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ABSTRACT

To estimate continuous-time averages via randomly-spaced observations of

discrete-event systems, w6'develop a point-process framework and use it to

generalize both regenerative and stationary-process oriented simulation

methodologies. -4W give consistent estimators, central limit theorems, and an

effective bias-reducing jackknife. The impact on indirect estimation of

transaction (customer) averages is discussed.
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SIGNIFICANCE AND EXPLANATION

iIn many stochastic systems, one is interested in estimating steady-state

expected values. When Monte Carlo simulation is used to estimate such

parameters, an assessment of accuracy, in the form of confidence intervals, is

often required. Most procedures for producing such confidence intervals

require that the simulation be sampled so that the time increments between

observations are all equal. This is difficult to accomplish in a discrete-

event simulation, since the clock which drives the simulation is incremented

in a random fashion. Our purpose, in this paper, is to show how methods for

dealing with equally spaced, observations can be adapted to run on the random

time scale of the driving clock for the simulation.
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ESTI ATING TIME AVERAGES VIA RANDONLY-SPACED OBSERVATIONS

Bennett L. Fox I and Peter W. Glynn
2

1. INTRODUCTION.

Let 0 - To < Ti < ... be event times. Though the associated sequence 102 ...

withik C R
d  

is not necessarily an imbedded Markov chain, we call the state at

time Tk  - somewhat abusing the term. To define the state X(t) at an arbitrary time

t, interpolate:

(1.1) Xlt) " 0 XkI[ T (t)

where the indicator 1A is 1 or 0 depending on whether or not t £ A. For this

definition to make sense, every state change must correspond to an event time. The state

does not change continuously. It juqps at discrete (possibly random) times. In other

words, we have a discrete-event system. Let f be a real-valued function. Put

t
(1.2) r(t) - I J f(x(s))ds

0

We solve the steady-state problems estimate the limit (when it exists)

(1.3) r = lim r(t)

and construct confidence intervals for r.

To do this, we develop a point-process framework and use it to generalize both

regenerative and stationary-process oriented simulation methodologies. Simply averaging

the Xk 'a generally inconsistently estimates r. The Tk '  are not necessarily

regeneration times. We work with generally dependent observations, in contrast to

regenerative approaches.
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1.1 Shifts. We use the set of functions iN [0,-) + Rd that are right continuous and

have left limits to describe the sample space $2. Define X via

(1.4) x(') - X(',W) - ,.)

for w £ fn. For any random variable R : fl + (0,.), define a right shift via

(1.5) a =R(i)(in) = 9CR(u) + .) 

Let A C 1d, put so - 0, and set

(1.6) sk+1 - inf(t > sk : X(t-) * X(t), X(t) C A)

where X(t-) is the left limit of X at t. If A - Rd, then Si - Ti. Define

(1.7) %X C P{x 8 • C.
n

and

(1.8) P {x .} = P{X • 8 a .}

For most simulations where the steady-state limit r exists, limit probabilities P and

P exist such that weak convergence holds:

(1.9) Pn -, 

and

(1.10) Pt >

where

(1.11) P{X * 8 a .} -C P{X .

and (shift invariance)

(1.12) P{x * 8 £ .1 - a{ '1.
t

for t - 0.

Example 1.1. Let X be a delayed (reap., non-delayed) regenerative process under

P (resp., P). Assume that X regenerates when it hits A. Then Pn " P for n > I

though generally P0 * P.

Example 1.2. Let X be as in example 1.1. If the regenerative process is positive
t.

recurrent and the regeneration-spacing distribution has a non-trivial Lebesgue component,

then (1.10) and (1.12) hold (see Miller (1972)). Also, P and P are related by

-2-



1.13) PxC f ,. I et C 8 > t}
3S1 0

where E denotes expectation under P. In Section 3 we show that (1.13) holds more

generally.

A process X satisfying

(1.14) Px* - P{X C

is synchronous with respect to the imbedded point process sequence (S ).

Zxam2le 1.3. Suppose that {X ) is a stationary sequence with Xn -T - n. Then

n

X(t) is synchronous with respect to (S n.

From examples 1.1 and 1.3 we see that synchronous processes generalize both non-

delayed regenerative processes and stationary sequences. Assume that the simulator

(somehow) chooses the time origin so that everything representing the initial "transient*

phase is to its left. This is trivial for regenerative processes but not in general. This

deletion assumption translates mathematically as: (1.14) holds.

Let

(1.15) an 
= 
Sn+l - Sn

and

11.16 Xnlt = {V
s n + 

t)l 0 4 t < an

(1.16) X Wt
nn

We assume that

(1.17) (X I is a #-mixing sequence (Billingsley (1968),n

pp. 166-168) with #-mixing coefficients satisfying

k.1 k

and

(1. 18) CYn(IfI) 2 + 2 < -
nn

where

-3-



n

(1.19) Yn(f) f(X (t))dt0

Sn+l

= j f(X(t))dt
S
n

The cycle sequence {Xn}  is not necessarily iid. If it were, we could simply apply

regenerative methodology. Three more definitions set the stage:

n-1
(1.20) Yn () = I Yk(f)/n

k-0

(1.21) - S /n

n n

(1.22) r (f)/a
n n n

1.2. Preview of results. In Section 2 we assume that (1.14), (1.17), and (1.18) hold,

usually without further explicit mention. We show that

(1.23) rn + r

(1.24) r(t) + r

(1.25) r = EY0 (f)/Ea0

and generalize the "inspection paradox"

(1.26) 1 (a )ds + P{a > sds/E 0 .

0 (x,') N(s) d

The left side of (1.26) is the proportion of time over [0,t1 that the cycle in progress

had length at least x. Its limit, the right side of (1.26), is precisely that for the

regenerative casei e.g., see 8ratley, Fox, and Schrage ((1983), problem 3.7.41 or Heyman

and Sobel 1(1982), 15.51. Thus, for synchronous processes the cycle in progress at time

t tends to be longer than average, thereby biasing r(t).

Next, Section 2 proves a central limit theorem (CLT);

(1.27) n/2(r. - r) > N(0,1)/Ea0

(1.28) t 2 (r(t) - r) -> cN(O,1)/(Ea0 )
1 2
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where N(O,1) is a zero-mean, unit-variance, normal random variable,

(1.29) a 2 _ ifO(;) 2 7 EYo0(;)Y k(
@2 )2 +2

k-1

and

(1.30) f(x) - f(x) - r

In other words, Yk(;) - Yk(f) - akr. If the synchronous process X is either

regenerative or stationary with Sn - n, the CLT simplifies. For the former, the second

term in (1.29) - corresponding to covariances - vanishes. For the latter, an 
= 

1. Also

(1.31) when A - R
d ,

ar - If2(X )T + 2 0~ fO(krll'k
k l

where

Tk - Tk+1 - Tk

To estimate a2 in the regenerative case, one uses the knowledge that the covarience

terms in (1.29) vanish, to construct the estimator 
a2
n

2 2

2 1 L ( f-rnt)2

n n'" Iki (k~f -

the estimator 02 is easily shown to be strongly consistent for a
2
.n

In the general case, estimation of a2 is more complicated. The parameter 02 can

be expressed in the form

(1.32) 02 -
[
var Y (f) + 2 coV(Yol)Yklfl) ]

k-i

- r[cov(Yo(f),ea) + 2 k cov(Yolf),uk)]

- r[oov(aoYo0(f)) + 2 cov(aOYk(f))]k.1

+ r 2 [var a 0 + 2 k cov(a0,ak)]

kii



the four bracketed terms appearing in (1.32) can be consistently estimated by

Clnlc2nlc3nlc4n (say); this can be accomplished by standard techniques (e.g. batch mans,

spectral methods, autoregressive procedures). Such methods include parameters (e 9. batch

size, spectral window, autoregressive order) which must be keyed to sample size. In any

case, the estimator 02is then given by
n

a -cin rncn - rc + rc
n In n n n3n nc4n

When using r(t), replace n by

(1.33) N(t) - # Si's observed in (O,t]

Glynn and Iglehart (1981), Jow 1(1982), pp. 54-56], and Streller [(1980), Theorem 3.2]

prove essentially (1.27) but under significantly different hypotheses.

From (1.27) and (1.28) we get the respective confidence intervals

[r n- z aa/a 'fl r + z a/aV'n]

anti

[r(t) - z M0N t)/tcrt)1/ , r~t W 4*t (t 1.

where the percentile zer is the unique solution of Pcn(0,1) t z i1 6/2. If is

a strongly consistent estimator for a, then these are asymptotically exact 100(1 0%

confidence intervals for r.

Under an additional assumption

(1.34 there exists K > 0 such that P{ f K 1

and sup{If(X)l x C R0 } . K

Section 2 proves that

(1.35) Er r - /CE ) 2 n + 0(1/n)

and finds an expression for 8.The form of (1.35) motivates a jackknife:

(1.36)2r

2n 2r 2 n - (r(,n - 1) + r(n,2n M/

where

b b
(1.37) r(ab) I ( S o(f))( a i(

Ja j-a

and
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(1.38) Ern = r + 0(1/n)
2n

reducing bias by an order of magnitude.

Sometimes there is no bias. If Sn - Tn - n, then Ern r.

For another case, let A - Rd and suppose that the Tk's see time averages. For the

latter, suppose that

(i) N(t) is a stationary Poisson process

(ii) for each t ) 0, {X(s-) : 0 4 s 4 t} is independent of

{N(t + u) - N(t) u o 0).

Wolff (1982) shows that, if r(t) + r a.s., then

n-1

(1.39) r . -i f(Xk) 4 r a.s.( . 3 n k . k

Since the summands are identically distributed, Er n r. Section 2 concludes by provingn

that

(1.40) /2n ( - r) -> at(O,1)/* o .

Combining (1.27) and (1.40), we see that r2 n and r2n have the same asymptotic

variance. So our jackknife reduces bias without increasing variance.

Section 3 begins by proving that

I t .
(1.41) . I P{x e £ .ds + R(X e .1

0

where P satisfies (1.13), still assuming that (1.14), (1.17), and (1.18) hold. The point

is that (1.13) remains valid when X is (merely) synchronous. Franken et al. [(1982),

Chapter 1] show that it holds under even weaker conditions.

When X is regenerative, P{X E } = 3X* BS1 C *I, "inverting" (1.13). This

simple inversion generally fails, assuming only (1.9)-(1.12). Recall that under P, the

cycle trapping a fixed time tends to be longer than a typical cycle. In the regenerative

case, only the actual trapping cycle is affected, due to independence of cycles. In

general, however, neighboring cycles are also affected due to cycle correlation. Franken
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at al. [(1982), p. 23] show that the qeneral inverse to (1.13) is

(1.42) ;{X ifx S es 1)
A k1 S k k

where A = iNf1) and i denotes expectation under P. Comparing (1.11) and (1.14), we

see that X is synchronous under P, the Palm distribution of P. Here A is the

intensity of P, and X is stationary under P.

Chapter 1 of Franken et al. (1982) thoroughly discusses the relationships between

and P and proves an intuitive alternative to (1.42):

(1.43) P{X £ .} = lim !{X • 8 S .Is1 v h)

h40 1

This shows that the Palm distribution P is the stationary dist- 2 'n P conditioned on

hitting A at time 0.

We want (1.12) to hold with P replacing P. This means the simulator (somehow)

deletes the entire transient phase, choosing the time origin so mi nis phase is to its

left. Typically this is impossible to do exactly in practice, but to proceed

mathematically we assume it has been done exactly. This translates as

(1.44) P{X * 8t E -) = P(X e -)

holds. This is stronger than (1.14) because Er(t) - r under (1.44) but not generally

under (1.14). In fact (1.44) usually holds literally only if the initial state is

generated by the (generally unknown) stationary distribution P. Even for regenerative

processes, where synchronization via (1.14) is trivial, making (1.44) hold even to a first

approximation is generally hard. Nevertheless, in the rest of this section and in Section

3, usually without further explicit mention, we assume that (1.44) holds and that, under

P but not necessarily under P, (1.14), (1.1'), and (1.18) hold. By contrast, Section 2

assumes that (1.14), (1.17), and (1.18) hold under P.

Several counterparts to results in Section 2 are proved in Section 3. There we show

that, under P, r(t) is (still) strongly consistent and

(1.45) rt (r(t) - r) > N(0,1)/(Ee 0 )
12

-8-



where

2 2
EY0M +2 ry UTOMyk (f

k-1

This CLT corresponds to (1.28) with i (expectation under P) replacing R. Estimate

a2 and construct confidence intervals just as before.

The stationarity assumptions (1.14) and (1.44) can be significantly relaxed. Our

CLT's can be extended to include certain nonstationary processes by appealing to

Pillingeley ((1968), Theorem 20.2]. Furthermore, our discussion carries over to the

steady-state estimation problem for

r -lim ) f(X(lk))I{O'Uk It)
t+" k.0k

(when the limit exists), where the Uk's are an increasing sequence of random times. Such

limits are of interest, for example, in queues where lump-sum rewards are payed out to the

server at customer departure epochs. Our arguments go through provided that one modifies

the definition of Yn(f) to

n (f) - j f(X(UMj))IS nSn+ll ) (i -aO +

1.4 Transactions. To essentially every time average r there corresponds a transaction

(customer) average s and conversely. Heyman and Stidham (1980) and Heyman and Sobel

(1982), 111.3] establish this correspondence explicitly. Thus, every estimator of r

yields an indirect estimator of a and conversely. In our framework, Section 4 indicates

that on balance estiratina s indirectly is often better than estimating it directly.

This conclusion appears contrary to some folklore.

Readers wishing to skip to Section 4 can do so without loss of continuity.

-9-



2. RESULTS AND PROOFS; I.

Throughout this section we assume that (1.14), (1.17), and (1.18) hold under P.

THEOREM 1. Formulas (1.23), (1.24), and (1.25) hold a.s.

Proof. First, observe that (Yn(f),mn) is trivially a functional of Xn(.) and thus

((Yn(f),1n) : n ) 0) is $-mixing with the same mixing coefficients as the Xn's. Since

any $-mixing sequence is ergodic (Lamperti (1977), pp. 95-96), apply Eirkhoff's ergodic

theorem (Heyman and Sobel (1982), p. 366) to conclude that

(2.1) Y (f) - EY0(f) a.s.

(2.2) a + Ea0 a.s.

proving (1.23) with r given by (1.25). With N(t) defined by (1.33),

(2.3) SN(t)/N(t) 4 t/N(t) 4 SN(t) I,/N(t)

from the definitions. From N(t) 4 * a.s. and (2.2), the extreme terms of (2.3) converge

to Ea0  a.s.; as t/N(t) gets squeezed, it converges to Ea. a.s. For nonnegative f,

(2.4) 1( N(t) ) V If , 1 (N(t) + I) - (f)2.)t "N t + 1
) 

N(t) t" N(t) " N(t)+1

Apply N(t) + - a.s., (2.1), and N(t)/t + I/EO0  a.s. to quickly see that the extreme

terms of (2.4) converge to r given by (1.25), proving (1.24) for f > 0. Split a

general f into its positive and negative parts, apply (1.24) to each, and recombine. To

justify the last step, use (EIY1 (f)I)2 < EY1 (f)2 < - by (1.18).

THEOREM 2. Formula (1.26) holds.

Proof. Observe that

S
n+1 n

(2.5) I (" L N(s) Ids - %I I.,- ) E{a 0 a o x) a.s.

-10-



(Lt[X;A} EX IA where 1 is I or 0 depending on whether or not A occurs) and then

mimic the proof of Theorem 1.

TPEORD4 3. Formulas (1.27) and 1.28) hold.

Proof. The sequence {Y k(;) is #-mixing with zero mean. It satisfies the conditions of

Billingsley (1968), Theorem 20.1, end hence

(2.6) /n C (f) --> N(0,1)n

as n * -, for a - 0, see Billingsley (1968), p. 177. Rewrite (2.6) as

(2.7) /n a (r - r) -> *N(O,1)n n

Now (1.27) follows from (2.7 , (2.2), and a routine application of the converging-together

Iemma (Billingsley (1968), p. 25).

For (1.28), let (t n)  be an arbitrary sequence converging to -. Apply Billingsley's

[(1968), p. 1461 random time change theorem to the weak invariance principle version of

(2.6) to get
(2.8) N (t(f) -> ON(0,1)

(28 1Ntk N(tk

as k A . Another application of the converginq-together lemma then yields

(2.9) At (r - r) - G(0e/

using N(t)/t r0 proved just after (2.3) and /i TT ) - I t / )/t Clearly

(2.10) /ti ,r - r(t)I r /tk Y N(t f)/S (t
kc N(tc kc ) ktk

Combining a standard Borel-Cantelli argument and EYk(Ifl) 2 < _ proves that

(2.11) Y k(If)//k * 0 a.s.

But the right-hand side of (2.10) can be rewritten as

(t /N(t ))
2 
*( (IfI)/(tN( t I )

I Ic N(t k Nct k

which, by (2.11), converges to (Ma0 2.0o(a 0 ) - 0. Apply the converginq-together lemma

-11-



to (2.9) and (2.10) to get (1.24) for t going to * through the sequence tk. Because

that sequence is arbitrary, (1.24) holds without qualification (see Billingsley (1968), p.

16).

Now also assuming (1.34) we have

THEOREM 4. Formula (1.35) holds with

(2.12 B - F 0Y0 (f) + ( 0Yk(f) + (f)%)
k.1

Proof. The infinite series for B converges absolutely by a remark of Billingsley (1969),

p. 177. Turning to the bias expansion itself, observe that

(2.13) rn - r = i n()g(i n

where

(2.14) g(x) - 1/x

Choosing £ small enough,

(2.15) sup{g"(x) : Ix - E01 ( } = M <

Letting event Bn = {I~n - EM01 ( £), use (1.34) and then Chebyshev's inequality to get

(2.16) IE{r - r; BC1 1 e KP{I; - Ca I > 0)
n n n 0

n 4
-C KEGa EQo)4/C 4

By Billingsley (1968), lemma 4, p. 1721,

(2.17) ( - 0)4 . 0(n-2

Next

E{r - r) - E{r - r; B I + Er - r; 8c

Combining (2.16)-(2.17) gives

(2.18) E{r - rl = Efr - r B + 0(n
- 2 )

n n n

On the event Bn, expend g(& n in a Taylor series around re0 to get

(2.19) E{r ri B n S + T

where

-12-



(2.20) S Nf 20 )~2- 2( OJIB I'n ft0 e 02 n

(2.21) T - SO (; a -G Za) 2/2sd)

and

(2.22) ., [ 0 1 'C "

Apply Cauchy-Schwartz and then Billingsley ((1968), Lemas 3 and 4, p. 172] to got

(2.23) T I K (Y n(f)2 )1/2((a - S0 4)1/2 . 0(n
3/ 2)

An argument similar to that justifying (2.18) gives

(2.24) a -Zn( (f); n)/(B) 2 + 0(n 2 )

A simple calculation shows that

(2.25) NOn (;);n n B/n + o(0/n)

with 0 given by (2.12). Combining (2.16)-(2.25) gives (1.35), finishing the proof.

COROLLARY. Jackknifing works (1.36) holds.

THBORCM 5. Formula (1.40) holds.

Proof. By the converging-together lema, it suffices to prove that

(2.26) /n (r -: 2n 0

in probability. Straightforward algebra shows that the left side of (2.26) equals

(2.27) rn Bn(Cn - Dn)/(Cn + On )

where

n . r(O,n - 1) - r(n,2n - 1)

Cn . a(0,n - 1)/n

Dn - |(n,2n - 1)/n

b
a(ab) = m.

j-a

An argument he proof of (1.27) shows that

(2.28) ; 3 -a /2 oN(0,1)/Ue%

-13-



Clearly

(2.29) Cn - Dn +0 a. a.

Combining (2.27) through (2.29) verifies (2.26).
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3. WIrULTS AND PROOFS: II.

Theorem 6. Asume that (1.14), (1.17), and (1.18) hold under P. Then, there exists a

probability P such that:

t .

L) oP{X *) d ;(x {C -o as t 0

ii) ;(x. 0 ;( e) x f)or u 0

iii) ;{x f . "7- ; "e , %I1 > ,ds.

gs81 0

Proof. Let f be a bounded nonnegative function on Q. For X e il, met

fulX) a fMx * u ) and put

Si

gu(x ) f fu(X 0 S)dm - go(X u0

Proceeding as in the proof of Theorem 1, Birkhoff's ergodic theorem prove* that

S e+u

n-I n

(3.1) n 2 0 *s + u)a (x)

P a.*., as n . a. The "squeeze" argument of (2.4), applied to (3.1), can be readily

adapted to show that

f(x * asiA *)do 90(X P a.,.u 9 81

It follows, from bounded convergence, that

t ^ * I (
t0Z( 0 3a)d 81 0 O)

as t * g in particular, specialising f to indicator functions yields

-15-



1 t ;[ -). J ;X O

(3.2) 1 > c .)ds * x 8 s )d

0 ES1 0

as t -. Setting u = 0 in (3.2) proves i) and iII). For ii), observe that the left-

hand side of (3.2) is independent of u.

Throughout the remainder of this section, we assume that (1.14), (1.17), and (1.18)

are in force for P, and that P denotes probability under the measure P constructed in

Theorem 6.

THEOREM 7.

(3.3) P(r(t) + r) = I

Proof. Use definitions and then the fact that (1.24) holda under P to get

(3.4) P{r(t) es  r; SI > a

8aft
- ; f(Xu))du/t r; SI > 81 - P(s I >6

a

Now integrate formula (3.4) with respect to a from 0 to -. On the right we get ;S 1,

positive by our assumptions. On the left, use dominated convergence to take the limit with

respect to t inside the integral and then (1.13) to get ?[r(t) r tIES1 . Cancelling

;S from both sides gives (3.3).

THEOREM S. Under P formulas (1.45) and (1.46) hold.

Proof. For any x,

-16-



(3.5) P(/ (r(t) r) P 8 1 )

;f N )1//s x >S1  ) I > )

a

By Billingsley [(1968). Theorem 20.2) the conditional probability above converges to the

appropriate normal probability as t * -, for every x and a. Integrate both sides of

(3.5) vith respect to a from 0 to *, use (1.13) to see that the left side equals

P{/r (r(t) - r) 4 x); 1, use dominated convergence on the right to take the limit vith

respect to t inside the outer integral, and recall that any nonnegative random variable

Z has expectation J P(Z ) t)dt. Cancel ;SI from both sides of (3.4) integrated as
0

above to get that P{/l (r(t) - r) C x) converges to the appropriate normal pronability.

A routine calculation verifies (1.46).
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4. INDIZCT iSTIATION OF TRANSAcION AVERAGzs.

Suppose a performance measure a aggregates costs for transactions moving through the

system. Let transaction i arrive at time Ai and leave at time Di . Put

Di . Bi - Ai. Assume that the cost associated with transaction i is gi(Di) and that

the average cost

(4.1) a = ham [gl(D 1 ) + . • + gn(Dn)]/n
n a

exists a.&.; clearly

n  Egl(D1) + ... + gn(Dn)l/n

consistently estimates a. Our discussion carries over to more general transaction

averages. We use a for concreteness.

In the notation of Section 1, state x includes the value of Ai for every

transaction i in the system at time Tk and

(4.3) f(X(t)) - I gi(t - Ai)

where the sum is over those transactions i for which Ai C t 4 B . Here g! is the

right derivative of gi and by definition gj(d) - 0 for d < 0 and for d > Di . This

setup allows rather general gi's, though not indicators.

Now call the arrival rate X. Assuming all limits exist, r - As by Heyman and

Stidham (1980). Usually A is simply the reciprocal of the expected arrival spacing. In

more general cases such as batch arrivals with batch size and spacing dependent, the theory

developed earlier in this paper shows how to estimate X.

We can choose whether to observe discretized observations Yn(f) as detailed earlier

or transaction observations gi(Di). Our choice is based on four criteria:

Mi) Ease of data collection. Formula (4.3) indicates that gathering discretized

observations at state-change epochs is more work, but probably not mch more because the

evolution of the system has to be simulated in any case. Gathering discretized

observations f(X(t)) at (reasonably short) equally-spaced intervals that do not

necessarily correspond to state-change epochs may be much more work.

(ii) True variance. Some believe that Xsn  always has smaller variance than r.

where n is the number of transactions completely processed up to event epoch m. To some
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extent the results of Carson and Law (1980) for special cases support this folklore, but

Cooper's [0(191), pp. 293-2961 example shows that it is untrustworthy.

(iii) Variance estimation. Folklore has it that the sequence of transaction observations

(9 (D ))is covariance stationary if and only if the sequence of discretized observations
ii

{Y n(f)) is covariance stationary. Thus, loosely speaking, any variance-estimation

n(

technique (e.g., via batch mans, spectral analysis, autoregressive representations,

functional limit theorems) applies to both or to neither. In practice, however, one has to

ask at what aample sizes asymptotic results reasonably apply: the faster covariance falls

off with increasing lag, the batter. Generally, for diacretized observations, covariance

does drop fairly quickly. By contrast, especially in systems that are not first-in, first-

out (FIFO), a series of transaction observations scrambles past, present, and future and

cuts connections between time spacing and index spacing. Thus, covarianc- between widely-

spaced observations may well be significant. This messy covariance structure is hard to

handle, at least with practical samaple sizes.

(iv) Bias. The scrambling effect mentioned in point (iii) above may make it harder to

detect (and hence attenuate) initialization bias for transaction observations.

Incompletely processed transactions cause termination bias for transaction observations,

exacerbated by the "inspection paradox" discussed earlier For discretized observations,

r is generally biased but our jackknife using r makes this bias nearly negligible.n n

We conclude that, at least for non-FIFO systems, indirect estimation via dimcretized

observations has more advantages than disadvantages relative to direct estimation via

transaction observations. The results developed in the preceding sections make statistical

analysis of the former possible and practical.

Asymptotically, a - r/k. Estimate s by plugging in consistent estimators for r

and A. If, as is usual, X is known, then divide confidence limits for r by X to get

confidence limits for *. If X has to be estimated, a straightforward ratio-estimator

analog of the methods discussed in this paper ouet be used to obtain an asymptotically

exact confidence interval.
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