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(’ Abstract
\

“We consider the use of fast direct methods as preconditioners for iterative methods for computing the

pumerical solution of non-self-adjoint elliptic boundary value problems. We derive bounds on
\ convergence rates that are independent of discretization mesh size. For two-dimensional problems on
rectangular domains, discretized on an nxn grid, these bounds lead to asymptotic operation counts of
\ ~ O(n?log o log ¢!) to achieve relative error € and O(n%(log n)éj to reach truncation error.
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1. Introduction

The numerical solution of elliptic boundary value problems by finite difference methods requires the
solution of systems of linear equations of the form
Au = {, (1)

where A is a large sparse matrix. Fast direct methods are efficient techniques for solving (1) when the
elliptic equation is posed on a rectangular domain and the diffcrential operator is separable. In this
paper, we show that nonseparable, non-self-adjoint elliptic problems can be solved efficiently using fast

direct methods as preconditioners for iterative methods for nonsymmetric linear systems.

As a prototype, consider the two-dimensional Dirichlet problem

Au=f, wue€, (2)

U=y, u € 9],

where {2 is a rectangular region in R?,
Au=-(au) - (buy)y +cu  +(cu) + duy + (du)y + eu, (3)

and a(x,y), bx,y), c(x,y), d(x,y), e(x,y), and fix,y) are smooth functions defined on {2, with a, b > 0,
e > 0. Discretizing (2) by finite difference techniques on an nxn grid leads to a sparse system of linear
equations of the form (1) where A is of order N = n®. If ¢ and d are zero, then A is self-adjoint;

otherwise, A is non-self-adjoint and, in general, A is nonsymmetric. If

a =2a(x), b = b(y), c = c(x), d = d(y), e = ¢,(x) + e,(y), (4)

then A is separable. In the sclf-adjoint separable case, (1) can be solved by a variety of fast direct
methods, such as the cyclic reduction and Fourier methods (surveyed in (7, 18]) and the generalized
marching algorithm (2, 3]. In the non-self-adjoint case, the cyclic reduction method can still be used [17].
All of these methods require O(n%log n) arithmetic operations (i.e. floating point multiplications and

divisions).!

If A is nonseparable, then fast direct methods can be used to solve (1) iteratively. For self-adjoint

problems, Widlund [23] proposed the stationary method 8
//\\
-1 :” \
u,, =y + Q(l-Ay), 5 N (5)
. E‘ :
Avallability C(;—d—e‘s
'In the self-adjoint case, this count can be reduced to O(n%log(log n)). See [18]. “Avail and/or |
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where Q is the discretization of a self-adjoint separable approximation of A. Concus and Golub [5] and
Bank [2] examined accelerating (5) by the Chebyshev and conjugate gradient methods respectively;
equivalently, Q is a preconditioning matrix for these iterative methods. Convergence of all these
methods is independent of the mesh size used in the discretization, so that a relative error of ¢ is
achieved in O(log €'!) iterations. Since the dominant expense of each iteration is a fast direct solve, the

asymptotic operation count is O(n?log n log ¢!).

Concus and Golub [4] and Widlund [22] extended this analysis to some particular non-self-adjoint
problems using the gencralized conjugate gradient method, which depends on the symmetric part of A as
a preconditioner. Let

My = - (au), - (!my)y + eu, (6)
Ru = cu_ + (cu), + du’ + (du)y,

so that A = M + R. The symmetric part of A corrcsponds to the discretization of M, the sum of the

"second and zero order terms of A. The convergence of the generalized conjugate gradient method

depends essentially on the spectral radius of the discrete analogue of the compact operator M IR, s0
that convergence is independent of mesh size. If M is separable, i.e. a, b, and e are as in (4), then fast
direct methods can be used for the preconditioning, so that the asymptotic operation count is again

O(n?log n log €'!).

In this paper we show that these asymptotic operation counts can be achieved even if the symmetric
part of A does not come from a separable operator. Other iterative methods for nonsymmetric linear
systems, such as the conjugate gradient method applied to the normal equations [13] and
Orthomin(k) [8, 9], allow more general choices than the symmetric part for preconditioning matrices.
Using an analysis of the finite difference discretization, we show that with symmetric positive-definite
preconditioning matrices derived from other scif-adjoint, scparable operators Q that approximate A, the
asymptotic convergence rates of these iterative methods is indcpendent of mesh size. Although this
analysis holds only for symmetric preconditioning operators, we provide numerical examples that suggest
that nonsymmetric preconditioners derived from non-self-adjoint separable approximations of A lead to
the same asymptotic convergence properties. In Scction 2 we review the basic properties and
convergence bounds of the conjugate gradient method applied to the normal equations and Orthomin(k).
In Section 3, we present the convergence analysis for general self-adjoint, scparable preconditioning

operators, and in Scction 4, we demonstrate the performance of these techniques with both self-adjoint
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and non-self-adjoint preconditioning operators.

2. Convergence Bounds for Iterative Methods

Given 3 nonsymmetric linear system of the form (1), let A = M + R, where M = (A+AT)/2 is the
symmetric part of A and R = (A-AT)/2 is the skew-symmetric part of A. In this section, we present
upper bounds on the convergence rates of iterative methods for nonsymmetric linear systems in terms of
eigenvalues of M and R. We consider two iterative methods: the conjugate gradient method applied to
the normal equations and, as representative of a recently developed collection of methods that avoid the

use of the normal equations, Orthomin(k).

We first establish some conventions of notation. For any square matrix B, let x(B) = ||B||2||B"||2
denote the condition number of B, let A . (B) and X__ (B) denote the eigenvalues of B with smallest and
largest modulus, respectively, and let p(B) denote the spectral radius |\ __ (B)|. For symmetric positive-
definite B, let ||v]|g denote the B-norm (v,Bv)'/ 2,

A classical method for solving nonsymmetric linear systems of the form (1) is to apply the conjugate

gradient method (CG) [13] to the normal equations
ATAu = ATY.

That is, the nonsymmetric system is embedded into a system with a symmetric positive-definite
coefficient matrix, to which the conjugate gradient method is applicable. We denote this method by
CGN.2 The convergence properties of CGN, derived from the standard error analysis of CG (6], are well
understood. We summarize the results we necd as follows. Let {u,} denote the sequence of iterates
generated by CGN starting from an initial guess u,, and let {r.} denote the residuals {f-Au.}. The

iterate u, is the point in
u, + span {ATro,(ATA)ATro,...,(ATA)i'lATro}

whose residual norm [Ir.||, is minimum. As a result, the residuals satisfy [6]

ey < 2 [H308A0 gl (?)

The following result rclates this bound to the extreme eigenvalues of M and the spectral radius of R.

2A related technique is to solve AATu =t by CG, with umATu’. This method has essentially the same convergence
properties as CGN, see [9].

''''''''
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Theorem 1: If the symmetric part M of A is positive-definite, then

MainlATA) 2 M (MY,

MoadlATA) < N (M) + o(R)P2.

Hence, the residuals {r;} generated by CGN satisfy

Il < 2 [t - iy T ol

Proof: Let S denote the unique symmetric positive-definite square root of M, i.e. S? = M.
Then

(v,ATAv) = (Av,Av) = (S(S+S'R)v,S(S+S 'R )v)
= ((S+S'R)v,M(S+S 'R)v).

But for any real w,

(wMw) > X . (M)(w,w)

and
(w,Rw) =0,
so that
(v,ATAV) > A _. (M) ((S+S'R)v,(S+S'R)v)
= \_;.(M) [(Sv,S¥) + 2(v,Rv) + (S"'Rv,S'Rv)]
= 2 _.(M) [(vMv) + (S'Rv,S'Rv)]
> MpinlM)? (v,7)
Therefore,

TA) — min (LATA 2
Apnin(ATA) = 131;:1 ‘ltﬁ)llz A nin(M)°.

For the upper bound on Xmu(ATA),

MoadlATA) = A2 < [IMIl, + IRIZ = (A, (M) + AR),

where we have used the fact that [|R||, = p since R is skew-symmetric and hence normal [20].

(8)

(9)

(10)




Py

L)
2 5
:Z::_:Z:: Finally, note that the fraction in (7) satisfies
. 1 - 1/sA) .2

. 1+ “w[A)+1

Inequzlity (10) then follows from (7) - (9) and the fact that

S e / SATR) A (M)+AR)
] - T mu .
o WA =VHAA S (ATA) A min(M)

;;-_:::. Q.E.D.
\\ The bound (7) implies that CGN is convergent {or arbitrary nonsingular linear systems, and as we will
show in Theorem 5, the corollary result (10) gives rise to strong asymptotic bounds under suitable
N conditions. However, the dependence of CGN on ATA is a drawback. If A itself were symmetric
:‘: positive-definite, then CG could be applied directly to (1). In this case, the bound on the relative error
.. of the i'th iterate generated by CG is proportional to

b [ 1 - 15@%_].
N 1+ 1)~ )
LSRN
- \

(see [8]), and the convergence of CG would be much faster than the couvergence of CGN. Moreover, to

( 1 avoid the explicit computation of ATA, CGN requires two matrix-vector products per iteration, one by A
S and one by AT. In contrast, CG requires only one matrix-vector product per iteration for symmetric
:‘.:"::' positive-definite systems.

'-\.:

N

"y In recent years, many conjugate gradient-like iterative methods for nonsymmetric systems have been
.r:-: developed with the aim of avoiding these difficulties of CGN |1, 8,9, 16,21, 25]. In all of these
ﬁ:_ljl methods, the i'th iterate u, is chosen from the Krylov space u, + K., wherc

b~ o

::';Ij K, = span{ro,Aro,...,A"'ro},

e with the hope that the convergence depends on x{A) ratier than n(ATA). Each iteration requires one
"i;:jf matrix-vector product of the form Av. In this paper, e will take the method koown as Orthomin(k) to
= be representative of this class of iterative methods. Orthomin(k) chooses for u, a point in v, + K; whose
Q residual porm |Irfl, is minimum in a (k-+1)-dimensional subspace of K, (see[8]). Although its
':I:f.-'. convergence properties are not as well understood as those of CG, the following result shows that when
__:sz: M is positive-definite, Orthomin(k) generatcs a sequence of approximate solutions that converge to A™Mf.
‘ . Theorem 3: The residuals {r,} generated by Orthomin(k) satisfy (8, 9]

>
o MpinM) .
Ir. "2 < [ min s ]|/2 "ronz ) (11)
- MoacM) + ARIE/A (M)
,-:;
.................. - .a. t. -v N . ‘.\ - - - . - - -
o et ata T T e e e e N e IR IR YA \;A




The work per step of the two methods considered in this section is [8, 9]

CGN: 5N operations plus two matrix-vector products, Av and ATv;

Orthomin(k): (3k+4)N operations plus one matrix-vector product, Av.

3. Convergence Analysis for Separable Preconditioners
In this section, we show that if CGN or Orthomin(k) is combined with preconditioners based on
certain separable operators to solve discretized elliptic problems, then convergence does not depend on

the mesh size used in the discretization.

Let A, f and g be defined as in (2), let £2 denote the unit square 0<x,y<1,and let A = M + R, as
in (6). Discretizing (2) by centered differences on an nxn grid leads to a system of linear equations of the
form (1). Let h = 1/(n+1). In terms of the contributions of the symmetric and skew-symmetric parts,

the difference equations at a typical mesh point (xi,yj) have the form (after scaling by h?)
— K2

where

2
Muly = [a;, 12431725 + BijeryatDijerye + Boeglyy (12)

b

" A2, 2% Bigey2gen Byt

[Ru]ij = [(°i+l,j+°ij)h/2]“i+l,j - l(cij+°i-l,j)h/2]“i~|,j + l(di,j+l+dij)h/2]“i,j+| (13)

- [dy+d,; Ob/2lu .

Hence, M corresponds to the discretization of M, and R corrcsponds to the discretization of R.

Let Q denote a self-adjoint elliptic operator on f2 which is spectrally equivalent to M, i.e.

al S *3 QNI‘:” S azr (14)

for all sufficiently smooth v ¢ Lz(()) satisfying homogeneous Dirichlet boundary conditions, where
(v,w) = /nvw ,

- . ) 2 2
and @, and a, are positive constants. For example, Q could be the negative Laplacian -[a—~2 + Q—zl.
: . . N , : o loxs By
The discretization of @ gives rise to a symmetric positive-definite matrix, Q, that is spectrally equivalent

to M: a, and a, in (14) can be chosen so that
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3
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Y

Lyt s

a, < %{)\5 ay, (15)

independent of the mesh size used in generating M and Q.

Since Q is symmetric positive-definite, it admits a factorization Q = LLT (here L is not necessarily

lower triangular). Consider the symmetrically preconditioned linear system
Ai = [L'ALT) LTy =LY =1, (16)

in which the coefficient matrix A has symmetric part M = L'ML'T and skew-symmetric part R =
LIRL'T. The extreme eigenvalues of M are given by

M) = min (LLIM Ty M) = vl ML Ty
M) = mim Ll () = ma (M)

But for any v#£0, let w = L‘Tv, so that

“ingg -T
{v,L vI,NgL v) ’:’,M:’ . (17)

Hence, by (15),

(M) 2 o, A oM) <a,, (18)

Xmin

independent of mesh size.

Observation (18) is the basis of the convergence results for the self-adjoint case [5]. To extend the
analysis to the non-self-adjoint case, it is necessary to bound p(fi) An intuitive approach is to note that
R is similar to Q'IR, which is the discrete analogue of the continuous operator T = Q'!R. For Q with
sufficiently smooth coefficients, T is a compact operator whose eigenvalues are therefore bounded with 0
as their sole accumulation point [22, 24]; one would expect a similar bound on the eigenvalues of the
discrete operator. We derive such a bound below. For simplicity, we present the analysis for the one-
dimensional Dirichlet problem on the unit interval 2 == [0,1], divided into n uniformly spaced interior
mesh points, with h=1/(n+1). The analysis for the two-dimensional Dirichlet problem on a rectangular

domain is identical, using the two-dimensional versions of the operators in (21) below.
The one-dimensional analogue of the first order operator R in (68) is
Ru = cu_ + (cu), ,
and the discretization analogous to that of (13) is
[Rul; = [(c; +<)b/2u; | - [(e;+c, Jb/2u; , = % lei(upamuy ) + €y e qgugy ), (19)

1<i<n



-----------------------------------------

--------------

Without loss of generality, we take Q to be the one-dimensional Laplacian, Qu = -, . (The argument
can be modified easily for any operator spectrally equivalent to this choice of @.) The discretization

analogous to that of (12) is
Qufy=-u,, +2y-y,, 1<i<n (20)

In (19) and (20), u, [Ru]; and [Qu]; are defined to be zero for i=0 and i=n+1.
Let the usual finite difference operators be given by
Yig1 Y :
Dyuj=—¢3— 0<i<n D,y ., =0,
u-u (21)
[D v = —l‘%—, 1<i<nt]l, [Dul,=0.

Note that [D_ u}; and [D_u] ,, may be nonzero evenif uy=wu_ _, =0.

To avoid repeatedly handling the 0'th and (n+1)'st indices as special cases, we adopt the following
convention of notation. We identify C" with the proper subspace of cr+? consisting of complex (n+2)
vectors v == (vo,vl,...,vn,vnH)T such that v, = v 41 = 0. Thus, R and Q of (19) and (20) are defined
on this representation of C" without reference to indices 0 and n+1. The usual Euclidian inner product

and norm on C" are inherited by this space:
(v,w) = .):1 V¥, ivll, = (v,v)1/2, (22)

We will also abuse notation slightly and define (v,w) and ||v|l, as in (22) for arbitrary vectors in crte
noting that these functions do not define an inner product or norm on all of C**%. We refer to the true

Euclidian inner product on C"*2 as the “extended” inner product

The following result summarizes the properties of the finite difference operators that we need. Other
results of this type can be found in {14].
Lemma 3:

(i) For vand w € C™Z, (vD w), = -(D vw), + Lv W . - vowl;
For v and w € C®,

(1) (v,D+w) = (v,D w), == ~(D v,w) = (D v,w);

(iii) Qv = -b’D_D v = -b°D D v;

(iv) (v.Qv) > b2ID_v| 2, (v.Qv) > bID v|i2.

. . - .
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- Proof: For (i),
o -
( § . . i.+l-i. 1 [ s
';\.‘::f (v,D +w)e = i{:o vi—.h—--l ! = E [.Eo W - i{:o viwi]
\": 1 s st 1 _ _
e =t [.2‘ V% - E,"i"i] + 5 Va4 1¥ns1 - Vo¥ol
_ 1 - =
— =-(D_v,w), + E [¥os1%041 - Yool
:f-j:‘f;' Assertion (ii) follows immediately from (i) and the zero boundary conditions.
'.;':::' For the first equality of (iii),
\

[D,v], - [D V], VoY Vv
DD, v}, = ——p——= = _LF'Tl =':1_2[Q"]i'

The proof of the second equality is identical.

For the first assertion of (iv),

"

. ! LY. .

3" A
PR T A A

<,

?S (v.QV) = (v,Qv), by the first equality of (ii)

g_{g = -b¥v,D D v), by (iii)
( ~ = h¥D 9D, by the second equality of (ii)

- > b|Dvii3 -

-" The proof of the second assertion of (iv) is identical.

.7:' QED.
=

':" Let R = L''RL'T, where Q = LLT as above.

5 Theorem 4: There exists a constant § > 0, independent of the mesh size h, such that

- AQ'R) = o(F) < 4. (23)

Proof: Since R is skew-symmetric and therefore normal, its spectral radius is given by the

maximum value of the Rayleigh quotient:

R) == Ijv,L"RL'Tv" - . Hw,Rv“
AR) 'é.(]:?,?#o v,V -etg-‘,g‘#o w,Qw)| -’

Writing Rw in terms of the finite difference operators of (21),

%! AL !

Rw == gi[c-(D++D_)w +(D,+D_Yew)] ,

where c-w denotes the vector with entries {ci'i}'::t:' Therefore

......................




(wRw) = B2 [(w.c(D,+D Jw) + (w(D,+D Yew)]

= B [(cw(D,+D)w) - (D, +Dwfew) ],

by Lemma 3, (ii). Applying Cauchy-Schwarz and letting C = max le(x)],
1€
I(w,Rw)| < b fle-wlly (D, +D Jwll, < C b2 [[wll, (ID, %ll, + ID_wl,)
< 2Ch [[wll, (w,Qw)'/2,

by Lemma 3, (iv).

Th

us
w.Rw 2
&?QWH s (w,Qw)! <A

with 3 independent of h, since

2Bl > X in(Q) = O(b?) [10].

QED.
C.f. [15] for an analysis of the convergence of the eigenvalues of Q'R to those of @Q'R. ,
We now return to the consideration of two-dimensional problems.
Note that applying either CGN or Orthomin(k) formally to (16) results in the residuals
f=f-Ad =L",
H 1 1
,::i o so that the residual norm associated with (16) is ||L"ri||2 = "'i“Q"' Hence, combining (15), (18) and (23)
SRR

with the results of Theorems I and 2:

Theorem 5: If Q is a symmetric matrix that satisfies (15), (18) and (23), then the residuals
(o generated by CGN with symmetric preconditioning by Q satisfy

. a,a,+f8 ..
g € 2 [ Jlgllgn
f’i_}". Il < [%Ml+ 2] rollgn

and the residuals generated by Orthomin(k) with symmetric preconditioning by Q satisfy

alz ./2
. rlar <1 ¢ —m — f 1
o Irllgs < | -~ 72 Irgllgr

Hence, for discretized elliptic problems, the number of iterations needed to make "ri"Q“/ ||r0|lq.,




“m T s T ® T¥ T s " w W =, > & R N

RN

: < ¢ is independent of mesh size.

Proof: For the first inequality, by (18) and (23)

5 AagMHARN/A (M) < (aytB)/

- Hence, applying Theorem 1,

-{::.1' Il < 2 1 - gy ribinolgn = 2 [-Ei_% [ frglge -

3"_Lf The second inequality is proved in a similar manner using Theorem 2.

o QED.
3 ~

- The extra work per step required for preconditioning comes in the matrix vector products L'AL Ty

\ _ and [L'lAL'T]Tv. Preconditioned CGN and Orthomin(k) can be implemented so that the only references
*2 to Q have the form of solving Qw = v, so that no factorization of Q is required (see [9]). The solve
\ requires O(nlog n) operations, but the remaining work per step of both iterative methods is O(N) =
"':.: . O(n?). Hence, asymptotically, the preconditioning solves are the dominant cost per step.
P Corollary 8: The number of arithmetic operations required by either CGN or Orthomin(k)
‘ with preconditioning by Q to solve (1) so that

Wile: (20
o ||fo"Q—l

--'.. is proportional to nlog n log ¢’1.

Proof: By Theorem 5, the i'th residuals gencrated by both preconditioned methods satisfy

g lirlg ;

; ||r°||z., <n+

- where 7<1 is is a constant that is independent of mesh size, and p=2 for CGN, y=1 for
-.: Orthomin(k). Hence (ignoring the low order contribution of n=2), i > log(¢!)/log(1/7)
ﬂ- iterations suffice to reduce the relative error of (24) to at most ¢. Since the dominant cost of
i:_-. cach iteration is the preconditioning solve, the total operation count is proportional to
, E\ n2log n log €L,

o QE.D.

.......................................
................
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:?%‘_IE‘ The previous two results are expressed in terms of the Q -norm of the residuals. It might be more
5L ' practical to measure the relative Euclidean norm [Ir,||,/[Irgll,. Alternatively, one might wish to reduce
:::‘_.';; the error s; = u-u, to within truncation error. Since the truncation error of the discretization is O(n?), it
::_\‘:::: is sufficient to reduce the relative error [[s;|l,/|lsll, by a factor of O(n2) to compute a solution u, that is
o accurate to within truncation error.
D
DN Corollary 7: The number of arithmetic operations required by either CGN or Orthomin(k)

:'.",.-.'-_‘; with preconditioning by Q to solve (1) so that

e r

2 Il

- ol

. ..‘_.
N is proportional to (n%log n)(log n + log ¢!). The number of arithmetic operations required to
T compute a solution accurate to within truncation error is proportional to n*(log n)2.

- Proof: For the first assertion, note that

3 Iilgr > sl g < 7.==_-l I

:.?-j.} Lot 2 == Ilixlly » To Q'S Tollg »

:‘:::': e max Q' Xmin(Q)

- so that
( i y
L e -
] -::::_: ||r0||2 lIrOHQ‘l

Since k(Q) = O(n?) [10], the left side of (25) is bounded by ¢ if

RS

RS

e r.ll o

= Il g <e = o[%],

:;\< "ro"Q—l

e u; The result then follows from Corollary 6.

- For the second assertion, note that the errors and residuals are related by s, = A'lri, T, = As,,

'.:j'j'.: Hence,

o I I Il

o 22 < w(A) 2 < K(A)RQ) 2

::_ "90"2 "rollz "ro"Q-l

_ To reduce the relative error by a factor of 0’2, it suffices to make

= I

N LA P -2

N 49 <, = o[ n (26)
e = %9 .

..:'_:-’ "ro"Q-l x( A; x(Q)

o

]




o
A
S 13
S
e But, by (8) and (9),
A x(A) < (M) + —2RL_
] .'h:_‘- xmin(M)
x» ) With M defined as in (12), A (M) = O(n'?) and X__ (M) = O(1), s0 that x(M) = O(a) [10).
:—".~‘ Moreover, as defined in (13), all the nonzero entries of R lie in four off-diagonal bands, and
A ,‘ their absolute values are bounded by Ch, where
ol :
.:-":' C = 201 d 1, ]
i max [ max le(x,y)l, max |d(x,y)]
A is independent of h = 1/(n+1). By Gerschgorin's theorem [20], (R) == O(n!). Therefore,
o AR)/N_; (M) = O(n), so0 that x(A) = O(n?). Substituting these results into (26),
.
':.'::-\. L == O(n®), log e'zl = Oflog n).
::::}\. The result again follows from Corollary 6.
K 5
Q.E.D.
.
The symmetric formulation of the preconditioned problem (16) requires that the preconditioning
‘ L]
matrix Q be symmetric positive-definite. For non-self-adjoint problems, it seems preferable to allow Q
'{:'_-, to be nonsymmetric by including in it a discrete separable approximation to the first order terms in (2).
::'.j' Such preconditioning matrices can be used in either of the alternative preconditioned problems
- _. AQ-lﬁ =f u= Q.lﬁl (27)
e Q'Au= Qs (28)
o
o and the cyclic reduction method can be used for the preconditioning solves [17]. An additional
" ‘ advantage of (27) is that the residual norm minimized by the two iterative methods under consideration
- is
Iif - AQ.lﬁiuz = If - A“illz ,
. i.e., it is independent of the preconditioning. However, we have been unable to extend the convergence
Wy
o analysis to these alternative problems (even for symmetric Q). In the analysis above, the application of
'.:::I:, Theorems 1 and 2 requires bounds on the extreme eigenvalues of the symmetric and skew-symmetric
G —~
N parts of A in (16). For (27), the symmetric part is given by (AQ"'+[AQ"YT)/2 and the skew-symmetric
- !0‘ : part by (AQ"-[AQ"]T)/Z We bave not been able to bound the eigenvalues of these matrices or those
f::; : corresponding to (28) in a manner analogous to (18) and (23).
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;',- For an alternative approach to nonseparable M, see [11].
{:
S 4. Numerical Experiments
(SN
:-‘:'.‘j:- In this section, we present numerical results that confirm the convergence analysis of Section 3 for (16)
\-j'-ltj and suggest that similar behavior is exhibited for (27). All tests were run on a VAX11-730 in double
._ precision (55 bit mantissa). The fast direct preconditioning solves were performed using the cyclic
:.:'.-_: reduction method implemented in the routine BLKTRI in the FISHPACK subroutine package [19]. We
'.-::j' consider two Dirichlet problems of the form (2) and one problem with mixed boundary conditions.
\ For the first two problems, let the coefficients of (3) be given by
RS _
.‘.;:ti aey) =€, Hxy)=eT,  cxy) =0, (29)
SOLK
N == =
dixy) = Ax+y), exy) = iy
: where 4 is a scalar parameter. The operator A is nonseparable and, for 470, nonsymmetric. The right
..'\: hand side is determined by choosing the solution
:::E::: u(x,y) = x €™ sin (mx) sin (ry).
» - We pose the problem on the unit square 0<x,y<1 with homogeneous Dirichlct boundary conditions, and )
j'.':-f.f we discretize using the five-point second order centered finite difference scheme on a vniform nxn grid,
.-}.:‘?. with h==1/(n+1). We use the values y=5, 7=50 and h == 1/16, 1/32, 1/64, 1/128, and for one test,
..$. .
— 1/256.
:_, We consider both self-adjoint and non-self-adjoint separable approximations @, which give rise to
,‘_:-:::3 symmetric and nonsymmetric preconditioning matrices, respectively. For the self-adjoint approximation,
e

the coefficients of (29) are approximated by

axy) =alx,5),  bxy)=Hs5y),  qAxy) =0,
d(x,y) = 0, &x,y) = Je(x, )+ }e(.5,y).

For the non-self-adjoint approximation, Z(y)=d(.5,y). We examine formulation (16) with symmetric Q
(the onmly possible choice), and formulation (27} with both symmetric and nonsymmetric Q. The

stopping criterion in all tests is

r.
u < ¢ =108,

liroll —

where the norm used is
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leflga for (18),  lizl, for (27).

The initial guess is uy=0.

Tables 4-1 and 4-2 show the iteration counts for v==5 and y==50, respectively. In the tables, both the

preconditioning formulation and its associated norm are listed.

To examine different boundary conditions, for the third problem we consider the differential equation
[12]
(v, + u”) + fu, =0 (30)
on {(x,y) | x>0, y>0}, with boundary conditions
u(x,0) =0, u(0,y) ==1, (31)
u(x,y) bounded as |x] + |y| — oo.
The exact solution to (30) - (31) has a boundary layer at y==0 and is nearly identically one elsewhere.

Following [12], for the discrete problem we restrict (30) to the unit square and add the boundary

conditions
ux,1) =1, u(ly)=0. (32)

We discretize on a uniform nxn grid using centered differences for all terms except at the right boundary,

where we use the first order approximation

u .= Q.
0= u,(x,, ;) ~ _e+_l_4h_n;_, (33)

Incorporating (33) into the equations centered at {u_.}7_, results in a linear system of order N=n2. We

nj J-
consider the value A=10.

Because (30)-(32) is separable, the discrete problem can be solved directly by cyclic reduction. We
therefore consider only symmetric preconditioning matrices based on the discrete Laplacian, with the

discretization at the right boundary handled as in (33). The iteration counts for the same stopping

criterion, mesh sizes and initial guess as above are shown in Table (4-3).

..........................
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- P S .
(o | CoN I Orthomin(1) |
.-:. B L T e B T T .
o | Sym. Q | Sym. Q | Nonsym. Q || Sym. Q | Sym. Q | Nonsym. Q |
o 1 s | @) | @ I Qe | @ | (@ I
o~ Fliriliga U e llg 00 el 00 el U lies llp 1 el
tmmcem—— e ——— tommm———— P —— D e S P ——— +
- | 1716 | 11 [ 15 | 11 I 17 1 21 | 8 |
| | I | I I I |
f1/32 | 11 | 17 | 13 i1 1 21 | 9 |
| | | | I I I I
: | 1/64 | 12 | 19 | 14 It 18 | 22 | 9 |
\ | | I I I | | |
. 171281 12 | 20 | 14 i 18 | 22 | 9 i
_‘. pom————e e $om—— D et T R D ittt R +
;:Z:: Table 4-1: Discretization of equation (29), y=>5. Iterations to reduce residual
pony norm by factor of 108,
.:;\.
.‘:" L bt ekl Dokl l e bbbt Xl R et ittt Dt Dot it +
: | CGN 1] Orthomin(1) | .
$ - T e PV c e m e ——————— +
o | Sym. Q| Sym. Q | Nonsym. Q || Sym. Q | Sym. Q | Nonsym. Q |
‘;':. I (6 | @7 | (@D I Qe | @n | (@0 I
':’. l "ri“grl | "ri "2 | "ri“2 H ""5“0'1 I ||I'i “2 ! “"5"2 I
-~ ym————- D L i P 4= mmmmm D i trmmmmm——c—a +
' l1/16 | 38 1 69 | 34 || 111 | Fails | 23 |
I | | | I | I |
o l1/32 | 43 | 101 | 22° |1 121 | Faits | 17 |
e | I I I I | | I
.::.‘- | 1/64 | 44 | 137 | 17 Il 124 | Fails | 14 |
g | | | | M | | |
| 1/128 | 45 | 166 | 18 Il 128 | Faiis | 14 |
r | | I | I | | |
|l 1/26 | -- | 188 | -- -1 - 1 -- |
bm—————— D e L D D it T D D P +

Table 4-2: Discretization of cquation (29), v=50. Iterations to reduce residual
norm by factor of 10°8.

3For s given non-sell-adjoint operator, cyclic reduction is applicable only for small enough h (see [17), p. 1142, or [19]). For
=50, h = 1/16 and 1/32 are too large. These mesh sizes are handled in the experiments by reducing the contribution te Q
of the first derivatives, taking d(y)=&{y)d(.5,y) with 0<§y)<1, so the approximation of R in Q is probably less accurate in
these cases.

------------
........
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Sym. Q| Sym. Q Il Sym. Q| Sym. Q |

I

I (6 | (@27 1 (e | (27) |

I “ri“Q'l | "ril'g I "l’i"o-l I "ri“2 I
D D b S R oo +
l1/16 I 11 1 10 Il 15 | 16 |
I I | H [ !
/32 | 11 | 10 (I 15 | 156 |
! I | i I |
l1/64 1 11 | 10 (I 186 | 13 |
I | | 1 | I
171281 11 | 10 I 15 | 12 |
S D P - T T el +

Table 4-3: Discretization of equation (30)-(32), #==10. Iierations to reduce residual
norm by factor of 108,

These experiments confirm the convergence analysis of (16) and, with one exception, suggest that
convergence for (27) is independent of mesh size also, for both symmetric and nonsymmetric Q. The
exception occurs with =50, for which the iteration count for CGN is still growing at h=1/256, and
Orthomin(1) fails to converge for h<1/128, indicating that (27) may require a very fine mesh if A is not
well-approximated by a symmetric preconditioning matrix. (The convergence failures are due to the fact
that the symmetric part (AQ"+(AQ")T)/2 of the coefficient matrix of (27) is indefinste for the four
mesh sizes considered.) The smaller iteration counts in Tables 4-1 and 4-2 for nonsymmetric
preconditioning matrices suggest that nonsymmetric preconditioners offer some advantage. However, the
operation counts for cyclic reduction on nonsymmetric matrices (20n2log n + O(n?)) are higher than
those for fast direct methods for symmetric matrices (e.g., 5nlog n + O(n®) for cyclic reduction; see
[2,3,7,18]). For the two problems cxamined, the asymptotic counts for symmetrically applied

symmetric preconditioners are actually lower.

Finally, we note that a comparison between these preconditioning techniques and others based on

incomplete factorizations can be found in [9].
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