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.4 SUMMARY

Criteria are stated for the existence of solitons in one-dimensional
organic conductors, particularly trans polyacetylene. All physical situations
considered are described in terms of a classical anharmonic oscillator moving
in an anharmonic double potential well. As the soliton is known to exist in
the line of pendula joined with elastic coupling and also in the long Josephson
junction in the form of the fluxon, the theoretical position is taken that if,
indeed, the soliton exists in polymers, whether of the vibrational or the
charge-domain-wall-type, then it should conform to certain established criteria
of behavior already rigorously studied in the aforementioned situations.

In order to understand the dynamics of a conducting one-dimensional sys-
tem, whether or charge or mechanical energy, a microscopic parametric excitation
model formalism must be adopted. On the other hand, in order for this model to
be related to physical measurements such as that of current and voltage, a
microscopic formalism (the Hubbard model) must also be achieved. Both pictures
have advantages and disadvantages. However, both pictures are necessary for
complete understanding.
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SOLUION PROPAGATION IN ONE-DIMENSIONAL ORGANIC CONDUCTORS

T.W. Barrett
Naval Air Systems Command

Code AIR-031

Washington, D.C. 20361

I.

The notion of a propagating soliton is not a simple notion and the

requirements for its existence are rigorous. The aim of this paper is to

indicate the complexity involved in its existence and to suggest criteria

for such existence. Another aim is to indicate the fundamental importance

of the concept of soliton, first called such in 1965 (Zabusky and [ruskal,

1965; Zabusky, 1981), but whose origins stem from observations by John Scott

Russell (1834). The timeliness of this endeavor is due to the consideration

being given, on the one hand; to proteins (Davydov, 1977-1979; Scott, 1981;

Hyman et al., 1981) and deoxyribonucleic acid, DNA, (Balanovski and

Beaconsfield, 1982) as mediators of vibrational-type solitons, and, on the

other hand, to trans polyacetylene, (CH)x, as a mediator of soliton

dependent electrical conductivity or charge-domain-wall movement (Su,

Schrieffer and Heeger, 1979, 1980).

The charge-domain-wall-type soliton of (CH) has received much
x

attention. The case for the existence of such solitons in (CH) has beenx

made mainly on the basis of electron spin resonance (ESR) data (Heeger and

MacDiarmid, 1981). That solitons do, in fact, exist in trans polyacetylene

could be treated as a hypothesis. On the other hand, the mathematical

entity of the soliton has undergone considerable evolution and its history

has been described by Scott (1981). The intention, here, is not to question

whether the mathematical entity of soliton propagation can exist in polymers

(undoubtedly it does) but to refine judgment concerning when it can and

• • - ,. . . . . , , • , " " . .. " - " , ". . " , . -" . . " " o . " : . ., ." " " -. " " . ". . ". " .. ." . , -. "1 -" ".. '
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when it cannot. This is a matter of discrimination based on both physical

and mathematical reasoning.

All physical situations considered here are described in terms of a

classical asharmonic oscillator moving in an anharmonic double potential

well (DPW). As the soliton is known to exist in the line of pendula joined

with elastic coupling and also in the long Josephson junction as the

fluxon, the attitude has been taken here that if, indeed, the soliton exists

in polymers, whether of the vibrational or charge-domain-wall-type, then it

should conform to certain established criteria of behavior already

rigorously studied in the aforementioned situations.

The main theme, here, is that in order to understand the dynamics of a

conducting one-dimensional system, whether of charge or mechanical energy, a

microscopic parametric excitation model formalism must be first achieved

(sections I-IM). On the other hand, in order for this model to be related

to physical measurements such as that of current and voltage, a macroscopic

formalism (using the Hubbard model) must also be achieved (sections X-XI).

Both pictures have advantages and disadvantages. However, both pictures are

necessary for a complete understanding.

In section III, the possibility of sending solitons through joined one-

dimensional chains into one arm or both arms of a T-junction is examined.

The conclusion of this section is: if it were possible to synthesize a

polymer made up of joined segments (of CH) 2 for example) the synthesized

polymer would demonstrate different phonon modes in the vicinity of the

junction, due to different phonon-dependent propagation energies. The

likelihood is that the soliton would not progress past the junction into the

arms and probably would not approach within the vicinity of the junction.

In section IV the concept of tunneling is related to a parametric

excitation dynamic. The advantage in this is the subsumption of tunneling

-2-
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behavior under energy conservation rules, rather than probabilistic laws.

This aim is of importance, because the mathematical entity of the soliton is

itself rigorously restrained by conservation of energy laws (Bullough and

Caudrey, 1980).

In section V the effect of pinning solitons is addressed. This amounts

to the trapping of a discommensuration so that it is no longer moving.

Thus by pinning, a soliton ceases to exist (because it is a dynamic and

moving wave by definition) and the resulting static discommensuration, or

kink, takes its place. The research literature has sometimes not

distinguished between a soliton, which is a moving wave, and a trapped or

pinned discommensuration, which is a kink.

In section VI the energy conservation laws for the order parameter,

energy and damping constant derived for nonlinear systems, are used to

characterize the four forms Ohm's and Kirchoff's laws would take in such

nonlinear or soliton exhibiting systems.

In section VII the dynamic form factor or spectral density is

introduced which, for a system in a displacive transition mode such as a

soliton exhibiting system, contains a soft phonon which pumps the

displacement. It may be emphasized that such a concept is out of

consideration in a static or even a many body approximation approach to one-

dimensional conduction. The dynamic form factor does not even appear in the

macroscopic landscape. In treating the dynamic form factor the advantage of

a monomer or microscopic treatment of solitons is thus demonstrated.

However, in section XI and XII this microscopic treatment is relinquished

for a macroscopic or Hubbard many body approximation so that long chain

systems may be treated. The dynamic form factor's soft phonon mode remains

a facet of soliton existence criteria and of the microscopic approach.

-3-
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In section VIII the necessary and sufficient conditions for soliton

propagation are addressed. Section IV contains a description of soliton

propagation in a system of changing and incomplete degeneracy. A system

capable of demonstrating soliton propagation is shown in section X to be one

in which the equation of motion for the system exhibits broken symmetry.

This relation is described in terms of renormalization group theory.

Finally, in section XI a macroscopic picture (the Hubbard model) is

introduced and related to the double potential well (DPW) anharmonic

oscillator model.

II. INTRODUCTION

It is well known that the interplay of currents and voltages in

Josephson circuitry is similar in form to that encountered in certain

mechanical systems, and, in particular, to the simple pendulum. The ability

to understand and visualize the behavior of Josephson junctions in terms of

mechanical devices has greatly facilitated understanding (Fulton 1975,

1977). As (a) the fluxon of the long Josephson junction is a soliton

propagation, and (b) the soliton-with-spin and the soliton-with-charge have

been implicated in conduction experiments on udoped and doped trans-

polyacetylene, the methods used to study the Josephson junction fluxon are

readily applicable to the study of the polyacetylene soliton, if it exists.

The suggestion that vibrational solitons exist in proteins and DNA may also

be studied from this theoretical platform.

The models constructed for the study of the Josephson effect include

those of Scott (1969), Waldram et al. (1970). Sullivan and Zimmerman (1971),

Yamashita et al. (1974) and Fulton (1977). These models have been of great

use in developing physical intuition concerning the effect and agree in

their choice of mathematical and physical description of that effect. This

-4-
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agreement means that actual physical model building is no longer necessary

for predicting new behavior and analysis may proceed by numerical methods

based on those models.

"S

The advantages of numerical analysis based on mechanical models are

* many. Firstly, the performance of the model can be readily altered by a

change of variablesw By dimensional analysis polymer compounds for possible

synthesis may be suggested. This approach is more systematic than the

trial-and-error method of obtaining compounds by difficult synthesis

procedures, testing them and then attempting to explain their function.

Secondly, recent theoretical approaches to the polyacetylene soliton

emphasize the static aspects of the problem, obscuring the dynamic and

diffusive aspects. An analysis based on a physical explanation refocuses

attention on these neglected aspects of the problem.
-'

Thirdly, there are a number of variables of soliton propagation

indicated by mechanical analysis which are, as yet, unstudied.

The known and agreed upon conditions for fluxon (soliton) propagation

are now examined in the long Josephson junction, and these are used to

stipulate the proper conditions for the appearance of solitons in polymers.

The rationale for this theoretical posture is that the fluxon (soliton) in

the long Josephson junction is firmly established, but the polymer soliton

is presently a theoretical inference. The soliton being a mathematical

entity, at a level of abstraction, the conditions pertaining to the former

soliton (the fluxon) must also apply to the latter (the soliton in polymers,

whether vibrational or moving charge wall). Examination of the soliton of

the simple pendulum line is also instructive in that its behavior is

described in familiar physical variables. Thus, the intention is to prop

the theoretical conditions for polymer soliton propagation upon the

o-5-
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established conditions for soliton propagation in the long Josephson

junction and the pendulum line.

The phenomenological equations describing the macroscopic behavior of

superconducting barriers are (Josephson, 1965):

a/x = (-ed/lic)H y; WIt - (2WI)V; Iz = jlsin + GV, (1)

where is the phase difference between two superconductors, H is the

magnetic field in the barrier, V is the voltage across the barrier, d f 2X +

Z, X is the penetration depth and k is the barrier 'ickness. If the

barrier is regarded as having a capacitance C per tit area and using

Maxwell's equations and Equ.s (1), above, we obte

x L - L sinLa2 (2)

3 0t

where V = c/4dC is the phase velocity in the barrier, X2 = hc3 /8ffedjl

is the penetration depth, and = 4ffdia/c- cr/C is a damping constant.

If the barrier is assumed to be of unit length in the y direction, then

the total free energy of the barrier is (Lebwhol and Stephen, 1967):

F- - frd..[(1-os + a/ x ( >) + 1/2 (-3 ( )1], (3)2e o c

where the first term is the coupling energy for two superconductors and the

others the electromagnetic energy in the barrier. The rate of dissipation

of energy is:

dF/dt - -afVzdx (4)

We may note here, in anticipation of conclusions to follow, that removal of

any terms in the left hand side of Equ. (3) will reduce energy dissipation.

Recognition of an analogy came about when Young (1964) pointed out that

solutions of Equ. (2) representing vortex lines in the barrier are obtained

as solutions of:

a..lDX = (IIX o ) sin, (5)

which, except for sign, is the equation of a pendulum.

.- %
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Next, the second model, the pendulum line, is considered as

mechanical analog of the long Josephson junction. Figure 1 sketches a

simple model with moment arm, I , moment of inertia, M, provided by a fly

wheel, damping coefficient, D,

h.7

IC sin S

Fig. 1 After Fulton (1977).

provided by a paddle wheel arrangement, and phase angle ¢ measured from

vertical downward. The rod is subject to an external torque I.

In the terms of such a model, one may list major corresponding

quantities for Josephson circuits, the pendulum analog (Fulton, 1977) and

trans polyacetylene:

TABLE I. After Fulton (1977) with extrapolation to

polymer dynamics

Josephson

Junction Symbol Mechanical

Critical Pendulum u: charge dq dt related
Current Maximum I to maximum pseudoc spin vector by

dtc d1/dt
= g y 8J/d /dt

d: charge dq /dt
c

Phase Difference Phase Angle u: n-phase kinking.
Pendulum d: n-phase kinking.

Voltages x 2f/I °  d /dt Angular u: voltage x 2f/(.
Velocity related to spin

angular momentum w =

2pm B/h by d(/dt =

hw/(2m dq /dt).
d: voltage0 x 2r/0

-7-
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TABLE I (Cont'd)

Josephson
Junction. Symbol Mechanical (H
Applied Current I Applied Torque u: applied current,

dq/dt, related to
the precessional
radius of the spin
vector by dq/dt

d: aple cret
dq/dt.

D' /0 (2ffR) D Damping u: none for ideal sys-
0Coefficient to.

d: dq /dx = D. dissi-
pdfion to external
phonon matrix.

V.CO I(2R) M Moment of u: dq,/dx, charge re-

d: dqj/dx, charge re-

pu s ion.

%/I(2nLV K Torsioni Bar u: dq1/dx, excitonic
Spring Constant coupling.

d: dqK/dx, excitonic
coupling.

Current in I LTorsion in u: dq L/dt determining
Inductor Torsion Bar phonon energy.

d: dq L/dt determining
phonon energy.

Josephson Coupling Gravitational u: -dq 0 /dt cost, exci-
Energy Potential Energy ton-phonon coupling
-(cv I /(2ff))cos4 -I c osp energy.

occd: -dq c/dt cosO, exci-

ton-phonon coupling
energy.

Electrostatic Kinetic Energy u: kinetic energy re-
*Energy 1/2 CVz 1/2 M(d4/dt)z lated to paramnagnet-

ic susceptibility by
1/2dq

Px dt
0 d

X 2ff dt
4...d: kinetic energy:

l/ 2dqm (j 2

dT M ~dt~
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TABLE I (Cont'd)

Josephson
13ction Sybol Mechanical (CH)x

Magnetic Energy Torsional Energy u: 1/2 (dq )2/dqK. magn.
1/2 LI' 1/212/K dt dx energy

L L d: 1/2 (dqL)/dq K, magn.

dt dx energy

Power Input from Power Input from u: dq/dt. d4/dt, power
Applied Current IV Applied Torque, input from applied

dq/dt. d /dt field.
d: dq/dt. do/dt, power

input from applied
field.

u = undoped polyacetylene;

d = doped polyacetylene;

(Do h/2e = 2.068 x 10-1 s Webers;

and KdW/dx I sino + Dd(,/dt + Md /dt + I x, or
-c x% x

dq jU dq sinO dx d + - 4j +

dt dt dx dt x dt dtdx'

.5 and d'Zdx - LIL = ( /2f)ddx.

Some predictions can be made for the current-voltage relations of poly-

acetylene on the basis of this model. Firstly, in steady state there is an

average current balance given by:

(I> = (I sin4> + <V>/R. (6)

Decomposing I and V into steady and alternating components: I = (I> + <I >
ac

and V = <V> + <V >, then if I is fixed <I sinO> = <Vz >/R and there should
ac c ac

be a departure of the I-V curve from ohmic behavior, indicating that the

voltage has an alternating component.

Secondly, if a radio frequency current at frequency, f, is applied near

the junction frequency <V>/0 , the ac supercurrent locks into phase

coherence with applied currents so that (V> = f giving linearity.

-9-
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In order to obtain the characteristic particle in a double potential

(R) well with harmonic spring connection to neighbor(s) (Figure 2),

Fig. 2

an inductively connected element is required with phases: = 2fff(V/0 )dt and e
0

- 2xf(Vz /( )dt, where V and Vz are the voltages across the junction and an

external passive element z, i.e., the next neighbor (Fulton, 1977):

Fig. 3

Alternatively, the of Figure 2 is the angle of the carbon bond defining

the isomerized state in (CH)xV and the(Dis the configurational potential.

*Thus, the two potential well defines two isomerized states in polymers.

If z, the external passive element is considered a resistor, r, (z = r),

then for an undamped junction having LI / 1/2ff, there is the possibility

of a relaxation oscillation if L/r > (LC)1/. If, on the other hand, z is

the capacitor, Cz, and we define Ce = (1/C + 1/C )-1, then a resonance
o eff z

occurs at a frequency: w, res (LCeff)1/2, when the impedance of the C-L-C

combination becomes infinite.

An inquiry may now be made concerning what happens when a polymer such

,. as polyacetylene undergoes an order-disorder-order transition with

displacement, or isomerized state transition, e.g., for one element

(monomer):

-10-
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N

I'o

N 0

Fig. 4

For this situation of the monomer, z is an inductance, L, giving a T-bar

twist, LIc/$o , balancing the pendulum in a horizontal position. For

LIc/0° (( 1/2x, * follows e, but at LIc / = 1/2w the pendulum is no longer

stable and for LI /0 1/2n a flip to the other state occurs (Fulton, 1977):

*37r/2

ex:r
I

Fig. 5

Extrapolating this element to a one-dimensional chain analogous to the

continuous limit of a dc SQUID, the equivalent circuit equation is:

X Z d2 O/dx s - 10 sine + DZdO/dt + K Zdsq/dt2 + I x. (7)

where 1o2 is the critical current/unit length, Ixk is the current/unit

length applied to the junction, . - oW/2ff 0(2 +d) = Do/2wL , LA is the

inductance/unit length, 1I -= 0o o/2wd - ¢oCZ/2n, C X is the capacitance/

unit length, D9 M OW 0 /2n, and aW is the conductance/unit length. We are

especially interested in the behavior of this chain for Z >> X3 , where X3 =

(0 /(2fp (2 +d)J when vortex propagation is exhibited. Current
0 0

propagation is described by:

-.7, % . . . . -. . % . . - . % . % -. , p
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tK[d
5 /dxS = I~csin + 1xv (8)

which is in the same form as:

Md1 oL/dtx -- Icsin~l + I , (9)

describing the motion of an undamped pendulum subject to an external torque

(see equation (5), above). A vortex (or propagating polymer soliton) in

this analogy is as follows: a pendulum starts in a pendulum bob-down

position (order) swings up (disorder) falls over through 2K and comes to

rest in a pendulum bob-down position again (order). Conservation of kinetic

and potential energy gives 1/2(d4/dx)2 - (1-CosO)Xz for such motion,

resulting in the description given by Figure 6. The two bob-down positions

correspond to the two polymer isomerized states.

It is known that in a uniform pendulum array of infinite length, a full

twist or vortex can be moved from place to place with no cost in energy

(Scott, 1969: Waldram et al, 1970: Lebwhol and Stephen, 1967). Application

of a weak torque in the vicinity of a vortex causes the pendulums to rotate

in the direction of the applied torque and the twist moves along the array

away from the torque. This is the propagating soliton of the displacive

mode of the system. If two solitons are propagated along a pendulum array

then in an overdamped system the two will be annihilated, in an underdamped

system the two pass right through each other and continue on with their

relative kinetic energies intact.

Consideration may now be given concerning how it is that the vortex, or

K-phase-kink, becomes a propagating soliton. Stated differently, how does

the order-disorder transition mode become a displacement transition mode?

At the heart of the matter is the demonstration by Pitaevskii (1959), that

for a system:

+ _ _ 2_ (JWI ..l)4 - 0, (10)

-12-
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-SI

d#j/d x

27 (d)

Fig. 6. Various views (a) to (d of a segment of an
-. infinitely long pendulum array containing a

vortex. (a): Front view (cos OW(x), (b): Top
view (-sin ,(x), (c): d4/dx, (d): 1(x. (e):
A vortex trapped in an array of finite length by the excessive
weight of the end pendulums. (From Fulton, 1977.)
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the change of the complex function with time, t, is described by the

equation: iV'/dt - L where L is a nonlinear operator and a function of a

second variable - temperature in the system considered by Pitaevskii. As

this second variable increases, the anti-Hermitian part of L becomes

dominant (as compared with the Hermitian). In this case, the equation which

describes the vortex filament goes from Schro6dinger type to diffusive type

(Pitaevskii, 1959, 1961: Usui, 1969). In effect, the anti-Hermitian part of

L is larger, the faster the system relaxes. L cannot be Hermitian for a

propagating wave (soliton), because density would then be conserved and

relation is required. If L is Hermitian, then the wave is static (pinned).

The anti-Hermitian part describes the process whereby thermodynamic

equilibrium is approached, or describes the process whereby the density of

states and monomer 1 in a chain are converted into the density of states at

the next monomer, monomer 2 (Barrett, 1983). A nonlinear operator gives:

3E/3t + divQ - 0, wave Q is an energy loss vector. For

'Psuperconductivity'" or decrementless conduction between monomers 1 and 2:

divQ1 + divQ2 = 0; (10A)

3 1E/t + aE2/t - 0. (10B)

In the case of the anharmonic oscillator, we have D/9t = LV, or

S C u.n (E (XS + A x + C) + (u(Z) - u(Z'))2) (10C)
2 Z.27 2, B

Hermitian Ant i-Hermitian
Component Component

where x is the position of, e.g., a carbon bond (for (CH x)),

is configurational potential, and

2 is the length of the polymer.

In the case of the Davydov vibrational (protein) soliton, we have

,aa/t La, or

I" -14-
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(i) ida E + W + (10D)
dt Heruitian

Component

+ 1  n+1, _ An-l,a~ ana _ I(anl,a + an+l,) +

L (an +1 + An,-1 n) +

+ X 20 n+l,a a n+l,a - Pn-l,a a n-l,a - Pna (an+l,a a an-l,a)) "

Ant i-Hermitian Component
(ii) Md - - 2P + ) (10E)

dts n' n n-l,@
Hermitian Component

- Xl(an+ifs - an1 ()"

Ant i-Hermitian Component

where XI and X2 are nonlinear coupling coefficients,

I and L are dipole coupling coefficients,

E - 1650 cm- 1 - 0.205 e.v.,0

a is the probability of finding a quantum of bond energy,

is longitudinal displacement.

Thus, in considering whether a polymer can exhibit soliton behavior,

neither the existence of isomerized states nor the existence of vibrational

modes of energy compatible with an energy input is sufficient condition for

propagating waves. Only if the anti-Hermitian component of the equation of

state exceeds the Hermitian component will a perturbation become dispersive

or propagate (Barrett, 1983).

*. Given that a polymer chain will support a soliton, consideration may be

given as to whether a bifurcating chain (T-junction) will allow soliton

propagation down the arms of the chain.

III. T-TUNCTIONS

Consider, then, three chain polymers joined at one end to form a T or Y

junction. Such joined chains may be referred to as T junctions. In the

*. Josephson line of one dimension Equ. (2), above, becomes (Scott, 1970):
-15
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K + ax r -~-sino -Y (axsta ats  at

where K - L(2xl /4C)1/2/r.

r 0 YC) /L

Y J

$ = h/2e
0

€  a constant giving the maximum Josephson current per unit length:

La C, r, g and JB are the series inductance, the shunt

capacitance, the series resistance, the shunt conductance, the

distributed bias, and the current source per unit length, and

where distances are measured in units of (D C/2,J )1/2.0

Simply stated K and r are losses in the line and Y represents

bias.

In the case of pendula line T-junctions, Nakajima et al. (1976) define two

classes: (1) the TTP (trigger turning point), which is analyzed by the two-

dimensional equation reported by Nakajima et al. (1974a and 1978c). The

boundary condition for the TTP is:

*Xl - [tp - ~x(12)Itp x2 1x 3tp

(2) A second turning point is the STP (selective turning point), with:

Ox + x + O . (13)

Thus, a single flux quantum propagating toward an STP on one line will

initiate a single flux quantum on only one connected line, depending on the

bias current of each line, the applied magnetic field and the junction

geometry.

Confirming attention to the TIP junction and commencing with the two-

dimensional description of Equ. (10), above: the motion of a vortex filament

at temperatures close to the X-point may be described. As the stability of

a vortex is not guaranteed for a real field in two dimensions, Nakajima et

al. (1978c) introduce a complex field:

-16-
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-Re + ilmf (14)

with now:

-ReW " (15)
yax at = Rep

(W- + a - B_ a, (16)

whore the potentials UR and UI are related by:

U :-= - [l-(im4)aJ(Re*)z. (17)U =6 (imP4)4 _- [l_(MP)2](Rn1)3,

2

As the complex field possess a phase angle, clockwise and anti-clockwise

vortices are obtained. With the condition stated by Equ. (12) satisfied,

then, neuristor-like activities are possible (Crane (1962)) and describable
4'.!

in two-dimensional form (Equ. (10)) with a complex field.

The problem of defining specifications for propagation of solitons

through (a) a TIP junction and (b) STP junction may be approached as

follows: In the case of (a), the TTP junction, the requirement is given in

Equ. (12). As 0(t) = (20o )f-V(u)du, we require the voltage x 2W1/ to be
0 0 0

the same on all 3 arms of the T junction. This reduces to the simple

conclusion that all three arms must be of similar polymer material and of

the same length.

Case (b), the STP junction, is more complex. Referring now to Equ.

(11), for a set r, a soliton at a turning point may (1) halt, (2) propagate
~into arm 1, (3) propagate into arm 2, or (4) propagate into arm 3, depending

upon the ratio of the bias currents: Y1 :y2 :Y3. Y corresponds to the applied
b!

. torque, I, of the single junction (Table I). This, in turn, is a function

of the amount of 'pinning", i.e., introduction of defects into the

polyacetylene, in order to obtain critical current increases at an

appropriate applied field (Jaklevic et al. 1965, Yamashita et al. 1974). In

order to predict which of the behaviors (1) - (4) will occur, one also needs

an estimation of d/2X3 , whore 2X is the length of the soliton and d is the

-17-
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length of the polyacetylene (Owen and Scalapino, 1967). An easy conceptual

solution is thus to uniformly dope a length of (CH) (i.e., set Y = Y
x 1 2

Y3 ) and synthesize T-junctions of different arm lengths for different

*d 12A :d 12*d 12X1 X 2 Jd3 "

.

4, I

A - H

Fig. 7

In the vicinity of the junction 3, the normal phonon modes will be

different from those at the ends E1' E2 and E or in the center of each

chain. As soliton propagation of the moving charge domain-wall-type is

dependent upon exciton-phonon coupling, the arrival of a soliton in the

vicinity of Y should show different propagating behavior compared with its

behavior at a distance from the junction, due to different phonon-dependent

propagation energies for that carbon atom at the T junction marked with a I

(Fig. 7). This situation is different, therefore, from the pendulum line as

the T junction in polymeric form exhibits different monomer vibrational

forms at the T join; and the likelihood is that the soliton would not

progress past the junction into arms d2 and d3 but be pinned there.

IV. TUNNELIN

In the previous sections, treatment of soliton propagation in a one-

dimensional organic conductor, trans-polyacetylene, was made in analogy with

4.q
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fluxon propagation. This treatment is extended here to the case of uneven

doping and unevenly conjugated conductors.

Parametric excitation is the underlying dynamic of the pendulum analogy

as well as the Josephson effect.

We commence with Eq. (3) of section II for the total free energy for a

Josephson barrier:

F - fdx E( 1-c o s ) + . i(LO ) 2 + 1 (18) )

2e 2 o ax 2 c (18

in which the rate of energy dissipation is:

.(1-cos) ++ () 2 () a (19)

Recalling that 9/3t is the mechanical angular velocity or the Josephson

junction voltage x 2W/O , we now extend the voltage analogy to Wa/x and
0

call this term the dispersion voltage. As (1-cos ) is the coupling energy,

it is evident that Eq. (19) satisfies the condition for parametric

excitation, where the 1I2( a)2(A) term is the pump, (l-cos) is the signalandcs 1/2 the siisnth

nd1/2 X) is the idler. Regarding a Josephson junction or polymer
o ax

chain from a parametric excitation point of view permits the treatment of

the line in discrete elements, dx. Variation of dO/dt within any dx results

in a variation of do/dx, or dispersive transmission, due to the conservation

condition of Eq. (19). The monomer for the polymer chain is described by

the equation:

3-- f + af + b =0, (20)
0 0

where f may be taken as the midfrequency of a signal equivalent to electron
0

momentum in the analysis of states. Eq. (20) is formally equivalent to

Schridinger's enuation. If the following substitutions are made:

i .'.. -19-
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6uu f 3, (21)
x 0

uxxx o
-4.

ut  b,

where subscripts indicate pprtial differentiation, then one has the Korteweg

do Vries equation (Korteweg and do Vries, 1895):

u + 6uu + u 1  =0 (22)ut + Ux xxx (2

which is derived from the Boussinesq equation (Boussinesq, 1871):

= U (u + 6uu + u ) (23)
tt x xxx

. by restricting the motion to one direction. We note that Eqs. (20) and (22)

are formally similar.

If now, we consider a light wave polarizing energy levels of a polymer

with, for example, two levels of energy, then the polarization may be

decomposed into components in phase and in quadrature with the electromag-

netic wave. The Schrodinger-type equation (20) for the atom reduces then to

the Bloch equations for polarization or the self-induced transparency

equations (Lamb, 1971). After transformation, these equations yield (Scott

et al., 1973):

* u - sinu, (24)-"xx utt

or the sine-Gordon equation.

The sine-Gordon equation is the unique equation invariant under the

infinitesimal Lie transformation x-* (1 -S )x, t (U + )t and the finite

scale transformation x-' a-lx, t-* at and is Lorentz invariant (Bullough and

Caudrey, 1980).

Now, the relations governing power flow in lossless nonlinear lumped

circuit elements are the Manley-Rowe relations (Manley and Rowe, 1956).

Considering the mean flux, N , of photons of frequency u, the analogousu

relations for extended lossless nonlinear media are (McLean, 1977):

-20-
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N + Nui + Nu3 i constant, (25)

and

uI + u2  u . (26)

Substituting:

uxx u

U tt u2, (27)

sin u u ,

provides a formal similarity between the sine-Gordon eq. (24) and the

equation describing parametric amplification (Eq. (26)). The relation of

the sine-Gordon equation to electron tunnelling and the Josephson effect is

already known (Bullough, 1977), by which the parallelism is drawn between

the "kink' and ''anti-kink'' solutions of the sine-Gordon equation and the

fluxons in large area Josephson junctions. Here, we point out the parallels

between: (1) the Schrodinger formalism and the Korteweg-de Vries equation

and (2) the sine-Gordon equation and the Manley-Rowe conservation equations.

We now utilize this development. Suppose the wave function for an

electron, I, is given as a function of distance, x, the Schrodinger equation

for which is:

- 'a t+ v(x) = E (28)
2m 3x

where V(x) is the amplitude of a barrier to free movement of the electron.

If V varies relatively slowly with distance, then the solution of Eq. (28)

is (Messiah, 1958):

2m
o exp[±i /E - V(x) x] (29)

exp(± i(v'7u. )x]04' idlerff oexp[±i(V-Uide UX

0 exp[-i(ump - Usignal))x]"

Adapting Eq. (26) to explicit parametric amplification form, we have:

Upump Usignal +U (30)

-21-
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2m
Eqs. (29) and (30) are then interpreted as follows: U,- E and

2m
V(x) are the spatial frequencies of two oscillating systems, Eq. (29)

represents the situation of parametric excitation in which E = u is

the spatial frequency of the pump, V(x) = u is the spatialsignala

frequency of the signal, and A (E-V(x)) = uidler is the spatial frequency

of the idler. As (i), by definition, V(x) is maximum at a different

position, x, than is P i.e., it is a barrier, and as (ii) it is the pumped

signal system which is of energy V(x), it follows that a pumped idler system

of spatial frequency 2 (E-V(x)) should appear at a distance x, i.e., out of

the barrier. Whereas Josephson (1962) treated the term in the Hamiltonian

which transfers electrons across the barrier as a perturbation, here we

specifically designate it as a pumping system. Electron tunnelling is thus

displacive parametric excitation and may be given a classical mechanics

point of view.

For example, the master equation for the effect is:

V = (x)1 -'(x)Z (31)barrier In out*

In the case of two superconductors connected by a ''weak link'', the

Josephson equations (Josephson, 1962, 1964, 1974) give:

j = j sin(O2 - L f I dx),

t 2 - h 12f2 Adz) =-1L(11 ii 2eV (32)

for a one-dimensional junction, and where j is the supercurrent through the

junction, is the phase of the order parameter, A is the magnetic vector

potential, 11 is the chemical potential, and V is the voltage bias across the

junction. Again, the junction bias acts as a signal to the second system as

pump and the third as idler.

This is apparent in Josephson's (1964) account of the tunnelling

effect. As the barrier is changed from a very thick one to a vanishingly

-22-
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thin one, the system loses the degree of freedom corresponding to the

ability to alter phases independently. The free energy of the system

contains a contribution from the barrier region which depends on the

relative phases of the values of ) on the two sides of the barrier, and

whose magnitude becomes greater as the barrier is made thinner. Perfect

conductivity of a superconductor is the consequence of the fact that in a

steady-state the order parameter must have the form (Josephson, 1964):

'(r, t) = '(r, 0) exp [i i(t)] . (33)

' will still have this form in a system partitioned by a barrier, provided

that the phases of the order parameters on each side of the barrier are

locked together by the barrier energy. The only way this can occur is by

parametric excitation.

V. EFFECT OF PINNING

In sections I - III mention was made of the effect of removal of

pendula for a length larger than 2X , where X is the Josephson penetration

length or (K /mgl)1/2 in the model (K is the twisting constant of the
0 0

elastic coupling per unit length, 1 is the pendulum length, mg is

gravitation), resulting in the pinning effect of a Josephson junction.

Referring to Eq. (19) above, the effect of pinning results in the neglect of

the (1-cose) term, i.e., e- o. This term is the signal term of the

parametric excitation dynamic, hence there can be no conduction beyond such

a barrier. Conduction between barriers along a line of intact pendula is,

however, possible. Such a segment would exhibit the properties of a soliton

if short time constants are considered, and a trapped polaron if a long time

constant is considered.

Pinning may be obtained in another way. The Josephson penetration

length is a function of mg, hence weighting the pendula bobs would obtain

-23-
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the same effect as removal of pendula. A pinned soliton (kink) is shown

below:

Fig. 8

The result of pinning (or doping) is firstly to provide a barrier to

conduction. However, the critical Josephson current increases at an

appropriate applied field. From the mechanical point of view this means

that a torque is placed on the first pendulum of a magnitude such that

either (a) the barrier of the vacated pendulum is traversed, or (b) the

heavy bob of the second pendulum is raised. Either way, an angle e is

created for the second pendulum permitting a signal term (1-cosO) for

parametric excitation.

The effect of nonuniform doping in, for example, (CH) x , may be

considered, i.e., when pendula are removed so that irregular spacings are

created, or when the pendula have bobs of varying weight. These variations

all result in variations in the 6s created at each dx along the chain.

This, in turn, results in variations in the (1-cosO) or signal term at each

dx. The conservation condition of parametric excitation then requires that

increased doping, resulting in a smaller e and hence a smaller signal term,

gives a larger idler voltage. In short, increased doping should result in a

larger voltage along the line due to increased resistance at constant

current. Turned around, at constant voltage increased doping results in

increased resistance hence decreased current. Simply stated, the tolerance

-24-
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of an irregularly doped trans-polyacetylene chain is that of a line with

resistances of various values in series.

Considering the problem from a more basic point of view, Eq. (20) p

above, is of the same form as:

3X3+ ' a-2 a (34)

which is Eq. (10) of section II. There, the demonstration by Pitaevskii

(1959) was mentioned that for a system such as this, the change of a complex

function T with time is described by the equation: ih3T/3t=L, where L is a

nonlinear operator. As the second variable increases, the anti-Hermitian

part of L becomes dominant (as compared with the Hermitian). In such an

event, the equation which describes the polymer chain goes from Schrodinger

type to diffusive type (Pitaevskii, 1959, 1961; Usui, 1969). Thus, the

effect of an increase in doping, beyond a certain level discussed below, is

*an increase in Schr~dinger type behavior, the effect of a decrease in

doping, below this level, is to increase again diffusive type behavior. For

a room temperature type conductor which is uniformly and ideally doped, we I
could obtain the same effect over time of nonuniform doping by a temperature

fluctuation which resulted in a variation in the ratio of Schrodinger and
J

diffusive type behavior. When there is behavior described only by a

Schrodinger type equation, there may be a trapped polaron, but there is no 4

conduction beyond the length considered.

VI. OHM'S AND KIRCHOFF'S LAWS

In recapitulation: in a polymer chain of monomer length, dx, there can

be either order-disorder Schrodinger type behavior or displac've behavior.

In an electrically conducting polymer, the former behavior results in

resistance, the latter, in conductance. These two modes can be related to

the conservation laws: Ohm's law and Kirchoff's law.

-25-
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Halperin, Hohenberg and Ma (1974, 1976) and Hohenberg and Halperin

(1977) have studied the effects of different conservations on the energy and

space integral of the order parameter. The order parameter in (Cli) is or

the pseudo spin (undoped case) or bound charge (doped case), which can

exchange energy with a reservoir that has either an infinite specific heat

or an infinite thermal conductivity. The first case typifies resistance

conduction and the second, decrementless conduction. Energy conservation

can be achieved by choosing the damping constant r appropriately. Four0

cases are then distinguished: (a) 0 not conserved, E not conserved, and r
0

is a constant; (b) conserved, E not conserved, F = - V V; (c) not
0 0

conserved, E conserved,rF is a constant; (d) conserved, E conserved,

F = - X V. In terms of the mechanical analog, conservation of the pseudo0 0

spin corresponds to conservation of : conservation of energy corresponds to

conservation of the applied torque; the constant F corresponds to the

damping coefficient D and moment of inertia M of Table I in section I; thus,

bob. X V indicates a known variation in the size and weight of pendula0 0

bobs.

In the analogy drawn, conservation of 0 will occur only if Kirchoff's

law applies to the system as an adiabatic system. Furthermore, Ohm's law

entails conservation of energy in the system considered adiabatic. The four

cases, A-D may thus be represented in terms of four nonadiabatic circuits

(heavy lines) joined to reservoir circuits in series (lighter lines). The

elements of the circuits consist of a battery, resistances and lead to

ground:

-26-
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A. Mechanical Trans (CH)

1. T junction 1. T junction coupling
coupling to to other fibers
other pendulum unequally doped.
line.

+ _-' 2. T junction 2. T junction coupling

- icoupling to to other fibers of
other elastic unequal excitonic
torque line. coupling.

3. Pendula bob 3. Original fiber
weights on uniformly doped.
original line equal.

B. 1. No T junction 1. No T junction
to other pendulum

+ line.
2. T junction to 2. T Junction to ligand

line offering offering different
elastic torque excitonic inter-
only. action from original

fiber.
T 3. Pendula bob 3. Original fiber non-

weights on uniformly doped.
original line
unequal.

C. Mechanical Trans (CH)x

1. T junction 1. T junction coupling
coupling to other to fibers unequally
pendulum line. doped.

2. No T junction to 2. No T junction to
+,. ,line offering fibers offering

elastic torque. excitonic coupling.
3. Pendula bob 3. Original fiber

weights on uniformly doped.
original line equal.

D. 1. No T junction 1. No T junction
to other pendulum

+ line.
2. No T junction 2. No T junction

to other pendulum
line.

3. Pendulum bob 3. Original fiber
weights on nonuniformly doped.
original line
unequal.

Fig. 9
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This description of trans-polyacetylene only applies to the displacive
mode. This may be defined more accurately by consideration of the following

classical Hamiltonian:

HZ i p + r + Ur 4 )+ 1  J ( - 2 (35)
i 2Mo 2 0 i o i 4 ij ij - I

where the subscripts i and j refer to points on a d-dimensional, simple

cubic lattice with lattice constant unity, Ti is a scalar quantity

describing the displacement of an atom in the ith unit cell, and p=

o dY i/dt is the momentum conjugate to T i" The first term is of the same

form as Eqs. (20) and (34) above. If Iro1/1o)l the transition undergone by

the system is an order-disorder (Schrodinger-like) transition: if

Irot/.o 01, the system undergoes a displacive transition (Hohenberg and

Halperin, 1977). The above description for A, B, C, and D refers to the

displacive transition only.

VII. DYNAMIC FORM FACTOR

Conducting trans-polyacetylene, proteins and DNA with soliton

excitation are in the displacive transition mode, which exhibits unique

attributes. The critical dynamics of such a phase transition is dominated

by: (1) a soft phonon whose frequency decreases as the transition

temperature is approached, and (2) the appearance of a central component

around w=0 in the dynamic form factor (Schneider and Stoll, 1973, 1976,

1978, 1981). This dynamic form factor or spectral density is related to,

and defined by, the characteristic frequency or relaxation time of a mode:

=T Wk) =S(kw= 2O Sf AA(k. t)dt

wAA (k) AAk AA o S (k,t=0) (36)

where the correlation functions are (Schneider and Stoll, 1976):

^ ~k)1 (7
Slk, 0 SAkt=0) SAA(kt), SA(k,t) = (A(-k,0)A(k,t)), (37)

and related to the spectra densities or dynamic form factor by:
2 n-tm

S (k,w) - k t oOmwt S (k,t)dt. (38)
AA S (kt-0) o'o SMA

-28-
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At the present time there is no firmly based analytical technique to

calculate the quantities (36), (37) and (38) for a system evolving according

to Newton's equations (Schneider and Stoll, 1981). These quantities are, p

however, of crucial importance in understanding the excitation spectrum.

Schneider and Stoll (1973) reported that during the temporal development of

*this system clusters form, representing connected cells whose instantaneous

local order parameter has a sign opposite to that expected. These

propagating clusters in two or three dimensions are the equivalent of

soliton propagation in the one-dimensional trans-polyacetylene. For small

wave vectors where the frequency of the cluster waves is small, the damped

cluster waves become overdamped and give rise to the central peak

phenomenon. The central peak half-width is proportional to the inverse

lifetime of the cluster waves and its height is proportional to this

lifetime (Schneider and Stoll, 1976). The behavior of these clusters is

consistent with the universality hypothesis for structural phase

transitions. The prediction may be made, then, that (a) neutron scattering

will detect a central component at w=O in the dynamic form factor in the

case of polymers excited to soliton propagation; and (b) that the dynamics

of such polymers obey the universality hypothesis, if soliton propagation

occurs.

This development can be placed in the context of the thrust of sections

I-III. Iwamatsu and Onodera (1977) have derived an exact expression for the

dynamical structure factor within the framework of classical statistical

mechanics. These investigators commence with an equation analogous to Eq.

(20):

H = M j2 + Ax4 + Bxz, (39)

2 -29-
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where M is the mass of the oscillator, x is the displacement of the

oscillator from the origin or normal coordinate of a particular mode, B

represents the coefficient of harmonic restoring force and A represents the

contribution of anharmonicity. The anharmonic potential Y(x) - Ax4 + Bx1

has one or two minima depending on the sign of B:

2 VWi) 3V(X)
8<0 8>0

-2 -

- 0
-2 -2

Fig. 10

*, However, the results obtained can be generalized to a nonlinear oscillator

moving in a quite general potential (Matsubara, 1972), for example:

V E3

Fig. 11 E

An equivalence between Eq. (39) and Eq. (20) is obtained for: a=B/A,

bu'Miz/2A, B=aA, and the energy E is in units of B2/4A = a2A/4. In the case

of E<O (BO) the motion of the oscillator is confined within one of two

wells and the solution is the Jacobian elliptic function (Onodera, 1970):

x(t) = adn(Q2 t - dn-1(x/a)) (40)

where S = (1+E)1/4. The fundamental frequency of oscillation is:o
,

"(E) &o (I + I + E) 1 / 1  (41)
21(k) K(k) 2

where K(k) is the complete elliptic integral of the first kind. The

dependence of (E) on the energy E is (Iwamatsu and Onodera, 1977):

0 2 B E

2 4 0 2 3

Fig. 12
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The degree of anharmonicity is given by the modulus k:

kzm 1/2 (1- ,B 0,(

/I+E (42a)

S(1+E)-/2 (42b)

and the amplitude of harmonic oscillation and anharmonic oscillation is:

a2 
- 2("i +E- sgnB), B > 0, (43a)

a2 - 2(I + rlI+-E), B < 0, (43b)

a.. = 2 ( - 'kk ) . (43c)

The oscillation amplitude versus energy for two wells is:

1~0

8. 3S.C -

Fig. 13

The dynamic structure factor S(k,w) is:

S(k,w) = S1 (k,w)/Z, for single-minimum potential case (44a)

S(kw) - -1 (kw+2S2 (kv) for the double-minimum potential case (44b)
z1+ 2Z 2

where Z= dEe /I(E)T

S (k,w) = foo dEe-E/TZ I1( (k,E)12 -..L1 o nm- 1 S(E)n

L1 (k,E) is the Fourier coefficient of the periodic function exp(ikacno t)
n

or

1 T(E)eikacn2 t,-inR(E)tdt,
1I (k,E)=T--E) e o

3, n -E/T
s (k,w) =°_ dEe-  E (k,E)lz - (w--n(E)),21n ='.002 S1(E)"

z - f° dEeET and2 -1 n(E)an

(k,E) is the Fourier coefficient of the periodic function exp(ikadn2 t)
n

or

CE2 (k,E) -)1 T(E) eikadn t e-inR(E)tdt
2 T(E) 0n

-31-
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It follows from these expressions that I lnl and I 2 have local maxima

when the transferred wavelength X=2n/k or its positive integer multiples, is

nearly equal to the oscillation amplitude, i.e., when:

ka or kal - a (2p-1), (p=1,2,...). (45)
2

This means that particular oscillations that have a oscillation amplitude

comparable with the transferred (transmitted) wavelength (or positive

multiples thereof) may resonate with a perturbation offered by a neutron

beam, i.e., inelastic neutron scattering is a possible investigative tool.

This has, indeed, been demonstrated for SrTiO3 , KMnF3 and KTaO3 (Shirane,

1974). The expectation is that trans-polyacetylene will demonstrate similar

scattering.

The dynamic structural phase transition accompanied by the softening

(i.e., by acting as pump) of a particular mode of lattice vibrations is

shown in the following example (Iwamatsu and Onodera, 1977):

0.5 )

(a) k2 - 500 T D-W FACTOR
-005 0583
.... 05 0149

8<O
(2): /

0 I 2 3 4

Fig. 14

This constitutes the strongest piece of evidence that soliton propagation

for the (CH) type of polymers is pumped by a phonon mode with phonon-
x

exciton coupling as stated above.

The question of tolerance in soliton propagation in an irregularly

doped transpolyacetylene line thus may be translated into a calculation of

the dynamic form factor for a particular nonlinear oscillator moving in a

general potential at a particular dx on the line.

-32-
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VIII. NECESSARY AND SUFFICIENT CONDITIONS FOR SOLITON PROPAGATION

One may ask what is so special about organic conductors? Other systems

undergo phase transitions. The answer is that those which do not conduct,

do not, at the critical temperature, become displacive. From the point of

view of that most basic of theories: fluctuation-dissipation theory, a

simple answer is that when the vibrational wave vector becomes larger than

the correlation length, displacement occurs. It is as if the vibrational

cup runneth over (to become a pump for excitonic coupling). For (CH) typex

of polymers, this can only occur when the energy of the normal mode of the

vibrational levels within the electronic potential well becomes a magnitude

that phonon-excitonic lateral coupling is possible. Parametric excitation

then results, which is describable after translation, by Eqs. (19) and (24).

The vibrational normal mode acts as a pump to the exciton as signal and the

vibrational normal mode of the neighboring well as idler. In the pendulum

analogy, the vibrational energy levels correspond to applied torque, in the

long Josephson junction, to the applied current. The excitonic coupling

corresponds in the pendulum analogy to the torsion-bar spring constant, and

in the long Josephson junction to /2nL. The analysis of the previous
0

section thus extends the pendulum analogy to a consideration of the

resultant effect of vibrational fluctuations in the applied torque.

The dynamics of fluctuations in a critical region is dominated by the

role played by exchange of energy between the different hydrodynamic (long-

wavelength) motions and the thermal reservoir (short-wavelength motions).

For a small deviation from equilibrium, the rate of change of is

"" proportional to:

' " Z (46)

-33-,
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where r is a kinetic coefficient. As before, the ordering field is of the

form:

F f[1 acZ + 1 X 4 + I C() - hP]dnx, (47)
2 4 2

and thus the equation of motion (46) has the form with c=1 and a=T

(Patashinskii and Pokrovskii, 1979; Eilenberger, 1981):

1 - -V + T + _-h (48)
r at

Eq. (48) describes the situation depicted in Fig. 9D of section VI for which

@ is conserved, E is conserved and X = - V
0 0

For the case of A (0 and E are not conserved and I" is a constant), Eq.0

(46) is:

1-"T = Co _ V2 + 4g 0P) + h (49)
r at

For the case of B (0 is conserved, E is not conserved and 0 = - 7 7),
0 0

Eq. (46) is:

+ 0, (50)at
where the flux is defined: = oV(f e-VH/64) and f (x,t) is force0 eotr ext

externally applied.

For the case C (0 is not conserved, E is conserved and r" is a
0

constant), Eq. (47) is (Patashinskii and Pokrovskii, 1979):

Ow + + ()+ gO' + + 1 O  
2 ]dx (51)

2~ 0l 2 o r j ;

where two independent fields and c are postulated obeying:

at . - r L + h( ,t), (52a)

-- 2 = 72 + T (),t). (52b)
at o

The case generalized to two fields 1 and @2P where 1 is an m-component

field and t2 is an n-component field is:
fddx 1x((T + T22)2 + 1 (@1 + + (53)

gl 1 2
) 2 + g2 (@2

2 )2 + g12  
2
2
]
.

-34-
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Such a system has two phase transitions for which the renormalization group
'p.*

equations in four space are (Patashinskii and Pokrovskii, 1979):

dal = -4(m+8)g -g

"2 = -4(n+8)g2
1 - mg12

2, (54)

d-12 = -4((m+2 )g + (n+2)g2 ) 8g 2d =-12 1m2g 2 g12"

This analysis also gives a relation to the susceptibility . Returning to

Eqs. (46) and (47), we obtain the form:

r=-r(a + bO - CV zh). (55)

If p is close to the equilibrium value jo, this equation can be linearized

(= o + 6):

1 6$ _ cV2 + =. (56)
'p.X

Changing to the Fourier components:
- d

= 5 (x) e-iq.xd xS (q) = ,(57)

We see that their relaxation time depends on q:

t-1 (q) = r/X(q). (58)c

and the susceptibility for a given q is determined by the relation

(Patashinskii and Pokrovskii, 1979):

x-'(q) = X-(O) + cq1 .  (59)

Could, then, any arbitrary polymer system exhibit soliton propagation?

Only if it has the requisite hydrodynamic vibrational and relaxational modes

which occurs when the wavenumber, q, and frequencies,w, of the hydrodynamic

vibrational and relaxational motions are:

q << 1/r , (60)c

W >> 1/t,

where r is the static correlation length and t is the relaxation time.
c c

If, then, we divide a trans-polyacetylene chain into cells with linear
dxw

dimensions dx << r , and stipulate that in each of these cells the total

-35-

r~,

.. . . . . .. . .- - - -- - - - - -



* .- ,-NADC-83074-60

order parameter varies with time, the characteristic time t(dx) has a well

defined scaling dimension dt:

t(dx) - dx- d r, (61a)

and the inverse w(dx) = t-1(dx) is the characteristic frequency of a

fluctuation of size dx (i.e. of the size of one monomer of (CH) . For a
x

q )> 1/rc i.e., not the hydrodynamic but the fluctuational mode, the

dispersion of the fluctuational mode is:

-dt
w -q (61b)

Location of the hydrodynamic (both vibrational and relaxational modes) and

the fluctuational mode is shown below (after Patashinskii and Pokrovskii,

1979):

q

FLUCTUATIONAL
MODE

44

VIBRATIONAL THERMAL CONDUCTION3MODES (RELAXATIONAL MODES)

0
Fig. 15

The hydrodynamic modes, the vibrational and relaxational, are associated

with the transport of additive conserved quantities such as spin and

electric charge. In the case of the vibrational mode, there is almost no

dissipation, so case D above, belongs to this category as does a single line

of trans-polyacetylene. In the case of the relaxational mode fluxes are

" proportional to the gradients of hydrodynamic quantities, and cases A, B,

and C above, belong to this category.
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IX. CHANGING AND INCOMPLETE DEGENERACY

a. Introduction

Trans-polyacetylene, (CH)x , is electrically conducting and the

underlying mechanism mediating this conduction is thought to be due to the

presence of dynamic force relations describable by the mathematical entity

of the soliton (Meeger and MacDiarmid, 1981). There are a number of

current-voltage relations reported for (CH) which show a quadraticx

dependence of current on the voltage (Shirakawa et al., 1978; Park et al.,

1980; Epstein et al., 1980; Roland et al., 1980; Gould et al., 1981; Moses

et al., 1981; Chiang and Franklin, 1981; Yamamoto et al., 1980) (cf. Figure

1). With the dopant concentration y > 10- 2 the EPR signal is significantly

reduced from that of the undoped (and electrically nonconducting) trans-

(CH) ; and for y > 2 x 10-2 the signal vanishes (Ikehata et al., 1980;

Chien et al., 1982), indicating that the dopant binds to free electrons

providing the conditions for electron-free, charged excitation (soliton)

propagation. This doping is, however, not expected to be uniform throughout

any (CH)x chain.

There have been a considerable number of theoretical treatments of

soliton propagation in (CH) (Su et al., 1979, 1980; Kivelson, 1981a,b). A

different point of view is considered here permitted by the NMR observations

of Nechtschein et al (1980) on changes in the proton relaxation rate upon

doping of (CH) and by Chen et al., (1978) that doping adds to the double
x

bond and at the highest concentration results in the formation of a

substituted polyethylene. These observations suggest that the doping

process results in a competition between the dopant and the hydrogen (state

of resonance) for a carbon bond.

-37-
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trans-CH)x

297K

10- 5  250K

5., 200K
10-6 -

I0- 7  
140 K

10-8 -

io-9 1 I
1.0 10 100 1o00

APPLIED VOLTAGE (VOLTS)

Fig. 16. Current-voltage characteristics of trans-(CH)
at various temperatures. From (Yamomoto et at.,
1980).

As electrical conductivity in (CH)x is dependent upon this doping,

considered nonuniform, the possible reasons are examined here for the

quadratic current-voltage relations in trans-(CH) using a soliton charge

carrying mechanism based on the anharmonic oscillator model (Chen et al.,

1978).

b. Anharmonic Oscillator Model

The anharmonic oscillator model is based on the equation of motion

for a monomer of the general form (Bruce, 1978; Bruce and Cowley, 1980):

x + A + C - 0, (62a)

where x is the B position of the carbon bond and € is a configurational

potential (Figure 2), and for coupling to 2d immediate neighbors:

EW - IAl /4B is the depth of the local potential, (62b)

EB - CIAI/Bd is the representative bond eergy, (62c)

-38-
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defining a constant h=EW/E (62d)
WB

For hW1 only localized transitions occur, but for h<<1 a displacive

transition (Bruce and Cowley, 1980; Murata, 1975; Aubrey, 1975, 1976;

-I.i

Fig. 17
.4!

McMillan, 1976; Hohenberg and Halperin, 1977; Halperin, Hohenberg and Ma,

1974; Halperin, Hohenberg and Ma, 1976) results in an incommensurate phase

domain wall diffusion (soliton propagation).

To describe a propagating transition in a chain of monomers of the

type depicted in Figure 17, the transition becomes displacive (Schneider and

Stoll, 1973, 1975, 1976, 1978) (h«<), resulting in domain wall diffusion.

The potential energy of the Hamiltonian description of the process is

(Bruce, 1978; Bruce and Cowley, 1980):
C n.n - (62e)

V" 2_.2Au u(2Z1)I) +(6e

Taking into consideration that the doping process results in the

previously mentioned competition with the hydrogen (state of resonance) for

a carbon bond (Chen et al., 1978), then ideally the doping results in two

-39-
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types of configuration, A and B (Figure 18). In the Figure 18A doping

condition the bond transfer from left

I ! i

H H ,

I - I t

C, C, C

; -. ,C. - C'

Fig 18

to right (effecting a transfer from one isomerized state to the other) is

facilitated, as the dopant provides a stronger electron acceptance in the

isomerized state to be adopted. In the Figure 18B doping condition, on the

other hand, the bond transfer from left to right is less likely, as the

dopant provides a stronger electron acceptance in the isomerized state

already existing. The actual result of doping is more probably the nonideal

forms shown in Figure 19, where the angle X is a pictorial representation

for the degree of resonance interaction of bond I with bond 2 and the depth

of the configurational double potential well (Figure 20).

-40-
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It is a consequence of the anharmonic oscillator model that any of

the joined monomer segments shown in Figure 19 may be represented as a

trajectory over the a,b surface representation of the monomer element

dynamics described by Eq. (62a). In Figure 21 is shown an arbitrary

semicircular trajectory; and Figure 22 depicts the possible nonuniform

doping of (CH) x and monomer configurational potential wells for a complete

circular trajectory. The particular trajectory is, of course, arbitrary,

but for purposes of exposition the circular trajectory will be used here.

In the case of trajectory 1 -8, at each of the 8 monomer sites and for an

increasing applied current to the (CH) chain, the measured voltage, if it

could be measured, would show an initial increase to V and then greatly

diminishing increases after that value. Conversely, for an increasing

applied voltage to the (CH) chain, the measured current, if it could be

measured, would show an initial slow increase until a Al value is reached

and then increase greatly.

U, 0-

a

a)J

i , D N M
D0:

C C C

Fig. 21
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With constant current applied and the resistance and voltage

measured at each monomer location, if such could be measured, the following

relation would then be obtained (Figure 23):

CONSTANT APPLIED CURRENT

Reference 7

Conductance - !AV
#6

Reference Voltage

Fig. 23. Logarithmic representation of AV, 1/AR and constant applied AI
relations of the trajectory of Figure 22. The numbers refer to
the locations in Figures 21 and 22.

For the particular nonuniformly doped chain considered, the monomer current-

voltage relations at each monomer site would be (Figure 24):

231 4 8 75 6

%--

-~ z

hi

cr

APPLIED VOLTAGE

Fig. 24. Current singularities in the nonuniformly doped (CH)x chain for
the locations in Figures 21 and 22.
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There is little hope of measuring such monomer current-voltage

relations presently. However, the task to relate the soliton-mediated

conductivity at each monomer site to the conductivity which may be measured

for a collection of such chains may be approached analytically. For

example, (CH) chains consisting of monomers with less resistance, AR,I

should exhibit more solitons, at equal applied current, than chains with

more such resistance.

It is demonstrated in the next section that relating the current-

voltage quadratic relation problem to the d.c. current singularities of the

long Josephson junction is straightforward, resulting in an explanation for
A.

the current-voltage relations of a collection of nonuniformly doped (CH)
x

chains, as both phenomena are based on the same soliton dynamics.

c. Long Josephson Junction Analogy

The problem of predicting the average voltage for a given applied

current in a nonuniformly doped (C )x chain is directly related to the

explanation of the d.c. current singularities of the long Josephson junction

(Chen et al., 1971; Parmentier, 1978; Parmentier and Costabile, 1978;

Costabile et al., 1978; Costabile et al., 1980; Costabile and Parmentier,
.

i'A 1980) (Figure 25). The fluxon on the long Josephson junction is

mathematically equivalent to a soliton and shares with the (CE) soliton a

common analytical mechanics.

-45-
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I0 I I

8

6

2

"- 0

V (/IV)

Fig. 25. Current-voltage characteristic of a very long Josephson junction

showing zero-field current steps in the presence of an external
magnetic field applied transversely across the junction. From
Costabile et al., 1980.

The sine-Gordon equation, without dissipative effects for which

the soliton is a solution, is:

2!1 - - t, = siO, (62e)

where 0 is the phase difference between macroscopic quantum wave functions

that characterize two superconductors and is directly analogous to the of

the anharmonic oscillator model. The soliton (fluxon) solution to Equ..1

*| (62e) is (Lamb, 1971):

- 4 tan-(f(x)g(t)), (62f)

-46-
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and f and g are Jacobian elliptic functions defined (Chen et al., 1971;

Parmentier, 1978; Parmentier and Costabile, 1978; Costabile et al., 1978):

di = Af4 + (1 + B)fZ - C, (62 g) (M)di 2
dt Cg4 + Bg2 - A, (62g) (ii)

where A, B and C are arbitrary constants. Taking a = (1+B)/A, b = C/A for

Equ. (i) and a = B/C, b = A/C for (ii), and differentiating, the form of

Equ.(62a) is obtained.

For the case of most interest, that with dissipative effects, we have:

- -C [i + cosfl sin , (62h)3x 3t t

where at and e are constants. This form can be solved by assuming an x and t

dependence of P, e.g.:

= (x - ut) = ( (62i)

where u is a constant propagation velocity.

With a and e related to an external energy source, Equ. (62g) is:

32b- t r (1 + cosoi = in -,(62j)x2  ;t2 t9

where r = g 0 /21rC,

E = g /got

Y = I B/I o ,

Cl = 8o . ¢ "VC o/2nIo )1/2
10 0 0

and IB is a uniformly distributed current bias for the long Josephson

junction and a current bias for the (CH) chain.I

With this external source dependence, Equ. (62j) has the desired

quadratic current-voltage characteristic with normalized voltage

(Parmentier, 1978):

S(-)1/2 dn [ 1 (1o-)/a(_ ); k], (62k)
rk 2r k 2Fu2 0

where is an arbitrary constant;
0

U ( - ut) ;

and dn [;] represents a Jacobian elliptic function (Lamb, 1971) of modulus
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k, 0<k<1;

k (= Y 1 /2 (621)
Y +YO(6)

Yo = 2rua [(1-u2)2 + 4 f2u4]1/Z" (62m)

Because

( ) = 2nK(k), (62n)

where Z is the length of the long Josephson junction (or (CH)x chain;

K(k) is the complete elliptic integral of the first kind; and n is the

number of solitons (fluxons contained on it), the average value of voltage,

V, is:

<v> nu/Z. (62o)

As the number of solitons, n, will vary from monomer to monomer at constant

applied current, depending on the doping conditions, the average <n> is

substituted for n and:

<v>= <n>u/z. (62p)

The current-voltage relations calculated with Equ. (62p) are shown in

Figure 26. The similarity between the relations shown in Figure 26, the

Ch
SI, II I3 I! 1 II I

*1. C C C C

0.5

0 0.5 1.0 1.5 2.0I -d 1 10

Fig. 26. Current-voltage characteristics for n fluxon oscillations. From
Parmentier, 1978. Fluxon oscillations move to one end of a long
Josephson junction are reflected as an antifluxon and move to the
other end, etc. (Fulton and Dynes, 1973). Such oscillations can
adsorb power from an external source of bias current. Costabile
et al. (1978) have also made similar calculations using an

approximation scheme rather than an exact solution with periodic

boundary conditions.
-48-
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putative relations of Figure 24 and the experimentally obtained relations of

Figure 16, indicate that a possible explanation of t1.c n~nlinearity of

Figure 16 is obtained.

X. THE IMPORTANCE OF SYMMETRY BREAKING

In previous sections, the precise underlying dynamics of each link in

the polyacetylene chain was addressed. The behavior of such a one-

dimensional conductor in T-junction form was described (section I-III) and
4-!

the effect of uneven doping and the application of Ohm's and Kirchoff's laws

to these systems predicted (sections IV-IX).

In this section, two facets of the one-dimensional organic conductor

problem are addressed. The first is a description of how the conditions for

the underlying dynamics of soliton propagation may arise, and we show that

these conditions are caused by broken symmetry, placing the problem squarely

in the frame of modern critical phenomena theory.

The description of this first facet leads to a description of the

second, which is the relation of our present description of every link in

the polyacetylene chain to the more manageable Hubbard model (Hubbard, 1963,

1964a,b) and its developed form (Economou, White and DeMarco, 1978: White

and Economou, 1978: DeMarco, Economou and White, 1978). In achieving a

description of the second facet of the underlying dynamics, the problem is

placed in the frame of current correlation techniques for describing

conduction and magnetism based on the double-time Green function method of

Zubarov (1960) (section XI below). In effect, this reduces the nonlinear

many-body problem addressed in sections I-IX to a one-body one.

In reducing the many-body problem to one-body (Hubbard) form, we see

advantages and disadvantages. One advantage is the obtainment of a more

manageable Hamiltonian and in relating this development to mainstream

-49-
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theories of conduction. A disadvantage, however, is that the underlying

dynamics is introduced somewhat artifically to the essentially static one-

body description with a resulting decrease in physical insight. Thus, we

recommend that only the sections I-IX and present, taken together, achieve

an in depth description of the underlying dynamics.

The following is a general description of symmetry breaking at both the

micro and macrophysical levels beginning with a description of polymer

," monomer described by the Schrodinger-like equation (20) of section IV:

fa + af + b = 0, (62b)
0 0

where fo may be taken as the midfrequency of a signal equivalent to electron

momentum in the analysis of states. The procedure is to demonstrate that a

system described by an equation similar to that of Eq. (62) not only

exhibits two potential minima (isomerization) when the variable, a, is

negative (which is known), but that, more importantly, a negative variable,

a, results in symetry breaking.

In order to achieve this aim, some conclusions are first summarized

before (Barrett, 1977, 1978, 1979a,b.,1980) pertaining to any system

described by an equation similar to Eq. (62).

a. Although never stated as a logical consequence of any deeper

theoretical condition, the fundamental conditions for the valid application

of quantum mechanics are the commutation relations (Dirac, 1967: Heitler,

1954: Schiff, 1973: Louisell, 1973):

q q - qsq = 0, (63)

bps - pspr = 0,

qrps psqr

r L1rs*
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where the operators q and p are canonical coordinates and momenta and r and

s refer to degrees of freedom, r = s. With one degree of freedom, the

commutation relation is:

qp - pq = 4L. (64)

b. The supposition of this commutation relation enables, using the

Schwartz inequality, the following uncertainty condition to be described

involving the numbers, Ap and Aq, defined as standard deviations about p

and q:

Ap Aq = 1/2&. (65)

Because, just as readily, the following comutation relation might be

supposed involving the operators, Ap and Aq:

AqAp - ApAq = iA, (66)

then we arrive by similar reasoning at the uncertainty relation for the

numbers, p and q (Barrett, 1977):

p-q = 1/2A, (67)

thereby defining the quantum condition as a four-parameter condition in

which the concept of number or operator is considered relative.

C. Because of logic used to solve the Schr'dinger equation and to

define the energy eigenfunctions of states of the harmonic oscillator could

as easily, and in the long run more appropriately, define signals produced

by a harmonic oscillator (i.e., the uncertainty relations might be derived

as a condition for the solution of a harmonic oscillator - this is admitted

as possible in some texts, e.g., (Schiff, 1973, p. 73), we have then the

possibility of more general relations.

Because: (i) In the root-mean-square deviation from the mean, or

expectation value, (Ap)z = <(p-<p>)2> = <p2> - <p>2

(Aq)2 = <(q-<q>)> = <qz> -
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and (ii) as <p> = - 0 for any harmonic oscillator wave

function, then (i) permits us to write:

(Ap)2 = <p>Z,

(Aq). <q>2.

(iii) If fluctuations are now introduced, not to p and q in the

sense of defining Ap and Aq, but to Ap and Aq in the sense of defining p and

q, then, in analogy to (i):

(p)2 = <Ap - <Ap>)2> - <Ap2> - <Ap>S ,

(q)2 - <Aq - <Aq>)2> - <Aq2 > - <Aq>2,

i.e., if p and q are thought of as types of carrier signals and Ap and Aq as

types of modulating envelopes of those signals, then (i) above describes

fluctuations in the carrier signals and here in (iii), fluctuations in the

modulating envelopes are described.

(iv) Thus, in analogy to (ii): <Ap> = <Aq> 0 for any modulated

harmonic oscillator, and (iii) permits us to write:

(p)2 = <Ap>2

(q)2 = <Aq>2.

We then have the two uncertainty products for the modulated harmonic

oscillator:

Ap.Aq = 1/2(2n + 1)1: p'q = 1/2(2n + 1)9i, n = 0, 1, 2, ... (68)

The physical significance of this viewpoint is that an uncertainty

relation may arise either from inherent fluctuations in the oscillator or in

fluctuations in the external modulation of the oscillator.

d. With an emphasis on the signal-like character of the uncertainty

products, which in acoustics can be used as signals, it is easier to treat

fo or signal midfrequency, instead of p, Af, or signal bandwidth, instead

of Ap, to, or signal midperiod, instead of q, and At, or signal duration,

instead of Aq.
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This permits the following relation for quantal signals in a way

identical to the uncertainty product derivation of c:

f . to = 1/2c(2n + 1), n = 0, 1, 2, ... , (69a)

Af. At = 1/2c(2n + 1), n = 0, 1, 2, .... (69b)

Af = f /f, At = 4to, for n 0, (69)

Af.At/f .t = 1, (69d)
0 0

i.e., a constant magnetic field influence is assumed (constant modulation),

n is the angular momentum quantum number, c = for wave optics or reception

by a radially circulating receiver, and c = 1 for wave acoustics o a

linearly acting receiver.

e. The wave packet or quantal signal for light and sound with a 0

is:

s(t) = exp[-(lI/c)(t - to)llexp[i2nfwt] in the time domain, (70a)

S(f) = exp[-c(ir)2(f - fo)2]exp[-i2ntof] in the frequency domain. (7b)

In general, the signals are:

s(t) = D (t)cos(180t/ (2n + 1))° , n = 0, 1, 2, ... , (71)

where the D (t) are modified Weber-Hermite polynominals:

D (t) = exp[l-1/2c)tZ]H n(t), n = 0, 1, 2, ... (72)

n
and the Hn (t) are Hermite polynomials:

Hn(t) = (l)nexp[t]nexp[t 2 ]/3 tn
, n 0, 1, 2, ... (73)n

The equations expressed in Eqs. (69) are the solutions to the wave

amplitude equation for the harmonic oscillator system (i.e., to

Schrodinger's equation). A formally similar equation to the Schi6dinger

equation relates all four, but only those four, signal parameters has been

shown to be (Barrett, 1977):

3
f0  (-4Af1At/to)f ° + (-16Af

2/t) = 0, (74)
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This, in turn, is example of the well-studied equation for a harmonic

oscillator:

f 3 + af + b i0, (75)0 0

or the differential of:

= 1/4f + 1/2af 0 + bf, (76)O 0

where is a potential function.

f. In Figs. 28 and 29 curves of c vs. f are plotted, demonstrating0

that, within a certain range of a = 4Af2At/t and b = -16Af2/t values, two
0 0

potential minima are available, and the quantum effect is inseparable from

the existence of an area of instability defined by the presence of more than

one potential minimum.

bee b 10

do 0 0

8T
~Do/

be -10 69•

Figure 28
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Here, the intention is to demonstrate that these two potential

*minima define the location of two fixed points: the Gaussian and a

nontrivial fixed point, where a fixed point is defined in the terms of

renormalization group theory (Pfeuty and Toulouse, 1977: Wilson, 1971) as a

- point in parameter space which by itself constitutes its own entire

trajectory. To such a point there corresponds a state of the system

invariant under the operations of the renormalization group and which has a

correlation length either infinite or zero (Pfeuty and Toulouse, p. 13).

(i). Arauzent

In the vicinity of a transition point between a stable region

(defined by one fixed point, the Gaussian) and an unstable region (defined,

as above, by two fixed points, one of which is the Gaussian), there are

fluctuations which govern the behavior of the system. Close to the critical

point quantities may be observed which obey power laws with exponents that

are not integers. For example, just below T, the critical temperature, the

order parameter (f ) begins by falling proportionately to (T - T) , while
o c

just above T the specific heat, for instance, is proportional to (T - Tc) o

the correlation length to (T ,T and the susceptibility, in the case of a

magnetic system, to (T - T )-Y The exponents Cc, P, V, y, and others are

defined in the vicinity of a given critical point, and are called critical

exponents, These critical exponents obey some simple relations called scaling

laws, which have a degree of universality. In the case of a magnetic system,

the scaling laws are satisfied automatically if the singular part of the free

energy G(T - Tc, H) and the correlation function r(T - T, R ) are homogeneous

functions of their arguments.

In the case of a magnetic system, for the equation of state

there exists a law of corresponding states interrelating the order parameter.
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U, its conjugate field, H, and the temperature, (T - T = v) by an equation ofc

the form (Stanley, 1980):

H/M = h(T/M1 / p) (77)

In the case of the quantal system defined by Equs. (69), this

is:

t /f htAt/fol/P) (78)
00 0

. With 6 = 1 and substituting c = 1 for h, the relations expressed by Equs. (69)

and (78) give a value for P of log(f )/log(4fo), e.g. 0.6 for fo = 8. In the
0 00

case of the relations expressed by Equs. (1), = log(p)/log(4hp).

In terms of a modulated harmonic oscillator, Equ. (78)

describes the relation of the midperiod of oscillation (f ), the midperiod of

oscillation (t ), and the temporal window of modulation (t), for the case of

the minimum quantum (n = 0, Equ. (69) at different Ps (- log(fo)/log(4fo)) or

different f 0s. A similar description holds for p and Ap for the case of the

minimum quantum (n = 0, Equ. (68)) and different p's.

From Widom's scaling law (Pfenty and Toulouse, 1977, p. 22):

y = (6 - 1), (79)

we have, for the present system, y = 0. From Rushbrooke's scaling law:

a + 2P + y - 2, (80)

we obtain a = 0.8 for fo = 8, or a = -2log(f 0 )/1og(4f generally, and from

Fisher's scaling law:

y= (2 - n)Ov, (81)

either v = 0 or n = 2. As Josephson's scaling law:

vd = 2 -a (82)
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must be satisfied, n = 2. With d = 4, which corresponds to a = 0 (of Equ.

(62): f 3 + af + b = 0), Equ. (82) gives v = 0.3 for f0 = 8, or V=

0 01/21og(fo0)/log(4f o ) generally. Within the area of instability, then, a < 0, d

< 4 and N)> 1/21og(f /log(4fo), for the quantal system considered with the
0 0

correlation length, 4, defined:

(83)

Josephson's law, vd = 2 - a, links the space dimensionality,

d, the exponent, a, referring to a thermodynamic potential and the exponent V

referring to a correlation function. As d decreases through the value d f 4,

one moves from a regime (d > 4, a > 0), where Josephson's law fails, to

another regime (d < 4, a < 0), where it holds. The mathematical basis for

this lies in the simple identity, -a = 4 - d (where a is defined in Equ. (62),

or, as is generally given, in the expansion parameter e = 4-d (Hohenberg and

Halperin, 1977), i.e., a = -a.

The relation of the space dimensionality d to the parameter a

of Equ. (74) is seen clearly in Fig. 30 and in recent developments in

renormalization group methods (as reviewed in (Hohenberg and Halperin, 1977).

These methods include 1) reduction of the number of degrees of freedom, 2)

restoration of the spatial density of degrees of freedom to its initial value,

and 3) renormalization of spin magnitude, if appropriate to do so. Referring

to Fig. 31, a comparison of two systems, 1 and 2, can be obtained if a, is

renormalized to equal a2 (for the systems fo + a f + bi i = 1, 2). The two

systems would then be located at the same position along the a axis and

comparisons of the two systems could be made along the f0 and b axes. This

is, then, the essence of the renormalization approach.

If elementary oarticle behavior is considered, then the particle

only exists in the region d < 4, a < 0, due to the energy minimization
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requirement for the solution of a harmonic oscillator given in X(c). To

ask, therefore, whether an elementary particle could exist in the classical

domain (d ) 4, a > 0) is to ask whether the energy minimization requirements

could be disregarded.

A formal analogy can be developed for another example using

the solution to the percolation problem by Fortuin and Kasteleyn (1972). This

application illustrates the generality of the mathematical system generated by

broken symmetry, i.e. the dynamic underlying both the quantum harmonic

oscillator and the percolation problem is formally similar. The percolation

problem considers an infinite lattice whose sites are, at random, either

allowed for forbidden, with a probability, p, that any given site is allowed.

A critical value, pc' is defined so that when p 2 pcP there occurs an

infinitely large cluster of allowed sites and percolation takes place, i.e.,

one can cross the lattice by going successively from one allowed site to a

neighboring allowed site. In the present instance, and also in the case of

ferromagnetism, we let (p - p = (t - to ) = At. Other formal mathematical
* 0

correspondences are:

a. The probability, M, that an allowed site belongs to an

infinite cluster is equivalent to the frequency, fop in the present case, and

to spontaneous magnetization in the ferromagnetic case,

b. The average size of finite clusters is equivalent to the

susceptibility in the ferromagnetic case and will be shown to be unity in the

present case, and

c. The average number, G, of clusters is equivalent to the

free energy in the ferromagnetic case and will be shown to have a value in the

present case when n # 0.
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For the general case expressed by Eqs. (7) and (9), the

average number of signals of size n is:

G(t,n) - t. G(tn) (84)-. t

and the average number of signals having any size is:

G(t) G(t,n). (85)n

Then, the average size of finite signals (susceptibility) is:

X (t) XnG(t,n), (86)n

or:

x(t) )y, (87)

whence we see that for G and X to be other than unity, y = 0 or 6 0 or n

0.

The percolation problem solution also gives:

f - At, (88)
0

which is satisfied by Equ. (69) for p = log(f )/log(2/f ).

We turn now to the role of broken symmetry in the transition

from classical to quantum mechanics. The Ginzburg criterion describes the

existence of a characteristic dimensionality below which fluctuations are so

large that, in the vicinity of the critical point, the self-consistency of the

classical theory of mechanics is destroyed, resulting in a broken symmetry for

certain rotations and the necessity of a quantum mechanical formulation. This

amounts to defining B, the coefficient of the quartic term in the usual

expression for free energy (F = A-M2 + B.M 4 + k(VM)2), as:

B ~ (At)(4 d)/. (89)

On the other hand, we have previously defined the area of

instability (in which two potential minima exist, not one minimum) as

extending from b = +1.3 (cf. Fig. 28), where b is defined in Equs. (75) and

* 3(76) (f + af + b = 0). In the normalized units of Fig. 28, t is 0.147,
0 0
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and for d = 4, 5, 6, 7, 8, ..., we have B = 1, 3, 7, 18.5, 46.3,

To describe the Hamiltonian of a system capable of broken

symmetry, we let At_" r ° (more generally, r - At((1 + At + ...) +

(At) 2(d-2)(1 + At + ...))) and B - u . The system Hamiltonian is then:

H = + 1/2 f (r - ks) f(k) 2 + (90)
0 k < 1/2 o

110 f f(k1)-f(k2)-f(k3)S(k1 + k2 + k3 + k4).
k1,k1,k%,k 4 < 1/2

where a is a unit of length for the system, or lattice spacing. Any

dilatation of this unit of length requires renormalization of the Hamiltonian,

and the parameters r and u renormalize (Wilson, 1971) subject to the0 0

differential equations:

dro 2r + buo(l - ro ), (91a)

duo _u B cu2 , (91b)

where 8 = 4 - d, b - 16(n + 2), and c = 16(n + 8), and s = e , for the

dilatation a - sa. Equs. (91), set to zero, yield two solutions. The first,

(r 0  = u 0  0), corresponds to the Gaussian fixed point, and the second,

(r = u = ) corresponds to the nontrivial fixed point. In the

neighborhood of each fixed point r = r * + 8r and u = u + 6u permitting
0 0 0a0h0 0

the definition of a matrix A for the Gaussian fixed point:
g

2, b
A =( )
£ 0, £

with eigenvalues yl = 2 and Y2 a, and a matrix Ant for the nontrivial fixed

point s:
k b

(2 - cE ), b(l + 2cE

A

nt

0 , -I
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with eigenvalues y 2 and Y2  -e. For the simplest system des-

cribed by Equ. (69), n = o and y, = 2 - e/4 and Y2 = -, in the case of the *1
nontrivial fixed point.

This development permits an important analogy between wave

mechanics and lattice behavior i.e., the underlying dynamics of these two

distinct physical phenomena have a similar mathematical form. The quantum

"" system we are considering is based on an expansion in terms of n, the

angular momentum quantum number (cf. Equs. (69), (70), (71), and (72)).

"- Another way of considering this description is to identify n with a lattice

. symmetry index or degree of isotropy (Fisher, 1974). In this alternative

description, we commence with a lattice with sites x populated with spins,

S ", and we suppose the spin vector has n components, i.e., S (S 9),
x x x

- 0, 1, 2, ... n, which enter equally into interactions. The case n = 0

describes the statistics of a self-avoiding walk or polymer chain in solution

(de Gennes, 1972), n = 1 described the uniaxial or Ising model, n 2, the

XY or planar model, and n = 3, the Heisenberg model. The general model is

the eight-vertex model of Baxter (Baxter, 1971). In this case, there are

eight possible different configurations of arrows (spins) at each vertex. If

a given eight-vertex model has a phase transition, then the free energy per

vertex has a branch-point singularity.

The eight-vertex model has been shown to be equivalent to two

Ising models with nearest neighbor coupling interacting with another via a

four-spin coupling term (Kadanoff and Wegner, 1971: Wilson and Fisher,

1972). For n > 4, a ''biconical'' fixed point describing a tetracritical

" fixed point appears (Nelson, Kisterlitz and Fisher, 1974). An extension to

7% the Weiss model (Weiss, 1907) for ferromagnets is also possible (Reidel and

Wegner, 1969). In this instance, the entropy S per spin depends on the -l
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square of the magnetization:
2 2 2

ro +m L (92)

to obtain:

S S M, Mk4 +* (93)0 2 4

The free energy per spin:

F = E- TS, (94)

where

E = 1/ 2 1 0(mfi + (1- A)mZ), (95)

is differentiated to obtain the equations of state:

a =m l (aT- Io + bTm2) h1 , (96)

IF m ( a T  1 (1 - A) + bTm )  h (97)

For hi, = 0, the paramagnetic region is defined by:

= 0, (98)

and the ferromagnetic region by:

aT- I + bm= O. (99)

On the X-line (Reidel and Wegher, 1969) both conditions described by Equs.

(98) and (99) hold, and

X ( _) 2  (100)

0

where T is the reduced temperature and a2 = a/b.

This development may be extended to include a description of

ferromagnets with a Hamiltonian of cubic symmetry (Aharony, 1973), due to

*i the presence in the Hamiltonian of single ion terms which reflect the

-lattice symmetry, thus breaking the full rotational invariance. For d = 3,

n > 3, a crossover from isotropic (Heisenberg) to characteristic cubic

behavior occurs, and there is an approximation to the behavior of the Fe2+

ion in the hemoglobin molecule. The benefit to be obtained from this

analogy between wave mechanical systems and lattice systems is that the
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physics of the latter predicts phase changes in the former under appropriate

conditions.

The general model may also include the assumption that for

only d - m coordinates is there a contribution to the free energy density,

which is quadratic in the spatial derivatives of the order parameter, f
0

(Hornreich, Luban and Shtrikman, 1975). In this case, the classical-quantum

mechanical boundary is given by d = 4 + m/2. However, for clarity's and

simplicity's sake, we shall assume that m = 0 here.

ii. Summary of i)

The circumstances giving rise to the conditions described by

Equ. (1) are general and are those of critical phenomena.

The potential, g (Equs. (20), (63) and (76)), the minimiza-

tion of which results in an equation formally equivalent to the Schr'dinger

equation, can, in another formal analogy, be identified with the exchange

energy at the vertex of a lattice. This indicates that the one-dimensional

problem represented by polyacetylene can be generalized to n-dimensions.

The transition point defining the boundary between single and

two state behavior is then quite definite: the boundary is at d = 4. For

d > 4, we have single states, and for d < 4, we have two states due to the

breakage of symmetry.

The principal quantum number and angular momentum quantum

number (n) of elementary particle systems are equivalent to the

dimensionality of space (d) and the dimensionality of the spin space (n) for

n-vector spins of the general theory of critical phenomena. Turning this

analogy around: we may use the general theory to indicate the transition

behavior for elementary particle systems, fad a ''Mendeleev's table' may be

constructed based on the d and n parameters. In such a table, an electron
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system would be mapped by the principal quantum number (d) and the orbital

angular momentum quantum number (n). Such tables have already been

constructed for lattice systems (Fisher, 1974).

iii. Application

The above topological analysis may be extended to random

functions in general of the anharmonic oscillator, indicating the relation of

fluctuation phenomena .o wave events in general.

In the sections above, f corresponds with the momentum, p,

2
and thus for the harmonic oscillator, f corresponds to coordinate x

2.because E - hf for quantal signals, and E = 1/2kx in the case of the

harmonic oscillator.

Commencing with the observation that when a particle of mass

3
m and coordinate x acts under the influence of force F(x) - x - ax - b,

the equation of motion for such an object is:

mi - i = -x 3 - ax - b, (101)

where -q is a damping constant, and a and b are proportionality constants.

For convenience, we define a unit mass, i.e., m = 1, and denote a/m and b/m

by a and b0 , respectively.

The potential energy of the particle is given by:

V(x) = 1/4x 4 + 1/2a x2 + box, (102)

0 0

as F(x) =-8V/ax. Considering now the case of local stability, we set x = x

= 0, or

x 3 + a x + b =0. (103)
0 0

The positions of stability, which are determined by the parameters

a and b , are thus obtained from Equ. (103).
0 0
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If b =0, and a < 0, the particle has distinct stable

*.positions at either x + Y'aor x 2= -a as shown in Fig. 30. Ifa

is changed from a 0 < 0 to a 0 0, the two stable positions merge into one at

x =0.
3
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Mathematically, a stable position satisfies the condition of

minimum potential energy. For the stable positions xI and x2 and b = 0,

that minimum would be V(x1,2) 1/4a2, and in the case of a particle

confined to the area of instability, 8V2/ax2 > 0, and the particle's

position would be defined by x >±/-i/3.

We assume now that the particle is located near the origin

and its fluctuations into either position, x1 and x2, describable by a

random impulse train:

{() -- Z(-l)le 6(t - t'), (104)

i=1 i

where a. are the magnitudes, I is either zero or one, and 6(t - t) is the1

Dirac delta function. The correlation function of the impulse is then:

<Q(t) 4(t,> = 8o(t - t'), (105)

where c is the magnitude of the impulse at (t - t'), the mean time between

impulses. It follows that the probability of finding the particle between

coordinate x and x + dx at time t is described by the stochastic equation

(Sveshnikov, 1968):

o

#C (X) j=1 jl(-8x) [k. (x)f(x)]. (106)

Since we are interested here in the simple case of continuous

Markov processes, we set k = k = ... = 0, and obtain from Equ. (106) the

Fokker-Planck equation:

aa

#(x) = -ax [k (x)#(x) + 1/2 2 [k2(x)4(x)], (107)
ax

where k( x), k2 (x) are the drift coefficient and the diffusion coefficient

respectively. In the present case, k1 (x) is the force defined:
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OV
k1 () -x3  a = - (108)

and the magnitude of the impulse, k2 (x), is:

k2 (x) = co. (109)

We note in passing that this Fokker-Planck equation has been

related to birth-and-death decriptions of fluctuations (Nicolis and

Prigogine, 1977: Nitzan, Ortoleva, Deutch nd Ross, 1973).

A . We now impose the assumption that the distribution function

is normalizable and vanishes at infinity. With the particle in the

stationary state, -(x) = 0, and substituting Equs. (108) and (109) into

(107), we may solve for with respect to this stationary state and obtain:

(x) = Nexp (2 (1/4x4 + 1/2a0x2 + box)), (110)

where N is a normalization constant.

In the case of b0 = 0, the distribution function, -, can be

expressed by a Gaussian wave form:

4 4 x) N exp [ - x - an) 2 , (1ii)
0 2co
an22

where n0 = Nexp (2c-) and a0 and c are mean and variance, respectively.

Equ. (111) may now be compared with the previous result (Equs. (69)) if the

following replacements are made:

x12  f, a0 - /a f0 and 1/2c0  c(W) 2 .

Transferring the distribution function, 4(x), into the

frequency domain gives:

2S(f) = no exp(-c(n) (f - f )2), (112)

previously obtained (Equ. (71)).

Considering now a particle fluctuating from stable

coordinates x to a new coordinate xs + 6x, then if the higher orders of Sx

are discarded, a new distribution function at x + 8x may be calculated froms

Equ. (110):
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f(x + 6x) N exp[-( '- (1/4x 4  + 1/2a x2 + b x) (113)0.. c o0c s 0 s 0 s

al+ -"(3x2 + a ) at~z)].
C 0

0

The particle is then confined to a new position of

instability described by the second term of the exponent in Equ. (13):

-(3x2 + ao)O. On the other hand, from the V(x), x relation, we know that-'. - 02 03

= 3x' + ao . By imposing the condition of instability,- x: + aoX +8X2  s o ax s 0

b = 0, we arrive at the equation for the cusp in the ao, b plane: 4a° +0 0 0
27b2 = 0, as shown in Fig. 31. The particle may fluctuate on either the0

positive or negative side of the x axis and along the a axis to ao = 0. If
0

the restriction b0 = 0 is lifted, the particle may fluctuate on either side
00

of the b0 axis and along the a axis to a = 0.

The circumstance of isomerization in transpolyacetylene (or

isomerization in general) is thus related to symmetry breaking in critical

"- phenomena. This is a necessary, but insufficient, condition for dynamic

propagation to occur. A further condition is that an energy gap be created

between the isomerized states. The creation of this gap was addressed by

Hubbard (1963, 1964a,b).

.- 0
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-a=3x 2., x

00

b0

3 34a o + 27b =0
0 0

x 3+a x+b =0

0 0

Fig. 31 Fluctuation limits of particle: in the x, b plane (x + a x + bo:

a ( 0: b < ± 1.31): in the x, a plane (-a + 3x2): and in the a, boplane72a<3 +:2 2).
0 0

XI THE HUBBARD MODEL

In sections I - IX soliton propagation was related to exciton-phonon

coupling in a one-dimensional system with incommensuration. The
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incommensuration permitted an energy gap to develop which established the

conditions for parametric excitation diffusion. The soliton propagation was

treated microscopically, i.e., each link in the one-dimensional chain was

allocated a pump, signal and idler.

Although this approach is necessary and provides physical insight, a

macroscopic picture provides empirically a simpler treatment. In essence,

this means the replacement of a many-body system by a system of independent

quasiparticles moving in a properly determined field which may be random

(Economou, White and DeMarco, 1978). Just as Hubbard proposed substituting

for a partly filled d-band of noninteracting electrons the total spin of the

atom based on correlated electron motions, so one may substitute for the

individual monomer units of a one-dimensional conductor, a macroscopic

picture of the whole chain, or at least chain parts - if correlations of

exciton-phonon coupling are strong enough. Although one may still suppose

the microscopic soliton to move from monomer to monomer as described in

section I - IX, its motion may be correlated in such a manner as to give

properties of a macroscopic theory. Such correlations are describable in

terms of Zubarev's (1960) Green's function technique.

Hubbard's model may be viewed quite generally. Just as Hubbard had in

mind the case of d-electrons, yet addressed the case of an s-band having two

states per atom, so we shall keep in mind the two isomerized states of

transpolyacetylene, while yet addressing the general case described by

* . Equ. (62b) which is Equ. (20).

.1 The system addressed by Hubbard behaves as though it has two energy

levels TO and T + containing 1 - 1/2n and 1/2n states per atom, respec-
0. 0

tively, where I is the interactiun energy. Here, on the other hand, a
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V% system of two states are addressed, both of energy TO, but for which energy

" I is needed, if it is to pass from one state to the other. This I, then, is

the applied current, I, of Table I of section II or the pumping energy.

S-Given these identifications, there is a direct analogy with the s-band

problem and the results of the previous analysis by Hubbard may be adopted.

Proceeding directly, then, to certain conclusions drawn from the

Hubbard formulation: if P is the density of states of the band structure

(e.g., of the atom or of the whole (CH) chain), and p is the density of
x

states of the microsystems (e.g., the electrons or the (CH)x monomers), then

the function g(E) which transforms the microdensity into the macrodensity,

p(E) = P(g(E)), is (Hubbard, 1963, p. 252):

g(E) +,/ /

/ PROFILEOF P(E)
I, / g(E) E

. . TI.

A/I: / I

E. --I-

kW PROFILE OFp(E)

Figure 32: Typical g(E) curve. From Hubbard, 1964, p. 253.
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By this relation we see that the band is split into two parts by the infinity

n + +
of g(E) at E = T + 1(1 - n ), where c and c. and c. are creation

0T ia C io 1o 1

and destruction operators for electrons - or conformational states in the case

of (CH) - in the state (i,a) c = + 1.

As in the limit, I - 0, g(E) is the straight line AOB, the splitting of

the microdensity of states is due to the perturbation I. This perturbation

thus performs the same function as the Peierls distortion in the (CH) system
x

or the torsion-bar spring constant, K, of Table I in section II.

Some correspondences with the Hubbard formulation may now be indicated. If

(x) are the degenerate wave functions of (CH), , p is a label distinguishing

various degenerate wave functions, c. is the destructive operator for a

soliton in the state p on the monomer labeled i, i.e., for a soliton in the
+

state (x-/R.) where R. is the position vector of monomer i and c. is the
IL - -1 -1 111

corresponding creation operator, then for narrow energy bands the Hamiltonian

is (Hubbard, 1964, p. 240):

H = i T jv . + 1/2 (i,p,j 11/rrk)€ C c^ c, (114)

where

T.VV = [V (x- R )dx, (115)
ij p 2m ~ V .)x(1)I

and

(ig,jvIl/rjka,Zv) = e'f (x-R) (x-R)(x'-R) (x--R )dxdxl (116)

0 Ix - xJ
Recalling Equ. (113) above, noting the formal similarity of T (Equ.2i1

(115)) and N exp[-(- (1/4x4 + 1/2a x2 + b x )], the second term in Equ. (114)
0 C0 S 0 S 0 S

i 1
is equated to -o(3xA + a )(ax)2. The general result of section X (iii) above

6co 0

is then applicable to the Hubbard model.
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It is instructive to dissect the dynamics of the Hubbard model further.

For example, if we equate ak which are the band energies of the Hubbard

electron model with the conformational energies of the (CH) chain, Eki with

the conformational energies of the separate (CH) monomers and equate:

(E =LV p ,q E+E -E pq 'CTI+ >1(117)

p q

where X pq=lp)(ql , with the transition probabilities from one to the other of

the isomerized states of (CE) , p and q, then the function F(E) = a -T = -

provides a relation of the microsystems (monomers) to the macrosystem (the

chain). This relation exists between the density of states P(E) of the

macrosystem and the density of states p(E) of the microsystems (Hubbard,

1964a, p. 250): ATOMIC RESONANCES

FOE) F(E) F(E) F(E) 6-"I I. I

ra

, / -,-/ -/T, PROFILE OF
-- -- P(E)

// [F(E)
I : I : I I

: l ! I n I /
Eki GIVEN

BY CROSSES

PROFILE OFp(E)

Figure 33: The function F(E) with relation of the density of states p(E) and

P(E). (Hubbard, 1964a, p. 250).

Clearly, then F(E) is the x of Figures 17 and 22A of section IX and the x of

Figure 31 above. As stated in section X (iii) above, this x is a substitution

for f of Equ. (62) and the analysis comes full circle.

S0

-74-

% .' " "= ,. _ ' " % . -.- % ,. " ,"% "., . . . - . ." .. . - . ." . " -" ".. .. .. .. .. • . - . . . - ° " , " . , - . . .- a



... NADC-83074-60

Equation (62) is also formally similar to the nonlinear Schiodinger

equation upon which the Davydov picture of vibrational soliton propagation

is built (cf. Davydov and Kislukha (1956) Equ. (16): Davydov (1980a) Equ.

(4.4): Davydov (1980b) Equ. (2.22): Davydov and Enol'skii (1980) Equ.

(3.2)). Davydov subscribes to the notion, attributed to Fr'ohlich, that in a

one-dimensional system the coupling of electrons with deformation may lead

to a superconductive effect without electron coupling. The possibility of

such coupling presupposes the creation of an energy gap and Figure 32,

above, illustrates the dynamics of the gap's formation.

In this section missing pieces of the puzzle were provided concerning

the creation of that necessary gap. Whereas soliton propagation in proteins

may require two (vibrational) states separated by an energy gap, I, in the

• trans (CH) system, on the other hand, the two (conformational) states are

*both of the same energy, but separated by an energy barrier which requires

energy, I, to surmount (tunnel through). Given this difference, the soliton

propagation picture in its dynamics remains the same.

1

- .1
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III. CONCLUSION

In section X (i) the necessary and sufficient conditions for the

obtainment of isomerization in a one-dimensional system were described. In

section X (iii) the random functions of an anharmonic oscillator were

described, both for the many-body and one-body system. In section XI the

one-body (Hubbard) system was described and the obtainment of an energy gap

was demonstrated to be formally similar to its obtainment in terms of the

anharmonic oscillator picture of section X (iii).

In order to understand the dynamics of the conducting one-dimensional

system, a parametric excitation picture was presented in sections I - IX.

The advantage of this approach is a physical insight into the dynamics of

conduction in (CH)x type polymers. The disadvantage is that a description

of the whole chain in such terms is intractable. On the other hand, in

sections I - XI the previous many-body picture was related to the one-body

(Hubbard) picture. The advantage of this is that the whole chain becomes

quite manageable. The disadvantage is that the dynamics of the problem is

only introduced in a quite artificial way (if at all). Clearly, therefore,

both pictures are necessary for full understanding.

There is a generalization of this application of the double potential

well model to conduction in general in organic polymers. The relationship

between one-dimensional theories in field theory and statistical mechanics

is of importance in the study of quasi one-dimensonal systems due to the

relation of the Bathe Ansatz (Bathe, 1931), on the one hand, and the

transfer matrix methods of Onsager (1944) and Baxter (1972) on the other

(cf. Fowler, 1981; Berkan and Cooper, 1981). In particular, the

diagonalization of the Hamiltonian or the transfer matrix has been achieved

in all these models by one form or another of the Bathe Ansatz. Also, this
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method was used to diagonalize the massive Thirring model (Bergnoff and

Thacker, 1979), the Gross-Neveu model (Andrei and Lowenstein, 1979) and the

Kondo problem (Andrei, 1980).

Furthermore, recently Campbell and Bishop (1981, 1982a,b; Bishop, 1980)

demonstrated the relation of solitons in polyacetylene to relativistic-

field-theory models and established the existence within a continuum

electron-phonon model, of a polaron-like excitation additional to and

different from the amplitude ''kink''.

The relativistic-field-theory aforementioned is the Gross-Neveu model

(Gross and Neveu, 1974) described by a Lagrangian density of anharmonic

oscillator type. Polyacetylene exemplifies the situation of a single
%+

electron spectrum with two states symmetrically placed in the gap at E- =

-w , which exists only when there is a single unpaired electron occupying
0

* the state, or, when the state is only singly occupied by a localized

hole state. Since the electron or hole is trapped in a structure due to

phonon coupling, the excitation is polaron-like. Similar results have beer

obtained by Brazovskii (1978, 1980) and Takayama, Lin-Liu and Maki (1980).

This continuum model has also been addressed by Horovitz (1980, 1981) and

Krumhansl, Horovitz and Heeger (1980).

.' These developments differ from the Su, Schrieffer and Heeger (1979,

1980) treatment of electrical conduction in polyacetylene in that the

soliton-like polarons are obtained from continuum models, whereas Su et al.,

imposed a hyperbolic tangent (tanh) kink form on the Pierls amplitude order

parameter to obtain kink solutions. Both Brazovskii and Takayama et al., on

the other hand, demonstrate that the order parameter profile is an exact

solution in the continuum limit of the self-consistent equations of motion

for phonon and electron operators determined in a variational scheme. Thus.

-77-
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this development is fully compatible with the physical scheme represented

* ". here.

Campbell and Bishop also point out an exact formal equivalence between

the Brazovskii-Takayama et al., continuum equations and the static classical

equations of the N=2 Gross-Neveu model (Gross and Neveu, 1974; Dashen,

Hasslacher and Neveu, 1974c; 1975a,b). By means of the mean field

approximation, the Bogliubov-de Gennes equations relating electron and

phonon fields were obtained. Dashen at al., demonstrated that there are

three classes of solutions to the Gross-Neveu Lagrangian: (1) The ground-

state solution; (2) The kink solution; and (3) The ''bag" solution

involving the presence of fermions in occupied positive energy bound states

and the absence of fermions from negative energy bound states in the case of

antiparticle or hole excitation. The field trapping the fermion is driven

by phonon coupling to the fermion, i.e., the fermion is a polaron.

Also, Zamolodchikov and Zamolodchikov (1978, 1979) demonstrated how to

determine the exact S matrices of two-dimensional models including the sine-

Gordon equations and the (TT)2 model. Witten (1978) determined that the

Lagrangian model used may be considered an N-component Majorana Fermi field.

For N=2 the theory is of a single interacting Dirac field and is, in fact,

the massive Thirring model related to soliton theory by Coleman (1975). For

N=3 the field is equivalent to a supersymmetric sine-Gordon equation and for

N-4, to two decoupled sine-Gordon systems.

* .The general anharmonic oscillator model forming the basis of these

developments has been most extensively studied by Dashen, et al. Their

methods, in turn, are based on those of Gurzwiller (1967, 1970, 1971) and

Maslov (1970). The meani.ig of the WKB approximation was examined from a

functional-integral approach and the conclusion was made that certain kinds

-78-
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of nonlinear field theories have extended particle solutions which survive

quantization. Theories with spontaneous symmetry breaking were shown to

produce hadron-like objects. In these instances, the field theory becomes a

model for a superconductor. Models in four space-time dimensions can be

constructed of SU(2) Yang-Mills fields coupled to fermions and a

spontaneous-asymmetry-breaking scalar isospinors.

Dashen et al. (1975a) also used the WKB method to compute the particle

spectrum of the Gross-Neveu model and found a spectrum of particles of

fermion-antifermion bound states and multifermion bound states. The close

similarity between the sine-Gordon equation and the Gross-Neveu model was

noted, but the reason for the correspondence not discerned. It is, however,

probably not unimportant that the Lagrangian for both theories are examples

of Riemann-Hugoniot singularities. Dashen et al (1975b) pointed out the

correspondence of the sine-Gordon coupling parameter and the four fermion

coupling of the Thirring model. The fermions are thus solitons.

In conclusion, therefore, the anharmonic oscillator model, whether in

the form of linked pendula model, or conducting polymer form, offers a rich

spectrum of particles. Due to the so-called ''democracy'' of the sine-

Gordon equation (Dashen et al 1975b), there is no fundamental distinction

between the particle of the n = 1 quantum state and the higher mass n > 1

particles. As the anharmonic oscillator model indicates electron-phonon

coupling involvement in electrical conduction, and the electron can occupy

any of those states, one may expect a rich variety of polymers able to

conduct either-electrically or vibrationally-besides the one-dimensional.

This is because application of the anharmonic oscillator model is

appropriate under any condition in which the double potential well model

applies.
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