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r ABSTRACT

Multiple Objective Optimization Theory (MOOT) techniques are receiving

increasing attention due to their ability to incorporate salient non-

commensurate and conflicting objectives of an analysis or design situation

into the choice making process. A common implementation of MOOT is by way of

a vector optimization process. Vector Optimization is used for generating

optimum solutions for alternatives which extremize the components of a vector

of objective functions or performance indices. The weighting and constraint

techniques are presented as ways of practically implementing an optimization

process for a vector of cost functions to generate a Pareto optimal or non-

dominated solution set. Computer programs are discussed which accomplish the

vector optimization process for the parameter optimization class of linear

problems (MOOTLP) and non-linear problems (PROCES). A bibliographic summary of

recent vector optimization efforts is included.
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LIST OF SYMBOLS

ai  = ith control/decision variable
a - Vector of control variables

CP = Central. processor

LP = Linear program

MOLP - Multiple objective linear program
MOOT - Multiple objective optimization techniques
MOOTLP = Computer program for MOLP formulations

NDSS - Non-dominated solution set
NNDS - Non-dominated solution set (computer produced)

PI = Performance indices
PROCES - Computer program for non-linear vector optimization

SUMT - Sequential unconstrained minimization technique (numerical

optimization subroutine)

VOP - Vector optimization problem

Wi  = ith weighting coefficient

xi  - ith state variable
x = Vector of state variables

Zi = ith performance index
Z - Vector of performance indices
ZX3LP = IMSL linear programming computer program
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I. INTRODUCTION

The ever increasing complexity of decision situations coupled with the

requirement to cope with the political, economic, social and technical aspects

of these decision situations has resulted in considerable interest being given

to implementing new approaches to problem resolution. One such approach which

directly considers the importance society places on incorporating the non-

commensurate and conflicting objectives of a situation into the choice making

process is multiple objective optimization theory (MOOT). Fast and economical

computing capability has made the application of MOOT techniques to real world

problems, through vector optimization realizablelll2j.

In MOOT applications, the design or analysis tasks are broken into two

parts which allowed for increased efficiency. The modeling and generation of

optimal solutions is separated from the preference laden solution selection

process. Once a set of generally non-commnsurate and competing performance

indices (PI) like cost, operational performance, and reliability are

established, the engineer or analyst can proceed with the modeling task. This

modeling can entail the combination of many subsystem mdels or submodels

which must all be tied back to the PI through a set of model descriptors or

state variables. A set of control or decision variables allows for the needed

exogenous input. These submodels are generally combined through a computer

into an overall system model which is then optimized numerically with respect

to the vector of established PI. The solutions generated are "optimal" with

respect to the vector of PI. Because no combination of the PI into a scalar

needed to be accomplished up to this point, the model and resulting set of



solutions need be accomplished only once, and it is valid for any weighted

combination of the PI. For large scale projects, the modeling is an ambitious

task, but no more demanding than the traditional engineering approach of

scalar optimization. The output of this modeling and vector optimization

process is a set of efficient or non-dominated solutions CNDSS). Each

solution is defined by its set of state variables, and accompanied by a set of

performance index scores. These non-dominated solutions show explicitly the

trade-offs among the performance indices for various solution systems as one

moves along the efficient solution frontier. Additional sensitivity analysis

is generally provided by the optimization software for each efficient

solution.

The second major part of the design of analysis process consisting of

identifying one solution from the efficient set for development is yet to be

accomplished. This identification process results from rank ordering the

efficient designs according to a scalar figure of merit which relies on the

decision maker's preferences. Each solution in the NDSS is not identifiable

as better in its vector form until some sort of preference scheme is applied

to select the best solution for the situation. The decision maker decides how

important each performance trait is for his situation and then weighs each

performance index according to its importance. In addition, the weighting may

be increased for those performance values in which there is more confidence or

which may be more pertinent to the given situation. The performance indices

and weights are combined in a functional form appropriate for the situation

[12,171 to allow the computation of a preference score for each solution.

The score obtained is a number indicating goodness when compared to other
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solutions. The NDSS can be rank ordered by comparing the scores for each

member. Thus, the NDSS contains candidate solutions of the given problem. A

modification of either the performance indices or the constraints would change

the NDSS. However, a modification of the weighting system may change the rank

ordering but will not change the members of the NDSS. Non-technical issues,

as manifested in the analyst's performance weightings, will determine which

NDSS member is the most appropriate for the situation.

Multiple objective optimization techniques have been used successfully in

other engineering problems such as missile design [7,9,141, defining a quick

response spacecraft [22], aircraft subsystem design [23], Finite Element

Modeling [3], and survivability analysis methodology generation [1,2,41.

Section II delineates the vector optimization process along with an

example application. Various implementation schemes for a vector optimizationI process are presented in Section III, followed by discussion of developed

software tools which accomplish the vector optimization process for linear

systems (MOOTLP) and non-linear systems (PROCES). Section VI presents and

example of a MOOT application to missile system design.
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II. VECTOR OPTIMIZATION CONCEPTS

Multiple objective optimization theory can be used for generating optimum

solutions for the alternative actions which extremize the components of a

vector of performance indices. This vector of performance indices or

objective functions is optimized with respect to each component of the vector

performance index. Many authors [5,8,12,18,241 suggest ways of implementing

an optimization process for a vector of objective functions for the following

formulation

maximize Z(x) =

maximize [ZI(x), Z2 (x) ,,,, Z (x)] (1)

subject to gj(x) < 0 ; j = 1, 2, ,,, m (2)

Xk >O ; k = , 2, ,, n (3)

where Z(x) is a p-dimensional vector of objective functions; i.e., there are p

objectives each denoted by Zi, x is an n dimensional vector of decision

variables, and gj represents the jth constraint on the problem. Since the

constraints are of both the equality and inequality type, the number of

constraints, m, can be greater than or equal to n without causing the

formulation to become overspecified or making the optimization process

unnecessary (one unique solution). That is, if a represents the number of

equality constraints and q the number of inequality constraints, then m

q + a and we do not violate the appropriateness of the optimization process if

a < n and the q inequality constraints are not inconsistent. There is no

mathematically based generic definition of "vector optimization" so another
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concept of optimality must be employed to identify the "best" or "efficient"

set of solutions produced by decision variable values. This concept is

generally called Pareto optimality or non-dominance. For the maximization

case, a non-dominated solution is signified by the following: for a feasible

solution x, there exists no other feasible solution x' such that

Z (x') > Zr x) for some r = 1, 2, ,,, p (4)

and 2.(x,) > ZY(x) for all 9 t r (5)

That is, a specific solution alternative is a non-dominated solution (or

Pareto optimal solution) if it is not dominated by another solution

alternative. Policy or alternative act Au dominates policy or alternative Av

if the p vector of performance objectives or attributes for act Au, which we

will call Zu , is such that each component of the vector, denoted Zu for rr

1,2,,,p, is greater than or equal to (with at least one component strictly

greater than) the corresponding component of the performance objective vector

vfor act AV which we denote Z rr

This concept of Pareto optimality constitutes a process which includes the

optimization of vector objective elements combined with a check for dominance

to generate a non-dominated solution set (NDSS). There are generally many

non-dominated solutions when the objectives are non-commensurate and

conflicting in nature. The concept of a NDSS is in some sense analogous to

alternate optimal solutions for a scalar objective function. The NDSS forms

an "efficient frontier" which represents the best that the system being

optimized can do with respect to the vector of performance indices. A
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specific NDSS member would then be picked based on some implicit or explicit

delineation of a weighting scheme among the individual performance elements.

As an illustration of non-domination, consider the two dimensional case with

the following solution vectors:

Z1 (x) = [Z (xi) 1, Z2(x2) 51, (6)

2i 2 2 2 2 6 7

Z(x) = [Zl(x = 3, Z2(x) = 47

1'1' 2 2(8z x) = [z 3 (x3 , z. 3 (x3) 4. (8
2 1 2 1

As can be seen, Z 2(x) dominates Z (x), therefore Z (x) is eliminated from the

NDSS. It can then be determined that Z 2(x) and Z 3(x) are members of the NDSS.

Various authors describe MOOT formulations for popular classes of problems

such as deterministic-time invariant, deterministic-time variant, and

stochastic-time invariant [5,111.
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III. THE CONSTRAINT AND WEIGHTING TECHNIQUES

An implementation problem occurs when one tries to generate this NDSS

because of the inability to optimize a vector. Success has been achieved

using two techniques to transform the vector of cost functions into a pseudo-

scalar optimization form from where normal optimization methods can be

applied. These two methods which define, in effect, the implementation of

optimization management algorithms for the identification of the NDSS are the

constraint technique and the weighting technique.

The Constraint Technique

The constraint technique [5,18,20,23] is formulated to be compatible with

the method of proper inequalities. The problem is formulated as follows:

Max Zf(x) (9)

subject to g.(x) < 0 ; j 1 1, 2, ,.. m (10)

xk 0 ; k - 1, 2, .. n (I)

L ( Zd < Ud  for all d t f (12)

where Ud is the upper bound and Ld is a lower bound on objective d. Zf is

generally chosen deliberately, and the values of minimum and maximum (Ld,Ud)

for each objective d are estimated from rough calculations, expert opinion, or

a solution to the scalar optimization problem extremizing only Zd.

Implementation is accomplished by setting all Zd's equal to an initial set of

allowable values of Zd(Zd - Zd, where Zd is a constant; i.e., Ld 1 Zd Ud)

and then optimizing to get a value for Zf. This solution is a possible NDSS.

Then the values of Zd are changed and the optimization process iterated to

obtain another value for Zf. This latest set is checked for non-dominance

with the first set. This process is continued until all allowable values of Z
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have been used for all objectives d. The NDSS is then presented as the

desired output. In summary then, the implementation of the constraint

technique converts the vector optimization problem to a sequence of scalar

optimization problems shown below

Max Zf(x) (13)

subject to g.(x) < 0 At (14)

xk 2 V k (15)

Z = Z (16)
d d d * f

where the formulation is solved repeatedly for various values of Zr = Zr for

each of the r objective elements until the Lagrange multiplier space has been

explored for a11 effizient solutions which are non-dominated.

The Weighting Technique

The weighting technique [5,24] calls for the following formulation

p
Max J - Max ) w Z (17)

r1l

subject to gj(x) < 0 ; j = 1, 2, .. m (18)

Xk > 0 ;k 1, 2 . n (19)

where wr is a scalar weighting coefficient wr > 0 for some r = 1, 2, ,,, p and

p
wk > 0 for all X * r. A convenient convention is to specify wr = 1. Now

r=l
J is a scalar function of the objective functions. Implementation is

accomplished by varying the parameters wr over their allowable range (again

rough calculations, expert opinion, or scalar optimization for each Zr can

give ranges for wr's) and optimizing J for each variation. The resulting

values of the objectives for each iteration are checked for membership in the

NDSS. As with the constraint method, the NDSS is the desired output.

8!
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Both the constraint and weighting methods are recognized mathematically

for their accuracy in formation of the actual NDSS compared to other

techniques which only roughly approximate the NDSS [81 or which require the

decision maker to interact periodically during the actual optimization process

[5,6,11,15,17]. An obvious advantage of the constraint and weighting

techniques is that they can form the actual NDSS without requiring the

elicitation of preferences or the interpersonal comparison of these

preferences.

Computational considerations involved when one implements either the

constraint or weighting technique are discuss in the literature [8,121.
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IV. AUTOMATED VECTOR OPTIMIZATION FOR LINEAR FORMULATIONS

(PROGRAM MOOTLP)

This section describes the software tool MOOTLP which is designed to solve

multiple objective linear programming problems. The main thrust is to explain

the use of this computer programming as it is implemented on the CDC Cyber 175

at Wright-Patterson AFB, Ohio. The program is maintained by the Department of

Operational Sciences, School of Engineering, Air Force Institute of

Technology, Wright-Patterson AFB, Ohio. A user's guide is available from the

Department of Operational Sciences.

The first task in solving a mltiple objective linear programming problem

(MOLP) is to identify your problem as a type suitable for this method. There

are three main features of a MOLP problem. The first Is that there is more

than one objective function to be maximized or minimized. (Actually one can

use this program to solve problems with only one objective function, but at a

loss of some efficiency.) The second is that there are a set of constraints

associated with the objective functions. The third feature is that both the

objective functions and constraints are linear.

Once the problem has been identified as a MOLP, the next step is to find

the solutions. This is a notable difference between MOLP and conventional

scalar linear programming problems. For the MOLP problem, there may be a

whole set of non-dominated solutions but for the linear programming problems

there is generally only one solution. A non-dominated solution set (NNDS) is

* a set of solutions in which each member neither completely dominates nor is

completely dominated by other members of the NNDS.
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The final step in a MOLP problem is to analyze the NNDS solution set to

rank order the members of the NNDS. Along with finding the non-dominated

' 1 solution set, this computer program can also be helpful in this final step.

The computer program, MOOTLP, solves MOLP problems by using the constraint

technique or the weighting technique. The weighting technique uses a linear

combination of the objective functions to form a new objective function and

then iteratively solves the new linear programming problem. There are a

number of possible solutions because there are several linear combinations

used as the new objective function. These solutions are candidates for the

NNDS. The constraint technique uses one objective function as the objective

function of the new problem and the rest of the objective functions are

adjoined as equality constraints with the right hand side equal to one of a

range of values appropriate for the objective functions. Again the solutions

to these problems are candidates for the NNDS. One characteristic of the

weighted technique is that the only solutions found will be corner point

solutions (intersections of constraints). The constraint technique on the

other hand finds solutions all along the frontier defined by the constraints

of the original problem.

The pre-emptive goal programming option in MOOTLP allows desired

attainment levels for each objective function to be specified and these

attainment levels become additional constraints, in effect. If all these

required attainment levels make the problem impossible, then these attainment

levels are sequentially relaxed for the objective functions based on the user

supplied priorities of the objective functions until a feasible solution is

possible. When a feasible solution is possible, the highest priority



objective function is optimized. An alternative goal programming approach

using deviational variables can be easily formulated by adjoining these

deviational variables with the decision variables in the problem and using

either the weighting or constraint technique.

The computer program, MOOTLP, helps analyze the solution set by either

weighting the objective functions and then scoring the members of the NNDS to

form a ranking among the non-dominated set, or by plotting the NNDS (Option

3). The weighting can be either normalized or regular. For regular weights

the score would be computed as follows:

Score -weight(l) x Z + weight(2) x Z2 . . .

and for the normalized the score is computed as follows:

Score = W(O) x Z + W(2) x Z2.

where~n
W(i) = weight(i)/ ) weight(i)

Types of Problems

This computer program may be used to solve multi-objective, linear

programming problems. The current program code will accept a maximum of eight

(8) objective functions, ten (10) decision variables, and thirty (30)

constraints.

Output

The values of the objective functions, decision variables and dual

variables are printed out for each problem. Option 3 (post-process of the

NDSS) supplies rankings and graphical output of the NDSS.

12



Required Problem Format

The actual optimization inside MOOTLP is accomplished by a utility routine

(ZX3LP) in the IMSL library [161. ZX3LP requires all constraints to be less

than or equal to (M) constraints or equality (-) constraints, and ZX3LP also

only maximizes. Therefore the MOLP must be formulated as a maximization of

objective functions with all constraints either less than or equal to M<

constraints or equality () constraints. Conversion of objective functions

which are to be minimized, and greater than or equal to (>) constraints is

accomplished by multiplying through the appropriate equation by a minus one.

The objective function(s) and constraint(s) should be formatted such that they

contain all the decision variables. Example (given problem contains five

decision variables):

Min Z =I -5X1 -3X3

Max Z2 = X2 _ X3 + X4 _6X5

S.T.

I + +X - X4 > 10

X4 + X5 < 3

X1 + X2 + X3 =6

should be reformatted as:

Max Z1  5X1 + 0X2 + 3X3 + OX4 + 0X 5

Max Z2 -OX 1 + X2 - X3 + X4 - 6X5

S.T.

-Xl - X2 - X3 + X4 i -10

OX1 + Ox2 + Ox3 + X4 + X5 < 3

X + X2 + X3 + OX4 + OX5 = 6

The computer algorithm assumes non-negativity constraints involving

decision variables. Therefore, do not include these constraints when

13



formulating problems for input.

Computational Techniques Used

A. Weighting Technique (option 1)

The weighting technique assigns a weighting factor (w) to each objective

function. These weighting factors range according to inputs of the user. The

weighting technique finds a set of non-dominated solutions by incrementing all

the weighting factors over their input ranges. The range of a weighting

factor is divided into intervals according to the number of steps the user

requests. For example, for the range of zero to one, if the number of steps

equals ten then the weighting factor takes on values from zero to one in

* increments of .1 units. Required inputs for the weighting technique are as

follows:

1. No. of objective functions.

2. No. of decision variables.

3. Objective functions.

4. No. of steps for each weighting factor, range of weights.

5. No. of constraints.

6. Constraints.

The total number of steps for a problem will equal the product of the number

of steps for each weighting factor. For example: given three weighting

factors (0 < W1  1, 0 < U 2 < 1, 0 < W3 < 1) each being incremented by four

steps, the total number of steps will equal (4) (4) (4) =64.

14



B. Constraint Technique (Option 2)

The constraint technique takes all but one of the objective functions and

treats them as constraints. Program MOOTLP treats the first objective

function as an objective function while the rest are treated as constraints.

By first Is meant the first objective function the user inputs. The functions

treated as constraints are allowed to range from their lower bound to their

upper bound (loweri.< Zj < upperi) in the same manner the weighting factors

varied over their ranges. Required inputs for the constraint technique are as

follows:

1. No. of objective functions.

2. No. of decision variables.

3. Objective functions.

4. No. of steps for each objective function treated as a constraint,

range of each objective function treated as a constraint.

5. No. of constraints.

6. Constraints.

The total number of steps will equal the product of the numbers of steps for

each objective function acting as a constraint. For example: given three

functions (5 < Z2 ( 6, 8 -< Z3 10, 9 -< Z4 1< 12) each being incremented by

three steps, the total number of steps equals (3) (3) (3) - 27.

Program MOOTLP limits the maximum number of steps for each weighting

factor and each objective function treated as a constraint) to 50 steps.

15



C. Pre-emptive Goal Programming (Option 4)

* MOOTLP also solves a pre-emptive goal programming formulation of the MOLP.

Minimum acceptable attainment levels (maximization case) for each of the

objective functions are specified, as well as the ordered priorities of these

objective functions. The program then attempts to solve the MOLP problem by

satisfying the specified attainment levels as constraints and then optimizing

the objective function with the highest priority. If it is infeasible to

satisfy all minimum attainment levels, then the lowest priority objective

* function's desired attainment level is relaxed and optimization reattempted.

This process is repeated until a feasible solution is found. Required inputs

for the pre-emptive goal programming option are as follows:

1. No. of objective functions.

2. No. of decision variables.

3. Objective functions.

4. Minimum attainment level desired for each objective function.

5. Priority of each objective function.

6. No. of constraints.

7. Constraints.

WHICH COMPUTATIONAL TECHNIQUE TO USE

The basic difference between the weighting techniques and the constraint

technique is the amount of computer processing (CP) time used. The weighting

technique generally requires less CP time than the constraint technique. This

is because the weighting technique generally finds fever non-dominated

solutions than does the constraint technique. The weighting technique

16



generates corner-point solutions while the constraint technique may generate

solutions anywhere along a frontier of possible non-dominated solutions

(including the corner points). The amount of CP time used is affected by the

following (in order of importance):

1. Total number of steps.

2. Number of non-dominated solutions found.

3. Number of constraints.

Increasing the total number of steps may enable the computer to find more

non-dominated solutions but at the cost of increased CP time. Increasing the

number of constraints will increase the computer process time required, but to

a lesser degree than if the number of non-dominated solutions found is

increased. Since the number of non-dominated solutions found greatly affects

computer process time, the exact CP time required for a given problem cannot

be determined before actually solving the problem. However, the user may wish

to use the following guide to determine which technique to use to satisfy

various criteria:

1. If minimum amount of CP time is desired: use weighting technique,

Option 1.

2. If minimum amount of computer storage is desired: use weighting

technique, Option 1.

3. If corner-point solutions are desired (i.e., just a few solutions):

use weighting technique, Option 1.

4. If additional solutions are desired (other than corner-points): use

constraint technique, Option 2.

5. If a detailed identification of the NNDS is desired: use constraint

technique, Option 2.

17



6. If specific goals for the objective functions, and priorities for

these goals are available; use pre-emptive goal programming, Option 4.

The amount of computer storage used is reflected in the computer process time

used, and is affected by the number of non-dominated solutions found. As CP

time increases, required storage increases. As the number of solutions found

increases, required storage again increases. Program MOOTLP iteratively calls

an efficient LP package (ZX3LP) from the IMSL library [161 to perform the

optimization.

If a linear formulation is not an appropriate model for the problem, the

program PROCES delineated in the next section is designed to handle non-linear

formulations.

4!
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V. AUTOMATED VECTOR OPTIMIZATION FOR GENERAL

NON-LINEAR FORMULATIONS

(Program PROCES)

The software tool PROCES solves general non-linear MOOT problems. There

is a requirement for increased computer run time as a result of the non-linear

numerical techniques used compared to MOOTLP described in Section IV. The

operation and use of PROCES are presented for the program as it is currently

implemented on the CDC Cyber 175 at Wright-Patterson AFB, Ohio. A user's

guide can be obtained from the Department of Operational Sciences, School of

Engineering, Air Force Institute of Technology, Wright-Patterson AFB, Ohio,

who maintain the program.

Program Process

Program PROCES generates the NDSS for a general non-linear, constrained

Vector Optimization Problem (VOP). PROCES uses the method of proper equality

-4 constraints to find the NDSS. This method converts the VOP to a Scalar

Optimization Problem (SOP) by adjoining all but one of the objective functions

to the problem as equality constraints. The program iterates through the user

selected values for each of the adjoined objective functions. After each

iteration, the problem is optimized by SUNT (Sequential Unconstrained

Minimization Technique). SUMT is a scalar optimization algorithm that uses

the penalty function technique to minimize multivariable, non-linear functions

subject to non-linear inequality and equality constraints. The SUMT algorithm

is completely documented in the SUKT Version 4 Guide available through DTIC,

AD731391 113,21j.

19
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Besides the SUMT algorithm, PROCES consists of the main program and

subroutines JCAL, FNSS, and PRINT. The main program controls the program by

iterating through all possible combinations of input constrained objective

function values. JCAL computes the actual values of the adjoined objective

functions based on the x-vector realization calculated by SUMT. FNSS compares

each realization of the - - vector against the existing NDSS. Dominated

solutions are removed from the NDSS. PRINT prints the final NDSS after

program execution is completed.

Input Requirements

Data input to PROCES is through the subroutine RESTNT and user created

TAPES. The objective functions and problem constraints are put in RESTNT.

RESTNT uses the counter IN to determine which equation will be calculated

during each call to the subroutine. TAPE5 contains the VOP parameters and the

SUMT options and tolerances. A detailed description of these input

requirements is contained in the Execution Procedures section of this guide.

Program Output

All PROCES output is written on one of six tapes. TAPEI has the SUMT

optimization output. This is a detailed description of the optimization.

These errors may be the result of an ill-posed problem or certain combinations

of values for the constrained objective functions. TAPE2 has the values of

every solution that enters the NDSS. It also has the NDSS for each iteration.

TAPE6 is the final printout of the NDSS. This tape will contain any

information unless the program completes all iterations. TAPE1O contains the

current NDSS. Even if the program terminates early, TAPEI0 will have the NDSS

20



I

on it. If a partial NDSS already exists, it should be written on TAPEI0 and

the next execution will build on this partial NDSS. TAPEII is a scratch tape

used by FNSS to rewrite the latest NDSS.

An example incorporating PROCES is presented In Section VI.

21
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VI. MOOT EXAMPLE -MISSILE SYSTEM DESIGN

An appropriate application for the MOOT formulation is a technology

oriented system such as a missile [7,9,141. An ideal time period for this

effort in the Department of Defense (DOD) Equipment Acquisition Cycle is in

the Validation Phase where one or more candidate systems are selected to go

into full scale development. This state represents a significant commitment

of resources and is analogous to the development preceding a production phase

in the private sector. The Validation Phase follows the Conceptual Phase is

which a significant "paper study" effort has developed a refined version of

the missile in terms of subsystem models. These models are in a condition

where they can be formulated into a set of state variable equations and

associated constraints which are appropriate for a vector optimization

exercise. The Z1 used in this effort are cost of the candidate missile CZl),

combat effectiveness (Z2), flight area (Z3), survivability (Z4), and

reliability UZ5). The missile is optimized with respect to a vector of these

five Zi. The MOOT process allows the design of efficient candidate missiles

CNDSS numbers), in which the tradeoffs associated with each design are

evident, without having to prioritize the Zi at this stage of the effort.

Generic Tactical Missile Description

A generic and relatively inexpensive autonomously operating,

conventionally armed, tactical cruise missile has uch merit in today's

situation of escalating costs of manned military aircraft. Such a missile

possessing a guidance unit capable of directing low level terrain following

flight, could potentially penetrate air defense systems very successfully.
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Since recovery of an unmanned vehicle is not required, its combat range can be

much greater than that of a manned aircraft. The successful development of

this weapon system depends on the development and integration of several high

technology subsystems. These include guidance, sensors, automated target

recognition, airframes, navigation algorithms, and armament. It is necessary

to model and tune these subsystems for integration into a complete weapons

system.

Modeling

The generic missile subsystems were modeled in terms of a set of state

equations. The state variables described the "state" of generic missile

evaluated. Nine state variables were selected to represent the missile

system. These variables are listed below.

x1 Airframe length (in.)

x2 Maximum sustainable g's during target run (g).

x3 Average altitude above ground level (AGL) during target search or attack

(ft)

x4 Fuel flow during target run (lb/sec)

x5 Fuel capacity (lb)

x6 Engine length (in)

x7 Maximum sustainable g's during cruise (g)

x8 Average altitude AGL during cruise (ft)

xg Fuel flow during cruise (lb/sec)

Decision or control variables are those independent variables whose values

force the state variables to assume prescribed values, and thus force the
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system to assume a certain state. The four decision variables that were used

in this effort are listed below:

al Target run Mach number (M)

a2 Cruise Mach number (M)

a3 Commanded altitude AGL during target run (ft)

a4 Commanded altitude AGL during cruise (ft)

Thus the requirement for a generic missile to fly at a given airspeed and

altitude will force a particular engine size and fuel flow rate.

State Equations

The state equations relate quantitatively the interaction among the state

and decision variables for the generic tactical missile. The state variable

realizations in-turn determine the final configuration of the missile

subsystems like airframe characteristics (x1,X2,xs,X6,x7), and propulsion

system characteristics (x4,x5,x6 ,x7,x8,xg). The state equations for the

generic missile are given below:

I - 104.5 + 0.11*x 5 + x6

x2 6.79*al*((9.85*10-3*x6 + 0.11)/a2 - 0.58) 5

x3 - a 3 + 143.35*a, -
2 1.0 8*x2 + 23.52

x4 - 7.53*10-3/a,2 + 0.21*a,
2

x5 - (7.71 x 103*x9)/a2 + (12.3 5*x4)/a1

x6 - 2.21/a 2
2 + 64.48*a22 + 2.0

x7 = 5.85*a2 2*((1.05*10-2*x6 + 0.12)/a 2 5 0.04) 5

S 8 ' a4 + 88.41*a 2 - 12.05*x2 + 27.43

1 9 - 0.01/a 2
2 + 0.24*a2

2
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The coefficients and functional forms of these non-linear equations were

derived from standard missile equations of mtion models and verified using a

six-degree-of -freedom simulation [14]. This missile simulation was validated

using actual wind tunnel and flight test data of simular missiles.

Resource Constraints

The next set of expressions to be developed were those which represent

physical or operational constraints upon the generic missile system, its

subsystems, or system employment in terms of an expected scenario. These

constraints serve the dual purpose of keeping the optimization focused on

those potential solutions which are physically feasible, and reducing the

processing time to find a solution by limiting the problem space. The

resource constraints are as listed below:

119 < x, < 150

0.1 <( < 3.0

a 3 < x3 < 4.0

0 <X4

500.0 < x 5 < 1320.0

31.0 < x ( 48.0

1.0 < x7 <2.1

a 4 < X8 < 4.0

0 < x 9

0.4 < a1 ( 0.65

0.2 < a~ 2( 0.6

10. < a~ 3( 30.

20. < a84 < 70.
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These constraints can be interpreted respectively as airframe size limitations

based on proposed launcher systems (xI), flight restrictions in low altitude

maneuvers (x2 ,x3 ,x ,x8 ,a1,a 2,a3,a4), positive fuel flow (x4 ,x9 ), fuel capacity

based on airframe restrictions (xs) , and engine size based on thrust

requirements and airframe restrictions(x6 ).

Performance Indices

The Zi used were functions of the state and decision variables. Utilizing

such tools as cost estimating relationships, empirical performance

relationships, and regression techniques, the coefficients and functional form

for each of the Zi were determined.

Cost (ZI) was a function of the various subsystems included in the

missile. Cost estimating relations were used in conjunction with the state

variables to produce estimates for research, development, testing, evaluating,

production, operation, and support costs in terms of a constant and functional

relationship to state variable, x6. The units of Z are monetary.

Combat Effectiveness (Z2) provides a measure of the expected value of

enemy equipment damaged. Combat effectiveness was primarily a function of

flight altitude, velocity, and sustainable g's. The units of Z2 are normalize

value units.

Flight Area (Z3 ) provides a combined measure of range covered in flight.

This measure was non-dimensionalized by dividing the mission minimum required

range. Z3 was a function of velocity and fuel usage.

Reliability (Z4 ) is an indication of the probability that the missile will

function properly under established environmental conditions for the duration

of the mission. Based on historical and projected data, constant failure
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rates were used for the components of the generic missile. A series

arrangement of critical subsystems was used to model the component

functioning. No redundancy of components was allowed due to volume

limitations. The resulting reliability estimates were relatively insensitive

to state and decision variables because all missile flight times were short

compared to component failure times.

Survivability (Z5 ) measures in a relative fashion, the survivability of

the generic missiles when performing the mission in the presence of enemy

defense systems. The survivability factor is a function of velocity, flight

altitude, and maximum sustainable g's. Mathematic equations for the Zi are as

follows:

ZI - (1.06*103 + ((x6 - 31.0)/12.1*139.9)*103

Z2 - (3.05*x 2*al2)/(34.75*a 3
4 + 1.0)

Z3 - O.18*(x 5 - 147.06*x 9 /a2*al/x 4 )

Z4 - 0.96*exp(- x2 /a1*x7/a2*10
- 3 )

Z5 = (1.1*a I - 0.44)*(- 1.0*10-3 x3 + 0.53)*(0.06"x 2 + 0.18)

Computer Implementation

Now that the generic missile has been modeled in terms of a MOOT

formulation

ExtZ(x) - [minZ 1 ,maxZ2 ,maxZ3 ,maxZ4 ,maxZ5j

such that

gJ(x) < 0 .j (general constraints)

hi(x) - 0 i (state equations)
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the task of optimizing each candidate design and then comparing the results

arises. The above formulation is implemented on the digital computer

utilizing the "constraint technique" described in Section III. An executive

program manages the vector optimization process, categorizes solutions, and

saves the non-dominated solutions in terms of the state and control variable

values. The actual optimization is performed by a subroutine which uses the

Sequential Unconstrained Minimization Technique (SUMT) as its theoretical

basis [13]. The non-linearities present in the Zi's and constraints require a

numerical optimization technique like SUMT version 4 [21] for an efficient

solution.

SUMT is the optimization routine (Fig. 1) that is iteratively called by the

main program-PROCES. After the constraint technique is used to reformulate

the vector optimization problem into the pseudo scalar optimization problem of

eqns 13-16, this formulation is transformed into an unconstrained penalty

function. This new problem now takes the unconstrained form of:

m 1 q 2 1(0
P = Zf - r • n(gj) + - • . Z (20)

JP1 Ji r i I r d l

where Zf is one of the original performance measures, (gj) are the inequality

constraints, (hi) are the equality constraints, Zd is the value that the dth

performance measure must attain, r is a monotonically decreasing positive

constant, and P is the penalty function. As the minimization problem

numerically approaches optimum, r is decreased, increasing the effects of the

penalties until, under suitable conditions, P approaches Zf. When this

occurs, the problem solution has converged.

The requirements placed on the model by SUMT were that there exist a

feasible convex region so that optimization can take place. Because the state
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equations (hj(x) - 0) were not linear, a global extremism could not be

guaranteed, but analysis revealed that a global solution was indeed found.

The Lagrange Multipliers which are supplied by SUMT were used to check the

Kuhn-Tucher necessary conditions as well as being useful in a sensitivity

analysis exercise.

The program, PROCES (Fig.1) was implemented on a CDC-CYBER 175 system in

FORTRAN 4. The program including SUNT Version 4 was about 3000 lines,

required 60K of CM to execute, and converged to a single NDSS in an average

time of approx. 20 CPU sec. The long run times were caused by the non-linear

forms of Zi and constraints which slowed the convergence process considerably.

All the subroutines in SUMT are called by program PROCES except GRAD, OPT,

REVALU, PUNCH, and XMOVE. The user supplied subroutines used were READIN and

RESTNT. Newton's method was used by SUMT to perform the optimization.

SState 3pace Model Entry,

x, , -4. a I..

Control/Optimization~anagement Routine 2..' -

S Optimization , NDSS Post-

Routine (SUMT) 3. Processing 5.

NDSS Identification
Routine 4.

Figure 1. Program PROCES. Vector Component Optimization Algorithm

Figure 1. Program Flow of PROCES
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Results

The MOOT formulation when implemented on the computer produced the NDSS

comprised of the seven efficient designs shown in Table 1.

The trade-offs for the best of all candidates is efficiently presented in

this tabular NDSS. It is interesting to note that the Reliability and

Survivability are fairly constant for all candidates indicating that the type

and length of mission effected all candidates the same. There is some

variability in Flight Area and much variability in Cost and Combat

Effectiveness.

If it is not possible for the DM to make his choice with the NDSS and

proceed to the production process, it is apparent that the incomplete ordering

of this NDSS could be converted to a complete ordering by forming a scalar

scoring function or figure of merit [5,17]. The DM's value system could then

bring about a ranking of the members of the NDSS.

One popular way to form a scalar scoring function is to produce a weighted

sum of the Zi. This scalar takes the form of:

s - wiz i  (21)

where Wi is the relative weight of the ith performance index of Z(x), S is the

score of a member of the NDSS corresponding to Z(x). For instance, if the

DM's preferences for cost (Zl) and combat effectiveness (Z2 ) were twice as

important as the other indicies, then a set of weights could be W 1 - W2

.286, and W3 - W4 - W5 - 0.143. Scoring each of the NDSS members in Table 1

produces a ranking of scores ranging from 2.998 to 1.733 with candidate member

7 topping the list.
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Program MOOTLP has a NDSS post-process routine called PREANA which

Interactively forms this ranking for the DM after the NDSS is identified.

Because the NDSS will not change unless the model changes (Zi's,

constraints etc.) it needs to be identified through the vector optimization

process only once. If the preferences of the DM change in the selection

process, it is a simple task to enter new weights and rerank the members of

the NDSS to identify the candidate system with which to continue development.

Table I

ZI Z2  Z3  Z4  Z5

Combat Flight
NDSS Cost Effectiveness Area Reliability Survivability

1. 1.937 2.393 2.400 .946 .618

2. 1.690 2.501 2.314 .744 .631

3. 1.667 2.494 2.312 .940 .617

4. 1.700 2.363 2.429 .945 .621

5. 2.855 5.241 2.906 .956 .616

6. 2.854 5.531 2.609 .955 .618

7. 2.856 5.602 2.479 .954 .627
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VII. SUMMARY

Vector optimization implementations of MOOT are receiving increased use in

the design and analysis arena as their efficiencies are realized when compared

to traditional engineering analysis and design which utilizes scalar

optimization. In this regard, three significant observations can be made.

1. The computer implementation of the MOOT formulation allows a complex

and non-linear problem mdel to be solved numerically. The computer program

PROCES finds mathematically efficient designs in terms of a set of constraints

and state equations to optimize the vector Z. The resulting solutions are

compared quantitatively in terms of elements of Z, to determine which belong

to the "efficient set" or NDSS. This output NDSS presents trade-off s for many

efficient designs (not just one) with respect to all elements of Z

simultaneously. This NDSS can be readily converted to a numerical ranking if

this is deemed necessary by the DM.

2. This formulation has inherent flexibility in that changes can be made

in the formulation and the effects of these changes can be seen for all

candidate solutions rapidly by executing the vector optimization process. For

instance, if a binding constraint is changed significantly, the new NDSS could

be generated again fairly easily by simply executing the program PROCES. This

allows current information to be included into the model at all stages of the

project thereby minimizing the modeling and analysis ramifications. This

flexibility extends to the subjective aspects of the modeling effort (DM's

preferences which modify constraints and utility for various attributes) as

well as objective aspects (hardware oriented state equations and state-of-the-
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art development and constraint limitations).

3. Once the set of efficient candidate solutions has been formed (NDSS),

this set will not change unless the model changes. The ranking of the members

of the NDSS and subsequent selection of a system from among the NDSS can be

accomplished with very little effort in a post-processing routine. Since this

ranking depends on the preference of the DMK, any change in the preference

structure requires only a reranking of the same NDSS and not a rerunning of

the optimization program to form a new NDSS. The separation of the decision

process into an objective part (the modeling and optimization to identify the

NDSS) and a subjective part (the establishing of the preferences of the DM to

rank the members of the NDSS) is especially appealing to both analyst and DM.

The paper demonstrates that MOOT can be a very valuable tool for a

computer aided design of hardware oriented systems. The technique is an

efficient way to formulate and solve the vector (multiple performance

measures) optimization problem and as such is an excellent alternative to

traditional scalar optimization. Through the resultant non-dominated solution

set it also provides an excellent tool with which to do a trade-off analysis,

both among candidates and for the solutions of a single candidate. MOOT

allows the analyst to observe and evaluate a system's design in terms of the

broad spectrum of needs that the system must satisfy. MOOT can be used to

model very complex systems with a high degree of accuracy. However,

processing time and storage requirements increase with the more complex

models.
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