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1. Introduction

The finite element method of discretization is used to reduce many complex
continuum problems to discrete systems. Although this reduction is the most
important step in the overall analysis of a structure, solving the discrete prob-
lem is far from trivial. In general, the reduced system is nonlinear and an itera-
tive method must be employed to arrive at the solution. Most solution methods
are based on some form of Newton's method in which the nonlinear problem is
linearized using an initial approximation to arrive at a linear set of simultaneous
equations. The solution of the set of linear equations leads to a correction of the
initial approximation. When solving the linear equations, one should not loose

sight of the primary objective: solving the nonlinear problem.

Iterative methods, such as the conjugate gradient or Lanczos method, are
among the many methods that may be used to solve systems of linear equations.
The advantage of these methods, when used as the inner loop of the Newton

iteration, is twofold.

(i) The linear equation may be solved to any desired level of accuracy as

governed by the Newton iteration.

(ii) A considerable reduction in storage can be achieved when no triangular fac-

torization need be performed.

In [4] a method was developed, based on the preconditioned Lanczos
method, to realize some of the advantages of iterative methods. In this previous
study, the triangular factors of the initial tangent matrix were used to form a
preconditioning matrix for the subsequent solution steps. In the present we
have eliminated factorizations by employing other preconditioners and further,

have reduced the storage needs of the method.
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2. A Preconditioned Conjugate Gradient Method

An essential step in nonlinear analysis of structures is solving a linear sys-
tem of algebraic equations. The preconditioned conjugate gradient method
(hereafter called PCG) is one of the many procedures for solving

r=b~-Ax=0 (2.1)
where A is an nxn symmetric positive definite matrix (which is sparsely popu-
lated) and b is the right-hand side vector. In the case of static analysis, A is the
current tangent matrix and in the case of dynamic analysis, A depends on the

mass, damping and stiffness matrices, as well as the time increment.

The initial popularity of the conjugate gradient method was due to a
number of factors. In exact arithmetic the method required a maximum of n
iterations to solve (2.1) which made the method superior to other iterative
methods. In fact conjugate gradient is in the class of semi-iterative methods
which also includes the Lanczos algorithm {8]. The disadvantage of direct
methods is their large storage demands for keeping the factors of A The only
interface between the conjugate gradient method and A is through the product
Av for a given vector v. This is an elegant way of taking advantage of sparsity of
A which has the added advantage that A need not be known explicitly but only a

means of computing the matrix-vector product is required.

The popularity of the conjugate gradient method vanished once it was found
that under certain conditions the method required as many as 5n or 8n steps to
reduce the residual to the desired level. This blemish is accounted for by the

strong influence of round-off error.

The addition of preconditioning eliminated this difficulty. Instead of solving

(2.1) we solve

P lAx =P (2.2)




for some appropriate choice of P. The object then is to choose P such that the
coefficient matrix of (2.2) is well conditioned.

Theoretical considerations suggest that at the end of each iteration of CG

the residual norm is reduced by a factor ______:/f'; : 1

when solving (2.1) where « is
the condition number of A defined by x = ||All |A™!]|. See [1] for more details.
Note that when £ = 1, one iteration is sufficient to solve the equation. This pro-
vides us with a guideline for choosing P. For a well chosen P only a few iterations

reduce the residual norm to the desired level. Here we give an outline for the

preconditioned conjugate algorithm:

Given an initial guess x,, a positive definite preconditioning matrix P, the matrix
A and the right hand side b:
(1) Setpp=rp=b~Axg
(2) Solve Pdy = ry, for dg
(3) fork =0, 1.2, - - until convergence do
(2) ay = (re.da)/ (P .Apy)
(®) Xpo1 =% +oupr
(¢) nyi = n—aAp,
(d) Solve Pdy,1 = fasy
(e) Ao = (rasylasy)/ (ra.de)
() Pre1=das1*far

The operation (v,u) denotes the inner product v'u The algorithm gen-

erates a sequence of approximations to the solution x with a corresponding resi-

2

s

" dual vector r,. The termination criterion can be chosen based on these quanti-
! ties. In addition to storage demands for A and P the algorithm requires storage
;EE for 4 vectors. The total number of operation per iteration is NZA + NZP + 5N,
ES where NZA and NZM are the number of operations for forming Au and P~!v for a
g given mand v.
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3. Splitting Methods
Here we turn to a topic which at first sight may seem unrelated to the solu-
tion of nonlinear algebraic equations. Consider the sys.tem of first order
differential equations
x=f(xt) (3.1)
where x is an n-dimensional vector, the superposed dot. ( ~ ), denotes
differentiation with respect to time and f is a function of the unknown vector x

and ¢.
We consider a special form of f which can be written as a sum of its subcom-

ponents {;.

8
t= )1, (3.2)
t=1
Under these conditions the original problem can be thought &s a sum of s sub-
problems
x=fi(xt) i=1..s (3.3)
In the case of finite element discretization of the spatial domain the sum in (3.2)

ranges over the elements. In other cases the splitting may be formed by other

means, one of which is demonstrated in the following section.

A consistent algorithm for the solution of (3.1), based on the notion of a
splitting technique [3], can now be constructed as a product of algorithms for
the sub-problems. In other words, write the algorithm for (3.3) as

Zne = SM)[xm] (3.4)
where S is an operator denoting the algorithm and the index m ranges over
the increment in time, A. Then the algorithm for (3.1) can be written as

Xmey = SP) [z ] (3.5)
where

sM) = T] sW™ (3.8)

-
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One of the disadvantages of the splitting method is its low accuracy. The
best that these methods can achieve is second order accuracy. That is the trun-
cation error is of the order of A9 at best. In the sequel we will use the above pro-
cedure to construct a preconditioning matrix for the conjugate gradi¢nt algo-
rithm described in section 2. The inherent inaccuracy of the splitting method
poses no problem since the algorithm is used only as a preconditioner and
therefore one can obtain very high accuracies through the conjugate gradient

iteration.
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4. Solution of Static Problems

Consider the system of linear first order differential equations

TX+Ax=Db (4.1)

where 7 is a given parameter. Formally the solution to equation (4.1) is

x(t) = e ¥/7(x, - A'b) + A7'D (4.2)
where x; = x(0), is an initial condition. We observe from (4.2) thet as ¢ ends to
infinity x(¢) converges to the solution of (2.1) for T > 0. Consiquently (4.1) may
be utilised to solve the linear equations (2.1). Indeed this approach has been
suggested previously (e.g.. see [5]). In general the exponential of a large matrix
cannot be easily computed and a numerical solution of (4.1) must be used. In
order to achieve a soluion of (2.1) a numerical solution to (4.1) must be assymp-
totically correct for infinite Af, or a very large number of time steps must be
used to compute the solution at infinite time. Here we are not concerned with
constructing accurate solution to (4.1) rather we consider the method as a
means of constructing a suitable preconditioning matrix for the conjugate gra-

dient algorithm described above.

Splitting methods may be applied to any problem of the form

x=Bx (4.3)
where B is an additive operator defined by

B= ¥ B (4.4)
t=1
such that the equations
x=Bx i=1..5 (4.5)

are significantly easier to solve than the original equations. The time stepping
algorithm for the global problem is then the product of all the time stepping

algorithms for the subproblems with a fractional time step A/ s [3].

The coeflicient matrix A in (2.1) may be written as the sum of its diagonal

matrix, D, a strictly lower triangular matrix, L. and a srictly upper triangular

........

. : : ._-,.f"'\"- >
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matrix such that

A=%D+ L)+ (%D + L) (4.8)
The associated subproblems, & = —(%D + L)x and k¥ = —(%D + LT )x can be solved
easily. Applying a backward difference method with a time step A/ 2 to each of

the subproblems, we arrive at

[ o, IO o
x,,”,-ll+-4—7-(D+ZLJ ll+;—1_-(D+2L )J E;'b+‘“ (4.7)
where x,, is an approximation to x(mh). For initial condition x5 = 0 we get an

approximation to x(h)

-1 -1
B {:—T{l + 4—’:-(D + 21.)] {I + %(D + 2L7 )] }b (4.8)

which is compared to the exact solution

x(h) = I~ e %7 a1 p (4.9)
Comparing equations (4.8) and (4.9) suggests that the coeflicient matrix in (4.8)

may be a good approximation to A”! for large h, and may therefore be an

eflective preconditioning matrix. The scalar factor 2—':_- may be ignored for

preconditioning purposes.
When using this in conjunction with conjugate gradient algorithm of section
2 the preconditioning matrix becomes

P=(1+w2D+ oL)(1+ w/2D + oLT) (4.10)
where w = h/ 27 is now a free parameter.

To simplify the choice of © we scale the stiffness matrix A such that diagonal
of Ais unity. The resulting matrix is A= D*AD¥. The system of equations (2.1)

now becomes

i
"
]
o

(4.11)
where 2 = D¥x and b = D ¥*b.

The preconditioned matrix must now be applied to (4.11) resulting in
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P=(+ol)(I+ LT (4.12)
where A=L+LT. It is easy to show that preconditioning (4.11) using P is

equivalent to preconditioning (2.1) with

P=(D+ oL)D"Y(D + L") (4.13)
This can be identified as a member of the class of incomplete Choleski precondi-
tioners [2]. Note that when w = 0, P becomes the diagonal matrix D, resulting in
the simplest form of preconditioning; diagonal scaling. When w =1 then
P=A+ LD 'LT. The error matrix LD"'L” is rank deficient since L has zero diag-
onals. If the norm of D is larger then the norm of L then the norm of the error
m-'rix will be small compared to the norm of A consequently, for most prob-

lems it is expected that the optimum w will be close to unity.
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5. Solution of Dynamic Problems
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We construct a preconditioning matrix for the linear system of equations

arising in a step-by-step algorithm for dynamic analysis of linear and nonlinear

structures. In particular, we consider the Newmark algorithm and the precondi-
tioning matrix follows from the splitting method of section 3, in much the same

way as for the static problem.

L
i St SO Dt e - TR B o el

Consider the linear equations of motion

Mii + Ku=1t (5.1) l

where M is the diagonal mass matrix, K is the stiflness matrix, f is the external

load vector and u is the response of the structure. For simplicity, we ignore the

damping eflects, but all the following results may be extended easily to the l
damped case. The linear system of equations arising at every time step of the
Newmark method is 1
]
Ax=Db (5.2) .
where
A=K+ ——N (5.3)
pat®
and
1 ]
b=1f,a + mi‘u[llt + At + (% - B)Atte ] (5.4) ]

Here v and a are velocity and acceleration vectors, respectively, At is the

specified time increment, t is the time and x is the increment of displacement

IR VWS

response. The Newmark parameters are chosen such that g = (§ + 7)%/ 4 with i

v 2 %. The discretization in time are

Woaar = U+ ALw+ +HALE[(1-28)a; + 208 44 )] (5.5) z
Veiea =W +AL(1 - y)ag + YAtag 4 (5.8) J

The object is to solve (5.2) without forming the factors of A

A splitting method similar to the one used for equation (4.1) can now be

........
......
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Zad applied to equation (5.1). The matrix resulting from the splitting algorithm can

3 then be used as a preconditioner for (5.2). Consider

- 1 P 1
P=(L+ ;At_zu)" (L" + ﬁth-l) (5.7)

where K = L + LT. Multiplying out the terms in (5.7), we obtain

_ 1 -
P= p—M-.;[ﬂAt"'l.l ILT + L+ LT+

= ﬁz—[pm*m-‘v + A

ﬁlt—g-[n(tstz) + A] (5.8)

where B(At?) = 8At2LM'L7.

1
pat? u]

The preconditioned conjugate gradient algorithm of section 2 is invariant
under the scaling of the preconditioning matrix. Therefore, (5.8) shows that P
will tend quadratically to the dynamic stiffness matrix A as the time step dimin-
ishes. In other words, E tends to the zero matrix quadratically in Af. We see
later that this characteristic results in an eflective preconditioning and the solu-
tion of equation (5.2) is obtained in as few as 2 or 3 iterations of the precondi-

tioned conjugate gradient algorithm with moderately small At.
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6. Numerical Examples

In the following, we present a few numerical examples to illustrate some of
the characteristics of the proposed preconditioning matrices for the PCG algo-
rithm. This algorithm is implemented in FEAP, a Finite Element Analysis Pro-
gram (see [8], chapter 24 for more details). All the numerical tests were carried
out on a VAX 11/780 at the University of California, Berkeley, using double preci-

sion computation.

We first present the results to some static analyses, both linear and non-
linear. In these examples we choose a stopping criterion based on the residual
vector and the algorithm is terminated as soon as the norm of this vector is
reduced by a factor smaller than a specified tolerance. In our calculations we
set the tolerance to 1078 Next we demonstrate our algorithm on a few dynamic
problems. The termination criterion is similar to the static case with a range of

different tolerances to demonstrate the eflectiveness of the algorithm.
8.1 Static Examples: Linear elastic

a) 132 degree-of-freedom bdbuilding

The object of the first problem is to determine the influence of the precon-

lu’

[t

i{.l ‘s .lf‘l '-'

ditioning parameter, @, in eq. (4.13). The total number of PCG iterations

required to achieve convergence, varies considerably with w. To illustrate this

AR rE

:-:':,‘ dependence, we chose the example model shown in figure 1 which is a 132

E"_‘.:. degrees of freedom, multistory building, discretized by 176 2-node truss ele-

%i ments each with the same Young's modulus (30x10%). The cross-sectional area
of the girders, columns and diagonals are 20, 40 and 1 respectively. A single load
at the top is applied, as shown in figure 7.

'_.‘_,.’ In figure 2, we indicate the number of PCG iterations needed to converge as

.,E a function of the preconditioning parameter. The shape of this curve is charac-

:‘: teristic of the proposed PCG algorithm and consists of three zones:

oA

A p S p S gt e

C Y



1) Small w: The preconditioning matrix approaches the diagonal matrix D. In

this case, the total number of iterations is less than that for disgonal

preconditioning.

2) Optimum w: With this value the algorithm takes the least number of itera-
tions to obtain the solution. Note that the curve is quite flat around wp
and therefore the total number of PCG steps is insensitive to small changes
in the value of 0. Further, as predicted before, the optimum w is close to
unity.

3) large w: In this range the preconditioning matrix approaches LM~ 'LT which
is a singular matrix (diagonals of L are zero). In this example with w > 3.0
the solution may loose accuracy in all significant digits and eventually

floating-point overflow occur.

Figure 3 shows the evolution of the residual norm, | r;|. normalized versus
lroll. at the i-th iteration of the PCG algorithm. The residual at each iterate
exhibits characteristics typical of conjugate gradient method. Namely, residual
norm remains large for a relatively large number of steps before convergence
occurs to the specified tolerance. Part of this behavior is due to the loss of
orthogonality among the conjugate vectors. Poor preconditioning can also con-

tribute to slow convergence.
b) "Cantilever beam" type structures

From the insight we have gained with the preceding example, we now

proceed to answer the following question: How to select the wyy, ?

No easy analytical solution can be obtained to this question; o,y depends
on the spectrum of A which is not known apriori. However an initial estimate of
unity as indicated in section 4 is not an unreasonable choice for . The numeri-

cal test here is to investigate the dependence of the number of iterations on w.

An accurate upper bound to the total number of PCG steps can be obtained if
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the condition number of the preconditioned matrix, P !A, is known. However the
) condition number of P~'A depends on w.
{ The examples we have chosen are summarized in figure 4. Each problem is
;E::f computed with a range of w's to obtain w,,,. Figure 5 shows the number of itera-
: tions as a function of w, for these examples. Notice that all the curves are
-~ rather flat when close to w,p . moreover, that wey, is close to 1.0.
SN
,.: The following table (1) gives the number of iterations for both w, and
{ w=1.0.
::E No. of No. of lter. for . .
:_: D.O.F. | wept ﬁ -ﬁ,g-
Y N Wopt Ky | w=1.0k;
* 30 1.0 14 14 1.00 | 0.47
;.:'\- 40 1.0 23 23 1.00 | 0.57
. ] 80 1.0-1.3 20 20 1.00 | 0.33
., 132 | 1.3-1.4 37 45 1.22 | 0.28
AN
160 | 1.25 33 35 1.08 | 0.21
_.' 240 1.0 199 ‘199 1.00 | 0.83
& 300 |12-15] 46 50 | 1.09 | 0.15
-
= Table 1. Comparison of the Number of PCG Iterations for Various w's.
o
" The last column of Table | shows the ratio of total number of iterations over
?' the number of degree-of-freedom. As expected this ratio remains below unity.
;? The next to last column shows the loss in optimality when using w equal to unity.
:_:3 Except for the 132 degree-of-freedom system little loss in computational effort
": results from using w equal to one.
-

«
i}
-

~~~~~
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6.2 Static Examples: Nonlinear Elastic Problem
a) nonlinear material problem

In much the same way as the Newton-Lanczos method [4], the PCG algo-
rithm was implemented within a Newton loop. The resulting algorithm possessed
all the properties of the Newton-Lanczos algorithm with the exception that it is
restricted to positive definite matrices. Simplicity of programing various altera-
tions was the motivating factor in restricting attention to the PCG algorithm.
Our primary objective is to compare the PCG algorithm with Newton and
modified Newton strategies. For this comparison we use the 132 degree-of-
freedom truss building described above, but modified to have the same cross-
section for all the members (4 = 20). Nonlinearity is introduced by a simple

yield model in the constitutive equation.

A single load is applied at the top with sufficient magnitude to produce a
nonlinear maximum displacement of about twice the maximum elastic one. Fig-
ure B8 shows the mesh, the deformed structure and the constitutive equation
adopted. In Table I, we indicate the relative computational cost comparisons
for different methods. We modified all the aigorithms mentioned above to
include a line search. This was initially expected to reduce the final cost of the
algorithms; in fact, for this problem the three methods were more expensive

when a line search was included.

Looking at the results in Table ]I, it is interesting to note that the PCG algo-

rithm required only one more nonlinear step than the Newton methud. Also, due

to the fact that only the nonzero terms of the stiffness matrix are stored, the

cost for one matrix-vector operation in the PCG algorithm is smaller than for

‘.f:'-'
A
N
X
'.

NN

S

:-:.:_. the other methods. For this example the number of terms in the matrix stored
o

!!f} in proflie form is 1854, however the PCG algorithm requires only 512 nonzeru
'..- «®

:-. terms. Therefore the cost of one matrix-vector operation is about a third of a
s

i

] '.“-. P _'..r “» . -~ - --. - .‘_ e _~ _‘ -
RS GO U A T U CA LA SPE R Rl RIS LR ST S L
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o
y profile multiply. More important is the reduction in the over all storage
[ demand. For this example the storage is reduced to 31% of the amount required
-

b for a profile stored solution.

No. of | No. of No. of No. of
o Method iter. LU function matrix-vec. |
NS factor. | evaluations | operations |
Newton 6 8 7 8

i Mod. Newton 215 1 216 215
_ |

. f PCG 7 0 8 186
-f:: Newton + LS 6 8 7 6
ol Mod. Newton + LS | 111 1 112 111
& PCGC + LS 7 0 8 176
- Table 1I. Cost Comparisons for different Nonlinear Methods (Truss Example).

{
.

:: The average number of PCG iterations was 27, for a preconditioning param-
>,

: - eter w = 1.5, This compares with 37 PCG iterations for a linear problem with
"

N much the same structure (see section B.1a). A lower tolerance for PCG algo-
::J rithm is used in the earlier stages of the Newton loop which accounts for the
O}
wd . . .

i lower average number of iterations (see [4] for more details).

!

| In this test the total cost for the PCG algorithm was twice the Newton cost.
e,

t_-;:f However, this ratio is expected to drop well below 1.0 for three-dimensional
V.

).

" structures where the cost of a factorization is large compared to the matrix-
B'! vector operation. Moreover, as noted previosly we require substantially less
i)

:" storage space.

S

:tj b) finite deformation problem

In figure 7, we show a plane strain rubber block subjected to large deforma-

o tion. We employ a 4-node element and a Mooney-Rivlin material as described in
:

e L e A e e e ~ et SO .
»_- .P .P L ,.p . .L‘ ' ’_. '_c '_‘\_._ - A.}A TSR TR YOARL YOS ‘;\.\.\._\iﬁ-:\-_' ..:' . .. ‘."-- - " ‘-' ‘\ 'S, WP IR S T
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:-._ [7]. The rubber block is discretized by 144 elements (12 x 12 mesh) with 288
E‘.}. degrees of freedom. The stiflness matrix stored in profile form requires 7618

\ storage spaces of which only 1789 are nonzero; corresponding to a 78% saving in

" storage when using PCG.

\ The rubber block is stretched to 50% of its original length in load 5 steps.
- The cost comparison of both the PCG and Newton algorithms is summarized in

: the following table.

. displ. Nonlinear PCG Newton

:,::: u No. of | Averg. No. | No. of

:' Iterat. | Matrix op. Iter.

. 0.1 6 43 7

“ 0.2 6 45 8

0.3 7 47 8

"“ 0.4 8 47 5

- 0.5 8 a4 5

o

_:j? Table 11l. Comparision of PCG Algorithm and Newton Method (Rubber Block).
:-_ Again, both PCG and Newton require almost the same number of nonlinear

E steps to converge. What is more interesting is that the number of PCG iterations
oY is quite constant, even for the highly nonlinear range. When comparing this test

_..’ with the previous 132 degree-of-freedom building example, we notice that the

:2 number of iterations in the PCG algorithm, as expected, does not increase as
-. fast as the number of degree-of-freedom.

6.3 Dynamic example

, In this example, we wish to indicate the effectiveness of solving approxi-
s mately, a linear elastic dynamic problem using the PCG algorithm. This is done

\i for a series of time steps and tolerances. Since the PCG algorithm involves no

o

T »

i -
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factorization steps it can solve nonlinear dynamic problems with the same
amount of effort as for the linear case. However, in this study we select a linear
problem. To limit the computer costs, we selected a structure having 20 4-node
plane stress elements deflned in section 8.1(b). The dynamic problem consists of
releasing the structure from an initially deformed configuration and letting it
vibrate freely. The mesh, material properties and initial state are given in figure
8. The time steps chosen are At = 0.5, 0.2, 0.1, 0.05 and 0.025 seconds, which
correspond to 1/120< At/ T < 1/6, where T = 3.0 sec. is the fundamental
period of vibration of the structure. For comparison, the critical time step for
an explicit analysis would be At = 0.01 sec., for a bulk wave velocity of 911/s.
In order to see the effect of solving approximately the set of equations, we use
the three following tolerances: tol = 1074, 1072 and 10~!. In figure 9, we plot the
y-displacement of node 1 for the time step A¢ = 0.1 for the three tolerances; in

figure 9, we show the corresponding relative error e, i.e.

- 6N(t) - Jpc'(t)
e =
6o

where 4y is the displacement obtained using the Newmark method, 6y, is the

corresponding results obtained using PCG and 6y = 0.172 is the initial applied
displacement. The results clearly show that the tolerance 107! is tno large and
leads to inaccurate results. The error using a tolerance of 107® is about 1%, while
there is no visible error for tol = 107* (less than 0.01 percent). When we reduce
the time step to At = 0.05 (half the preceding). the results improve substan-
tially: while we see no difference between tolerances 10™* and 1072, there is only
1% error when using 10~! (fig. 10). For smaller time steps, no differences are

seen in the first five digits.

Finally, figure 11 shows the average number of iterations as a function of
T/ At. The reduction of the number of iterations as At tends to zero is quite

interesting: for a tolerance of 1072, this number drops from 30 to 4 iterations
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when At/ T changes from 1/6 to 1/120. This reduction is totally due to the con-
vergence of the preconditioning matrix to the dynamic stiflness matrix, A Such

a small time step is not unusual in many applications, e.g. impact problems.
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7. Closure

In this report we have described our initial eflorts to construct a solution
method for the algebraic equations arising from finite element solution of linear
and non-linear problems. Both static and dynamic problems are considered.
For nonlinear problems, Newton's method is used to generate a sequence of
linear problems. A preconditioned conjugate gradient method is used to solve
the linear set of equations. A method for constructing an eflective precondition-
ing matrix in terms of an additive decomposition of the coeflicient matrix is
introduced separately for the static and dynamic cases. Several example prob-

lems are solved demonstrating the features of the proposed method.

In order to further evaluate the method additional work is required. In par-
ticular we recommend that the conjugate gradient part of the algorithm be
replaced by the Lanczos method as described in [4,8]. This will permit con-
sideration of indefinite problems, such as those resulting from use of Lagrange
multiplier methods (e.g.,contact problems, etc.). In addition it is essential to
test the method on larger problems, preferably some three-dimensional prob-
lems where sparsely populated coeflicient miatrices with rather large mean
column heights occur. Further analyses for significant non-linear problems
should also be performed. Finally, some efforts to adaptively compute an

optimal value for w should be explored.
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Figure 4. Summary of the Set of Examples Chosen for the Static Tests.
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