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Abstract

We consider the use of fast direct methods as preconditioners for iterative methods for computing the

numerical solution of non-seif-adjoint elliptic boundary value problems. We derive bounds on -

convergence rates that are independent of discretization mesh size. For two-dimensional problems on

rectangular domains, discretized on an nin grid, these bounds lead to asymptotic operation counts of

O(n2log n log Cl to achieve re!ative error e and O(n2(log n)2) to reach truncation error.
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1. Introduction

The numerical solution of elliptic boundary value problems by finite difference methods requires the

solution of systems of linear equations of the form

Au = f, (1)

where A is a large sparse matrix. Fast direct methods are efficient techniques for solving (1) when the

elliptic equation is posed on a rectangular domain and the differential operator is separable. In this

paper, we show that nonseparable, non-self-adjoint elliptic problems can be solved efficiently using fast

direct methods as preconditioners for iterative methods for nonsymmetric linear systems.

As a prototype, consider the two-dimensional Dirichlet problem

Au---- uE 1, (2)

u-g, u E Z11,

where fl is a rectangular region in R2,

Au a-(au.).- (by) Y + cu. + (cu). + duy + (du)Y + eu, (3)

and a(xy), b(x,y), c(x,y), d(x,y), e(x,y), and Ax,y) are smooth functions defined on Rl, with a, b > 0,

e > 0. Discretizing (2) by finite difference techniques on an nxn grid leads to a sparse system of linear

equations of the form (1) where A is of order N = n2. If c and d are zero, then A is self-adjoint;

otherwise, A is non-self-adjoint and, in general, A is nonsymmetric. If

a = a(x), b b(y), c = c(x), d = d(y), e = el(x) + e2(Y), (4)

then A is separable. In the sclf-adjoint separable case, (1) can be solved by a variety of fast direct

methods, such as the cyclic reduction and Fourier methods (surveyed in [7, 181) and the generalized
marching algorithm [2, 3]. In the non-self-adjoint case, the cyclic reduction method can still be used 1171.

All of these methods require O(n 2log n) arithmetic operations (i.e. floating point multiplications and

divisions).1

If A is nonseparable, then fast direct methods can be used to solve (1) iteratively. For self-adjoint

problems, Widlund [231 proposed the stationary method

4%z u i t + rQ'1(f.Aui), / " (5)

Avatlability Codes

'In the self-adjoint cae, this count can be reduced to O(nlog(lng n)). See 1181. ii o -
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i where Q is the discretization of a self-adjoint separable approximation of A. Concus and Golub [5] and

Bank [2] examined accelerating (5) by the Chebyshev and conjugate gradient methods respectively;

equivalently, Q is a preconditioning matrix for these iterative methods. Convergence of all these

methods is independent of the mesh size used in the discretization, so that a relative error of t is

achieved in O(log C) iterations. Since the dominant expense of each iteration is a fast direct solve, the

asymptotic operation count is O(n 2log n log tI).

Concus and Golub [4] and Widlund [22] extended this analysis to some particular non-self-adjoint

problems using the generalized conjugate gradient method, which depends on the symmetric part of A as

a preconditioner. Let

Mu - (au)- (buy)y + eu, (6)

Ru = cu. + (cu), + du + (du) ,

so that A = M + R. The symmetric part of A corrcsponds to the discretization of M, the sum of the

second and zero order terms of A. The convergence of the generalized conjugate gradient method

depends essentially on the spectral radius of the discrete analogue of the compact operator M'R, so

that convergence is independent of mesh size. If M is separable, i.e. a, b, and e are as in (4), then fast

direct methods can be used for the preconditioning, so that the asymptotic operation count is again

O(n 2log n log (4).

In this paper we show that these asymptotic operation counts can be achieved even if the symmetric

part of A does not come from a separable operator. Other iterative methods for nonsymmetric linear

systems, such as the conjugate gradient method applied to the normal equations [13] and

Orthomin(k) [8, 9), allow more general choices than the symmetric part for preconditioning matrices.

Using an analysis of the finite difference discretization, we show that with symmetric positive-definite

preconditioning matrices derived from other self-adjoint, separable operators Q that approximate A, the

asymptotic convergence rates of these iterative methods is independent of mesh size. Although this

analysis holds only for symmetric preconditioning operators, we provide numerical examples that suggest

that nonsymmetric preconditioners derived from non-self-adjoint separable approximations of A lead to

the same asymptotic convergence properties. In Section 2 we review the basic properties and
convergence bounds of the conjugate gradient method applied to the normal equations and Orthomin(k).

In Section 3, we present the convergence analysis for general self-adjoint, separable preconditioning

operators, and in Section 4, we demonstrate the performance of these techniques with both self-adjoint

'p .



and non-self-adjoint preconditioning operators.

0

2. Convergence Bounds for Iterative Methods

Given a nonsymmetric linear system of the form (1), let A - M + R, where M - (A+AT)/2 is the

symmetric part of A and R = (A-AT)/2 is the skew-symmetric part of A. In this section, we present

upper bounds on the convergence rates of iterative methods for nonsymmetric linear systems in terms of

eigenvalues of M and R. We consider two iterative methods: the conjugate gradient method applied to

the normal equations and, as representative of a recently developed collection of methods that avoid the

use of the normal equations, Orthomin(k).

We first establish some conventions of notation. For any square matrix B, let sc(B) m IIBII 2IIB'-1 2

denote the condition number of B, let X min (B) and Xmaz(B) denote the eigenvalues of B with smallest and

largest modulus, respectively, and let p(B) denote the spectral radius IXm (B). For symmetric positive-

definite B, let flv11e denote the B-norm (v,Bv)'/ 2 .

A classical method for solving nonsymmetric linear systems of the form (1) is to apply the conjugate

gradient method (CG) [13] to the normal equations

ATAu - ATf.

S... That is, the nonsymmetric system is embedded into a system with a symmetric positive-definite

-""" coefficient matrix, to which the conjugate gradient method is applicable. We denote this method by

*CGN. 2 The convergence properties of CGN, derived from the standard error analysis of cG [6], are well

understood. We summarize the results we need as follows. Let (ui} denote the sequence of iterates

generated by CGN starting from an initial guess u0, and let (ri) denote the residuals (f-Aui). The

iterate ui is the point in

" + span (ATr 0,(ATA)ATr 0,...,(ATA)i'IATr 0)

whose residual norm IlrII2 is minimum. As a result, the residuals satisfy [6]

12! -5 l/x(A) ]iO12.0.. Ilr1iI2 < 2 [I+ ilA IIr01I " (7)

The following result relates this bound to the extreme eigenvalues of M and the spectral radius of R.

2A related technique is to solve AATu'-f by CG, with urnATu". This method his essentially the same convergence

properties as CGN, see 191.

,. .,. . .,. ... , .-•..-. .- ,. ,.. . . .- ... -. .- . ... . .......... . , .-.. ,- . . . . . .. .
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Theorem 1: If the symmetric part M of A is positive-definite, then

XmiATA) _mi,(M),  (8)

XmJ(ATA) < [mx(M) + p(R)]2 . (9)

Hence, the residuals {ri) generated by CGN satisfy

Iri112 < 2 [1 - 2 ] 11r.112. (10)

Proof: Let S denote the unique symmetric positive-definite square root of M, i.e. S2 = M.

Then

(v,ATAv) = (AvAv) - (S(S+S'R)v,S(S+S'R)v)

= ((S+S'IR)v,M(S+S'R)v).

But for any real w,

(wMw) _t Xmin(MXw,w)

and

(w,Rw) = 0,

so that

(v,ATAv) _ )min(M) ((S+S' 1 R)v,(S+S'R)v)

= )ain(M) [(Sv,Sv) + 2(v,Rv) + (S"'Rv,S1 Rv)]

-Xmin(M) [(v,Mv) + (S'Rv,S1'Rv)]

x (M) 2 (v,v)

Therefore,

.min(ATA) =min LvATAv)> X(M)2 .

m #O (vv) - mM

For the upper bound on Xmx(ATA),

.\ma(ATA) - IIAII [11MII2 + 1R212 = [Pma(M) + p(R)12,

where we have used the fact that IIRI12 = p since R is skew-symmetric and hence normal [201.

% .' L , .-,-.'." :'-'-'' " . . . "" . . . ' . """" . " . " ,"- "- , ". " , .. :. . .



Finally, note that the fraction in (7) satisfies

• 'Inequality (10) then follows from (7) - (9) and the fact that

Xm"(A A) Xmaz(M)+p(R)
r.(A) -

Q.E.D.

The bound (7) implies that CON is convergent for arbitrary nonsingular linear systems, and as we will
show in Theorem 5, the corollary result (10) gives rise to strong asymptotic bounds under suitable

conditions. However, the dependence of CGN on ATA is a drawback. If A itself were symmetric

positive-definite, then CG could be applied directly to (1). In this case, the bound on the relative error

of the i'th iterate generated by CG is proportional to

(see [8]), and the convergence of CG would be much faster than the convergence of CGN. Moreover, to

avoid the explicit computation of ATA, CGN requires two matrix-vector products per iteration, one by A
and one by AT. In contrast, CG requires only one matrix-vector produ.t per iteration for symmetric

positive-definite systems.

In recent years, many conjugate gradient-like iterative methods for nonsymmetric systems have been

developed with the aim of avoiding these difficulties of CGN [1, 8, 9, 16, 21, 251. In all of these

methods, the i'th iterate ui is chosen from the Krylov space u0 + Ki, wher,

Ki m span(r 0 ,Ar,...,A'r 0 ),

with the hope that the convergence depends on ,c(A) ratier than r.(ATA). Each iteration requires one

matrix-vector product of the form Av. In this paper, we will take the method known as Orthomin(k) to

be representa.iv- of this claw of iterative methods. Orthomin(k) chooses for ui a point in u0 + Ki whose

residual norm friU2 is minimum in a (k+l)-dimensional subspace of Ki (see [81). Although its

" "convergence properties are not as well understood as those of CG, the following result shows that when

-*-- M is positive-definite, Orthomin(k) generates a sequence of approximate solutions that converge to A'f.

Theorem 2: The residuals {ri) generated by Orthomin(k) satisfy [8, 9)

[min(M)]mnM Ilrol 2. (11)2 < -X - p(R)2/. *M'az(. +min



The work per step of the two methods considered in this section is [8, 91

CGN: 5N operations plus two matrix-vector products, Av and ATv;

Orthomin(k): (3k+4)N operations plus one matrix-vector product, Av.

3. Convergence Analysis for Separable Preconditioners

In this section, we Yhow that if CGN or Orthomin(k) is combined with preconditioners based on
certain separable operators to solve discretized elliptic problems, then convergence does not depend on

the mesh size used in the discretization.

Let A, f and g be defined as in (2), let Rl denote the unit square 0<x,y<, 1, and let A == M + R, as

in (6). Discretizing (2) by centered differences on an nxn grid leads to a system of linear equations of the

form (1). Let h = 1/(n+l). In terms of the contributions of the symmetric and skew-symmetric parts,

the difference equations at a typical mesh point (xi,yj) have the form (after scaling by h2 )

[Aui j  [MuJij + [Ru]ij-- h2fij

where

[Mulij = [ai+1/2,j+ai.i/2, + bi,j+1 /2+bi,j+1 / 2 + h2e jluii (12)

- ai+l/2,Ui+l,j - ai1l/2,jU l - bi,j+l/2ui,j+ ! - bi,j.I/2ui,j 1 ,

[Rulij = (ci+l,j+cij)h/2]ui+l,j - [(j+ci,)h/2]Ui-nj + [(d +dij)h/2]ui,j+l (13)
'..- . . [~(dij+di,jlh 2]i. .

Hence, M corresponds to the discretization of M, and R corresponds to the discretization of R.

Let Q denote a self-adjoint elliptic operator on 17 which is spectrally equivalent to M, i.e.

a-"2, : (14)

for all sufficiently smooth v t L2(1) satisfying homogeneous Dirichlet boundary conditions, where

2 2]
and a I and a2 are positive constants. For example, Q could be the negative Laplacian l2 + y21- ' .[ a x z  c y J .

47 The discretization of Q gives rise to a symmetric positive-definite matrix, Q, that is spectrally equivalent

to M: a and o2 in (14) can be chosen so that
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e V < < (15) I
independent of the mesh size used in generating M and Q.

Since Q is symmetric positive-definite, it admits a factorization Q LLT (here L is not necessarily

lower triangular). Consider the symmetrically preconditioned linear system

XG - [L-'AL "T ] [LTu] - Lf -f=, (16)

in which the coefficient matrix A has symmetric part M - L.ML"T and skew-symmetric part R -

L'RL"T. The extreme eigenvalues of FA are given by
(v.L'(vL-nML-ITvmX vL nM 'Tv 

, a() m max Q.LlMU v)

min =fmO (v,v) '(vv)

But for any vAO, let w = L-Tv, so that

(v.L-IML'Tv). (w.Mw)(17)(v'v) Q)(7

Hence, by (15),

rin(M) _! ),m.x(M) 02,  (18)

independent of mesh size.

Observation (18) is the basis of the convergence results for the self-adjoint case [5]. To extend the

," analysis to the non-self-adjoint case, it is necessary to bound p(II). An intuitive approach is to note that

is similar to Q-1 R, which is the discrete analogue of the continuous operator T!M Q'tR. For Q with

sufficiently smooth coefficients, T is a compact operator whose eigenvalues are therefore bounded with 0

as their sole accumulation point [22, 24]; one would expect a similar bound on the eigenvalues of the

discrete operator. We derive such a bound below. For simplicity, we present the analysis for the one-

dimensional Dirichlet problem on the unit interval l -3 [0,11, divided into n uniformly spaced interior

mesh points, with h=l/(n+l). The analysis for the two-dimensional Dirichlet problem on a rectangular

domain is identical, using the two-dimensional versions o! the operators in (21) below.

The one-dimensional analogue of the first order operator R in (6) is

Ru w cu + (cu). ,

and the discretization analogous to that of (13) is

[Ru]i - [(ci+n+ci)h/2]ui+n - [(ci+ci.n)h/2]ui. h , [ci(u 4 .-u._,) + 1. i+lU+. 1 ci_.nu], (19)

l<i<n.

.- ,

. Vd . . .. ¢ * , .. , - .- - .- . .. ,- , -,° . -.. a . . . . - . . . - . - - . - - . - . - . - .



Without loss of generality, 'we take Qto be tbe one-dimensional Laplacian, Qu -- u... (The argument

can be modified easily for any operator spectrally equivalent to this choice of Q.) The discretization

analogous to that of (12) is

[Qu ~+. +2u -u I 1< i<n. (20)

In (19) and (20), ui, [Rul, and [QuJi are defined to be zero for i=0 and i=n+I.

Let the usual finite difference operators be given by

(D uj' 0 < i < D, [D~u 1 ~ 0,

[D u) I < i < n+1, [D uj 0 .(1

Note that [D u]0 and [Du1+ may be nonzero even if u0o u.+ 1  0.

To avoid repeatedly handling the O'th and (n+1)'st indices as special cases, we adopt the following

convention of notation. We identity C'~ with the proper subspace of C,+2 consisting of complex (n+2)-

vectors v =(v 0,v1, ...,tvn,vn+1)I such that v0  v n 1 = 0. Thus, R and Q of (19) and (20) are defie

on this representation of C" without reference to indices 0 and n+1. The usual Euclidian inner product

and norm on Cnare inherited by this space:

% r

We will also abuse notation slightly and define (v,w) and 11v112 as in (22) for arbitrary vectors in Cn+2,

noting that these functions do not define an inner product or norm on all of Cn+2. We refer to tbe true

Euclidian inner product on Cn+2 as the "extended" inner product

The following result siimmarizes the properties of the finite difference operators that we need. Other

results of this type can be found in [14].

Lemma 3:

(i) For v andwE n2 vDwe (_w)+~ntnlSv 0J

For v and w E Cn,

(ii) (v,D w) =(v,D W)~ -(D_v,w)_ -(D_v,w);

(iii) Qv = -h2 DD+ v=.-h 2 D+Dv;

(iv S.Q ) h 11) v1 vQ ) 21) v1

*+ 2.. .
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Proof: For (i),

(v-. •). * a

+w =-( vw)' + £ [v.+.+- vi i

-,- ort e fis qalit of (iii1

i=143 .43E vjwji + I j

-(Dvw). + [vn+I,+I -vo,-J

Assertion (ii) follows immediately from (i) and the zero boundary conditions.

For the first equality of (iii),

[DD~vJ 1 =[D vi - [D v.~. I Vri+l-Vi vi-i.I] -Lq.

The proof of the second equality is identical.

For the first assertion of (iv),

.. (v,Qv) = (v,Qv)e by the first equality of (ii)
-h 2(v,DD v)e by (iii)

= h2(D+v,D+V)e by the second equality of (ii)

S> h2jjD v112

The proof of the second assertion of (iv) is identical.

Q.E.D.

a'--T

Let R = L.IR "T, where Q = LLT as above.

Theorem 4: There exists a constant 2> 0, independent of the mesh size h, such that

p(Q'R) p(R) < 0. (23)

Proof. Since R is skew-symmetric and therefore normal, its spectral radius is given by the

maximum value of the Rayleigh quotient:

.(R) - max Iv'LRL'TvXI w Rw .
EC,7,, I(vv)n EC',WYOO I.W., W)

Writing Rw in terms of the finite difference operators of (21),

Rw - -[c-(D++D_)w + (D++D)(c-w)],

.7 "-. where cu denotes the vector with entries ( Therefore

S: . : . : . ; . , . . , . . . . . -. . . . . . . . . . . . . . . . . . . . . - . . . . . . . . - . . . . , , . . , . , . - .
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(w,Rw) h [(~ D+D_)w) + (w,(D++D_)(c-w))

= -(c.w,(D++D_)w) - ((D++D_)w,(cw)) 1

by Lemma 3, (ii). Applying Cauchy-Schwarz and letting C =max lc(x)l,
REDl

I(w,RwNj : h2 II~f 2 II(D++DrI 2  C h2 1112(IID+w1 + ID wI)

< 2Ch IIW 112 (WQW) 1/2,

by Lemma 3, (iv).

Thus

hIw112
K S 2C) (wQw)'/ 2

with 0 independent of h, since

ww _mi(Q) = (h)[1.

Q.E.D.

CTf 1151 for an analysis of the convergence of the eigenvalues of Q- R to those of Q1 R.

We now return to the consideration of two-dimensional problems.

Note that applying either CGN or Orthomin(k) formally to (16) results in the residuals

so that the residual norm associated with (18) is IIL-1rII Ijr1IIQ.:. Hence, combining (15), (18) and (23)

with the results of Theorems 1 and 2:

Theorem 5: If Q is a symmetric matrix that satisfies (15), (18) and (23), then the residuals

generated by CON with symmetric preconditioning by Q satisfy

IjrjIlq_, !5 2 21 j'lroiQ.

and the residuals generated by Orthomin(k) with symmetric preconditioning by Q satisfy

2 i/

Hence, for discretized elliptic problems, the number of iterations needed to make Ilrj11lQ.I/IrOIIQIj



< is independent of mesh size.

* =Proof: For the first inequality, by (18) and (23)

Hence, applying Theorem 1,

IrIIIQ.I < 2 [1 - +2 ,lia+ flQ.1 = 2i rolqIZ.

- The second inequality is proved in a similar manner using Theorem 2.

Q.E.D.

The extra work per step required for preconditioning comes in the matrix vector products L'IALTv

and [L'ALT]Tv. Preconditioned CGN and Orthomin(k) can be implemented so that the only references

to Q have the form of solving Qw =- v, so that no factorization of Q is required (see [9]). The solve

requires O(n 2log n) operations, but the remaining work per step of both iterative methods is O(N)

O(n 2). Hence, asymptotically, the preconditioning solves are the dominant cost per step.

S. i  Corollary 8: The number of arithmetic operations required by either CGN or Orthomin(k)

with preconditioning by Q to solve (1) so that

:.II.i< (24)

lirOIIQ7'

is proportional to n2log n log -

Proof: By Theorem 5, the i'th residuals generated by both preconditioned methods satisfy

" Il~rill,' < n4

IIrOIIQ.1

where -y<1 is is a constant that is independent of mesh size, and 11=2 for CGN, V=1 for

Orthomin(k). Hence (ignoring the low order contribution of tyi=i2), i > log(')/Iog(1/Y)

iterations suffice to reduce the relative error of (24) to at most i. Since the dominant cost of

each iteration is the preconditioning solve, the total operation count is proportional to

n2log n log (4.

Q.E.D.

k.".

* . *"' ."
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The previous two results are expressed in terms of the Q'-norm of the residuals. It might be more

practical to measure the relative Euclidean norm 1jrJ112/11r 0t12. Alternatively, one might wish to reduce

the error si = u-ui to within truncation error. Since the truncation error of the discretization is O(n 2), it

is sufficient to reduce the relative error "11s2"'l012 by a factor of O(n 2) to compute a solution ui that is

accurate to within truncation error.

Corollary 7: The number of arithmetic operations required by either CGN or Orthomin(k)

with preconditioning by Q to solve (1) so that

lr112  <

I1rO112

is proportional to (n21og n)(log n + log t-1). The number of arithmetic operations required to

compute a solution accurate to within truncation error is proportional to n2(log n)2.

Proof: For the first assertion, note that

IrjiIq. > Ilri12', rOII Q1 _ 11r0112,

so that

<( 25)
11r0112 IlroIIQ-

Since r.(Q) O- (n2) [10], the left side of (25) is bounded by i if

I1rjIIQ.1 E =o-.
:;. < .o---

Iroll zi - tj

The result then follows from Corollary 6.

For the second assertion, note that the errors and residuals are related by s f A-1ri, r0 = As0 .

Hence,

118J1-2 _lr 3
ilq _r

11 Is02 Ilr0112 IrOiQ.,

To reduce the relative error by a factor of n"2, it suffices to make

l i r , 1 1 Q *1 < 0 ( 2 6 )"-- Ilrollq, L(AVK)

o . *. -* .
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But, by (8) and (9),
r.A) <5 r.M) + g(R)

- min (M)"

With M defined as in (12), XmiJM) - O(n 2) and Xm,(M) 0- (1), so that K(M) = O(n 2) (101.

Moreover, as defined in (13), all the nonzero entries of R lie in four off-diagonal bands, and

their absolute values are bounded by Ch, where

C = max [ ax tc(x,y)l, max ld(x,y) ]

is independent of h - 1/(n+l). By Gerschgorin's theorem 1201, P(R) - O(n'). Therefore,

.p{Rl/Xm(M )  O(n), so that x(A) = O(n2). Substituting these results into (26),

S= 0(n5 ), log C21 = 0(log n).

7: The result again follows from Corollary 8.

Q.E.D.

The symmetric formulation of the preconditioned problem (16) requires that the preconditioning

matrix Q be symmetric positive-definite. For non-self-adjoint problems, it seems preferable to allow Q

to be nonsymmetric by including in it a discrete separable approximation to the first order terms in (2).

Such preconditioning matrices can be used in either of the alternative preconditioned problems

AQ'ii = f, u =- Q- i, (27)

.. Q-1Au =. Q-1f, (28)

- and the cyclic reduction method can be used for the preconditioning solves [171. An additional

advantage of (27) is that the residual norm minimized by the two iterative methods under consideration

is

1f - AQ'UhiIJ2 = 11f - Au112

i.e., it is independent of the preconditioning. However, we have been unable to extend the convergence

analysis to these alternative problems (even for symmetric Q). In the analysis above, the application of

Theorems 1 and 2 requires bounds on the extreme eigenvalues of the symmetric and skew-symmetric

parts of A in (18). For (27), the symmetric part is given by (AQ'+[AQ'IIT)/2 and the skew-symmetric

part by (AQ'-[AqIIT)/2. We have not been able to bound the eigenvalues of these matrices or those

corresponding to (28) in a manner analogous to (18) and (23).

%'a-

a' a . . . a
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For an alternative approach to nonseparable M, see [11].

4. Numerical Experiments

In this section, we present numerical results that confirm the convergence analysis of Section 3 for (10)

and suggest that similar behavior is exhibited for (27). All tests were run on a VAXII-780 in double

* precision (55 bit mantissa). The fast direct preconditioning solves were performed using the cyclic

reduction method implemented in the routine BLKTRI in the FISHPACK subroutine package [19). We

consider two Dirichlet problems of the form (2) and one problem with mixed boundary conditions.

For the first two problems, let the coefficients of (3) be given by

a(x,y) - eY', b(x,y) - e'Y, c(x,y) - 0, (29)

d(x,y) - -(x+y), e(x,y) -=+ ,

where -1 is a scalar parameter. The operator A is nonseparable and, for 'f30, nonsymmetric. The right

hand side is determined by choosing the solution

u(x,y) - x exy sin (irx) sin (iry).

We pose the problem on the unit square 0<x,y51 with homogeneous Dirichlet boundary conditions, and
"- we discretize using the five-point second order centered finite difference scheme on a uniform nin grid,

with h=/(n+l). We use the values -y=5, -y=50 and h = 1/16, 1/32, 1/64, 1/128, and for one test,

1/258.

We consider both self-adjoint and non-self-adjoint separable approximations Q, which give rise to

-" symmetric and nonsymmetric preconditioning matrices, respectively. For the self-adjoint approximation,

the coefficients of (29) are approximated by

"(x,y) - a(x,.S), b(x,y) - b(.5,y), cx,y) - 0,

dxy) - 0, e(xy) -

For the non-self-adjoint approximation, d(y)=d(.5,y). We examine formulation (18) with symmetric Q

(the only possible choice), and formulation (27) with both symmetric and nonsymmetric Q. The

stopping criterion in all tests is[Iroil -< 10.

• "' ll1 -

where the norm used is

C'-
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.rjIIQ.1 for (18), rj1112 for (27).

The initial guess is u 0 O.

Tables 4-1 and 4-2 show the iteration counts for T-5 and -7=50, respectively. In the tables, both the

preconditioning formulation and its associated norm are listed.

To examine different boundary conditions, for the third problem we consider the differential equation

1121

-u, + uY) + Puz -0 (30)

on {(x,y) I x>O, y _O), with boundary conditions

u(x,O) - 0, u(O,y) - 1, (31)

u(x,y) bounded as lxi + ly" -o.

The exact solution to (30) - (31) has a boundary layer at y-O and is nearly identically one elsewhere.

Following [121, for the discrete problem we restrict (30) to the unit square and add the boundary

conditions

u(x,1) - 1, U1(l,y) = 0. (32)

We discretize on a uniform nxn grid using centered differences for all terms except at the right boundary,
.- , where we use the first order approximation

."-"0 -m Ux(Xn+l,Yjl W Unl, h n (33)

Incorporating (33) into the equations centered at {Unj)PnI results in a linear system of order N-n 2 . We

consider the value f=-10.

Because (30)-(32) is separable, the discrete problem can be solved directly by cyclic reduction. We

therefore consider only symmetric preconditioning matrices based on the discrete Laplacian, with the

discretization at the right boundary handled as in (33). The iteration counts for the same stopping

criterion, mesh sizes and initial guess as above are shown in Table (4-3).

'p .

S:.-
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I CGN II Orthomin () I

Sym. Q I Sym. Q INonsym. Q II Sym. Q ISym. Q I Nonsym. Q I
(16) I (27) (27) II (16) 1 (27) I (27) I

I irllo-i I I1r 112 11ri112 II lllI-I I 1r. 112 I 11r h112  I
------------ 4----------------------4--------+----- --------------------------

11/16 11 15 11 17 1 21 8

1/32 11 17 13 17 1 21 9

1/64 12 19 14 18 22 1 9

1/128 12 20 14 18 22 9
* 4-------4---------------------4-----------------4------------4------------4-----------------

Table 4-1: Discretization of equation (29), '7=5. Iterations to reduce residual
norm by factor of 10.6.

4--------------------------------------------------------------

I CGN II Orthomin(1)
4-------------------------------------4-------------------------------------

ISym. Q ISym. Q I Nonsym. Q II Sym. Q I Sym. Q I Nonsym. Q
I (16) I (27) I (27) II (16) I (27) I (27)
I II ,IIQ- I 'i 112 11'12 I Ir. 112 I 11r,112

4------------------4-----------------4------------4------------4-----------------

1/16 38 1 69 343 I 111 Fails 23 I

1 1/32 I 43 I 101 1 223 I 121 1 Fails 1 173 I

1/64 44 137 17 I 124 Fails I 14

1/128 1 45 166 18 I 126 IFais I1 14

11/256 -- 188 -- I ......
. ..----------- - - ----------- - ----------------------- - -

Table 4-2: Discretization of equation (29), 7-=50. Iterations to reduce residual
norm by factor of 107S.

Vor a given non-self-adjoint operator, cyclic reduction is applicable only fir small enough h (see 1171, p. 1142, or 110). For
%-=50, h m 1/16 and 1/32 are too large. These mesh sizes are handled in the experiments by reducing the contribution to Q
of the first derivatives, taking 1(y)-6(y)d(.56j) with 0<4y)<l, so the approximation of R in Q is probably less accurate in
these cases.

:W.
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--- - -- - -- - - --- - - - - - - -

I (:CGN II Orthomin(1) I
-----------.-------- ------------------

I S,.. Q I SyM. Q II SYm. Q I Sym. Q I
""'.., I (1 J I (2) II (16) i (27) I,....I IIrtllI-i I IIr.l12  II fir~riI-i I IIrIl12  I

.1/16 11 10 II 15 16I ""III I

"1/32 11 10 II 15 15 1•I"I I ,IIII
1/64 11 10 I 15 i13

,1/128 11 10 II 15 12
4"*. ----------------- -------- 4-------------------

Table 4-3: Discretization of equation (30)-(32), =10. Iterations to reduce residual
norm by factor of lffO.

These experiments confirm the convergence analysis of (16) and, with one exception, suggest that

convergence for (27) is independent of mesh size also, for both symmetric and nonsymmetric Q. The

exception occurs with T-=50, for which the iteration count for CGN is still growing at h-1/256, and

Orthomin(l) fails to converge for h< 1/128, indicating that (27) may require a very fine mesh if A is not

well-approximated by a symmetric preconditioning matrix. (The convergence failures are due to the fact

that the symmetric part (AQ-'+(AQlI)T)/2 of the coefficient matrix of (27) is indefinite for the four

mesh sizes considered.) The smaller iteration counts in Tables 4-1 and 4-2 for nonsymmetric

preconditioning matrices suggest that nonsymmetric preconditioners offer some advantage. However, the

operation counts for cyclic reduction on nonsymmetric matrices (20n 2log n + O(n2 )) are higher than

those for fast direct methods for symmetric matrices (e.g., 5n21og n + 0(n 2) for cyclic reduction; see

12, 3, 7, 18]). For the two problems examined, the asymptotic counts for symmetrically applied

symmetric preconditioners are actually lower.

Finally, we note that a comparison between these preconditioning techniques and others based on

incomplete factorizations can be found in [9].
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