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ABSTRACT

The stability of two-dimensional infinitesimal disturbances of the

inviscid Karman vortex street of finite area vortices is reexamined.

Numerical results are obtained for the growth rate and oscillation frequencies

of disturbances of arbitrary subbarmonic wavenumber and the stability

boundaries are calculated. The stabilization of the pairing instability by

finite area demonstrated by Saffman and Schatzman (1982) is confirmed and also

Kida's (1982) result that this is not the most unstable disturbance when the

area is finite. Contrary, however, to Kida's quantitative predictions, it is

now found that finite area does not stabilize the street to infinitesimal two-

dimensional disturbances of arbitrary wavelength and that it is always

unstable except for one isolated value of the aspect ratio which depends upon

the size of the vortices. -
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THE STABILITY OF INVISCID VORTEX STREETS OF FINITE CORED VORTICES

D. I. Meiron*, P. G. Saffman**, and J. C. Schatzman***

1. Introduction

We consider the stability to two-dimensional infinitesimal disturbances

of the steady inviscid jacompressible flow produced by infinite rows of finite

cored vortices. The undisturbed flow in a frame of reference moving with the

vorticity is described by a stream function Y(x,y) with the property

that Y(x + ty) =- Y(x,y), and Y(x,-) - Uly, Y(x,-) - U2y. There are two

cases: (1) wake type flows in which U1 - U2 - U, say; and (ii) mixing layer

type flows with U2 - -U 1 - U. In the first case, there is no net vorticity;

V. the canonical flow is that of the Karman vortex steeet of two infinite

straight parallel staggered rows of point vortices of equal and opposite

circulation r, with separation t parallel to the rows, distance h between

the rows, and each vortex opposite the midpoint of vortices in the other

row. In the second case, there is net vorticity and the canonical example is

a single straight infinite row of point vortices of equal circulation r

separated by distance I

Infinitesimal disturbances to these flows are described by a perturbation

cY'(x,y,t) to the stream function, where c is infinitesimal and by Floquet or

Bloch wave theory the perturbation is a sum of modes of the form

,., ' i p x /  2inx/•
et e t 4n (y)e. (.)

If follows from the Ruler equations that the perturbation satisfies the linear

partial differential equation

a "V, ) 3V21 0 • (1.2)
2. 2

t 3(x,y) 3(x,y)

Substitution of (1.1) into (1.2) and requiring that I' be bounded gives an
*4

Department of Mathematics, University of Arizona, Tucson, AZ 85721.
• * Department of Applied Mathematics, California Institute of Technology,

Pasadena, CA 91125.
**Chevron Oil Field Research, La Habra, CA 90631.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.

4. . . _ . . . . .. . ,  . . .4V . * . . . . . . . .5-



elgenvalue problem for the unknown growth rate a as a function of the

undisturbed flow and p. Notice that p is an arbitrary real number, which

clearly without loss of generality may be taken in the

range 0 C p C 1 or _1/(2c p c 1/2, since adding an integer to p is simply

equivalent to relabeling the eigenvector #,. If p - 0, the disturbance has

the sam spatial period I as the undisturbed flow, and will be called a

superharmonic disturbance. If p * 0, the disturbance has in general a

component of wavelength 1/p or 1/(1-p), which is larger than A, and will

be called subharuonlc. The case p a 1/2, in which the disturbance

wavelength is double that of the undisturbed flow, has attracted particular

attention in flows of mixing layer type where it is called the pairing

instability.

If a is pure imaginary for all values of p, the disturbance does not

grow with time and the flow is said to be stable. (Strictly speaking, it is

only stable to Infinitesimal disturbances, but the behavior of finite

amplitude disturbances is an open and difficult question and will not be

considered here.) If a has a positive real part for some value of p, then

the flow is unstable.

The case of point vortices has been investigated in detail by many

workers; Lord Kelvin and J. J. Thomson studied the single row in the form of a

circle (see Havelock (1931) for a complete treatment). Karmen worked out the

stability of the double row; Lamb (1932) provides an account of this work and

describes the stability of the single row which is always unstable. The

staggered double row is likewise unstable except when

S h/A - 'c a cosh-l (V)/W - 0.280550, at which value Re(o) - 0.

Recently, due partly to the availability of large scale computing

resources, the case in which the vortices are of finite size has attracted
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attention. Saffuan and Szeto (1961) examined the single row of uniform finite

size vortices, where the vorticity is constant inside each vortex and zero

outside. The stream function is continuous and has continuous first

derivatives, but the second derivatives have simple jumps across the

boundaries of the vortices. They calculated steady shapes numerically, and

discussed the stability to two-dimensional disturbances by global energy

methods, which have the advantage that they are not limited to infinitesimal

disturbances. They concluded that superharmonic disturbances are stable when

the vortices are not too large, but there exists a critical size at which

superharmonc disturbances become unstable. This provides another mechanism

for the evolution of a single row which goes under the nam of 'tearing'. The

analysis showed that the pairing instability would not be eliminated by

effects of finite size, but the qualitative global analysis could not

determine whether the growth rate increased or decreased. (Closed form

quantitative solutions for the case of hollow vortices suggested that the

effect of size on the pairing instability is small, see also Baker, Saffman

and Sheffield (1976)). Numerical solutions by Pierrehumbert and Widnall

(1981) for the so-called Stuart vortices show similar behavior (this paper

also contains results for three-dimensional disturbances which are outside the

scope of the present work).

The effect of finite core size on the stability of the Karuan vortex

street was considered by Dom- (1955), but his undisturbed flow was neither an

exact solution of the Ruler equations nor of the Navier-Stokes equations. As

will be emphasized below, the question of the stabilization by finite size is

rather delicate, and Domm's conclusion that finite size does not stabilize is

*of uncertain significance. The first consistent calculation was carried out

by Saffman and Schatzman (1982), who calculated the values of a for

Avail and/or
Dist Special
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superharuonic disturbances to a double row of uniform vortices and the

subharmonic pairing type instabilities for p - 1/2. They formulated the

problem exactly in terms of a non-linear integro-differential equation based

on the 'water-bag' method (see Deem and Zabusky (1978)), whose solutions give

the steady shapes and whose Frechet derivative gives the linear elgenvalue

problem for the a. These equations were solved numerically, thereby giving

approximate solutions to an exact formulation. It was found that

superharmonic disturbances were stable, as can also be predicted by a global

argument, and that the pairing instability could be stabilized by finite size

for a range of values of the aspect ratio h/1 around Kc . Saffman andc

Schatzman argued on the basis of a symmetry argument that the pairing

disturbances were the most unstable, at least for small vortices, and it was

therefore not necessary to consider p # 1/2with regard to the stability to

general disturbances. Unfortunately, as will be discussed below, this

conclusion is false.

The problem was considered independently by Kids (1982) in a rather

different way. He developed a perturbation expansion in the size of the

vortices to obtain approximate equations for the motion of the vortex

centroids. In order to do this, it is necessary to calculate the deformation

of the vortex cores, which respond quasi-steadily to the motion of the

centrolds on time scale 2/r, and can oscillate freely on the much shorter

time scale 1/m - A/r, where A is the core area and w is the magnitude of the

vorticity in the core. A 'coarse graining' approximation is made which

neglects the high frequencies and produces approximate equations for the

vortex centroids which contain the finite size correction terms of

order A/A . The approximate equations were solved exactly for disturbances42/4'

of arbitrary subharmonic wavenumber p. Kida found for the case p - 1/2

*4 -- 4-
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that his results agreed closely with those of Saffuan and Schatzman, despite

the claim by the latter authors based on an analysis of their results that a

consistent calculation of the finite area stabilization

around h/1 - e required retention in the dynamical equations of terms of

order A4 /48. More Important, however, was Kida's prediction that the most

unstable disturbance does not occur for p - 1/2 but for a value of p

differing by order A 2 /A4 , in contradiction to the Saffman and Schatzman

symmetry argument. He did find, however, that the street was still stabilized

by finite area.

This conflict led us to reexamine the problem and tackle the case of

general p. We will present arguments and results to show that Kids's claim

that the most unstable disturbances of the Karman vortex street is

for p ois indeed correct and that the Saffman and Schatzman symmetry

argument was flawed, at least for this case. (It is correct for the single

row). On the other hand, we shall also discuss the accuracy of the

perturbation expansions and the question whether neglecting terms of

order A4/ 8 in the dynamics is consistent. Our conclusions here are that it

is valid for determining the effects of finite area on the oscillation

frequencies or growth rates of stable or unstable modes, but not for

determining the change of stability properties at the critical spacing

ratio K.c In fact, our calculations now predict, somewhat surprisingly, that

the street is always unstable, at least for small area, except for one

particular value of h/1 which depends upon the area. In other words, the

qualitative stability properties of the point vortex configuratlon remains

true for finite area except that the most unstable disturbance for h/1 not

equal to the special value is not the pairing instability.

Our numerical method is sufficiently general that many different flows

-5-
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can be examined with little extra work. We can therefore analyse other cases

of interest such as the single row, the symmetrical double row, the circular

row in which the vortices are at the vertices of a regular polygon (this

provides a model of the effect of curvature on a shear layer), as well as the

Karmen vortex street. We can also handle the case in which the vortices in

the street have different sizes in the two rows. It is, however, shown in

Appendix A that the circulations of the vortices must be equal and opposite,

so that steady motion of a composite wake - mixing layer type flow in

which U2 * U, or * -U1 is not possible, as is also suggested by the

numerical calculations of Brinich, Boldman and Goldstein (1976). We shall,

however, limit the present paper to the staggered double row, and present

results for the other cases in subsequent papers.

2. Consequences of symmetry

We now examine some of the general properties that can be established

independently of the details of the flow and follow from the structure of the

Euler equations and symmetry of the flow.

Because equation (1.1) is real, it follows that if 1' is a mode, so is

its complex conjugate Y'*. Thus if a is an eigenvalue, for a value p, o* is

an eigenvalue for -p or equivalently l-p, and we have the eigenvalue-

eighnvector sets

a,{n(y)}, p (2.1)

0*, {#_n(y)},-p (2.2)

Let us suppose further that the undisturbed flow has fore and aft symmetry,

i.e. it is possible to choose the origin so that

-6-
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V(x.y) Y(-x.y) (2.3)

Then the perturbation equation (1.2) is invariant under the

transformation t + -t, x * -z; and we therefore have an eigenvalue-eigenvector

set

(y)1. -p (2.4)

Taking the complex conjugate of (2.4) gives the set

'.

a) p (2.5)

We conclude therefore that for undisturbed flows with fore and aft

symmetry, and this will include all the cases considered in the present paper,

the elgenvalues for given p will come in pairs with a or -a* being an

elgenvalue if the other is. It follows that the flow is unstable if a is not

pure imaginary. We also conclude that there is a symmetry about p - 0 or

p - 1/2, since the elgenvalue for p is the complex conjugate of the one

for -p or 1-p. Thus if a(p) denotes the eigenvalue, unstable modes satisfy

Re a (p) - Re a (-p) (2.6)

There are also damped modes with growth rate -Rea satisfying the same

equation. It must be realized, however, that a may be multivalued and the

equality in (2.6) may refer to different branches. It was the failure to

realize this possibility that led Saffman and Schatzuman to an incorrect

assertion about the most unstable modes of the Karman vortex street.

-7-
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When symmetry about the axis of the motion exists it gives information on

the parity of the components of the eigenvectors but does not appear to give

any further results about the eigenvalues themselves. Reflexional symmetry

implies that -Y(x + d, -y) describes the same flow field, where d - 0 for

the single row of symmetrical double row, and d - 1/2 for the staggered

double row. The perturbation equation is invariant under the

transformation x + x + d, y + -y, T + - T, and hence there is an eigenvalue-

egenvector set

r €, {e2wi'nd/I fn(-y)}, p (2.7)

For d - 0, the eigenvectors are therefore either even or odd in y, and

for d - 1/2 they have a more complex symmetry.

When the vortices are small, the modes of oscillation will correspond to

those of an array of small circular vortices, and we expect therefore that the

disturbances will be of two types. First will be the cooperative modes of

arrays of point vortices, for which the characteristic frequencies are of

order r/ 2 , and second will be the oscillations of a single vortex for which

the characteristic frequencies are ma/2, where w - r/A is the magnitude of

the vorticity inside the vortex of circulation r and area A, and m is the

angular wave number. These modes are readily distinguishable, at least for

small vortices, and provide a convenient way to group the normal modes.

For the single row (mixing layer), the small vortex case indicates that

there are two degrees of freedom for each type of mode, and the eigenvalues

for each p will come in pairs, a1 and a2, where 02 " 1* if the mode is

unstable, and a1 and a2 are pure imaginary but unequal if the mode is

stable. The symmetry about p - 1/2 also gives a further two

-3-



eigenvalues a * and a2* for 1-p. If unstable, there are then two distinct

branches, one with positive and the other with negative real part, which are

not equal at p - 1/2 and analyticity in p and (2.6) then implies that the

growth rate of unstable modes is such that

dlte ad -- 0 for p - 1/2 (2.8)

and that Re I is a maximum for the pairing mode. (It could in principle be

a minimum but continuous dependence upon the size rules this out fo all

vortices, since it is a maximum for point vortices.) Also Im(o) a be zero

at p - 1/2 for the unstable modes as otherwise the eigenvalue wl -nt be

continuous. Note that p - 0 is a singular limit as the disturban.

wavelength is going to infinity, and hence (2.8) need not hold there.

In contrast, for the double row (wake), the small vortex analysis

indicates that there are four degrees of freedom for each mode, two for each

row, and the eigenvalues for each p will come in quartets

01, 02, 03. 04 , where if unstable 02 - -a,* and/or 04 - -03*"

There are now four branches. The symetry about p - 0 or p - 1/2 now

implies that o*(p) o 3 (-p), etc. (02* (p) = 0 2 (-p) violates the

continuity of Im(o) at p - 1/2 unless the imaginary part vanishes, and this

is contradicted by the small vortex results.) It does not follow therefore

that Re 01 is symetrical about p - 0 or p - 1/2 when there is

instability. For p - 1/2, the quartet of eigenvalues will be such

that a, a*, -v, and -a* are all eigenvalues, but the real and imaginary

parts that coincide come from different branches, and (2.8) does not

necessarily hold. Contrary to the statement by Saffman and Schatzman and in

agreement with Kida's results, the p -1/2 disturbance will not be the most

-9-



unstable disturbance.

In figure 1, we show a sketch of the dependence of the four complex

growth rates on p for the cooperative modes for zero area and general K. In

this special case, the system is degenerate and there is symmetry about

both a - 0 and p - 1/2. In addition, for the exceptional

value h/ - - K c , the circle of instability reduces to a point and thecI

imaginary values of a meet in a cross. Figures 2, 3 and 4 show how these

curves may change when the area of the vortices is finite. Figure 2 is an

example where the street remains unstable for p - 1/2, but the pairing

instability is not the most unstable disturbance. Figure 3 is a sketch of a

possible behavior in which the street is unstable, but the pairing instability

with p - 1/2 is stabilized by finite area. Figure 4 is the case where

finite area has stabilized the street. It can be seen that the symmetry of

reflection about a - 0 and p - 1/2 is satisfied, but the symmetry about the

axes, which is true for zero area, breaks down when the area is finite.

For K away from K it is clear that figure 1 will first change intoC t

figure 2 when the area becomes finite and may later change into ffgures 3 and

4 when the area becomes larger. Note that these results depend upon fore and

aft symmetry, but the sizes of the vortices in one row need not be the same as

those in the other row. The task is to determine whether the special case of

figure 1 for i = Kc changes into figure 2, 3 or 4 when a - A/I2 is finite for

values of K very close to K • There is also a fourth possibility that for
c

finite area there is an exceptional value of K, which should depend upon area,

such that figure 3 is degenerate, i.e. the ovals shrink into points and the

imaginary values meet in crosses.

The high frequency shape modes, which do not exist for point vortices,

are found to be stable, provided the vortices are not too large, and their

-10-.
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Figure 2.

Sketch of dependence on p of an unstable quartet of elgenvalues for fixed area and

aspect ratio. The pairing mods is unstable, but is not the most unstable

disturbance. Note the form of the symmetry.
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oscillation frequencies, which will be modified by the Interactions, are as in

figure 4.

We now concentrate on the staggered double row and discuss the detailed

problem of what should be calculated and how we shall proceed.

3. The Karmn street of small vortices

The complex growth rates a will be the eigenvalues of an infinite system

"O - a (3.1)

where N will have an expansion of the form

Vir 2 + ° + A A2

r 1 A A(3.2)

'1 Invariance with respect to the sign of A requires that the expansion of N

goes in powers of a and not in powers of 14 ,although the detailed solution is

an expansion in 1/1. The matrices Mi depend upon the aspect ratio K and the

subharmonc wavenumber p. The matrix _l1 which produces shape deformation

modes is given by the simple calculation for the oscillations of an isolated

circular vortex, while No which produces the cooperative oscillations of the

centroids is found from the Karman calculation of point vortices. MI, etc.,

have to be found by laborious algebra. The eigenvectors of M-1 and H0  are

independent. In the absence of degeneracy, which occurs when two or more of

the eigenvalues are equal, the eigenvalues will be analytic functions of the

parameters.

From the general symmetry arguments of section 2, we know that the

eigenvalues will appear in quartets, which will satisfy quadratic equations
e*5W#

~-15-
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!'., [a-i 5(P,K 'a)] 2 r(3)

[a r C H3 (p2, R Ka) (3.4)

where S1 , S3, HR and R3 are real and dimensionless. The symmetry about

p = 0 or p - 1/2 implies

S3(P,* )  -Sl(-p*), l3(p,* ) -l(-p,* )  (3.5)

Non-trivial degeneracy occurs if and when R, and H3 vanish, and

*° changes of stability, where a changes from complex to pure imaginary can only

occur at such points. With regard, therefore, to the main problem of the

stabilization of the Karman vortex street by finite area vortices, the

interest is in the functions H, and H3  and their zeros.

These functions are known in the limit a - 0, which can be thought of as

either finite size vortices infinitely far apart, as is appropriate for the

shape modes, or point vortices separated by a finite distance, as is

appropriate for the cooperative modes. It appears from our present numerical

calculations and those of Saffman and Schatzman that H1  and H3  are

negative for the shape modes when a > 0 (but not too large) which therefore

remain stable, and we leave these modes for the present and concentrate on the

cooperative modes. In this case,
2n (p ,K,: ,) - 3(p  ,K ,0) - [2p(l-p) - ech 2(wK ) 12

2 w-cosh(2Wp) - 2p cosh(wK) cosh(wic(1-2p)) ]2 /cosh4 (wK)
(3.6)

The equality of H1  and H3 when a - 0 means that for point vortices the

UP
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eigenvalues occur in pairs such that -a is an eigenvalue If a is. This is

also a consequence of the fact that point vortices form a Hamiltonian system

with x and y coordinates as conjugate variables. It is important to

realize that this additional symestry is a consequence of a zero area

degeneracy and Is broken at finite area.

The p- plans for a - 0 is divided up into regions of stability and

instability and the boundaries look like a diagonal cross with center at

p - 1/2 and ic - K€ where cosh(WKc) - Ir (see Saffman and Schatzman (1982)

figure 2). For K not close to Kc, the effect of finite area is to displace

the boundaries of the stability regions, and the results are not of pressing

importance. For small area, the main interest lies in the behavior of p

close to 1/2 and K nearly equal to Cc" Let

p p 1/2, K' - - c(c'i- (3.7)

then we need the expansion of H1 and H3  for small p', ic' and a.

The numerical results of Saffman and Schatzman for p' - 0, our present

arguments and results (see last paragr'ph of 54) and the analysis of Kida

indicate that there are no terms in the expansion linear in a, and that the

dominant terms of the expansion are

H/ (p,K.a) - c K ,
2+ c 2+ ,+/_ 2 2 , 0+?4+ .. 3

1/3 1 2P 3 .8

The first coefficient, cl, Is positive and the second one, c2, is

negative. Both are given analytically by the point vortex theory. The third

and fourth are given analytically by the Kida expansion. The last

coefficient, c5 , can be deduced from the Saffman and Schatzman calculation,

4$|
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which demonstrated that it was negative (and also gives c3). These numerical

results exclude ana term. Ana p or a 3 term could be present, but is

4 4unimportant compared with the a term in its effect on the stability

4
boundary. Notice that [ida's expansion does not include all a tern

consistently, since they are not included in the dynamics, and hence his

expression for the fifth term is incomplete. His quantitative conclusions

about the stabilization near the critical point are therefore invalid.

The numerical values of these coefficients determined by the earlier work

are as follows. From the Karman expressions,

4.

c1 - 12.1761, c2 - -0.700541 (3.9)

From the results for the stability boundary for p - 1/2 given in equation

(3.19) of the Saffman and Schatzsn paper, which relate the values

of a and K for which HI or 13 vanish when p' - 0, we have the

estimates

ca3 - -12.88, cS - -11.60 (3.10)

From the analytical expression given by [ida's equation (3.29), and the

formulae of his (3.10)-(3.11), we find that

cl3 - -13.52, cl4 = 6.49, c"5 - -12.33 (3.11)
4%

.It can be seen that the c3 and c5 are in reasonable agreement. This is

consistent with Kida's statement that his results agree with those of Saffman

4
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the section, see equations (3.20)-(3.22).

The stabilization of the street is determined for small area by (3.8).

We complete the squares and write the right-hand-side of (3.8) as

C. c (1( '.1.c3P 2 )2 + c 2 (p'+/- c4 2) 2

-. (3.12)

+ C c5 -c 3/4c 1-C 4 /c 2)

The stabilization or destabilization of the street by finite area therefore

depends upon the sign of

D - c5 - c23/4c1 - c24/4c2  (3.13)

If D is positive the street is made unstable in the vicinity of the critical

point by finite area. If D Is negative the street is stabilized for a range

of K of order a by finite area.

If D - 0, then the critical point remains an isolated value of

stability but the aspect ratio of the stable street is altered by a value of

order a2. In this case, it would be necessary to go to yet higher order

in a to determine the stability question.

For a fixed a, the stability boundaries in the c'-p' plane are given by

the vanishing of (3.12) which gives two hyperbolae. The interiors of the

hyperbolae, marked by cross-hatching, contain the unstable modes. There are

two main possibilities depending upon the values of the c coefficients.

Figure 5 shows the stability boundaries for p close to 1/2

and s near K c when D is negative. There is a region of stability bounded

-19-
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~Figure 5.

Sabiliy boundary In the k' p plans hen finite area stabilizes. Hyperbolae

would cross at centers if D =0. Cross hatched areas denote instability regions

for modes 1 and 3. Numbers in parentheses show corresponding figure for growth rat~e

as function of p.
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by the two hyperbolae with centers at K' - l 2 and p' - 2 p , where

'N

-c 3  -c 4  (3.14)

1 2

• ," The distance between the vertices giving the range of c for which there

is stability is

8K - (-/ 1/2 2 (3.15)

In this case, finite area stabilizes the street for a range of aspect ratio.

On the other hand, if D is positive, then the stability boundaries are

as shown in figure 6. Now, there is always a value of p which gives an

. unstable mode and finite area destabilizes the street by removing the neutral

case. If

S> (-D/c2) 1 / 2  (3.16)

there is a lens of stability along the pl - 0 axis and the boundaries are as

shown in figure 6. The pairing mode is then stabilized, but there is a range

of unstable values of p of widthI
6. ip - (-D/c2)

11 2 2 (3.17)

If (3.16) is not satisfied, the hyperbolae overlap and there is no

stabilization of the pairing mode.

If D - 0, the hyperbolae degenerate into crosses meeting at the points

given by (3.14) and the street is stable for one special value of K equal

%J

-21-
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2+"' tO K ,- .

Using Kids's values given by (3.11) we find that D - -1.04. Using

Saf fman and Schatzmsn's estimate of c3 and c5 , and Kida's value of c4 ,

we have D - 0.037. There is no reason why these estimates should not be of

opposite sign, because as explained above there is an error in Kida's c5 . It

appears, therefore that D is small and the question of stabilization by

finite area will be delicate. Either a consistent perturbation expansion of

* 4order a should be carried out, or a further numerical investigation be

attempted. The algebra entailed in the former is horrific (Saffman and

Schatman did consider carrying out such an expansion for the simpler

p - 1/2 case, but decided in favor of a numerical calculation)., and It was

again decided to go to a numerical approach.

We discuss in the next two sections our method for calculating the steady

shapes and stability boundaries, which we use to investigate the stability of

the cooperative modes. It also gives the high frequency shape modes, and has

the advantage that It is easily applied to a wider class of problems. With

respect to the street stability, the numerical results indicate that D is

actually zero to within the limit of numerical accuracy. Kida's results that

there is a range of K for which finite area stabilizes disturbances of

arbitrary p appears therefore to be incorrect.

On the other hand, Kida's expansion should give the coefficient

2
of a exactly in closed form for all p and K. Away from the critical point,

there will be values p., K. at which the stability of point vortices

changes. To determine the effects of finite area for these values, we require

an expansion

HR1 (pc,a) " c 1 (K -8 + c 2 (p-p s ) + c 2  (3.18)

-23--3
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and a similar expansion for H3. Here, c1  and c2  are known functions of

p5  which vanish for ps 1/2, and the same is true for c3  which is given

by Kida's results. For ps * 1/2, (3.18) is sufficient for the determination

of the stability properties for small a. However, the coefficients in (3.18)

vanish when ps - 1/2, and there the expansion (3.8) is required.

The discussion of this section shows that from Kida's expressions for

H1  and H3  correct to O(a 2 ) combined with the numerical results which give

the coefficient c 5 , we can construct an expression for the effect of finite

size on the stability boundaries which is uniformly valid to O(a') for all

p and K. We have for the cooperative modes

"'a" H(pic,a) - "linear theory"

%I- + "Kids" a (3.19)

4
+ "numerical" a

with H3 given by (3.5). Kida's analysis also gives S1 and S3 correct

to O(a2 ) .

For the special case of disturbances with p - 1/2, p' 0 0, Saffman and

Schatzman found that for small area the street was stabilized for aspect

ratios in the range

2 2

-0.583 a2 < K' < 1.644 a (3.20)

According to (3.8), the range of values is

-ba < K' < b (3.21)
-242
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where

c3  cl(b 1 - b2), c5 - -clblb2  (3.22)

Kida's values of c3 and c5 give bl - 0.60, b2 " 1.70; which agree

reasonably with the values found by Saffman and Schatzman.

4. Calculation of steady shapes

We describe the method here in the context of the staggered double row.

Modifications for other flow configurations are simple and easy to

implement. Saffuan and Schatzman employed a boundary integral method. This

has the advantage that it can be employed for finite area, but it suffers from

the disadvantage of being rather hard to implement for disturbances of

arbitrary wavenumber (although this possibility is under investigation) and

also being hard to check analytically. The method we employ here follows one

suggested by Dr. Javier Jimenez and is based on an expansion in inverse powers

of I . This can be thought of as an expansion in core radius or /, but we

choose to keep the area of the vortices finite and suppose the separation I

is large, with h/1 kept fixed. In principle, the algebra can be done and a

consistent perturbation expansion developed, but this is beyond our present

resources (even with the aid of symbolic manipulation programs) and we do the

algebra arithmetically. Unfortunately, the detailed approach does not allow

the retention of high order terms in a completely uniform manner, so checking

vith Kids's perturbation results suffers from uncertainty.

The shape of a vortex in the first row is assumed to be described by the

exterior conformal map of the unit circle - 1;

Z R C{l + a 1/1; + a 2/c2 +(41
Ss-25- (4.1)
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Vortices in the second row have the expansion

z R2c{l + bl/ + b2/C2+ .01 (4.2)

These series may fail to converge before the solutions actually break down by

vortices coming into contact, but we assume that there is convergence for a

finite range of area.

Our first task is to calculate the velocity field induced by a single

vortex containing vorticity w,1 of shape (4.1). To do this, we employ

(following Jimenez) the so-called Schwarz functions, which are analytic

functions of z equal to z* on a contour. To find the Schwarz function for

the contour (4.1), we expand the expression conjugate to (4.1), remembering

that C* - 1/c on the contour,

S* - R*l/cil + a*lc + .2
2+ (4.3)

as a Laurent series in z, giving an expansion
'"p

z* = go/z + gl/z 2 + g2/z
3+...+f 0 + f1z + f2z

2+... (4.4)

The complex velocity u - iv induced by the vortex is analytic outside the

vortex, and such that u - iv + ilz*/2 is analytic inside the vortex. It

follows by inspection that the exterior velocity field is

- go g1  g2  . 45
-i !----{ + !I +-!2+. (4.5)

z z

The interior velocity field which can be expressed in terms of the fn' etc.,

-26-
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is not required. It remains to describe how the S. are found in terms of

the an.

To do this, we multiply (4.4) by zn and integrate around a contour in

the z-plane, giving

M *~ zn dz MT l * z dz

- coefft of CO in product z* zn dz (4.6)

when (4.1) is substituted for z and (4.3) for z*.

Similarly.
.°4.

in -coefft of CO In product z *n dz* (4.7)

the minus sign arising from reversal of the sense of the contour.

There are alternative expresions for the gn in terms of moments of the

shape of the vortex. Since

u- IV dx'. (4.8)

it follovs that

T gn - ff z'n dx'dy' (4.9)
1

where the integral is over the vortex. In particular, go is

the area/, and g, is proportional to the displacement of the centroid

relative to the z origin.

Similarly, we obtain an expression for velocity induced by the vortex

(4.2)
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102 h0  h, h2 +u-ivm---{-+-.y+-"T+ ] (4.10)
z z

where the h. are related to the bn  by the formula analogous to (4.6).

We also obtain the conjugate velocity

u + IV m2 {.8 0 +2*.I+. 2+ J (4.11)

and similarly for the second vortex, where the 5*n are related to the &

and *n by (4.7).

An expression can now be written down for the complex velocity produced

by the two staggered rows. The origins in the first row will be supposed to

be at the points mL, - < a <-, and in the second row at the

points at - X(d + iK). The separation t need not be real; its phase
*.1.

determines the angle between the x-axis and the direction of the rows.

Indeed, it proved convenient in the actual calculations to take L to be pure

imaginary. The relative stagger d and the aspect ratio K are real. For the

Karman vortex street, d - 1/2. For the symetrical double row, d - 0.

Arbitrary values of d may be considered, but we shall not do so. Then at a

point with coordinate z relative to a vortex in the first row

-1W1

u -iv I +1
n-O m-- (z-mu)t

n-0 m-- (z-t + t(d + iK))n+l + U - iV, (4.12)

.4

and At a point with coordinate z relative to a vortex in the second row 4.

*4]

-28-

* 44Z
.- -.: .: ..:: .:. ,...:.: :... .-.: .: .:.:- -. .-.: .-. .. - .. : .:: . .. . :.... - . -.. . ..: : ..:.:.: .:-.. .: .: . ---, , - " -,-'':::- : - : , :- , -.,< , ; . * : ., .,,..:.:.: - .- ". . , . .. 4...,. ..... . .,. ...-,-..-.--.



u -v -- -- s.f)n
U IV -

uo m-- (s-mt;)' 4 1

1 01(mt d+lj))'4l + U - iV. (4.13)

U and V are component. of %he velocity at Infinity which balances the self

induced motion of the street and brings the vortices to rest.

Expressions for the conjugate velocities u + iv are obtained by

replacing I with -i, gn with O*n, hn  with h*n , and A with A*.

For steady notion, the shapes of the vortices are given by the condition

that their boundaries are streamlines, i.e. u - iv is parallel to the

* tangent de/de. This is expressed by the equation;

R (C) a (u-1v)C A + (,+1v)C jj".,- 0 (4.14)

when JCf - 1, to be satisfied on the first and second vortices, i.e. with

u- iv given by (4.12) and a given by (4.1), and u - iv given by (4.13)

and z given by (4.2), and the appropriate conjugate expressions,

respectively. This provides equations for the unknown coefficients Rl, a.,

R2, bn , and the. translation velocity Q - U - IV and Q* - U + iV.

It is expected that locally unique (isolated) solutions will exist if the

areas of the vortices, the positions of the centroids, and the strengths of

the vortices are given. The question to be discussed now is the actual

procedure to be employed.

The straightforward way, and the one that is implicit in the present

formulation, is to develop a series expansion in a, the solution

%.
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for a - 0 being known. It is convenient to suppose that the vortices have

finite areas and strengths, and that the limit g - 0 is obtained by

letting I * . Then we can develop the velocity by expanding the ters inIp
(4.12) and (4.13) and their conjugates as power series in 1lt and calculate

S.,

the unknowns as series in the same variable. This is feasible in principle,

", but impossible in practice at present, especially when it is remembered that
-9

the stabilization problem requires retention of terms of order L in order to

4
retain consistently effects of order a . An alternative approach, and the one

that we employed, is to use the computer to do the algebra arithmetically as

follows.

" We pick two integers N and L. The series (4.1), (4.2) and their

conjugates are truncated to keep the first N + 1 terms, i.e. we include aN ,

bN, a*N and b*N. Newton iteration will be employed to find the values of

'S these (in general) complex numbers. For this purpose we then calculate

numerically, starting with a first guess for the 2N + 2 unknowns R1 ,

al,...,aN, R*l, a*lh...,a*N, from (4.6) and (4.7), the values of go,

gl, ... g*0, g*l,''"g*N" In fact, g0  and g*0  are put equal to the

given area A1  of the vortex divided by w, and the difference between the

values calculated from (4.6) and (4.7) are used as a check on the accuracy of

the calculation. Similarly, we calculate the hn and h* For reasons that

are important for the stability calculation and will be made clear later, we

treat quantities and their conjugates as independent variables, e.g. R1

and R*1 are regarded as independent complex numbers. Of course, the

solution will not be physically sensible unless the final answers are complex

conjugates of each other. So far, we then have 4N + 4 complex unknowns.

We now expand (4.12) as a power series in 1/ retaining terms of

order IL. This gives a triple series

-30-
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u IV Iv 1 8 _ B(p'n4,l ) 1n-O po- U -I a. u

(4.15)-nto N --

u -a v-an B ( p n+ ()  -T -

~~F2 .L-- z + Q,
n-0 pOO A n-- (r-d-1x)Pa,,

vhere S(p,n) i the coefficient of zP in the binomial expansion of

(1+0)-n. The vorticities are w- r /A and W2 - - 2 . The s with

respect to m can be done in closed form, see appendix B. We nov substitute

the truncated expansion (4.1) into (4.15) and obtain u - iv evaluated on the

boundary of the vortex as a series of positive and negative powers of c.

Differentiation of (4.1), etc., gives a series in C for dz/dc, etc., and

substitution into (4.14) gives a series of positive and negative powers

of C with complex coefficients vhich are analytical functions of d

and K, contain inverse powers of 1, and are mmerical functions of the

4K + 4 unknowns, Rl, a., etc. They also contain the two unknown complex

velocities Q - U - iV and Q* - U + iV, which will also be regarded as

independent complex unknowns.

To obtain equations for these 4N + 6 unknowns, we calculate the

coefficients of Cn in the expression (4.14) for values of n in the

range -K 4 n < N, for vortices in the first and second row, and denote these

4N + 2 complex quantities (2N + 1 for each row) by El(n) and E2(n). We

obtain 4N + 2 equations for the unknowns by requiring

El(n) - 0, E2 (n) 0 0, -N C n C N (4.16a,b)

We have not yet said anything about the position of the origins inside
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the vortices, from which the separation K is measured. It is convenient to

require that the centroids coincide with the origins. These constraints upon

the variables are equivalent to the four equations

1  j " 1 " hl "h*l 1 0 (4.17)

Two further equations are found from the condition that the vortices have

given area. Defining the area by

A- w lR* 1 (l - a 2 a*2 - 2a 3 a*3 - • .(N-I)aNa*N} (4.18)

and a similar expression for A2, which are correct when starred quantities

are complex conjugates, and which are identical to g0  g* 0 - Al/W in this

-. case, we have two further equations.

Thus altogether, we have 4N + 8 equations for 4N + 6 unknowns. The

equations are, however, not independent. Firstly, El(O) and E2 (O) are

identically zero, and secondly there are two independent constraints on the

EI(n) and 92(n). The reasons are as follows.

On the surface of the vortex

(u - iv)dz - (u5 + iun)ds (4.19)

where u8  and un are the tangential and normal components and do is the

element of length. Also, C - exp(ie). It follows that 2u do - R (C) d8.n

Now the velocity field that we construct above is an exact solution of the

Euler equations and hence must automatically satisfy the equation of

continuity. Thus, automatically
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iunds - 0 * R (C )d6 2w 2,(0) (4.20)

', Jo

_ and hence the vanishing of ZE(O) and 92(0) are just consistency checks and

not independent equations.

Next, consider the consistency condition (A6) derived in Appendix A.

Since,

f f (u * iv)dxdy n (x * iy) unds

we can rewrite this equation for constant vorticity as

w ff(z * z*) R (c)de +w 2f 2 (z * z*) R (C)d8 - 0

(4.21)

Thus we have two constraints relating the components of R (c) on the two

vortices which are imposed by kinematics. Since z is given by (4.1), etc.,

the relations are between all the EI(n) and 92 (n), but since the dominant

terms in the expansions are the leading ones, it is expected that it suffices

to throw away the equations for 92(1) and E2(-l). The existence of (4.21)

will ensure that the converged solution will make these quantities zero

automatically, and in fact the accuracy of the solution can be monitored by

their values.

To summarise, we now have 4N + 4 independent complex equations from

(4.17) (4 equations), (4.18) (2 equations), (4 .16a) with n - 0 excluded (2N

equations), and (4.16b) with n - 0, n - 1 and n - -1 excluded (2N - 2

equations). However, we still have 4N + 6 complex unknowns R1 , anl, R2 ,

an2, their conjugates, and the two complex velocities. Two further equations

-- 3,'
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are therefore required. These are obtained by noting that the phase of C is
arbitrary, and that this can be fixed by specifying the phases of R1  and

12. We do this by requiring that in the final solution R, and R2 should

be real, which is imposed by the two complex equations

R- R'*, R2 "*2 (4.22)

The number of equations and unknowns is now equal. The test that the

counting has been done consistently is the non-vanishing of the Jacobian of

the system. (The constraints embodied in (4.21) were In fact discovered

numerically by the vanishing of the Jacobian when the n - +/-l equations of

(4.16b) were not excluded.)

For given values of the parameters, a first guess was taken, usually the

circular vortex approximation, and solutions were calculated by solving the

system with Newton iteration. It is necessary to decide on suitable values r

of N and L. Taking L - I gives circular vortices, since the induced

velocity in the neighborhood of a vortex Is then constant. To calculate

deformation consistently to order a, it is necessary to take L - 2 and it is

then sufficient to take N - 2 which gives vortices of elliptical shape.

This corresponds exactly to what can be called the elliptical vortex "

approximation (Saffman and Szeto 1981). The exterior velocity induced by a

2
uniform vortex of elliptical shape differs by terms of relative order a from

that of a circular vortex of the same circulation, so at this order the

cooperative behavior, i.e. translation velocity and stability properties, will

be the same as for point vortices. This explains why there are no terms

linear in a in (3.8). The first significant effect of area comes with L =

5, which gives a consistent calculation of 0(a effects. The value of N 'A
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should be at least L, and there ts little point in taking larger values.

The accuracy of the solution can be tested by comparing with the results of

Saffman and Schatzuan (1982) and the steady solutions correct to

order a " given by Kids. Unfortunately, the numerical method does not Ignore

smaller terms, and results obtained with L - 5 cannot agree exactly with

4
Kida's, but the difference should be of order a • For the Investigation of

stability, at least near the critical value of K - c , it is necessary to

take L - 9 and N - 8 or larger to ensure retention of all terms O(a 4

5. Stability

We wish to consider the stability to infinitesimal two dimensional

disturbances of the steady shapes calculated by the method described in S 4.

It is assumed that the boundaries are deformed by disturbances and that the

vorticity inside the vortices remains constant. There are of course a

continuum of oscillations associated with changes of the vorticity

distribution, but these are not relevant to the intrinsic stability of the

street to disturbances produced by motion of boundaries or the action of

conservative forces. We suppose now that the coefficients of the expansions

(4-.), etc., are perturbed by infinitesimal functions of time which are

denoted by prines. The linearized unsteady boundary condition that the vortex

boundaries are material boundaries gives the equation

dz'* dz dz' dz*

_t' - Z' dt dz*

dz dz*
-(u' -iv')C !.+ (u' + iv') C

+u IV L+(u + iv) ; - (5.1)
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" to be satisfied on each vortex of the rows. Unprimed quantities denote the

undisturbed steady state.

We now have to handle the problem that for subharmonic disturbances the

. oscillations of each vortex may be different, so that we appear to be faced

with infinitely many equations for infinitely many unknowns, irrespective of

any truncation that is employed. This difficulty is overcome as follows. The

velocity induced by a vortex is an analytic function of the coefficients.

Let (u - iv) denote the velocity induced by the vortex centered at m.
m

Then, for example, the change in this velocity at a fixed value of z

produced by the perturbation a'n. is

(u' - iv') -d(u- iv) a, (5.2)
VA da n nm

where u - iv is given by (4.5) as a function of the undisturbed

coefficients. Because of the periodicity of the undisturbed motion, the

derivative in (5.2) is the same function of z - mt for every vortex in the

same row. Expressions similar to (5.2) hold for the conjugate velocity and

the velocities induced by the vortices in the other row. It follows therefore

that normal mode solutions of (5.1) can be obtained by restricting attention

". to one vortex in each row, namely the vortices given by (4.1) and (4.2), and

supposing that the perturbations of the other vortices are related to the

perturbations of these vortices by relations

a' - a' eif ,a' * - a'* e' ,R' - R' ei' f R'* - * if (5.3)
nm n nm n 'm 1 1. 1

b~~m  bnaf imf I=l emf 54

- , b* " b'* e , R - Re R2 R' e (5.4)nmn,m n 2ti M 2
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where f is related to the subharmonic wave number p by

f - 2wp (5.5)

Notice the subtle point that although the undisturbed solution must have

the property that a. and an, etc., are complex conjugates for it to be

physically sensible, this need not be true of infinitesimal perturbations.

There ts no contradiction here, as will be explained in more detail later. It

Is of course just the manifestation in the present context of the fact that

the eigenfunction of a real problem may be complex.

The perturbed velocity u' - iv' can nov be calculated. We have the

undisturbed velocity induced by the vortices as given by (4.12),

u- iv " 'F.Q zs~~

-M 2 hn (5.6)

n-O am- (z-u-,+(d + IK))+5.
Then,

u- iv' " d(u - iv) z'dz

-~i ,mf

n- m rn-r (z-at)

- h'nmf
2-n (5.7)

n- -- (z-a-m K(d+iK))n~

where

z- R'1 C(1 + a,/C + a 2 / 2+

.J..
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+ R (I + a'/A + at 2 /4 2+ (5.8)1 2 5s

and g',, etc., are the perturbations for the vortices (4.1) and (4.2) and

are obtained from (4.7), etc. The differentiation with respect to z in

(5.7) is done because the velocity has to be evaluated on IC! - 1 and the

boundary condition (5.1) will be evaluated in terms of .

The boundary condition is now linear in all the perturbations and

solutions are searched for in which all primed quantities are proportional

to exp(at). If we denote the variables R'l, a'n, R'*1 , a'*n, R 2 , b'n R'*2 ,

bl*n by a vector , the boundary condition gives an eigenvalue eq iation of

4- the form

a N Cc - ~(5.9)

where, at least in principle, the functions M and N are known functions of

the undisturbed shape and the subharmonic wavenumber p. (The infinite sums

with respect to m in (5.7) can be done in closed form, see Appendix B.)

Again in principle, the eigenvalue a can be developed as a series in

inverse powers of £, but the algebraic complexity is fearsome and numerical

methods were employed. Corresponding to a steady solution with some N and
.4,

L, the same truncation was applied to the perturbations, i.e. terms qith

suffix greater than N were discarded. This gives a column vector with

4N + 4 rows for . The forms like (4.15) were employed for the calculation

of the velocity and its perturbation, which leads to an expression of the

boundary condition as a series of positive and negative powers of C. 4N + 2

.4.- nequations are obtained by equating the coefficients of n to zero for n in

the range -N 4 n 4 N for each vortex. Two further equations are obtained by

fixing the phase by requiring

.4.

.4'4
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., Rt*l R'2- R'*2 (5.10)

The problem has now become one of calculating the eigenvalues of a generalized

complex eigenvalue equation of order 4N + 4, which can be approached in

standard ways. No difficulty was found in accomplishing this.

Some coments are in order. First, It will be noted that the boundary

conditions for the unsteady calculation are different from those of the steady

flow. In the latter case, it is necessary to ensure that the equations are

independent. This is unnecessary for unsteady calculations, where all that is

needed is to ensure that the equations are not inconsistent. Therefore any

integral constraint that leads to dependence of steady equations will be

automatically satisfied by a consistent evolution equation. We therefore

retain the equations that come from the terms Independent of C and the

coefficients of C and C "1 for the second vortex. Satisfaction of

the C independent term in equivalent to conserving area in unsteady flow, and

it can be verified from the computer results that all modes with a * 0 keep

the area constant. Indeed, this provides a check on the accuracy of the

eigenvalues and eigenvectors. As described, the calculation

keeps w, and w2 constant. There is a neighboring equilibrium state in which

the velocity of the array is the same (Q and Q* are not perturbed) and the

strengths and sizes of the vortices are altered. We expect corresponding to

this state that there will be two zero eigenvalues in which the eigenfunction

does not conserve area. These are indeed found. They could have been

eliminated by imposing area conservation to reduce the number of unknowns, but

this would have been less convenient. The retention of (5.10) gives two

infinite eigenvalues, and it proved easier to make the eigenvector satisfy

O(5.10) throughout the calculation and actually solve a 4N + 2 order
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system. This gives N quartets of eigenvalues, one of which is the

cooperative mode and the others are the first N-1 oscillation modes, and the

two neutral modes in which the area changes.

Secondly, ye find perturbations which contain components

like a' eat + imf and a't + e mf for the in-th vortex, and these are not

complex conjugates of each other. To avoid confusion, we denote the

perturbation to a n by n's" They produce contributions to z'm  and z'*,

which are respectively

a' n(f)R1 *a(f)t + imf

n-l

anR, XPn-1eO(f)t + imf (5.2)

Nov change f into -f (or 2N - f). We get the contributions to z' and

Z V * m

a' n(f)R ea(-f)t - imf

n-l 
(5.13)

R*1 n-le (-f)t - (5.14)

Because of the symmetry expressed by (2.2), a(-f) - *(f), and

a' (-f) - (a' (f))*, where the star here denotes actual complex conjugate.n n
Thus (5.11) is the complex conjugate of (5.14), and (5.12) is the complex

conjugate of (5.13). Physically realistic perturbations are therefore

obtained by adding (5.11) and (5.13) for the disturbance to zm  and (5.12)

and (5.14) for the disturbance to z. and (5.12) and (5.14) for the

disturbance to z*m .
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6. Results

Steady shapes were calculated for a range of a and K using the method

-n of S4 and the stability of these shapes to infinitesimal disturbances was

calculated using the method of section 5. For the majority of the

calculations, the value of N - 8 and L a 9 were chosen. Results were

"- checked in two ways. First, calculations were done with N - 16, L - 17,

and N - 32, L - 33. Second an alternative code which employed the

'interior' mapping of the exterior of the vortex into the interior of the unit

circle was employed instead of (4.1). This method was used with

L - N - 12. For a less then 0.1, there was no significant difference between

any of the results. Calculations using N - 8 and L - 9 required about 15

minutes of CPU for the computation of the steady shapes and about the same

time for the computation of the eigenvalues on a VAX 11/750 computer. Most of

the time went for the calculation of the Jacobian and the matrices. A large

amount of data was amassed. Here we summarise the salient features.

The behavior of the shape nodes showed no surprises. In fact, the effect

of finite area on the oscillation frequencies was generally insignificant.

The modes were all stable and what small change there was due to finite area

was consistent with the symmetry requirements.

The interest lay entirely in the behavior of the cooperative modes and in

particular, the effect of finite area on the stability boundaries in

the p - K plane for fixed area. A typical set of results is shown in figure

7. These are or the case a - 0.05. The ratio r , rtex radius to

longitudinal separation is 0.1262. The solid lines show the stability

boundary in the vicinity of the critical point. The dashed lines are the

stability boundary according to equation (3.30) of Kida (1982). It will be

seen that the numerical results indicate that the stability boundary is the

J
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degenerate case of figures 5 and 6, In which the hyperbola is a pair of

itralht lines meeting at the center pX, KC" In this case, the dependence

of growth rate a on p for K - KX would be the degenerate case of figure 3 in

which the ovals shrink to two points at. PX and 1-py. The existence of the

* -. cross is confirmed by the plot in figure 8 of the difference in the values

of p on the stability boundary versus K very close to PX and c.0 The

numerical points were found to lie on two straight lines which met at a value

of the difference Indistinguishable from zero. Similar results were found for

all other values of a employed. In fact, some runs were done for the

relatively large value of a - 0.1854 (using N - 32), and showed the same

behavior. These results imply that the street is always unstable except for

the special value s -c."

For the values of K shown in figure 8, Kida's results imply that the

street is stable. (Note that the results drawn in figure 7 show that the
5,.

pairing mode with p - 0.5 is stabilized by finite area, as calculated by

Saffman and Schatzman 1982). This disagreement is not unexpected, since as

5. argued in section 3 Kide's calculation is not consistent to 0(a4 ) as is

necessary to determine the behavior near the center of the hyperbolae.

However, according to the argument summarized by equation (3.18), the change

in the stability boundary away from the cross would be of order a2 and should

be correctly calculated to this order by Kida's theory. The discrepancy

between the numerical results and Kida's results shown in figure 7 is due to

the value of a being too large for the perturbation theory to be accurate.

This is confirmed by the results for a - 0.025 shown in figure 9, where the

disagreement is confined to the vicinity of the cross.

a. The arguments of section 3 imply that pX - 1/2 and CX - Kc should be
ee.2

proportional to a2• Results are given in table 1 and shown in figure 10. It
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Figure 9.

Stability boundary for a - 0.025. Kida's predictions now agree with the numerical

results away from the cross.
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Figure 10.

Position of the center of the cross for various a. Solid lines show

pi 1/2 and K1/2 versus a. Dashed line is tangent at origin.
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4..TABLE 1

.005 .0125 .025 .05 .0927 .1854

•c' 1  1.38(-5) 8.50(-5) 3.25(-4) 1.19(-3) 3.33(-3) 7.96(-3)

1 6. ...

.552 .544 .520 .476 .388 .232

4.64 4.65 4.72 4.80 4.89 4.42

:,'

% A,
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was found that P'X was closer to quadratic than i 'x which deviated

considerably for the larger a. Assuming to a first approximation

that K'x and p'X are quadratic plus cubic in a, we have from the results

-' for a - 0.005 and a - 0.0125 that X - 0.557 and U = 4.63. It follows from

equations (3.14) and (3.15) that

c3  13.6, c4  6.49. (6.1)

The agreement of these values with those calculated by Kida (see equation

3.11) is very good. However, the existence of the crosses implies that

D - 0, and hence from equation (3.13)

c5 - -11.2 (6.2)

The value of C5 agrees well with the value predicted from the Saffman and

Schatzan results for p - 1/2. The important result is the difference

between (6.2) and Kida's value given in (3.11), which leads him to predict

stabilization in contrast to the numerical calculations. A consistent

* 4
perturbation expansion to order a is of course required, but this is no

simple matter.

It may be of interest to give a trivial example which illustrates the

consistency problem. Suppose we have the quadratic equation

x2 + ax + b 0,

2 2
a =-2 +e + 0 (), b 1 -e + O()
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Then x 1 1 + 0(e), but use of the quadratic formula shove iumediately that

2
the 0(N) term cannot be calculated without knowledge of the 0(C ) terms in

a and b.

A strange property of our results is that there was no sign for any value

of a of the crosses breaking up into hyperbolae. This Implies that the

functions Hl and H3 are for finite area of the form

2k 2

H(p 0ca) - D1 (C - K - D2 (p - PX ) 2 (6.3)

where D1 and D2 are functions of p,K,a, and KX' P. are functions

of a only. A general result of this kind should be capable of simple proof,

and not require extensive computation.

It is known experimentally that the observed values of K in the vortex

street wake of a cylinder increase with downstream distance, as presumably

does the area due to viscous diffusion. It would be of interest to determine

if the variation of K and a were such as to keep the street in the state of

stability as described by the plot in figure 10, but this ts at present

difficult to do as the size of the vortices is not easily estimated from the

data.
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Appendix A Kinematic Constraints

Consider the double row with vortices of strengths r1 and r2 in two

parallel horizontal rows. Suppose that the velocity at infinity is Ul,V

above the top row and U2 ,V below the bottom row. Conservation of mass

requires that V is the same above and below. The equivalence of circulation

and vorticity flux gives the relation

U2 - U1 = (r 1 + r2) (Al)

where L is the distance between neighboring vortices in the same row. We

note the vector identity

uxw 12) u (A2)

Further, for two-dimensional flow, w w wk, where k is normal to the plane.

Then using Green's theorem,

fu x w dxdy = -k x fu w dxdy

1-f u 2  f u (u • n)ds

- i v it (U2 - U1 ) + j I (U 2 - u 2 ) (3)

where the integral is over one wavelength of the flow.

Now the left hand side of (A3) is proportional in magnitude to the

velocity of the vorticity centroid, and this is zero if the flow is steady.

Hence in this case, either
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Ul -U2 , V -0, (A4)
..

or

U1 = U2  , r -r 2 . (A5)

The former case is the mixing layer, where the speed of the vortices is the

arithmetic man of the speeds on the two sides. The latter is the wake, where

the vortex speed is not the arithmetic man and the circulations are equal and

opposite. These results show that there cannot be a continuous family of

steady solutions going from wake to mixing layer with U2  changing

continuously from Ul  to -U1 .

Of Importance for our mmerical method is the fact that for the wake

where (A5) holds, the right hand side of the identity (A3) vanishes and hence

generally, writing separately the contributions to the left hand side from the

vortices in each row, we have

If uw dxdy +2f uw dxdy - 0 (6)

which is a consequence of the kinematic relation between velocity and

vorticity. Thus whenever the vorticity field is chosen so that one part of

(A6) vanishes, as is required for the solution to be steady, the other side

must also vanish automatically. Hence equating separately to zero the parts

of (A6) in a calculation of steady flow does not give independent equations.

This Is the Justification for dropping the equations for the coefficients

of C and C on the second row vortices.

VP
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Appendix B Sum Formulae

The calculation of the steady shapes and stability requires the

evaluation in closed forms of the infinite sums

Cl (El)

m- (2+)n
p

where s is an arbitrary complex number, f is an arbitrary real number

and n is a positive integer. If s - 0, the term with m -0 in the sum

is excluded.

It is convenient to deal separately with s - 0 and s 0. For the

first case, we have for n - 1, by direct summation or the elementary theory

of Fourier series,

- *imf
m _ i(,-f) 0 <f <2 "

(B2)

-0 for f 0 or f 2i.

Values outside this range are obtained by applying periodicity in f.

For a > 1, we integrate (B2) n - 1 times with respect to f, choosing the

arbitrary constants so that the resulting expression is 2w periodic in f.

For s 0 0, we have the formulae

.- imf is(2r-f)
e -l

-" 2w10< f< 2f
-M Me f is'

(B3)

Wr cot Ws f -0 or f - 2wr
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Differentiation n- 1 times with respect to a gives the sums for

arbitrary n. Note that it is only for n - 1 that the sum is not a

continuous function of f.

The processes of Integration and differentiation are easily automated and

can be evaluated by symbolic manipulation programs.

*1.*
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