
AD-A139 385 ADVANCED DOCUMENT RETRIEVAL SYSTEM(U CNTRO DATA CORP 1/
MINNEAPOLI SMN W CREET AL JU 83 RADC -RR83 1R6N
F30602-7V C 0231

UNAIDC A/G9/ N

aw

3-

liii ~ L L1. .6- n

11'.25 [I4

MICROCOPY RESOLUTION TEST CHART

NAVONAL BURE~AU Of SIANDARS 196aA

-- "I - L . ..

4J

;4

84. 03- 2 00

pf4~

.~g

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When DatEntered),

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
I. REPORT NUMBER OVT ACCESSION NO. S. RECIPIENT'S CATALOG NUMBER

RADC-TR-83-168 M -A 2/3, "
4. TITLE (end Subtitle) . TY E ORT& PERD COVERED

Finial Techfcal Report
ADVANCED DOCUMENT RETRIEVAL SYSTEM Sep 79 - Apr 83

6. PERFORMING 01G. REPORT NUMBER

N/A
I. AUTHOR(&) I. CONTRACT OR GRANT NUMBER(#)

Walling Cyre
Joseph Vaughan F30602-79-C-0231
Steven Adkins

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
Control Data Corporation AREA 6 WORK UNIT NUMBERS

2800 East Old Shakopee Road 62702F
Minneapolis MN 55420 62441630

i. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Rome Air Development Center (IRDT) July 1983
13. NUMBER OF PAGESGriffiss APB NY 13441 280

14. MONITORING AGENCY NAME A ADDRESS(Il different from ControllinE Office) IS. SECURITY CLASS. (of this report)

Same UNCLASSIFIED
IS&. DECL ASSI FICATION/ DOWNGRADING

N/ASCNEDULE
IS. DISTRIBUTION STATEMENT (of thle Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the ehetract entered In lock 20, If different from Report)

Same

It. SUPPLEMENTARY NOTES
RADC Project Engineer: John J. Maier (IRDT)

It. KEY WORDS (Continue en reverse aide If noeeeary and identify by block number)

Document Retrieval
Associative Processing
Processor Array

20. ABSTRACT (Continue an reverse alde If necoeary and Identify by block numb,)

This work is related to a previous study performed under RADC contract
F30602-78-C-0065:in which the intelligence retrieval application and
data bases at FTD were analyzed; potential usefulness of reconfigurable
arrays and associative memories was assessed; and an exploratory model
of an associative unit was designed, fabricated, and evaluated. >

(Continued)

D I 3 1473 EDITION OF I NOV 619 OBSOITE UNCLASSIFIED

SECURITY CLASSIFICATION OP TNIS PAGE (De I1re

'k/

UNCLASSIFIED

CURITY CLASSIFICATION OF THIS PASS(Vhin ate =0

The work performed under this effort extended the analysis, acquired
additional data and developed and demonstrated a full scale advanced
document retrieval system. Models were developed for text compression,
data base partitioning trade-offs were made, and analysis was performed
for automatic data base generation.

The work included the design and fabrication of a full scale associative
processing unit (AU) with 1000 MOPS processing capability and 256K-bit
storage capacity. This was interfaced to an array of three existing
Advanced Flexible Processors (AFP), a host computer, and a secondary
mass storage system. This equipment configuration served as the hardware
basis for the document retrieval demonstration.

The successful demonstration of the Advanced Document Retrieval
System included:

o Data base update
- hexical decomposition
- sorting
- indexing
- file formation

o Multiple concurrent data bases and merging
o Full set of search operators
o Interpretation of complex search logic statements
o Interactive user query and display functions

An analysis of AU and AFP performanee based on a system model supporting
100 simultaneous users each entering one command per 10 seconds with a

data base of 350 million document tokens, and a monthly update of
1,750,000 tokens was performed, using timing derived from the demonstra-
tion software. A single AFP, processing various search and update

functions yielded performance exclusive of disc access time, ranging
from 40 to 7000 times faster than real-time requirements. Similarly
the AU performed its assigned functions 13,000 times faster than
real-t ime.

UNCLASS IFI ED

SCURITY CLASSIFICATIO OF T1 PAGECWh,, Doa Eo.p"

FINAL REPORT SIMIARY

This report describes a study and demonstration performed by the

Information Sciences ivision of Control Data Corporation for Rome Air

Development Center under contract F30602-79-C-0231. The objective of

this effort was to demonstrate highly useful search strategies for

retrieval of intelligence information, exploiting the computational power

of an array of mdcroprogrammable processors and the search speed of an

associative memory.

This work is related to a previous study, performed under RADC contract

#F30602-78-C-0065, in which the intelligence retrieval application and

data bases at FTD were analyzed; potential usefulness of reconfigurable

arrays and associative memories was assessed; and an exploratory model of

an associative unit designed, fabricated, and evaluated.

The work performed under this effort extended the analysis, acquired

additional data, and developed and demonstrated a full-scale advanced

document retrieval system. The effort consisted of four general

categories of activities. The first activity was associated with

development of the document retrieval model. This involved extending the

analysis of the operational intelligence activities characterizing the

data base and its usage, and extending the demonstration data base to

3000 documents. Models were developed for text compression, data base

partitioning trade-offs were made, and analysis was performed for

automatic data base generation.

1" .:.........................

! ".. .

• --,, : -_... :.. L . -- - -" - '"' . ,. \

The second category of work included the design and fabrication of a

full-scale associative processing unit with 1000 MOPS processing

* capability and 256K-bit storage capacity. This was interfaced to an

array of three existing Advanced Flexible Processors, a host computer,

and a secondary mass storage system. This equipment configuration

provided a highly flexible, very high speed processing complex which

served as the hardware basis for the document retrieval demonstration.

The third category of effort was the development of the software to

implemnt, operate, and support the advanced document retrieval system.

* This software was designed to implement the algorithms and processes

defined as a result of the analysis and was partitioned among the

hardware units to most effectively exploit their characteristics. The

software developed in this effort included:

o Microcode for the Associative Processor Unit.

o Microcode for the APs.

o Software for the host, DEC 11/70, which provides overall system

control and processes operator queries.Io Controlware for the secondary storage controller.
The fourth area of effort included the successful demonstration of the

Advanced Document Retrieval System including:

o Data base update

- lexical decomposition

- sorting

- indexing

- file formtion

" Multiple concurrent data bases and merging

o Full set of search operators

" Interpretation of complex search logic statements

" Interactive user query and display functions

Analysis of AU and AFP performance based on a system model supporting 100

simultaneous users each entering one command per 10 seconds with a data

base of 350 million document tokens and a monthly update of 1,750,000

tokens was performed, using timing derived from the demonstration

software. A single AFP, processing various search and update functions

yielded performance, exclusive of disc access time, ranging from 40 to

7000 times faster than real-time requirements. Similarly the AU

performed its assigned functions 13000 times faster than real-time. The

demonstration system performance was limited principally by the speed of

available disc storage units.

The evaluation data obtained on the project was used to define a

production system configuration based on a single AFP capable of

supporting up to 1000 users interactively.

wiii

Ii

TABLE OF CONTENTS

Section Title Page

1.0 INTRODUCTION. 1-1

2.0 ANALYSIS OF THE APPLICATION 2-1

2.1 Introduction. * * * . 0 2-1

2.2 Characteristics of the Documents. 2-3

2.3 Characteristics of the Users o 2-6

2.4 Structure and Characteristics of the Data Base. . . 2-9

2.5 The Search Process 2-21

26 The Update Process o . 2-29

2.7 Allocation of Tasks 2-36

2.8 Related Topics. 2-36

2o8.1 Word Comression.... 2-37

2.8o2 Spelling and Morphology o 2-41

2. Cache Memory. . . o o o o . . o o 2-45

3.0 ARRAY AND ASSOCIATIVE PROCESSORS 3-1

3.1 Advanced Flexible Processor Array o 3-1

3.1.1 Hardware Structure. 3-3

3.1.2 Software Structure. . o . . . o o o o . . 3-5

3.,2 Host Computer 3-9

3.3 Associative Memor nit o. 39

3.4 Disk Storage Subsystem. o3-13

4.0 Demonstration Software. . . . o . . o o o o . . . o 4-1

4.1 Software Organization . o 4-2

4.1.1 Terms and Abbreviations 4-3

V

- -.---- ~.-'-.--.

T A B L E O F C O N T E N T S (Cont'd)

Section Title Page

4.2 System/Subsystem Description 4-5

4.2.1 Equipment Environment 4-6

4.2.2 Support Software Environment 4-7

4.2.3 Interfaces. 4-7

4.3 Design Details 4-8

4.3.1 Data Base 4-8

4.3.2 Program Descriptions 4-11

5.0 DEMONSTRATION..... 5-1

5.1 Demonstration Plan. 5-1

5.2 Update 5-2

5.3 Search 5-3

5.4 Browse. 5-6

6.0 EVALUATION * 6-1

6.1 Performance of the Equipments 6-1

6.2 Configuring a Production System 6-5

6.3 Topics for Further Study. 6-6

6.3.1 Dictionary Reduction 6-6

6.3.2 Cache Memory Management 6-8

6.3.3 Word Sense Discrimination 6-8

6.3.4 A Table Look-Up Memory 6-9

vi

Appendix Title Page

A DEMONSTRATION DOCUMENT RETRIEVAL SYSTEM USERS

MANUAL.o A-1

BAFP DESCRIPTION...... B-1

C ASSOCIATIVE UNIT... C-1

D SYSTEM SOFTWARE DESCRIPTION* D-I

E ANNOTATED A.U. MICROCODE. E-1

vii

L IS T O F FI GU R ES

Figure Title Page

2-1 A General Model for Document Retrieval and Message

Handling Systems 2-2

2-2 Syntax of a Simple Document Model 2-5

2-3 A Syntax for Search Expressions.. 2-8

2-4 User Response Time 2-12

2-5 The Major Components of a Data Base .. I.... 2-14

2-6 General Data Base Structure 2-18

2-7 Sizes of Data Bases* .I 2-19

2-8 Execution of a Sample Expression 2-21

2-9 Sea rch ... roc.. es...s ... 2-24

2-10 PDF of Number of Occurrences of Search Tokens . 2-28

2-11 The Update Process 2-30

2-12 A Sequential Machine for Lexical Decomposition ... 2-31

2-13 A Sample of a Dictionary 2-42

3-1 System Configuration. % 3-2

3-2 APP Crossbar Configuration 3-4

3-3 Associative Processing Cell Structure 3-11

34Associative Unit Controller Block Diagram 3-12

3-5 Disk Storage Subsystem...... 3-14

4-1 Advanced Document Retrieval System Software

Organization. 4-4

6-1 A Production System Configuration 6-7

vii

L I ST O F T AB LE S

Table Title Page

2-1 Document Characteristics 2-4

2-2 Types of Search Operands 2-10

2-3 Types of Search Operators. 2-lu

2-4 Frequent Search Expression Forms 2-11

2-5 System Requirements Per Active User. 2-11

2-6 Processing of Modified Merges. 2-26

2-7 Computational Requirements of Searching Per Active

User. 2-27

2-8 Computational Requirements of the Update Process. 2-35

2-9 Task Allocation 2-36

2-10 An n-gram Encoding Table 2-38

2-11 Some Encodings of "Perception" Using Table 2.8-1. . 2-40

2-12 Morphology of the Tokens 2-44

3-1 AFP Functional Unit Capabilities 3-6

6-1 Task Allocation. 6-2

6-2 Task Performances... 6-4

ix

1.0 INTRODUCTION

This report describes a study and demonstration performed by the

Information Sciences Division of Control Data Corporation for Rome Air

Development Center under contract F30602-79-C-0231. The objective of

this effort was to demonstrate highly useful search strategies for

retrieval of intelligence information, exploiting the computational power

of an array of microprogrammable processors and the search speed of an

associative memory.

This work is related to a previous study, performed under RADC contract

#F30602-78-C-0065 and reported in RADC-TR-79-313, in which the

intelligence retrieval application and data bases at FT were analyzed;

potential usefulness of reconfigurable arrays and associative memories

was assessed; and an exploratory model of an associative unit designed,

fabricated, and evaluated.

The work performed under this effort extended the analysis, acquired

additional data, and developed and demonstrated a full-scale advanced

document retrieval system. The effort consisted of four general

categories of activities. The first activity was associated with

development of the document retrieval model. This involved extending the

analysis of the operational intelligence activities characterizing the

data base and its usage, and extending the demonstration data base to

3000 documents. Models were developed for text compression, data base

partitioning trade-offs were made, and analysis was performed for

automatic data base generation.

1-1

The second category of -iork included the design and fabrication of a

full-scale associative processing unit with 1000 MOPS processing

capability and 256K-bit storage capacity. This was interfaced to an

array of three existing Advanced Flexible Processors, a host computer,

and a secondary mass storage system. This equipment configuration

provided a highly flexible, very high speed processing complex which

served as the hardware basis for the document retrieval demonstration.

The third category of effort was the development of the software to

implement, operate, and support the advanced document retrieval system.

This software was designed to implement the algorithms and processes

defined as a result of the analysis and was partitioned among the

hardware units to most effectively exploit their characteristics. The

software developed in this effort included.

o Microcode for the Associative Processor Unit.

o Microcode for the AFP's.

o Software for the host, DEC 11/70, which provides overall system
control and processes operator queries.

o Controlware for the secondary storage controller.

The fourth area of effort included the successful demonstration of the

Advanced Document Retrieval System including:

o Data base update

- lexical decomposition

- sorting

- indexing

- file formation

o Multiple concurrent data bases and merging

" Full set of search operators

" Interpretation of complex search logic statements

" Interactive user query and display functions

1-2

Analysis of AU and APP performance based on a systme model supporting 100

simultaneous users each entering one command per 10 seconds with a data

base of 350 million document tokens and a monthly update of 1,750,000

tokens was performed, using timing derived from the demonstration

software. A single AFP, processing various search and update functions

yielded performance, exclusive of disc access time, ranging from 40 to

7000 times faster than real-time requirements. Similarly the AU

performed its assigned functions 13000 times faster than real-time. The

demonstration system performance was limited principally by the speed of

available disc storage units.

The evaluation data obtained on the project was used to define a

production system configuration based on a single APP capable of

supporting up to 1000 users interactively.

This report is organized into six sections:

Section I - Summarizes the project activity and results.

Section 2 - Analyzes the document retrieval and message handling
problem as applicable to FTD, develops algorithm and
sizing estimates for the processes to be supported and
develops a processing model for the Advanced Document
Retrieval System demonstration.

Section 3 - Describes the equipment used in the demonstration.

Section 4 - Describes the software developed to implement the
processing model described in Section 2 for the
demonstration.

Section 5 -Describes the method by which the Advanced Document
Retrieval System was demonstrated.

1-3

Section 6 - Provides an analysis of the system performance,
suggests a production document retrieval system
configuration, and makes recoimmendations for further
study.

Additional details on the Advanced Document Retrieval System are provided

in the five appendices:

A - Demonstration Document Retrieval System Users Manual

B - AFP Description

C - Associative Unit

D - System Software Description

E - Annotated A.U. Microcode

1-4

2.0 ANALYSIS OF THE APPLICATION.

2.1 INTRODUCTION

This section deals with the characterization, decomposition, and

computational support requirements of document retrieval and message

handling systems used in military intelligence activities. Document

retrieval systems are employed to maintain a data base of document texts

which may be selectively and interactively retrieved by intelligence

analysts through the specification of words or terms of interest. It is

also required that these systems automatically dispatch copies of newly

added documents to analysts based on their previously specified mission

profiles. The primary function of message handling systems is to

automatically route intelligence messages to intelligence analysts based

on their mission profiles. It is also necessary to maintain a repository

of recently received messages for interactive retrieval. Thus, the

functions of document retrieval and message handling systems are the

same. The primary distinction between the two lies in the priorities of

the retrieval and routing functions and the magnitude of the data base.

A very general model for document retrieval and message handling systems

is presented in Figure 2-1. The documents or messages enter a system

through an Update process. This process performs two functions. First,

a collection of documents is processed to prepare a temporary data base

which contains the collection and conforms to the structure of the main

data base of documents.

The Update process then applies the mission profiles for the analysts to

the temporary data base in order to prepare a mailing list used by the

Dispatch process. Finally, the temporary data base is integrated with

the main data base by cataloging it or merging it with an existing data

base component. (The structure of the main data base is discussed in

Section 2.4..)

2-1

TERMINALS F

Message HandiSytes

2-2

The analysts interactively search the main data base and select documents

to be dispatched to them using the Search process. The Search process

allows analysts to form subsets of documents using expressions whose

operands are words or terms occurring in the documents or are references

to sets of documents. The Search process also allows the analysts to

interactively examine or browse through a set of documents.

The Dispatch process merely distributes copies of documents based on the

analyst names or mail codes associated with the document sets formed by

the Search and Update processes. Because dispatching is simple and

rather peripheral to the main tasks, little further mention of it will be

given in this report.

Before continuing the decomposition of the document retrieval and message

handling processes, attention is given in the next sections to the

characteristics of the source documents and the requirements of the

intelligence analysts.

2.2 CHARACTERISTICS OF THE DOCUM4ENTS

While the documents found in document retrieval systeim differ

significantly in content and function from those of message handling

systems, their structures or forms are essentially the same with respect

to mechanical processing. For the purposes of this report, a document

consists of several, variable length zones. Many types of zone may

occur, each with its own semantics and syntax. Examples of document

zones are those used for an identification number, the authors' name,

the source, a date, a classification level, and paragraphs of text. For

current purposes, however, all zones are viewed as paragraphs of text.

2-3

A paragraph (zone) consists of one or more sentences, which, in turn, are

strings of words or .exical units. In simplified form, paragraphs are

identified by special markers including a paragraph (zone type) number.

Sentences are terminated by periods, and tokens (words) are delimited by

any special characters excluding the apostrophe, hyphen, and slash. This

simple document model is given formally in Figure 2-2.

Beyond the intelligence activities analyzed during this project, the

principal differences in document characteristics are the lengths of the

documents and the vocabularies of the documents. Of these, only the

document lengths are of interest here. Differences were also seen in the

quantities of documents in the data base and the arrival rates of new

documents. A summary of the observations obtained by computer analysis

of a document set, and discussions with Intelligence administrators,

* support specialists, and contractors appears in Table 2-1. (Some of

these figures represent quantities desired by the intelligence

activities.)

TABLE 2-1.* DOC14,ENT CHARACTERISTICS

Document Message
Characteristics Retrieval Handling

Average Document Length (words) 70 1,000

Number of Documents 5,000,000 50,000
Represented in Data Base

Arrival Rate 25,000 1 per min.

weekly (peak)

2-4

<document> ::- <paragraph> I <paragraph> I

<paragraph> ::= <zone type> <sentence> [<sentence>

<sentence> ::- <token> [<token> I.

* <token> ::- <character> I <character> I <non-character>

<character> AI-A B Z 1O 2 j " -1 ' /

NOTE

[] denotes one or more repetitions of the enclosure

denotes alternatives

Figure 2-2. Syntax of a Simple Document Model

2-5

4

2.3 Characteristics of the Users

The users of the document retrieval and message handling systems reviewed

during this project are intelligence analysts. Each analyst has a

mission to monitor one or more activities. Depending on the agencies

involved, missions may vary from monitoring medical research in a foreign

principality to tracking the movement of ships. The systems studied

support these missions by evaluating incoming documents or messages with

respect to profiles of the missions and by providing for interactive

searching of documents in the data base.

The user interacts with the systems through a command language. The

specific command language supported by the system developed during this

project is described fully in a later section, but for current purposes,

only the search type of command is necessary.

Search commands are expressions used to specify subsets of the documents

contained in the data base. The simplest form of a search expression is

a token or word which specifies the set of all documents containing at

least one instance or occurrence of that token. Another search

expression or form is the truncated token, which is denoted by a token

ending in a dollar sign (s) possibly followed by a digit. For example,

the expression tAIR$31 specifies the set of documents having one or more

occurrences of any token of three to six characters, the first three of

which are 'AIR'. Leaving off the digit following a $ accepts tokens of

any number of characters following the specified prefix. Another basic

expression is a reference to a previously entered expression, and is

denoted by the search command numbers assigned by the system. An

expression reference indicates the set of documents specified by the

given expression.

2-6

More complex search expressions can be formed using a set of logical

operators. The simplest operator is 'NOT' which specifies the complement

of the set of documents specified by the expression following the

operator. The 'OR' and 'AND' operators specify the union and

intersection of document sets, respectively. The expressions 'LASER ADJ

WEAPONS' and 'LASER WEAPONS' specify documents containing any occurrence

of the token 'WEAPONS' which is immediately preceded by an occurrence of

'LASER'. The forms 'A SEN B' and 'A PAR B' denote documents containing

the specified tokens in the same sentence and paragraph, respectively. A

simplified syntax for search expressions is given in Figure 2-3. The

values returned immediately to the user as the result of executing a

search commnand are counts of the number of documents in the result set

and the number of instances (occurrences) throughout those documents

which satisfy the expression. The user can then construct the next

search command to either restrict or augment the previous set of

documents.

The mission profiles of the analysts mentioned earlier are merely stored

sequences of search commands, and are automatically applied to incoming

documents.

Quantitative information about users was obtained through the analysis of

a recording of terminal transaction and a set of analyst profiles

provided by FTD on their unclassified document retrieval system. Most of

the data was obtained from the profile tape, which contained almost

100,000 statements. These statements were analyzed to determine the

types of search operands (simple expressions) typically used, the

distribution of operator types, and dominant forms of search expression

used. Results of this analysis are given in Tables 2-2 through 2-4. In

the analysis of search formin, it was observed that subexpressions

consisting of words connected by OR operators and of references connected

by OR operators occurred very frequently.

2-7

<expression> :-<token>

<token> $

(token> $ <digit>

<reference>

not <expression>

(<expression>)

<expression> <operator> (expression>

<expression> <expression>

<operator> :-OR IAND ADJ ISEN IPAR

<reference> ::<digit> L<digit> I

Figure 2-3. A Syntax for Search Expressions

2-8

The primary result obtained from the analysis of transactions between

users and the system was the distribution of user response times shown in

Figure 2-4. The user response time is the time it takes a user to

formulate and enter a command measured from the system's response to the

user's previous command. As can be seen, most of the time users

responded in 5 to '5 seconds.

Based on the information in this section, it is possible to derive some

very useful system requirements. From Figure 2-4 it is reasonable to

expect the system to process one search command from each active user per

ten seconds. Then, with 100 users searching in a time shared manner, the

system must satisfy one command per 100 milliseconds. This would also

give the system a very satisfactory response time.

From the analysis of 100,000 search commands on a profile data set, the

average number of search operands per command is 3.4, and the average

operators per command is 2.5 (Tables 2-2 and 2-3). Of the search

operands 70% are tokens, giving 2.4 tokens per command, or 0.24 tokens

per user command per second. These requirements are summarized in

Table 2-5.

2.4 Structure and Characteristics of the Data Base

The major components of a document data base are those containing the

documents and the index to the documents. An example of the contents of

these two components is shown in Figure 2-5. The document component is

implemented as a single sequential file. Because the index component is

used in real-time searching, its implementation is more complex in order

to improve performance of a sequential file.

2-9

:,

TABLE 2-2. TYPES OF SEARCH OPERANDS

Operand Type Percentage of Use*

Tokens 70%

Words 54%

Truncations 16%

Statement References 30%

*Sample of 340,000 operands

TABLE 2-3. TYPES OF SEARCH OPERATORS

Operator Type Percentage of Use*

NOT 0.2

OR 80

AND 2

ADJ 3

SEN 13

PAR 2

*Sample of 250,000 operators

2-10

TABLE 2-4. FREQUENT SEARCH EXPRESSION FORMS

FORM *rFrequency
(percent)

w SEN w OR w 7.1
r AND r 5.0
w SEN w 4.8
w 4.7
rOR rw r Or OR rR r OR r 3.8
r PAR r 3.0
r OR r 2.8
r OR (w OR w OR w OR w) 2.4

w ADJ w 1.8
w SEN (w OR w OR w) 1.8
t 1.7
w OR w OR w OR w OR w 1.7

r OR r OR r 1.4
w SEN t 1.3

r SEN r 1.1
r ADJ w ADJ r 1.0

TOTAL 45.4

•w denotes word
t denotes truncated word
r denotes statement reference

TABLE 2-5. SYSTEM REQUIREMENTS PER ACTIVE USER

Search Commands per second 0.10

Search Tokens (words or truncations) per second 0.24

Statement References per second 0.10

Search Operators per second 0.25

2-11

1.0 -

0.3

0.1

0.03

.00

0.001

0.0003

0.0001

13 10 30 100 300 1000
Uer Response Time (Sec)

Figure 2-4. User Response Timnes

2-12

Since the index can become quite large, a sequential search is impractical.

Consider for example a document retrieval system of five million documents,

each having 70 words or tokens (see Table 2-2). The 350 million tokens

contained in this document set would require 2.5 billion bytes (2.5 G-bytes)

of storage, assuming an average of 7 characters per token. In an earlier

project [Contract F30602-78-C-0065, reported in RADC-TR-79-3131, the

relationship of Equation 2-1 was found between the number of text tokens, T,

and the number of vocabulary entries, V.

V = 1.41 T 0 .8 5
(2-1)

Then, the 350 million tokens have a vocabulary of about 26 million entries,

implying at least 180 MBytes of storage. In addition, a list of location

pointers is associated with each vocabulary entry. Allowing three bytes for

the document numbers, and one byte each for paragraph, sentence, and word

numbers requires 6 bytes per token in the documents, or 2.1 G-bytes. Thus,

the index of about 2.3 G-bytes requires nearly the same amount of storage as

the documents (2.5 G-bytes).

To appreciate the advantage of having the documents indexed, assume the data

base is stored in a disk system capable of storing 0.5 MBytes per cylinder.

Then, the example document texts require 4800 cylinders oi storage.

Assuming, an arbitrarily fast processor, and 300 milliseconds to scan each

cylinder, directly scanning all documents at search time for a given token,

or set of tokens, requires 24 minutes. The index, however, can be used with

a binary search method. Only one track per cylinder need be checked to

control searching. If the average random access (seek plus latency plus

scan) is 50 milliseconds, then the 13 tracks which must be read, to locate

the desired cylinder, require 650 milliseconds. Adding 300 milliseconds to

scan the final cylinder yields less than one second per search term to

obtain the necessary document set pointers.

2-13

A Sample Set of Documents

DOCUMENT #1
06 HIGH ACCURACY WEAPONS

11 FRED SMITH
43 THE PRECISION OF REMOTELY GUIDED AND SMART MISSILES IS RAPIDLY

IMPROVING. SHIPS AND TANKS ARE ESPECIALLY VULNERABLE TO SUCH WEAPONS.

DOCUMENT #2
06 RIBOSOMES
11 ARTHUR JONES
43 RIBOSOMES SYNTHESIZE PROTEINS IN CELLS. A RIBOSOME MODEL HAS BEEN

DEVELOPED TO DESCRIBE THE STEPS OF THIS SYNTHESIS PROCESS.

DOCUMENT #3
06 MONSOONS
11 JAMES EDWARDS
43 SEASONAL WINDS, CALLED MONSOONS, SUPPLY WATER TO THE HALF OF THE

EARTH'S POPULATION LIVING IN SOUTHERN ASIA. COMPUTER SIMULATIONS ARE
BEING DEVELOPED TO PREDICT MONSOONS.

Figure 2-5. The Major Components of a Data Base

2-14

The Corresponding Index

VOCABULARY LISTS OF OCCURRENCE LOCATIONS*
A 02 4302 01
ACCURACY 01 06 01 02
AND 01 4301 06,01 4302 02
ARE 01 4302 04, 03 430203
ARTHUR 02 11 01 01
ASIA 03 43 01 17
BEEN 02 43 02 05
BEING 03 43 02 04
CALLED 03 43 01 03
CELLS 02 43 01 05

*COMPUTER 03 43 02 01
DESCRIBE 02 43 02 08
DEVELOPED 02 43 02 06, 03 43 02 05
EARTH'S 03 43 01 12
EDWARDS 03 11 01 02
ESPECIALLY 01 43 02 05
FRED 01 11 01 01
GUIDED 01 43 01 05
HALF 03 4301 09
HAS 02 43 0204
HIGH 01 06 01 01
IN 02 4301 04, 03 4301 15
IMPROVING 01 43 01 11
is 01 4301 09
JAMES 03 11 01 01

SYNTESIZE 02 43 02 01
TANKS 01 43 02 03
THE 01 43 01 01, 02 43 02 09, 03 43 01 08, 03 43 01 11
THIS 02 43 02 12
TO 01 43 02 07, 02 43 02 07, 03 43 01 07, 03 43 02 06
VULNERABLE 01 43 01 06
WATER 03 43 01 06
WEAPONS 01 06 01 03, 01 43 02 09
WINDS 03 43 01 02

*Docuent, Paragraph, Sentence, and Word Numbers

Figure 2-5. The Major Components of a Data Base
(Cont 'd)

2-15

Two techniques are used to reduce the index lookup time. One technique

is partitioning or segmentation, and the other is the segregation of the

vocabulary from the occurrence lists (location pointers). Segmentation

employs a table of selected vocabulary term. Each table entry consists

of a token (24 bytes in a fixed format) and a cylinder address (2

bytes). Thus, storing the first token for each cylinder of the example

case requires less than 128 K Bytes if the resulting table is stored

in main memory, only 300 milliseconds is required to find the desired

entry on the target cylinder. The second technique, segregation,

provides further improvement in performance.

The 300 milliseconds per cylinder can be reduced by segregating the

vocabulary from the occurrence lists or pointers. Recalling that the

total vocabulary has 26 million entries, storing this plus 26 million

pointers to their associated occurrence lists requires on the order of

250 M Bytes of storage, or about 500 cylinders. Then, the same segment

table of 5000 entries would locate the vocabulary word to a single track,

and the vocabulary entry would locate its occurrence list to one track.

Thus, the total lookup time Is reduced to two random accesses at about 50

milliseconds each adding up to about 100 milliseconds.

The final data base organization is illustrated in Figure 2-6. With some

simplifying assumptions, the preceding discussion can be generalized into

a set of formulas giving the magnitudes of the data base elements. Let

S d denote the storage required for the texts of the documents. Then

S d 'T'C t bytes (2-2)

where T is the number of tokens in the tests and C tis the number of

characters per item. Similarly, if S vdenotes the storage for the

vocabulary, neglecting pointers to occurrence lists, then

Sv V C~ bytes (2-3)
Vt

2-16

where V is the number of vocabulary entries (see Equation 2-1). The size

(SO) of the occurrence lists is given by0f

so T 1 T256 bytes (2-4)

The base 256 logarithm accounts for the length in bytes of the location

or occurrence pointers. The number of entries, N., in the segment

table is

Ns M Sv/K entries (2-5)

and the size, Ss, of the table is on the order of

Ss M Ns Cv bytes (2-6)

where K is the capacity of one disk track (or other storage unit) and-Cv

is the number of bytes per entry. Figure 2-7 shows a graph of these

formulas for Ct M 7, Cv M 24, and K - 25000. The respective values

from the earlier detailed analysis are also plotted for comparison.

Although the formulas seem to underestimate the storage requirements, the

following consideration results in the formula being adequate.

The major consideration is that not all words in the documents are

indexed. Common words such as conjunctions, articles, some prepositions

and pronouns are eliminated from the vocabulary. These common words are

also called stopwords. While the number of words eliminated is

negligible (often only one to three hundred), they account for a

significant number of tokens. Eliminating these stopwords can reduce the

size of storage for the occurrence lists by up to 30Z.

2-17

ENTRY

SEGMENT
TABLE

SEGMENTED DICTIONARY FILE

l"] OCCURRENCE LIST FILE

DOCUMENT FILE

Figure 2-6. General Data Base Structures

2-18

1000

300

Size Xs
(Millions 10r
of Bytes) 9 o

000,

0.01 0.1 1 10 100 1000

T Number of Tokens in Millions

Figure 2-7. Sizes of Data Bases

2-19

Another characteristic of the data base needs to be mentioned. As

documents or messages are received, the data base grows, and to meet

fixed capacity limits, some documents in the data base must be deleted.

This is readily supported by a multiplicity of data bases, each with the

structure of Figure 2-6. If each data base covers a chronological

period, then the oldest is often discarded to make room for new

acquisitions. The data bases are catalogued and analysts may restrict

their searching to a subset of them. The operation of merging two data

bases into a single large one is useful in document retrieval and message

handling systems. As can be seen, the total storage size for a system is

effectively a linear function of the number of tokens in it. Thus, a

system containing 100 million words of text in a single data base

provides no essential advantage in storage over 100 data bases of 1

million tokens each. Some disadvantage however, will be experienced

since searching all the small data bases for a token requires 200 disk

accesses rather than only two accesses. The actual cost in time may not

be much greater if the system is supported by a large number of

independent disk units. Another cost in partitioning the data base in

this way is experienced through additional software complexity. These

costs must be traded off against the advantages in updating the data base

as described in Section 6.

2-20

2.5 THE SEARCH PROCESS

The general nature of the searching of the document data base has been

described in earlier sections. The objective of this section is to break

down the process into a number of elementary processes for which

computational and storage requirements can be readily estimated. To

begin, consider the execution of a search command with the frequently

used form 'word SEN word OR word' (Table 2-4) on the sample data set, the

tokens 'AND', 'THE' and 'TO' will be used to form the expression 'AND'

SEN 'THE' OR 'TO'. First, the search terms or operands must be looked up

in the vocabulary, via the segment table, to locate their occurrence

lists. Next the occurrence lists must be retrieved. The occurrence

lists for the example tokens are shown in Figure 2-8. In an actual

system these particular words would probably be considered stopwords and

would not be found in the vocabulary.

'AND' 'THE' 'TO' TEMIP REF #1
'THE' OR 'TO' 'AND' SEN TEMP

01 43 01 06 01 43 01 01 01 43 02 07 01 43 0101 01 43 01**
01 43 02 02102 43 02 09 02 43 02 07 01 43 02 07 01 43 02**

03 43 01 08 03 43 01 07 02 43 02 07
03 43 01 11 03 43 02 06 02 43 02 09

03 43 01 07
03 43 01 08

03 43 01 11
03 43 _2 06

Figure 2-8. Execution of a Sample Expression

2-21

The first operation performed is the OR of the lists for 'THE' and 'TO'.

Because of the way the document, paragraph, sentence, and word numbers

are assigned in the update process, the occurrence entries are listed in

increasing numerical order. Thus, forming the union of these ordered

sets can be done by a modified merge rather than comparing each entry of

one list with each of the other. The result of this merge is also an

ordered list as shown in Figure 2-8. Because no two words can occupy the

same position in any document the list, called temp, for 'THE' OR 'TO'

could have been formed by concatenating the lists for the two search

tokens. This, however, would result in an unordered list which would

make subsequent operations imuch more difficult.

Next, the SEN operation is executed using the list for 'AND' and the temp,

list. Again, a merge type process is used, but now the word number is

ignored. In performing the merge of these two lists, the document,

paragraph, and sentence numbers match in two cases, both in document #1.

As shown in the example of Figure 2-8, the word numbers in the final

result list are undefined. Since this result list is also an ordered

list, it too can be used as an operand. (Conventions for dealing with

undefined values are discussed later.) As a result of executing this

search command, the analyst is informed by the system that two

occurrences satisfy the expression and that these occurrences span one

document.

Following this example, the search process is decomposed as shown in

Figure 2-9. Of these tasks, the segment table lookup, the locating of

tokens in the dictionary, and the execution of operations on occurrence

lists were of primary interest in this project because of their apparent

suitability for the processor architectures to be evaluated in this

project.

2-22

The segment table lookup is a simple task in which the pointer to the

correct dictionary segment must be found by finding the lexographically

largest entry (first word in the segment) which is smaller than or

matches each token type search operand. From the analysis of Section 2.3,

the required lookup rate is only 4.8 lookups per second.

The process of finding the tokens in the dictionary segments is only

slightly more complex if the dictionary is packed rather than using a

large fixed field as is done in the segment table. Assume that the

segments are packed and the format for each entry is a field giving the

length (number of characters) of the token, followed by a variable length

field containing the token, which is followed by a field for the address

of the token's occurrence list. Finding the search token in the segment

is easily approached by considering the segment as a constant rate

character stream. First, the length of an entry must be tested. If a

truncated token was specified, then the length must be tested against an

upper and lower limit. If these tests succeed, then each character of

the entry (up to the minimum limit) must be tested against the

corresponding character of the search token. If these tests also

succeed, then the occurrence list address of the token oust be captured

and stored. Once a match has been found, or a non-match following a

match when a truncation is specified, then the segment character stream

can be discontinued or ignored. Since the segment is scanned

sequentially, half a segment must be tested, on the average, for each

search token. The computational effort is about two byte-length

comparisons per character. If the length of a segment is Kbytes (see

Equation 2-5) then the effort per search token is K comparisons

(1/2 x 2 x K).

2-23

SEARCH
CO!4KANV

Command
Parsing

Count Ocurreene

a SdeocmentsT I

RereDilay ar

Figuet and. Eachrcs

PontrsDctonr

Tal fToes Tm

The next operation of interest is the execution of the modified merges to

implement the search operations. Only the three most frequently used

operators (OR, SEN, and ADJ), which account for 96% of the operations

used, are considered here. All of the operators (except NOT) use the

same basic process. First, the first occurrence pointer is taken from

each of the two lists. They are compared and then some action is taken

while discarding one or both pointers. Then, each discarded pointer is

replaced by the next pointer from the appropriate list. The comparison,

action, and replacement are repeated until one list is exhausted, at

which time only one action is executed over the residue of the remaining

list. (NOT operations are implemented through modified actions during

other operations.)

First, consider the OR operation. Although it is specified 80% of the

time, it must be executed more than that since it is used to combine

multiple lists retrieved for a truncated term. The comparisons and

actions performed for the OR operator depend on the presence of undefined

pointer fields resulting from previous operations (such as PAR). Assume

that each list is tagged to indicate which fields of the pointers are

undefined. For example, let the expression (a, b, c, d) indicate that all

fields of the left operand's list are specified, and let (a', b',*,)

show that the sentence numbers and word numbers are undefined in the

right operand's list (such as from a PAR operation). The operation

performed is governed by the least specified list. In this case, the

comparison (a,b) :(a', W') is made if they match, then (a, b, ,*)is

added to the result list. If (a,b) is less than Wa, W') then,

(a, b, *, *) is added to the result, and a new pointer is taken from the

left list. The third possibility results in an output and replacement of

(a, bW, *

This example is repeated in Table 2-6 with the definition of modified

merges for other operator cases.

2-25

TABLE 2-6. PROCESSING OF MODIFIED MERGES

Operation Least Comparison Output Operand(s)
Is peiied j to Replaced
Operand IResult
Pointers, List_______

OR (a.b.c.d)1(a.b,c,d) < (a',b.cd') (a,b,c,d) (a,b,c,d)
_____(a,b,c,d) > (a',b',c'.d') (a',b',c,d')

(a,b,c.*) (a,b,c) < (a'.b,c') (a~b,c.*) (ab,c,*)
(a.b~c) > (a',b,c') (a8,b',c',*) (a',b'.c',*)

_____(a,b,c) -(a',b',c) (a~b,c,*) both

(b,,)(a,b) < (a#,b*) (a',',*) ab*)
__________(a,b) > (&',b') (a*.b,*) ('bth ,*

SEN (a,b,c,d) (a,b~c) < (a',bb.c') none (a,b,c~d)

(a,b,c) > (a'b',c) none (a',bc',d')

1(a,b~c) . (a',bw,c) (a,b,c,*) both

(a~b~c,*) (ob~c) < (a'.bc') Inone (a.b,c,*)
(a~b,c) > (a'.b',c') nonec* (80,b~c',)

_____(a~b~c) . (a. b*.c) j.(a~bVcC) both

_____(a,b,*,*) command rejected as Ivlid

ADJ (a~b.c.d) (a,b,c,d+l) < (a',b'.c',d') none abcd
(a,b,c,d+I) > (ia',b',c',d') none (a',b.c',d')
(a,b,c~d+I) - (S ,b' c,c d) (a' *b',c ,d) both

(a,b~c,*) command rejecte-d as invalid

(a,b,*) command rejected j as invalid-

2-26

r

Except in cases where the command is rejected before execution because of
incompatible operands, the operations require one 3-way test and branch
per occurrence in both operand lists (assuming matches are infrequent).
Since the OR operation is dominant (at least 80%) and most operands are
words or truncations (7U%), the first case of Table 2-6 is encountered
most of the time and usually no matches will occur for it. Thus, the
computational effort is essentially one comparison per occurrence pointer
of both lists. In a previous project [Contract F 30602-78-C-00651 some
information on occurrence list length for search tokens was obtained.
The distribution of lengths is repeated here as Figure 2-10. In that
project, the average number of occurrences per search token used was
found to be 2905 occurrences, even though 64Z of the search tokens had
fewer than 70 occurrences. Based on this average, 5800 comparisons are
required per search operation on the average, and with reference to
Table 2-5, an average of 1450 comparisons per second per user are
required.

The computational requirements for those tasks of the search process
analyzed in this section -re tabulated in Table 2-7.

TABLE 2-7. COMPUTATIONAL REQUIREMENTS OF SEARCHING PER ACTIVE USER

Task Requirement

Segment Table Lookupp 0.24 lookup operations per second

Dictionary Segment Scan 0.24xK byte comparisons per second

Search Operation 1450 occurrence pointer comparisons
(Modified Merge) j per second

2-27

10
0

10
- I

1

10
"2

10-4

-6
10

5

1O
- 6

100 101 102 1010 10
5

NOC

OCCURRENCE LIST LENGTH

Figure 2-10. PDF of Number of Occurrences of Search Tokens

2-28

2.6 THE UPDATE PROCESS

The update process is executed whenever new documents are to be added to

the system, and consists of two basic steps (Figure 2-11). First, a

temporary data base which is compatible with the main data base is

created for a batch of new documents. Then, this temporary data base is

catalogued or merged with an existing data base to make it available for

searching. In message handling applications, it may be necessary to

update the system as each message is received. Since a data base cannot

be searched during a data base merge, and the merge time increases with

data base size, it may be necessary to manage two copies of a buffering

data base between these steps. Nevertheless, the same basic tasks are

required for both document retrieval and message handling applications.

The step which creates a data base, given a set of documents or messages,

can be viewed as a sequence of four tasks. The lexical decomposition

task breaks the character string comprising each document into words or

* lexical units and assigns to each its document, paragraph, sentence, and

word number. The algorithm used for lexical decomposition depends on the

syntax assumed for the text, For example, the computational requirements

depend on whether it is necessary to distinguish the use of periods in

numbers, abbreviations, and at the ends of sentences. In this project,

that distinction, though important in a production system, was not made

in order to reduce the programming effort. Instead, the simple document

syntax of Figure 2-2 was assumed. For this syntax, it was sufficient to

Jetermine for each input character to which of the three sets it belonged.

One set consists of those characters which can be part of a token and

includes the letters, numbers, the hyphen, the slack, and the

apostrophe. The second set contains only the period, which signals the

and of a sentence, and the third set contains all other characters, which

are considered to be equivalent to the blank. A simple sequential

nachine which is adequate for finding sentences and tokens (but not

2-29

i Lexical

Decomposition

Stopwor]

± _

I Data Base Merge I Cataloging

: , L --T --- ' L

main Data Base

Figure 2-11. The Update Process

2-30

T iL -I

r

Current Current Next Action(s)
State Input State

Character ______

WAIT <blank> WAIT None

*<letter> TOKEN Put input into token accumulator

<period> WAIT Increment sentence number.

I Set word number to 1.

TOKEN <blank> WAIT Output token accumulator with
I I occurrence pointer.
_________Increment word number.

(letter> TOKEN Add to token accumulator.

(period> WAIT Output token accumulator with
occuarrence pointer.

I Increment sentence number.
I _________ ________ __________ Set word number to 1.

Figure 2-12. A Sequential Machine for Lexical Decomposition

2-31

paragraph and document boundaries) is shown in Figure 2-12. Because the

character set is small (256 entries) and the machine states are few, the

state-character combination could be used to address a memory of 512

registers. Each register needs one bit to specify the next state part of

the next address, and three to six bits to specify the actions to be

taken. The actions themselves consist of increment and store type

operations. Since the machine should be going from the token state to

the token state or the wait state to the wait state most of the time, the

computational effort per input character should be about 3 operations,

two of which are a memory read and a memory write. Based on the estimate

of 7 characters per token, the lexical decomposition effort is 21

operations per token.

The next task is the elimination of common or stopwords. This is of the

same complexity as the segment table lookup. Although stopword

elimination could be done more efficiently by a merge following the sort,

it is done now because it eliminates a significant number (20% to 30%) of

the tokens that have to be sorted. The computational effort then, for

stopword elimination, is one lookup per document token.

The next task is to sort the tokens (with their occurrence pointers) into

lexicographical order. Although many sorting techniques have been

developed, it will be assumed that a merge-sort method is used here. The

merge-sort uses an algorithm which is nearly the same as the OR search

operation (Section 2.5). The computational effort for this task is

T log2 T comparisons where T is the number of tokens in the documents.

The final task involves the formation of the dictionary and occurrence

lists. This is done by comparing each entry of the sorted list of tokens

against a reference. The reference is initially set to the first token,

and its occurrence pointer is put into an occurrence list. As a new

token is taken from the sorted list, it is compared to the reference. If

2-32

I

it matches, its pointer is added to the occurrence list being formed. If

it does not match, the current occurrence list is filed and its address

is appended to the reference, which is then filed in the dictionary. The

current token then becomes the reference, and its pointer starts a new

occurrence list. Although seemingly complex, the computational effort of

the indexing task is about one comparison per document token. If the

document set to be added to the data base contains fewer than 1000

tokens, the comparison will show no match most of the time and the

relative computational effort will be greater.

The second step of the update process may require a data base merge.

This involves the combination of two document files, two dictionaries,

and two occurrence list files. Assuming the document numbers assigned to

the new documents began in sequence after the highest document number in

the data base being updated, it is only necessary to append the new

documents onto the old file. If this is not the case, the document

numbers in the new document file and new index files must be modified by

adding a fixed constant.

Dealing with the index involves a merge type of operation which is

governed by the dictionary files. Two dictionary entries are taken and

compared. The lesser token (lexicographically) is added to the updated

dictionary, with the current address of the updated occurrence files.

The occurrence list of the lesser token is placed at that address, and

the address is changed to the next position beyond the last occurrence

pointer's address. The lesser dictionary token is then replaced by the

next entry from the same dictionary. In the event the

dictionary tokens match, then one entry is made in the updated

dictionary, the occurrence list for the main data base is output followed

by the list for the update or temporary data base, and both dictionary

tokens are replaced from their respective files. As with the other merge

type operations, the computational load is essentially one comparison per

vocabulary entry, or 1.41T 0 "8 5 comparisons, using Equation 2-1.

2-33

At the beginning of this chapter, the task of forming mailing lists for

new documents, based on mission profiles, was associated with the update

process. As indicated in Section 2.2, the mission profiles are largely

composed of search commands. Thus, forming the mailing list can be done

by executing the profile file on the temporary data base for the new

documents.

This approach to routing new documents is adequate f or document retrieval

systems which are updated periodically by large document sets. For

message handling systems, however, which must quickly route messages

received at random intervals, an alternative approach is indicated. An

attractive alternative employs a dictionary of profile tokens, which can

be merged with the dictionary of a message. Any common terms can be used

to pick off the occurrence lists of interest. Pairs of pointers between

profile tokens and the occurrence lists can then be sorted based on the

profile statement numbers. Following this, the profile statements can be

executed.

The computational requirements of the update process are given in Table

2-8. The requirements of the search operations depend on the average

length of the occurrence lists for the search tokens, with respect to the

temporary data base. It is assumed here that this average depends

linearly on the number of tokens in the data base. This is a reasonable

assumption based on occurrence list length growth rates determined in an

earlier study. The average length, L, for a base of T tokens is

L 2905 6 T =8.3 x 1- curne 27
350x10 ccrece 27

2-34

TABLE 2-8. COMPUTATIONAL REQUIREMENTS OF THE UPDATE PROCESS

Process and Tasks Requirements

Temporary Data Base Formation I

Lexical Decomposition 21T basic operations (l-byte operand)

Stopword Elimination T lookups (12-byte operands)
Sort T log 2 T compares (2

4-byte operands)
Index Formation T compares (24-byte operands)

Data Base Merge 1.41TO.5 8 compares (24-byte operands)

Profiling Search
Segment Table 3.5C lookups (24-byte operands)
Segmeut Scan 3.5C K character-compares (21-byte

operands)
Search Operation 4 x 10-6C T compares (6-byte operands)

NOTE: T tokens in the documents to be added

C profile search commands
K bytes per dictionary segment

2-35

2.7 ALLOCATION OF TASKS

As mentioned earlier, three types of processors were available to use in

the demonstration: a general-purpose minicomputer (PDPII/70), a very

high-performance integer array processor (AFP), and an associative unit

(AU). The characteristics of the latter two machines are described in

Section Three.

For demonstration purposes, it was decided to allocate tasks to the

various equipment as shown in Table 2-9. Other control and data

manipulation tasks which were performed in the PDP-11/70 are not listed

in this allocation, but supported operation of the AU and AFP's.

TABLE 2-9. TASK ALLOCATION

Task Machine

I
Search

Segment Table Lookup AU

Segment Scanning AFP
Occurrences Merge AFP

Update

Lexical Decomposition AFP
Stopword Elimination AU

Sort AFP
Indexing AFP

2.8 RELATED TOPICS

This section covers topics or enhancements which were considered during

the work of the project but are not essential to document retrieval and

message handling.

2-36

2.8.1 Word Compression

The purpose of the word compression step is to reduce the number of bits

required to store the tokens. The method used here offers about a 2 to I

compression ratio. This doubles the rate at which comparisons, for

sorting etc., can be made and halves the storage requirements for the

vocabulary and the text. It should be noted that this step is not

essential in document retrieval but is employed here for performance

enhancement. There is an element of cost in compressing the dictionary

entries with respect to the search process.

The text compression scheme used here is based on fully utilizing the 256

codes representable in an 8 bit byte. This is done using a table of

1-,2-,3-, and 4- letter patterns (called n-grams). There are up to 256

n-grams in the table, and one of the 256 possible 8-bit codes is

associated with each. An example of such a table appears as Table 2-10

and some possible encoding of the token "perception" with this table is

shown in Table 2-11. Although there may be many encodings of a

particular token, all encodings decode to the original token by using the

same table.

The encoding algorithm used in the current project processes each token

from left to right. The longest n-gram matching the left of the token is

found in the table, and its code is returned. The encoded characters are

deleted from the token and the process is repeated until the token has

been consumed. With this algorithm, the first encoding of "perception"

is found, though the shortest encoding may not be found fo all tokens.

The compression ratio obtained with this method depends on both tho !xt

to be compressed and the n-grams constituting the table. No optimal set

of n-grams is known, nor is an efficient algorithm known for finding an

optimal set for a given corpus of text. (Theoretically, the set of

2-37

TABLE 2-10. AN n-GRAM ENCODING TABLE

A 001 CONT 039 GY 077 M 115 PART 153 TE 191
AC 002 CR 040 H 078 MA 116 PE 154 TED 192
ACT 003 CT 041 HA 079 MAN 117 PER 155 TER 193
AD 004 CUL 042 HAS 080 MAR 118 PL 156 TH 194
AGE 005 D 043 HAT 081 MAT 119 PLA 157 THAT 195
AL 006 DA 044 HE 082 ME 120 PO 158 THE 196
ALS 007 DI 045 HER 083 MENT 121 PRE 159 THEI 197
AM 008 DU 046 HI 084 MI 122 PRES 160 THI 198
AN 009 E 047 HO 085 MIN 123 PRO 161 TI 199
AND 010 EA 048 HORM 086 MO 124 Q 162 TION 200
APP 011 EAR 049 1 087 MP 125 R 163 TO 201
AR 012 EC 050 IA 088 MPL 126 RA 164 TR 202
ARE 013 ED 051 IC 089 N 127 RE 165 RS 203
ARI 014 EL 052 ID 090 NA 128 REA 166 TU 204
AS 015 EM 053 IES 091 ND 129 RES 167 TURE 205
AT 016 EME 054 IG 092 NE 130 RG 168 TY 206
ATE 017 EN 055 IL 093 NG 131 RI 1b9 U 207
ATIO 018 ENE 056 IM 094 NI 132 RO 170 UC 208
ATOR 019 ENT 057 IN 095 NN 133 RS 171 UL 209
B 020 ER 058 ING 096 NO 134 RT 172 UM 210
BE 021 ERI 059 INS 097 NOT 135 RU 173 UN 211
BET 022 ES 060 INT 098 NS 136 RY 174 UR 212
BI 023 ET 061 ION 099 NT 137 S 175 URE 213
BLE 024 EV 062 IR 100 0 138 SE 176 US 214
BO 025 EVE 063 IS 101 OC 139 SH 177 UT 215
BUT 026 EX 064 IT 102 OD 140 SI 178 V 216
BY 027 EXP 065 ITS 103 OF 141 SM 179 VA 217
C 028 F 066 IV 104 OL 142 SMAL 180 VE 218
CA 029 FA 067 J 105 OM 143 So 181 VER 219
CAL 030 F1 068 JE 106 ON 144 SP 182 VI 220
CAN 031 FO 069 K 107 ONE 145 SS 183 W 221
CE 032 FOR 070 KE 108 OP 146 ST 184 WA 222
CENT 033 FORM 071 L 109 OR 147 STA 185 WE 223
CES 034 FR 072 LE 110 OS 148 STE 186 WI 224
CH 035 G 073 LI 111 OT 149 SU 187 WITH 225
CL 036 GES 074 LL 112 OU 150 SYST 188 X 226
CO 037 GH 075 LO 113 P 151 T 189 Y 227
CON 038 GR 076 LY 114 PA 152 TA 190 Z 228

2-38

TABLE 2-10. AN~ n-GRAM ENCODING TABLE (CONT'D)

ZE 229
O 230
1 231
2 232
3 233
4 234
5 235
6 236
7 236
8S 238
9 239
+ 240

- 241
* 242
/ 243
(244
) 245
$ 246
= 247

248
* 249
= 250

251
252

2-39

TABLE 2-11. SOME ENCODINGS OF "PERCEPTION" USING TABLE 2-10

I ENCODINGS 1COMPRESSION
RATIO

1 155,032,151,200 2.5

2 151,058,028,047,151,200 1.67

3 154,163,032,151,199,144 1.67

4 151,058,032,151,189,099 1.67

5 154,163,032,151,200 2

6 155,032,151,199,144 2

7 1151,047,163,028,047,151,189,087,138,1271 I

n-grams should be used equally frequently in encoding.) In the present

system the field length for the token value is fixed, so compression is

more important on long tokens than on short ones. Therefore, in a

production system, the n-grams should be selected to minimize the field

length rather than maximize the compression ratio.

As with lexical decomposition, the computational effort for word

compression is proportional to the number of characters in the input

documents.

For this project, word compression was allocated to the associative unit

and was inserted between the tasks of lexical decomposition and sorting

(See Figure 2-11). As mentioned earlier, word compression complicates

the search process. The problem arises with truncated tokens as search

operands. Because multiple characters can be represented in one code, it

2-40

is quite possible that a truncation is essentially specified in the

middle of an n-gram. This can be handled by retrieving all dictionary

entries satisfying a truncation to the next lover n-gram. Then, the

problematic n-gram, can be decoded for each entry and the spurious entries

eliminated.

Since the size, Sd, of the document texts dominates the data base storage

requirements (Figure 2-7), it is well worth compressing the document

file, which can be done without compressing the dictionary and

complicating searches. The decision to compress the dictionary must be

made in view of the specific application. Having an associative unit

available can save time in updating by reducing the size of comparison

operations required in sorting and indexing.

2.8.2 Spelling and Morphology

System performance depends significantly on the quality of the input

documents. Since every token is indexed, misspellings are indexed.

Figure 2-13 shows a fraction of the FTD dictionary. Associated with each

token is the length of its occurrence list in the data base. This sample

contains 1155 tokens, of which 62 (or 40%) are misspellings. Thus, nearly

half of this dictionary could be eliminated by a spelling checking and

correcting program. Possibly, more significant than this is that these

misspellings represent 132 occurrences, and that some vital information

might not be retrieved in a search because these occurrences would be

missed.

A second consideration involves suffixes and compounds (formed with

hyphens). Table 2-12 shows the suffix and compounding morphology of the

sample dictionary tokens. Since the truncation form of search terms is

most often used to eliminate distinctions based on suffixes and

compounds, it is well to consider eliminating such distinctions from the

2-41

17,774 DIRECT I DIRECTELY
4 DIRECT- 3 DIRECTER
I DIRECT-ACTING 2 DIRECTERHOM

11 DIRECT-ACTION 6 DIRECTE~ic
2 DIRECT-CHANNEL I DIRECTFLOW
I DIRECT-CHARGE I DIRECTHERI(
I DIRECT-CHILL S DIRECTHERHOM
2 DIRECT-CONVERSION I DIECTHERW3N
5 DIRECT-COUPLED I DIRECTLA
I DIRECT-COUPLING 3 DIRECT1I
I DIRECT-CURRENT I DIRECTIN

127 DIRECT-CURRENT 4 DIRECTIN
I DIRECT-DIESELECTRIC 4 DIRECTINAL
2 DIRECT-DRIVE 808 DIRECTING

49 DIRECT-FLOW 1 DIRECTINOS
1 DIRECT-HEAT 1 DIRECTINTEGRATION
1 DIRECT-HEATING 12 DIRECTIO
I DIRECT-HIT 1 DIRECTIOAN1.
1 DIRECT-ILLUINAT10N 16095 DIRECTION
4 DIRECT-INDIRECT 1 DIRECTION-THE
4 DIRECT-INJECTION 1 DIRECTION(OIU)
4 DIRECT-INVERSE I DIRECTION-
I DIRECT-IONE I DIRECTlON--ThE
5 DIRECT-IE I DIRECTION--WTH
4 DIRECT-LINEAR I DIRECTION-A
I DIRECT-OF 3 DIRECTION-AND-RANGE
I DIRECT-POLARITY I DIRECTION-CHANGING
I DIRECT-RADIATING I DIRECTION-DEPENDENT
6 DiRECT-READING 2 DIRECTION-FINDING
I DIRECT-RECIRCULATON 1 DlRECTION-RESEARCH
I DIRECT-RUN I DIRECTION-SELECTING
I DIRECT-SHADOW 2 DIRECTION-SELECTIVE,
I DIRECT-STROKE 2 DIRECTION-SENSOR
I DIRECT-THERNOMETRIC I DIRECTION/DISTANCE
L DIRECT-VIEWSCAN-CONVERTER 2 DIRECTIONA
1 DIRECT-VISIBILITY 2 DiRECTIONABI LITY
2 DIRECT-VOLTAGE 1729 DIRECTIONAL
I DIRECT/STRAIGHT 2 DIRECTiONAL-CRYSTALLIZATiON
6 DIRECTABILITY 46 DIKECT1ONALITY
2 DIRECTABLE 63 DIRECTIONALLY
2 DiRECTACTING 9 DIKRCTIONALNESS
1 DIRECTCURRENT 4 DIRECTIONALS
1 DIRECTEDNESS 1 DII4ECTIONALZON&LITY
1 DIRECTDNESS 2 DIRECTIONAND

4819 DIRECTED 1 DIRECTIONASOLIDIFICATION
2 DIRECTED-ACTION I DIRECTIONED
I DIRECTEDALONG 4 DIRECTIONER
5 D13.ECTEDNESS 2 DIRECTIONES
I DIRECTEDNRONAL 2 DIRECTIONPINDER
I DIRECTEDTED 1 DIRECTIONPOR
I DIRECTEDTOWARDS 5 DIRECTIONING
I DIRSCTKLEKTRIC 2 DIRECTIONiLESS

Figure 2-13. A Sample of a Dictionary

2-42

2 DIRECT IONN 2 DIKECTOR-REPRESENTATIVES;
6 DIRECT IONOP I DIRECTOR-TO-SECRETARY
I DIRECTIONOVER I DIUCTOR/AUTOWAUIC

5665 DIRECTIONS 11 DIRECTOR'S
1 DIRECTIONS(111 I DIRECTORAAT
1 DIRECTIONS- I DIRECTORAL,
1 DIRECTIONS--WITII 574 DIRECTORATE
1 DIRECrIONS--IROH 2 DIRECTORATE-GENERAL
1 DIREC.TIONS--IN 1 DIRECTORATE'S
2 DIRECT IONS--LENGTHwIs SI DIRECTORATEFO
I DIRECTIONS-OPERATIVE 89 DIRECTORATES
1 DIRECTIONSD 2 DIRECTORIA,
2 DIRECTION SIN 2 DIRECTORIA-GERwL
1 DIRECTIONWERE 3 DIRECTORIAL
1 DIRECTIOR I DIRECTORIE
I DIRECTIORS 15 DIRECTORIES
1 DIRECTIOS 878 DIRECTORS
2 DIRECTIOSN 3 DIRECTORS'
1 DIRECTIOV 12 DIRECTORBCOPE
I DIRECTlY 20 DIRECTORSHIP

478 DIRECTIVE 127 DIRECTORY
2 DIRECTIVE ITT 1 DIRECTORY-SECRETARY
1 DIRECTIVELY 2 DIRECTOS
4 DIRECTIVENESS 1 DIRECTRECORDING

570 DIRECTIVES I DIRECTRD
2 DIRECTIVITIES I DIRECTREX

290 DIRECTIVITY 12 DIRECTRICES
I DIRECTix 22 DIRECTRIX
1 DIRECTL 1 IIIRECTIRIXES
2 DIRECTLAYING 2 DIRECTRO
1 DIUECTLED 1 DIRECTlY
1 DIRECTLEY 251 DIRECTS
1 DIRECTLINE 1 DIRECTTORS
1 DIRECTLIR 1 DIRECTU

7796 DIRECTLY 1 DIRECTURATE
2 DIRECTLY-DISTILLED 1 DIRECTY
1 DIRECTLY-GROUNDED 1 DIRECTY
1 DIRECTLY-LINEAR-CONTROLLED
2 DIRECThYON
1 DIRECTNENORY
6 DIRECTNESS
5 DIRECTO
6 DIKECTom
1 DIRECTIONAL
I DIRECTIONATE
5 DIRECTONS

26,923 DIRECTOR
5 DIRECTOR-
I DIRECTOR-PROF
9 DIRECTOR-GENERAL
2 DIRZCTOR-GtHERALS

Figure 2-13. A Sample of a Dictionary (Cont'd)

2-43

TABLE 2-12. MORPHOLOGY OF THE TOKENS

WORD INDIVIDUAL ENTRIES TOTAL ENTRIES
(ENDING) WORDS TOKENS WORDS TOKENS

DIRECT 1 17,774 51 31,957
-R6 252

ABILITY 1 6
ABLE 1 2
ED 1 4,819
EDNESS I 1
ING 1 808
IVE 1 78
IVES 1 70
IVITY 1 9u
LY 1 7,796
LY- 3 4
NESS 1 6
S 1 251

DIRECTION 1 6,095 24 13,626
12 17

AL 1 1,729

ALITY 1 48
ALLY 1 63
LESS 1 2
S I 5,o65

vS- 6 7

DIRECTOR 1 26,923 12 28,498
- b 20

'S 1
ATE 74
ATES 1 89
S 1 878
S, 1 3

DIRCTORSHIP 1 20 1 20

DIRECTORY 1 127 3 143

*IES 1 15

DIRECTRIX 1 22 2 34
*CES 1 12

MISSPELLINGS _ 62 132

TOTAL j 155 74.410

2-44

......... l

dictionary. Table 2-12 shows that the 155 tokens in the sample could be

covered by only six root words if misspellings were eliminated. This

would imply a dictionary of only 4% of the current size. If, indeed,

this could be done, it could be feasible to store the entire dictionary

in semiconductor memory, eliminating half the disk accesses in

searching. This modification requires a reliable suffix analyzer,

versions of which are becoming available.

2.8.3 Cache Memory

This section deals with the possible advantages of including a large

semiconductor memory in the system to act as a cache memory between the

disk memory and the main meaories of the processors. The primary purpose

of such a cache is to minimize the time for disk accesses and data

transfers with the disks.

In current practice, the pointers to occurrence lists which are the

result of search operands may be stored in fast memory, but the lists,

being large, are often stored on dissK once they are formed. Since the

likelihood that they will be referenced in a subsequent statement is

high, search results are very good candidates for a cache. With

occurrence list lengths of 3000 pointers and assuming 6 bytes per

pointer, about 20,000 bytes are required per result.

Another method of reducing disk accesses involves placing a portion of

the dictionary in a cache. To determine the cache requirements for a

partial dictionary, the search terms used in the mission profiles were

examined. Almost half the search tokens were used only once, and only

33% of the 30,000 search tokens were used more than twice. Storing each

token when it is first used would reduce accesses for the dictionary by

only a third. Since the dictionary involves only half the total

accesses, the net savings would be only on the order of 10%. In most

2-45

cases, time would be added to search the cache. The storage required for

30,000 tokens at 24 bytes each is about 750,000 bytes. This would be an

excellent application for the associative unit. Because the searches in

the profiles have undoubtably been designed to compensate for the clutter

in the dictionary (See Section 2.8.2), caching of frequently used tokens

for searching should be reexamined after the dictionary has been cleaned

up.

2-46

3.0 ARRAY AND ASSOCIATIVE PROCESSORS

The system configuration available to demonstrate the Advanced Document

Retrieval System was configured from equipment at Control Data's

Information Processing Center. This equipment consists of three Advanced

Flexible Processors (AFPs), the Associative Memory Unit, a DEC PDP 11/70,

and a mass storage subsystem consisting of 13 processors -- a total of 18

processors. The mass storage processors are CDC 7600 peripheral

processing units.

3.1 ADVANCED FLEXIBLE PROCESSOR ARRAY

The three AFPs used in the Advanced Document Retrieval System are

high-performance digital processors and work together in the AFF Array

Computing System. The basic hardware elements of an AFP Array Computing

Systemare an array of AFPs, a high-performance random access memory, and

a host computer. High data processing rates are achieved by having

parallel architecture, ultiple processors, and instruction parallelism

internal to the processor. Applications execute entirely within the AFP

Array Computing System.

The software structure necessary to control the AFP Array Computing

System is based on the allocation of work in the system. The primary

work is to perform compute intensive data processing. In the AFP Array

Computing System, the processor array performs this function. In order

to manage the high-speed processing, low-speed scheduling and support

functions muist be provided. The host computer supplies these low-speed

control and support services, such as loaders, debug tools, and

interactive and batch interfaces.

3-1

uAJ
I-

x) L

x L-)

I - IM

U. C-

cc~

W ILI

0.- C
43"- A-.-

Figure 3-1. System Configuration

3-2

3.1.1 Hardware Structure

The connection between the host and the AFP array is a high-speed ring

channel with a ring port to the host. The connection between the AFP

array and the high performance RAM (HPR) memory is an extremely

high-speed direct memory, access-type transfer.

An AFP consists of a collection of relatively autonomous functional units

interconnected by a crossbar switch. An instruction memory controls

these functional units as well as the configuration of the crossbar

switch each machine cycle. The functional units in a processor operate

in a synchronous manner, with most units capable of producing results

every machine cycle.

Interprocessor communications in an AFP array are performed with a ring

communications system in which packets of information containing both

data and control are transmitted between processors. Packets are passed

from processor to processor over this parallel channel until removed by

the destination ring port. Ring bandwidth is a function of the number of

rings and the number of processors on each ring.

The AFP consists of 15 functional units, connected via a crossbar

switch. Figure 3-2 shows the AFP crossbar configuration. The crossbar

switch can route as many as 16 16-bit input quantities to as many as 18

destinations, on any clock cycle. The AFP contains eight different

functional unit types:

o Data Memory (4),
" Integer Add (2),
o Multiplier (1),
" Shift/Boolean (2),
o File (1),'
o Ring Port (2),
o External Memory Access (2),
o Control (1).

3-3

OUt TIPUII

3 0
3 DATA MEMORY 1

1DATA MEMORY2

3.-3

The primary capabilities of the hardware are summarized in Table 3-1.

The processor operates in a synchronous manner, with a cycle time of 20

nanoseconds. Each unit contains input registers controlled from the

micromemory instruction word. All units are segmented and capable of

initiating a new operation every cycle. Most units perform their

operations and deliver results to the input registers of other functional

units in two machine cycles. Multiplication operations require one extra

cycle. The control unit and the input/output units take one cycle for

immediate operations. Each unit does comparisons of the results of the

operation performed. These comparisons are available at all times for

use in branching or decision making.

3.1.2 Software Structure

The software structure for the AFP system consists of three subsystems.

The PDP-11/70 control subsystem software performs AFP array

initialization, control and scheduling, and termination. The AFP array

subsystem software provides executive and control services to the

application code executing in the AFT'. The general-purpose computer

subsystem software provides the software development tools.

PDP-11 Control Subsystem Software

The scheduling and control of application functions running in the array

are managed by the Multiprocessor Array Executive (MAX) operating

system. MAX consists of a number of tasks executing in close cooperation

with, and under control of, the RSX-11M operating system. These tasks

provide interactive and batch interfacing services for the application

function, the 1/0 services to the AFP array, and the executive features

for overall control of the system. The controlling element resides in

the PDP 11/70.

3-5

TABLE 3-1. AFP FUNCTIONAL UNIT CAPABILITIES

INTEGER ADD ADD/SUBTRACT, 16 OR DUAL 8-BIT, l's OR 2's COMP,
32-BIT NETWORK

MULTIPLY 16 x 16, DUAL 8 x 8, INTEGER BYTE PRODUCTS,
2 's COMP, POPULATION COUNT, SIGNIFICANCE
COUNT, BIT REVERSAL

SHIFT/BOOLEAN 32-BIT RIGHT OR CIRCULAR SHIFT, 16 BOOLEAN
OPERATIONS

FILE 2 SETS OF 8-WORD x 16-BIT REGISTERS, 2 16-BIT
READS AND 2 1b-BIT WRITES PER CYCLE

DATA MEMORY 1024 16-BIT WORDS, 16 16-BIT REGISTERS

DIRECT AND INDIRECT ADDRESSING, AUTOMATIC

INDEX INCREMENT/DECREMENT

CROSSBAR PORT 16-BIT OUTPUT AND 1b-BIT INPUT DATA CONNECTIONS
TO THE CROSSBAR

RING PORT 16-BIT DATA I/O WITH RING AND PROCESSOR, 16-WORD
INPUT AND 16-WORD OUTPUT BUFFERS FORCED
TRANSFER TO ALL, PROCESSOR MEMORIES

XMAU EXTERNAL MEMORY ACCESS 128-BIT MEMORY I/O AND
16-BIT PROCESSOR I/O, MAX ADDRESS 3 BYTES

3-6

I

The basic unit of work for the AFP Array Computing System is the

application program, which is the combination of PDP-11/70 (control

program) and AFP software that is needed to do an application task. The

executable software for applications is stored under the RSX-IIM

operating system. The structure permits existing modules to be easily

changed or new ones to be added. The application control program is

written as a normal RSX-11M task that uses the special MAX interfaces.

It is written in FORTRAN or MACRO 11 (PDP-11/70 assembly code), and is

constructed from relocatable routines to interface to the MAX services.

The AFP array portion is written in MICA language and uses the AFP

executive and resident services. The control program is responsible for

managing the loading of the AFPs and for high level control of the

application. The MAX system is designed so that an application may

execute as either a batch job or an interactive job. Procedure files may

be used to execute sequences of commands by calling a file rather than

entering the commands one at a time.

A DEBUG software package is available to provide a means of monitoring

the AFP Array Computing System while executing user applications or

engineering diagnostics, and to provide tools for tne user or engineer to

manipulate the system as an aid to program debugging or fault finding. A

comprehensive set of commands is available to enable the user to query an

operational system. Different displays are available to view the system

state and the state of any individual processor or memory.

AFP Array Subsystem Software

The AFP array subsystem consists of one interface AFP (IAFP), and several

AFPs (typically 2 to 31). The AFP executive software resides only in the

IAFP and comminicates to the other AFPs through the AFP resident

software. It accepts requests from the AFPs and MAX. High-level

requests from the MAX system task or application task are passed to the

3-7

AFP executive by the ring driver. The AFP executive expands these

requests into the necessary detailed level and sends ring packets over

the ring to the AFP resident programs in the AFPs. In order to access

basic ring interface features of the AFP, the AFP executive can permit a

transfer of unmodified ring packets to the AFPs.

The AFP resident performs various system functions required by the AFP

application program and receives requests from the AFP executive through

the system ring. The AFP resident resides in each AFP (except the IAFP)

along with the user AFP application program.

General-Purpose Computer Subsystem Software

The software development tools provided by the general-purpose computer

software are the AFP cross assembler, MICA, and the AFP instruction level

simulator, ECHOS. The MICA cross assembler and the ECHOS instruction

level simulator allow all programming to be done off-line. Any Control

Data CYBER 700/800 series computer hosts these software tools.

AFP programs are written in the MICA language on the CDC CYBER computer.

The edited files are then assembled by MICA. MICA checks for all illegal

syntax and illegal hardware usages. Functional unit and crossbar usage

conflicts are identified by MICA. A binary file is produced in the

format required to be loaded in the AFP.

The AFP simulator executes on a CGC CYBER computer and provides a

detailed simulation of all AFP functions on a clock cycle basis. ECHOS

provides a set of commands for controlling the loading and simulated

execution of AFP microcode programs output by the MICA cross assembler.

ECHOS may be used interactively or in batch mode. In batch mode, the

commands controlling the simulation and its output are read from a file

and all output is written to a file. In interactive mode, the commands

3-8

|MENNEN-

are typed in directly by the user and the output is returned to the user

at the terminal. This gives the user flexibility in the control of the

simulation process. In addition, the user may direct all or part of the

output, with a copy of the input, to a file for later off-line

examination. ECHOS takes the binary microcode program directly from a

file created by the MICA cross assembler.

3.2 HOST COMPUTER

The host computer of the Advanced Document Retrieval System is a DEC

PDP-11/70. It is responsible for hosting the application and system

software. The AFP system software consists of an Executive, MAX, a debug

package, and diagnostics. The host also supports all the standard input

and output functions of the system. The application software is written

to be executed in the various processors and stored on the host computer.

3.3 ASSOCIATIVE MEMORY UNIT

The Associative Memory Unit consists of 256 associative processing cells

and a microprogrammable controller. The exploratory development model

developed during the previous contract was expanded and an interface to

the AFP was designed and built. The following paragraphs provide an

overview of the Associative Unit and a more complete description is found

in Appendix C.

The Associative Memory Unit contains 256 associative processing cells

designated cell 0 through cell 255. A lowered numbered cell is

considered to be above a higher numbered cell, and the lowest numbered

cell of a collection of cells is considered to be the first cell in that

collection.

3-9

All cells in the Associative Memory Unit are common to four buses which

carry data and control to the cells and data from any one of them. In

addition to the common bus connections, each cell has a set of unique

connections for propagating data between adjacent cells, and for future

connection of external devices. Each cell also has connections to the

response network.

Each cell is in one of two states: marked or not marked. The response

network deals only with the marked states of each cell. In addition to

the marked state, several other status conditions are defined within each

cell. Various cell operations may be conditioned on the true or false

value of these conditions. The elements of a cell are illustrated in

Figure 3-3 and include a 25b-words by 4-bit random access memory (RAM), a

32-function, 4-bit arithmetic logic unit (ALU), cell control logic, and

various registers and internal buses. The cell operations are controlled

by the Cell Control Bus (CCB).

The Associative Processing Cells are controlled by a microprogrammed

controller. The controller is connected to the External Memory

Addressing Unit (XMAU) of the AFP. The interface is designed to make the

Associative Memory Unit appear to be a bank of High Performance Memory

(HPR). By initiating a read or write to the Associative Memory Unit, the

AFP can load or read back the microprogram memory, examine the registers,

select the operating mode, start a microprogram, or transfer data to and

from the Associative Memory Unit.

The controller consists of a 2 56-word by 48-bit microprogram memory,

several registers, and associated interface and control logic. A block

diagram showing the functional organization of the controller appears in

Figure 3-4.

3-10

0-4

4 4

a

I a

0.o

00

ar

Figure 3-3. Associative Processing Cell Structure

3-11

. "" ' l - " -4

-4' I3 i i i-

DATA & CONTROL OUTPUT DATA STATUS ACKOWLEDGE
TO CELL BANKS TO AFP TO A" TO A"P

1 6 . 4 . 5

32
BUF (6) l

CCR (20) CD 4 CAR (8) CD 4MA (8 CTB (8 CL(4

DATA & RESPONSE INU AAADDRESS RIQUESTS
FRWM CELL BANKS FROM APP FW) AP &

CLOCK
FRMCL AP

NO- 18 10

Figure 3-4. Associative Unit Controller Block Diagram

3-12

__ _ _ _ _ _ _ _ _-

3.4 DISK STORAGE SUBSYSTEM

The Disk Storage Subsystem (DSS) contains 13 CDC 7600 Peripheral

Processors, 320K 12-bit memory words, two CDC 857 disk drives, a CDC 405

card reader, an operator console, and a CDC 7000 channel to an AFP ring

port interface. Figure 3-5 shows the DSS configuration and the interface

to the complete Advanced Document Retrieval System.

The Disk Storage Subsystem is attached to the AFPs via the ring channel.

This also allows the host computer to communicate with, and transfer

data to/from the DSS.

Four of the thirteen peripheral processing units (PPU) are used. Four

unique tasks are performed and each has a dedicated PPU. The four tasks

are: the system monitor, the interface and command PPU, and two disk

drivers. Appendix D details the features of the interface and command

PPU and disk driver PPU.

The PPUs are separate and independent computers. Each PPU has a

computation section that performs binary computation in fixed-point

arithmetic. A PPU provides storage for 4096 12-bit words. The PPU

instruction set, combined with the high-speed memory and channel

flexibility, enables a PPU to drive many types of peripheral without the

necessity of an intermediate controller. There are eight input data

paths and eight output data paths connecting the PPU to other devices.

The PPU input/output facility provides a flexible arrangement for

high-speed communication with a variety of I/O devices. PPU to PPU

communications is performed through dedicated addresses in main memory.

Main memory consists of 320K of 12-bit words or 64k of 60-bit words. A

read from or write to memory is eight b0-bit words in parallel. A PPU

disassembles (reads) or assembles (writes) these eight 60-bit words in 12

bit increments.

3-13

.. " | h . .

FROM TO
OTHER RING OTHER
AFP'S PORT AFP'S

IAFP

RIGOPERATOR
PORTCON SOLE

CARD
READER

P LARGE PPU PDP 11/70

PPL CORE PPU

DRIV ~*-SUBSYSTEM

Figure 3-5. Disk Storage Subsystem

3-14

4.0 DEMONSTRATION SOFTWARE

The software developed for the Advanced Document Retrieval System is

partitioned among the several programmable hardware components of the

system to provide a highly flexible interactive document retrieval

system. The software system was organized to readily facilitate

modification and growth, and was partitioned to specific hardware units

to take advantage of their specialized processing capabilities. The

software developed in this program includes:

o Host software
- Written primarily in Fortran and operates on the host

computer, a DEC PDP-11/70. This software processes the
interactive user commands, generates the user display, and

controls the network of AFPs and the AU.

o AFP software
- Written in MICA assembly language for the network of three

AFPs. In general this processes the high-speed operations.

Appendix B, "AFP Description" describes the programming
characteristics of the AFP.

o AU microcommands
- This microcode is absolute binary code for controlling the

associative unit. The microcode formats are described in
Appendic C, "Associative Unit" and the annotated microcode
is listed in Appendix E "Associative Unit Microcode for
Demonstration". For this demonstration the AU microcode
consists of a total of 59 instructions in 5 routines.

o Disk controlware
- This is assembly code operating in the peripheral processor

units. This code provides system monitor ring channel
adapter control, and disk control functions. This
controlware is described in detail in Appendix D, System
Software Description.

4-I

Much of the software and microcode identified above is transparent to the

user and will not be described in this section. Rather, this section

emphasizes the organization and general implementation approach for the

software supporting system user functions. Further details on the

user-visible software are given in Appendix A, "Demonstration Document

Retrieval System Users Manual".

4.1 SOFTWARE ORGANIZATION

The Advanced Document Retrieval System shows the feasibility of using an

Associative Unit and an AFP system to perform data compression of a set

of many text files for the purpose of forming a document retrieval data

base. It includes software to create the data base, to search the data

base for user specified phrases, and to display the documents containing

the phrases. The software package used to support this demonstration is

named RETRIEVER.

The hardware configuration includes a PDP 11/70 as the host computer to

an AFP array. An Associative Memory Unit is attached to one of the AFP's

for the data compression function.

The software development was executed in two phases. The first produced

a PDP 11/70 only software system, where all of the functions of data

compression, document search, and text retrieval were performed by

Fortran code. This demonstrated the feasibility of the data compression

algorithm.

The second phase resulted in AFP software and Associative Unit microcode

for data compression as well as APP sorting of the dictionary and

occurrence lists. The software structure description in this section is

for the AFP and Fortran implementation. Additional details on the

software are included in Appendix A, "Demonstration Document Retrieval

System Users Manual" and Appendix 1), "System Software Description".

4-2

The software system is organized as an interactive command language

processor. This command language, specifically developed for the

demonstration system is called Retriever Command Language (RCL).

Figure 4.-1 shows the top level organization. The software provides for

initialization, termination and menu command processing. This menu

command processing provides the basis for user interaction for processing

the four major applications handled by RCL:

1. Creation and storage of data bases of documents.

2. Expansion (merge and purge) of data bases.

3. Retrieval of documents that satisfy specified criteria.

4. Scanning of retrieval document texts.

4.1.1 Terms and Abbreviations

I MAX -- Multiprocessor Array Executive
MAX is a PDP 11/70 and AFP software system for controlling the
AFP array, for providing software services to access and
utilize the array, and for providing development services for
applications (debug tools).

2 HPR -- High Performance Random Access Memory
HPR is a dual-ported memory bank with 16K x 64-bit superwords

(swords). The Advanced Document Retrieval System configuration
has 3 banks of HPR. One bank is used by the interface AFP. A
second bank is shared by the interface AFP and applications
AFP-1. A third bank is shared by applications AFP-I and

applications AFP-2.

3 AU -- Associative Unit
The AU is an "intelligent" micro-programmable memory device
that performs simultaneous operations on a data dependent
subset (or all) of its storage locations.

4-3

43I

.4 .4 0

U ra

cc 'WA0

04 t

Figure 4-1. Advanced Document Retrieval System Software Organization

4-4

4.2 System/Subsystem Description

The Advanced Document Retrieval System includes software to create a

document retrieval data base, to search the data base for occurrences of

user defined phrases, and to display the text of the documents containing

the phrases.

The RETRIEVER software was built using the RSK-11M operating

system on the PD? 11/70 and the MAX software system for the AFP array.

The central functions of the RETRIEVER document search system are:

0 INPUT
-PDP 11/70 and AFP code create a data base consisting of a
dictionary and an occurrence list.

o SEARCH
-The user specifies a word or phrase and the dictionary is
searched for all occurrences of the phrase. A list of the
test documents that contain the phrase is produced.

o BROWSE
-The text for the documents that contain the specified phrase
were displayed to the user, one document at a time.

The software also supports auxiliary functions which include:

o MERGE
-The occurrence list and dictionary of two data bases can be
merged together to form one larger data base.

o RENAME
-The title of a data base can be changed.

4-5

o REMOVE
- A data base can be eliminated from the library.

o LIBRARY
- A list of data bases, the number of documents, and the

amount of disk resources consumed is displayed.

4.2.1 Equipment Environment

The RETRIEVER Software System uses 3 computer types and a variety of

peripherals. A list of computers and the important peripherals are:

1. PDP 11/70
a. Terminals -- for human interaction

b. Disks -- for text file storage
c. Tape Transport -- for data input

2. AFP -(Interface AFP)

a. HPR -- 1 bank for the use of the interface AFP

b. HPR -- I bank shared by the interface AFP and AFP-1.
This bank provides the data input capability.

3. AFP-I This AFP performs sort, merge, and dictionary build
a. HPR -- 1 bank shared by AFP-1 and AFP-2 for sharing data

4. AFP-2 This AFF hosts the Associative Unit

5. Associative Unit Performs data compression and stopword

removal

6. 13-Pack A 13-PPU subsystem connected to AFP RING

a. CYBER 7000 ring port -- connected AFP ring to 13-pack
channel

b. Disks -- retain occurrence lists and dictionary

4-6

- - ' I I 1 1 -1 I I .. .~.snow

4.2.2 Support Software Environment

The MAX (Multiprocessor Array Executive) system is a PDP

11/70 and AFP software system for controlling the AFP array, for

providing software services to access and utilize the array, and for

providing development services for applications (debug tools). It

includes resident microcode in each applications AFP, an interface AFP

between the PDP 11/70 and the ring, an RSX-I1M I/O driver, interactive

control software, scheduling software, and a subroutine library for use

of the applications programmer. RSX-11M is the operating system for the

PDP 11/70.

4.2.3 Interfaces

The input interface for RETRIEVER is through magnetic tape containing

5000 byte fixed length records. Each physical record contains one or

more logical records.

The RETRIEVER software resides in the PDP-11/70, the AU, and the AFPs.

The MAX system interfaces the three types of devices through the RSX-IIM

1/0 driver for the ring interface, the interface AFP software, the AFP

resident software in the application AFPs, and the AU resident software.

The interface of the PDP 11/70 Fortran to the applications AFP microcode

is through the MAX subroutine library.

The interface AFP communicates with AFP-I and AFP-2 through the ring.

AFP-1 and AFP-2 communicate via the ring and the shared HPR. AFP-2

communicates with the AU through an XMAU port.
r

4-7

* U

The AFPs communicate with the 13-pack disks through a CYBER 7000 channel

ring port (hardware) and PPUs on the 13-pack system. One PPU controls

the ring port, one PPU controls each of the 13-pack disks, and one PPU

controls System Maintenance Monitor (SMM) for the 13-pack display.

4.3 DESIGN DETAILS

4.3.1 Data Base

The following data files are used by RETRIEVER

1. Magnetic Tape
The input for creating the data base is a magnetic tape

containing 5000 byte physical records. Each physical record
contains one or more variable length logical records. Each
logical record contains 3 bytes that identifies the record
type and the length of the record. The records other than the
text data are called the formatted fields. The record types
include the following.

000 -- I.D.

An 8 character document identification code

006 -- Title

Title of the document

037 -- Date

Date of publication

101 -- Author

Names of authors

103 -- Country

Country of publication

4-8

107 -- Institution
Names of the institutions supporting the publication

143 -- Text
Text of the document (Each document had one or more text
records.)

2. Text File
The text file is retained on the PDP 11/70 disks. It is a
separate file from the formatted field data.

3. Formatted Field File
The formatted field file contains the non-text records of a
document. It also contains the index into the text file for
the start of the document. If the amount of formatted field
data is small, the information and pointer for up to 4
documents could be in one 512-byte PDP 11/70 disk sector.

4. Segment Table
The segment table is the last block of every dictionary file
on the 13-pack disks. It provides a quick lookup for the
dictionary. The table has one entry for each dictionary
block, It is the last word in the dictionary and the address
of the dictionary block. When a search of a data base is
made, the segment table is read first and retained in memory,
then the correct dictionary block is used for the word being
searched.

5. Dictionary
The dictionary resides on the 13-pack disks. The dictionary
begins with the highest disk address and uses successively
decreasing disk addresses. Each dictionary entry consists of
b lb-bit words and includes the following:

a. Compressed code for the word in 9 8-bit bytes. If the
word compresses to 9 or fewer bytes, all bytes are
retained; however, if the word compresses to 10 or more
bytes, 8 bytes are retained and the 9th byte is a marker
indicating the word compresses to 10 or more bytes.

4-9

b. Block number (on 13-pack disks) of the beginning of the

occurrence list for the word

c. Sub-block number of the beginning of the occurrence list

d. Entry number within sub-block of the beginning of the

occurrence list

e. Number of occurrences

6. Occurrence List
The occurrence list resides on the 13-pack disks. Each

occurrence list entry consists of 2 16-bit words. The
occurrence list includes the following:

a. Document number. This is a pointer to the formatted field
file on the PDP-11/70 disk. It is not just a sector in

the formatted field file for the document (upper 14 bits)
and the index of the section of the sector (U-3 in lowest
2 bits) for the document.

2. Sentence number. Sentences are marked by periods, '.', in
the text. The sentence number indicates the order of
sentences within each document.

3. Word number. The word number within the sentence.

7. Result List

The result list file is produced on the PDP 11/70 disks as a
result of the search operation. When the user specifies a new
phrase to search for, a new entry is created in the search
list file. Each entry contains the numbers of the documents
that satisfy the search request.

The pointers of the 13-pack entries are based upon the 13-pack

memory and disk sector sizes. Each large core memory (LCM) word of the

13-pack memory is 480 bits, or 30 16-bit words. Each disk sector is 51

4-10

LCM words. A track contains 4 sectors or 204 LCM words. In the

dictionary entry, the block number is the track address. The sub-block

number is the LCM word within the track (0-203), and the entry number is

the 16-bit pair within the LC4 word (0-29).

4.3.2 Program Descriptions

Data Base Creation

The basic flow of the data base creation through the RETRIEVER software

is as follows:

1. The PDP-11/70 software

a. Read the documents from the magnetic tape,

b. Copy the textual data to a fDP-11/70 disk file,

c. Split the formatted field data (author, institution, date)
to a PDP-11/70 disk file,

d. Filter the text for illegal characters,

e. Transmit the input data to the AFP-1 HPR while appending a
document for later retrieval of the text data.

2. AFP-I transfers the data from its HPR (where the PDP-i1/70
wrote the data) to AFP-2 for compression by the AU.

3. AFP-2 calculates sentence number and word number for each word.

4. AFP-2 passes the data to the AU for compression.

4-11

5. AU searches (simultaneously) its memory for a match to initial
sub-strings of the four characters and returns the compression
character for the longest n-gram.

6. AFP-2 sends complete compressed words to the AU for stopword

testing.

7. AU searches (simultaneously) its memory for a match to the
complete compressed word. If a match is found, the AU marks
the word as a stopword and it is not put in the dictionary.

8. AFP-2 passes the compressed word back to AFP-1. Each word
includes a document number, sentence number, and word number.
These numbers are necessary for searching. AFP-I then builds
up a buffer in HPR of the compressed words. After the buffer
is filled, the buffer is sorted before it is written to disk.
AFP-1 and AFP-2 continue to input, compress, sort, and output
buffers to disk until all input is completed.

9. AFP-I merges occur after all data is input. It is a 1, 2, or
3-pass merge for up to 8, 64, or 512 blocks, respectively.
AFP-2 does the 8-way compare for the merge, under control of
AFP-I.

10. AFP-l builds the occurrence list and the dictionary after the
merge phase is finished. The output of the merge phase is a
sorted list, where every word of every input document is
listed in compressed form with its associated tag to recover
the original text. Since this is too bulky for permanent
storage, the AFP-1 builds a dictionary where the pointer to
the occurrence list, and the number of occurrences of the word
are maintained. The occurrence lists contain no compressed
data, but only the tags in the order of the sorted data.
Since duplicate words are adjacent in the sort list, it is
necessary only to know the beginning of the set of adjacent
tags, and the number of tags for a given word.

4-12

11. The demonstration system has 2 disks, so the occurrence list
begins at the lowest address of drive 0 and uses successively
increasing addresses. The dictionary begins at the highest
address of drive I and uses successively decreasing disk
addresses. This reduces head movement during the search phase.

12. AFP-1 also contains the code to read and write the 13-pack
disks as part of the sort and the merge phases.

The PDP-11/70 Fortran creates a file of the original text data on the

PDP-11/70 disks. It does not contain the formatted fields and the

characters are padded so a word does not cross a sector boundary.

The PDP-11/70 Fortran also creates a formatted field file. This file

contains the fields indicating the author, institution, and date. They

do not become part of the compressed text. More importantly, the file

contains a pointer to the text data within the text file. The document

number that is passed to the AFP is the index into this formatted field

file.

After the data base creation is completed, the PDP-11/70 code adds the

data base name to the library. This is an PDP-11/70 disk file that

listed the library name, the number of documents, the addresses of the

occurrence list and the dictionary on the 13-pack disks, and the number

of sectors used by each.

Data Base Merge

The merge of two data bases is done by PDP-11/70 code. The following

steps show the basic flow.

1. Copies the formatted field file and the text file to new files
that are to be associated with the merged data base.

4-13

2. Appends the formatted field file and the text file of the
second data base to those of the first data base.

3. Reads beginnings of the dictionary lists, and the starts of
the occurrences lists from the 13-pack via AFP-2.

4. Merges the dictionaries and occurrence lists. The occurrence
list entries for the second data base are modified to point to
the latter part of the text file, where the second data base
text file is appended to the text of the first data base.

5. Writes the dictionary and occurrence lists back to the 13-pack
disks via AFP-2.

Data Base Rename

The PDP-11/70 code renames a data base by changing the entry in the

library file. It also renames the text and formatted field files on the

11/70 disk, since these file names are based upon the data base's name.

Data Base Removal

The PDP-11/70 code removes a data base by deleting the 11/70 text and

formatted field files, and by removing the data base entry in the library

file. The data on the 13-pack disks is not shuffled to create larger

blocks of free space; nor is the space of the now-useless occurrence list

and dictionary made available for later use.

Library Display

The PDP-11/70 code formats and labels the data of the library file. The

library display includes the data base name, the number of documents, the

starting sectors of the occurrence list and the dictionary, and the

number of 13-pack sectors for each.

4-14

Search

The search process is implemented in PDP-11/70 Fortran and uses AFP-2 to

read the 13-pack disks. The processing begins by parsing the search

phrase into a series of strings with conjunctives. The possible

conjunctives include the following.

1. AND
The two words appear in the same document.

2. OR

Inclusive or. One word, or the other, or both are in the
document.

3. ADJ
The two words are adjacent in the document.

4. SEN
The two words are in the same sentence in the document.

5. NOT
The sense of a logical expression in the search phrase is
negated.

6. IMPLIED ADJACENCY
The two words are specified with no explicit conjunctive, and

adjacency is assumed.

7.(-)
Parenthesis may be used to group operations.

The operators work on phrases as well as words, if the phrases are

enclosed in parenthesis.

4-15

The search exKpressions are evaluated from left to right. Expressions

inside parenthesis are evaluated first. ADJ has a higher priority than

SEN, which has a higher priority than OR, NOT, and AND.

The seatch .oommand requires the user to specify the data base name to be

searched. It then initializes the results list and assigns result

numbers to successful matches. The satisfying document list is retained

with the result number as the index. Subsequent browses require the

result number to be specified.

Multiple searches could be done before browsing. Each phrase is assigned

a successive result number.

The search processing begins with parsing the search phrase into words

with conjUnctives. The processing begins with the most deeply nested

phrase (most parenthesis). If more than one phrase has equal nesting,

the left-most phase is processed first. A stack is used to retain the

results of operations.

The segment table for the data base is read from the 13-pack disks via

AFP-2, at the beginning of the search. Then, for each word, the segment

table entries identify the dictionary track to read for the word being

sought. Finally, the occurrence list is read. The occurrence lists of

two adjacent entries in the search phrase are processed according to the

conjunctive of the entries, and an output occurrence list is formed. If

further processing is to be done because of nesting or further entries in

the search phrase, the result is placed on a stack. The resultant lists

are processed from the stack until one list is finally formed. The final

list is placed in the resultant file for the browse activity.

Trhe search command also displays a count of the occurrences and the

number of documents that satisfy the search activity for each phrase.

4-16

Browse

The browse command is implemented in PDP 11/70 Fortran and requires only

the resultant list file, the formatted field file, and the text file on

the PUP? 11/70 disks.

Tebrowse function displays the documents that satisfied previous

searches. Ea -h successful search has an index number. When browsing,

the user specifies the index number. For each document that satisfies a

search, the browse command allows the user to see the formatted fields,

or the fields and the text.

The browse function begins by opening the resultant list file. It then

uses the document number to index into the formatted field file. This

file provides the field information as well as a pointer to the text in

the text file. The formatted fields are then displayed and the user is

asked if he wants to see the text. If selected, the text is then

scrolled to the screen. The fields and the text are displayed for each

document in the resultant list until the end of the list or until the

user cancels the browse.

4-17

5.0 DEMONSTRATION

The purpose of the Advanced Document Retrieval System Demonstration was

to show the capabilities of the multiple AFP system and the Associative

Unit in a document retrieval system in a simulated, operational

environment.

5.1 DEMONSTRATION PLAN

There were two phases to each pass of the demonstration. The first phase

executed a large batch file simulating the interaction of a user over a

long period of time. The second phase was the hands-on evaluation of the

system.

This batch file demonstrates, in a very timely fashion, the r aLures of

the documentation retrieval system. The MAX operating system of the AFPs

has been designed to support both batch and interactive jobs, allowing

the job type to be transparent to the features of the operating system

software. This batch file was created for rigorous testing of the

operating system software in a consistent manner. Testing was not

sidetracked by unpredicted results caused by typing errors or slowed down

by the manual entry of the same tests during software testing. This

batch file worked so well during test, it was added to the demonstration

to show the completeness and features of the system.

5-I

5-

5.2 UPDATE DEMONSTRATION

Four functions apply to the creation or modification of the document data

bases. They are:

1. Creation of a data base,

2. Merging of 2 data bases into a third

3. Renaming of a data base,

4. Removal of a data base.

The update demonsdtration can:

o Create 3 data bases

o Dump occurrence list sectors

o Dump dictionary sectors

o Dump segment table

o Merge 2 of the data bases into a fourth data base

o Rename the second data base

o Delete the third data base

o Create a fifth data base

0 -the first 3 data bases are created, 4 occurrence list sectors, 4

dictionary sectors, and the segment table are dumped to a PDP-11/70 file

and to the line printer. The dictionary entries illustrate the text

compression algorithm. The segment table is examined for correct

references. The occurrence list format is illustrated. The first 4 data

bases use a short 11/70 file as input or a limited number of tape

records. The rename, delete, and merge functions use the library display

for verification of the actions.

The fifth data base is created from tape and has over 3000 documents.

5- 2

5.3 SEARCH DEMONSTRATION

The search overlay searches the specified document dictionary for the

specified phrase. A search phrase may be one or more words joined by the

operators.

ADJ adjacency (usually implied)
The two words follow each other in the same sentence.

SEN sentence
The two words are in the same sentence.

AND and
The two words are in the same document.

OR or
One or the other or both words are in the same

do cument.

NOT not

Only one word is in the document.

The operators may apply to phrases as well as words if the phrases are

contained within parentheses. For example, the search line '(NICKEL OR

CADMIUM) ADJ STEEL' searches for 'NICKEL STEEL' or 'CADMIUM STEEL'.

Words that do not have an explicit operator between them are implied to

be adjacent, for example, 'TURBINE BLADES' which means TURBINE ADJ

BLADE_. However, an explicit operator must precede and follow

parentheses groups.

Similar words that differ in suffix only may be used interchangeably if

the dollar sign, '$,is specified. For example,

5-3

AD-A139 385 ADVANCED DOCUMENT RETRIEVAL SYSTEM(U) CONTROL DATA CORP
MINNEAPOL ISMN W CRE ET AL dUL 83 RADC TR 83 6

UNUASIFED 3 0602-79-C-0231FG /2 N

smmoEEEEEEmhoE
mhhhhmmmhhhlm

mhhEohhEEEmhhE

1161W

11111!2 -A

I MICROCOPY RESOLUTION TEST CHART
NATIONAL BUR[AU Of SIANDARDS-1963-A

DOCUMENT$ may be interpreted as

DOCUMENT

DOCUMENTS

DOCUMENTATION

DOCUMENTARY

etc.

The '$' may be used at any position in the word. The word, 'C$', is all

words in the dictionary that start with a C.

The demonstration of the SEARCH overlay will begin with single word

searches and proceed to complex phrases in four stages.

The first stage demonstrates that all words of a document, except for the

stop words, are properly catalogued. A document is selected at random

j and a search is conducted for every word in the document. Visual

inspection is used to verify that the occurrence list contains theI chosen document.

The second stage contains 2-word phrases where the 2 words are joined by

implied adjacency, explicit adjacency, SEN, AND, OR, or NOT. Four

phrases are chosen at random from the data text.

The third stage contains 2-word phrases joined to a third word by an

operator. The patterns are as follows.

X y z
(X Y) Z
X Y)ADJ Z
(X Y)SEN Z
CX Y)AND Z
(X Y)OR Z
(X Y)NOT Z

5-4I

X ADJ Y ADJ Z
XADJ Y z
(X ADJ Y)ADJ Z
X ADJ Y)SEN Z

(X ADJ Y)AND Z
XADJ Y OR Z
(X ADJ Y)NOT Z

X SEN Y SEN Z
XSENY) Z
(X SEN Y)ADJ Z
X SEN Y)SEN Z

(X SEN Y1 AND Z
X ISEN Y)OR Z
X SEN Y)NOT Z

X AND Y AND Z
X AND Y Z

XAND Y)ADJ Z
X AND Y)SEN Z

(X AND Y)AND Z
XAND Y)OR Z
(X AND Y)NOT Z

X OR Y OR Z

X XOR Y)ADJ Z
X XOR Y)SEN Z

(KOR Y)AND Z
(KOR Y)OR Z
(bOR Y)NOT Z

X NOT Y NOT Z
X NOT Y z

(X NOT Y)ADJ Z
X NOT Y)SEN Z

(X NOT Y)AND Z
XNOT Y)OR Z
(X NOT Y)NOT Z

5-5

This stage also searches for the individual words so visual inspection

may verify that the desired phrase is the proper intersection or union of

the occurrence lists. Each conjunctive group contains a phrase where the

intersection is the null set to demonstrate that false returns are

eliminated.

The fourth stage contains 4-, 5-, and 6-word conjunctive phrases. These

are chosen from the data files.

5.4 BROWSE DEMONSTRATION

The browse overlay produces the formatted fields and the text of the

documents that contain the phrases specified in a previous search. The

output of the search effort is retained by item number. The browse

sections require specification only of the search phrase number. First,

the formatted fields for the document are displ&yed, and the user is

asked if a display of the text is also desired. The text of the document

is then sent to the screen. After the display of each document, the user

may go on to the next document or may terminate the browse of the phrase.

The browse demonstration uses a subset of the search section phrases and

puts the text to output.

5-6

,I , :

6.0 EVALUATION

The purpose of this section is to collect the results of previous

sections with respect to evaluating the suitabilities of the various

types of equipment considered for document retrieval and message handling

applications. In addition, configuration and sizing guidelines for

production systems are developed, and areas warranting further

investigation are identified.

The demonstration system was configured with the A.U. developed on this

project but used available AFP's, host computer, and disc storage

system. The system conf;igured for the demonstration (Figure 3-1) is not

an optimal configuration for the document retrieval and message handling

application, primarily due to the inadequacy of the disk subsystem which

was available. Nevertheless, the configuration did provide an adequate

base to develop an operational software environment in which the

performances of the associative unit and array processors could be tested

on crucial tasks.

6.1 Performance of the Equipments

An important goal of this project was to evaluate the use of associative

and array processor architectures in advanced document retrieval and

message handling systems. A list of the tasks central to both

applications appears in Table 6-1. Associated with these tasks are the

performances of the Associative Unit and Advanced Flexible Processor on

these tasks.

6-1

I ll I I II -'

TABLE 6-1 TASK ALLOCATION

Task Equipment Performance* Notes
Tye

SEARCH

Segment Table Lookup AU 3.25 usec per search token I
Segment Scanning AFP 6.25 usec per search token 4

Occurrences Merge AFP 4.35 usec per search operation 5

UPDATE

Lexical Decomposition AFP 3.212 usec per document token 2
Stopword Elimination AU 3.25 usec per document token 1
Sort AFP 6.292 usec per pass per 5

document token
Indexing AFP 0.21 TO.8 5 usec

WORD COMPRESSION AU 7.5 to 12 usec per document

token

* Assumes only one AFP.

Notes:

1) Based on the code used for stopword elimination with compressed

tokens which was 1.625 usec per compressed token.

2) Based on the AFP code for lexical decomposition.

3) Based on AFP code for an 8-way merge on blocks of 512 compressed

tokens which was 3.146 usec per pass per compressed document token.

The total sort time on T uncompressed tokens is 6.292 T log51 2 T

microseconds.

4) Assuming one AFP cycle per byte-length comparison and 25,000 byte

segments. This task was not performed by an AFP in the

demonstration system.

5) Assuming three AFP cycles per 6-byte occurrence pointer, and 5800

occurrence pointers per search operation.

6) Assuming 6 AFP cycles to unpack, compare, and repack each entry.

6-2

Examination of Table 6-1 reveals that the processing times for the central

tasks of document retrieval are very short for the associative and array

processors being evaluated. To obtain a clearer impression of these

performances, Table 6-2 shows these performances applied to the large

document retrieval system characterized in Tables 2-7 and 2-8, assuming 100

sitmultaneous users. As can be seen, the associative unit is virtually idle

during searching (0.01% duty factor) and one APP is adequate for nearly 40

times as many users that is 4000 users! The adequacy of a single AFP was

also shown during the demonstration (Section 5). It is equally clear that

a single disk unit is at least two and a half times too slow for even 100

users. It should be noted that text compression does not affect the search

times if a constant dictionary segment size (25,000 bytes) is assumed.

In creating a temporary data base for updating, the performances of the

associative unit, AFP, and disk are better matched. When profiling is

considered, however, the disk performance again dominates the system.

While a system performance of 5 hours to update still compares favorably

with the current implementation for that retrieval system, an alternative

approach such as that suggested in Section 2.6 should be investigated.

6-3

TABLE 6-2 TASK PERFORMANCES

Task AU AFP Disk
Time Time Time**

SEARCH

Segment Table Lookup 78 us/sec
Segment Scanning - 15 ms/sec 1.2 sec/see
Occurrences Merge 1- ms/sec 1.25 sec/sec
Total 78 us/sec 26 ms/sec 2.5 sec/sec

UPDATE
Lexical Decomposition - 5.6 sec/mo 9.8 sec/mo
Stopword Elimination 5.7 see/mo - 9.8 sec/mo
Sort 33 sec/mo 58.6 sec/mo
Indexing I - 42.5 ms/mo 5.8 sec/mo
Profiling (105 commands) 1.1 sec/mo 328 sec/mo 4.7 hr/mo
Total 6.8 sec/mo 367 sec/mo 4.7 hr/mo

WORD COMPRESSION 15 sec/mo

Assumes 100 simultaneous users entering one command each per 10 seconds
with a data base of 350 million document tokens, and a monthly update of
1,750,000 tokens. It is also assumed that all AFP computations are
processed by one AFP, and all storage is supported by one disk drive.

•* Update disk time is based on one disk with 25,000 bytes per track,
capable of sequentially reading or writing at an average rate of I track
in 20 msec, and Sd = 12.2MBytes, Sv - 2MBytes, and So - 5.25

MBytes, where:

Sd - Storage for documents

S = Storage for vocabulary

So - Storage for occurrence lists

6-4

• ~~/ .. , i

6.2 Configuring a Production System

In this section, the results of the analysis and the demonstration which

were obtained during this project were applied to develop system

configurations for production work in document retrieval and message

handling. It is assumed that the system is located at a central facility

and that the users interact with the system by remote time sharing

terminals.

First, the demonstration showed very clearly that the general purpose

computer (PDP 11/70) used here is inadequate for the tasks of managing and

scheduling for a large number of simultaneous users as well as performing

the substantial bookkeeping operations necessary*

Second, it is difficult to imagine a sytem requiring more than one AFP in

the near future, particularly if a better profiling approach is developed,

since one AFP can support thousands of concurrent users.

Initially, it appears unnecessary to include an associative unit in the

system or to incorporate word compression. Instead, the tasks performed by

the associative unit could be handled by the AFP. Using a binary search

algorithm, the Segment Table Look-up and Stopword Elimination tasks in

Table 6-2 would require about 0.4 msec/sec and 7.4 sec/month, respectively.

The area requiring the greatest departure from the analysis and

demonstration systems is the disk memory subsystem. Clearly, the average

disk access and transfer times must be reduced. This can be approached by

a multiple disk system capable of concurrent transfers (multiple

controllers and channels). The figures of Table 6-2 for disk times are

based on accessing and transferring randomly selected tracks of 25,000

bytes in 50 msec each. This is an effective channel rate of 0.5 MByte

6-5

per second. Commercially available large-disk systems with 10,000 HBytes

capacities and dual channel controllers should be able to deliver an

effective channel rate of 6 MBytes per second. This reduces the disk times

shown by a factor of 12, allowing concurrent searching by about 500 users

and reducing the monthly update time to 25 minutes. Small high density

disks of 500 KByte capacities are becoming available with effective channel

rates of 0.6 MBytes per second for randomly selected full-track transfers.

Employing twenty of these with an adequate number of controllers should

provide a 10,000 MByte subsystem with a aggregate 12 M4Bytes/sec channel

rate. This would support 1000 users and require a 15 minute monthly update.

The configuration developed in this section for the large document

retrieval or message handling application is illustrated in Figure 6-1.

Although an external cache memory is shown, the main memory of the general

p urpose machine might be used initially.

6.3 Topics for Further Study

During the work of this project, several topics warranting further

investigation were identified.

6.3.1 Dictionary Reduction

This topic was addressed in Section 2.8.3. Significant improvement in

system performance should be realized with morphological reduction of the

dictionary and spelling error eliminations. This performance improvement

should occur through higher computational efficiency and greater retrieval

accuracy.

6-6

User General-Purpose Update
Terminals Main Frame Documents

Data Channel

& ttsData Channel

Data Channel

Controller LController a* Controller]

(20 Small Disk Drives)

Figure 6-1. A Production System Configuration

6-7

6.3.2 Cache Memory Management

The search behavior of users should be examined further to determine the

effectiveness of a cache memory, size requirements, and a cache management

algorithm. One possibility which should be explored is the use of a

thesaurus. When a search token is specified, associated tokens are looked

up in a thesaurus, to anticipate tokens which might be used in subsequent

commands. The dictionary segments for these associated tokens could be

scanned during idle periods. Alternatively, the toke. 2rnuld be scanned

for one user while a segment is being scanned for a i -n specified by a

different user.

Another approach might form a sub-dictionary for each er based on the

mission profiles whenever the update process is executed. Then, when a

user signs on, the appropriate sub-dictionary would be loaded into

semiconductor memory. This might reduce the number of segment scans. In

addition, each new token specified should be added to the sub-dictionary

6.3.3 Word Sense Discrimination

The search command syntax provides an awkward approximation to a natural

language query format. For example, a query for "mission records of

supersonic flights" might be specified by a command like "MISSION$l SEN

RECORD$ SEN SUPERSONIC SEN FLIGHT$3". In executing this command

occurrences of RECORD and FLIGHT used as verbs would have to be processed

along with the desired noun occurrences. This could be eliminated by

dividing the occurrence lists according to the parts of speech as used in

the documents. Bell Laboratories has reported a system called Writer's

Workbench which claims an accuracy of 95% in assigning parts of speech in

text. A study of the trade-off between added computation for word sense

discrimination against search operation speed and retrieval quality should

be undertaken.

6-8

6.3.4 A Table Look-Up Memory

Except for word compression, the primary use of the associative unit was

for table look-up. With a 4-bit ALU in each of the 256 cells, the

associative unit requires 2 memory cycles for a byte comparison and 48

cycles for a 24 byte look-up. A conventional memory of 256 Z4-Byte words

and a 24-Byte comparator would require 8 memory cycles to perform an

equivalent binary search and would require only 20% of the comparator

logic. Thus, a micro-programmed binary search memory for segment look-up

and stopword elimination could be designed to be 6 times faster and five

times less expensive.

6-9

APPENDIX A

DEMON STRAT ION DOCUMENT

RETRIEVAL SYSTEM

USERS MANUAL

TABLE OF CONTENTS

Sect ion Title Page

A-1.i General Information *.. 0... A-i

A-1.2 Major Applications.......... 0*0***.... ** ... A-i

A-1.3 MchaRnss for. User.. on.r.................. A-6

A-1.4 APCL D..oCUMEN..... o............... -. A-7

A-3.5 1 Comand Inroutino..... 00 0. . A-83

A-1.7 [esripio Bas Fie raizanto.. o o.. A-97

A-2.0 RCLCMALED.......o o........... .. A-i7

A-3.1 General Introduction..*.* A-i8

A-342 Library Fomt..................... A-i5

A-34.3 il Summary Co Ai16

A-4.4 CLEAR Commande-...................... A-19

a-i

TABLE OF CONTENTS

Section Title Page

A-4.5 CREATE Command.......................... A-19

A- 4.6 HELP Coumand. ... o. A-20

A-4. 7 LIBRARY Command.. o oo. o.o A-20

A-4.8 MERGE Command- A-21

A- 4o*9 OUT Commando.o o..o o... A-2 1

A- 4.10 REMOVE Commnd. . .. o*... o..* *. A-22

A-4. 11 RENAME Command.o.o. oo. . . A-22

A-4. 12 SEARCH Comand.o o A-23

A-4. 13 UPDATE Command........ oo o. A-24

A- 5.0 UPDATE RUNS. A-25

A-5.3 Entry Organization.................... A-25

A-5.4 Implementation Events.................... 00.0. A-26

A-6.0 SEARCH RUNS... *.. A-27

A-6.1 General Introduction.o. A-27

A-6.2 Search Expressions..*.......... A-27

A-6.4 Entry Organization. .o.o * 0 0 0 . 0 A-28

A-6.5 Implementation Events. A-31

a-i i

I i

TABLE OF CONTENTS

Section Title Page

A-7.0 BROWSE RUNS*.*.*,.................... A-32

A-7.1 General Introduction.............*..*..... A-32

A-7.2 System Prorpts A-32
A-7.3 IntalalnA-33

A-7.4 Entry Organization A-33

A- 7.5 Implementation Events.......9.9 *. A-33

A-8.0 RCL Sample Terminal Sessions .e A-35

A-9.0 System Aessages...............................9..9. A-39

-A-10.0 A-44

a-iii

LIST OF FIGURES

Figure Title Page

A-I Sample Document File Records....................... A-12

A-2 Data Base Access Structure.*.*9.**......... A-14

A-3 Summary of RCL Command Fntry Format................ A-18

A-4 BROWSE Command Format A-18

A-5 CLEAR Command Format A-19

A-6 CREATE Conmand Format.............................. A-19

A-7 HELP Command Format A-20

A-8 LIBRARY Comnnand Format............................. A-20

A-9 MERGE Command Format A-21

A-10 OUT Command Format...... 000..0....... A-22

A-il REMOVE Command Format A-22

A-12 RENAME Command Format A-23

A-13 SEARCH Command Format A-23

A-14 UPDATE Command Format A-24

a-iv

LIST OF TABLES

Table Ti tie Page

A-1 File Summary (,r................. A- 2

A-2 Command Summary Chart........oo.................. A-4

Ar-3 Dbcument Record Types............................ A-10

A-4 Components of the Data Base Filese...ae......... A-li

A-5 Formulation of Search Operationso........o..... A-29

A-6 System Messages.................o............... A-40

a-wv

A-1.0 INTRODUCTION

A-1.1 General Introduction

In order to demonstrate the document retrieval and document data base

management capabilities of the AFP Array configured with associative

memories, a command language, RCL (Retriever Command Language), has been

defined. This language provides a means to build a data base around a

collection of documents and to retrieve documents based on the words and

their relative locations in the text of the documents. The purpose of

this document is to describe these capabilities and their application.

A-1.2 Major Applications

There are four major applications which are handled by RCL. They are the

following:

1. Creation and storage of data bases of documents.

2. Expansion (merge and purge) of data bases.

3. Retrieval of documents that satisfy specified criteria.

4. Scanning of retrieved document texts.

A-1.3 RCL Runs

In order to implement one of these applications, a period of time is

needed which is devoted to the application. This period of time if

called a run.

There are three distinct runs associated with RCL. An update run is

devoted to creation, merging, renaming, and deletion of data bases. A

search run is devoted to the retrieval of documents that satisfy

specified criteria. Finally, a browse run is devoted to the scanning of

the texts of retrieved documents.

A-1

A-1.4 RCL Files

Each RCL run requires basic input files and two of the runs (update and

search) produces new files. The following are the basic files involved

in RCL runs:

1. Document file on magnetic tape - Primary input for the data

base creations and storage activity.

2. Data base files - Primary outputs of update runs and primary

inputs for search activities.

3. Library file - Keeps data on the data bases available to search

and browse.

4. Result list file - Primary output of a search operation and

primary source identifying documents for browsing.

Table A-1 summarizes the information on the RCL files.

TABLE A-1. FILE SUMMARY CHART

FILE MAKE CONTENTS RUNS USING FILE

DATA BASE FILES A collection of files organized UPDATE, SEARCH,
in a manner that supports BROWSE

__ document retrieval activities.

RESULT LIST FILE A collection of occurrences SEARCH, BROWSE
that is the result of a query
entry.

LIBRARY FILE A file that stores the names UPDJATE, SEARCH
of the available data bases

I and pertinent information on

__ accessing the data base.

A- 2

A-1.5 RCL Command Groupings

Besides search expressions, which are described in Section A-6.2, a

user's entry can be either an RCL command or a response to a system

prompt. A system prompt is provided whenever only user commands without

parameters are required. RCL commands can be grouped in terms of runs

for which they are exclusively available or in terms of being menu

commands.

The UPDATE, SEARCH, BROWSE, LIBRARY, HELP and OUT commands are the menu

L commands. They support a user in executing the major runs by:

1. Providing a means to initialize the runs.

2. Tutoring on the usage of the RCL commands.

3. Providing information on the data bases available.j 4. Allowing for the termination of RCL.

The CREATE, MERGE, OUT, REMOVE and RENAME coummands are available during

an update run. The CLEAR and OUT commands are available during a search

run. There are no comands exclusively available for a browse run.

Instead, system. prompts are available for browse runs. Table A-2

summarizes the information on the RCL commands and their formats.

A-3

TABLE A-2. COMMAND SUMMARY CHART

COMMAND NAME COMMAND FORMAT USE

BROWSE BROWSE,num Browsing documents with
occurrences in the

specified result list.

CLEAR CLEAR Resets the current

statement number to 0.4I
CREATE CREATE,dbname,dflname Creates a data base

from a document file.

HELP HELP,keyword Provides tutorial
information on usage

of a command.

LIBRARY LIBRARY Provides pertinent
information on the
data base library.

MERGE HERGE,dbnamel,dbname2,dbname3 Merges two data bases.

OUT OUT Terminates an update run.1

A-4

TABLE A-2. COMMAND SUMMARY CHART (CONT'D)

COMMAND NAME COMMANDX FORMAT USE

REMOVE REMOVE,dbname Removes a data base from
the library.

RENAME RENAE,dbnamel,dbname2 Renames a data base.

SEARCH SEARCH,dbname Initiates a search run.

UPDATE UPDATE Initializes an update run.

A-5

A-1.6 Mechanism for User Control

Five different types of inputs are required of a user of RCL. The RCL

Program is a task that runs in the RSX-IIM operating system of a PDP

11/70 host computer. Before executing the RCL task, the user must first

become known to MAX, (Multiple Array Executive) the AFP executive by

typing IEC and by replying with a password when requested. The second

step is to reserve the AFP's by .REQ.

RCL is initiated by typing .RUN RCL. The menu commands are then

displayed.

In order to create a data base, a file of documents to enter into the

data base has to be created and be stored on magnetic tape. The document

file is not created and be stored on magnetic tape. The document file is

not created during RCL sessions but has to be done using available

facilities on the PDP-11/70 host processor.

The course of an RCL session depends primarily on the RCL commands which

the user enters. During a search run, the user's primary inputs are

search expressions. These expressions specify the criteria for the

retrieval of documents. During a browse run, the user can only make

responses to the system prompts.

A-6

~Ii

A-1.7 escription of Document

This document will describe in more detail the topics covered in this

introduction. Section 3 describes the contents and formats of the RCL

files. Section 4 described the operation and format of the RCL

commands. Finally, Sections 5, 6 and 7 describe the entry organization

and implementation events associated with the major applications.

Section 5 deals with the creation and expansion of data bases, Section 6

deals with the retrieval of documents and Section 7 deals with the

scanning of retrieved document texts.

A- 2.0 APPLICABLE DOCUMENTS

The following documents may be referred to for further details:

77900500 Advanced Flexible Processor Microcode Cross Assembler

77900508 Advanced Flexible Processor Operating System

77900507 Advanced Flexible Processor Application Programmer

77900513 Advanced Flexible Processor Diagnostic

77900836 Associative Unit: Hardware Design Specification

Technical Memo Word Compression for Document retrieval

9199321

Final Report Applications of a Reconfigurable Array of Flexible

Processor in Intelligence Information Retrieval.

A-7

A-3.0 RCL FILES

A-3.1 General Introduction

A major portion of RCL activity is centered around the creation and

utilization of the various files. auring an update run, document files

can be used to create data base files and data base files can be merged

to form data base files. For search runs, the data base files are used

to access occurrence lists which are operated upon to produce result list

files. Finally, for browse runs, the result list files provide document

identifications of the documents the user should browse. These documents

can be accessed from the data base files.

This section will describe the major files in more detail. It will

describe the format, creation, utilization and aspects of each file under

user control.

A-3.2 Ebcument File

A document file is stored on magnetic tape in blocks of 5000 or less

bytes per block and is delimited by an end of file mark. It is composed

of a collection of documents. Each document has two sections. The

formatted field section contains information about the document while the

text section contains the text of the document. For each document, the

formatted fiel- section precedes the text section and a document is

terminated by a formatted field record for another document or the end of

file mark.

Each of the sections is comprised of a set of records. A record has a

three byte header and a text portion which is made up of characters in

the 64-character ASCII subset. The first two bytes of a record header

indicates the record's length in bytes while the third byte indicates the

record's type.

A- 8

The formatted field section is made up of records of 7 types. The types

are the document's ID, the document's title, the document's publication

date, the names of the document's authors, the country which published

the document and the institutions which supported the publication of the

document. The formatted fields and their identifications are described

in Table A-3. Figure A-i has some sample formatted field records.

The text section is made up of records of one type. Those records are

the document's text. The text is made up of sentences which are

delimited by a period followed by two spaces.

A-3.3 Data Base File Organization

A data base is made up of three files - a dictionary file, an occurrence

file and a text file as shown in Table A-4. A dictionary file has a

segment table section and a dictionary section whereas a text file has a

text index section and a text section.

A segment table record has a keyword field and a segment address field

which identifies a track location in the dictionary file. There are at

most 256 keywords and hence at most 256 segment table records. The

$ dictionary section has a dictionary record for each term that occurs in

the text section.* Each dictionary record has a term field, a number of

occurrences field and an occurrence list address field.

*There are 256 most frequently occurring words that are not listed in the

dictionary. These words are called "stop words."

A-9

TABLE A-3. DOCUMENT RECORD TYPES

RECORD TYPE RECORD
ID ORGANIZATION

(OCTAL)

Document I.D. 000 An 8 character document identification
code is given.

Document Title 006 The title of the document is given.

Document Date 037 The date in which the document was
published is given.

Document's Author 101 The names of the authors of the document
are given.

Document's 103 The country where the document was
Country published is given.

Document's 107 The names of the institutions supporting
Inst. the publication of the document are

given.

Document Text 143 Document text is given here.

A-10

TABLE A-4. COMPONENTS OF THE DATA BASE FILES

FILE NAME SECTION RECORD RECORD FIELDS
LENGTH NAME USE

DICTIONARY SEGMENT Fixed KEY Segmentation
TABLE Keyword
SECTION Segment Track

Address

DICTIONARY Fixed TERM N-Gr am*
SECTION String

NOC Number of
Occurrences

AD Occurrence
List Address

OCCURRENCE OCCURRENCE Varies (DN,SNWN) (Document Number,
SECTION Sentence Number,

Word Number)

TEXT TEXT INDEX Fixed TAD Text Address
SECTIONi SCTONFF Formatted Fields

TEXT SECTION Varies DOCUMENT Text

*For purposes of data coupression, the terms are packed into a sequence
of n-grams. There are 256 n-grams where each n-gram is a sequence of
alpha numeric characters.

A-Il

---- '200. min

L IT IT IEXT

N Fl

G El
T

1131 01 79184662
145 6 AN INVESTIGATION OF THE LIFE OF TURBINE BLADES UNDER TERMINAL

CYCLING AND VIBRATION IN A GAS FLOW
11 37 740214
31 1 01 ANATOLII ILLARIONOVICH

1 1 1031 UR

FO07 R DESITENN TE POLE OF STUBNBADSNDRODI

55 107 [R SPECIAL DESIGN AND TECHNOLOGY BUREAU51 107 URISIUEO RBESOF STRENGTH

61 107 UR ACADEMY OF SCIENCES OF THE UKRAINIAN SSR
151 1431 EXTRACT.
21 143 DISSERTATION.

1771 143 THIS PAPER DESCRIBES ORIGINAL EXPERIMENTAL MEANS AND METHODS
FOR DETERMINING THE LIFE OF GAS TURBINE BLADES UNDER CONDI-
TIONS OF THERMAL CYCLING, VIBRATION, AND THE AGGRESSIVE ACT-
ION OF A HIGH TEMPERATURE GAS FLOM. THE STRESS DEFORMED
CONDITION OF THE TURBINE BLADES UNDER THESE CONDITIONS TAKING
INTO ACCOUNT DESIGN FACTORS IS CONSIDERED. EXPERIMENTAL
MEASUREMENTS AND THEORETICAL CALCULATIONS OF THE MOVEMENTS OF
AN END SECTION OF A BLADE DURING ITS NONUNIFORM HEATING ARE
GIVEN. THE ROLE OF ADDITIONAL THERMAL STRESSES ACTING ON
TURBINE BLADES IN NONSTATIONARY CONDITIONS IS REVEALED.
CURVES OF THE THERMOMECHANICAL FATIGUE OF TURBINE BLADES
UNDER CONDITIONS OF THE PASSAGE OF A GAS FLOW ARE DETERMINED.
THE EFFECT OF THE LEVEL OF VIBRATION STRESSES ON THE LIFE OF
BLADES UNDER CONDITIONS OF THERMAL CYCLING AND VIBRATION IS

BF CRACKS IN BLADES OF EP220 ALLOY UNDER THE SIMULTANEOUS

ACTION OF CYCLIC THERMAL CYCLING AND VIBRATION ARE INVEST-
IGATED.

Figure A-i. Sample Document File Records

A-12

_____.___.... _______ __,_"_ ..

The occurrence file is made up of occurrence list records. There is one

occurrence list record for each term in the data base. Each entry in an

occurrence list record identifies the location of an occurrence of the

term in the texts of the data base. The couponents of an entry are the

document number, the sentence number within the document and the word

number within the sentence of the occurrence.

The text file has two sections. The text index section has a record for

each document in the data base. Each record is coiqposed of a pointer to

the location of the text within the text file and the formatted field

data for the test. The text section has the texts of all the documents

in the data base.

The data base files are created during an update run. They are either

created from a document file while executing a CREATE command or from two

existing data bases while executing a MERGE commiand.

Duiring a search run, terms in a search expression are referenced in the

dictionary file and their occurrence lists are referenced from the

occurrence file. Duiring a browse run, the formatted fields and the text

of a document are referenced from the text file. Figure A-2 demonstrates

the interrelationship between the different sections by showing how one

record in one section is used to access a record in another section.

The user is involved in the creation of a data base by first building

document files. Then the user creates a data base for each document file

by applying the CREATE command. Finally, he merges these data bases by

applying the MERGE command.

A- 13

SEGE

SEGMENTED DICTIONARY FILE

OCURRENCE LIST FILE

DOCUMENT FILE

DED]

Figure A-2. Data Base Access Structure

A-14

A-3.4 Library File

The library file has a record for each data base that in available. Each

record has the data base name, number of documents in the data base,

number of text words in the data base, number of disk sectors the data

base occupies, and location of the data base files on disk.

The library file is used to determine available data bases. When a

LIBRARY command is given, data in the library file gets displayed. This

feature provides the user information about the data bases.

The user is responsible for initially allocating space on the disk for

the library file. Also, whenever a data base is created, removed or

renamed during an update run, the contents of the library file are

modified.

A-3.5 Result List File

A result list file is associated with each search query entered by the

user. In addition to the statement number associated with a query, a

result list file has the number of occurrences, the number of documents

and the occurrence entries of all occurrences that satisfy the query

expression.

A result list file is created during a search run each time a search

expression is entered. A result list file remains available for search

and browse applications until either a CLEAR command is entered during a

search run, a SEARCH command is entered with a new data base name or the

RCL session terminates.

A-15

The statement number for a result list file can be used as a term in a

search expression. When this is done, the contents of the result list

file are used in the processing of the search expression. Also, during

browse runs, the documents identified in the result lists are those

available to browse.

A-3.6 File Summary

Table A-I summarizes the information presented in the files created and

utilized during RCL runs.

A-16

A-4.0 RCL COMMANDS

A-4.1 General Introduction

RCL has three types of commands. They are the menu commands, update run

commands and search run commands. The menu commands (BROWSE, HELP,

LIBRARY, OFF, SEARCH and UPDATE) support RCL applications in the

following ways:

1. Initiating RCL runs.

2. Terminating RCL sessions.

3. Tutoring users on the RCL commands

4. Providing information of the available data bases.

The update run and search run commands are available only during the

corresponding runs.
t

This section described the formats and uses of the RCL commands. Table

A-2 provides a summary of this information.

A-4.2 Command Formats

An RCL command is made up of a command key word and a list of

parameters. The keyword must begin on column 1 of the line in which the

command is being entered. A comma separates the keyword from the

parameter list and parameters in the parameter list are separated from

each other by commas. A blank represents the end of a command and

comments can be provided after the first blank. Figure A-3 summarizes the

format of an RCL command entry.

*A-17

Vywrd, p-lis t

eyword - Name of one of the RCL commands. A comma (or a blank
if there are no parameters) terminates the keywrd
entry.

p-list - Parameters identifying input files, data bases, search
statement number or command names. Some commands have
no parameters. Parameters in the list are separated
from each other by commas; embedded blanks cannot
appear in the list. A blank terminates the p-list.

Figure A-3. Summary of RCL Command Entry Format

A-4.3 BROWSE Command

The BROWSE command is a menu command. It initiates a browse run. A

BROWSE command requires that a statement number for a search expression

be given as a parameter. After a BROWSE command is entered, the

formatted field section of the first document listed in the occurrence

list that is associated with the statement number is displayed along with

a system proupt. The user can decide between having the text of the

document displayed, the formatted field section for the next document

displayed or the browse run terminated. Section 7 provides more

information on browse runs and Figure A-4 summarizes the BROWSE command

format.

BROWSE, num

num Statement number of the query whose results
are to be browsed.

Figure A-4. BROWSE Command Format

A-18

A-4.4 CLEAR Command

The CLEAR command is available during serach runs. It resets the current

statement number to 0 and purges the result lists of previous queries.

There are no parameters associated with a CLEAR command. Figure A-5

summarizes the CLEAR command format.

CLEAR

Figure A-5. CLEAR Command Format

A-4.5 CREATE Command

The CREATE command is available during update runs. It creates a data

base from a document file. The parameter required for a CREATE command

is a name for the new date base. A legal data base name is made up of

between I and 7 alphanumeric characters. Before the create command is

entered, the document tape that has the documents to be incorporated into

the data base must be mounted. After a data base has been created, it is

listed in the library file and the data base is available to merge with

other data bases or to search. Figure A-6 summarizes the CREATE command

format.

I CREATE,dbname,dflname

dbname Name of the data base to be created.

Figure A-6. CREATE Command Format

A-19

A-4.6 HELP Command

The HELP command is a menu command. Information on an RCL command's

format and usage is displayed after a HELP command is entered. A keyw.ord

for a command is required as a parameter. Figure A-7 summarizes the HELP

command format.

IHELP,keyvord
Ikeyword Keyword of the RCL command to review.

Figure A-7. HELP Command Format

A4.7 LIBRARY Command

The LIBRARY command is a menu command. After a LIBRARY coummand is

entered, information on the data base library is displayed. The

information displayed includes the names of the available data bases and

the number of documents and text words in each data base. Figure A-8

summarizes the LIBRARY coimmand format.

LIBRARY

Figure A-8. LIBRARY Command Format

A-2 0

A-4.8 MERGE Command

The MERGE command is available during update runs. It creates a data

base by merging two existing data bases. The command requires the names

of the two existing data bases and a name for the new data base as

parameters. A legal data base name is made up of between I and 7

alphanumeric characters. After the MERGE command has been entered, the

new data base name gets listed in the library file and the data base is

available for merging with another data base and searching. Figure A-9

summarizes the MERGE command format.

MERGE,dbnamel ,dbname2,dbname3

dbnamel Data base name of one of the input data bases.

dbname2 Data base name of one of the input data bases.

dbname3 Data base name of one of the input data bases.

Figure A-9. MERGE Command Format

A-4.9 OUT Command

The OUT command is a menu command and is also available during update

runs and search runs. After it has been entered as a menu cotimand, the

RCL session terminates. None of the RCL commands or results from search

queries are available. After the command is entered during either update

or search runs, the run terminates and the menu of commands is presented

to the user. Figure A-10 summarizes the OUT command format.

A-21

OUT

Figure A-10. OUT Command Format

A-4.10 REMOVE Command

The REMOVE command is available during update runs. The command removes

a data base from the library file. After the command has been entered,

the data base is no longer available to merge with other data bases or to

search. The name of a data base is required as a parameter for the

REMOVE command. Figure A-11 summarizes the REMOVE command format.

REMOVE ,dbname

dbname Data base name to remove the data base
library.

Figure A-1l. REMOVE Command Format

A-4.11 RENAME Command

The RENAME command is available during update runs. It changes the name

of a data base in the library file. The name of the data base whose name

is to change and the new data base name are required as parameters. A

legal data base is made up of between I and 7 alphanumeric characters.

After the command is entered, future references to the data base will

have to be made using the new name. Figure A-12 summarizes the RENAME

command format.

A- 22

RENAME ,dbname 1 ,dbname2

dbnamel Old data base name.

dbname2 New data base name.

Figure A-12. RENAME Command Format

A-4.12 SEARCH Command

The SEARCH command is a menu command. It initializes a search run. A

data base name specifies the data base to be searched. If a data base

name is not specified, the previously specified data base will be

searched. After the SEARCH command is entered, a statement number is

displayed and the user can begin to enter search expressions. Section 6

provides more information on search runs and Figure A-13 summarizes the

SEARCH command format.

SEARCH,dbname (optional) I
dbname Data base name of data base to search.

Figure A-13. SEARCH Command Format

A-23

A-4.13 UPDATE Commnand

The UPDATE command is a menu command. It initializes an update run and

allows the user access to the update commands. After the command is

entered, the menu of update commands is presented. Section A-5 provides

more information on update runs and Figure A-14 summarizes the UPDATE

command format.

UPDATE

Figure A-14. UPDATE Coimmand Format

A- 24

A-5.0 UPDATE RUNS

A-5.1 General Introduction

The major application of update runs is the expansion of a data base.

The update commands were developed primarily to support this

application. The first step in expanding a data base is to create a data

base around the documents to be added to the data base. After the new

data base is created, it is merged with the original data base to form

another new data base. The REMOVE command is then used to purge the two

merged data bases and the RENAME command is used to retain for the

resultant data base the original data base name.

A-5.2 Initialization

Update runs are initialized by selecting the UPDATE command when the menu

of commands are available. If data bases are to be created, document

files for the data bases have to be prepared. Section A-3.2 describes

the organization of a document file.

A-5.3 Entry Organization

An update run begins when the UPDATE command is entered. An update run

is terminated when the OUT command is entered. In order to expand a data

base a document file must be created that includes the documents to add

to the data base. This file mst be created off line and should be

mounted on tape drive 0 before initiating an update run. After the

update run is initiated, the CREATE command is used to build a data base

from the document file.

A-25

The MERGE command is used to create the expanded data base from the

expanding data base and the newly created data base. The MERGE command

requires that a name for the resultant data base be specified as a

parameter. This name is usually a temporary name which will be changed

once the name of the expanding data base becomes available.

The name of the expanding data base becomes available by first removing

the expanding data base from the library file by using the REMOVE

command. This releases the name of the expanding data base and the

resultant data base can be assigned that name by applying the RENAME

command. Unless the documents in the document file are to be used to

expand another data base, the REMOVE command could be used to purge the

newly created data base from the library file.

A-5.4 Implementation Events

After a CREATE or a MERGE command is entered, new data base files are

created and a new entry is made in the library file. After the REMOVE

command is entered, the data base files are released and an entry is

removed from the library file. The RENAME command changes an entry in

the library file. After the OUT command is entered, the menu commands

are displayed and the update commands become inactive. Refer to Section

A-8.0 for a sample update run.

A-26

.... .

A-6.0 SEARCH RUNS

A-6.1 General Introduction

The major application for search runs is to determine which documents in

a data base meet certain criteria in terms of the words in their text and

the relative positions of the words. The criteria are expressed by

search expressions. Each search expression is associated with a

statement number. The output for a search expression is a result list

file which specifies the location of occurrences that satisfy the search

expression.

A-6.2 Search Expressions

A search expression is composed of terms, operators and parenthesis where

at least one blank separates the terms and operators. A term can either

be a word, a truncated term, a string of wards or a statement number

associated with another search expression. Each term that is listed in

the dictionary has an occurrence list associated with it. An occurrence

list is stored in the occurrence file of the data base. A truncated term

is a term that has a word beginning followed by an "$". Such a term

refers to all words that have the same beginning. If the "$" is followed

by a numeral, the numeral indicates the number of characters in addition

to the word beginning that are allowed. For a truncated term, the

occurrence list is derived from the union of the occurrence lists that

has the same prefix as that specified in the truncated term and the

specified number of characters. For a string of words, the occurrence

list is derived from the occurrence lists for the words in the string.

It identifies occurrences of the string of words. For statement numbers,

the occurrence list is stored in a result list file. Since no result

list files are available f or statement numbers greater than or equal to

the current statement number, any such number is treated as a word.

A- 27

The search operators are binary operators in that they operate on two

occurrence lists and produce another occurrence list as output. the set

operators AND,OR (inclusive OR) and NOT are available. The other

operators, ADJ and SEN, are called positional operators because they

identify occurrences in the two lists that share a component in their

text positions. The ADJ operator is used to identify words in the two

lists that are in the same sentence and are adjacent while the SEN

operator identify words that are in the same paragraph and sentence.

Table A-5 describes these operators in set theoretical terms.

Search expressions are evaluated from left to right. Expressions inside

parenthesis are evaluated first. The '%perations involving the SEN and

ADJ operators are evaluated before the operations involving the OR, NOT

and AND operators. The ADJ operator is evaluated before the SEN operator.

A-6.3 Initialization

A search run is initialized after the SEARCH conmmnd is entered when the

menu commands are available. The current statement number is displayed

and the user can begin to enter a search expression for that number. If

the data base name gets changed from the previous search run, the current

statement number is set to 1. Any statement number less than the current

statement number can be used as a term in the search expression.

A-6.4 Entry Organization

A search run begins when the SEARCH coummand is selected from the menu

commands and ends when the OUT command is entered. If the command is

entered on any other position on the line, it will be interpreted as a

term in a search expression. Duiring a search run, the user can either

enter a search expression or enter the CLEAR command to reset the current

statement number to 0.

A- 28

TABLE A-5. FORMULATION OF SEARCH OPERATIONS

SEARCH SET
OPERATION OPERATION DEFINITION OF RESULT

OR Union R 3 w [(dn,sn,wn) I (dn,snwn)

R or (dn,snwn) R2 1

AND Intersection R 3 = [(dn,sn,wn) I
((dn,sn,wn) R1 and

(s2)(w2) (

(dn,s 2 ,w 2) R2) or

((dn,sn,wn) R2 and

(Xl)(wt) 1

(dns 1 , w1) RI))

NOT Difference R3 - [(dn,sn,wn) I
(dn,sn,wn) R and

S(s 2) (w2)

((dn,s 2,w2) R2)j

ADJ Intersection R3 - [(dn,sn,wn + 1)

(dn,sn,wn) RI and

(dr,sn,wn + 1) R2 1
SEN Intersection R3 [(dn,sn,o) (1)

(w2) ((dn,sn,w 1) R1

and (dn,mn,w) R 2

A-29

TABLE A-5. FORMULATION OF SEARCH OPERATIONS

SEARCH SET
OPERATION OPERATION DEFINITION OF RESULT

R I occurrence list of the .left search term dn - document number

R2 occurrence list of the right search term sn,sps 2

- sentence number

R3 result occurrence list wn,wl,w2, - word number

(dn,sn,wn) - document id

A-30

1

A-6.5 Implementation Events

Whenever a search expression is entered, the terms for the search

expression are identified and occurrence lists for the terms are

gathered. The operators in the expression are applied on the occurrence

lists to produce the result list for the expression. The result list is

stored in a result list file and is identified by the current statement

number. The file can then be referenced by other search expressions and

browse runs by referring to its statement number. Refer to Section A-8.0

for a sample search run.

A-31

A-7.0 BROWSE RUNS

A-7.1 General Introduction

Duiring a browse run, the user can examine the documents identified in a

result list file. The displaying of a document is divided into two

parts. First, the formatted fields of a document are displayed. They

provide information about the source and the text of the document.

Table A-3 describes the various formatted fields.

Second, the user can choose between examining the text portion of the

document or the formatted field portion of the next document. Thus the

user can quickly browse through the formatted fields of the documents

until a document of particular interest is encountered and then examine

the text for that document.

A-7.2 System Prompts

Since the activities during browse runs do not require the specification

of parameters, system prompts (where the user is presented a list of

choices and indicates his or her choice by depressing a key on the

keyboard) can be used instead of commands to direct the course of a

browse run. The choices provided to a user always include the choice of

paging to the next document and exiting from the browse run.

After a page of text is displayed or the formatted fields for text

are displayed, the following prompt appears:

ENTER N -NEXT DOCUMENT T - TEXT E -EXIT BROWSE

A-3 2

If the user depresses the "N" key, the formatted field portion of the

next document is displayed. If the user depresses the "T" key, the next

page of text is displayed. Finally, if the user depresses the "E" key,

the browse run terminates.

A-7.3 Initialization

A browse run is initialized by entering the BROWSE command and the

statement number of a result list file. After the BROWSE command is

entered, the formatted field portion of the first document identified in

the result list file is displayed.

A-7.4 Entry Organization

A browse run begins when the BROWSE command is entered and terminates

either when the "E" key is depressed, after the "N" key is depressed and

the last available document is displayed, or after the user's key entry

when the last page of the last document is displayed. Duzring a browse

run, the only entries available to a user are those described by the

system prompt.

A-7.5 Implementation Events

The system responses made to user entries are based on the user's choices

to the system prompts. If the user selects the next document option, the

formatted field portion of the next document is displayed as well as the

following prompt:

ENTER N -NEXT DOCUMENT T - TEXT E -EXIT BROWSE

A-3 3

If the text option is selected, a page of text and the prompt gets

displayed. Finally, if the exit browse option is selected, the message

"BROWSE CO!{PLETE" and the menu commands are displayed. Refer to Section

A-8.0 for a sample browse run.

A-3 4

A-8.0 RCL SAMPLE TERMINAL SESSIONS

I. UPDATE SESSION

RUN RCL

SELECT MODE - ..UPDATE .. SEARCH .. BROWSE .. LIBRARY .. HELP .. OUT

UPDATE

SELECT COMMAND - .. CREATE .. MERGE .. REMOVE .. RENAME .. OUT

CREATE ,TEMP,XFL

TEMP CREATED

SELECT COMMAND - .. CREATE .. MERGE .. REMOVE .. RENAME .. OUT

MERGE,TEMP, CI I0, SAVE

MERGE COMPLETE - SAVE CREATED

SELECT COMMAND - .. CREATE .. MERGE .. REMOVE .. RENAME .. OUT

REMOVETEMP

TEMP REMOVED

SELECT COMMAND - .. CREATE .. MERGE .. REMOVE .. RENAME .. OUT

REMOVE,CI I0

CIIO REMOVED

SELECT COMMAND - .. CREATE .. MERGE .. REMOVE .. RENAME .. OUT

RENAME,SAVE,CII0

CIIO CREATED, SAVE REMOVED

SELECT COMMAND- .. CREATE .. MERGE .. REMOVE .. RENAME .. OUT

OUT

EXIT UPDATE MODE

SELECT MODE - .. UPDATE .. SEARCH .. BROWSE .. LIBRARY .. HELP .. OUT

LIBRARY

A-35

DATA BASE LIBRARY

DATA BASE NUMBER DOCUMENTS NUMBER WORDS

ClIO 1051827 71385429

CIRC 830772 58780631

XLAX 192320 13442018

COLC 121949 8612742

UPDT 38821 2757840

SELECT MODE - .. UPDATE SEARCH .. BROWSE .. LIBRARY .. HELP .. OUT

OUT

II. QUERY AND BROWSE SESSION

RUN RCL

SELECT MODE - .. UPDATE .. SEARCH .. BROWSE .. LIBRARY .. HELP .. OUT

SEARCH,CIIO

SEARCH MODE - ENTER QUERY AFTER STATEMENT NUMBER

01

SECURE COMMUNICATIONS

SECURE 176 OCCURRENCES 152 DOCUMENTS

COMMUNICATIONS 937 OCCURRENCES 438 DOCUMENTS

RESULT 5 OCCURRENCES 4 DOCUMENTS

02

ENCRYPTION$I OR CRYPTO

ENCRYPTION 4 OCCURRENCES 2 DOCUMENTS

ENCRYPTIONS 13 OCCURRENCES 7 DOCUMENTS

CRYPTO 2 OCCURRENCES 2 DOCUME% TS

RESULT 19 OCCURRENCES 10 DOCUMENTS

A-36

. i , U -- - I I I

03

SATELLITE COMMUNICATIONS

SATELLITE 842 OCCURRENCES 518 DOCUMENTS

COMMUNICATIONS 937 OCCURRENCES 438 DOCUMENTS

RESULT 602 OCCURRENCES 375 DOCUMENTS

04

(I AND 3) OR (2 AND 3)

1 5 OCCURRENCES 2 DOCUMENTS

3 602 OCCURRENCES 375 DOCUMENTS

2 19 OCCURRENCES 10 DOCUMENTS

3 602 OCCURRENCES 375 DOCUMENTS

RESULT 2 OCCURRENCES 2 DOCUMENTS

05

OUT

EXIT SEARCH MODE

SELECT MODE-. .UPDATE..SEARCH..BROWSE. .LIBRARY..HELP..OUT

BROWSE ,4

DOCUMENT = I OF 2 NUMBER OF WORDS = 563

INSTITUTION:

NAVRB

DATE:

1973

COUNTRY:

UK

TITLE:

BRISTOL THE ELECTRONIC WARSHIP

ENTER N = NEXT DOCUMENT T = TEXT E = EXIT BROWSE

A-37

OIL,

T

EXTRACT OF REPORT

VITAL RADAR, WEAPONS AND COMMUNICATIONS SYSTEMS FROM GEO. MARCONI

ELECTRONICS, TOTALLING MORE THAN 3M, ARE CARRIED BY THE BRISTOL, THE

ENTER N - NEXT DOCUMENi E - EXIT BROWSE

N

DOCUMENT - 2 of 2 NUMBER OF WORDS 598

DATE:

1973

COUNTRY:

UK

tITLE:

COMMUNICATION SECURITY

ENTER N = NEXT DOCUMENT T = TEXT E EXIT BROWSE

E

BROWSE COMPLETE

SELECT MODE - .. UPDATE .. SEARCH .. BROWSE .. LIBRARY .. HELP .. OUT

OUT

A-38

A-9.0 SYSTEM MESSAGES

System Messages are provided in response to user entries. They are

designated either to provide the user feedback on his or her entry or to

describe the options currently available to the user. There are three

types of messages. An error message (E) indicates that an error was

detected in the user's entry. An informative message (I) informs the

user that the system has completed the procedure that he or she specified

and what were the results of the procedure. Finally, a prompt (P)

informs the user on the available entry options. Table A-6 summarizes

these messages.

A- 39

TABLE A-6. SYSTEM MESSAGES

MESSAGE TYPE SIGNIFICANCE ACTION

COMMAND NAME NOT RECOGNIZED E The HELP command cannot Select an
determine which RCL RCL coimnd
requires tutorial
information.

DATA BASE NAME ALREADY USED E The new data base name Select a
cannot be used for its different
intended purpose be- data base
cause the name is al- name
ready assigned to
another data base.

DATA BASE NAME NOT LEGAL E The new data base name Change one
does not satisfy the of the data
criteria for a data base names
base name.

DATA BASE NOT FOUND IN LIBRARY E The data base selected Use the
to search or for update LIBRARY
activities is not command to
listed in the library, determine

which data
bases are
available

db CREATED I A data base named "db" None
has been created and is
available to search and
to merge with other
data bases.

db CREATE, db REMOVED I The data base that had None
the second data base
name has been renamed
first data base name.

A-40

TABLE A-6. SYSTEM MESSAGES (CONT'D)

MESSAGE TYPE SIGNIFICANCE ACTION

ENTER N -NEXT DOCL]MENT P These are the entry Depress
options available either the
to the operator. "N" key or

the "E" key

ENTER N - NEXT DOCUMENT P These are the entry Depress
T - TEXT options available either the
E - EXIT BROWSE to the operator. "N" key, the

"T" key, or
the "E" key

EXIT SEARCH MODE I The search mode None
commands and capa-
bilities are no
longer available.

EXIT UPDATE MODE I The update mode Nbne
commands are no
longer available.

ILLEGAL CHARACTER IN QUJERY E An illegal character Change
for a search query has query
been detected.

ILLEGAL COMMAND E Command entered does Enter one
not correspond to one of the menu
of the commands listed commands
on the menu. listed

ILLEGAL NLI{ERAL E The numeric parameter Enter a
entered is not a legal
numeral or is not in numeral for
the proper range. the numeric

parameter

A-41I

TABLE A-6. SYSTEM MESSAGES (CONT'D)

MESSAGE TYPE SIGNIFICANCE ACTION

MERGE COMPLETE db CREATED I The merge operation None
has been completed

and a data base name
"db" is available to
search and merge with
other data bases.

n I/P The current statement Enter a

number will be assigned search
to the next query query, the

entered. A query can CLEAR com-
be entered after a mand or an
6tatement number is OUT

displayed. command.

n OCCURRENCES n DOCUMENTS I Indicates number of None
occurrences and
documents that satisfy
the term.

QUERY NOT LEGAL E There is something Determine
wrong with the syntax the syntax
of the query just error and
entered, enter a

legal query

RCL I An RCL session has None

commenced. RCL
commends are available.

RESULT LISTS CLEARED I CLEAR commend has been None
completed. The current
statement number has
been reset to I and a
result lists cleared.

A-42

TABLE A-6. SYSTEM MESSAGES (CONT' D)

MESSAGE TYPE SIGNIFICANCE ACTION

RESULT n OCCURRENCES I Indicates the number None
n DOCUMENTS of occurrences and

documents that satisfy
the search query.

SEARCH MODE - ENTER QUERY I Search mode has been None
AFTER STATEMENT NUMBER initialized and search

queries can now be
entered.

SELECT MODE - .CREATE .. P These are the Menu Select one
MERGE .. REMOVE ..RENAM{E.. commands available to of the comn-
OUT the user. mands listed

SELECT MODE - .UPDATE .. P These are the commands Select one
SEARCH .. BROWJSE .. LIBRARY available during an of the comn-

.HELP .. OFF update run. mands listed

STOP WORD. NOT LISTED IN I The term entered is None
DICTIONARY a stop word and is

not listed in the
dictionary.

A-4 3

A-10.0 GLOSSARY

BROWSE An RCL run that provides the user a means to review

the retrieved documents. The BROWJSE command is a

menu command that initializes browse runs.

COM4MAND Instructions given by the user to direct the course

of an RCL session and to specify the files involved

in RCL operations.

DATA BASE A collection of files that are organized to support

document retrieval activities. The document texts

available for retrieval are stored in text file of

the data base.

DOCUMENT The major data structure for the document retrieval

system. A document has two parts: a formatted

field section that contains information about the

document and a text section that contains the

document's text.

DOCUMENT RETRIEVAL The process of retrieving a subset of documents from

a data base that satisfy a specified criteria.

MENU A list of commnands that are available to the user at

a particular time. After a menu is presented, the

system waits until the user enters one of the

commands listed in the menu.

A-4 4

MERGE The process of combining two data bases to form a

new data base that has all of the documents of both

data-bases and is organized to support the retrieval

of documents in the new data base. MERGE is also a

command available during update runs.

OCCURRENCE The identification of an instance of an occurrence

of a word in a text of a document. The components

of an occurrence's identification includes the

document number, paragraph number, sentence number

and word number.

PROMPT System messages to the user during browse runs which

defines the available choices. The user's response

is limited to depressing one key.

RCL Retriever Command language

RESULT LIST A list of word occurrences that satisfy specified

criteria. Each identification of an occurrence

contains an identification of the document that has

the occurrence. Hence, the relevant documents are

identified in result lists.

RUNS A period of time that is devoted to a specific

application.

SEARCH An RCL run that determines which documents satisfy

specified criteria. The SEARCH command is a menu

command that initializes search runs.

A-4 5

SEARCH EXPRESSION The format in which the criteria for document

retrieval activities are specified.

UPDATE An RCL command that provides the user a means to

build new data bases. An UPDATE commnd is a menu

command that initializes update runs.

A-4 6

APPENDIX B

THE ADVAN~CED FLEXIBLE P'ROCESSOR,

ARRAY ARCHIITECTURE

The Advanced Flexible Processor (AFP) is a relatively powerful computer

employing a highly parallel architecture. It has been designed to stand

alone, hosted by a general-purpose computer, or to function within arrays

of Advanced Flexible Processors. All of the features for efficient

interprocessor communication and control are built into each Advanced

Flexible Processor to allow efficient computation in a multiprocessing

environment. The Advanced Flexible Processor was developed by an

advanced computer research division of Control Data called the

Information Sciences Division (ISD). The Information Sciences Division

began work on the Advanced Flexible Processor in 1976. Our primary goal

was to develop a programmable computing machine that would provide the

computational power and speed required by many of the intense algorithmic

processes associated with image processing, while providing some of the

flexibility of a general-purpose machine.(1)

Early Research and Development in Multiprocessing

In 1968 Control Data began research into the feasibility of performing

some of the tasks associated with image processing functions, such as

modular change detection on digital computers. CDC began this effort by

testing algorithms on the super computer of that day, the CDC 6600.

Based on this preliminary algorithmic study effort on the modular change

detection problem, ISD began development of the 1280 Change Detection

System which was a hardwired-logic implementation build specifically to

perform the Change Detection Algorithm. Our experience in the designing

and building of special-purpose hardwired systems for image processing

applications indicated the need for a more flexible approach to the

development of special-purpose systems.

In 1972, the Information Sciences Division began development of the

Flexible Processor (FP), which was a programmable, special-purpose

computer employing a highly parallel architecture. The Flexible

B-1

Processor, like its successor the Advanced Flexible Processor, was

designed to operate as an individual programmable processing element in

an array of other individually programmable elements. The Flexible

Processor used a global bus interconnection system between processors.

Later investigations began to determine other interconnection network

architectures which might prove to be more optimally suited for a

Multiple Instruction, Multiple Data Stream (MIMD) type of array

architecture(2,3). The products of this initial research into various

interconnection schemes resulted in ISD developing a ring connected

architectural approach to linking Flexible Processors in large

multiprocessing arrays.

In 197b Control Data delivered its first modular change detection system

built around the Flexible Processor ring connected architecture to

Wright-Patterson Air Force Base. Research indicated that a processor

capable of performing at computational rates 10 times that of the

Flexible Processor was in order and would be required to meet the

burgeoning computational demands of the 1980's (4-7). Thus, Control Data

Corporation began the development of the Advanced Flexible Processor

using the latest LSI technology which was developed by CDC for use in its

most advanced Cyber computers.

AFP Hardware Overview

An Advanced Flexible Processor is implemented on four large scale

integrated (LSI) circuit panels. The component technology is emmitter

coupled logic (ECL) chips. Each LSI panel carries a total of

approximately 500 F2UUK ECL logic chips and 1,100 ECL lOOK logic chips.

The Advanced Flexible Processor employs the same freon cooling system

used in CDC's Cyber 200 series computers. This technology provides an

increased reliability figure at the chip level of approximately 100 times

that achievable using ECL IOOK logic chips in an air-cooled environment.

B-2

The rough computational capabilities provided by an array of lb Advanced

Flexible Processors would be approximately 3.2 billion arithmetic and

logical operations per second. A far larger number of operations could

be added to the total if one were to count the many operations associated

with operand transfer and data management which are concurrently

performed by the AFP in support of the arithmetic and logical

computations.

Interconnection Technology. AFP systems employ a ring connected

architectural concept. The interprocessor communication between two

adjacent Advanced Flexible Processors in the communications ring is

approximately 800 million bits per second. A unique characteristic of

the ring connected architecture employed by the Advanced Flexible

Processor provides a distinct advantage in the performance capability ot

multiprocessor systems. Program partitioning strategies allow one to

realize proportional increases in available ring system

intercommunication bandwidth as processors are added to the

multiprocessor array. This feature is in direct contrast to other

multiprocessor architectures in which interprocessor communication is

strangulated as processors are added to the system. As a result ot this

unique feature, an array of 16 Advanced Flexible Processors may provide

overall system bandwidth for intercommunications of 2b billion bits per

second.

AFP Performance Benefits. Comparisons between the performance of the

Advanced Flexible Processor and other current super computers have been

made on the image processing Change Detection Algorithm. The Advanced

Flexible Processor has been determined to be approximately 2,000 times

faster than a CDC 6600 on the Change Detection Algorithm, and to provide

approximately 100 times the capability of the CDG 7600 computer. The

Advanced Flexible Processor is found to perform 20 times faster than its

B-3

predecessor, the Flexible Processor. In terms of cost effectiveness, the

Advanced Flexible Processor appears to be at least two orders of

magnitude more cost-effective than it predecessor, the Flexible Processor.

Architectural Concepts

The following discussion will review some of the issues related to the

choice of a multiprocessing solution for those problems for which

general-purpose uniprocessors do not provide adequate solutions.

Pipelined Processing. Consider a processing facility composed of a

single processor to which is presented an incoming stream of data

elements. Computations are to be performed upon these incoming data

elements, and output results are to be provided on a real or near real

time basis (Figure B-la). When the number of operations to be performed

on the incoming data elements increases to the point where a single

processor cannot provide output results within the required real or near

real time constraints, or where an input backlog is steadily growing,

then it would be required that the compute power of the single processor

be augmented by the addition of processors into the system to work

jointly on the common task at hand.

The common task would be partitioned among the added processors in a

pipeline fashion where each processor would operate only upon a single

serial stage of the entire computation, and would pass its intermediate

results onto the next cooperative processing element, which would be

working on the next sequential stage of the computation (Figure B-lb).

As each computational stage completes the processing of a data element,

the next data element in sequence may be input to that stage, and stage

processing initiated. The pipeline is "full" when there is a data

* B- 4

L I-IL

+ _~ ~~~~L 11 I Io I n jo4 I

.r.

0 0000 0

060 00O0

0

cc.

LA0. 0

70

-T

orn

11.1 1 1I I 1

Figure B-1. Pipelined and Parallel Processing

B-s

element simultaneously being processed through each and every stage of

the pipeline. Each of the N processors, corresponding to the N stages of

the pipeline, would then be busy, contributing to the total processing

power brought to bear on the problem.

Parallel Processing. If the incoming data rate of the proposed system

were to increase to a point beyond the individual 1/0 capability of a

single processor, then it would be required that processors be added to

the computation in a parallel fashion, each performing identical

operations on a parallel set of data elements (Figure B-ic). In summary,

one can state that when the number of instructions in a particular

algorithm increases beyond the capability of a single processor required

processors would be added in a pipeline fashion, whereas when the I/0

rate of an individual processor is exceeded, then processing elements are

required to be added in a parallel fashion. The Modular Change Detection

system developed by the Information Sciences Division consisted of four

pipelines with ten processors in each pipe.

General Multiprocessor Taxonomies

In general it is not adequate to simply provide capability for only

parallel or pipeline configurations of processing elements, or for that

matter some parallel-pipelined combination thereof. Algorithms are

generally more complex than that, and require more complex feedback

paths, such as exemplified in recursive types of algorithms.

Four generalized types of intercommuinications architecture for

mltiprocessing that may be considered are shown in Figure B-2 and are:

1) a global bus interconnection architecture where all comunication

between the processors occurs on a single, common data bus; 2) a fully

interconnected architectural scheme where each cooperating processing

element has a unique data path to every other processing element in the

B- 6

DATA BUS

FULL IUTERCWU(CTIOII

pp

9IKO MMl~Y R116

Figure B-2. Interprocessor Coamunication System

B-7

array; 3) a shared memory type of processing element interconnection

where all communication and data transfer occurs through a common, shared

memory facility; and 4) a ring connected architectural concept which

consists of a circular interconnection of processing elements, where each

processing element is directly connected to its two neighboring

processors in the ring. The Advanced Flexible Processor uses the latter

two interconnection schemes. The Advanced Flexible Processor uses both a

dual, counter-rotating ring interconnection system, as well as a common

shared memory facility.

Each of the previously mentioned interconnection architectures possess

characteristic strengths and weaknesses, requiring evaluation on the

basis of several criteria. These architectures may be evaluated on the

basis of: 1) system reliability, 2) expansion capability, and 3) cost.

System Interconnect Reliability. From the standpoint of reliability, the

shared memory system and the global bus both have problems in the area of

single-point failures. If a failure of the bus or the central memory

occurs, the entire system is incapacitated. A ring system, when bypass

hardware is employed, demonstrates very good fault tolerant

characteristics.

The fully interconnected system is the best of four systems considered in

the area of fault tolerance since each processor has a dedicated path to

every other processor for intercomminications.

System Interconnect Expandability. From the standpoint of expansion

limitations, the shared memory system has problems in that the number of

ports are fixed. Expanders can be used to alleviate this problem to some

degree, but physical construction problems are utlimately met. Also, the

memory bandwidth of the shared memory system is fixed and is relatively

slow, thus limiting the degree of practical expansion.
B

-SIL

B-8

-_ __ __ A

A global bus system has limited fanout capabilities; electrical probleum

are generally encountered after a relatively low number of processors are

added to the system. Also, the global bus system demonstrates the lowest

bandwidth capability of all of the systems, since all of the processing

elements used the common shared bus. In fact, the operating bandwidth of

the global bus system will never reach its theoretical maximunm due to the

idle time spent while processors access the bus, release the bus, and

resolve bus access conflicts.

The fully interconnected system is limited in that the number of ports

are fixed with respect to the processing elements. While expanders can

be used, ultimately physical problems will be encountered.

In the ring system, the bandwidth between adjacent processors is fixed;

however, utilizing the special characteristics of a ring connected

architecture provides system intercommanication bandwidths which tend

towards the arithmetic product of this fixed interprocedure bandwidth and

the number of processors in the system. Thus, a proportionate increase

in supporting intercomnunications bandwidth is available as processors

are added to the system. Expansion within a ring connected system is, of

course, virtually unlimited and has a very low cost impact.

System Interconnect Cost Performance. Onie may obtain a measure of the

cost effectiveness of the four generalized architectures by plotting the

cost to throughput ratio for each architecture as a function of the

number of processors in the system (Figure B-3).

The shared memory system is the most expensive of the four generalized

architectures, with the global bus system coming in at close second. The

fully interconnected system is about 5 times more cost-effective than a

global bus approach for a 30-processor system; however, the ring system

B-9

Cost
Throughput Sae mr

Global Bus
13

12

11

10

9

7

4

FuIt Inter-
3 connect ion

2

R Ing

0 N umber of

10 0 D Procesors

Figure B-3. Normalized System Cost/Throughput vs. Number of Processors

B-10

is superior to all when the process is partitioned to take advantage of

the unique bandwidth characteristics that a ring connected architecture

provides.

Advanced Flexible Processor Architecture

The Advanced Flexible Processor is a unique and powerful architecture

providing an extremely high degree of flexibility and cost-effectiveness.

It consists of 16 relatively autonomous functional units interconnected

by a 16 x 18 port, crossbar interconnect. Each of the data paths

interconnected by the crossbar is 16 bits wide. Table B-I describes the

functional unit breakdown of the Advanced Flexible Processor. A

conceptual functional organization of the AFP is shown in Figure B-4.

Computations may be streamed through the Advanced Flexible Processor very

* efficiently due to dual 1/0 port characteristics of the internal

* architecture. Data elements may be independently streamed in and out of

the Advanced Flexible Processor through any one or all of the four 1/0

channels. For example, data may be streamed in through one of the memory

I/0 channels, computations performed, and then streamed out through one

of the other three I1/0 channels siultaneously.

Multifunctional Parallelism. The internal architecture of the Advanced

Flexible Processor allows mltiple computational streams to be

constructed and executed in parallel. By way of example, one might

imagine the mltiply unit requesting operands from one of the memory 1/0

ports and one of the data memories, while at the same time an adder may

be requesting the product computed by the mltiplier on a previous

machine cycle and another data element from one of the remaining three

data memories to serve as input operands for an addition operation. At

the same time, the remaining adder may be using the sum produced by the

B-11

00

w
0
q:

w

w
-j
LL

Z

Figure B-4. Functional Organization of the Advanced Flexible Processor

B-1 2

TABLE B-i. FUNCTIONAL UNIT BREAKDOWN

Number of Type of Functional Unit Number of

Units Pipelined

Segments

2 External Memory Access Unit I

2 Ring Port I/O Units I

I Control Unit 2

2 Adders Unit 2

I Multiplier Unit 3

2 Shift Boolean/Logic Unit 2

4 2K Data Memory Units 2

2 8 Word File Registers 2

first adder on a previous machine cycle and the result from a shift

boolean operation to perform a subtraction. The ultimate goal, of

course, is to get as many functional units executing simultaneously as

possible and thereby achieving the highest concurrency of execution.

Each of the internal functional units of the AFP are I/O buffered to

their respective crossbar ports as shown in Figure B-5. Each functional

unit is equipped with input latch registers, buffering the crossbar

inputs, and output latch registers, buffering the functional unit outputs

to the crossbar. This design allows the intermediate storage of

variables between the functional units and thus allows the functional

units of the AFP to be pipelined together with the maximum flexibility.

Single or multiple pipelined chains are easily supported through the

crossbar as a result of this method of "direct data hand-off" between the
I

functional units.

B-13

I- U

0 AI

U w

Z U

0 0

go A U) f.

0 0 Ca

U U

FigureB-s. RgisterLeeOraitonfaGnrc
AFF Fucioa Uni

0~ 14

Cr. i

Advanced Flexible Processor Performance

The machine cycle time of the Advanced Flexible Processor is 20

nanoseconds. Every functional unit can provide results every 20

nanoseconds. Thus, 50 million lb-bit multiplies, 200 million 16-bit data

memory references, and 100 million 16-bit adds or subtracts, etc. can be

performed every second. The maximum operational speed of the Advanced

Flexible Processor, therefore, is 800 million operations per second when

all 16 functional units are executing.

AFP 1/0 Performance. The ring port 1/0 unit provides the interface for

each Advanced Flexible Processor to the ring interconnect system. Two

ring ports are provided to each Advanced Flexible Processor and thus the

capability for dual-ring interconnection systems exists. The ring port

1/0 unit handles all of the data management, synchronization, and

protocol required to communicate on the ring system without interrupting

the arithmetic processing of the Advanced Flexible Processor.

The external memory access unit provides the interface between the AFP

and the central, high-performance, random access memory store. Each

* external memory access unit can provide peak memory store. Each external

memory access unit can provide peak data 1/0 rates of 3.2 billion bits

per second and sustained 1/0 rates of 800 million bits per second. Thus,

the total sustained capability of an Advanced Flexible Processor from the

two ring port 1/0 units and the two external memory access units is 3.2

billion bits per second.

AFP Computational Performance. The multiply unit of the Advanced

Flexible Processor provides the capability to produce two lb-bit nroducts

or one 32-bit product every 20 nanosecond machine cycle. The multiplier

also provides the capability to do population and significant counts.

2'. The two adders provide the capability of performing four 8-bit adds, two

B-15

16-bit adds, or one 32-bit add every 20 nanosecond machine cycle. The

shift boolean units allow barrel shifts of up to 15 bits performed every

20 nanosecond machine cycle and is capable of performing all of the 16

basic boolean logic functions. Each data memory allows the reading or

writing of one 16-bit word every machine cycle. The file memories allow

the reading and writing of four 16-bit words every machine cycle. The

control unit manages program execution and handles branching and

accessing of programming instructions.

The individual program memory within the control unit of each AFP

consists of 1,024 program instructions. Each program instruction is 200

bits wide and provides the capability of issuing 39 instruction parcels

every 20 nanoseconds. The control bandwidth of the AFP is thus very

high, and allows flexibility in control for the easy management

and execution of the 16 functional units and the crossbar

reconfiguration on a machine cycle basis. As a result, the Advanced

Flexible Processor is capable of performing 100 million, 250 million, or

500 million arithmetic and logic operations every second in the 32-bit,

16-bit, or 8-bit modes of operation respectively.

Comparison Testing. Latching registers as shown in Figure B-5 are also

provided within each functional unit for the storage of input comprand

values. Arithmetic computations and testing of resultant outputs can

thus be concurrently performed within all of the functional units. The

current conditional status of each functional unit can therefore be

provided to the control unit every machine cycle for branch decision

processing. When counting all of the arithmetic and logic operations

plus all of the comparison results provided by each of the functional

units, one finds the Advanced Flexible Processor capable of performing an

astounding 2.9 billion, 8-bit operations per second. This compute

capability represents the upper theoretical limit for the Advanced

Flexible Processor.

B-16

On average, a typical computational process can keep four of the

arithmetic functional units plus several memory and 1/0 units busy

concurrently, allowing a single AFP to achieve an average computational

rate of about 200 to 250 million 16-bit arithmetic and logical operations

per second.

The features provided by a single AFP are summarized in Table B-2. The

very modular construction of AFP systems and of the AFP itself allows for

very cost-effective system implementation. The modularization of

functional units about the crossbar interconnect allows the enhancement

of AFP performance specification by replacing existing functional units

with specialized functional units designed specifically to meet

performance requirements. Typical examples of specialized function are:

fast fourier transform units, floating point add, multiple, and

divide/square root units.

AFP System Architecture

System arrays of Advanced Flexible Processors are linked together and

synchronized via facilities provided by the ring port functional units.

Data elements 16 bits wide, along with 12 bits of control information,

are passed between ring ports on adjacent AFP's. The control information

to define the single processor or subset of system processors to which

the message is to be sent.

Information identifying the appropriate data register file in which the

incoming data element is to be stored is also contained within the

control field of the ring packet. Each data memory is capable of

defining 16 independent data files. Designated bits within the control

field provide interprocessor synchronization information as well.

Facilities within the ring port provide the logic capabilities to use

these designated bits to achieve cross file synchronization. These

B-17

TABLE B-2. SINGLE AFP FEATURES

FEATURE ADVANTAGE

250 MILLION ARITHMETIC COMPUTATIONS EXPANDABLE COMPUTE POWER TO MATCH
PER SECOND FOR EACH AFP APPLICATION

FUNCTIONALLY DESIGNATED INTERMEDIATE ALLOWS UNINTERRUPTED COMPUTATION
OPERAND REGISTERS STREAMING, ELIMINATING REGISTER

RESERVATION HICCUPS

DIRECT DATA HAND-OFF BETWEEN 16 PROVIDES BROADEST CAPABILITY FOR
FUNCTIONAL UNITS THROUGH CROSSBAR MULTIPLE CHAINING WITH NO REQUIRE-
SWITCH MENTS ON OPERAND INDERPENDENCE

DATA FAN OUT OF 1:16 ON ALL ELiMINATES OPERAND CONTENTION,
FUNCTIONAL UNITS ALLOWING MULTIPLE USE OF A SINGLE

OPERAND IN ONE MACHINE CYCLE

FOUR INDEPENDENT DATA MEMORIES PROVIDES 8 KB OF CIRCULATING
PROVIDING CONCURRENT ACCESS AND VECTOR STORAGE, AVOIDING COSTLY

COMBINED CAPABILITY TO SUPPLY 16 VECTOR LENGTH START-UP TIMES

INPUT REQUESTS SIMULTANEOUSLY

B-18

TABLE B-2. SINGLE AFP FEATURES (CONT'D)

FEATURE ADVANTAGE

FOUR INDEPENDENT I/O PORTS PROVIDING ELIMINATES VECTOR LENGTH HICCUPS
SIMULTANEOUS READ/WRITE ACCESS TO HPR IN COMPUTATION STREAM
MEMORY

PEAK BANDWIDTH
8 BILLION BITS/SECOND

SUSTAINED BANDWIDTH
3.2 BILLION BITS/SECOND

200 BIT WIDE INSTRUCTION PACKET INSTRUCTION ISSUE RATE IS
39 INSTRUCTION PARCELS/CYCLE OR
2 BILLION INSTRUCTIONS PER SECOND

TRANSPARENT SINGLE LEVEL INTERRUPT NO SPECIAL INTERRUPT EXCHANGE
EXCHANGE MANAGEMENT SOFTWARE PACKAGES REQUIRED

INSTRUCTION CACHE SIZE OF 1024 40 THOUSAND INSTRUCTION PARCELS
INSTRUCTION PACKETS, EACH 200 BITS PER PROGRAM INTERVAL
WIDE

B-19

4 . I. .. -" '

features assure that a processor is not capable of beginning a

computational task until the appropriate single data file or set of data

files which are to be used as operands in the pending computation are

stored away in the processor.

These synchronizing control features also prevent another processor from

over-writing files within a computing processor. Input and output FIFO

buffering provides elasticity in communication between processors on the

ring systems to minimize processor idle time. Thus, due to the built in

capabilities of the ring port functional units, the processing elements

are released from the inflexible lock-step synchronization required of

other single instruction, multiple data stream (SIMI)) machines and

multiple instruction, multiple data stream (MlMD) machines. Further, the

system allows for the construction of multiple elastic pipelines to be

created across system AFP's, which function as powerful processing

elements in the dual ring connected architecture.

A Minimum AFP System. A minimum AFP system configuration would consist

of a host computer, presently a PDP 11/70, communicating with a single

AFP via a modified ring port interconnection, MI{P/C (Figure 6). An AFP

operating as an attached processor in this configuration would enhance

system performance of the host processor by providing a capability of 250

million additional arithmetic computations per second. The ring port

interface units through which which rings of AFP's may be interconnected

are indicated in Figure B-6 by the abbreviation RP0.

Multiprocessor AFF Systems AFP's can be easily added to the minimum

system shown in Figure B-6. A typical multiprocessor expansion is shown

in Figure B-7. AFP's are interconnected on the host ring with each

additional AFP augmenting the computational capabilities of the system by

250 million arithmetic operations per second. An additional

B- 20

PDP *DISK
RTAPE1 1 /7 0 C RYE

P(Mx x
AFPA AF

U

L-P(s

Figure B-6. Minimum AFP System Configuration

B-21

ring interconnection channel, shown in f~igure B-7, is also provided for

interprocessor communication and control. Up to 256 Advanced Flexible

Processors can be supported on each system ring.

Centralized High Performance Memory. A multiprocessor system of AFPs may

share a common, high-performance random access memory store (HPR) between

processors. All system HPR requests sent from the external memory access

units (XMAU) .Gf the AFP's are managed by the Storage Access Controller

(SAC). Multiple SAC's may be employed as memory requirements are

expanded. Each SAC is capable of transferring data to and from the AFP

array at a sustained rate of 6.4 billion bits per second.

This centralized, high-performance memory store may be expanded from 125

kilobytes to 16 million bytes, providing a maximum memory bandwidth of

12.8 billion bytes per second. 'lhe advanced tec~hnique of processor

intercommunications significantly reduces processor idle time. Processor

idle time is further reduced through a sophisticated hierarchical

approach to mass memory and 1/0 management, which ensures continuous data

support to the processing elements and a continuous computational flow.

All memory and communication paths are designed to support extremely high

bandwidths.

Centralized Mass Memory Facility. In addition to the high-performance

central memory, AFP systems may be configured to provide a centralized

mass memory facility composed of slower, relatively inexpensive memory

technologies that can be accessed by each system AFP. The mass memory

hierarchy can be configured to meet individual requirements and may

include MOS random-access storage, disks, tapes, and memory archives, as

well as high-speed interfaces to general peripheral 1/0 devices and

display stations.

B- 22

Figre -7 Tyica AP Sstm Cnfiurtio Sowig Cpaili4e
f rEpaso

B- 3.

The MOS Memory technology provides low-cost random access storage at a

fraction of a cent per bit. This cost compares to that of the higher

performance technology used in the HPk(central memory of 3-4 cents per

bit. Sustained read/write data rates to and from MOS memory can exceed

1,000 million bits per second. MOS capacity may be expanded from 256

kilobytes to 1 billion bytes to provide ample random access storage at a

low cost per bit ratio to cost-effectively meet the storage requirements

f or very large problems.

AFP System Performance for Specific Applications

A number of specific applications for the AFP have been studied at

Informations Sciences Division. The performance of single and

multiprocessor systems of APP's has been assessed for these

applications. The computational performance of the Advanced Flexible

Processor on a representative set of thiese algorithms is shown in

Table B-3. Beyond these areas of investigation there are yet broader

applications for the Advanced Flexible Processor that are being

investigated. Data retrieval system(8) as well as floating point

applications are starting to be addressed.

APP Software Facilities

The programming of the AFP system is presently done through the use of

two very powerful software development tools. The first of these tools

is the AFP cross assembler, MICA. The second tool is the AFP instruction

level simulator, ECHOS. The MICA cross assembler and the ECHOS

instruction level simulator allows all programming to be done

"of f-line." AFP programs can be written using the editor facilities of

either a PDP 11/70 or a Control Data Cyber 700 series computer. The

edited files are then processed by the MICA cross assembler. MICA checks

4 for all illegal lexical and syntax usages as well as illegal hardware

B-24

TABLE B-3. AFP APPLICATION PERFORMANCE

APPLICATION NUMBER 1 KERNAL TOTAL
,,_OF AFP's RATE TIME

COMPLEX FFT, 1024 POINT 1 80 ns/BUTTERFLY 0.4 msec
16 BIT ACCURACY 4 2O ns/BUTTERFLY 0.1 asec
GEOLOCATION, 100,000 MESSAGES 1 40 ns/PAIR 0.4 sec
100 LOCATIONS OF INTEREST 10 MILLION

I_ I_ I COMPARES

2-DIMENSIONAL MATRIX DECONVOLU- 1 20 ns PER 6.6 msec
TION (55 x 80) ELEMENTS MULTIPLY-ADD

480 ns/POINT 8 msec
MULTISPECTRAL CLASSIFICATION COMPUTATION

(128 x 128) POINTS 16
1240 OPERATIONS12.58 BILLION

PER POINT OPERATIONS/SEC

MATRIX INVERSE 1 2 usec/POINT 5.0 msec
(50 x 50) POINTS

MATRIX TRANSPOSE 10 nsec/POINT 20 usec
(32 x b4) ARRAY 1
(1024 x 1024) 20 nsec/POINT 21 msec

B-25

usages. Functional unit and cross bar usage conflicts are identified to

the programmer through the facilities of MICA. MiCA produces a binary

file of the submitted program which runs directly on the Advanced

Flexible Processor.

The binary file produced by MICA also runs directly on ECHOS the AFP

instruction simulator. ECHOS provides a register level simulation of the

submitted program. ECHOS interactively executes the program in software

precisely the way the program will run in the Advanced Flexible

Processor. A programmer can single step through his program specifying

the print out of all or a selected set of functional registers in the

AFP. The accuracy, power, and detail of the ECHOS simulator allows a

programmer to confidently expect his program to run the very first time

it is run on an AFP. Thus, programming activities can be carried out

with no interruption to useful AFP system data processing.

Development of higher level programming languages for the AFP is

currently underway. FORTRAN, ADA, and the data flow language VAL which

has been developed at the Massachusetts Institute of Technology and the

Lawrence Livermore National Laboratory(9) are all candidates to be

supported.

Summary

The Advanced Flexible Processor is a unique entry into the

multiprocessing field. It provides the dynamic capabilities offered by

an MIMD machine with advanced features provided by the interprocessor

ring communications network; efficient utilization of the system

processors is therefore effected. Within each Advanced Flexible

Processor, dynamic multiple chaining can be achieved due to the superior

flexibility of the intra-processor crossbar. Multiple functional units

can be executed simultaneously with each functional unit providing a

B-26

broad range of instruction defined operational capabilities. Functional

unit make up within an Advanced Flexible Processor can be varied and

optimized for variable data sets. Multiple comparisons are available

within each machine cycle for simultaneous multiple condition sensing.

Special-purpose functional units can replace existing functional units

within the Advanced Flexible Processor, allowing processor capabilities

to be tailored to the precise allowing processor capabilities to be

tailored to the precise application requirements. Modular system

construction allows compute power modularity; thus, processing systems

can be cost-effectively tailored to the users individual requirements.

Future Computational Trends. The trends in computational requirements

over the last 25 years has increased logarithmically by an order of

magnitude every 8 years. Users will continue to demand higher

performance, computational facilities at a rate matching or surpassing

that of the previous 25 years. The demand appears to be insatiable as

long as cost effectivity can be sustained. Semiconductor technology has

L."; been able to meet these demands over the past 25 years, however,

presently there appears to be a slowing in the rate of technological

advances within the semiconductor area. A circuit density increase by a

factor of two every year as predicted by Moore's law is not presently

being met, due to the increased problems in semiconductor fabrication

that are being confronted.

There is little evidence that this trend will reverse itself over the

coming years. The current trend indicated by the widening of this

technological gap, seems to indicate that the only way to meet the

computational requirements of the scientific community in the mid 1980's

is through the application of multiprocessor technology. Development

of this multiprocessor technology will provide the foundation to bridge

the computational gap between 1985 and 1990. Future advances

B-2 7

in semiconductor technologies will yield increases in computational

speed at the circuit level. These semiconductor advances will certainly

be incorporated into multiprocessing hardware, and thus the skills we

develop to employ multiprocessing in the 1980's will provide the

stepping stones to meet the computational demands of the 1990's.

Acknowledgements

The information presented in this paper is a direct result of the

collective knowledge gained by the personnel in the Information Sciences

Division of Control Data. This knowledge has been gained from more than

nine years of experience in the field of multiprocessing.

Literature Cited

1. Allen, G.R., A Reconfigurable Architecture for Arrays of
Microprogrammable Processors, Special Computer Architectures for
Pattern Processing, Purdue University, West Layfayette, Inc., CRC
Publishing Corporation, to be published in 1981.

2. Hsu, T.T., On the Performance and Cost Effectiveness of Some
Multiprocessor Systems, 1977 International Conference on Parallel
Processing, August 1977.

3. Stenshoel, C.R., Production Image Processing System Design Study,
Control Data Corporation Final Report to Centre National d'Etudes

Spatiales, May 1977.

4. Juetten, P.G. and Allen G.R., An Image Processor Architecture,
Control Data Corporation, Minneapolis, Minnesota, 1977.

5. Allen, G.R. and Juetten, P.G., SPARC - Symbolic Processing

Algorithm Research Computer, /Proc. Image Understanding Workshop/,

Science Applications, Inc., Report No. SAI-79-814-WA, 1978.

6. Allen, G.R., Advanced Image Processing systems Design Studies,
Control Data Corporation Final Report to the Rome Air Development

Center, Contract No. F30602-76-C-0362, March 1978.

7. Cyre, W.R., Allen, G.R., and Juetten, P.G., Symbolic Processing
Algorithm Research Computer Progress Report, Control Data
Corporation, Minneapolis, Minnesota, 1978.

B-28

Literature Cited (Cont'd)

8. Cyre, W.R., Applications of a Reconfigurable Array of Flexible

Processors in Intelligence Information Retrieval, Control Data
Corporation Final Report to the Rome Air Development Center,
Contract No. F30602-78-C-0065, July 1979.

9. Ackerman, W.B., and Dennis J.B., VAL-A Value-Oriented Algorithmic
Language: Preliminary Reference Manual, Laboratory for Computer
Science, Massachusetts Institute of Technology.

B-29

j

APPENDIX C

ASSOCIATIVE UNIT

C-1.0 INTRODUCTION

The Associative Unit consists of 256 associative processing cells and a

microprogrammable controller organized as illustrated in figure C-i.

The Associative Unit (AU) is designed to operate as an add-on unit for

the Advanced Flexible Processor (AFP). The interconnections required

between an Associative Unit and an AFP are summarized in Table C-I. The

AU requires a 64-bit data and control input path, an 18-bit data output

path, and a number of other control signal lines. The AU signals can be

changed once in every AU machine cycle. The functions of the signals

defined in Table C-i are described further in section C-5.

The internal machine cycle of the Associative Unit has a period of

120-125 nsec. and is synchronized to the 20 nsec. clock of the AFP. The

Associative Unit is constructed with Schottky TTL logic and level

shifters to accommodate the ECL signals of the AFP.

C-1.1 Bit Numbering Convention

The bit numbering in the Associative Unit begins with zero on the right

(LSB) and increases to the left. The bit numbering in the AFP begins

with zero o, the left (MSB) and increases to the right.

c-1

AD-A139 385 ADVANCED DOCUMENT RETRIEVAL SYSTEM(U) CONTROL DATA CORP 33
MINNEAPOLlS MN W CYRE ET AL. JUL 83 RADC-TR-83-168
F30602-79-C 0231

UNCLASSIFIED F/G 9/2 NL

EEIIIIIIIEIII
EIIEIIIIEEEIIE
EIIIIIIIIEEIhE
EIIIEEIIEIIII
*IlIIIIIIIIIIII

t
+

6, 5

2Q

-A

i.2 I-

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU Of STANDARDS-1963 A

,i

SI

P/

SAC
I(OPTIONAL)

ASSOCIATIVEINEFC
UNIT

Figure 0-. Organi atino hA sscatvEIi

CNRO2 E

BAi ____AN

BANK & DR/

TABLE C-1. AU/AFP INTERCONNECTIONS

IFUNCTION NIMBER OF BITS

AFP TO AU

WRITE DATA 64

ADDRESS 3

WRITE 1

REQUEST 1

CLOCK 1

72

AU toAFP

READ DATA j20
DATA READY I

ACKNOWLEDGE 2

23

C-3

C-2.0 ASSOCIATIVE PROCESSING CELLS

The Associative Unit contains 256 associative processing cells designated

cell 0 through cell 255. A lower numbered cell is considered to be above

a higher numbered cell, and the lowest numbered cell of a collection of

cells is considered to be the first cell in that collection.

All cells in an Associative Unit are common to four buses which carry

data and controls to the cells and data from any one of them. The names

and functions of these buses are given in Table C-2. In addition to the

common bus connections, each cell has a set of unique connections for

propagating data between adjacent cells, and for future connection of

external devices. Each cell also has connections to the response network

(see Section C-3).

Each cell in an Associative Unit is in one of two major states: marked

or not marked. The response network (see Section C-3) deals only with

the marked state of each cell. In addition to the marked state, several

other status conditions are defined within each cell and are listed in

Table C-3. Various cell operations may be conditioned on the True or

False value of these conditions.

The elements of a cell are illustrated in Figure C-2 and include a 256 by

4 bit random access memory (RAM), a 32-function 4-bit arithmetic logic

unit (ALU), cell control logic, and various registers and internal

buses. The cell elements and their purposes are listed in Table C-4.

The cell operations are controlled by the 20-bit Cell Control Bus (CCB).

The various cell operations and their associated control bits are listed

in Table C-5 and the cell ALU functions are listed in C-6.

C-4.

TABLE C-2. CCHHON CELL BUSES

NAME LINES PURPOSE

CCB 20 CELL CONTROL BUS - These signals
define the operation to be performed
by the cells. (See Table 2.4 for
details.)

CDB 4 CELL DATA BUS - This bus supplies data
which may be used as an operand by the
cells or be written into the cell
Cemories.

CAB 8 CELL ADLRESS BUS - This bus supplies
an address to the cell memories.

CRB 4 CELL RESPONSE BUS - This bus is used
to transfer data or results out of
the cell array. To avoid bus conten-
tion, only the first (lowest numbered)
cell in the Jerked state is connected
to this bus at any given time.

C-5

TABLE C-3. CELL STATUS CONDITIONS

NAME DESCRIPTION

U UNCONDITIONAL - This condition is always
true.

M MARKED - The cell is in the Marked state.

W ONES - The ALU output is equal to 1111.*

C CARRY - The cell Carry register is equal to 1.

P PROPAGATE - Any cell above the cell in
question is in the Marked state.

F FIRST - The cell in question is not the first
-'iost numbered) cell in the Maed state.

AM ABOVE MARKED - The cell immediately above
(lower numbered) the cell in question is in

the Marked state.

BM BELOW MARKED - The cell isiediately below
(higher numbered) the cell in question is in
the Marked state.

This condition is true when ALU inputs A and B are equal and ALU
function A minus B minus one is selected (CCB 4, 3, 2, 1, 0 -

-00220).

C-6

* 1 _..

• -- _ T 2-- -

.ttO

ae rA DATA T

C49 R3AUA fmCELL
hwy

cc$' CLAIM A A TS) _ WS 4 B ITS

I~~ BIT EL
IiI Aii(UTS .a61? .5) licT

C 4 BITSTS

IU

S'ITS I

2RTTASIT

CELLLECTA

I SICEL CLOVEL

91ERMI tI I raTA rTto

aELL INPT CII

CAD

I IT

cia"

Figure C-2. Associative Pkroceasng Cell Structure

1C-7

&/
sun$

l + + ++ + . . .el + . . . l l L

TABLE C-4. CELL ELEMENTS

ELEMENT PURPOSE

A Register Provides temporary storage for an operand
to be placed on the A bus (4 bits).

B Register Provides temporary storage for an operand
to be placed on the B bus (4 bits).

M Register Contains the Mark status of the cell
(1 bit).

C Register Contains the value of the carry input to
the ALU (1 bit).

R Register Contains a cell operation result to be
placed on the R bus.

A Bus Transmits an operand from either the A
Register or the CDB bus to the A input

of the ALU (4 bits).

B Bus Transmits an operand from either the B
Register or the RAM data output to the
B input of the ALU. Also transmits data
to the cells immediately above and

I _ _ immediately below (4 bits).

C-8

/,,

4-

TABLE C-4. CELL ELEMENTS (Cont'd)

ELEMENT PURPOSE

R Bus Transmits data from the ALU output or the
cell immediately above or the cell
immediately below or external terminals
to the A Register, B Register, RAM, data
input, CRB bus, and external terminals
(4 bits).

RAM 256 x 4 bit Random Access Memory provides
storage for a list of operands.

ALU 32 function Arithmetic Logic Unit (4 bits)l
performs logical and arithmetic functions
on two operands.

Control Decodes the 20-bit CCB bus signals and
determines the operation of other cell
elements based on cell status conditions.

C-9

'II

TABLE C- 5. CELL OPERATIONS

CCB BITS CELL ELEMENT FUNCTION CODE FUNCTIONS

19 Status Select -- Use complement of cell
status when set.

18,17,16 Status Select 000 U
001 I
010 W
011 C (see Table C-3)
100 P

101 F **

110 AM
I I I BM

15,14 Carry Register* 00 NOP
01 CLEAR
10 SET
11 LOAD from ALU carry output

I 13,12 Mark Register* 00 NOP
01 SET

10 CLEAR
11 COMPLEMENT

11 B Register -- Load B Register from R Bus

0 Awhen set

10 A Register tload A Register from R Bus

J when set

* Operation conditional on selected cell status condition.

** De to propagation delays, this condition my not be valid until

the second cycle following a change in state of a mark flip-flop.

C-1 0

TABLE C-5 CELL OPERATIONS (Cont'd)

CCB BITS CELL ELEMENT FUNCTION CODE FUNCTIONS

9 B Bus 0 B Bus source is RAM output
data

1 B Bus source is B Register

8A Bus 0 A Bus source is CDB
I B Bus source is A Register

7,6 R Bus, R Reg. 00 R Bus source is ALU, R Reg
not clocked

01 R Bus source is ALU**
10 R Bus Sofrce is lower cell

B Bus**
11 R Bus Source is upper cell

B Bus**
** R-Reg clocked

5 RAM* Write RAM from R Bus when

set

4 ALU Mode 0 ALU in logic Mode (see
Table

1 ALU in Arithmetic mode
(see Table C-6)

3,2,1,0 ALU Function See Table C-6

* Operation conditional on selected cell status condition.

** R-Reg is loaded, but B-eg is enabled onto CRB only if cell is the
first marked.

C-11

TABLE C-6. CELL ALU FUNCTIONS

CCB 4 - I CCB 4 - 0; ARITHMETIC OPERATIONS
CCB BITS LOGIC C - 0 C-
3 2 1 0 FUNCTIONS (no carry) (with carry)

0 0 0 0 F - X F - A1 F - A PLUS I

0001 F-A+B F-A + B F-(A + B) PLUS 1

001A0 F-B F A+B F - (A +B) PLUS I

0 0 1 1 F - 0 F -MINUS 1 (2's COMPL) F - ZERO

0 1 0 0 F - AB F - A PLUS AB F - A PLUS A PLUS I

0101 F- F-(A + B) PLUS AB . (A + B) PLUS AB
I LLS 1

0 1 1 0 F - A + B F - A MINUS B MINUS 1* =A MINUS B

0 1 1 1 F - AB F - A MINUS i F - A9

I 1 0 0 0 F -, X + B F - A PLUS AB F -f A PLUS AB PLUS 1

1 F-A+, A PLUS B F - A PLUS B PLUS1

1 0 10 F-B F - (A + B)PLUS AB F - (A + B) PLUS AB
PLUS 1

1 0 1 1 F -AB F - AB MINUS 1 F - AB

I 1 00 F - I F - A PLUS A** F - A PLUS A PLUS I

1 1 0 1 F - A +B F - (A + B) PLUS A F - (A + B) PLUS A
PLUS I

I I 1 0 F - A + B F - (A +B) PLUS A F - (A +B) PLUS A
PLUS 1

1111 F - A F - A MINUS I F - A

• When this function is selected, cell condition A-B is true if ALU
inputs A and B are equal.

•* This function shifts each bit to the next more significant position.

C-12

C-3.0 THE RESPONSE NETWORK

The Response Network is hierarchically organized, using a few types of

logic modules. At the lowest level, each cell has an associated Rail

Module. The next level is comprised of Block Response Modules, and above

that, Bank Response Modules. In addition to providing an indication to

the controller, R, when any cell of the system is marked, the Response

Network also implements the rails used for cell-to-cell intercomunica-

tion. It is the topology of the Response Network that is responsible for

the organization of the Associative Processing Cells into blocks and

banks.

C-3.1 Block Response Modules

A Block Response Module serves a block of eight cells and contains eight

Rail Modules and one Response Collector Module with the interconnection

as shown in Figure C-3. The terminals at the top and bottom of the Block

Response Module are for continuation of the rails. The output BR (Block

Response), which is produced by the Response Collector Module (Figure

C-4), indicates whether any cell of the block is marked. The Response

Collector Module is also used to provide a high-speed route for the

propagate rail.

C-3.2 Rail Modules

The internal construction of a Rail Module is shown in Figure C-5. As in

the case of the block levels, the terminals on the top and bottom support

the intercomimunication rails. Each Rail Module has one input from the

cell, the contents of its Mark Register, M, and four outputs to its

associated cell. These outputs are the status conditions propagate P;

Above Marked, AM; Below Marked, BM; and First Marked, F.

C- 13

ImAIL TOSNMIS

Am Iam Pf

LRAIL MDOflZ

CELLS

UrESONsE) COLLECTOR

AIL ?URMI

Figure C-3. Block Response Module

C-i14

U,

P

RESPONSE A

Figure C-4 Response Collector Mo dule

P
- AM

CR F

(CELL RESPONSE) - - -

Figure C-5. Rail Module

C-15

C-3.3 Bank Response Modules

The Bank Response Module is merely the interconnection of the eight Block

Response Modules associated with the blocks of a bank of cells, together

with one Response Collector Module. The wiring of a Bank Response Module

is shown in Figure C-6.

C-3.4 Memory Response Module.

An Associative Unit contains one Memory Response Module consisting of

four Bank Response Modules and other circuitry as shown in Figure C-7.

Signal IP from the controller defines the initial condition of the

Propagate, P, and Above Marked, AM, Rails.

Cj1

AN MI IP

SLA)CK SICSS3Z

M=AC WuPONSS

SLOCK UISPSS

"Mu

SLA0CK WMiau

SLOKDUFUSS
m'aim

Figzre C-6. heak Ikponse lbdule

C-1 7

BANK RESPONSE

MODULE

K
BANK RESPONSE

IP MODULE

Rt BANK RESPONSE

MODULE

~BANK RESPONSE

i MODULE

Figure C-7. Memory Response Module

c-18

0 1 2 3WKu NLsFouSE

(4)

KMO RESPONSE

(32)

RAIL NDUIS

ALI Ca"

Figure C-8. Response *twork Hierarchy

c- 19

C-4.0 CONTROLLER

The Associative Processing Cells are controlled by a microprogrammed

controller. The controller is connected to the AFP either directly

to the XMAU or indirectly though the SAC. By initiating

a read or write to the Associative Unit the AFP can load or read back the

AU microprogram memory, examine AU registers, select the AU operating

mode, start a micro-program; or transfer data to and from the AU.

The controller consists of a 256-word by 48-bit microprogram memory,

several registers, and associated interface and control logic. A block

diagram showing the functional organization of the controller appears as

Figure C-9. Table C-7 shows the controller registers and their functions.

C-4.1 Interface Connections

The AFP initiates all communications with the AU with either a write or a

read request on the HPR port. The action and response by the AU is

determined by the address and/or data associated with the request. Only

the three least significant bits of the address are decoded by the AU.

Up to 64 bits of information may be transmitted to the AU on a write

operation. The 4-bit contents of the AU control/status register (CTL)

and up to 16 bits of data are returned to the AFP on a read operation.

Each request by the AFP to the AU must be acknowledged by the AU before

another request is made. Violations of this sequence may cause improper

operation. The AU will not acknowledge any request until the requested

operation is performed. Acknowledges will be issued by the AU as

described in Table C-8. The acknowledge consists of a sequence of

signals to the AFP as defined in Section C-5.

C-20

IL" _ _ _II

DATA & OPTSL MINI DTA STAlIN ACIMUsmG

1CU.L W03 O A 10* -F to1 ArpP

TIMING

LOGIC
7

~4T

2 3

"mn CS.L DAmw FM A"P 7M A"? 6

FUN A"P

Figure C-9. AU Controller Block DMagras

C- 21

TABLE C-7. CONTROLLER REGISTERS

NAME LENGTH USE

IBUF 64 INPUT BUFFER REGISTER

OBUF 16 OUTPUT BUFFER REGISTER

PAD 8 MICROPROGRAM ADDRESS REGISTER

CTA 8 COUNTER A, USED BY PROGRAMS

CTA 8 COUNTER B, USED BY PROGRAMSI CAR 8 CELL ADDRESS REGISTER, BROADCAST TO ALL CELLS

CDR 4 CELL DATA REGISTER, BROADCAST TO ALL CELLS

CCR 20 CELL CONTROL REGISTER, BROADCAST TO ALL CELLS

CTL 4 CONTROL INPUT FROM AFP &AU STATUS TO AFP

C-22

&!

TABLE C-8. AU/AFP INTERFACE OPERATIONS

ADDRESS REQUEST AU STATUS ACTION BY AU

0 READ RUN, OUTPUT RDY AFP Read Data(44..47) <-- CTL(3..O);
ACKNOWLEDGE

0 READ RUN, OUTPUT RDY AFP Read IDta(4 4 .. 4 7) <-- CTL(3..O);
AFP Read Data(48..63) <-- OBUF(15..O);
Clear OUTPUT RDY; ACKNOWLEDGE

0 READ IRUN, OUTPUT RDY Wait for OUTPUT RDY or RUN, then:
AFP Read Data(4 4 .. 4 7) <-- CTL(3..O);
AFP Read Data(48..63) <-- OBUF(15..0);
Clear OUTPUT RDY; ACKNOWLEDGE

0 READ RUN, OUTPUT RDY AFP Read Data(44..47) <-- CTL(3..O);
AFP Read Data(48..63) <-- OBUF(15..0);
Clear OUTPUT RDY; ACKNOWLEDGE

0 WRITE IRUN IBUF(63..O) <-- AFP Write Data(O..63);
Clear INPUT READY; ACKNOWLEDGE

0 WRITE RUN, INPUT RDY ACKNOWLEDGE

0 WRITE RUN, INPUT RDY IBUF(63..O) <-- Write Data(O..63);
Clear INPUT READY: Wait for INPUT RDY
or RUN, then ACKNOWLEDGE

READ RUN AFP Read Data(44..47) <-- CTL(3. .0);

AFP Read Data(48..55) <-- PAD(7..O);
AFP Read Data(60..63) <-- CTL(3..O);
ACKNOWLEDGE

1 READ IRUN AFP Read Data(4 4 .. 4 7) <-- CTL(3..0);
ACKNOWLEDGE

1 WRITE RMN PAD(7..0) <-- AFP Write Data(48..55);
CTL(1..0) <--AFP Write Data(62..63);

jUACKNOWLEDGE

I WRITE RUN CTL(I..O) <-- AFP Write Data(62..63);
ACKNOWLEDGE

C-23

TABLE C-8. AU/AFP INTERFACE OPERATIONS (Cont'd)

ADDRESS REQUEST AU STATUS ACTION BY AU

2 READ RUN AFP Read Data(44..47) <-- CTL(3,.0);
AFP Read Data(48..55) <-- CTB(7..O);
AFP Read Data(56..63) <-- CTA(7..O);
ACKNOWLEDGE

2 READ RUN AFP Read Data(4 4 .. 4 7) <-- CTL(3..0);
ACKNOWLEDGE

2 WRITE - ACKNOWLEDGE

3 READ ' AFP Read Data(44..47) <-- CTL(3..O);
AFP Read Data(50..63) <-- CAR(7..O);
ACKNOWLEDGE

3 READ RUN AFP Read Data(44..47) <-- CTL(3..O);
ACKNOWLEDGE

3 WRITE - ACKNOWLEDGE

ADDRESS REQUEST AU STATUS ACTION BY AU

4 READ RUN AFP Read Data (44..47)<-- XrL (3. .0);
AFP Read Data (48..63)<-- PGQ (PAD)*;

4 READ RUN ACKNOWLEDGE

4 WRITE RUN PGI (PAD)**<-- AFP WRITE Data (48..63);
ACKNOWLEDGE

4 WRITE RUN ACKNOWLEDGE

* See Table C-9

** See Table C-10

C-24

.4 '

All data transferred from the AFP to the AU are loaded into the

controller's 64 bit Input Buffer (IBUF). This buffer may be right

shifted and loaded into the cell data register four bits (one nibble) per

cycle by the AU microprogram. THe AU microprogram may cause Counter A,

Counter B or the Cell Address Register to be loaded from the least

significant bits of IBUF, but IBUF should not be shifted before these

operations. THE PAD register, the CTL register, and the Program Memory

may be forceloaded from the least significant bits of IBUF by the AFP.

All data transferred from the AU to the AFP are loaded into the 16-bit

Output Buffer (OBUF) for transmission. This buffer may be left shifted

and loaded four bits (one nibble) per cycle by the AU microprogram. The

contents of various controller registers or of locations in the Program

Memory may be loaded into OBUF under AFP control.

The contents of the controller four-bit Control/Status register (CTL) are

transmitted to the AFP along with the contents of OBUF on each Read

operation. The CTL register bits are defined in Figure C-1.

Allowable interface operations are defined in Table C-10. Section C-5

contains details on the interface signals.

C-4.2 Functional Modes

The controller has two functional modes: Wait and Run. Selection of

either one of these modes is determined by the state of bit zero of the

control register (CTL).

In the Wait Mode the AU is in a halt state. The AU will output the

contents of the CAR, CTA, CTB, PAD, or CTL registers on request by the

AFP. The program memory can be loaded or read by the AFP in the wait

C-25

TABLE C-9. REPROGRAM SEQUJENCE

Initial Contents of PAD - P

CYCLE_ OPERATION

0 PQ4(P;47..32)*<-- APP Write Data(56..63)

I PGK(P;31..16) <-- AFP Write Data(56..63)

2 PG3I(P; 15..0) <-- AFP Write Data(56..631

3 P~t4(P+1;47..32) <-- AFP Write Data(56..63)

4 PGK(P+1;31..16) <-- APP Write Data(56..63)

etc.

TABLE C- 10. INTERROGATE SEQUENCE

Initial Contents of PAD - P

~CYCLE ~ OPERATION

0 AFP Read Data(56- 63) <-- PGM(P;47. .32)*

1 APP Read IDta(5 6 ..*63) <-- PQI(P;31..*161

2 AFP Read Data(5 6 .. 63) <-- PGM(P;15..0)

3 APP Read Data(56. .63) <-- PcG(P;47. .32)

4 APP Read Data(56- 63) <-- PGM(P;31. .16)

* etc.

*NOTE: Pad suist be loaded to reset segment counter to zero.

C- 26

3 2 1

CTL IR OR R M*

__C i,0 = WAIT

CELL I = RUN

RESPONSE

OUTPUT READY

DATA IN OBUF READY FOR AFP

INPUT READY

INPUT BUFFER READY TO ACCEPT DATA

WRITABLE BY AFP

Figure C-10. AU Control/Status Register

C-27

= ° I I.................. ...

mode. Table C-8 defines the allowed operations on the APP/AU interface.

Tables C-9 and C-10 define the sequence of loading and reading the AU

Program Memory by the AFP.

In Run Mode the AU is under control of a program in the Program Memory.

Execution of the program begins with the instruction located at the

address contained in the PAD register when Operate Mode is selected. The

AU will remain in Operate Mode until the contents of CTL are changed by

the AFP or the Wait Mode is entered by program command. Table C-8

defines the allowed operations on the AFP/AU interface.

C-4.3 Controller Microinstructions

In the Run Mode the AU is under the control of a microprogram residing in

the Program Memory (PGM). The instruction fields of the 48-bit control

words are shown in Table C-1i. The various operations that can be

executed from one instruction word are listed in Table C-12 along with

their codes.

All commands to the controller are executed at the end of the 120 nsec.

AU cycle during which the commands were read from PGM. All commands to

the Associative Processing Cells (microinstruction bits 28-47) are

executed the following cycle. Testing of the Response Network or loading

of data from the Cell Response Bus by the controller must not be done

until the second cycle following the instruction execution by the

controller.

C- 28

TABLE C-l1. AU MICROINSTRUCTION FIELDS

BIT FUNCTION

7 - 0 BRANCH ADDRESS/IMMEDIATE DATA

11 - 8 BRANCH CONDITION

12 PROGRAM ADDRESS CONTROL

13 RUN CONTROL

15 - 14 OUTPUT BUFFER CONTROL

17 - 16 COUNTER A CONTROL

19 - 18 COUNTER B CONTROL

21 - 20 INPUT BUFFER CONTROL

23 - 22 CELL DATA CONTROL

26 - 24 CELL ADDRESS CONTROL

27 INITIAL PROPAGATE VALUE

47 - 28 CELL CONTROL WORD

C-29

TABLE C-12. AU MICROINSTRUCTION CODES

BRANCH CONDITIONS - BITS 8 - 11

10 9 8

0 0 0 LOGIC I

0 0 1 CELL RESPONSE

0 1 0 INPUT READY (INPUT BUFFER EMPTY)

0 1 1 OUTPUT READY (OUTPUT BUFFER FULL)

1 0 0 COUNTER A-0

1 0 1 COUNTER B-0

1 1 0 COUNTER A-COUNTER B

1 1 1 CAR = 0

11

0 USE TRUE VALUE OF SELECTED BRANCH CONDITION
1 USE FALSE VALUE OF SELECTED BRANCH CONDITION

PROGRAM ADDRESS CONTROL - BIT 12

12

0 IF BRANCH CONDITION TRUE EXECUTE NEXT
INSTRUCTION, ELSE REPEAT CURKL.T INSTRUCTION

1 IF BRANCH CONDITION TRUE JUMP TO ADDRESS
CONTAINED IN BITS 0-7, ELSE EXECUTE NEXT
INSTRUCTION

C-30

TABLE C-12. AU MICROINSTRUCTION CODES (Cont'd)

RUN CONTROL - BIT 13

13

0 NO OPERATION

I SET WAIT MODE

OUTPUT BUFFER CONTROL - BITS 14-15

14

0 NO OPERATION

1 SHIFT LEFT 4 BITS AND LOAD LOWER 4 BITS FROM
CELL READ BUS (CRB)

15
0 NO OPERATION

I SET OUTPUT READY

COUNTER A CONTROL - BITS 16-17

17 16

0 0 NO OPERATION

0 1 LOAD FROM BITS 0-7 OF PROGRAM MEM vi FIELD

1 0 LOAD FROM BITS 0-7 OF INPUT BUFFER*

I I DECREMENT

* Input Buffer mst not be shifted between loading IBUF and executing
this instruction.

C-31

TABLE C-12. AU MICROINSTRUCTION CODES (Cont'd)

COUNTER B CONTROL - BITS 18-19

19 18

0 0 NO OPERATION

0 1 LOAD FROM BITS 0-7 OF PROGRAM HEM u FIELD

1 0 LOAD FROM BITS 0-7 OF INPUT BUFFER*

I I DECREMENT

21

0 NO OPERATION

I SET INPUT BUFFER READY (EMPTY) F-F

20

0 NO OPERATION

I RIGHT SHIFT ONE NIBBLE (4 BITA)

CELL DATA BUS CONTROL - BITS 22-23

23 22

0 0 NO OPERATION

0 1 LOAD FROM BITS 0-3 OF INPUT BUFFER

1 0 LOAD FROM CELL RESPONSE BUS CRE

I I LOAD FROM u FIELD
CAN GET CLEAR FROM THE ALU F-0

* Input Buffer aust not be shifted between loading IBUF and executing
this instruction.

C-32

TABLE C-12. AU MICROINSTRUCTION CODES (Cont'd)

CELL ADDRESS CONTROL - BITS 24-26

26 25 24

000 NO OPERATION

001 LOAD FROM BITS 0-7 OF INPUT BUFFER*

010 LOAD FROM COUNTER A

011 CLEAR

100 INCREMENT

101 DECREMENT

110 NO OPERATION

III NO OPERATION

INITIAL PROPAGATE VALUE - BIT 27

The value of this bit is placed on the initial propagate

input of the response network.

CELL CONTROL WORD 0-19 - BITS 28-47

See Table C-5

*input Buffer mst not be shifted between loading IBUF and executing
this instruction.

C-3 3

C-5.0 INTERFACE SIGNALS

The Associative Unit is connected to the AFP through the High Performance

RAMl (HPR) interface. Connection to this interf ace can be either at the

SAC unit or the X14AU unit of the AFP (see Figure C-I). All interface

signals are single-ended ECL unidirectional. All interface connections

are made with 75-ohm coaxial cable. The interface signals are described

be low.

Signals from AFP to AU

Memory Request (1)
A logical one indicates a request for an Associative Unit cycle
(read or write). The signal is a pulse with a duration of one AP
clock period.

* Write (1)
Logical one indicates that the current request is for an AU write
operation. Zero indicates a read. The signal is valid during the

time the Memory Request signal is a one.

Address (2)
These lines specify the address for the requested AU operation.
The lines are valid during the Memory Request signal.

Write Data (64)
Sixty-four bits of data to be written at the location specified by
the address lines. The data lines become valid one clock period
after the request signal, and remain valid until the next AU cycle.

Clock (1)
One line carrying the system master clock signal. This is a
free-running square wave, with a period equal to the system clock
period (20 neec.) and with equal one and zero times.

C-r34

Signals f rom AU to AF?

Data Ready (1)
A logical one on this line signifies the presence of valid data on
the Read Data lines. The signal is a pulse with a duration of one
clock period.

Read Data (20)
Twenty lines which transmit data from the AU to the receiving
device on memory read operations. They are valid during the data
ready pulse.

Request Acknowledge (2)
A clock period pulse which is transmitted when the AU has
processed a current operation to the point at which it is ready to
receive another request. This signal is sent one clock period
before the Data Ready signal. The signal is returned on both read
and write operations. Two lines are provided with this signal.

C-3 5

APPENDIX D

SYSTEM SOFTWARE DESCRIPTION

TABLE OF CONTENTS

SECTION TITLE PAGE

D- 1.0 SCOPE D-1

D-2.0 APPLICABLE DOCUMENTS D-I

D-3.0 CONFIGURATION D-2

D-4.0 FACILITIES D-5

D-4.1 ADDRESSING LCM D-5

D-4.2 ASSEMBLY/DISASSEMBLY. -5

D-4.3 STATUS WORDS D-5

D-4.3.1 DRIVE BUSY D-8

D-4.3.2 DRIVE ON CYLINDER D-8

D-4.3.3 PACK UNSAFE OR NOT READY. D-8

D-4.3.4 CHECKSUM ERROR ENCOUNTERED D-8

D-4.3.5 DESIRED SECTOR COULD NOT BE FOUND- 8

D-5.0 COMMANDS. D-1O

D-5.1 SET POINTER D-10

D-5.2 WRITE LCM WITH POINTER SPECIFIED D-11

D-5.3 WRITE LCM WITHOUT POINTER SPECIFIED -12

D-5.4 READ LC(WITH POINTER SPECIFIED D-12

D-5.5 READ LCM WITHOUT POINTER SPECIFIED D-13

D-5.6 WRITE DISK TRACK D-13

D-5.7 READ DISK TRACK D-14

D-5.8 READ STATUS WORD. D-14

D-5.9 CLEAR STATUS BITS D-15

d-i

LIST OF FIGURES

Figure Title Pag

D-3-1 Interface Ring Configuration D-4

D-4-1 The Disassembly of IAFP or PDP Words D-6

D-4-2 The Assembly of LCM Words D-6

D-4-3 Status Words to Ring Format D-7

D-4-4 DSS Status Word)-9

D-5-1 Set Pointer Command Format D-10

D-5-2 Write LCM with Pointer Specified

Command Format D-11

D-5-3 Write LCM without Pointer Specified

Command Format D-12

D-5-4 Read LCM with Pointer Specified

Command Format. D-12

D-5-5 Read LCM without Pointer Specified

Command Format....... D-13

D-5-6 Write Disk Track Command Format D-14

D-5-7 Read Disk Track Command Format. D-14

D-5-8 Read Status Word Command Format D-15

D>-5-9 Set and Clear Status Bits Command

Format. D-15

LIST OF TABLES

Table Title Page

D-5-1 Command Field Designators D-11

d-ii

D-1.O SCOPE

This specification defines the operation of the controlware in the "Disk

Storage Subsystem" for the Retriever Project demonstration.

D-2.0 APPLICABLE DOCUMENTS

Control Data Spec 64065800 Control Data 854.

Disk Storage Drive Product Specification

Control Data 84000003B Compass 3 Reference Manual

Control Data Spec 77978008A 7000 Channel

Ring Port Engineering Specification

Demonstration Document Retriever System

System Software Description

Control Data Spec xxxxxxxx Advance Flexible Processor

Control Data Spec 77900504 Advance Flexible Processor

System Software Description

Control Data Spec 77900507 Advance Flexible Processor

Application Programmer Reference Manual

D-1

D-3.0 CONFIGURATION

The Disk Storage Subsystem (DSS) is connected to the interface ring on

the AFP Array Configuration System. In addition to the DSS, the

interface ring also has the Interface Advance Flexible Processor (IAFP)

and the PDP-11/70 host processor connected to it.

The DSS has a 7000 channel Ring Port which is connected to the interface

ring. The 7000 Channel King Port is also connected to one of the

peripheral processor units (PPU's). It receives control commands and

data from sources connected to the interface ring and disassembles and

passes the commands and data to the PPU. It also assembles data received

from the PPU and transmits this data over the interface ring.

The DSS controlware is executed by 3 PPU's and is stored in their

internal memories.

The PPU connected to the 7000 Channel Ring Port is the controlling PPU.

It interprets the control commands from the interface ring, writes data

from the interface ring into LCM, reads LCM data, transmits data and

status information to the interface ring, and directs disk 1/O activities.

There are two other PPU's that are utilized in the DSS. Each is

connected to an 857 disk drive and controls the disk. At the direction of

the controlling PPU, they read or write disks at specified track

positions and they obtain status information on the disks. The following

summarize the characteristics of the 857 disks:

- 8 bits per byte

- 192 bytes per sector

- 16 sectors per track

- 10 tracks per cylinder

- 200 cylinders per disk

D-2

LCM provides for 480K bytes* of storage that is used for

intercommunications between the PPU's and to buffer data for disk 1/0

activity and as storage for the application. Figure D-3.1 shows the

interface ring configuration along with the disk storage subsystem.

* LCM word sizes are actually 12 bits per word and LCM has 320K words.

This means that the LCM address space is 320K addresses.

D-3

FROM TO
OTHER RING OTHER
AFP'S PORT AFP'S

IAP

LRING

I RING OPERATOR

POR CARSOL

I PPU MCU IPPUI
I FF1 LARGE P PDP 11/70

PPU ~CORE U

PP MEOY PPUJ

I 857857

DISKDISK DISK
DRIVEDRIVE h-STORAGE

SUBSYSM

Figure D-3-1. Interface Ring Configuration

D- 4

D-4.0 FACILITIES

To support the IAFP's and PDP's ability to read and write LCM and to

drive the disks in an efficient manner, 3 facilities are required. They

are a means of addressing LCM, of assembling and disassembling words for

LCM and of statusing the operation of the disks.

D-4.1 ADDRESSING LCM

The mode of addressing LCH is indirect. A group of 40 pointers is

provided for the indirect addressing of LCM. These pointers can be set

by the IAFP and PDP and will automatically be incremented after the

location which they are pointing to has been referenced.

D-4.2 ASSEMBLY/DISASSEMBLY

Since the IAFP and the PDP accepts and transmits lb-bit data words to the

DSS while LCM accepts and transmits 12-bit data words, some means of

assembly and disassembly is required. The 7000 channel ring port does

provide 4 modes of assembly and disassembly and in terms of disk storage

utilization the most efficient of these modes is to have 3 16-bit data

words from the IAFP or the PDP disassembled into 4 12-bit data words for

LCM and 4 12-bit data words from LCK assembled into 3 16-bit data words

for transmission over the interface ring. Figure 0-4-1 shows how 3

1b-bit words from the IAFP or PDP would be disassembled into 4 12-bit

words. Figure D-4-2 shows how 4 12-bit words from LL7 would be assembled

into 3 16-bit words.

D-4.3 STATUS WORDS

A 16-bit status word is available to IAFP and the PDP for monitoring disk

drive activity. It is transmitted along with the two disk track code

words to the interface ring. Figure D-4-3 shows the format of the 3

lb-bit status words transmitted to the interface ring.

D-5

IAFP

AAAAAAAAAAAAAAAA BBBBBBBBBBBBBBBB CCCCCCCCCCCCCUCC or

PUP

AAAAAAAAAAAA AAAABBBBBBBB BBBBBBBBCCCC CCCCCCCCCCCC LCM

Figure D-4-1. The Disassembly of IAFP or PDP words

AAAAAAAAAAAA. BBBBBBBBBBBB CCCCCCCCCCCC DDDDDDDDDDDD LCM

IAFP

AAAAAAAAAAAABBB BBBBB1BBCCC(CCCC CCCC)DDDiJDIJIJ1))LD or

PDP

Figure D-4-2. The Assembly of LC2K Words

D-6

STATUS STATUS ERROR

DISKI DISKO CODE

XXXX CODE WORD DISKI

XXXX CODE WORD DISKO1

Figure D-4-3. Status Words to Ring Format

D--7

The status word indicates whether or not the drives are busy, found the

selected cylinder and encountered problems during data transfer

operations. The code words identify the last disk track processed. In

addition to being able to examine the status words, the IAFP and PDP can

clear or set selected bits. Figure D-4-4 shows the organization of the

status word.

D-4.3.1 DRIVE BUSY

When this bit is set to 1, it indicates that the disk drive is busy

either reading the disk or writing on the disk.

D-4.3.2 SEEK ERROR ENCOUNTERED

When this bit is set to 1, it indicates that there was a seek error

encountered in the process of seeking a cylinder.

D-4.3.3 PACK UNSAFE OR NOT READY

When this bit is set to 1, it indicates that the selected disk drive has

one or more fault conditions and/or an unavailable condition has occured.

D-4.3.4 CHECKSUM ERROR ENCOUNTERED

When this bit is set to 1, it indicates that during a disk read operation

5 attempts were made to read a sector and to match the computed checksum,

value to the recorded checksum value and each time the match did not

occur.

D -4.3.5 HEADER ERROR ENCOUNTERED

When this bit is set to 1, it indicates that during a read or write

operation the desired header did not match.

D-8

- x x xx xx xxx -

DISK DRIVE 1:

Drive Busy
Seek Error
Pack Unsafe or Drive Not Ready

Checksum Error Encountered
Header Error Encountered

DISK DRIVE 2:
Drive Busy
Seek Error
Pack Unsafe or Drive Not Ready

,_ _ Checksum Error Encountered

Header Error Encountered

Figure D-4-4. DSS Status Word

D-9

D-5.0 COMMANDS

There are 9 commands available to the IAFP and the PDP to transmit to the

DSS. They are transmitted in groups of either 3 or 33 16-bit words where

the 4 most significant bits of the first word identifies the command. If

these bits do not contain a recognizable command, the 3 word grouping is

ignored. If the command is recognizable, it is not acted upon until the

entire command word grouping is received. For certain commands either 30

16-bit data words or 3 16-bit status words will be transmitted to the

interface ring. Table D-5.1 lists the field designators used in

describing the formats of the command words.

D-5.1 SET POINTER

This command is a 3 word command. It causes the setting of pointer i to

a 19 bit address value. The first word of the 3 command words gives the

command and specifies the pointer while the other 2 command words specify

* the address. If either the value in the pointer field exceeds 39 or the

value in the address field exceeds 320K-I, then the 3 word command

grouping is ignored. Figure D-5.1 gives the format of the 3 word command.

100 a 15 most significant bits of address

4 least a XXXXXXXXXXXX

significant bits of address

Figure D-5-1. Set Pointer Command Format

D-10

TABLE D-5-1. COMMAND FIELD DESIGNATORS

Designator Number of Bits Use

a 19 An LCM Address
d 480 40 L(24 data words
h 4 A disk drive head
i 6 An index register

pointer

A disk drive id:
0 for disk drive 1
I for disk drive 2

m 5A status word mask
for one of the disk
drives

t 8 A cylinder id
X 8 A word fill position

CW 12 A track id code word

EM 4 A mask to clear the

error code status

D-5.2 WRITE LCM WITH POINTER SPECIFIED

This command is a 33 word command. It causes the writing of 40 words into

LCM at the locations referenced by pointer i and to increment the pointer's

value by 40. The first command word of the 33 words gives the command and

specifies the pointer while the 30 last words provide the data which will

be written into LCM. If the value in the pointer field exceeds 39 or if

the pointer's value exceeds 320K-41, then the 33 word command grouping is

ignored. Figure D-5-2 give the first 4 words of the 33 word command

grouping. The remaining 29 words are the rest of the 480 bit data word.

0010 X i XXXXX

XXXXXXYYYXYYY

d

Figure D-5-2. Write LCM with Pointer Specified Command Formant

D-11

D-5.3 WRITE LCM WITHOUT POINTER SPECIFIED

This command is a 33 word command. It causes the writing of 40 words into

LCM at the locations referenced by the pointer that was last specified

and to increment the pointer's value by 40. The first of the 33 command

words gives the command while the 30 last words provide the data which

will be written into LCM. If a pointer has not previously been specified

or if the pointer's value exceeds 320K-41, then the 33 word command

grouping is ignored. Figure D-5-3 gives the first 4 of the 33 command

grouping. The remaining 29 words are the rest of the 480 bit data word.

0011 XXXXXXXXXX~XXXXXXXXXXXXXXXX

XXX)XX XXXX XXXXXXd

Figure D-5-3. Write LCM without Pointer Specified

D-5.4 READ LCM WITH POINTER SPECIFIED

This command is a 3 word command. It causes the reading of 40 LCM words

at the locations referenced by pointer i and to increment the pointer's

value by 40. The first of the 3 command words gives the command and

specifies the pointer. In response to this command, the DSS will transmit

to the interface ring 30-16 bit data words which have the 40 LCM words

packed into them. If the value in the pointer field exceeds 39 or if the

pointer's value exceeds 320K-41, then the 3 word command grouping is

ignored. Figure D-5-4 gives the 3 word command grouping.

I 0100 x i xxxxx

XXXXXXX XX I

Figure D-5-4. Read LCM with Pointer Specified Command Format

D-12

.. ... -- ' " i:-womb -

D-5.5 READ LCM WITHOUT POINTER SPECIFIED

This command is a 3 word command. It causes the reading of 40 LCM words

at the locations referenced by the pointer that was last specified and to

increment the pointer's value by 40. The first of the 3 command words

gives the command. In response to this command, the USS will transmit to

the interface ring 30 data words which have the 40 LCM words packed into

them. If a pointer has not previously been specified or if the pointer's

value exceeds 320K-41, then the 3 word command grouping is ignored.

Figure D-5-5 gives the 3 word command grouping.

0101 XXXXXXXXXY
XXXXXXXXXXXXY)

XXXXXXXXXXXXxxXX

Figure D-5-5. Read LCM without Pointer Specified Command Format

D-5.b WRITE DISK TRACK

This is a 3 word command. It causes the controlware to write a track of

data (3060 bytes or 2040 12-bit LCM words) onto disk j with head t

starting at the location referenced by pointer i at cylinder position t

and to increment the pointer's value by 2040. The first of the 3 command

words gives the command and specifies the pointer, disk drive and head

while the second word specifies the cylinder. The third word is a code

word which identifies this specific disk track. If either the value in

the pointer field exceeds 39, the value in the cylinder field exceeds

199, the value in the head field exceeds 9 or the pointer's value exceeds

320K-2041, then the 3 word command grouping is ignored. Figure D-5-6

give the format of the 3 word command.

D-13

0110hXSt XXXXX
I cw i

Figure D-5-6. Write Disk Track Command Format

D-5.7 READ DISK TRACK

This is a 3 word command. It causes the controlware to read a track of

data (3060 bytes or 2040 12-bit LCM words) of disk j with head t starting

at the location referenced by point i at cylinder position t and to

increment the pointer's value by 2040. The first of the 3 command words

gives the command and specifies the pointer, disk drive and head while

the second specifies the cylinder. If either the value in the pointer

field exceeds 39, the value in the cylinder field exceeds 199, the value

in the head field exceeds 9 or the pointer's value exceeds 320K-2041,

then the 3 word command grouping is ignored. Figure D-5-7 gives the

format of the 3 word command.

0111 X i j h

I t xxxxxxxx
I xm c-w

Figure D-5-7. Read Disk Track Command Format

D-5.8 READ STATUS WORD

This is a 3 word command. It causes the current status word to be

transmitted to the interface ring. The first of the 3 command words

gives the command. Figure D-5-8 gives the format of the 3 word command.

D1

D- 14

, - 1 :m - -4...

1000 XXXXXXXXXXX
XXXXXXXXXXXXXXXXXX

XXX

Figure D-5-8. Read Status Word Command Format

D-5.9 SET AND CLEAR STATUS BITS

This is a I word command. It causes an exclusive OR operation to occur

between the status word bits associated with drive j and the bits in mask

m. It also causes an exclusive OR operation to occur between the error

code status word and the bits in mask EM. The result of this operation

will replace the status word portion associated with drive J.

Figure D-5.9 gives the format of the 3 word command.

1001 XX m j EM

XXXXXXXXXXXXXXXXXX

Figure D-5-9. Set and Clear Status Bits Command Format

D-15

APPENDIX E

ASSOCIATIVE UNIT MICROCODE

FOR

DEMONSTRATION

This appendix consists of an annotated listing of the

Associative Unit microcode which was used in the

Advanced Document Retrieval System demonstration.

E-

RETRIEVER ASSOCIATIVE UNIT MICROCODE SUMMARY

ROUTINE FUNCTION AU STARTING ADRS # INSTRUCTIONS

LOAD Load data OOH 9

SDIR Segment directory search 10 12

COMP Compression lookup 20H 17

SWRD Stopword search 40H 7

DUMP Dump 50H 14

59 total

Unused memory was left between routines for potential changes.

The data formats for the demonstration are given in figure E-1.

E-2

O

-4 04

A - A-

SI

0 w .3

Figure E-1. Retriever AU Data Formats

a E-3

M ... - .4

LOADING A PROGRAM INTO THE AU

The AU microprograms consist of 48 bit words. They are loaded 16 bits at

a time as described below.

PROTOCOL

XMAU OP'N XMAU ADRS XMAU DATA

W 0001 0000,0000,0000,0000* STOP AU (if necessary)

W 0001 UOOO,O000,0000,PPUO SEND STARTINU ADRS PP

W 0004 0000,0000,0000,III FIRST INST, L

W 0004 0000,O000,OOU0,IIli FIRST INST, C

W 0004 0000,0000,0000,IIII FIRST INST, R

W 0004 0000,O000,0000,1111 SECOND INST, L

W 0004 0000,0000,0000,lll SECOND INST, C

W 0004 0000,0000,0000,111 SECOND INST, R

etc.

*only underlined data significant.

INSTR. 0
47 32 31 16 150

FIRST WORD SECOND 3rd <---Adrs of
beginning of

4th 5th 6th load

7th 8th 9th

etc.
INSTR. 2551

Figure E-2. AU Program Memory Map

E-4

LOAD

This routine transfers 256-64 bit data words from AFP to ALE memories.

The first data word sent is stored in cell 0 and succeeding words are

stored in consecutively higher numbered cells. Exactly 256 data words

must be sent. The input data words occupy 16-4 bit columns in ALE

memory. The address of the highest column to be occupied must be

specified before the transfer.

PROTOCOL

X AU OP'N*)KAU ADRS X4AU DATA

(W 0001 0000,0000,0000,00*** STOP AU)**

W 0001 0000,0000,OO0O,PPOI*** START AU PROGRAM @ ADRS PP

W 0000 0000,0000,0000,OOHH*** COLUMN ADRS HR

W 0000 IIII,IIIl,IIII,IIII INPUT WORD 1

W 0000 IIII,IIIII,III INPUT WORD 256

4-bit
COLUMN COL COL COL.

0 HH-15 HH 255
Cell 0 INP WD I

INP WD N

Cell 255 INP UD 256

Figure E-3. ALE Memory Map

After each XMAU write, acknowledge will be delayed until AU is ready

for next data word or is done with last word.
** Stop AU function needed if AU state (run/wait) is unknown

Only underlined data is significant. Other bits are don't care fields.

E-5

LOAD Algorithm Outline

Addr

0 LOAD: IF (INPUT RDY) GO TO LOAD.

I IBUF -> CAR, IBUF -> CTA, 15 -> CTB, SET MARK, SET INPUT

RDY.

2 LA- IF (INPUT RDY) GO TO LA.

3 IBUF -> CUB, WR (F), CTB - I -> CTB, RSHIFT IBUF.

4 LB: RSHIFT IBUF, IBUF -> CDB, CAR - I -> CAR, CTB - 1 -> CTB,

WR (F), IF (CTB # 0) GO TO LB.

5 CLR MARK (F), CTA -> CAR, SET INPUT RDY.

6 15 -> CTB

7 IF (RESPONSE) GO TO LA.

8 SET WAIT MODE.

E-6

-- - . . i : I i

P. law d0't .~

so00 00

aa

SDIR Segment Directory Search

This routine compares one 48 bit input word with a 48 bit column of data

in the ALE memories. The data in the ALE's is stored in ascending

order. The AU returns 16 bits of data associated with the greatest

column entry that is less than or equal to the input word. The address

of the highest column to be searched must be specified. The data and

comparand must have the least significant digit rightmost.

PROTOCOL

24AU OP'N* XMAU ADRS XMAU DATA (R/W)

(W 0001 UO000,000,0000,0000*** STOP AU)**

W 0001 0000,0000,0000,PP01*** START AU PROGRAM @ ADRS PP

W 0000 0000,O000,0000,0RtiH*** COLUMN ADRS H

W 0000 0000,1111,111I,II*** INPUT WORD

R 0000 0000,0000,0000,JJJJ*** OUTPUT WORD

4-bit 4-bit
COLUMN COL COL COL COL.

0 HR-11 HH HH+4 255
Cell 0 f Emallest

<--most
least-->

significant

Cell 255 _ largest
()

48 bit words 16 bits

searched output data

Figure E-4. ALE Memory Map
* After each)MAU operation, acknowledge is delayed until the AU is

ready for the next R/W operation or is finished.
** Stop AU function is necessary if the state (Run/Wait) of AU is

unknown.

*** Only underlined data is significant.

E-8

mom-I

SDIR Algorithm Outline

Addr

10 SDIR: IF (INPUT RDY) GO TO SDIR.

11 IBUF -> CAR, IBUF -> CTA, 11 -> CTB, SET MARK, SET INPUT

RDY, SET CARRY.

12 SDA: IF (INPUT RDY) GO TO SDA.

13 IBUF -> CDB, ALU A - B, COUT -> CARRY, CTB- I -> CTB,

RSHIFT IBUF.

14 SDB: RSHIFT IBUF, IBUF -> CDB, ALU = A - B, COUT -> CARRY, CTB -

I -> CTB, CAR - I -> CAR, IF (CTB 0 0) GO TO SDB.

15 CLR MARK IF CARRY = 1, CTA -> CAR, CLR CARRY IF CARRY - 1.

16 SET MARK IF CELL BELOW MARKED, CAR + I -> CAR, ALU - BBUS,

BBUS - RAM, RBUS - ALU, LOAD RREG.

17 CAR + I -> CAR, ALU - BBUS, BBUS - RAM, RBUS - ALU, LOAD

RREG.

18 LOAD OUTPUT BUFFER, CAR + I -> CAR, ALU - BBUS, BBUS - RAM,

RBUS - ALU, LOAD RREG.

19 LOAD OUTPUT BUFFER, CAR + I -> CAR, ALU - BBUS, BBUS = RAM,

RBUS - ALU, LOAD RREG.

IA LOAD OUTPUT BUFFER, SET INPUT RDY.

1B LOAD OUTPUT BUFFER, SET OUTPUT RDY, SET WAIT MODE.

E-9

0 0 000 0 0

- -.- 00000000

000 OOM r,000000

0-1

4 4

0 -.o0 U"U010 000 000

ON U ' V ' 000000N0

.J 00O 0444000

4

0

2 0000 0 U00I0 u000

-
S000000000000

I- 000 00E .0 , 0 0O0

.- 10

COMP Compression Lookup

This routine performs a text compression table look-up algorithm using a

64 bit input word containing four characters. The data in the ALE's is

stored in ascending order with the most significant character on the

right. The input word must contain the most significant character on the

right. The AU returns a 16 bit result associated with the column entry

selected by the algorithm. The compression look-up algorithm is based on
a tech. memo by W. R. Cyre. The address of the highest column to be

searched must be specified.

INPUT WORD FORMAT: XXXX,XXXX,TTSS,RRQQ

QQ - first character (most significant)

RR - second character

SS - third character

TT - fourth character

PROTOCOL

D4AU OP'N*)(KAU ADRS XRAU DATA

(W 0001 0000,0000,0000,OO*** STOP AU)**

W 0001 0000,0000,000,PP01*** START AU PROGRAM @ ADRS PD

W 0000 O000,OOO0,OOOO,OOHH*** COLUMN AURS HII

W 0000 0000,O000,TTSS,RRQQ*** INPUT WORD

R 0000 0000,O000,OOO,JJJJ*** OUTPUT WORD

* After each XMAU operation, the acknowledge to the AFP is delayed

until the AU is ready for the next R/W operation or is finished.
** Stop AU function is required if the state (Run/Wait) of AU is

unknown.
*** Only underlined data is significant.

E-11

: ~ ~ ~ ~~~ ------ - I l

4-bit 4-bit
COL COL COL COL COL
0 HH-3 HH HH+2 255

CellO 11

<--most
least-->

significant

Cell 255 __ _ _ _ IL)
32 bits 16 bit

searched result
word

Figure E-5. COMP - ALE Memory Map

E-12

I:3 Ing I

A Ad

1. ft. IM aidt. .

~~4- 02:Si -

meS I I4

A S CA

aa'

04 ok

0.4S

C-4. .s iAA94 -

E- 13 a

. . -.

otn".0000e00 can 000000

g'd0 c 00000 4 0 0 00 00 0

g ~('0000000 000000 *Wh

0o" 00 00oo000"00 000

.4 000 U U 0 4 cpchv 0p o C.9 4 4 400
--- I

m o -- 000 LnwLn04 4 4 40
ad

0 CPI 0 10 c N4 a w 00 00 00 0

00

E- 14

SWRD Stopword Search

This routine compares one 32 bit input word for exact match with a 32 bit
column of data in ALE memories. Bit 17 of the output word is set if a
match is found, otherwise it is cleared. The address of the highest
column of the compare must be specified.

PROTOCOL

)KAU OP'N*)IAU ADRS XMAU DATA (R/W)

(W 0001 0000,0000,0000,0000*** STOP AU)**

W 0001 0000,0000,0000,PPOI*** START AU PROGRAM @ ADRS PP

W 0000 OUOO,0000,O000,OOHH*** COLUMN ADRS HH

W 000 0000,0000,IIII,IIII*** INPUT WORD

R 0000 0000,0000,OOCM,0000*** OUTPUT WORD

CH = no match

El = match

4-bit
COLUMN COL COL COL.
0 HH-7 RH 255

CellO

Cell 255 4,
256-32 bit words

compared with
input word

Figure E-6. SWRD - ALE Memory Map

* After each)[MAU write operation, acknowledge is delayed until the AU

is ready for the next R/W operation or is finished with its program.
** Stop AU function needed if AU state (Run/Wait) is unknown.

* Only underlined data is significant.

E-15

t-4-

03 0

~ 09

0 00 A

inn

0 40

rA w U

E- 16

O0' N0400

--

4 00 0400

E-1O7 000

8t

..... n -- I i I I | f u

DUMP

This routine transfers a 64 bit column of data from the ALE memories to

the AFP, 16 bits at a time. The AFP must send the lowest column address

to be transferred, then read 1024 - 16 bit quantities.

PROTOCOL

XHAU OP'N* XMAU ADRS XM4AU DATA

(W 0O0 OO0O,O000,OOOO,0000*** STOP AU)**

W 0001 0000,O000,O000,POI*** START AU PROGRAM @ ADRS PP

W 0000 OUO,0000,O000,OOHH*** COLUMN ADRS HR

R 0000 O000,O000,0000,JJJJ*** OUTPUT WORD I

R 0000 O000,0000,OOOU,JJJJ*** OUTPUT WORD 1024

4-bit
COLUMN COL COL COL.
0 HH output words HH+15 255

Cell 0 1 2 37-g- 4

Cell 255 10211 1022 10231 10241I

Figure E-7. DUMP ALE Memory Map

* After each XMAU operation, acknowledge is delayed until AU is ready

for next transfer or is done.
** Stop AU function required if AU status (Run/Wait) is unknown.

*** Only underlined data is significant. Other bits are don't care fields.

E-18

__ __ _ , __ __ __ .4,

DUMP Algorithm Outline

Addr

50 DUMP: IF (INPUT RDY) GO TO DUMP.

51 IBUF -> CAR, IBUF -> CTA, SET INPUT RDY, SET MAKK.

52 DA: 4 -> CTB.

53 DB: BBUS - RAM, ALU - B, RBUS - ALU, LOAD RREG.

54 BBUS - RAM, ALU - B, RBUS - ALU, LOAD RREG, CAR + I -> CAR.

55 BBUS - RAM, ALU - B, RBUS - ALU, LOAD RREG, LOAD OBUF,
CAR + I -> CAR.

56 BBUS - RAM, ALU - B, RBUS - ALU, LOAD RREG, LOAD OBUF,

CAR + 1 -> CAR.

57 LOAD OBUF, CAR + 1 -> CAR.

58 LOAD OBUF, SET OUTPUT RDY, CTB - I -> CTB.

59 DC: IF (OUTPUT RDY) go to DC.

5A IF (CTB 0 O) GO TO DB.

5B CLR MARK IF FIRST MARKED, CTA -> CAR.

5C NOP

5D IF (RESPONSE) GO TO DA.

5E SET WAIT MODE.

E-19

-- ~~ ~~ ~~ n,.I..l..u..........."

00- co 00O00 Olenco0 N

bd-

0"000000000000.0

0u-0000000U-0000

0N00000000000000

E-2

i4"]

E- 20

r(

MISSION
Of

Rom Air Development Center
RWV PUMR a#d exwcut U4eve~dt devetopment, te6. and&egcttd acqu2litlon p'wg'w6 in 4qppoJ~t oj CoWMsWn, Con.tkot
Coumaicu.tiQo,6 MWd JnteUg.te (C-71) activitieA. TWhniCa
arsd veufteLixg buPP~tt Wstkn akLea6 01 twdut~a competence4~ p'Wvidd to ESP ft"gcu Oj6id94 (P04 and otfe ESP
ettecnt- The pkjnC4pat tchA& teaL.i Me" ef4 4lt
coininguicat, tettomqanet& guAdanrze and deo&t', 4u.&-
"4Utjsce Of g0rwd vnd aeAoae Objeet, it etigenee datcBtCOft amd hast nJno~taon .ag&*em tedwnoogy,ioQ 4% P p~~n SOWd state uiew-eh, ickomave,

pOpa.4 and e Pe.wg lAetUbUtty, maxft&Lnbi~t4 and

QV

