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ABSTRACT

The bootstrap method of inference is extended to stratified cluster
samples when the parameter of interest, ©, is a nonlinear function q(?} of i
the population mean vector Y. The bootstrap estimate of bias of 6 = g(;5

and the estimate of variance of 8 are obtained, where ¥V is a design-

unbiased linear estimator of Y. Bootstrap confidence intervals for 6 are

also given. Asymptotic justifications are provided.
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Key Words: balanced or random half-samples, bootstrap, combined ratio,
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SIGNIFICANCE AND EXPLANATION

v
Most sample surveys involve stratification and multi~stage clustered

sampling. A recent trend in survey data analysis is inference about nonlinear

statistics from complex samples. Available methods include the linearization,
jackknife and balanced half-samples. In the non-survey context, another

method called the bootstrap has been shown to enjoy other desirable

properties, the most important one being that it reflects the skewness
inherent in the original point estimate. It is shown that a straight.forward
extension of the usual bootstrap provides incorrect variance estimates and
migleading confidence intervals. A correct version is constructed by
adjusting for a scaling problem before applying the nonlinear
transformation. Several desirable theoretical properties of the proposed
method are described. A detailed study in the special case of the combined

ratio estimator is given.
A
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The responsibility for the wording and views expressed in this descriptive .
summary lies with MRC, and not with the authors of this report. e
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BOOTSTRAP INFERFNCE WITH STRATIFIED SAMPLES

J. N. K. mo. and C. Fo J. W

INTRODUCTION

Regsampling methods, including the jackknife and the bootstrap,
provide standard error estimates and confidence intervals for the para-
meters of interest. These methods are simple and straightforward but are
computer-intensive, especially the bootstrap. Efron (1982) has given
an excellent account of resampling methods in the case of an independent
;nd identically distributed (i.i.d.) sample of fixed size n from an
unknown distribution F , and the parameter of interest 6 = §(F). The
bootstrap confidence intervals for © take account of the skewness in
the estimator © = O(F) , unlike the symmetric jackknife intervals based
on the Student's t or the normal approximation. Moreover, limited

empirical evidence (see Efron, 1982, p.18) has indicated that the bootstrap

* Carleton University, Canada

Sponsored by the United States Army under Contract No. DAAG29-80-~C-0041.




standard error estimates are likely to be more stable than those based on t:re

jackknife and also less biased than those based on the customary delta

(linearization) method. Holt and Scott (1983) applied the bootstrap to

estimate variances of the regression estimators from data obtained

from cluster samplin;g without stratification.

The main purpose of this article is to propose an extension of the

! » bootstrap method to stratified samples, in the context of sample survey
data; especially to data obtained from stratified cluster samples involving
large numbers of strata, L , with relatively few primary sampling units
{(psu's) sampled within each stratur. For nonlinear statistics 8 that
can be expressed as functions of estimated means of p (> 1) variables,

Krewski and Rao (198l1) established the asymptotic consistency of the

éi" variance estimators from the jackknife, the delta and the balanced

" repeated replication (BRR) methods as L + © ywithin the context of a
sequence of finite populations {I'IL} with L strata in HL. Their
1 result is valid for any multistage design in which the psu's are selected
‘ with replacement and in which independent subsamples are selected
within those psu's sampled more than once. Rao and Wu (1983)

obtained second order asymptotic expansions of these variance

estimators under the above set up and made comparisons in terms

of their biases.

The proposed bootstrap method for stratified samples is described
! j in Section 2 and the properties of the resulting variance estimator are

studied. The bootstrap estimate of bias of 8 is also obtained. Section

! 3 provides bootstrap confidence intervals for 8 . The special case of a




ratio 6 = i/i is investigated in Section 4, where ¥ and X are the
population means of variables y and x respectively. Finally, the
results are extended to stratified simple random sampling without

replacement in Section S.

2. THE BOOTSTRAP METHOD

The parameter of interest 8 is a nonlinear function of the
population mean vector ¥ = (?1....,§p)'r, say 6 = g(¥). This form of
0 includes ratios, regression and correlation coefficients. If n, (> 2)
psu's are selected with replacement with probabilities P in stratum h,

then Krewski and Rao (1981) have shown that the natural estimator 6 = g(?)

~

can be expressed as O = g(y). Here Y is a design-unbiased linear

s s - = = S s T
~estimator of Y tﬂh‘lh and y = !'.whyh where wh and Yh (th""'yhp)

are the h-th stratum weight ():wh = 1) and population mean vector
respectively and ;h is the mean of n, i.i.d. random vectors Yhi =
T = '
(yhil""'yhip) for each h with E(yhi) Yh. For h¥h , Yhi and
Yh' j are independent but not necessarily identically distributed.

2.1 The Naive Bootstrap

In the case of an i.i.d. sample {yj_};.l with E(y,) = ¥ , the
bootstrap method is as follows: (i) Draw a simple random sample {y;}';_
with replacement from the observed values Yyr¥greeee¥y and calculate
8* = g(y*) where y* = ).'.y;/n. (ii) Independently replicate step (i)

a large number, B , of times and calculate the corresponding estimates

1l a4B

6' yeees 8 . (ii1) The bootstrap variance estimator of 6 = gly) is

given by




B

1 ~sb An 2
v, (a) = -.;;l-bzl(e -8 (2.1)

where 6; - Eﬁ'b/B. The Monte-Carlo estimator vb(a) is an approximation

to

aw an Ak, 2
vb = var (8) = E’(G - E‘B ) (2.2)

where E' denotes the expectation with respect to bootstrap sampling

*
from a given sample yl....,yn. No closed-form expression for var.(é )
generally exists in the nonlinear case, but in the linear case with p=1,

8* = y* and v_ reduces to

b
var*(}-(*) = 9-—; 52 = 9—;;1 var(§) (2.3)
n

where (n-l) s.2 = }.I(yi--g-()2 and varly) = sz/n is the unbiased estimator
of variance of y. The modified variance estimator [n/(n—l)]var*(é*)
exactly equals var(y) in the linear case, but Efron (1982) found no
advantage in this modification. In any case, n/(n-1l) =1 in most
applications and var, (6*) is a consistent estimator of the variance of
§ , as n-+o (Bickel and Freedman, 1981). The bootstrap histogram of

anl ~ 4B

8 ,....,0 may be used to find confidence intervals for 6 that take

account of the skewness in © . This method (Efron, 1982) is called the
percentile method.

Noting the i.i.d4. property of the yhi's within each stratum, a
straightforward extension of the previous bootstrap method to stratified

samples is as follows: (i) Take a simple random sample {yl:i}:h]_ with

P
replacement from the given sample {Yhi}i 1 in stratum h , independently

for each stratum. Calculate ;; - n;lz and 8" - g(?).

~% - Z -
Y "nYh

L 2
iYhi’

.

1




‘ (1i1) 1Independently replicate step (i) a large number, B, of times and

calculate the corresponding estimates 6'1,..., 6*8. (iii) The bootstrap

variance estimator of 6 = gly) is given by
1 2 b aw2
v, (a) = 275 I (8% -8 (2.4)
b=l
vhere y = thyh
¢ an approximation to

and 5: = Zﬁ*b/n. The Monte-Carlo estimator vb(a) is

v, = var*(g*) - E:‘,(a"-'lz‘ﬁ")2 (2.5)

b

where E_ , as before, denotes the expectation with respect to bootstrap

’ sampling. In the linear case with p=l, 8" = Ewh;(; =y' and vy
reduces to
2
W -1
var, (y% ) =12 -} -r:h———] si (2.6)
b R

where (nh--l)srzl = Zi (yhi-;(h)z. Comparing (2.6) with the unbiased estimator
of variance of y , var(y) = Zwisf‘/nh , it immediately follows that
var.(?')/var(fr) does not converge to 1 in probability, unless L is
fixed and n + ® for each h. Hence, var*(;*) is not a consistent
estimator of the variance of ; It also follows that vb is not a
consistent estimator of the variance (or mean square error) of a general
nonlinear statistic. There does not seem to be an ocbvious way to correct
this scaling problem except when n o= k for all h in which case

k(k-1) "lvar, (8%) will be consistent. Bickel and Freedman (1983) also

noticed the scaling problem, but they were mainly interested in bootstrap

confidence intervals in the linear case (p=l). They have established

§

the asymptotic N(0,l) property of the distribution of tx=(y-¥)/[var(y)}

‘A,_m‘_
e e
g a L ot o aa - pemmpr— ]




and of the conditional distribution of (;"-y)/[var*(§')]§ in stratified

simple random sampling with replacement, and also proved that

(twis;z/nh)/var,(i*) converges to 1 in probability as n = 2nh -+ o,
where (nh-l)s;2 = Zi(y;i - ;;)2. Their result implies that one
could use the bootstrap histogram of E'l....,i*a to find confidence
~ s#b _ =-«b = 2 «b2 3 b2
intervals for Y , where t = (y y)/[twhsh /nh] where Sy,

is the value of 5;2 for the b-th bootstrap sample (b =1,...,B) .
In the nonlinear case, there does not seem to be a simple way to
construct E*b-values similar to those of Bickel and Freedman since
vb has no closed form. Moreover, the straightforward extension of
the bootstrap (hereafter called the naive bootstrap) does not permit
the use of the percentile method based on the bootstrap histogram of
1 6*8

aw
- M

Although E*b

is asymptotically N(0,1) in the linear case,
it is not likely to provide as good an approximation to the distribution
of t as a statistic whose denominator and numerator are both adequate
approximations to their counterparts in t. Such statistics will be
proposed in Section 3.2. These are also applicable to the nonlinear
case,

Recognizing the scaling problem in a different context, Efron
(1982) suggested to d{aw a bootstrap sample of size n, - 1 instead
of nh from stratum h (h = 1,...,L). In Section 2.2, we will

instead propose a different method which includes his suggestion

as a special case.

I
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2.2. The Proposed Method

Our method is as follows: (i) Draw a simple random sample

" f size m with replacement from {yhi}nh . Calculate
i=

[o]
im1 1
) -~ - - 5 - _5 ® -
I Ypg =¥y R -1 Ty - o)
=

B U s
h =W, 121 Yhi ™ Yp ¥y (mp ) 0¥y )

{vp,}

(2.7)

§-mh§ ’ 6‘9(?) .

—

{(ii) 1Independently replicate step (i) a large number, B , of times and

calculate the corresponding estimates 51,..., 53. {(iii) The bootstrap
estimator E,(é) of © can be approximated by éa - Zéb/B. The boot-

strap variance estimator of 8 is given by

G2 =5 = var,(® =58 - 5,87 (2.8)

with its Monte-Carlo approximation

-

B
x2 ~ i b 2
L(a) = (a) = == bzl(ﬁ -8 . (2.9)

One can replace E.é in (2.8) by 6 .

2.3 Justification of the Method

@ =Y, V_ reduces to the customary unbiased

In the linear case, b

5
t
|

f variance estimator var(x-r) , noting that

. . =2 2 ™ -1
vb b Et(Y"Y) = th nh_l {;;-: [ “h

}si} =L Wﬁs:/nh .

In the nonlinear case, we have shown in Appendix 1 that

v,

2
b ) (2.10)

’

= vL + Op(n

under the condition (A.1l) given there.

s
|
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where vL is the linearization variance estimator:
2 i} . )
vo = ) g.(yg . (y) — s .
Ly k=1 3 K7 Thay By hIK

(2.11)

T
where gj(t) = Bg(t:)/B\:k with t = (tl,...,tp) and (nh-l)shjk =

(¥, s -7 - 5 = . .
L Yhij th) ¥pix = Yp! Vvith Yhj ziyhij/nh In the linear case J

(p=1), v, reduces to var{y) - Under reasonable regularity

conditions (see Appendix 1), VL is a consistent estimator of variance of

8, var(8). Hence, it follows from (2.10) that ‘.;b is also consistent

for var(®).

The asymptotic N(0,1) property of the conditional distribution

of (5 - 6)/6’9 can be established, assuming that 0 < 61 < mh/(nh-l) <

62 <= for all h, i.e. the bootstrap sample size mn should be

| e

comparable to the original sample size n.h in each stratum. The proof
is omitted since it follows along the lines of Bickel and Freedman (1983).
This result provides an asymptotic justification for the percentile method

based on the bootstrap histogram of 51, .o ,9B (Section 3.1 provides details

of the percentile method).

2.4. Estimate of Bias of §

Rao and Wu (1983) have shown that the bias of 8§ is

~ PN 1 - If wl.z‘
B{O) = E(8) - 6 = T § g, (Y) — 8 _,. +lower order terms (2.12)
2 y,k=1 % pay M, hIk

where gjk(i) is the second derivative azg(t)/atjatk evaluated at
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-9-

=Y = - ¥ -y . imat
Y and Shjk E:(yhij th) (yhik th) Our bootstrap estimate
of bias is

B(B) =E (B - B (2.13)

which is approximated by 6a - 8. From (A.2) and (A.3) of Appendix 1

we have

) . ok w2 -

i@ e @m-b-2 % . ® J 2s. +omd. (2.14)
: 25, k=p KT oy Py MR

Hence, B(8) is a consistent estimator of B(B) . oOn the other

hand, the bias estimate B(f) = E,(@') - 8 , based on the naive bootstrap,

is equal to

1 i
B(d) == § (Y) — )s, .. + lower order terms (2.15)
2. 3,k=1 h=1 n, "Thik

which is not a consistent estimator of B(8). The proof of (2.15) is

omitted since it follows along the lines of the proof of (2.14).

2.5. Choice of mh

The choice n\\ = nh is a natural one. The choice mh = nh—l

gives ;'hi = Y;xi » and our method reduces to the naive bootstrap, except

that, in step (i) of the latter method a simple random sample of size nh-l

is selected from {Yhi}% in stratum h. However, for n, small it
may not lead to stable vanance estimators. For nh=2, mh-l, the
method reduces to the well-known random half-sample replication and the
resulting variance estimators are less stable than those obtained from

BBR for the same number, B , of half-samples (McCarthy, 1969). For

TN e
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the same number of pseudoreplications the bootstrap will in general perform

less stably than the BRR, when the latter method is applicable, For n, ¢ 4,

the choice mh==nh-1 may be attractive since the variance estimators are

likely to be more stable and since the naive bootstrap is

being used. For small n, it may be worth considering a bootstrap sample
size m slightly larger than n,, say between nh+1 and 2nh.
3. CONFIDENCE INTERVALS
We now consider different bootstrap»methods for setting confidence

intervals for 0 .

3.1. Percentile Method

For ready reference, we now give a brief account of the percentile
zB

method based on the bootstrap histogram of 51,..., ©”. Define the

cumulative bootstrap distribution function as

e = #HP <t:b=1,...,8}8. (3.1)
Pa ~ AN\ -
1 and B (o) = CoF o).

For o < 0.5, define B (o) = EDF (q)

Then the interxrval
{6 gt@, 8 (w} (3.2)

is an approximate (1 ~20)-level confidence interval for © . It has

the central 1-~20 portion of the bootstrap distribution (Efron (1982),
p.78). One can also consider a bias-corrected percentile method,

following Efron (1982, p.82). This method leads to

{éa\r’lmzzo-za)) , CoF (or2z; +2.0)} (3.3)

as an approximate (1-2a)-level confidence interval for 6 , where ¢ is

the cumulative distribution function of a standard normal,




r— -

© e ————— . o .+

=1 -~ -1
z, = ¢ “(CpF(B)) and z, = ® “(1-0a). The advantage of the interval

{3.3) over (3.2) has been demonstrated by Efron (1982).

3.2. Bootstrap t-statistics

Instead of approximating the distribution of ] by the bootstrap

distribution of 6 , we can approximate the distribution of the t-statistic

t = (6-9)/6b by its bootstrap counterpart t* = (8 - 6)/5;(a) where

agz(a) = TI;(a) is the bootstrap variance estimator obtained from (2.9)
by bootstrapping the particular bootstrap sample {;’hi} i.e. by replacing

Yhi by ihi in the proposed method. For the second phase bootstrapping

one could choose values (ml;, B') different from (mh,B). This double-

bootstrap method thus leads to B values t*l,...,t*B of t".

Utilizing the bootstrap histogram of t*l, .o .,t:"B . we define

CISF (x) = #{t*b < }/B t = ED\F-I((!) E_ = EBF-I(I—(I) da
£* XA Yo t ‘M Top » an

construct an approximate (1-2a)-level confidence interval for @ given

by

{B-Eupab,é-tmwo}.

(3.4)
The interval based on the t-statistic is likely to be better than the
interval based on the percentile method (Babu and Singh, 1983).

We now provide an asymptotic justification for t*. Noting that

'6;(a) is a Monte Carlo approximation to
~%2 ~ ~ ~a 2
8y = ¥ = E,, (8" - E, 8% (3.5)

-t

where 6 is the value of 8 obtained from bootstrapping the particular

sample {§hi} and E,, is the second phase bootstrap expectation, we
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can write t* = (6 - @)/6;. In the linear case O = ¥ it is easily

seen that

~*2

~2
E.0, =0 - (3.6)

In the nonlinear case, following Bickel and Freedman (1983), we can show

that 5;2/512’ converges to 1 in probability as n + ® . Hence, it

follows that the conditional distribution of t* is asynptotically N{(0,1).
One could use a jackknife t-statistic tJ - (6- 6)/6\:I instead of

t , where 8§ = vy is a jackknife variance estimator of 8 (see Krewski

and Rao, 1981). The corresponding confidence interval is then given by

{6 -t 6, 6-¢t 8.} (3.7

where ?:mw and EUP are the lower and upper Q~points of the statistic

t; = (8- 6)/3; obtained from the bootstrap histogram of t‘;l...., t;B ’
and 6;2 is obtained from 6§ by jackknifing the particular bootstrap
sample {§hi}. It can be shown that the confidence interval (3.7) is
also asymptotically correct. A confidence interval of this type was
considered by Efron (1981) in the case of an i.i.d. sample {yi}.

It is also possible to replace 6§ by the BRR or the linearization

variance estimator and obtain a confidence interval similar to (3.7).

4. COMBINED RATIO ESTIMATOR

The combined ratio estimator of the ratio 6 = g({'.'}-() = ¥/X =
R (say) is given by 0 = g(¥,%) = y/X=x (say) where y = th§h and

x = Y.Wha'ch. The corresponding bootstrap estimator is 8 = g(¥,X) = y/x

= T (say), where




" o
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~ -~ - - - -
y=y+ th/g (y, -¥,) =~y + 0y

i-'+zuh/§(§;-ih)-§+&'.

: The bootstrap estimator of variance of r is given by

and

2 2 2
W W )
3[ h 2 h 2 h 2]
¢+ =—l(f —8. )(E—38",) + 2L — 8. )
3-(4 n, &h n xh xh
+0(n Y,
P

(4.1)

(4.2)

assuming that max Wh/nh = O(n-l) and 0 < 61 < %/(nh-l) < 62 < o for

h
' all h (see Appendix 2). Here v is the linearization variance estimator
l 2
W
1 h 2
2 _’_‘2 z Y 82h (4.3)
and
"

n-s ., = ) & (x.-x), &, =y -¥ -rix. -x)

"2 T E SR T TR T TP PR TR
i 2 2 -~
' and sah ’ ’:dt ’ séxh are respectively the sample variance of ehi .
.1' X4 and the sample covariance of e and X3 in the h™ stratum.
: Since s = 0 for n = 2, second term of (4.2) is zero if
! n,= 2 for all h. Since th: ' -m of (4.2) is positive and of
‘ order Op(n-z) , we have ";b = C 2y in general. On the other

hand, the jackknife variance estimator satisfies v = v + Op(n-

in




the special case of nh =2 for all h (Rao and Wu,K1983). The jackknife

is too close to vL in the latter case.

To obtain the bias of vy note that, when eh.i. - yhi-'lh-n(xhi-xh)

A

replaces its sample analaogue ehi
-2.5

in (4.2), the only effect on (4.2)
is that the error term is Op(n ) dinstead of Op(n-3). By working on ’*

this modified formula of (4.2) and noting that BEs P (nh-Z)s 2 /n,_l

e xh e xh
where S , is the population analogue of s , , we get the bias of v, :
~ b
e xh e xh
3
W, -2
Bias('\'vb) = Bias(vL) - -_2—3 I ~—}2' —n}-‘————l;s 2
X n [nh(nh-l)] e“xh
2 2 2
W, W, W,
3 h .2 h o2 ) h 2 -3
+ (I —s8 J(IZ —=58") + —2(L —s )°40(n 7) (4.3)
x4 n, eh n, xh x4 n.h exh

- Bias(vL) - 22" + 3b + gc (say)

2 2 . 2 2
wvhere seh' th and Sexh are the population analogues of sé‘h' 5.h
and P <h respectively. Using the result (Wu, 1982)
Bias(v ) = -2a + b + O(n ) (4.4
where
3
W
a= J'- I '_h' S ’
=3 2 2
X n, e xh

we get from (4.3)

Bias(¥,) = -2a - 2a" + 4b +6c + omn?d . (4.5)

In the gpecial case of n - 2 forall h, a" =0 and




Bias(vb) = Bias(vBRR_H) - Bi“(vann-s) = «2a+4b+6C (4.6)

to O(n“3) , where Vs and are the BRR variance estimators

RR~H VBRR-S
(see Rao and Wu, 1983). 1In the general case of 1\1 ¥ 2 for at least one
f h, Bias(i'vb) depends on the bootstrap sample sizes {%}. In particular,
-~ -3
if n, >> n, = we have Bias(vb) = -2a+4b+éc to O(n ). The choice

{ m= nh-l (Efron, 1982) leads to

3
Win -2)
~ 2 « 2"
B:Lu(vb) -Biu(vL) -3 f —————3=8

X “12,(“1-"1) ezm

+3 +6c+0n ) . (4.7)

5. STRATIFIED SIMPLE RANDOM SAMPLING WITHOUT REPLACEMENT

All the previous results apply to the case of stratified simple
random sampling without replacement by making a slight change in the

definition of Fpy

k

s _ = 4 % . -
Yoy =¥, * %(nh-l) (1=£) Ay —¥) (5.1)

1

i
i where th = nh/“h is the sampling fraction in stratum h. It is interesting

~ *
to observe that, even by choosing m - nh-l ¢ Yoq # Yhi * Hence the
R naive bootstrap using y;i will still have the problem of giving a wrong

2 scale as discussed before. In the special case of nh =2 for all h ,
: McCarthy (1969) used a finite population correction similar to (S5.1)

in the context of BRR.

|

[} F .

{ & Bickel and Freedman (1983) considered a different bootstrap sampling
_J method in order to recover the finite population correction, 1-f ,

in the variance formula. This method essentially creates populations

consisting of copies of each Yy 1--1,...,nh and h=1,...,L
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and then generates {y;i}:h as a sinple random sample without replacement
from the created population, independently in each stratum. This
"blow-up” bootstrap was first proposed by Gross (1980) and also independ-
ently by Chao and Lo (1983). The variance estimator resulting from
i this method (by working directly with y;i) . however, remains inconsistent
for estimating the true variance of §. 1tis possible, however, to
make the variance estimator consistent by reducing the bootstrap sample
size to nh-l , a8 in Section 2. 1In comparison with our method, the
*blow-up” bootstrap is somewhat harder to implement, somewhat artificial
and, if the stratum size, Nh , is not a multiple of n, - requires an

artificial randomization for choosing between two created populations.
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APPENDIX

1. Proof that ;b = v, + Op(n-z) . assuming that

-1
m;x Wh/nh =0(n "), 0 < 61 < l%/(nh-l) < 62 < », (a.1)

e e

The condition (A.l) allows I to be either bounded or unbounded.

Writing ¥ - y = 43" = (a7%,..., 8397 , wh As* = tw /b ot =
1 P where Yj h n (th th)'
we have

A -1
Var.(ij) = hzl a— %y " Op(n )




{
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!
i under the assumption (A.l) and the boundedness of Sﬁj = E‘yhii -Y’hj)z.
i.e. max sij < o ., Hence, A;. = Op(n.") and
-3
8-8= 7"’ @ + 07N T A" + 0t ) (A.2)
i where g (y) = (gl(i)...., gk(i)).r and g"(y) is the p X p matrix
with elements g jk(;)‘ Therefore,
i
~ = 2 - - -, -
v, - E (0 - 6 - f gj(y)gk(y)z.(byjAyk)
j,k-l
+ f g.(T) g o (1IE, (BF "AF*AF") + O (n~2)
390 \YIELBY SOy, By P .
Jek, =1
Now noting that
J ' E,(Ay Ay = f Z; (A.3)
‘ and
! 2
o T T 2
E,(Ay jAYkAYR.) =

§u3(mh
h=1

- -- - -- - _ =
-1 Balpy = ¥ny) Oy =iy g ~¥io)

A
| ( |
. L
- 1
h=1
j 1 k:

|
-2
nh[%("h-l)l 'hjk!. -Op(n )
under (A.1l), we get the desired result. Here (n_ .)s = Z (y -; )
"h-1"®h4kt 421 7hi3 " Thy

:Ph)l:rsw

Upix = Y Ynig =~ o)~

. e ——

2. Proof of (4.2). We follow the approach in Appendix 4 of Wu (1982) to

derive (4.2). Under (A.1) we have Ax", Ay* and Ae" = Ay" - rAx* all

L T P

of the order Op(n—,’). Hence, noting that




P P

de ax" . Ax.2 -2
fars -l - P }+0, 0

X

we get
-~ " 2
v = E(r - 1)

-
- 52k, a2 - =, 087 A

-,k 2
+ 3E LA_.‘;‘_’_‘—-Z—-] + 0 (n-3)
* -2 P
X

L]

Now, writing Ae* E%eh where d’h h%(nh 1) and

™ b - -
mh;l: - ) el:i = ) {Y;i - ¥, - r(’ﬁ:i - xh)} , we get the following

i=1 i=1
results:
L My
- 2 21 1 2
E (eM = ] &€= T &
* hel % W Ny ogay M
2
L W,
h=1 "n

£, [(08%)20%"] = &, [ G - X))

3

L% ™ 1 &2 -
- — . ( - )

2 T, DALY VRl |
- IX‘ -w—: nh -3

h=1 n; tn-Dim §2xn

(A.4)

(a.5)

(A.6)
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e Lwan20xh?) = g [zalerh cad i -3 H T+

* z l-*-*l E o(-*'- -*. '- .
E [(h#h'dhdh e e thh'dhdh X, = %) (. = %00 ]
- [z, %) Mzle, ) - %) %) +

2.2 B

2L a2ad B8 (R - X )B,&, (X, - X ) + 0 (n)

2 2 2
W, W W
h 2 h 2 h 2 -3
= (L sah) (Z —"h 'xh) + 2(Z _nh saxh) + Op(n ). (a.h

Substituting (A.5)-{(A.7) in (A.4) we get the desired result.
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