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ABSTRACT
-
To estimate continuous-time averages via randomly-spaced observations of

tht a2, Ther S

discrete-event systems,‘wé'develop a point-process framework and use it to
generalize bothT{fgfnerative and stationary-process oriented simulation
methodologies. W€ give consistent estimators, central limit theorems, and an
effective bias-reducing jackknife. The impact on indirect estimation of

transaction (customer) averages is discussed.
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' \\ SIGNIFICANCE AND EXPLANATION

{flxn many stochastic systems, one is interested in estimating steady-state
expected values. When Monte Carlo simulation is used to estimate such
parameters, an assessment of accuracy, in the form of confidence intervals, is
often required. Most procedures for producing such confidence intervals
require that the simulation be sampled so that the time increments between
obgservations are all equal. This is difficult to accomplish in a discrete-
event simulation, since the clock which drives the simulation is incremented
in a random fashion._ Our purpose, in this paper, is to show how methods for

~
dealing with equally spacéa\observations can be adapted to run on the random

time scale of the driving clock for the simulation.
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ESTIMATING TIME AVERAGES VIA RANDOMLY-SPACED OBSERVATIONS
2

Bennett L. Fox"‘ and Peter W. Glynn
'.  INTRODUCTION.
Let 0 = Ty < Ty < ... Dbe event times. Though the associated sequence 71,12,...
with ik € ld is not necessarily an imbedded Markov chain, we call ik the state at

time T, - somewhat abusing the term. To define the state X(t) at an arbitrary time

t, Jinterpolate:

~

»
(1. X(t) = ) Xl o e
k0 x

k+1)

vhere the indicator I, is 1 or 0 depending on whether or not t € A. For this
definition to make sense, every state change must correspond to an event time. The state
does not change continuously. It jumps at discrete (possibly random) times. In other

words, we have a discrete-event system. Let f£ be a real-valued function. Put

t
(1.2) re) =4 f(x(s))as .
0
We solve the gteady-state problem: estimate the limjit (when it exists)

(1.3) r = lim r(t)
tow

and construct confidence intervals for r.

To do this, we develop a point-process framework and use it to generalize both
regenerative and stationary-process oriented simulation methodologies. Simply averaging
the ik'l generally inconsistently estimates r. The T,'s are not necessarily
regeneration times. We work with generally dependent observations, in contrast to

regenerative approaches.
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that are right continuous and

1.1 Shifts. We use the set of functions w : [0,») + r?
have left limits to describe the sample space §. Define X via

(1.4) X(s) = X(*,0) = w(e)

for w € 1. For any random variable R : @1 4 [0,»), define a right shift via
(1.5) 8 = ek(m(w) = (R{w) + ) .

Let A cRrd, put Sy ~ 0, and set

(1.6) Sx+q = infle > S @ X(£=) # X(¢), X(t) ¢ A}

where X(t-) is the left limit of X at ¢t. If A = R@, then 51 = T;. Define

(1.7) Pn{x € *} =p{x o esn € )}
and
(1.8) Pt{x € *} = P{x ° 8, € o}

For most simulations where the steady-state limit r exists, limit probabilities P and

P exist such that weak convergence holds:

(1.9) Py, ==> ;
and

(1.10) P, => P
where

p{xoes € *} = P{X ¢ ¢}

{(1.11)
1

and (shift invarjance)

(1.12) BX o o, € e} = F{x e ¢}

for t > 0,
Example ?.1. Let X be a delayed (resp., non-delayed) regenerative process under

P (resp., P). Assume that X regenerates when it hits A. Then P, =P for n?1
though generally Po # P,

Example 1.2.

recurrent and the regeneration-spacing distribution has a non-trivial Lebesgue component,

Let X be as in example 1.1. If the regenerative process is positive

then (1.10) and (1.12) hold (gee Miller (1972)), Also, ¥ and P are related by




-
(1.13) B{xe s} =] plx* 6, € *1 8, > tla

381 0

1

where E denotes expectation under P. In Section 3 we show that (1.13) holds more

generally.
A process X satisfying
(1.14) P{x ¢ 0y ¢ °} = P{X ¢ ¢}

1
is synchronous with respect to the imbedded point process sequence (sn}-

Example 1.3. Suppose that [;n) is a stationary sequence with xn T, = n. Then

X(t) 1is synchronous with respect to {Sn}-

From examples 1.1 and 1.3 we see that synchrc Proc g alize both non-
delayed regenerative processes and stationary sequences. Assume that the simulator
(somehow) chooses the time origin so that everything representing the initial "transient”
phase is to its left. This is trivial for regenerative processes but not in general. This

deletion assumption translates mathematically as: (1.14) holds.

Let
(1.15) % = Snet = 5y
and
X(Bn +t); 0<t < nn
(1.16) xn(t) =
L4 i to>a .
n
We assume that
(1.17) (xn} is a ¢-mixing sequence (Billingsley (1968),

pp. 166~168) with ¢-mixing coefficients satisfying

1 ¥
42 <=
k=1 k

v e + o2y < o




a
n

(1.19) ¥ (£) ‘1'1 £(x (£))at
sn+1
= | £(X(v))at .
sn

The cycle sequence {X } is not necessarily iid. If it were, we could simply apply

regenerative methodology. Three more definitions set the stage:

n-1
(1.20) Y (€)= ) ¥ (£fI/m
n k=0 k
(1.21) un = sn/n
(1.22) r, = Yn(f)/an .

1.2, Preview of results. In Section 2 we assume that (1.14)}, (1.17), and (1.18) hold,

usually without further explicit mention. We show that

(1.23) X, *r
(1.24) r(t) »+ r
(1.25) r = E¥g(£f)/Ea,

and generalize the "inspection paradox"

t o
L i) sy 198 i Pla, > s}ds/Ea, .

o |-

(1.26)

The left side of (1.26) is the proportion of time over [0,t] that the cycle in progress
had length at least x. Its limit, the right side of (1.26), is precisely that for the
regenerative case; e.g., see Bratley, Fox, and Schrage [(1983), problem 3.7.4] or Heyman
and Sobel [(1982), §5.5]. Thus, for synchronous processes the cycle in progress at time
t tends to be longer than average, thereby biasing r(t).

Next, Section 2 proves a central limit theorem (CLT);

Y.

(1.27) n’2 (r - 1) = oN(0, 1) /Ea,

1 1
(1.28) 2 (£(t) - 1) => oN(0,1)/(Eay)’2

-4-




where N(0,1) is a zero-mean, unit-variance, normal random variable,

~ - -~ ~
(1.29) o =2 ) E ()Y, )
k=1
and
(1.30) £(x) = £(x) -1 .

In other words, Yk(!) =Y, (f) - a.r. If the synchronous process X 1is either

regenerative or stationary with S, = n, the CLT simplifies. For the former, the second

term in (1.29) - corresponding to covariances - vanishes. For the latter, @, = 1. Also
(1.31) vhen A = 13,
2 ~2,~ 2 ..~‘~
0" = E£N(X )Ty + 2 kE1 £UX0 (X Vo
where
Tk.Tk+1'Tko
To estimate 02 in the regenerative case, one uses the knowledge that the covariance

terms in (1.29) vanish, to construct the estimator a::

2 1 0 2
onTme k);, X (8 = x )

2
the estimator 0§ is easily shown to be strongly conaistent for o .

In the general case, estimation of 02 is more complicated. The parameter O can

be expressed in the form
L ]

(1.32) o = [var Yy () + 2 ) eovlyy(£),x, (£))]
k=1

rlcoviyy(£),ap) + 2 k11 cov(¥o(£),a,)]

]
- r{cov(ag,Xo(£)) + 2 k£1 coviag,¥, (£))]

+

2 -
r[var a, + 2 k£1 cov(co,ak)]

e+ ot e =




the four bracketed terms appearing in (1.32) can be consistently estimated by

€ypnsC2n+C3n+Cyy (8aY); this can be accomplished by standard techniques (e.g. batch means,
spectral methods, autoregressive procedures). Such methods include parameters (e g. batch

size, spectral window, autoregressive order) which must be keyed to sample size. In any

case, the estimator o: is then given by
% T Sin " "n2n T TnSan * r§c4n .
When using r(t), replace n by
(1.33) N{t) = # Si's observed in (0,t)
Glynn and Iglehart (1981), Jow {(1982), pp. 54~56], and Streller [(1980), Theorem 3.2)
prove essentially (1.27) but under significantly different hypotheses.
From (1.27) and (1.28) we get the respective confidence intervals
r, - zaon/;n/H, r o+ :Gon/an/;]
and
[r(ty - zso:vu(t)/(t:<-:N“,_))1‘/2 , T(t) + zsow(t)/(tau(t)ﬂé}
where the percentile z6 is the unique solution of P([N(0,1) < 16] = 1 - §/2. 1If on is
a strongly consistent estimator for o, then these are asymptotically exact 100(1 - §)%
confidence intervals for r.
Under an additional assumption
(1.34 there exists K > 0 such that P{ao <K} =1
and sup{|f(x)] : x € Rd} <K
Section 2 proves that
(1.35) Er =71 - B/(Euo)zn + 0(1/n)

and finds an expression for 8. The form of (1.35) motivates a jackknife:

~

(1.36) Ton = 2ry = (x(0,n - 1) + r(n,2n - 1))/2
where
b b
(1.37) rla,b) = { | Yj(f))/( I a)
j=a jua 3
and
-6_




i

(1.38) Brzn = r + 0(1/n)
reducing bias by an order of magnitude.
Sometimes there is no bias. If Sp = Tn = n, then Etn = r.

For another case, let A = Rd

and suppose that the Ty,'s see time averages. For the
latter, suppose that
(1) N(t) 4is a stationary Poisson process
(1i) for each t » 0, {X(s-) : 0 € 8 < t} is independent of
{N(t + u) - N(t) : u > 0}.

Wolff (1982) shows that, if r(t) + r a.s., then
- n-1
1 ~
(1.39) " } £X)+r  a.s.
k=0

Since the summands are identically distributed, Ern = r. Section 2 concludes by proving
that

(1.40) v2n (ry, ~ ) ==> oN(0,1)/Ea, .

Combining (1.27) and {1.40), we see that ;2n and r,, have the same asymptotic
variance. So our jackknife reduces bias without increasing variance.

Section 3 begins by proving that
1 t. ~
(1.41) -] Plxe 08 ¢ «}ds + P(X € o}
to 8

where P satisfies (1.13), still assuming that (1.14), (1.17), and (1.18) hold. The point
is that (1.13) remains valid when X 1is (merely) synchronous. Franken et al. [(1982),
Chapter 1] show that it holds under even weaker conditions.

When X is regenerative, P{X e +} = B{x o 951 € *}, “inverting” (1.13). This
simple inversion generally fails, assuming only (1.9)=(1.12). Recall that under P, the
cycle trapping a fixed time tends to be longer than a typical cycle. 1In the regenerative

case, only the actual trapping cycle is affected, due to independence of cycles. In

general, however, neighboring cycles are also affected due to cycle correlation. Franken

-7-
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we

et al. [(1982), p. 23] show that the general inverse to (1.13) is

(1.42) P{X g <} = !

>

-«
) PlXxXed_ €+55 <1}
x=1 Sx k

where A = EN(1) and E denotes expectation under B, Comparing (1.11) and (1.14), we

see that X is synchronous under P, the Palm distribution of B, Here X is the

intensity of 3, and X 1is gtationary under 7.

Chapter 1 of Franken et al. (1982) thoroughly discusses the relationships between P
ana P and proves an intuitive alternative to (1.42):
(1.43) P{X € *} = lim B(X o 8, € *ls, <h}.
ht0 1
This shows that the Palm distribution ; is the stationary dist- c¢ion P conditioned on
hitting A at time O.

We want (1.12) to hold with P replacing B. This means the simulator (somehow)
deletes the entire transient phase, choosing the time origin so ne nis phase is to its
left. Typically this is impossible to do exactly in practice, but to proceed
mathematically we assume it has been done exactly. This translates as
(1.44) P(X ¢ 8, € *} =P(Xxe +}
holds. This is stronger than (1.14) because FEr(t) = r under (1.44) but not generally
under (1.14), In fact (1.44) usually holds literally only if the initial state is

generated by the (generally unknown) stationary distribution P. Even for regenerative

processes, where synchronization via (1.14) is trivial, making (1.,44) hold even to a first
approximation is generally hard. Nevertheless, in the rest of this section and in Section
3, usually without further explicit mention, we assume that (1.44) holds and that, under
; but not necessarily under P, (1.14}, (1.17), and (1.18) hold. By contrast, Section 2 ,
agsumes that (1.14), (1.17), and (1.18) hold under P.
Several counterparts to results in Section 2 are proved in Section 3. There we show
that, under 3, r(t) is (still) strongly consistent and

- 1
(1.45) JE (xit) = 1) => aN(0,1)/(Eay)"2

-8- ;




where

-~ -~ « ~ - -~
(1.46) olery ()42 ) m_(D)Y(E) .
0 0 k
k=1
This CLT corresponds to (1.28) with E (expectation under P) replacing E. Estimate
02 and construct confidence intervals just as before.
The stationarity assumptions (1.14) and (1.44) can be significantly relaxed. Our

CLT's can be extended to include certain nonstationary processes by appealing to

Billingsley [((1968), Theorem 20.2]. Furthermore, our discussion carries over to the

steady-state estimation problem for

-
1
r=lim<- ) £(X(U )1 (t)
com & koo kUo,u ]

(when the limit exists), where the U,'s are an increasing sequence of random times. Such
limits are of interest, for example, in queues where lump-sum rewards are payed out to the
server at customer departure epochs. Our arguments go through provided that one modifies
the definition of Y (f) to

Y (£) = ) £(x(v

NI
3
=0

(u,) »
(8, +Sp0q) '3
1.4 Transactions. To essentially every time average r there corresponds a transaction
(customer) average s and conversely. Heyman and Stidham (1980) and Heyman and Sobel
[(1982), §11.3) establish this correspondence explicitly. Thus, every estimator of r

yields an indirect estimator of s and conversely. In our framework, Section 4 indicates

that on balance estimating 8 indirectly is often better than estimating it directly.
This conclusion appears contrary to some folklore.

Readers wishing to skip to Section 4 can do so without loss of continuity.




2, RESULTS AND PROOFS; I.

Throughout this section we assume that (7.14), (1.17), and (1.18) hold under P.
THEORFM 1. PFormulas (1.23), (1.24), and (1.25) hold a.s.

Proof. First, observe that (Yn(f),an) is trivially a functional of xn(-) and thus
f(Yn(f),an) : n» 0} is ¢-mixing with the same mixing coefficients as the X, 's. Since

any 4-mixing sequence is ergodic (Lamperti (1977), pp. 95-96), apply Birkhoff's ergodic
theorem (Heyman and Sobel (1982), p. 366) to conclude that
(2.1 Y (£) + EY_(f) a.s.

n 0
(2.2) a_ * Eqg a.s.

n 0

proving {1.23) with r given by (1.25). With N(t) defined by (1.33),
(2.3) Sn(p)/N(t) € e/N(L) € Sy(pyaq/Nit)

from the definitions. From N(t) ¢+ » a.s. and (2.2), the extreme terms of (2.3) converge

to Ea, a.s.; as t/N(t) gets squeezed, it converges to Ea;, a.s. For nonnegative f¢,

1 N(t) % < ¢ 1 (N(t) + 1y 5 .
(2.4) t (N(t) + 1) yN(t)lf) r(t) t ( N(t) ) N(t’+1(f)

Apply WN(t) ¢+ = a.s., (2.1), and N(t)/t » 1/Ea, a.s. to quickly see that the extreme
terms of (2.4) converge to r given hy (1.25), provina (1.24) for f > 0. Split a
general f into its positive and negative parts, apply (1.24) to each, and recombine. To

justify the last step, use (ElY,'(fH)2 < EY1(5)2 <® by (1,18}).
THEOREM 2. Formula (1.26) holds.
Proof. Observe that

Sn+1
(2.5)

-

I
0

n
1
Tix,o Onesy 198 =51 kio AT tx,m) (%) > Elagr 8 > ) aus.

=10~




e s o Ad s

(x{x:a)} § EXI, where 1, is 1 or 0 depending on whether or not A occurs) and then

mimic the proof of Theorem 1.
THEOREM 3. Formulas (1.27) and *.28) hold.

Proof. The sequence (Yk(;)} is ¢-mixing with zero mean. It satisfies the conditions of
Billingsley (1968), Theorem 20.1, and hence
{2.6) /n ¥ (£) => on(0, 1)
as n + ®; for ¢ = 0, see Billingaley (1968), p. 177. Rewrite (2.6) as
(2.7 /na (r - 1) =>aN(0,1) .
Now (1.27) follows from (2.7 , (2.2), and a routine application of the converging-together
lemma (Billingsley (1968), p. 25).

For (1.28), let {tn} be an arbitrary sequence converging to ®. Apply Billingsley's
[(1968), p. 146] random time change theorem to the weak invariance principle version of
(2.6) to get

(2.8) 4 N(tk) (f) ==> oN{(0,1)

Y
N(tk)

as k * ®, Another application of the converging-together lemma then yields

(2.9) ft.: (r r) ==> oN(0,1)//Ea,

N(tk)

using N(t)/t + Ea, proved just after (2.3) and /N(t,) = /t_ /N(t )/t . Clearly
0 k k k

(2.10) e

X TNee) rie)) < /ey 1£1)/8

( .
N(tk) N(tk)
Combining a standard Borel-Cantelli argument and EYk(lfl)2 < & proves that
(2.11) v, UeNNk» 0 a.s.

But the right-hand side of (2.10) can be rewritten as

V.
2 [
(e, /N(e, )2 ,(ltl)/rﬂ(—tk))(ﬂ(tk)/s )

Y
N(tk N(tk)
1& -
which, by (2.11), converges to (an) '0'(!co) = 0. Apply the converging-together lemma

-il=




to (2.9) and (2.10) to get (1.24) for t going to = through the sequence ¢t,. Because

that sequence is arbitrary, (1.24) holds without qualification (see Billingsley (1968), p.
16).

Now also assuming (1.34) we have

THEOREM 4. Formula (1.35) holds with
-~ At -~ -~
(2.12 B = Ea ¥ (f) + k£1 (BagyY, (£) + EY (fla ) .
Proof. The infinite series for B converges absolutely by a remark of Billingsley (1968),

p. 177. Turning to the bias expansion itself, observe that

(2.13) r -r= Yn(f)q(on)
where
(2.14) glx) = 1/x .

Choosing £ small enough,
(2.15) sup{g™(x) : |x - Bayi < e} s M <cw,
Letting event B, = {|;n - Eagl < €}, use (1.34) and then Chebyshev's inequality to get

c ~ -
(2.16) |z{rn s Bn}l ¢ kP{la - Eag| > €}

- 4,4
< xB(un Euo) /e° .

By Billingsley [(1968), lemma 4, p. 172],
- 4 =2
(2.17) E(an an) 0(n 7) .
Next
Elr -} =~B{r_ -1 B} +E(r -1 8.

n n n n n

Combining (2.16)-(2.17) gives
-2

(2.18) E{rn r} E(rn ri Bn) +0(n %) .
On the event B, expand q(En) in a Taylor series around Fag to get

(2.19) E{rn - ry Bn) =S5+ 7T

where




AT TR = L v was Aot

(2.20)

(2.21)
and

(2.22)

o

8 = (¥ ()< (a_ ~ 2a,)}sn }
n lao (u,z n OJn

0

= 7 (£)g" a - 2
T = B{¥ (£)g"(E )(a@ - Xa,)“/2:B }

14 -lu°|<c.

n

Apply Cauchy-Schwartz and then Billingsley [(1968), Lemmas 3 and 4, p. 172]) to get

(2.23)

T n(vn(i)z)‘/’(:(an - ma9 "2 c 0™

An arqument similar to that justifying (2.18) gives

(2.24)

tF (32 2 -2
8 = -s(f (£)a )/(Bag)® ¢+ 0n™) .

A simple calculation shows that

(2.28)

with $8 given by (2.12).

s(fn(e)an) = 8/n + o{1/n)

COROLLARY. Jackknifing works: (1.38) holds.

THEOREM 5. Formula (1.40) holds.

Proof. By the converging-together lemsa, it suffices to prove that

(2.26)

in probability.

/;(rzn~ )+ 0

'zn

Straightforward algebra shows that the left side of (2.26) equals

(2.27) /n By(Cy - Dy)/(C, + D)
where
B, = r(0,n -~ 1) = r(n,2n = 1)
Cp =a(0,n - ¥)/n
Dp = a(n,2n - 1)/n
ala,b) = ; ay -
J=a
An argument he proof of (1.27) shows that
(2.28) /a3, => /2 oN(0,1)/Ray .
13-
E E—,—— . ————————

Combining (2.18)-(2.25) gives (1.35), finishing the proof.




Clearly
(2.29) Ch~Dp* O

Combining (2.27) through (2.29) verifies (2.26).

-14-




3. RESULTS AND PROOFS: 1II.

Theores 6. Assume that (1.14), (1.17), and (1.18) hold under P. Then, there exists a

probability ; such that:

t . ~
[ eix - 8, € las + F{x e ) as t o=

0

1)

LA

11) F{x-e“c-}-i{xc-) for u>o

L -
1) Blxe o) = [ Px* 8, € 18, > s}as.

l810

Proof. let f Dbe a bounded nonnegative functionon Q. For X € I, set

!u(x) = £(X ¢ Ou) and put

-]
1
g, (X} = ‘!, £,0X %0 )48 = go(x ¢ 8 ) |

Proceeding as in the proof of Theorem 1, Birkhoff's ergodic theorem proves that

S _+u
3 n-1 4,0 -
- L4 - .
(3.1) - )y g, (x* 81~/ £(X ¢ 6,)ds » Eg (X)
k=0 k u
P a.s., as n + «. The "squeeze" argument of (2.4), applied to (3.1), can be readily
adapted to show that
1 ust t - IS
=f f{x*0 )as » T Eg (X *8) P a.s. .
t s 0 u
u ES
1
It follows, from bounded convergence, that !
1 t -~ 1 -
- L [ [ ]
: g EL(X © 0.)ds » = Eg.(X * 0 )
l81 |

as t + »; in particular, specializing f to indicator functions yields

-15-




t -
1,5 1 -
(3.2) T % P(X *8 € }am+x—) P(X*B °6 ¢ 5 >slds

ES1 0

as t + =, Setting u =0 in (3.2) proves 1) and iii). For ii), observe that the left-
hand side of (3.2) is independent of u.

Throughout the remainder of this section, we assume that (1.14), (1.17), and (1.18)
are in force for ;: and that P denotes probability under the measure ? constructed in

Theorem 6.

THEOREM 7.

(3.3) Plr(t) » r} = 1.
Proof. Use definitions and then the fact that (1.24) holds under P to get

(3.4) P{r(t) o eB *r1 8, > s}

t

- 8+ -
= »{J £(X(u))du/t + r; S, > 8} = P(s, > s} .
s

1
Now integrate formula (3.4) with respect to s from 0 to e. On the right we get :s‘,
positive by our assumptions. On the left, use dominated convergence to take the limit with
respect to t inside the integral and then (1.13) to get Pir(t) » r]ES" Cancelling

ES, from both sides gives (3.3).

1

THEOREM 8. Under P formulas (1.45) and (1.46) hold.

Proof. For any x,

-16=




P{/E (r(e) - z) * 0, ¢ x 8, > s}

t ~
£(X(u)) < x|8, > s}{8, > s} .

- [ s
= p{ (/T )
s
By Billingsley [(1968), Theorem 20.2] the conditional probability above converges to the
appropriate normal probability as t ¢ ®, for every x and s. Integrate both sides of
(3.5) with respect to s from 0 to =, use (1.13) to see that the left side equals
P/t (r(t) = 1) ¢ x)is,, use dominated convergence on the right to take the limit with
respect to t inside the ocuter integral, and recall that any nonnegative random variable
-
2 has expectation g P{2 > t}dt. Cancel ;S' from both sides of (3.4) integrated as

above to get that P{/: (r(t) = r) € x} converges to the appropriate normal prooability.

A routine calculation verifies (1.46).
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4. INDIRECT ESTIMATION OF TRANSACTION AVERAGES.

Suppose a performance measure s aggregates costs for transactions moving through the
system. Let transaction i arrive at time Ai and leave at time B,. Put
Dy = By ~ Aj. Assums that the cost associated with transaction 1 is 91(01) and that
the average cost
(4.1) s = ;i: [91(01) + . * gn(Dn)]/n
exists a.s.; clearly
(4.2) s, = {g (D) + ... + g (D }]/n
consistently estimates s. Our discussion carries over to more general transaction
averages. We use s for concreteness.

In the notation of Section 1, state ;k includes the value of A for every
transaction i in the system at time Ty and
{4.3) £x(t)) = [ gi(t - A,)
where the sum is over those transactions 4§ for which Ai <€t « Bi' Here gi is the
right derivative of g; and by definition g{(d) =0 for d <0 and for 4 > Dy. This
setup allows rather general gi's. though not indicators.

Now call the arrival rate \. Assuming all limits exist, r = As by Heyman and
Stidham (1980). Usually A is simply the reciprocal of the expected arrival spacing. 1In
more general cases such as batch arrivals with batch size and spacing dependent, the theory
developed earlier in this paper shows how to estimate ).

We can choose whether to observe discretized observations Y (£) as detailed earlier

or transaction observations 9;(D;). Our choice is based on four criteria:

(i) Ease of data collection. Formula (4.3) indicates that gathering discretized

observations at state-change epochs is more work, but probably not muich more because the
evolution of the system has to be simulated in any case. Gathering discretized
observations f(X(t)) at (reasonably short) equally-spaced intervals that do not

necessarily correspond to state-change epochs may be much more work.

(11) True variance. Some believe that Asn always has smaller variance than r

where n is the number of transactions completely processed up to event epoch m. To some

~18-




extent the results of Carson and Law (1980) for special cases support this folklore, but

Cooper's ((1981), pp. 293-296] example shows that it is untrustworthy.

(i1i) Variance estimation. Folklore has it that the sequence of transaction observations

§ {gi(bi)} is covariance stationary if and only if the sequence of discretized observations
{Yn(;)} is covariance stationary. Thus, loosely speaking, any variance-estimation
technique (e.g., via batch means, spectral analysis, autoregressive representations,
functional limit theorems) applies to both or to neither. 1In practice, however, one has to
ask at what sample sizes asymptotic results reasonably apply: the faster covariance falls
off with increasing lag, the better. Generally, for discretized observations, covariance
does drop fairly quickly. By contrast, especially in systems that are not first-in, first-
out (FIFO), a series of transaction observations scrambles past, present, and future and
cuts connections between time spacing and index spacing. Thus, covariance between widely-
spaced observations may well be significant. This messy covariance structure is hard to
handle, at least with practical samaple sizes.
(iv) Bias. The acrambling effect mentioned in point (iii) above may make it harder to
detect (and hence attenuate) initialirzation bias for transaction cbservations.
Incompletely processed transactions cause termination bias for transaction observations,
exacerbated by the "inspection paradox" discussed earlier. For discretized observations,
L is generally biased but our jackknife using ;n makes this bias nearly negligible.

We conclude that, at least for non-FIFO systems, indirect estimation via discretized
observations has more advantages than disadvantages relative to direct estimation via
transaction observations. The results developed in the preceding sections make statistical
analysis of the former possible and practical.

Asymptotically, s = r/A. Estimate s by plugging in consistent estimators for «r
and A. If, as is usual, XA 1is known, then divide confidence limits for r by A to get
confidence limits for s. If )\ has to be estimated, a straightforward ratio-estimator
analog of the methods discussed in this paper must be used to obtain an asymptotically

exact confidence interval.
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