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1. IntroducUon

The finite element method of discretization is used to reduce many complex

N . continuum problems to discrete systems. Although this reduction is the most

important step in the overall analysis of a structure, solving the discrete prob-

lem is far from trivial. In general, the reduced system is nonlinear and an itera-

tive method must be employed to arrive at the solution. Most solution methods

. are based on some form of Newton's method in which the nonlinear problem is

linearized using an initial approximation to arrive at a linear set of simultaneous

equations. The solution of the set of linear equations leads to a correction of the

initial approximation. When solving the linear equations, one should not loose

sight of the primary objective: solving the nonlinear problem.

Iterative methods, such as the conjugate gradient or Lanczos method, are

among the many methods that may be used to solve systems of linear equations.

The advantage of these metbods, when used as the inner loop of the Newton

iteration, is twofold.
-.

.Il (i) The linear equation may be solved to any desired level of accuracy as

governed by the Newton iteration.

(ii) A considerable reduction in storage can be achieved when no triangular fac-

torization need be performed.

In [4] a method was developed, based on the preconditioned Lanczos

method, to realize some of the advantages of iterative methods. In this previous

study, the triangular factors of the initial tangent matrix were used to form a

preconditioning matrix for the subsequent solution steps. In the present we

have eliminated factorizations by employing other preconditioners and further,

have reduced the storage needs of the method.

".: ?*. :. -*.* >Z'ZC 1 ... . .. . . .
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2. A Preconditioned Conjugate Gradient Method

An essential step in nonlinear analysis of structures is solving a linear sys-

temn of algebraic equations. The preconditioned conjugate gradient method

(hereafter called PCG) is one of the many procedures for solving

r = b -Ax = 0(.1

where A is an n xn symmetric positive definite matrix (which is sparsely popu-

lated) and b is the right-hand side vector. In the case of static analysis. A is the

current tangent matrix and in the case of dynamic analysis, A depends on the

~ ,' mass, damping and stiffness matrices, as well as the time increment.

The initial popularity of the conjugate gradient method was due to a

number of factors. In exact arithmetic the method required a maximum of n

4.4 iterations to solve (2.1) which made the method superior to other iterative

* methods. In fact conjugate gradient is in the class of semi-iterative methods

which also includes the Lanczos algorithm (8]. The disadvantage of direct

methods is their large storage demands for keeping the factors of A The only

p interface between the conjugate gradient method and A is through the product

Av for a given vector v. This Is an elegant way of taking advantage of sparsity of

A which has the added advantage that A need not be known explicitly but only at

means of computing the matrix-vector product is required.

The popularity of the conjugate gradient method vanished once it was found

that under certain conditions the mnetbod required as many as 5nL or Bn steps to

reduce the residual to the desired level. This blemish is accounted for by the

strong influence of round-off error.

40 The addition of preconditioning eliminated this difficulty. Instead of solving

(2. 1) we solve

P-'hz P-l (2.2)
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for some appropriate choice of P. The object then is to choose P such that the

coefficient matrix of (2.2) is well conditioned.

Theoretical considerations suggest that at the end of each iteration of CG

the residual norm is reduced by a factor when solving (2.1) where is
v'x + 1

the condition number of A. defined by w = JAil !IIAD. See [1] for more details.

Note that when K = 1. one iteration is sufficient to solve the equation. This pro-

vides us with a guideline for choosing P. For a well chosen P only a few iterations

reduce the residual norm to the desired level. Here we give an outline for the

preconditioned conjugate algorithm:

Given an initial guess x0, a positive definite preconditioning matrix P, the matrix

A and the right hand side b

(1) Set pa = ro = b- Az0

(2) Solve NO = ro, for d6

(3) for k = 0. 1.2, . .. until convergence do

(a) at = (rkd,)/(pi, pt)

(b) Xz I z + ahpi

(c) r ,r = -a, Ap,

(d) Solve Pd6+1 = rk +

(e) , =

(f) = d6++PI.,

The operation (v.u) denotes the inner product vrtu The algorithm gen-

crates a sequence of approximations to the solution z with a corresponding resi-

dual vector rt. The termination criterion can be chosen based on these quanti-

Sties. In addition to storage demands for A and P the algorithm requires storage

for 4 vectors. The total number of operation per iteration is NZA + NZP + 5N.

where NZA and NZM are the number of operations for forming Au and P-1 v for a

given u and v.

.o..
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3. Splitting Methods

Here we turn to a topic which at first sight may seem unrelated to the solu-

tion of nonlinear algebraic equations. Consider the system of first order

-. differential equations

i = f(x-t) (3.1)

where x is an n-dimensional vector, the superposed dot, ( ), denotes

differentiation with respect to time and f is a function of the unknown vector X

and t.

We consider a special form of f which can be written as a sum of its subcom-

ponents ft.

f = ft (3.2)

Under these conditions the original problem can be thought .s a sum of s sub-

problems

: = ft(xt) i = 1. .. s (3.3)

In the case of finite element discretization of the spatial domain the sum in (3.2)

ranges over the elements. In other cases the splitting may be formed by other

means, one of which is demonstrated in the following section.

A consistent algorithm for the solution of (3.1), based on the notion of a

splitting technique [3]. can now be constructed as a product of algorithms for

the sub-problems. In other words, write the algorithm for (3.3) as

= SICh)[xM] (3.4)

where St(h) is an operator denoting the algorithm and the index m ranges over

the increment in time. h. Then the algorithm for (3.1) can be written as

rm 1 = S(h)[im] (3.5)
where

= S') (3.6)
.. 1

".P
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One of the disadvantages of the splitting method is its low accuracy. The

best that these methods can achieve is second order accuracy. That is the trun-

cation error is of the order of V8 at best. In the sequel we will use the above pro-

cedure to construct a preconditioning matrix for the conjugate gradient algo-

rithm described in section 2. The inherent inaccuracy of the splitting method

poses no problem since the algorithm is used only as a preconditioner and

therefore one can obtain very high accuracies through the conjugate gradient

iteration.

-'.*
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4. SaluUon of StaUc Problems

Consider the system of linear first order differential equations

ri + Ax = b (4.1)

where -r is a given parameter. Formally the solution to equation (4. 1) is

X(t) = e"(xo - A-1b) + A-lb (4.2)

where x0 = x(O). is an initial condition. We observe from (4.2) thet as t ends to

infinity x(t) converges to the solution of (2.1) for r > 0. Consiquently (4.1) may

be utilised to solve the linear equations (2.1). Indeed this approach has been

suggested previously (e.g.. see [5]). In general the exponential of a large matrix

cannot be easily computed and a numerical solution of (4. 1) must be used. In

order to achieve a soluion of (2.1) a numerical solution to (4.1) must be assymp-

totically correct for infinite At. or a very large number of time steps must be

used to compute the solution at infinite time. Here we are not concerned with

constructing accurate solution to (4.1) rather we consider the method as a

means of constructing a suitable preconditioning matrix for the conjugate gra-

dient algorithm described above.

Splitting methods may be applied to any problem of the form

ik = B1 (4.3)

where B is an additive operator defined by

B B, (4.4)
5,.l

such that the equations

it- k t - 1... s (4.5)

are significantly easier to solve than the original equations. The time stepping

algorithm for the global problem is then the product of all the time stepping

algorithms for the subproblems with a fractional time step h/s [3].

The coefficient matrix A in (2.1) may be written as the sum of its diagonal

matrix. D, a strictly lower triangular matrix. L and a *rictly upper triangular

', . '."."' -..".:, ,;v- ,'..'' .. ". ',, -, .,-. . . " " " '"" " " ' - " " . -"" " "" " " " "
• r ~~~~~.. .. . ... a.. ... -. , .,,~ _. . ,"_. " . ." ." . . ." " .' ." ." .. '
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matrix such that

A= D+ L) + (%D+ L)7  (4.6)

The associated subproblems, i = -(MD + L)x and x = -(MD + L7)x can be solved

easily. Applying a backward difference method with a time step h/2 to each of

the subproblems. we arrive at

4- + 4-, D+ 2L] ?+ 4-D+ 2Lx. (4.7)
4,r1 11 17N+ J. I

where xn is an approximation to x(nIh). For initial condition x0  0 we get an

approximation to z(h)

fhl + +2L) + -D + 2L (4.8)
2i4i 4 (.8

which is compared to the exact solution

-(h) -&/J A-1 b (4.9)

Comparing equations (4.8) and (4.9) suggests that the coefficient matrix in (4.8)

may be a good approximation to A- ' for large h. and may therefore be an
h

effective preconditioning matrix. The scalar factor may be ignored for

preconditioning purposes.

*When using this in conjunction with conjugate gradient algorithm of section

2 the preconditioning matrix becomes

P = (I + w/2D + coL)(I + w/ 2D + ciL r ) (4.10)

where w = h/ 2r is now a free parameter.

To simplify the choice of w we scale the stiffness matrix A such that diagonal

, -. of A is unity. The resulting matrix is A = D-AD-*. The system of equations (2. 1)

now becomes

AI= b (4.11)

where 2 D)z and = D-b.

The preconditioned matrix must now be applied to (4.11) resulting in

NZ:



P (1+ L)(I + LT) (4.12)

where A= L + Lr. It is easy to show that preconditioning (4.11) using P is

equivalent to preconditioning (2.1) with

P = (D + wL)D-'(D + f.LF) (4.13)

This can be identified as a member of the class of incomplete Choleski precondi-

tioners [2]. Note that when wo = 0. P becomes the diagonal matrix D resulting in

the simplest form of preconditioning; diagonal scaling. When w = 1 then

P = A + LD-ILT. The error matrix W-ILF is rank deficient since L has zero diag-

onals. If the norm of D is larger then the norm of L then the norm of the error

m..rix will be small compared to the norm of A. consequently, for most prob-

lems it is expected that the optimum w will be close to unity.

-.1

o.
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5. Solution of Dynamic Problems

We construct a preconditioning matrix for the linear system of equations

arising in a step-by-step algorithm for dynamic analysis of linear and nonlinear

structures. In particular. we consider the Newmark algorithm and the precondi-

tioning matrix follows from the splitting method of section 3. in much the same

way as for the static problem.

Consider the linear equations of motion

MU + Ku = f (5.1)

where M is the diagonal mass matrix. K is the stiffness matrix, f is the external

load vector and u is the response of the structure. For simplicity, we ignore the

damping effects, but all the following results may be extended easily to the

damped case. The linear system of equations arising at every time step of the

Newmark method is

Ax = b (5.2)

where

A--'K+ -M (5.3)ftAt
s

and

b= f + M[ut + Atv + 0[-p)Atla ] (5.4)

Here v and a are velocity and acceleration vectors, respectively, At is the

specified time increment, t is the time and z is the increment of displacement

response. The Newmark parameters are chosen such that P Z (- + 7)g/4 with

7 . The discretization in time are

U, +A = u + AtV8 + +&At[(1-2 [ )( - 2p& 2pi + )] (5.5)

Y, + M = + -+ At i -)a + tAt. as+ (5.6)

The object is to solve (5.2) without forming the factors of A

A splitting method similar to the one used for equation (4.1) can now be

a,
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applied to equation (5.1). The matrix resulting from the splitting algorithm can

then be used as a preconditioner for (5.2). Consider

where K - L + LT. Multiplying out the terms in (5.7). we obtain

p - + L + 1] +

= L[Ata2LM-lLT + A]

= [C(,t 2 ) + A] (5.8)

where E(At2) = pAt2LVI-LT.

The preconditioned conjugate gradient algorithm of section 2 is invariant

under the scaling of the preconditioning matrix. Therefore, (5.8) shows that P

will tend quadratically to the dynamic stiffness matrix A as the time step dimin-

. ishes. In other words. E tends to the zero matrix quadratically in At. We see

later that this characteristic results in an effective preconditioning and the solu-

.tion of equation (5.2) is obtained in as few as 2 or 3 iterations of the precondi-

tioned conjugate gradient algorithm with moderately small At.

,j oO

op.
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6. Numerical Examples

In the following, we present a few numerical examples to illustrate some of

the characteristics of the proposed preconditioning matrices for the PCG algo-

rithm. This algorithm is implemented in FEAP, a Finite Element Analysis Pro-

gram (see [8], chapter 24 for more details). All the numerical tests were carried

out on a VAX 11/700 at the University of California, Berkeley, using double preci-

sion computation.

We first present the results to some static analyses, both linear and non-

linear. In these examples we choose a stopping criterion based on the residual

vector and the algorithm is terminated as soon as the norm of this vector is

*reduced by a factor smaller than a specified tolerance. In our calculations we

set the tolerance to 10-8. Next we demonstrate our algorithm on a few dynamic

problems. The termination criterion is similar to the static case with a range of

different tolerances to demonstrate the effectiveness of the algorithm.

6.1 Static Examples: Linear elastic

a) 132 degree-of-freedom building

The object of the first problem is to determine the influence of the precon-

ditioning parameter, w, in eq. (4.13). The total number of PCG iterations

required to achieve convergence, varies considerably with w. To illustrate this

dependence, we chose the example model shown in figure 1 which is a 132

degrees of freedom, multistory building. discretized by 176 2-node truss ele-

ments each with the same Young's modulus (30xl0O). The cross-sectional area

of the girders, columns and diagonals are 20, 40 and 1 respectively. A single load

at the top is applied, as shown in figure 7.

In figure 2, we indicate the number of PCG iterations needed to converge as

a function of the preconditioning parameter. The shape of this curve is charac-

teristic of the proposed PCG algorithm and consists of three zones:

-"M
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I) Small c: The preconditioning matrix approaches the diagonal matrix D. In

this case, the total number of iterations is less than that for diagonal

preconditioning.

2) Optimum w. With this value the algorithm takes the least number of itera-

tions to obtain the solution. Note that the curve is quite flat around Wo.t

and therefore the total number of PCG steps is insensitive to small changes

in the value of w. Further, as predicted before, the optimum 0 is close to

unity.

3) large w: In this range the preconditioning matrix approaches LM-IL 7 which

is a singular matrix (diagonals of L are zero). In this example with W > 3.0

the solution may loose accuracy in all significant digits and eventually

floating-point overflow occur.

Figure 3 shows the evolution of the residual norm, 1i rill, normalized versus

li r011. at the i-th iteration of the PCG algorithm. The residual at each iterate

exhibits characteristics typical of conjugate gradient method. Namely, residual

norm remains large for a relatively large number of steps before convergence

occurs to the specified tolerance. Part of this behavior is due to the loss of

orthogonality among the conjugate vectors. Poor preconditioning can also con-

tribute to slow convergence.

b) "Chnttlever beam" tijpe structures

From the insight we have gained with the preceding example, we now

proceed to answer the following question: How to select the wg?

No easy analytical solution can be obtained to this question; w,,g depends

on the spectrum of A which is not known aprtart. However an initial estimate of

unity as indicated in section 4 is not an unreasonable choice for W. The numeri-

cal test here is to investigate the dependence of the number of iterations on w.

An accurate upper bound to the total number of PCG steps can be obtained if

'.,
C. .
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the condition number of the preconditioned matrix, P-A. is known. However the

condition number of P-1A depends on w.

The examples we have chosen are summarized in figure 4. Each problem is

computed with a range of u's to obtain w,,,. Figure 5 shows the number of itera-

tions as a function of w. for these examples. Notice that all the curves are

rather flat when close to c.*. moreover, that w., is close to 1.0.

The following table (1) gives the number of iterations for both wp and

(o= 1.0.

No. of No. of Iter. for
D.0.F. k2  k2

k, N
N j, k I = 1.0. k2 I

30 1.0 14 14 1.00 0.47

40 1.0 23 23 1.00 0.57

60 1.0-1.3 20 20 1.00 0.33

132 1.3-1.4 37 45 1.22 0.28

160 1.25 33 35 1.06 0.21

240 1.0 199 199 1.00 0.83

300 1.2-1.5 46 50 1.09 0.15

Table 1. Comparison of the Number of PCG Iterations for Various u's.

The last column of Table I shows the ratio of total number of iterations over

the number of degree-of-freedom. As expected this ratio remains below unity.

The next to last column shows the loss in optimality when using w equal to unity.

Except for the 132 degree-of-freedom system little loss in computational effort

results from using w equal to one.

,-N
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6.2 Static Examples: Nonlinear Elastic Problem

- a) ntonlin'ear ma~terial problem

In much the same way as the Newton-Lanczos method [4]. the PCG algo-

rithm was implemented within a Newton loop. The resulting algorithm possessed

all the properties of the Newton-Lanczos algorithm with the exception that it is

- restricted to positive definite matrices. Simplicity of programing various altera-

tions was the motivating factor in restricting attention to the PCG algorithm.

Our primary objective is to compare the PCG algorithm with Newton and

* .'"modified Newton strategies. For this comparison we use the 132 degree-of-

freedom truss building described above, but modified to have the same cross-

section for all the members (A = 20). Nonlinearity is introduced by a simple

yield model in the constitutive equation.

A single load is applied at the top with sufficient magnitude to produce a

nonlinear maximum displacement of about twice the maximum elastic one. Fig-

ure 6 shows the mesh, the deformed structure and the constitutive equation

adopted. In Table II, we indicate the relative computational cost comparisons

for different methods. We modified all the algorithms mentioned above to

include a line search. This was initially expected to reduce the final cost of the

algorithms; in fact, for this problem the three methods were more expensive

when a line search was included.

-... Looking at the results in Table I1, it is interesting to note that the PCG algo-

rithm required only one more nonlinear step than the Newton method. Also, due

to the fact that only the nonzero terms of the stiffness matrix are stored, the

-.. cost for one matrix-vector operation in the PCG algorithm is smaller than for

the other methods. For this example the number of terms in the matrix stored

in profile form is 1654. however the PCG algorithm requires only 512 nonzero

terms. Therefore the cost of one matrix-vector operation is about a third of a

a-%-

o. ,

- .a°F: o-. .
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profile multiply. More important is the reduction in the over all storage

demand. For this example the storage is reduced to 31%. of the amount required

for a profile stored solution.

No. of No. of No. of No. of
Method iter. LU function matrix-vec.

factor. evaluations operations

Newton 6 6 7 6

Mod. Newton 215 1 216 215

PCG 7 0 B 186

Newton + LS 6 6 7 6

Mod. Newton + LS 111 1 112 111

PCG + LS 7 0 8 176

Table 11. Cost Comparisons for different Nonlinear Methods (Truss Example).

The average number of PCG iterations was 27. for a preconditioning param-

eter ri = 1.5. This compares with 37 PCG iterations for a linear problem with

much the same structure (see section 0.1a). A lower tolerance for PCG algo-

rithm is used in the earlier stages of the Newton loop which accounts for the

lower average number of iterations (see [4] for more details).

In this test the total cost for the PCG algorithm was twice the Newton cost.

However, this ratio is expected to drop well below 1.0 for three-dimensional

structures where the cost of a factorization is large compared to the matrix-

vector operation. Moreover, as noted previosly we require substantially less

storage space.

b) jlnits Leforvnatton problem

In figure 7. we show a plane strain rubber block subjected to large deforma-

tion. We employ a 4-node element and a Mooney-Rivlin material as described in
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[7]. The rubber block is discretized by 144 elements (12 x 12 mesh) with 286

degrees of freedom. The stiffness matrix stored in profile form requires 7618

storage spaces of which only 1799 are nonzero; corresponding to a 76% saving in

storage when using PCG.

The rubber block is stretched to 50% of its original length in load 5 steps.

The cost comparison of both the PCG and Newton algorithms is summarized in

the following table.

displ. Nonlinear PCG Newton

u No. of Averg. No. No. of
Iterat. Matrix op. Iter.

0.1 6 43 7

0.2 6 45 6

0.3 7 47 6

0.4 6 47 5

0.5 6 44 5

Table Ill. Comparision of PCG Algorithm and Newton Method (Rubber Block).

Again. both PCG and Newton require almost the same number of nonlinear

steps to converge. What is more interesting is that the number of PCG iterations

is quite constant, even for the highly nonlinear range. When comparing this test

with the previous 132 degree-of-freedom building example, we notice that the

number of iterations in the PCG algorithm, as expected, does not increase as

fast as the number of degree-of-freedom.

5.3 Dynamic example

In this example, we wish to indicate the effectiveness of solving approxi-

mately, a linear elastic dynamic problem using the PCG algorithm. This is done

for a series of time steps and tolerances. Since the PCG algorithm involves no

N
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factorization steps it can solve nonlinear dynamic problems with the same

amount of effort as for the linear case. However, in this study we select a linear

problem. To limit the computer costs, we selected a structure having 20 4-node

plane stress elements defined in section S. 1(b). The dynamic problem consists of

releasing the structure from an initially deformed configuration and letting it

vibrate freely. The mesh, material properties and initial state are given in figure

B. The time steps chosen are At 0.5. 0.2. 0.1. 0.05 and 0.025 seconds, which

correspond to 1/ 120 < At/ T < 1/ 6, where T = 3.0 sec. is the fundamental

period of vibration of the structure. For comparison, the critical time step for

an explicit analysis would be At,, = 0.01 sec., for a bulk wave velocity of 911/s.

In order to see the effect of solving approximately the set of equations, we use

the three following tolerances: tot = 10-4. 10-2 and 10-1. In figure 9. we plot the

1,-displacement of node 1 for the time step At = 0.1 for the three tolerances; in

figure 9. we show the corresponding relative error e, i.e.

6N (t) -1r(

where 6 N~ is the displacement obtained using the Newmark method, 6,, is the

corresponding results obtained using PCG and 60 = 0.172 is the initial applied

-"-Cldisplacement. The results clearly show that the tolerance 10-1 is too large and

leads to inaccurate results. The error using a tolerance of 101 is about 1%.. while

there is no visible error for tot = 10-4 (less than 0.01 percent). When we reduce

the time step to At = 0.05 (half the preceding), the results improve substan-

tially: while we see no difference between tolerances 10-4 and 10-2, there is only

1% error when using 10-1 (fig. 10). For smaller time steps, no differences are

seen in the first five digits.

Finally. figure 11 shows the average number of iterations as a function of

9, T/ At. The reduction of the number of iterations as At tends to zero is quite

interesting: for a tolerance of 10, this number drops from 30 to 4 iterations



when At/I T changes from 1/6 to 1/120. This reduction is totally due to the con-

vergence of the preconditioning matrix to the dynamic stiffness matrix, A Such

a small time step is not unusual in many applications, e.g. impact problems.

%1



7. Closure

In this report we have described our initial efforts to construct a solution

method for the algebraic equations arising from finite element solution of linear

and non-linear problems. Both static and dynamic problems are considered.

For nonlinear problems. Newton's method is used to generate a sequence of

linear problems. A preconditioned conjugate gradient method is used to solve

K the linear set of equations. A metbod for constructing an effective precondition-

ing matrix in terms of an additive decomposition of the coefficient matrix is

introduced separately for the static and dynamic cases. Several example prob-

lems are solved demonstrating the features of the proposed method.

In order to further evaluate the method additional work is required. In par-

ticular we recommend that the conjugate gradient part of the algorithm be

replaced by the Lanezos method as described in [4.6]. This will permit con-

sideration of indefinite problems, such as those resulting from use of Lagrange

-~multiplier methods (e.g..contact problems, etc.). In addition it is essential to

test the method on larger problems, preferably some three-dimensional prob-

lems where sparsely populated coefficient matrices with rather large mean

column heights occur. Further analyses for significant non-linear problems

4. .14.,should also be performed. Finally, some efforts to adaptively compute an

optimal value for w. should be explored.
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