = , 2 ( (1.22)
r o o0 Of

A global definition, involving all roughness

scales, is given by

7 +0 ( +Wf _f W(x,y)dxdy, o f W(x)dx (1.23)

* One dimensional form.

:" -8-
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These varying definitions essentially coincide if W

is a Gaussian correlation function, i.e., in one dimension

W(x,) exp - - ) (1.24
ate' ,1I 

0 ' 2  't02 ( . 4

.4i For more general correlation functions, they need not agree.

(Indeed, the local version may not exist, if W does not have

second derivatives at 0.)

For a fixed surface, the dispersion of the
-_*'.-" derivatives = .= is related to the height dispersion, and

* correlation lengths by

.. , :::r 2 = (2 _ 0O) r 2 CF21 2 (0,0) 1 1. 5ay (1.25):.:.x 2 2

For a general surface, a knowledge of wl and W does not
determine the higher-order statistics of the surface.

However, for a Gaussian surface, a knowledge of a2 and W does

completely specify all the higher moments of the surface,
which is another motivation for preferring to deal with

Gaussian surfaces.

- aA possible point of confusion should be mentioned

here. When speaking of a Gaussian surface, what is meant is.
•9 ::'- that the height probability density function is Gaussian (and

'. therefore so is the slope density function). The correlation

.function for a Gaussian surface may or may not be Gaussian,

(and the ocean surface, for example, does not have a Gaussian

correlation function).

-9-
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II. ACTUAL ROUGH SURFACES I
For the moving ocean surface, the Gaussian

assumption is generally valid. Further, there are many semi-

empirical determinations of the power spectrum, (Pierson,
Phillips, Pierson-Moskowitz)ll, so some degree of confidence

is possible when describing the ocean surface statistically.

See Tables l and 2 for typical parameter values.

When dealing with a planetary surface, the ocean

basement, or lunar surface, the Gaussian density assumption -

need not be valid. Considerable disagreement exists as to an
appropriate choice of power spectrum or correlation function.

Many of the scientists studying radar backscat-

tering from the lunar surface assume a correlation function

of the form 12

W(x,y) = e . (W(x) - e -  . (2.1)

However, it has been shown that a correlation function for a
8W 4W

reasonably smooth surface must have 7-(0,0)=y(0,0)-0, and

also have second derivatives at (0,0)13. (The non-existence

of V2W(0) implies that the surface has vertical faces.)

Clearly the form for W given above fails to meet these

requirements. Nevertheless, such a function is still being
used, primarily because with the scattering model used, it is

often possible to obtain a reasonably good fit to the data by
a suitable choice of the parameter a.

It is quite possible that the scattering model
used in lunar studies is inadequate, which perhaps explains

-'I -10-
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why the above correlation function is used to fit the

data.

.. A kinder explanation, and perhaps a generally true

statement, is that while near 0, the correlation function

does have the required form (locally a Gaussian correlation

function)

" 5- 2  +L2 ]
W(x,y) 1 -x2 + y2] (2.2)

at larger distances, W may decay like e
- c Ir 1, rather than

; .o:- Physically this implies that for such a surface,

the correlation length is determined by higher derivatives of

the surface, curvature, etc., rather than depending only on
r.m.s. height and slope, as does a Gaussian correlation

. .- ~ function.

q .Using the relation between the power spectrum and W

".'.* derived above, the correlation length using the first

(derivative) definition can also be expressed in terms of the
power spectrum, e.g., for a one-dimensional surface,

"- 1 /

: -- f F 1(k)k 2 dk2 o x, (2.3)
0 C

- and the theoretical requirement that W''(0) exist implies

that kx2 FI(kx) must be integrable.

An easy way to meet this requirement in a model is

to assume that there is some cut-off wave number kc such

that
"2! v -11-
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F (k X) 0, 1 k X1 >k. T. (o 1(r 0, **~k ) (2.4)1 ~.~ -~ .~''

• Such an assumption implies that there is some lower

.4M

limit to the wave lengths present in a surface, or at least a -

lower limit to the wave lengths which effectively interact

with an incident wave. <

~This is probably correct for the ocean surface. A .

.al

popular power spectrum for gravity waves is the Phillips
spectrum, which in one-dimension, a kxt 3t But there is a
lower limft on the wave length of gravity induced waves,

below which capillary waves are present, and the power

spectrum for capillary waves decays more rapidly than that

for gravity waves. Capillary waves probably do not them-

selves interact significantly with an incident sound wave,

but provide an energy transfer mechanism from the wind above

the surface to the gravity waves.

.4..

A surface for which the integrability requirement

on kx2Fi(kx) is not met is that of ice14 . The power

spectrum for ice does apparently decay like kx- 3 , and this

holds true on very small wave length scales. Accordingly, a

notion such as correlation length has no meaning for an ice

surface. Such a surface, (within the class of all surfaces),

is on the boundary of fractals, or diffractals, and may well

require somewhat different techniques to develop a scattering

theory.

Ice surfaces, with many small fractures and nearly

perpendicular faces, are quite different from planetary

surfaces, where weathering presumably has rounded the edges,

and filled in tiny fracture zones. Whether or not such

,/. -12-
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processes, in one form or another, have occurred for the '

lunar surface, or the ocean basement, is not clear.

There is no general consensus on a "typical" power

*m spectrum for the ocean basement, and some oceanographers are

*[ roluctant to concede that such a notion has any meaning, due

to the presence of sea mounts, significant trenches and

ridges, etc. Opposed to this is the observation that data

(e.g., propagation loss as a function of range and frequency)

-. collected over several areas of the Pacific, (where a thin

sediment presumably allows interaction with the ocean base-

ment) exhibits a uniformity which suggests the same mech-

anisms are operating everywhere. If the scattering depends

on the power spectrum of the ocean basement, then presumably

' there is a typical power spectrum.

An additional complication encountered when discus-

sing bottom interaction in thin sediment areas of the ocean,

such as .the Pacific, is the water sediment interface. In
. JA.

regions where the sediment is on the order of 30 meters

thick, apparently the sediment is "draped" over the rough

* basement, and follows a somewhat smoothed version of the

basement contours.

So if it is necessary to treat the basement as a

F7 randomly rough surface, then presumably the sediment also is

randomly rough. This introduces significant complications

into a scattering model, as now a -*ound wave interacting with

the basement before returning to the water column encounters

three rough surfaces enroute, (with two transmission-

reflections, and one reflection).

As the scattering theory to be described here is a -

single bounce theory, three encounters with rough surfaces

*. -13-
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presents difficulties. Even if the present theory could be

extended, and for example, three scattering kernels obtained,

whose iteration presumably would represent the scattering

effects, the numerical difficulties would in turn become
formidable.

One possible way to avoid this difficulty is to

model the sediment as a fluid, with a constant gradient in

the sound speed, (and frequency dependent attenuation) but

with an impedance match at the water sediment interface.

Then the transmission coefficient is 1, and the distortion
produced by refraction at the rough sediment surface can

presumably be lumped into the scattering produced when the

sound wave reaches the basement.

The result of this assumption is a single bounce

theory, at least for incident waves approaching the sediment

above a certain critical grazing angle. For waves with a

grazing angle below -this, the equivalent ray turns above the

basement, and presumably the basement has little or no effect

on such waves.

One should also note that if the model allowed an

impedance discontinuity at the water sediment interface, many

additional phenomena would be encountered. Among these could

be a combination of parameters producing a critical angle

below which near total reflection occurs. Such a critical

angle is well-defined for planar interfaces. It is con-

siderably more difficult to introduce such notions when the

interface is rough, and the notion of "grazing angle" now j i

must be interpreted in some average sense.

-14-
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In thick sediment areas, such as the North . .0

Atlantic, with thicknesses a 200 meters, it is very difficult
, for an incident wave to reach the basement,,as almost all the
• rays turn above the basement. And as attenuation in the

sediment is higher than in the water column, such waves are..
*: essentially damped before they can return to the water

column. So the basement interaction is not significant.

Further, in thick sediment areas, the water sedi-

ment interface is gently undulating so that either the inter-

face can be treated as planar, or perhaps as only a slightly
rough surface. Much of the data from this area can be :1,

" satisfactorly modeled without recourse to rough surface

theory15, so there is little need for a scattering model in
thick sediment areas.-

i Of course, how one determines that a thick sediment

model is no longer adequate, and a thin sediment scatterinq

model allowing for interaction with a rough basement is
needed, is not very clear. One can conceive of a sediment of
an intermediate thickness, such that at longer ranges, the

sound waves refract in the sediment, and turn above the base-

ment, whereas at shorter ranges, a significant fraction of
the sound energy in the sediment scatters off the basement.
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III. DISCUSSION OF THE PHYSICS OF SCATTERING

Before proceeding to a discussion of the various

mathematical models for scattering, it is useful to examine

the physics involved.

Consider a portion of an incident sound wave

scattering from a finite region of a rough surface. The

portion of the incident wave might be a beam, (and therefore

the beam pattern must be considered), or it could be part of

a larger wave. The region considered is presumed to be small

*. enough so that the incident wave may be regarded as plane,

yet large enough so that averaging over the surface reqion E
gives meaningful and representative results.

If the incident wave ensonifies a large region of

the surface, then the portion being considered here is part

of the integrand of an integral over the large region. This
*final result is then obtained by summing or integrating the

partial results.

Due to the randomness of the surface, such a sum is

incoherent. To fix our ideas in the following discussion,

consider the intensity of a plane wave scattered from a

finite region of the surface.

There are two different contributions to the

scattered field. One effect is the near-specular reflection

around the specular path (between source and receiver)

relative to the mean planar surface. Such an effect

dominates near this specular path. This reflection, often

described as "glints", is due to specular scattering off

large planar facets of the surface. When looking down at a

-16- -
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sunlit ocean surface, the glints observed are from plane 0 LOI

facets momentarily oriented so as to provide specular

reflection from the sun to the eye. The strength of this

component of the scattered field falls off rapidly away from

the specular path.

A second component of the scattered field is

diffuse diffraction due to the small scale roughness of the
surface. This effect is not as strongly anqle dependent is

the first component described above, and accordingly tends to

become the important component of the scattered field at

scattering angles far from the Specular angle.

"Tends" was used in the preceding sentence because

as the surface becomes smooth, and approaches a plane, the

diffuse component vanishes, while the "coherent component"

described earlier reduces to the specular reflection from a
plane. If, as suggested earlier, the theory is describing an

integrand, to be integrated over some region, then this

coherent component must reduce to a delta function within the
integral. When the integral is evaluated, the delta function

produces the desired specular reflection from the limiting
plane surface.

Going to the other extreme, as the surface becomes

rougher, with steeper slopes, then the specular component is
weakened. This is because the planar facets are oriented

over a larger range of angles, and accordingly fewer are -

properly oriented for specular reflection between source and
receiver.

At the same time, for this increasingly rough

surface, the diffuse component contains a larger fraction of

-17-
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the total incident energy, and as the surface roughness -

increases, approaches a scattered field nearly independent of

angle.

Some little sketches in Figure 1 borrowed from _

Beckman and Spizzichino16 suggest this transition.

The first scattering component, or near specular "
component described above is often referred to in the

acoustical literature as the "coherent field", while the

second is termed the "incoherent field". Both contribute to

the scattered average intensity, while only the coherent

field contributes to the mean pressure field, which pro-

pagates along the specular path.

The acoustical distinction between the coherent and

incoherent fields is perhaps not entirely clear, particularly

when discussing the average intensity. However, there is a

genuine difference between the two fields, because it is

believed that different physical mechanisms give rise to

them.

The experiments which provide the most convincing

testimony to this involve radar backscattering from the moon.

Using time delay to determine which annulus on the moon is

illuminated by the radar pulse, and thereby determining the

angle of incidence, the following results are obtained.

Electromagnetic theory predicts that when a

circularly polarized wave is reflected from a plane, the

reflected wave is also circularly polarized, but in the

opposite sense. The radar return from the moon however has a

-18- .: .o
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"'" Figure 1. Transition from specular reflection to diffuse
:!i~i scattering. The surfaces are: (a) smooth,
, A .. (b) slightly rough, (c) moderately rough, (d) very

= rough. (From Beckmann and Spizzichino)
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component which is depolarized, that is, circularly polarized
in the same sense as the transmitted wave. This depolarized

component is the incoherent component or diffuse component,

and the properly polarized component is the coherent

component. A comparison between the power in the polarized
component and the depolarized component is shown in Figure

217. Observe the zero or minimum delay occurs at normal

incidence, which for backscattering is the specular angle.

Note that the angular dependence of the depolarized component

is much weaker than the polarized, and exhibits no spike near

the specular angle, as does the polarized component.

'
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IV. PROBLEM FORMULATION AND BASIC RELATIONS

Consider the wave equation for the potential U of a

sound field,

2U - --- 2U = -4nQ(R,t), ;

C2 0t 2

where R = (x,y,z), c is the sound speed, and 4r.Q is the

source density distribution. The velocity v and the pressure

p are given by

-au V =-VU, p = -

where p is the density of the medium.

We shall assume

-iwt -iwt
Q(R,t)-Q(R)e , U(R,t)=U(R)e

so that we obtain the Helmholtz equation

V2U + k2U = -4nQ(R), (4.1)

k W.

For simplicity of exposition in the following, c

will be assumed constant. Since the primary concern will be

the interaction of an incident wave at the surface, relative

to a distant source and receiver, corrections to be intro-

duced due to refraction are fairly obvious. For example, a

5.. -22-
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p 0
term 2- representing cylindrical spreading loss to a point onR1the surface should be replaced by the correct spreading loss

along a suitable ray path from the source to the surface
position; an incident angle eo of a wave arriving at the
surface should be related to the angle at the source that the
corresponding ray makes with the vertical, the wave number

k-w/c, uses the sound speed at the surface, etc.

The use of ray terminology already suggests that
the frequencies involved are high enough that a ray

description of the sound field makes sense, which gives a
lower limit of 100 hz, or perhaps 50 hz.

The basic relation governing solutions of (4.1),

derived using Green's formula, is

i U(R) =f Q(R)G(R,R')dR'

1 ~G (4.2)+ 1- f{G(Rr)U((r)-U(r) r)dr(". +)T(1- ) R- r , ,

where R' V, the volume containing the source 0 and the

observation point R, and rcZ, the boundary surface of V.

denotes differentiation with respect to the exterior normal
to the surface E. The function G is the Green's function, a
solution of (4.1) when Q=6(R-R'), 6 the Dirac delta function.

Considerable simplification of (4.2) can be
achieved by a suitable choice of the Green's function. -

Suppose [ is a plane surface. Then two convenient choices
are

G±(R,R') = e (4.3)

-23-
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where R, is the point obtained by reflecting R with respect '
to the plane ~,(if is the plane z=O then R, (x,y,-z)

Then it results that

- 0, G-. 0 (4.4)

(for I = {z=0}, .g -

n' ."

Using either G or G-, (4.2) becomes

LJ(R) =f Q(R')G+(R,R')dR# +1f (RrUrd,(45
V T Tn d

or

-=,,,.G.-
." • (4.6)

U(R) f O (R')G-.(R,R')dR' U(r)Tn-(R,r)dr.

If the source function Q(R) is zero outside a

sphere of radius L, and if

L -2

then the source term in the expressions (4.2, 4.5, 4.6)

satisfies

________ ikIRI-
f-Q(R') i R d() , (4.8)

where d(K) f ( Q(R')edR dR , K)

-24-
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The region of space where the inequalities (4.7)

are satisified is called the Fraunhofer. zone relative to the

'" source. Equation (4.8) states that.at sufficiently large

distances, an extended source looks like a point source.

U

" [ One can verify directly that a solution (4.1) with

Q(R)-0 is given by a plane wave, of the form

U(R) - Ae iqR (4.9)

where q = (qx, qy, qz), and JqJ2 k2.

One of the useful properties of plane waves is that

*. ., a spherical wave, as in (4.8), can be represented in terms of

.' .d plane waves. In fact

ike - e i(xq+y (4.10)

where qz U /k2-qx2-qy2. So when discussing a wave incident

upon a surface, if only a restricted region of the surface is

considered, the incident wave may be usefully modeled as a

7* -\ plane wave.

- For reference purposes, let us describe the

S.propagation of a plane wave in an infinite space, consisting

of two half-spaces, separated by the plane z-0, with density

and sound speeds p, c, for z>0, and P2, C2 for z<O. Let U,

U2 denote the corresponding potentials.

.. Continuity conditions at the interface lead to the

" ~, boundary conditions

-. -25-
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aU ()U2 "

I-F = pU = P2U2  
(4.11)

(where - =7-, as before).

4 Let k = w/R, k 2  W/c 2 , K = (k , k, k =

* k(sinecos 4, sinesin4, -cosf), K' = (kx, ky, -kz), K2 =
(k2 (sine 2cos,, sin6 2sin$, -cos6 2 ), where e, 62 are the

incident angles of the incident and transmitted waves

respectively, and 4 the azimuthal angle, relative to some

fixed vertical plane.

K, K', and K2 are the wave vectors of the incident

reflected and transmitted waves, respectively (see Fiqure 3).

Of course, all these vectors lie in the same vertical plane

containing the source and the receiver at R, defined by the -

azimuthal angle 0.

Snell's law defines 62 in terms of 6, namely
sin 6

2  sinG

C2  c
iKR!

If the incident wave is U0 = Ae i K R , then the

reflected wave is

iK'R
U - V(0)Ae , (4.12)r

and the transmitted wave is

Uo- W(O)AeiK2•R. .-
T 2(4.13)

-26-.. .
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The field in the upper half-space is given by U +
Ur.

V(8), We) are given by

(p2/P)Cose - /(C/C2 1)2  sin2E

___=_... ... __ , (4. 14)

(P 2 /P)COSO + /(c/c 2 )2 - sin 2 e

2cose (4.15)

(p2/P)Cose + /(C/C 2 2 -

Let Ti = (pc)/(P 2c 2) denote the surface impedance

(the ratio of the acoustic impedance of the lower half space

to the upper). Then a perfectly free surface (P 2C 2 O)

corresponds to Tl= , and a perfectly rigid surface (P2C 2+0)

corresponds to n=O.

The boundary conditions (4.11) for a perfectly free.

. surface (P2=0) reduce to

U = 0, (4.16)

and the corresponding reflection coefficient V = -1. (G_

satisfies this condition.)

For a perfectly rigid surface, the boundary condi-

tions are

0 O, (4.17)

.9"

and the corresponding reflection coefficient V * +1. (G+

satisfies this condition.)

-28-
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3 V. PERTURBATION SOLUTION FOR SLIGHTLY ROUGH SURFACES 0

* A. Perfectly Free Surface1

Suppose the rough surface z =C(r), r (x,y) is

such that the boundary condition U(r,C(r)) =0 can be

approximated by

auLJ(r,0) + C(r) Z- (r,0) =0 (5.1)

Now represent U as the sum of a mean f ield and a

fluctuating field, U U + u, where <U> = ,<u> =0. Also

* assume <C> =0.

.1 Then averaging (5. 1) and subtracting the resulting

equation from (5.1) results in

*u(r,0)) + MUrO) Cr) 0 (5.2)

Subtracting (5.2) from (5.1) and averaging gives

LJ(r,0) + <. (r,O)C(r)> 0 (5.3)

In deriving (5.2), the term -S- <~--6z> was

neglected. A sufficient condition for this (i.e., for HIl
>> J'kjc, etc.), is

ak .1 (sinO + << 1 1 (5.4)

-29-



Here e is the angle of incidence, k is the acoustic
wave number, a is the r.m.s. surface height, a2 <C2>, and I

is the correlation length of the surface, as in (1.22).

For k1>> 2n, this reduces to

ak cose << 1 (5.5)

For k1 << 2n, this reduces to

kf- 2 - 2n.r << 1 (5.6)

whereP= r [ = r.m.s. slope of C.

If sine 1, (near grazing) this reduces to

ck V N << 1 (5.7)

-4

The parameter 2akcos@ introduced in 5.5 is the

Rayleigh parameter.

a) The Mean Field

Using the Green's function G- in (4.4) for the
.

plane z-0, the boundary condition (5.3) results is (R =

(x,y,z), r' - (x',y') - (x',y',O)),

u(R) r 1 , e (r')(r'l)dr' (5.8)
zR =0 R-r'l az

Taking the z-derivative of (5.8), multiplying by

" C(r), and averaging, the boundary condition (5.2) gives the

equation

-30-
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_ 2 kF7z
U(r = -CF li f2 j=eikP W(P-.. (r+p)dp, (5.9)

where r' =r+p.

Assume the incident f ield is a plane wave, so that

the mean field has the form

iK*R iK'*R
ti(r,z) -Ale + ye Ii(5.10)

where K, K' are as defined in Section IV. (The fact that the

* reflected wave is directed along K' results from inserting

(5.10) (with K' replaced by an abitrary vector) into (5.9).

That is, the mean field is directed along the specular path,

I which is a result qenerally true.)

Using (5. 10) to express U in (5.9) , the resulting

equation can be solvee for the reflection coefficient V,

*resulting in the expression

V =-1 + 2cosen (0,*0, (5.11)

where the "effective admittance" n of the rough surface is

* defined by

2ki 2 +C J.JVP 1 +Z
(e1 o =k li _0 f2 f~ e___ W(p)e ik IPdp (.2

2i (5.12)

where Jcj (kx, YO)
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To evaluate (5.12) for a general W(p) would require

detailed knowledge of W. But if W depends only on p , i.e.,

the surface is assumed isotropic, one of the integrations in I
(5.12) can be performed, the z differentiation and limit

taken, with the result that

COiky [y)(ysn)y
(0) = k2c 2 - ika 2 f [w(y)Jo(kysin)]dy (5.13)

(The derivation of (5.13) depends in an essential
manner on W'(0) = 0. The reader should recall the discussion

on smooth surfaces, and the corresponding requirements on W.)

If now the correlation length l'is introduced as a

scale factor, W(y) = WC{j, various limiting forms of (5.13)

are derived by Bass:
-t

For k1 << 1, or equivalently 2. << X,

2a2  x (5.14)i-a2

fI ) >

For k1 >> 1, and ) >>

T1 9 k2c2 cos9, (€ = - e is the grazing angle) (5.15) -

or, recalling 5.11,

V(8) =-1 + 2k2 2 cos 2 9. (5.16)
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Finally, for k1 >> 1, and k14,2 << 1, (grazing

incidence),

, e-3/ 1 d " (x)dx (5.17)
=-e-

(5.16) will occur subsequently as a limiting form

in Section VI for surfaces with a small Rayleigh parameter.

b) The Intensity of the Fluctuating Field for a Free
Surface

Begin with the formula (5.8) derived earlier for

the fluctuating component of the field, u(R), except now

restrict the integral to the actual scattering surface S

ensonified by the incident wave, so

1~r) -- ikIR-rVI z.
uirj rz 2n-(r')C(r)dr' 5.8

S 'R-r' b

It is convenient to place the source at a heiqht

z0 above the surface, at (0,0,zo), and the receiver at (D,z),
see Figure 4. In Figure 4, R1, R2 denote vectors connecting

an arbitrary point r of S to the source and receiver

respectively, (from the source, to the receiver). Then

R, Ti = zo+Jr1 R2 = z+Dr2(5.19)
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Then

R = R = (j, , = =. = R-. (5.20)

are the corresponding unit vectors.

From (5.11) it follows that the reflection

coefficient V differs from -1 by an amount which is second

order in the perturbation parameter (e.g., the Rayleigh

parameter). Accordingly D(R) in (5.17) may be replaced by

the planar result for a perfectly free surface, for a point

source at (O,0,z0 ) given in (4.3), which in the present

coordinate system has the form

e ikIR-SI eikIRS'Ij
Uo(R) - 1Rs, !  (5.21)

where S = (0,0,z0 ) is the location of the source, and S' =

(0,0,-zo) is the image source.

TUh eikRl

Then -(r,1 = -2ikz 0  , for kz0 >> 1.zR 2

Similarly, for kz >> I, taking the z-derivative in (5.18)

gives

ik(Rl+R2)z~ <[
u(R) e (r)dr. (5.22)

S RI2R22

-35-
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(5.21) immediately implies

k4z0 2z2  eik(RI+R2-RI'-R2 '1 ,)r rd
< uR) > = 2 SxS R,2R2 R, 2R2

(5.23)

where R1 ,' R2 1 are the norms of the vectors connecting the

point r' in S to source and receiver respectively.

Let p = r'-r be a new variable. Then <C(r) (r')> '

o2W(p). Now if the dimensions of S are greater than
Ix,ty, (the correlation lengths of C), the p integration

may be extended to infinit (W(p) - 0 for I >> Ix,
y ). Further, if min, A ) << R 1 , R 2 , then R'

2 -
y2 R 2 . Finally, expanding the exponent in terms of p,

, r D-r r-r-

R, + R2- - 2 2 i p (5.24)

if

kIx 2cos 2 , k 2 << M (5.25)
x y

where M = 2RlR 2/(R1 +R 2 ). Note that /M/kcos20 and /V7F are

the (x-y) dimensions of the -Presnel zone relative to the

source and receiver. So (5.25) implies that the field is

considered only in the Fraunhofer zone relative to

irregularities of dimension Ix' lye

-36-
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5 Collecting all the above, (5.22) reduces to

a 2P 2
4C2 z z +4-

f - dr f W(

<I(R)12 > = rfWp)eik lI)dp (5.26)
it ~ 2 S R1

2R2 
2  - C

+

(Recall that a Rhe 1 -)= (a,, a), and R2O
R, R, +z.".

22 K z 2

.4.O

The consideration of various limiting cases isuseful in obtaining a deeper understanding of (5.26). Before

introducing these, recall the assumptions made in deriving

(5.26), namely (5.25), and the inequalities

L >> = max(IX, ; min(1,)<< R1 , R2 ; (5.27)

where L is a characteristic dimension of the scattering

region S.

* Now suppose kI >> 1, large-scale irregularities.

Then, in (5.26)

f Wp e 'ik(Ia1)P dp (2)2 6 1 -_ 1 ) = (27)2 r( r ',

(5.28)

recalling (5.20).

Note that ax.1 " defines the point r = r0 of

specular reflection in S relative to the source and receiver,
(see Figure 5).
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p In the opposite case, k1 << 1, (fine irregular-

ities), the exponent in the p-integral is small for all
angles, and

S." " +c +0i
f W(p)e ik( L a1) Pdp •-f W(p)dp = Iy f W(,n)d d i

C1 1 (5.29)

where C is constant, approximately one.

Here the scale factors Ix, 't have been intro-

duced, so that W(x,y) = i , -)= ,.
x y

i) "Small" Scattering Surface S

Suppose in addition to (5.25) and (5.27),

k1L cos20, L << 2RlR 2/(Rl+R 2). (5.30)

(These inequalities are somewhat weaker than
requiring that the entire surface S be in the Fraunhofer zone

relative to the receiver. Bass refers to the region
described by (5.30) as the spectral partition zone.)

In this case, the r-dependence of the integrand in

(5.26) becomes so weak that the r-integrand may be approxi-

mated by evaluating the integrand at an arbitrary point in S,
and multiplying byjSj, the area of S.

In this case, it is convenient to reinterpret

lu(R) 12, and rather than think in terms of a path connecting
source and receiver, regard the expression in (5.26) as a

function of the incoming and outgoing wave vectors, in the
directions given by a,P, respectively. Here we regard a,P as

directed to the center of the small scattering surface S.

Denoting <Iu(Rd2 > by J(a,p),

-39-
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the result is
O-a, =4 azz Mk a (5.31)

R1 
2R 2 2

F, is the spatial power spectrum of the surface, that is,

(see 1.13),

Fj(K) = 2  f f W(p)eiK-Pdp (5.32)

( 2 % ) 2  --

The appearance of the vector k(pi-al) as the

argument of F, in 5.31 implies that in first order perturba-

tion theory, the average intensity of the scattered field

depends upon only one component of the surface spectrum.

This is a type of spatial resonance.

En the special case k1 >> 1, estimating (5.32) by

(5.28), (5.31) reduces to

J(a,P) =-4k2 ~~2z6 -l (5.33)."

FtI 2R2 2

so the long irregularities in the surface scatter only in the

specular direction, al =p.

Conversely, if kt << 1, from (5.29), the Fl-term in

(5.31) a2 2. In this case the scattering is diffuse, and

is proportional to (ko)2 . (kt)2.

ii) "Large" Scattering Surface S

Now suppose that the ensonified region S is so

large that some portion of S lies outside the spectral parti-

tion zone, that is, (5.30) is not satisfied.
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In this case, in (5.26), the r-integral over S must

be evaluated. For reference purposes, (5.26) may be re-

written in terms of the power spectrum F1 as
az2 2zF,(k(P 1a -

<Iu(R)12>- 4k " dr (5.34)SR 1 22 2 .....
.R2

A generalization of this result, for composite

surfaces, will be encountered subsequently.

Suppose k1 >> 1, the case of large irregularities.

Then, using the estimate (5.28),

2P 2
=4k~a f Z (2.-L)dr

S R 1
2R 2

2  R 2

Changing coordinates in the integral, (see Appendix
A for details), gives the result

<ul2> = 4ka)> z (2kacos) 2

0Z2 (R1 0+R2 0) 2 (R1 0+R 2 0 )
2

Here a0, 0, RI0 , R2 0 refer to the specular point
D-r0  ro

R0 in S, where 0  R O ro D(.. Also o
Zo

-cose.

Observe that in (5.35) the term in the denominator

which gives the spreading loss. between source and receiver is

no longer R12R22  (compare (5.31)), but has switched to
(RI + R2)21, which gives the smaller spreading loss observed

in specular reflection from a plane.
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. Also note the occurrence of the Rayleigh parameter

2kacos8 (assumed small, recall) in the numerator of (5.35).

Observe that here Lambert's law (scattering cos2---) is
applicable. .

In the opposite limit, k1 << 1, fine irregular-

ities, (5.28) implies that

C(kl) )(k)c) 2 y 2 2
<lu(R)i2> = X z dr (5.36)

712  S R 1
2 R2

2

Clearly in this case, the scattering is very

diffuse, with the incident angle e of little importance, and

the entire region S influencing the average intensity.

B) Rigid Surface 19

Now suppose the initial condition is

(r,C(r)) = 0, (5.37)

where the normal derivative 6/bn is given by

T= - 7x - YyT" (5.38) -

.. .. 1+ X+y.

t. I~

":,'- ~/I~ Her 2X" 'Y

1% y

* .J 1.4 ,
*. -42-
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Again represent U = + u, the mean field plus a

.' fluctuating field. Assuming C(r) is suitably small,

expanding (5.37) in C, averaging and differencing, the

40 boundary conditions (to first order) for U, u become

SU(rO) = <*V u> - __ (5.39)

-z r 4

,- , = y.VrU - (- (5.40):;::T z:, 8 z2

Here Y V C Vy )

a) The Mean Field for a Rigid Surface

Using the Green's function G+ in (4.4) for the mean

plane z-0, the boundary condition (5.40) results in

1 S ikfR-r'j 2  )
u(R) {C(r') (r 1 - y(r')V ,?(r')}dr'.

2- 0 IR-rhl z 2  r '( . 1(5.41)

This expression for u(R). can be used in conjunction

K ' with the boundary condition (5.39) to obtain an integral

equation for for z-0, analogous to (5.9) for the case of a

' free surface. It is not particularly revealing, however, and

4i .'

I'
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will be omitted.. Nevertheless, if one assumes an incident

plane wave, with a reflected wave, as in (5.10), it can be

shown that Snell's law continues to hold, that is, the

reflected component of the mean field U for an incident plane-

wave propagates along the specular path.

If the surface is assumed isotropic, i.e., W(p)

depends only on jp , the situation simplifies to the point

where a formula for the reflection coefficient V(8) can be

obtained, namely, (compare with 5.11),

cos6 - i(9)
V() (5.42)

(0 is the specular angle between source and receiver.)

The effective impedance rig is given by

8) M -~a ja 2 7 e ik {-k0sinecosOJI(kysinG)W(y)

+ dW [(ik'y.k2sin2e)jO(y) +

+=

(5.43)

As before, letting the correlation length iX be a

N. scale factor, W(y) W(, various possiblities exist:

For kt << 1

cpn (0) 26 0 . W(x)dx. (5.44)

-44-

where . foml-o h elcincefcetV8 a e.

"-,

obtanednamey, compre wth 511)



-~~ For kI >> 1, >> j-6

11 (0) 0 2 COS 3 0, (5.45)

or, referring to (5.42)

CC

- ""

V(e) =1-k2a2cos 2 e' (5.46). ' 1-k 2co2cos 2
e

% .~

C- : Finally, for kI >> 1, and near grazing, (WU/T << 1,

g; 21 2,77- e x3 /2 dlxld (5.47)', J.2X2V~r 0 x/2 d

g A difference between the representation of the mean
* field for a free surface and a rigid surface occurs here

because the reflection coefficient V(e) for a rigid surface
can have a pole near grazing, namely (see 5.42),

cose = -ng(0) (5.48)

*Since jlg( 0) << 1 in the cases considered here,
a good approximation to a solution of (5.48) is given by
setting ng = 0, and iterating, with the result that the
angle Op at which the pole occurs is given by

" "
~Cos ep--0 ( 5.4 9)

-45-
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The effect of the pole on U is as follows: For a

point source above the boundary and at large distances, the

reflected component of f has the form, for e 0 e

.1 ik
U r (R) V() e + 0(1-). (5.50)

r -R

where R= 'x12+y1 2 + (z+z0)2 , and e is the specular angle

between the source (at (0,0,z 0 )) and receiver (at (x,y,z)),

see Figure 5. U

But if V has a pole (when -ep), then the

reflected component has the form

ik. i%-s 2 .
,(R) i+ ( kR e e dt), (5.51)

r R

where

% 4%

.2 . 2 (%11 2 (5.52)

The following asymptotic formulas are valid for

grazing incidence, 4,i-O:

I" 4

• , *Note that (1 + -)RIo (1 + - )R2 0. See (5.35) and
after.

-46-
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i WA 1+ i , Isi << 1
r 1

So if R, the position of the receiver, is such that

the specular angle e!8Op, and if is Iis large, the reflected
mean field will experience additional attenuation.

However, e< jand as grazing incidence

%P 
,

approaches, e < e =7Fthe reflection coefficient approaches
p

1, the attenuation due to the p6le disappears, and (5.50) is

Sthe appropriate estimate.

In fact, as will be shown in the next section, the

average intensity for a rigid surface equals that for a free

• .surface, at grazing incidence.

b) The Intensity of the Fluctuating Field for a Rigid
Surface

The relevant formula for u(R) is (5.41), except now

restrict the integral to the actual scattering surface S, so

1 f eik IR-r' 1 75 i)U(ru(R)=
s IR-r' Iz'

- y(r')V r,(r')Idr'. (5.54)r'

Introduce the same geometry as before, (see Figure

4), with R1 , R2 , a, p defined in (5.19), (5.20). As in the

-47-
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case of a free surface, U may be replaced by the zero-order

aproximation U0, where

"0-R-" eik IR-S eik JR-S' IUO(" =TT + (5.551)"
%.-.. 0  R) 

R -S I R - S ' I

as before (compare 5.21), where S = (0,0,z0 ) = -S', provided

IcosG+ng I > 0, so that V=-1 is a valid approximation.

Then (5.54) can be rewritten in the form

u(R) = -f eC(r)dr. (5.56)
S RR

But (5.56) immediately implies that

.?imu f)12> 0 1~c2  f 6 PwL 2p+ceik(Pj a )6Pd
- f drfs R 2R2

2  
-C

(5.57)

The assumptions made to derive (5.57) are the some as in the
free surface case, (5.25) and (5.27).

But (5.56) has the same form as (5.26), with
a z z) 2  replaced by 1-xj..) 2 , so estimates cor-

responding to (5.31) through (5.36) are valid in the case of
a rigid surface also, with the above substitution.

Note that (5.35) is valid for rigid surfaces also,

because at r-r0 , i.e., a. P aiOi,  I-aOj- as shown

-48-
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at the end of Appendix A. So as remarked earlier, if the

scattering area is large and k1 >> 1, Lambert's law (5.35) is
applicable to both a rigid and a free surface (for a small

- Rayleigh parameter, of course).

. C) Surface with an Impedance Boundary Condition 19

Assume the initial condition is

- (r,Clr)) = -iknU(r,(rl) (5.58)

where n is the impedance at the interface between the upper
* and lower half spaces, and n is the normal derivative

*. "" defined in (5.38).

Letting U = U+u as before, relatively few changes

occur. The boundary condition for U, 5.39, has a term -iknU
added on the right side. The effective impedance -1g is
changed by the addition of the impedance T on the right side

of (5.43).

And finally, the expression a=2z 2  for a free
surface, in (5.26), or (j-aLipi) 2 in (5.57) is replaced

by a more complicated expression IF(a,P,k,k 2,ki212 given in
Appendix B. So the expressions in (5.31) through (5.36) are

valid, with az 2P 2 replaced by IF12. Note that in this case,
(5.35) becomes

42a2jF(4z0,p0)j2 (.9
k P

l,(R I0Z 2 (R]. +R2 (5.59

-49-
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VI. SCATTERING FROM SURFACES WITH LARGE-SCALE ROUGHNESS

The Kirchoff method or tangent plane solution20.

To discuss scattering from a rough surface when

there is no small parameter available, the following approxi-

mation is useful.

Assume the surface is so smooth that at each point

r of the surface S the wave field U(r) may be represented as
the sum of the incident field U0 (r) and the field reflected
from the tangent plane at r, that is,

".'" U lr)
U(r) = (1+V)Uo(r), T = (1-V)--(r) (6.1)

in

Here 6 is the normal derivative, and V is the
reflection coefficient.

If one assumes further that the incident wave is a

-. .plane wave at each point r of S, with a wave vector K

depending on r, (6.1) becomes

• ',- 6U(r)
U(r) = (1+V(e))U 0(r), r - i(K*N)(1-V(8))U 0(r) (6.2)

where N denotes the normal to S at r, e is the angle between

K and N, and the plane wave approximation is used for U0 , so

that the normal derivative z iK*N U0 .

-" The above representation requires thatS.

cosO >> (ka)- 1/3  (6.3)

s-so

* * % . ... .' S **. . ..



where a is the local radius of curvature of S at r. This .

condition results from the requirement that the tangent plane
at r is a good approximation to S over a region whose

dimensions are large relative to the wavelength of the

incident wave.

Let the scattering surface S be compleirented by a

plane S' and the hemisphere CR', (see Figure 6) so that a
closed region is constructed containing all the field

sources. Then if R is an arbitrary point within the reqion,

by Green's theorem the field U(R) has the form

iki.

U(R) , U0 (R) + 1k f+S'+ R' R2

T71S+S'+CR 2n

ikR
e iR 2  6 -

U(r)}dr. (6.4)

But since all the sources are within the region, it

follows that ,' \

S+S +CR, 2  R2

Subtracting 6.5 from 6.4, the result is

e e 2 8 (6.6)
7-(U-Uo)}dr. (6.6)

R -51-
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The Kirchoff approximation consists in assuming

that on S', U-Un, so the integral over S' is zero.

Further, assuming a radiation condition, that is, 0
ikR•

at infinity both U and U 0 - , R'eCR, the integral overR'
CR, may be neglected. Using 6.2 to represent U-U0 on S,

gives the result

.C.,.. -

U(R) = U0 (R) + j f V(r) ( ~ U0 (r))dr, (6.7)
S 2

where V(r) is used to indicate the dependence of the reflec-

tion coefficient on the local angle of incidence. Here r is
the length of r' along S,.as seen in Fig. 7.

If the source is taken as a point source, then 6.7

may be written

[eik(R 1+R2)

U(R) -U(R) + f V(r) ]dr (6.8)
S RIR 2

where (see Figure 7), R12 =-(zo-C(r))2+lrI2, R22 - (z-C(r))2

+ jD-r P.

Now assuming kRj, kR 2  I, (the term used to

describe this is that the source and receiver are in the wave

zone relative to S), the integrand in (6.8) can be approxi-

mated by -i(Noq)exp(ik(R+R2))/(R1 R2 ) where N is the normal

to S at r, as shown for example in Fig. 6, and is qiven by

.4'
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C(r),N , N 1 , and q - -kV(R1 +R 2 ).
r I Il z

+I y 1-) I 2  11Jy7 (6.9)
.

pi Referring to RI,R2 defined in (5.19), and a, 8

. defined in (5.20), see Figure 4, if ka2 << R1 ,R2*, then

R, , + a C, R2  R2 C, (6.10)

neglecting terms of order a2/(R, 2+R22).

- S Under the same assumptionu

q : q = -kV(R1 +R 2 ) = k(P-a) (6.11)

- Using (6.10) and (6.11) in (6.8), and neglecting

I the incident field U0 (R), then (6.8) becomes
"'"V(r) (q z-q l. )

" ." U(R) = -S R exp(i[k(R1+R 2 ) - qzC(r)])dr, (6.12)
'j R1R2

- .' so

where the integration has been taken over the projection Soivtiv.

of the surface S onto the plane z-0 (drd - j ). Also,
, ., z

* referring to 6.9, observe that (Neq)/N z aqzql.7. (As is

true throughout this paper, q, is the projection of q the

mean plane z-0.)

* ore precisely ka2 Jaz 12 << R1 , koa2  I1 << R2. Ia I-

cos6, the local angle of incidence of the incident wave,
and 10z I - cos8', the local angle of incidence of the out-

going wave.
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A) The Mean Field U

a) "Small" Scattering Area

Suppose the dimensions L of the surface S are less

than the dimensions of the Fresnel zone, that is

kL2cos 2O << R1 , kL2cos 20' << R2. (6.13)

Then in (6.12), k(R1 +R2 ) e k(R1 o+R20 ) - q " r, where RjO,

R20 are the distances between a fixed position on S and the

source and receiver, respectively, and now q is a constant

vector, over all of S. (6.12) then becomes

U~aP)- ieikR1+R0)f V(r)(qz-q.Loy)exp(-I(qlor+qzC(r))dr.
U~, fi 4%RIoR20 so

(6.14)

Here U(a,P) rather than U(R) is used to in indicate that

(6.14) represents the field in the direction 0 after S is
illuminated by an incident plane wave with wave vector ka.

But as <y> 0 and C and y are independent, it
follows directly that

_iqzVe k(R 10+R 20 ) -i r(,)- 4nR1 oR20  fl(q)f e-iqlordr
S4 so

where f, is the first order characteristic function defined

in (1.6). But the integral above equals (2%)26(q.), and
ql - 0 only for the specular path connecting source and

receiver, so finally

-56-
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-i1qzV( 0)eik(R1O+R20) (.5O
6(ql)e- 2 kacos615)

where 00 is the angle of specular reflection at q, 0. In

(6.15), fl(qz) was evaluated for a Gaussian surface, as

qz = 2kcose 0 when q, = 0.

(6.15) again asserts that the mean field propaqates

along the specular path. Further, the effective reflection

coefficient is V(O0 )exp(-2k 2a2cos 26o), so that the coherent

component of the scattered field decays exponentially with an

increase in the Rayleigh parameter. Note that (5.16) is a

*I special case of (6.15) for small Rayleigh parameter, for e
away from grazing, and k1 >> 1.

b) "Large" Scattering Area

Now suppose S is so large that the inequalities in

(6.13) are not satisfied. In this case, to discuss the mean

field, return to equation (6.0), rather than continue from
(6. 12).

Assuming z 0 , z>C, the spherical waves in (6.8) may

be expanded in plane waves, namely,

e ikRj +" - e' (K'r+[z0-C(r)]K z )  -

f K dK (6.16)

and

e + ei(K.(D-r)+[z-C(r)]Kz) Z.
fi K AK (6.17)R2  -mK z

where K (Kx,Ky), and Kz2  k2 - j2.

-57-
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As before, the normal derivative has the form given

in 6.9.

Using 6.9, 6.16 and 6.17 in 6.8, and projecting the -

integration from S onto the mean plane S0 (z=O), the result is

+ [K +K' -y-(K-K')]
U(R) = U0 (R) + I f [V(r) f ,

16%3 S o  -m K.
-°

exp{i[(K-K'l'r + K''D + zOJg + zK '-C(r)(Kz+K ')]}dKdK']dr.

(6.18)
.I

To calculate U from (6.18), again use that <y> - 0,

and C and y are independent random variables. For

simplicity, set V=1. The average of exp(-i(Kz+Kz')(C(r)) =

fI(Kz+K z') as before, and the integral of exp(i(K-K')or)

gives (2%)26(K-K'). The final result is

- fI(2K Z)
U(R) = U0 (R) + f K (K*D+(z0+z)KzldK (6.19)

Recalling that fl(2Kz) = exp(-2k 2a2cos 20) defines

the effective reflection coefficient in the previous section,

(6.19) asserts that the mean field is the sum of the incident

field U0 (R) and the superposition of reflected plane waves,

arriving from different angles, and with their own reflection

coefficient.

Let R' - V ID2+(Zo+Z)2 be the distance from the

mirror source (0,0,-z 0 ) to the receiver at (D,z). Then it

has been shown that (6.19) reduces to

-58-
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t10) U(R) +-exp(-2k oCos6 0), (6.20)

2'-'

where 00 is the specular angle connecting source and

receiver, if

2I(ka) 4sin20+(ka)2 (3cosSO-1) << kR'. (6.21)

For (ka)2 small, (6.21) reduces to

ka -- << 1, (6.22)
RI

which is a very weak restriction on a.

However, for (ko)2 >> 1,and for 00 bounded away

from 0 and n/2, that is,

0 >> 60 and - 60 < 1 (6.23)

(6.21) is equivalent to

2(ka)4sin 2200 << kR', (6.24)

.'' ".- which is a good deal more stringent than (6.22).

.- :This is due to the fact that for (ka) 2 large, the

effective reflection coefficient inside the integral in

(6.19) will vary rapidly over S unless (6.24) is satisfied.

, .
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B) The Intensity of the Fluctuating Field

Returning to the representation of U(R) given in
(6.12), note that for large Rayleigh parameter, here written

qza , the main contribution to the integral will come from
the points of stationary phase, namely the points for which
Vr [k(Rl+R2)-qz(r)] = 0, that is

qz + q= 0, (6.25)

recalling that Y = VrC, and l = VrRi, 1 = -VrR 2 -

But the solution to (6.25), yo -qL/qz defines

a point of specular reflection between the source and
receiver. So in (6.12), the term V(r)(qz-qi.y) may be

evaluated for y a solution of (6.25). Since qz-qLyo =
2/qZ, (6.12) becomes

-1 V(r)lq lr l12 ex~ -
U(R) - f .exp(ik(Ri+R 2)-q z(r)])dr, (6.26)

-~ where V(r) now denotes the reflection coefficient evaluated

at the angle of specular reflection at the point r.

But from (6.26), the following formula for the

averaged intensity u results.

< u(R) > > - I<U(R)>I'

1~ I~ ~, ~ . .J Lexp[i(R+R -R11 - R2'].
- - f R']. (6.27)

(4) 2 So So RIRI'R 2R2 'qzqz'

[<exp(-iqzC(r)+iq 'C(r'))> - <e-z(><eqz( >]drdr, "
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O All variables with primes refer to r'.

Let p = r'-r. Then, as before, see (5.24),

-R 14R 2-R1I-R2' R - -p qj-p, (6.28)
2 1,

where quadratic terms in p are neglected, which is valid

under conditions to be specified subsequently.

Then, referring to (1.6) and (1.7), (6.27) becomes

<Iu(R)12> =f 2 2q +7 eiq"lP[f 2 (q ' q-z;p)

J.' (4-n) 2 So R, 2R22qz -

- f2l(qz) ]dpdr. (6.29)

-'.. In (6.29), the terms before the exponential in (6.27) were
-. '.% evaluated at p=0, or r'=r. Conditions for the validity of

this will also be given below. Observe also that in (6.29),
the p-limits of integration are extended over the infinite

plane.

If S is Gaussian, the expression in the bracket in
(6.29) becomes (refer to (1.9)),

"*'" : ]f2lq z Z -qz;Pl-fl (qz) "exp[-qz2 1 -Wal -e -z2 1  (6 30

The validity of all of the transformations and

approximations in going from (6.27) to (6.29) depend upon the
dimensions of the p-region over which the expression in

,- (6.30) diminishes, so that portions of the p-plane outside
this region may be neglected.
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For large Rayleigh parameter, (qza)2  >> 1,

expanding W(p) in a Taylor series, the result is that (6.29)

is valid for

kRrx2 1, kRcos 2 r y2 >> 1 (6.31)

where R a Ri, R2, COS 29 E co-..

Interpreting the inequalities in (6.31) geometri-
cally, the result is that for (qzo)2  1, (6.29) is valid

if the region where specular reflections dominate substan-

tially exceeds in size the first Fresnel zone.

If now we consider the case (qza)2 << 1, the

expression in (6.30) reduces to qz2a 2W(p), and in this case

(6.29) nearly coincides with (5.26). A factor Jq J/16 occurs
'P in (6.29), and a term k~az 2pZ2  in (5.26). These agree

when a1=Pi , az=-Pz (scattering in the specular direc- -

tion), but not elsewhere. Further the conditions for
validity of (6.29) turn out to be (5.25) and (5.27), that is,
the region where specular reflections dominate must be much
smaller than the Fresnel zone.

Not only is (6.29) valid at reasonable ranges for

both large and small values of the Rayleigh parameter, but as

will be shown below, (6.29) reduces to the correct limiting

value as the mean slope of S approaches zero. Further, for

large values of the Rayleigh parameter, a limiting form of

(6.29) can be'derived involving the slope probability density
function which agrees with results derived using an alterna-

tive approach to scattering.

It can be shown that (6.29) holds if
(kR)2rx 3 >> 1, (kR) 2(coser y)3 >> ,

which is weaker than (6.31).
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For all of these reasons, (6.29) is a fundamental .

result of scattering theory.

a) Small Scattering Surface

Now suppose that the dimensions of the scattering

surface S, and its projection So are sufficiently small that

"* the r-dependence in the integral in (6.29) may be neglected.

Then (6.29) becomes

N I I0 l 1 +e1q. p[aqz_, p)_f,2q ) d
2 fej- jjqj 4 .e-m=,

(4%RIRq)2 -
j (6.32)

Here as in Section V, the notation J(a,p) is used 8.-.

as a reminder that the average intensity is now a function of -.

the incoming and outgoing wave vectors, a (in), (out), and

q = k(P-a). jS0 j is the area of So.

For (qza)2 >> 1, (6.32) is valid if

L cosO L cosO' Lx x (.3
R, R << rX; NicosO, R2COSe' << 6.33,

2 y

where Lx, Ly are x-y dimensions of So.

For (qzcy) << 1, (6.32) is valid if

kL I cos 2e kL--"kx x << << I,(6.34)

R1,

plus similar inequalities with RIcose replaced by R21cosO'.

(6.34) corresponds to the restriction (5.30), derived earlier

for the perturbation solution.
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Now consider (6.32) for (qza)2 >> 1. Then the

term f,2 (qZ) - exp(-qz 2a2) can be neglected. Further, as

soon as 1-W(p) becomes significantly different from zero, the

f2 term (see (6.30)) is also essentially zero. So for large

qza, only the region near p=0 needs to be considered.

*1: But then, taking a Taylor expansion of 1-W(p)

around p=0, and evaluating the integral for large (qzo), -

using the method of stationary phase, (or actually, Laplace's

method here), the result is ,_4I __ __ _ __ _ _ __ _ _

(4%R1 R2 q 2 2 0 I~X()qy(~

q x2 q 2
exp W + Wy ) (6.35)

2q z xx yy' (0

•~ ,. But setting Wxx(0) - -2' W (0) = .-2 and rx2 ..
xx2 yy 2X

r 2 Y , (6.35) can be rewritten as O
x y

JVjjSOJ wqy)

= 22 46.36
4R1

2R2 q

where w2 (y) is the slope probability density function defined 24

in (1.2), and yo = -qL/qz is the facet slope providing

specular reflection between source and receiver.

The derivation of (6.36) requires that
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(q zr 2- 0 1 i f •

, .. and (6.37)Jq" I J, q.L I

Here r = max(rx, "ry).

Note that the expression in (6.36) is independent

of k. This is due to the fact that (6.36) expresses the high

frequency limit of the integral in (6.32).

Radar backscattering studies from the moon exhibit

./ .. some frequency dependence, even near the specular direc-

tion21 , so to that extent (6.36) is not correct.

Further, the derivation of (6.36) given requires

very little information regarding W(p), only that second

derivatives exist. (But see an alternate derivation of

(6.36) below.) So if the scattering depends upon more than

three parameters a, Ix, y, then (6.36) is too simple.

Z4 However, its very simplicity is appealing.

Further, the fact that the slope density function w2 is

evaluated at yo a -q±/qz is also interesting. A facet

with slope yo is such that the wave vectors a (from the

source), and 0 (to the receiver) make equal angles with the

normal to the facet. So the reflection from such a plane is

specular reflection from source to receiver. Thus (6.36) can

' be interpreted as the product of a geometric term jq 14/qZ4,

an area term, a reflection coefficient and a spreading loss

term, all multiplied by the probability that there is a facet
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suitably oriented to provide specular reflection between

source and receiver.
U.,,

This is an expression of the idea that for a large

Rayleigh parameter, the scattering is due to glints from

properly oriented facets of the surface. And since the mean

plane is flat, <C> = 0, this probability is highest near the

mean specular path, so this term should dominate there.

(6.36) is of sufficient interest that an alterna-

tive derivation will now be given.

Begin with U(a,P) as given in (6.14).

Then

-2 f f I v1(q-qi',y(qz-qo''*
..-- (4nRIR 2 )

2  S0  So (6.38)
:') '"' exp[-iql(r-r )+qz(C(r)-C(r )) ]drdr '

Now in the exponent, let C(r) - -C(r') - VrC(r-r') =-7p,

where p=r'-r as before. Neglecting the p dependence in y'

results in a p integral of the form

e- = (21)26(ql+qzy), (6.39)

again assuming that the integral is dominated by the contri-

bution near p-0, so the integral may be extended to the

infinite plane.* "

Introducing (6.39) into (6.38), and then averaging

with respect to the random variable y, the result is '.,
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i

J(cz-) < _______

4R1 
2R2

2

V()IJ2SOI ~qJ4
=w 2(Y0)1, (6.40)

4R12R2
2qz4

where y0 = -qL/qz as before. e0 is the specular angle

relative to the normal to the facet with slope yo, that is,
cose 0 = 'N In (6.39), use was made of the fact that
(= ]q IL/qZ2 • The estimates required in deriving

(6.40) are precisely the inequalities (6.37) obtained in

deriving (6.36).

Note that in deriving (6.40), no mention was made.

of the correlation function W. However, the underlying

premise throughout the whole section is that the surface S is

smooth enough that the tangent plane approximation makes

sense. But as remarked earlier, a reasonable smooth surface

requires W to have second derivatives. So the derivation

leading to (6.40) is not more general than that for (6.36).

b) Shadowing for Small Scattering Surface
22

In deriving the above relations, such as the

formula for JU(a,p) 12 in (6.38), the implicit assumption was

made that the entire surface S was illuminated, so that the -

integration could be taken over the entire projected area ..

SO.

However, for rough surfaces, with steep slopes, and

near grazing, obviously some portions of the surface are in

shadow, and do not interact with the incident wave. To
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correct this deficiency, a factor relatinq to the probability -

of being shadowed should be introduced.
S.

The simplest way to introduce the shadowing cor-

rection is to assume no diffraction and modify (6.38) so that

the integration is now over SillxSill, rather than S0xS0 ,
where S111 is the projection of the illuminated portion of S.

Continuing as above, approximating C(r)-C(r') E -yep, and
using (6.39), we arrive at (6.40). But now, rather than

computing the average with respect to y using the density

function w2 (Y), the y average is computed using the effective
slope density function we(Y;a,P) which is the probability

of the occurrence of a facet with slope y for which an

incoming ray a is not intercepted by some other portion of

the surface, and. for which the outgoing ray P is likewise ".

unshadowed.

Now the result is

We(y;aP) w2 (Y)P(y;a, ) (6.41)

where P(y;a,P) is the probability that neither of the rays a

or 0 reaching the facet with slope y intersect the surface

elsewhere.

The only case where theory has produced an evalua-

tion of P(y;a,P) which has been verified experimentally is
when a, P lie in the same vertical plane, the plane of
incidence 2

Let a - (sinecosO, sinesinO, -cose), and P -

(sine'cosO', sinOesino', cose'), where 0, 0' are the

incidence angle of a, P with respect to the normal to the

mean plane, and ,1' are the angles a, P make with respect

to the x-axis, (see Figure 3).
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If %' +€ (backscattering) and = max(0,e'),

P(y;a,)= H(cot7-y coso-y sin$). 1 (6.41)

If 0' 0 (forward scattering)

P(T;ap)= H(cote'-y coso-y sinO')H(cote+y cos¢+y sin¢)x y x y
1 (6.42)

1+A(e,0)+A(e' 0')

Here H(x) is the unit step function, 1 for x>O, 0
for x<O. A(0,0), for a Gaussian surface, is defined by

-a
2

A(e,¢) = [ e- aEfc2-] (6.43)

where a2 = cot 2e/(rx 2cos 2t+ry2sin 2 ).

The difference between the two cases is as follows. .-y
In (6.41), (backscattering), if the lower ray is not

shadowed, then certainly neither is the upper ray, that is,
the two events { not shadowed} and {P not shadowedl are

related, one is a subset of the other.

However, in forward scattering, (6.42), the

assumption is made that the two events are independent, which

seems reasonable in this case.

No shadowing theory has been developed for an

arbitrary relation between t and 0'. The difficulty lies in

making the transition between two independent shadowing

events, and the totally dependent arrangement in

backscattering.

-"' -69-
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In the absence of any analysis of the transition,

' the suggestion has been made to use (6.42), treating the

events as independent, as long as lies outside some wedge

containing a, i.e., as long as 10'-* ) Co > 024. Presumably

co need not be very large, e.g., n/12; although Bass suggests

40= 0 " For the reverse inequality, (6.41) should be used.

One further note, in the final form of (6.40),

where w2 (Y0 ) is replaced by we(yo;a,P), the step functions

in (6.41) and (6.42) are one, as the arguments are positive.

But when these results are extended to a large

scattering surface, these step functions will play a role. j

The shadowing theory presented thus far is based

upon the approximation in (6.38) of C(r)-C(r') by -yep. This

eliminates the random variable C in favor of y. And the

introduction of a correction for shadowing is reasonably well

understood, when averaging over the slope vector y.

However, as remarked earlier, the formula (6.32),

(or (6.29)), seems more fundamental than (6.40), in that

(6.32) will give either (6.40) or the perfurbation result
C.

(5.31), according to the size of qza. But to the author's
knowledge, no. shadowing correction has been applied to

(6.32).

There is a formula for we(C;a,P) analogous to

(6.41), where we(C;a,g) is the probability density function
of the surface height, given that the rays a,P are not

shadowed, namely.

w e(C;a,) - w(C)P(C;a,P) (6.44)
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S !where

.. ,.,0. P(C;a,P) =w(CI)d ' [A(Of)+.(e',, )]

° ffP(y;a,P)dy (6.45)

The fact that P(C;a,P) depends upon C will prevent
the averaging of the term C(r)-C(r') giving f2, as before in

(6.32).

One suggestion for introducinq a shadowing correc-

tion into (6.32) or (6.29) is to approximate an integral over

Sill as follows:

< f }dr> = f P(a,P) <{ }>dr,
.:Sill SO

where P(a,P) is the probability of the rays a, reaching an

S'," illuminated portion of the surface independerttly of the

height C, and slope y.

-'., For an isotropic Gaussian surface, and for a,P

P- independently shadowed,

cot e,
f w2(y)dy

P(a,P) = -cote. (6.46)
1+A( e)+A( 6,)

If the shadowing of a and the shadowing of P are
.

dependent, then

.H-1
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cot9-
f w2(y)dy

P( , , (6.47)
1+A(T)

where = max(e,9') as before.

The shadow corrected version of (6.32) is then

J(,P)= J0 (a,P)P(a,P), (6.48)

where J0 (a,p) is given in (6.32).

For a non-isotropic surface, the integrals in the
numerator in (6.46) and (6.47) are replaced by the integral

of w2(TX,Ty) restricted by the step functions appearing
in (6.42) and (6.41), respectively.

b) Large Scatterinq Surface

If the inequalities (6.34) are not valid, so that a
large region is involved in the scattering, then the r

integral needs to be evaluated. The result is

<Iu(R)1 2> - J~a') r (6.49)I ISO I SO"

- where J(a,P) is given in (6.32), or for large (qza), in
(6.40), where no shadowing correction is made; or by (6.40)
multiplied by P(y;a,P), or (6.48), which is (6.32) multiplied

by P(a,P).

It is interesting to consider the limit of
<,u(R)> as r2+0 (but letting kR - so (6.31) is still
satisfied). Let us write (6.49) in the form
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212

-fi
2(q z)]dpdr (6.50)

As r2-*O, f2 (see (6.30)) becomes sharply peaked at

P-0, so

5' f e ~Pf(q ,-q;p - i(qz)]dp (2nx) 26(q1)[1-fi 2(gz)]

(6.51)

hBut as in (5.35) qj=O occurs at the point of

specular reflection with respect to the mean plane, namely at

*The result is

W IV(9,)12(1-f,2(qz))
<Iu(R)12 )2 (6.52)

where we have used the fact that at qjL=0, =q~z

00, as before, is the specular angle at rot cos80 = - m
z j
R20.

When (qzcT) 2 >> 1, f12 =-0, and (6.52) gives the

correct limiting result in specular reflection from a plane.

In (6.52), the probability P(a,P)+1 as r2-,as
A(S)+0 as r2+-.
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VII. EXTENSIONS TO THE THEORY: COMPOSITE SURFACES 25

There are basically two solutions to the rough

surface scattering problem that have gained acceptance. One
is the perturbation solution (5.31), for a small Rayleigh

parameter, and the other is (6.40), for a large Rayleigh
parameter, using the tangent plane approximation. (Actually

(6.40) should be replaced by the shadowed version, with W 2 (y)

replaced by we(Y;a,0).)
S..

As has been remarked several times already, both

(5.31) and '6.40) can be obtained from (6.32). (At least the a

free surface perturbation solution can be obtained from

(6.32), to within a geometric multiplier, although since the
rigid surface solution coincides with the free surface

solution at grazing incidence, perhaps the difference is

slight.)

However, (6.32) has not been used extensively as a
scattering solution, probably because a Fourier transform

must be evaluated, whereas (5.31) and (6.40) are simple

function evaluations.

Now (6.40 - 6.44), and (5.31) are valid in dif-

ferent, nearly complementary regions of the parameter space
(k,aPa), namely the geometrical optics solution is valid

for large ka, near the specular angle, while the perturbation

solution is valid for small ko, and/or near grazing, away

from the specular angle.

Clearly it would be desirable to have a simple

solution which would bridge the gap between the two existing
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3U solutions, as the result would be a theory valid over all 0

parameter space.

Note that the two sclutions are responding to

different features of the scattering surface. The geometri-

cal optics solution is describing specular reflection from
properly oriented planar facets of the surface, while the

perturbation solution expresses the diffraction from smaller

features of the surface.

This notion led to the introduction of a composite

surface, that is, expressing the surface as a sum of a large

and a small surface,

z - C(r) = CL(r) + Cs(r) (7.1)
L s-

where in (7.1) and subsequently, the subscripts L and s refer

to the large and small surfaces respectively.

The idea here is the large surface contains the

planar facets, (long waves in surface), and superimposed on
these are the small ripples (short waves) responsible for

diffraction.

Again note the utility of assuming a Gaussian

surface, for if both CL and Cs are Gaussian, so is C.

The first person to use this notion of composite
I26 surface was Kuryanov26. He suggested modifying the small

surface (perturbation) solution in two ways: i) Express the

geometric factor in the solution relative to the normal to

the large surface (NL N(YL)), rather than in terms of

..75.
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the vertical normal to the mean plane; and ii) since the

orientation of the large facets is random, average the

modified perturbation solution in (i) with respect to y.

Kuryanov wrote before an adequate shadowing theory
was developed, which limited his results. However, Brown2

recently independently rederived Kuryanov's results,

including shadowing.

An interesting way to develop Brown's results is

due to Dashen 3. Begin with (6.32), repeated here for

reference.

U. e2 z21-W(Pll-e- z ]dp.

4I R2qz )2_q'-O.

(7.2)

Now (7.1) implies

a2W(p) = a 2W (p)+as2Ws(P). (7.3)
L L s s

Assuming (qzas)2 is small, then

exp(qz 2as 2Ws (p)) a 1+qz 2a sWs(p). (7.4)

Then, neglecting the term e-qz 2 2 in (7.2), we can

write

,,,= ~~ ~ i,- -q slll +',.S, - [ e-eiqPQ 2 L(P))dp
(47rRR 2q) 2(7.5)

+2 2 ( - (PL 2 a 2W
+ qz2 + e- 5i*P(e-qz (-L( . 2Ws(P)dP]

-76-

":-.: ,. . ,..,r , .. e ., ,.; , , -. . ..,.--. -. -, -. .. .. ,, .. -, .. ,,.. - -. , -, ,.,- ,. -.--. --,, .-,.-,',,,.-,-,, ,. .



But the second term in (7.3), the Fourier transform
of the product, becomes the convolution of the transform of
the two factors.

Now suppose that (qza)2 is large enough so that,

as in (6.35),

+e-irp. e-q 20L2 (1-WL(p = - (q

f -= iz L L().±x2 weL (r/qZ' (7.4)

where a shadowing correction has been introduced by using
weL, defined in (6.41), rather than w2Lo

Using (7.4) in the convolution form of (7.3), the

result is

-. J(aP) jv2s 0 jfRi2R22qz4  eL(YO;a'IP) (7.5)

4R1 
2R2

2

-. recalling that y0 = -ql/qz, and in the last integral the

dummy variable in the convolution has been set equal to

"' qzY.

On comparing the last term in (7.5) with (5.31), it
is clear that this term is a shadow corrected averaged
version of (5.31). In fact, if kI >> 1, then, (just as in

-7 .7-

-77 I



the transition from (5.31) to (5.33)), WeL(Y;a,P) 5(0),

(as PL2+0 also), and Fls(-qzy0 ) 6 8(ql). Thus this

term in (7.5) reduces to (5.33) also.

Clearly this last term in (7.5) incorporates
Kuryanov's notion of averaging the small surface result with

respect to the slopes of the large surface. However, the
geometric term Jq J4 is not included in the averaging.

Using a different approach, Brown included the

geometric term in the convolution. If (7.5) was modified by
taking the jq 14 term within the y-integral, written in the

form
1122 2 4( Y 2 2,

Iq + qz ) =q (7.6)

this gives one interpretation of expressing the geometric

factor in terms of the slope y of the facet of the large
surface.

A more fundamental version of (7.5) could be m

provided by replacing the term Iq f by the correct expression
for the perturbation solution, i.e., z 2pZ2 for a free

surface, (1-alp.i) 2  for a rigid surface, or more
generally jF(c,81j2. However, in line with Kuryanov's notion

of expressing these factors in terms of the normal to the

facet with slope y, let az, Oz be interpreted as the
component along the normal N(y), and aI., Pi the perpen-

dicular component.

That is, ,

z  (a*N), and a,- a-(a*N)N. (7.7)
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b!

Realthat N(Y) -1-)Vjj+.

As remarked earlier after (6.31), I4 should be

a

>>replaced by 16k 4az2pZ2 Accordingly, the second term in

... (7.5) has the form

..-?4k 4IV 12 p~ 0 1 = +
- f}; R1R2 f z(y)2p Z( )2p1s(qz(y-y8))W2L(Y) dy. (7.8)

l This is essentially the form used by Andreeva et

a129, and before that Bachmann 3 0 , and Kuryanov 2 6 •  Observe

4P thatA rnte erealer haftbere3placeoud be a

-: ,the shadowing correction is not important, except possibly at
very high frequencies. Since the modification and averaging

)of 14 over is only a significant correction at low

hgrazing angles, i i s consistent to replace WeL by W2
above. aNeither Bachmann or Kuryanov had a significant amount

of data with which to test their modelp In reference 29,however, scattering data for grazing angles from 3" to 10"

i was available, at several frequencies and wind speeds, and
the corrections introduced in (78) (for the case of back-
scattering) produced a model which fit the data ather well.

of "Probably the various versions of the composite
surface solution, t7i5), or the substitution suggested in

. bove(7.6), or (7.7a, are all essentially equivalent, as

WeL(c;,re) for moderate values of Lh will be ck-

SPcentrated near y0, where the above expressions differ very

, .". little.

" . 47
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One must observe, as does Brown, that the integral

term in (7.5) should include the step functions (see (6.41)

or (6.42)) in the definition of weL, in order to be

rigorous. Other than complicating the evaluation of the

convolution, it is not clear whether the correction so intro-

duced is signficant. Some numerical experience would be

useful here.

A more interesting question relates to (7.1), the

division of the surface into large and small.

The basic assumption here of course is that

(k )2 >> 1, for otherwise the perturbation solution would

probably be valid.

Given this, the division of large and small is

given by dividing the spectrum at a value k* to be chosen.

F 1L(K) = FI(K)H(k*-IKI) (7.9)

and

Fjs(K) FI(K)H(IKI-k*) (7.10)

Recall H is the unit step function, one for posi-

tive argument, zero for negative.

Then

a 2 " f FlL(K)dK (7.11)

Os2 - I Fl(K)dK (7.12)
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and

* Wj(p) =1 fe pKF(K)dK, j = L,s. (7.13).! a.

With these definitions, (7.3) is clearly correct.

Since qz is bounded by 2k, a sufficient condition
for (7.4) is (2kas) 2 << 1. And (6.37) gives conditions for

the validity of (7.4), with a, r replaced by aL, rL-

Note that if (qza)2 >> 1, then for some k*
large enough, one can have both (qz a L)2 1 and (2ka) 2 <

. 1. However, if e, e' are such that then obviously

(6.37) cannot be satisfied.
I

But if (ka)2 >> 1, then presumably it is possible

to define a suitable k* for 0, 0' bounded away from %/2,
(so that qz is bounded below).

And if qz+O, the standard perturbation solution

. using the full surface spectrum FI(K) will apply.

One further remark. Depending on the smooth-

.- "ness properties of Fjs(K) in the neighborhood of K=qj,
the integral in (7.5) or (7.8) could be expanded in an

asympototic series in rx2 , ry2.

S.That is, neglecting shadowing,

I Pls(qz(Y-Yo))we(Y;a,P)dY - Fjs(q)P(Yo)+(rx 2 +ry2) (7.14)
1w e y

,: -81-
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Given a smooth enough spectrum around qL, further

terms in the expansion begun in (7.14) can easily be

supplied, via Laplace's method.

So if qj I > k*, and F1 smooth near qj, (7.5) -

can be approximated by function evaluations, eliminating the
need to evaluate integrals. As qg. 1-k., some attention

has to be paid to the approaching cutoff in Fs.

.4

C...

U-,,

.d..

"

N
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SVIII. SCATTERING FROM A MOVING ROUGH SURFACE 27

":.": ;"; Now consider a surface varying in time, z C (r,t) •
ii q The basic assumption is that the variations in the surface

' . .-. " (r,t) and slopes y(r,t) are small relative to the incident

,-. <frequency wo and incident wave velocity c = wo/k respec-
-ii

I iSuch an assumption allows an immediate generaliza-Stion of (6.14), namely

"-'')- i kR0+2)i~ f Vlr) (qz-qi'oy)VIII.(,t SCA4TRI R20 so

Now'consexp(-iqltr+qz C(r,t))dr (8.1)

The As remarked several times before, such a formula
will produce correct results for large or small Rayleigh

vparameters, and will be the only form considered in th s

~section.

Again, the dominant contribution to the integral
occurs near the stationary elinty o -q/qz and the

term qz-q.LA reduces to seq /qz as before. Here the

... .-'time variations of y(r,t) are assumed to be much slower than

.., that of the exponential exp(-iqzC(r,t)), so that the time
ldependence in c may be neglected. or a small Rayleigh

o ~ parameters, ant ilh e t h qey onl /q fomcnsideredbi thisn

outside the integral if kL >> 1. This is because in this

case, that of a gently sloping surface, the field is con-
centrated near the specular direction.
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The function of. interest in the case of a moving

surface is the power spectrum of the field, defined by

-S(P;W) = 4  I < U(a,P;t+)U (a,P~t) > e di.
(8.2)

Introducing (8.1) into (8.2), using the approxima-

tions indicated, and proceeding as in Section VI in deriving

(6.32), the result is

JVj2jsoJJqJ4 +_
S a PfW f exp(-iqj'p+i(w-w0) )

21n(41tRlR 2 qz)
2

f2 (qz'-qz;P,')dpdc (8.3)

where f2 (qz,-qz;p,i) = exp(-qz 2c 2 (1-W(p, ))) for a

Gaussian surface.

The result in (8.3) could be shadowed by multi-

plying by P(a,P) as in earlier sections. This is consistent

with the time dependence of C and y, for the stationary

assumption implies that the probability density function for

C, and therefore for y, is independent of time.

Suppose (qza) << 1. Then expanding f2 in powers

of (qza)2W, the result is

qZ2n

SlaP ) - S (P;W) (8.4)
n=O n1 n

where the term multiplying the sum is evident from (8.3), and

-84-
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Sn (oa,P;w) f exp(-iqj*P+i(ww0 )r)(02W(p,t)) dpdtc (8.5)
-.

"- . -.

But as the Fourier transform of a2W(pr) is F(K,W),

.. as given in (1.11) or (1.15), (8.5) asserts that Sn is the

n-fold convolution of F. The first few terms are as follows:

= (21) 36(qI).6(W-, 0 ) (8.6)

S(a,F;w) =F(q1 )6(w-w 0 -6)+(q 1 )) (8.7)

$2(c, ;w) = - f Fl(K)Fl(q 1-K)6(w+(K)+w+(q1 -K)-(w-wo))dK(2L)3 w (8.8)

S. :* where K = (kx, ky), as before.

S 0 represents the spike directed along the specular

path, at frequency w0. For the moving ocean surface, if

- FI(K) is assumed zero in some circle (interval) around K-0,

depending upon. the wind speed above the ocean, then S1 will

also be zero in some interval around w0 . S 2 is in general

not zero for w-w 0 , and will fill in the gap around the
4. central spike left by S 1

2 8.

Now suppose (qza)2 >> 1. Then, as before, f2

decays so rapidly for W(p)*1, (p*O) that the integral in

(8.3) may be approximated by replacing 1 - W(p,T) by a Taylor

S . series in P and r. The result is that S is Gaussian in

nature,

((-wo )_wm)2S(aI; ) exp( ( .)2 9
),, (8).2
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where 2

m=  -, (t ) 2  -2q 202 . (8.10)

Here D is the determinant of the Hessian matrix of W (with

respect to px' Py, and T) evaluated at p=O, x=O, and d is the

2x2 principal minor of D. D, is D, with the first row of D

replaced by (q1 , 0). The second derivatives of W needed

above can be calculated in terms of F1 and w+, see (1.12) or

V.,,

If the scattering surface is not small, so that the

r integral must be evaluated, the result is

S(R,w) SaP)dr(8.11)

Again, to obtain the correct normalization,

particularly if S o is so large so as to include scatterinq

near grazing incidence, (8.11) should probably include a

shadowing correction.

Furthermore, if C is decomposed into the sum of a

large and small surface, a composite surface form of (8.3)

could be derived, which would combine the contributions to S

from the large surface (using (8.9) evaluated with respect to

CL), and the contribution to S from the small surface,

(using (8.4), evaluated in terms of Cs), perhaps convolved

with (8.9). In particular for low grazing angles, the term

F1 (qj) in (8.7) would be replaced by an integral as in
(7.8)."

V,,,,,
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APPENDIX A

To evaluate the integral

I = ff6(f 1(X~y))5(f2(X1Y)) dxdy,

introduce the new variables, U = f1(X~y), V- f2(Xly). Then

dxdy = J-Idudv, where J is the Jacobian determinant

(ff).Then I = f f 6(u) 8(v) J- 1dudv = J u0;using the
- fact that the mapping (x,y) +~ (u,v) is invertible at u=0v.

h To apply this to the evcd1uation of the integral
following (5.34) of the main text

I 1 R2 ~ f E-.)dxdy, (A. 1)

observe that

f1 (x,y) =,(A.2)

* .'Z2+(X 1 -X) 2+(yl-y) 2 /Z02+X2+y2

and

f(X'y) R, - (A.3)

*Now f1 =O=f 2 at r-r0 , where

ro = (x01y0 ) - - (x,y 1 ) =D- (A.4)zo~z ZO+Z

By a simple calculation,

A-1
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4.°

i2( - 20D2 + (Z+Z)2 ) 0(A.5)(2 2 (Zo Z)2(+Z )2

,e. z2

R22(r01 z B2  (A.6)
R2 (r0) 2(:0+z)2 .7

Here B is the distance between the image source and receiver,

and is defined in A.5. Further, if J denotes the Jacobian

determinant for fl, f2 given in A.2, A.3, then

B4 Z2Zo 2
J-1I - (A.7)

ror (z0+z) 6

But then

SJ-1I . 1 (A.8)

R1
2 (r0 )R2

2 (r0 ) Ir-r 0  (z+z0)2

" r O  -Z 0

Note that a0 - (- ,  10) - (aol, aoz ) and 10 ,

D-ro _

(VR2 42) - (o±' oz)" Further,

0 D-ro D

ao1  P a0 " R O  R 2 0  D (A.9)

In addition
.-.

-zo (zo+z)
, ~~a = - - - - -= s o (A o

02 R1 0  B -coOGO (A.10)

and

z 0+2

oz = 0 R = " -i-- ( cso" 1A.11)
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-I From (A.11) and noting, from A.5 and A.6 that RI0 +
R2 0 = B, A.8 becomes

. I " = , (A.12)
(Z+Z0 )

2  POz2(R10+R20 2

which is the desired result.

Using the relations in (A.9) and (A.10),

"I D.1 2  Z0+Z) 2

- = - o o(A.13)
k 10 2  B2  02 OZ

so that the rigid surface kernel and the free surface kernel

., agree at r0 .
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APPENDIX B

The function F(a,P) has the following form:

2k2F(a,p) & I i

p Tkc7:k 2 J 12 + kp 2 Aj7[2I

1-+V) P-

Here k2 P2 refer to medium below the interface.
.-. , .

-Ai
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Appendix C

Representative parameter values for ocean surface usinq fully

developed Phillips spectrum,

S.- Fl(k) - B/k3, g/u2 < k < ks (one dimension).

K2 Then

• a ! u2  = .0049u 2 m.
2g2

k u2

2r2 M B log (-L'-)
%g

Here u - wind velocity, (m/sec), g - 9.81 m/sec 2 , B - .0046

is a dimensionless constant, ks is the cut-off between

. gravity and capillary waves, ks a 2%/.3 m-1
...

S."Table I

u(knots) u(m/sec) O(m) r 1(m)

.10 5.1 .13 .096 1.3S

20 10.3 .52 .112 4.65.'30 15.4 1.2 .120 10.0

40 20.6 2.1 .125 16.8

Let k - 2xf/c, f in hertz, c a 1500 *n/sec.

C-1
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Table 2
Values of ka (kIt), as u and f vary.

u (Knots)
f(Fiertz) 10 20 30 40

100 .055 (.57) .22 (2.0) .5 (4.2) .88 (7.1)
200 .11 (1.1) .44 (4.0), 1.0 (8.4) 1.8 (14.)
400 .22 (2.3) .88 (8.0)1 2.0 (17.) 3.6 (28.)
800 .44 (4.6) 1.8 (16.) 4-.1 (34.) 7.1 (56.)
1600 .87 (9.2) 3.5 (32.) 8.0 (68.) 14.1 (110)
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