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ABSTRACT

The bootstrap method of inference is extended to stratified cluster$1 samples when the parameter of interest, e, is a nonlinear function g(Y) of

the population mean vector Y. The bootstrap estimate of bias of 6 - g(y)

and the estimate of variance of 8 are obtained, where is a design-

unbiased linear estimator of T. Bootstrap confidence intervals for 8 are

also given. Asymptotic justifications are provided.
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SIGNIFICANCE AND EXPLANATION

Most sample surveys involve stratification and multi-stage clustered

sampling. A recent trend in survey data analysis is inference about nonlinear

statistics from complex samples. Available methods include the linearization,

jackknife and balanced half-samples. In the non-survey context, another

method called the bootstrap has been shown to enjoy other desirable

properties, the most important one being that it reflects the skewness

inherent in the original point estimate. It is shown that a straightforward

extension of the usual bootstrap provides incorrect variance estimates and

misleading confidence intervals. A correct version is constructed by

adjusting for a scaling problem before applying the nonlinear

transformation. Several desirable theoretical properties of the proposed

method are described. A detailed study in the special case of the combined

ratio estimator is given.

A3

The responsibility for the wording and views expressed in this descriptive
summary lies with MC, and not with the authors of this report.



BOOTSTRAP INFERENCE WITH STRATIFIED SAMPLES

J. N. K. Rao* and C. F. J. Wu

I. INTRODUCTION

Resampling methods, including the jackknife and the bootstrap,

Iprovide standard error estimates and confidence intervals for the para-

meters of interest. These methods are simple and straightforward but are

couputer-intensive, especially the bootstrap. Efron (1982) has given

an excellent account of resapling methods in the case of an independent

and identically distributed (i.i.d.) sample of fixed size n from an

unknown distribution F , and the parameter of interest 0 = 6(F). The

bootstrap confidence intervals for 0 take account of the skewness in

the estimator § - B(F) , unlike the symmetric jackknife intervals based

on the Student's t or the normal approximation. Moreover, limited

eupirical evidence (see Efron, 1982, p.18) has indicated that the bootstrap

1 * Carleton University, Canada

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.



standard error estimates are likely to be more stable than those based on t .e

jackknife and also less biased than those based on the customary delta

(linearization) method. Holt and Scott (1983) applied the bootstrap to

estimate variances of the regression estimators from data obtained

from cluster sampling without stratification.

The main purpose of this article is to propose an extension of the

bootstrap method to stratified samples, in the context of simple survey

dataj especially to data obtained from stratified cluster samples involving

large numbers of strata, L , with relatively few primary sapling units

(psu's) sampled within each stratuw. For nonlinear statistics 8 that

can be expressed as functions of estimated means of p (> 1) variables,

Krewski and Rao (1981) established the asyptotic consistency of the

variance estimators from the jackknife, the delta and the balanced

repeated replication (BRR) methods as L - within the context of a

sequence of finite populations {11 LI with L strata in 1L" Their

result is valid for any multistage design in which the psu's are selected

with replacement and in which independent subsanples are selected

within those psu's sampled more than once. Rao and Wu (1983)

obtained second order asymptotic expansions of these variance

estimators under the above set up and made comparisons in terms

i of their biases.

The proposed bootstrap method for stratified samples is described

in Section 2 and the properties of the resulting variance estimator are

studied. The bootstrap estimate of bias of D is also obtained. Section

3 provides bootstrap confidence intervals for e . The special case of a



ratio 6 - Y/X is investigated in Section 4, where Y and X are the

population means of variables y and x respectively. Finally, the

results are extended to stratified simple random sampling without

replacement in Section 5.

2. THE BOOTSTRAP METHOD

The parameter of interest e is a nonlinear function of the

- -T
population mean vector - (Y1 ,... ,Yp ) , say 0 - g(Y). This form of

6 includes ratios, regression and correlation coefficients. If nh (> 2)

psu's are selected with replacement with probabilities Ph, in stratum h,

then Krewski and Rao (1981) have shown that the natural estimator = g(Y)

can be expressed as - g(y). Here Y is a design-unbiased linear

estimator of - Ehjh and y-EWhy h where Wh and -h ,i ,-. ,p

are the h-th stratum weight (UVh - 1) and population mean vector

respectively and yh is the mean of nh i.i.d. random vectors yhi =

(Yhil'-"Yhip)
T for each h with E(yhi) - Yh' For h # h' , yhi and

Yh' J are independent but not necessarily identically 
distributed.

2.1 The Naive Bootstrap

In the case of an i.i.d. sample {yil with E(yi) - Y , the

* n

bootstrap method is as follows: (i) Draw a simple random sample {yi4

with replacement from the observed values yly 2 , ... "yn and calculate

g(y*) where y* - Ey/n. (ii) Independently replicate step (i)

a large number, B , of times and calculate the corresponding estimates

II Al , 0 . (111) The bootstrap variance estimator of § - g(y) is

given by



vb (a) 1 e~ a' (2.1)

Ia

bml

where -
= §*b/B. The Monte-Carlo estimator v (a) is an approximation

a

to
-var (e) -E (8* - 8,)2 (2.2)

where E denotes the expectation with respect to bootstrap sampling

from a given sample y 1 P'... ,n No closed-form expression for var*(§*)

generally exists in the nonlinear case, but in the linear case with p-i,

- y and vb reduces to

var(y*) n- s -- va(y) (2.3)
n

2 -2 2
where (n-l)s2  E(y i-y) and var(y) . s A/ is the unbiased estimator

of variance of y. The modified variance estimator [n/(n-l))var,(6*)

exactly equals var(y) in the linear case, but Efron (1982) found no

advantage in this modification. In any case, n/(n-1) a 1 in most

applications and var*(6 *) is a consistent estimator of the variance of

§ , as n (Bickel and Freedman, 1981). The bootstrap histogram of(o,,... ,, may be used to find confidence intervals for e that take

account of the skewness in B This method (Efron, 1982) is called the

percentile method.

Noting the i.i.d. property of the Yhi'S within each stratum, a

straightforward extension of the previous bootstrap method to stratified

samples is as follows: (i) Take a simple random sample {y 1 i' with
}nh istau h, idpnd1 l

replacement from the given sample fYhi'1 in stratum h independently

for each stratum. Calculate y r YL, W* "- and 8 - g(-*).

'Ah



Cii) Independently replicate step (i) a large number, B, of times and

calculate the corresponding estimates B,,..., 8,B (iii) The bootstrap

variance estimator of 0 - g(y) is given by

b 1 (§b a)2 (2.4)
*bl

whee -ahh Wa Z /B. The Monte-Carlo estimator vb oa ) is

an approximation to

vb = vr *) * -- * )2 (2.5)

where E, , as before, denotes the expectation with respect to bootstrap

sanpling. In the linear case with p-1, EWhYh - y and vb

~reduces to2

2 - 2 n

var,1(y*)- Z - a ~ (26

where (nh1  2 E(Yhi _ h )2. Comparing (2.6) with the unbiased estimator

i of variance of y var(y) - .w , it imdiately follows that

var,(y*)/var(y) does not converge to 1 in probability, unless L is

fixed and nh - for each h. Hence, var*(y*) is not a consistent

estimator of the variance of y. It also follows that vb is not a

consistent estimator of the variance (or mean square error) of a general

nonlinear statistic. There does not seem to be an obvious way to correct

this scaling problem except when nh - k for all h in which case

k(k-l) -var,(*) will be consistent. Bickel and Freedman (1983) also4noticed the scaling problem, but they were mainly interested in bootstrap

confidence intervals in the linear case (p-l). They have established

the asymptotic N(0,1) property of the distribution of t=(y-Y)/!var(y)I §

GOlm



and of the conditional distribution of (y*-y)/[var*(y*)J ] in stratified

simple random sampling with replacement, and also proved that

2 *2 -
(1whsh /%)/var.(y ) converges to 1 in probability as n = -nh

*2 --*2
where (nh 2 i( hi = E ( ) Their result implies that one

could use the bootstrap histogram of t*,...,t to find confidence

intervals for Y, where b =(Y by/[W2s*b2h /
]  where *b2

*2
is the value of Sh for the b-th bootstrap sample (b = l,...,B)

In the nonlinear case, there does not seem to be a simple way to

construct t -values similar to those of Bickel and Freedman since

vb has no closed form. Moreover, the straightforward extension of

the bootstrap (hereafter called the naive bootstrap) does not permit

the use of the percentile method based on the bootstrap histogram of

9 ...,

Although i*b is asymptotically N(0,1) in the linear case,

it is not likely to provide as good an approximation to the distribution

of t as a statistic whose denominator and numerator are both adequate

approximations to their counterparts in t. Such statistics will be

proposed in Section 3.2. These are also applicable to the nonlinear

case.

Recognizing the scaling problem in a different context, Efron

(1982) suggested to draw a bootstrap sample of size nh - 1 instead

of nh  from stratum h (h 1,... ,L). In Section 2.2, we will

instead propose a different method which includes his suggestion

as a special case.

I 1l ......



2.2. The Proposed Method

Our method is as follows: i) Draw a simple random sample

{y } of size % with replacement from iyhii -  Calculate

'hi " 'h +  -(nhl -h) " * h

h - M Yhi h h (2.7)

y -Lhyh, ' 6 g(')

(ii) Independently replicate step (i) a large number, B , of times and

calculate the corresponding estimates 8I,..-, B. (iii) The bootstrap

estimator E,(8) of 0 can be approximated by 0 a Zgb/B. The boot-
* a

strap variance estimator of 6 is given by

-2b w b var*8= E*( - E 2) (2.8)

with its Monte-Carlo approximation

B
-2()-:-. ( a)- = j(D u)2 (2.9)

b b B-1l ab=l

One can replace E*8 in (2.8) by .

nth 2.3 Justification of the Method

4 In the linear case, e - ' reduces to the customary unbiased

variance estimator var(y) , noting that

E*(i- Y) % 1hi " ( n ') ws/ A

In the nonlinear case, we have shown in Appendix 1 that

(n -2 (.0vb " v, +On-) , (2.10)

under the condition (A.1) given there.

hlS
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where vL is the linearization variance estimator:

p L 2v,, L Yg([ h  .Shj kl (2.11)
jk=l h.1

where g (t) - ag(t)/atk with t = (ti,..., tp)T and (n-1)'hjk

Ei(Yhij- hj) (yhik - Yhk) with Yhj = EiYhij/nh" In the linear case

(p - 1). vL reduces to var(y) . Under reasonable regularity

conditions (see Appendix 1), VL is a consistent estimator of variance of

S, Var(A). Hence, it follows from (2.10) that vb is also consistent

for Var(O).

The asymptotic N(0,1) property of the conditional distribution

of - b can be established, assuming that 0 < 6 < 7/(n-) <

62 < for all h , i.e. the bootstrap sample size h should be

comparable to the original sample size nh in each stratum. The proof

is omitted since it follows along the lines of Bickel and Freedman (1983).

This result provides an asymptotic justification for the percentile method

based on the bootstrap histogram of B1 ... ,B (Section 3.1 provides details

of the percentile method).

2.4. Estimate of Bias of

Rao and Wu (1983) have shown that the bias of B is

B(O) - E() - e = 6 (Y) l - Shjk +lower order terms (2.12)

where gjk M)is the second derivative gt/htk evaluated at

I
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t=Y and Shjk =E(Yhij hj) yhik - Yhk)  Our bootstrap estimate

of bias is

B(O) (E.) - § (2.13)

which is approximated by 6 -a . From (A.2) and (A.3) of Appendix 1a

we have

LW2B(6)= L h ~ -2 2.4B(O) -" E'" '" O gjk . (Y) n. shjk ' 0n (2.1" 4)
jfkl h 1

Hence, B(O) is a consistent estimator of B(8) . On the other

hand, the bias estimate B(O) - E*(6*) - 0 , based on the naive bootstrap,

is equal to

L W2 n -1 oe re
~g (Y) -h h )S lwr+re terms (2152 j ,k=l jk h=l nh n hjk

which is not a consistent estimator of B(6). The proof of (2.15) is

omitted since it follows along the lines of the proof of (2.14).

2.5. Choice of =h

The choice mn = nh  is a natural one. The choice m . nh-i

gives h "hi and our method reduces to the naive bootstrap, except

that, in step (i) of the latter method a simple random sample of size n-1

is selected from Yhil n in stratum h. However, for small it

may not lead to stable variance estimators. For n =2, ah- 1, the

method reduces to the well-known random half-sample replication and the

resulting variance estimators are less stable than those obtained from

BBR for the same number, B , of half-samples (McCarthy, 1969). For
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the same number of pseudoreplications the bootstrap will in general perforr

less stably than the BRR, when the latter method is applicable. For nh 4 4,

the choice mh = nh-1 may be attractive since the variance estimators are

likely to be more stable and since the naive bootstrap is

being used. For small nh, it may be worth considering a bootutrap sample

size mh slightly larger than nh, say between nh+l and 2n h.

3. CONFIDENCE INTERVALS

We now consider different bootstrap methods for setting confidence

intervals for e .

3.1. Percentile Method

For ready reference, we now give a brief account of the percentile

method based on the bootstrap histogram of 81 ,... Define the

cumulative bootstrap distribution function as

'~>(t< t ; b = l,...,B/B. (3.1)

For a < 0.5 define LOW (a) CDF (a) and UP (a) CDP (1-C)

Then the interval

{O. (a), 8U (0)} (3.2)

is an approximate (1- 2a)-level confidence interval for 8 . It has

the central 1- 2 portion of the bootstrap distribution (Efron (1982),

p.78). One can also consider a bias-corrected percentile method,

following Efron (1982, p.82). This method leads to

jCDF(0(2z z , CD? ((2z 0 +z(3.3)

as an approximate (l-2a)-level confidence interval for e , where 0 is

the cumulative distribution function of a standard normal,

~r



z 4= (CDF(O)) and z. 4l (I-0). The advantage of the interval

(3.3) over (3.2) has been demonstrated by Efron (1982).

3.2. Bootstrap t-statistics

Instead of approximating the distribution of 8 by the bootstrap

distribution of 6 , we can approximate the distribution of the t-statistic

t = (-_8)/b by its bootstrap counterpart t*- (8- -)/*(a) where

-2b 
b

2(a) = v*(a) is the bootstrap variance estimator obtained from (2.9)
b vb

by bootstrapping the particular bootstrap sample {hi } i.e. by replacing

Yhi by h in the proposed method. For the second phase bootstrapping

one could choose values ( m, B') different from ( MhB). This double-

bootstrap method thus leads to B values t*l,...,t*B of t*.

utilizing the bootstrap histogram of t * . . . , t *B we define

f*b i-
CDF t (x) = #it < x}/B Lo w - CDFt (N) tUP W CDF (1-0) , and

construct an approximate (l-2a)-level confidence interval for e given

by

UP b , - b} (3.4)

The interval based on the t-statistic is likely to be better than the

interval based on the percentile method (Babu and Singh, 1983).

We now provide an asymptotic justification for t*. Noting that

vb(a) is a Monte Carlo approximation to

tb -*2 - E (*- ,2(3)

Ob .vb E**(*-Ei)(35

* where 6* is the value of : obtained from bootstrapping the particular

sample hy and E.. is the second phase bootstrap expectation, we

, I' ' - ':
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can write t* = (9 -0 )/%. In tho linear case e - Y it is easily

seen that

-*2 ~2
S Ob  ( (3.6)

In the nonlinear case, following Bickel and Freedman (1983), we can show

*2 -2
that C /% converges to 1 in probability as n . Hence, it

follows that the conditional distribution of t* is asya ptotically N(0,1).

* i One could use a jackknife t-statistic t, - (0 - e)/j instead of

t , where 8 = vj is a jackknife variance estimator of 6 (see KrewskiJ

and Rao, 1981). The corresponding confidence interval is then given by

t- (.OJ )- J.

where tL0W and tUP are the lower and upper c-points of the statistic

*1*
t* 6 (O-)/G* obtained from the bootstrap histogram of tj I ... , t*B

J *2 J J1 J t

and is obtained from by jackknifing the particular bootstrapJ J

sample {Yhi). It can be shown that the confidence interval (3.7) is

also asymptotically correct. A confidence interval of this type was

considered by Efron (1981) in the case of an i.i.d, sample {yi}

It is also possible to replace a2 by the BRR or the linearization

variane estimator and obtain a confidence interval similar to (3.7).

4. COMBINED RATIO ESTIMATOR

The combined ratio estimator of the ratio e - g(YX) = Y/X

R (say) is given by - g(y,x) " y/x-r (say) where W- hYh and

x - zWh,. The corresponding bootstrap estimator is - g(ji) - j/j

- r (say), where
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- + EW4Iji- ('h -y) y + Ay~

and (4.1)

x- + EvW t~-~I Oh ~ )mx

The bootstrap estimator of variance of r in given by

vb - (
3

VL - ai2x
nhrm '(nh-l) 6(4.2)

g~ )( h 2 W ( 62

+ 0(n- 3
p

assuming that max Wh/nh -O(fl ) and 0O< 6 1l< %/(nh-1) 1 6 2<'~ for
h2

all h (see Appendix 2). Her. vL is the linearization variance estimator

VL -2

end

(nh-l) 82 e hi e (xhi-xh)D *hi ' hi -h -rlxhi xh)
e xhi-

2 2and s~h # sx * s..h are respectively the sample variance of 6hi
e a ~th h

eh nd the sample covariance of eA adxhi in the h stratum.xk1~ an

Since s 0 for n "2, -,econd term of (4.2) is zero if

n- 2 for all h. Since ti, -in of (4.2) is positive and of

-2 .2
order 0 p(n ) we have v - in general. On the other

-3
* hand, the jackknife variance estimator satisfies vj vL + 0 (n ) in

p
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the special case of nh = 2 for all h (Rao and Wu,1983). The jackknife

is too close to vL  in the latter case.

To obtain the bias of Vb , note that, when e hi - Yh -Yh R(hi -h)

replaces its sanple analaogue ehi in (4.2), the only effect on (4.2)

is that the error term is 0-(n- 2 . 5 1  instead of 0 (n-3). By working on

p p

this modified formula of (4.2) and noting that Ese2 - (%-2)S-2
e 2xh 'ae2xh h

where S is the population analogue of a , we get the bias of v
e~~~ xI ~t

S e 2.h

Bias(v b ) - Bias(vL) - £ 3 ____(-____ s 2
V - i 3  2~ fai~h~l e 2 x

2
W2 W2  U2

+ -I( _1)S (:£ S + 6 (E 25 )+0(n- 3  (4.3)
i4 nh eh nh h i4 n exh

D ias(v ) - 2a" + 3b + 6 c (say)

2 ~2 2 2where S h" S X and S ehare the population analogues of seh, sx

eexh

Bias(v ) - -2a + b + 0(n- 3 (4.4)

where

1 h

-jia~ -- " £-S6c(sy

we get from (4.3)

B~~I : iaS(VL):s::: +jb +O( - 3 ) .44

3-

i Bias(0b) s-2a - 2a" + 4b + 6c + O(n - 3  (4.5)

In the special case of n - 2 for all h ,a" 0 and



Bias (%) - Bias(v BRR H ) - Bias(vB.) -2a+4b+6c (4.6)

to O(n " ) , where vR., and vBPR S  are the BRR variance estimators

(see Pao and Wu, 1983). In the general case of nh 0 2 for at least one

h , Bias(4 ) depends on the bootstrap sample sizes {mh). In particular,

if mh >> n h we have Bias( b ) - -2a+4b+6c to O(n- ). The choice

mh - -1 (Efron, 1982) leads to

2 Vh(1 - 2)3
Bias( Bias( 2+3b +6c+0(n- 3 (4.7)

i '3 n2(h, e 2 x

5. STRATIFIED SIMPLE RANDOM SAMPLING WITHOUT REPLACEMENT

All the previous results apply to the case of stratified simple

random sampling without replacement by making a slight change in the

definition of Yhi

'hi - 'h + m,(n h -1-1(1 -fh ) t(Yhi -yh )  (5.1) I

where fh - nh/Nh is the sampling fraction in stratum h. It is interesting

to observe that, even by choosing nh - nh-1 , ihi # Yhi . Hence the

naive bootstrap using yI will still have the problem of giving a wrong

scale as discussed before. In the special case of nh -2 for all h

McCarthy (1969) used a finite population correction similar to (5.1)

in the context of BRR.

( >Bickel and Freedman (1983) considered a different bootstrap sampling

method in order to recover the finite population correction, 1 -fh '

in the variance formula. This method essentially creates populations

consisting of copies of each Yhl ' i ,... ,. and h #L
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nh

and then generates yi }* h as a simple random sample without replacement

from the created population, independently in each stratum. This

"blow-up" bootstrap was first proposed by Gross (1980) and also independ-

ently by Chao and Lo (1983). The variance estimator resulting from

this method (by working directly with y*) , however, remains inconsistent

for estimating the true variance of 9 . It is possible, however, to

make the variance estimator consistent by reducing the bootstrap sample

size to %-I , as in Section 2. In comparison with our method, the

"blow-up" bootstrap is somewhat harder to implement, somewhat artificial

and, if the stratum size, N , is not a multiple of nh , requires an

artificial randomization for choosing between two created populations.
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APPENDIX

i. Proof that -b vL + 0 (n " 2  assuming that

max Wh/n - O(n-1), 0 < mh/(nhl) _ 2 <w* (A.1)
h h/n O/V 1 < 62<I.

The condition (A.1) allows L to be either bounded or unbounded.

Writing Y - WYmAy* . Ay*)T , where A:u -EN

we have

L1 W2
I (AI ---0(n
h=1Jhh
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2 , lh _h)2
under the assumption (A.1) and the boundedness of S hjaMyhi fhj

i.e. max S2 < Hence, Ay 0( n-1) and
hj p

3

"9 (- +-!W (9") (Ay') + 0 (n 2 (A.2)
2 p

wbere 9'(Y) = (g1),..-, ,(y))T and g"(y) in the p x p matrix

with elements 9jk (y). Therefore,

v-E(8 0 )2
b -* 1,, j 9*(A jAyk )J ,k-1 JYg~

+ (Ayl - * -* -

+(i) ,AYOYk + 0(n 2

Jk,,- 1

Nov noting that

L 2
E( Y h-1 h 8hjk (A.3)

and

3.* -.* 3 nmh 2 * - -

E.(AYJAYkAY;) %I W '1) E*(Yhj (Yh-Yhk) Yh -Yh
h-l h

L W3 -n- 2
hI nh h~ % (nh-l)J hjkl - 0(n) n

h -2

under (A.1), we got the desired result.. Here (nh-1 )a hjkt "jl- (y h i j -'hj)"

(YhJik " Yhk) (Yh,'t - Yh-0)

2. Proof of (4.2). We follow the approach in Appendix 4 of Wu (1982) to

derive (4.2). Under (A.1) we have A *, A n and A * - * - rA* all

of the order 0 (n- ). Hence, noting that



... .. -18-

r1- + I +0(n'2 )
'C X p

we get

Z' E* (r* - 2

-2 *2 2 (A.4)

S[E* (AXE*) 2 3

+ 3Z ; + 0 I n - 3

-2 p

Now, writing A E d e where h W h -)

b ~ hi -) we get the following
i-i i- i

results:

2 h1 d h L i2

(A.5)

Ld 3

h2h

h-

__ __ __ 
(A.6)

lii ~and - m%(")h2x
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E eh.[( ) (Z(xhh ))] +

E.( d h dh 8ehh) ' . hh-(xh xh)h~h^@h h~h'

h SE E()E* (xh _Xh)J) +

2 2 -- * - --3
2. d ,%( .h,(h h, -xh-) + O 3

2 2
dbhl 2 ~nhl 2) +

h nh e Mh nh x

(E2 -* -* - )12 +0( 3

2h[ &nE eh(ih +0J p n

2 2 W
82 W 2 h 2 -3 1s )+0(n(.7
nh &h h xh nh exh

Substituting (A.S)-(A.7) in (A.4) we get the desired result.
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