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ABSTRACT
ANN
The stability of two-dimensional infinitesimal disturbances of the
inviscid Karman vortex street of finite area vortices is reexamined.
Numerical results are obtained for the growth rate and oscillation frequencies
of disturbances of arbitrary subharmonic wavenumber and the stability
boundaries are calculated. The stabilization of the pairing instability by
finite area demonstrated by Saffman and Schatzman (1982) is confirmed and also
Kida's (1982) result that this is not the most unstable disturbance when the
area is finite. Contrary, however, to Kida's quantitative predictions, it is
now found that finite area does not stabilize the street to infinitesimal two-
dimensional disturbances of arbitrary wavelength and that it is always

unstable except for one isolated value of the aspect ratio which depends upon

the size of the vortices.l<:;
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THE STABILITY OF INVISCID VORTEX STREETS OF FINITE CORED VORTICES
4£:§ D. I. Meiron®*, P. G. Saffman**, and J. C. Schatzman*+*+*
;:f} 1. Introduction
A We consider the stability to two-dimensional infinitesimal disturbances
%ji 4 of the steady inviscid imcompressible flow produced by infinite rows of finite
::,‘ cored vortices. The undisturbed flow in a frame of reference moving with the
X vorticity is described by a stream function ¥Y(x,y) with the property
g: that ¥(x + 2,y) = ¥(x,y), and ¥(x,») = Uly, Y(x, o) = Uzy. There are two
; s cases: (1) wake type flows in which U; = U, = U, say; and (11) mixing layer
he type flows with Uy = <U; = U. 1In the first case, there is no net vorticity;
z;z the canonical flow is that of the Karman vortex steeet of two infinite
EE%S straight parallel staggered rows of point vortices of equal and opposite
.f:u circulation ', with separation £ parallel to the rows, distance h between
v5§§ the rows, and each vortex opposite the midpoint of vortices in the other
’;;ﬁ row. In the second case, there is net vorticity and the canonical example is
3 a single straight infinite row of point vortices of equal circulation T
i?ﬁ . separated by distance ¢ .
.ié: Infinitesimal disturbances to these flows are described by a perturbation
A e?'(x,y,t) to the stream function, where ¢ is infinitesimal and by Floquet or
ffgg Bloch wave theory the perturbation is a sum of modes of the form
oy
,23 v' = It ezsipx/l E ’n(y)ezlinx/l . (1.1)
= =—
 %2 If follows from the Euler equations that the pertu;bation satisfies the linear
;3% partial differential equation
N R
;%§ Substitution of (1.1) into (1.2) and requiring that ¥' be bounded gives an
fﬁ \
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é” eigenvalue problem for the unknown growth rate o as a function of the

%\ undisturbed flow and p. Notice that p 1is an arbitrary real number, which

#; clearly without loss of generality may be taken in the

N range 0 ¢ p< 1 or =-1lh< p <lh, since adding an integer to p 1is simply

i equivalent to relabeling the eigenvector ’n' If p =0, the disturbance has \
ff the same spatial perfod L as the undisturbed flow, and will be called a :
Y superharmonic disturbance. If p # O, the disturbance has in general a

:: component of wavelength £/p or 2&/(l-p), which is larger than £, and will

Y be called subharmonic. The case p = 1/2, 1in which the disturbance

wavelength is double that of the undisturbed flow, has attracted particular :

attention in flows of mixing layer type where it is called the pairing

PRARL 2
N

instabilitcy.

If 0 1s pure imaginary for all values of p, the disturbance does not

P

grow with time and the flow is said to be stable. (Strictly speaking, it is

X only stable to infinitesimal disturbances, but the behavior of finite

;3 amplitude disturbances i{s an open and difficult question and will not be

:: considered here.) If ¢ has a positive real part for some value of p, then

2 the flov is unstable. 3
The case of point vortices has been investigated in detail by many !

25 workers; Lord Kelvin and J. J. Thomson studied the single row in the form of a E

r circle (see Havelock (1931) for a complete treatment). Karman workeq out the f

::: stability of the double row; Lamb (1932) provides an account of this work and ;

:g describes the stability of the single row which is always unstable. The i

:0 staggered double row is likewise unstable except when 3

iJ h/t = K, = cosh-l(li)/l = 0.280550, at which value Re(c) = O. o

”E Recently, due partly to the availability of large scale computing X

Oy

1%

- resources, the case in which the vortices are of finite size has attracted 3




attention. Saffman and Szeto (1981) examined the single row of uniform finite
size vortices, where the vorticity is constant inside each vortex and zero

* outside. The stream function is continuous and has continuous first
derivatives, but the second derivatives have simple jumps across the

boundaries of the vortices. They calculated steady shapes numerically, and

discussed the stability to two-dimensional disturbances by global energy

é,, methods, which have the advantage that they are nct limited to infinitesimal
\3 disturbances. They concluded that superharmonic disturbances are stable when
}:', the vortices are not too large, but there exists a critical size at which
i superharmonic disturbances become unstable. This provides another mechanism
.E. for the evolution of a single row which goes under the name of 'tearing'. The
'?"" analysis showed that the pairing instability would not be eliminated by
.-1‘. effects of finite size, but the qualitative global analysis could not
,y-'-i deteraine wvhether the growth rate increased or decreased. (Closed form
’:5 ' quantitative solutions for the case of hollow vortices suggested that the
fa ‘ effect of size on the pairing instability is small, see also Baker, Saffman
‘::-:.ﬂ and Sheffield (1976)). Numerical solutions by Pierrehumbert and Widnall
. (1981) for the so~called Stuart vortices show similar behavior (this paper
“ also contains results for three~dimensional disturbances which are outside the
?:% scope of the present work).
The effect of finite core size on the stability of the Kafmn vortex
::, street was considered by Domm (1955), but his undisturbed flow was neither an
*%:; exact solution of the Euler equations nor of the Navier-Stokes equations. As
' will be emphasized below, the question of the stabilization by finite size is ‘f_
% . rather delicate, and Domm's conclusion that finite size does not stabilize is B
?:‘ i of uncertain significance. The first consistent calculation was carried out
‘ by Saffmen and Schatzman (1982), who calculated the values of ¢ for
j:- des___ |
'.';'r: Avail and/or
:':‘: Special
\"
’x

' *
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‘j ‘\: superharmonic disturbances to a double row of uniform vortices and the

Si subharmonic pairing type instabilities for p = 1/2. They formulated the
problem exactly in terms of a non-linear integro-differential equation based
on the 'water-bag' method (see Deem and Zabusky (1978)), whose solutions give
:ﬁl the steady shapes and whose Frechet derivative gives the linear eigenvalue
» problem for the 0. These equations were solved numerically, thereby giving
&: approximate solutions to an exact formulation. It was found that

'ﬁ'.:" superharmonic disturbances were stable, as can also be predicted by a global
G argument, and that the pairing instability could be stabilized by finite size
for a range of values of the aspect ratio h/t around K.® Saf fman and
Schatzman argued on the basis of a symmetry argument that the pairing

i disturbances were the most unstable, at least for small vortices, and it was
:;‘E; therefore not necessary to consider p # llzwith regard to the~stab111ty to
;ﬁ general disturbances. Unfortunately, as will be discussed below, this

i conclusion is false.

ol

}\a The problem was considered independently by Kida (1982) in a rather '
E:::_E different way. He developed a perturbation expansion in the size of the

[ vortices to obtain approximate equations for the motion of the vortex
centroids. In order to do this, it is necessary to calculate the deformation
2‘; of the vortex cores, which respond quasi-steadily to the motion of the

':: centroids on time scale !.2/1' » and can oscillate freely on the much shorter
*;9:: time scale l/w = AT, where A 18 the core area and w is the magnitude of the
::S vorticity in the core. A 'coarse graining’ approximation is made which

;4_ neglects the high frequencies and produces approximate equations for the

;: vortex centroids which contain the finite size correction terms of

::; order Az/lA- The approximate equations were solved exactly for disturbances ,
of arbitrary subharmonic wavemmmber p. Kida found for the case p = 1/2
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;’f that his results agreed closely with those of Saffman and Schatzman, despite
‘ﬂﬁ the claim by the latter authors based on an analysis of their results that a
B consistent calculation of the finite area stabilization
ag‘ . around h/2 = ‘c required retention in the dynamical equations of terms of
;é] order Aﬁ/za. More important, however, was Kida's prediction that the most
Ly unstable disturbance does not occur for p = 1/2 but for a value of p
32 differing by order Azltb, in contradiction to the Saffman and Schatzman
?" symmetry argument. He did find, however, that the street was still stabilized
o by finite ares.
f? This conflict led us to reexamine the problem and tackle the case of
iﬁ general p. We will present arguments and results to show that Kida's claim
N that the most unstable disturbances of the Karman vortex street is
'::' for p #* 1/21' indeed correct and that the Saffman and Schatzman symmetry
;r' argument vas flawed, at least for this case. (It is correct for the single
éi row). On the other hand, we shall also discuss the accuracy of the
:l perturbation expansions and the question whether neglecting terms of
-Eg order A‘/l.8 in the dynamics is consistent. Our conclusions here ar; that {t
: is valid for determining the effects of finite area on the oscillation
%ﬁ frequencies or growth rates of stable or unstable modes, but not for
fs deternining the change of stability properties at the critical spacing
éﬁ ratio Koo In fact, our calculations now predict, somewhat surprisingly, that
§£ the street is alwvays unstable, at least for small area, except for one
particular value of h/t which depends upon the area. In other words, the i
i, qualitative stability properties of the point vortex configuration remains :
ji true for finite area except that the most unstable disturbance for h/2 not :
23 equal to the special value 1is not the pairing inatability. E
!1 Our numerical method is sufficiently general that many different flows :
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can be examined with little extra work. We can therefore analyse other cases

of interest such as the single row, the symmetrical double row, the circular

row in which the vortices are at the vertices of a regular polygon (this

X provides a model of the effect of curvature on a shear layer), as well as the
AN A

Eﬁﬁ Karman vortex street. We can also handle the case in which the vortices in

. -8

n.{.g

the street have different sizes in the two rows. It is, however, shown in

‘ii . Appendix A that the circulations of the vortices must be equal and opposite,
tl so that steady motion of a composite wake — mixing layer type flow in i
w which Uy # U, or # -U, is not possible, as 1is also suggested by the i
g\ numerical calculations of Brinich, Boldman and Goldstein (1976). We shall, .
*j: hovever, limit the present paper to the staggered double row, and present ]
3 results for the other cases in subsequent papers. ;
\: 2. Consequences of symmetry :
g: We now examine some of the general properties that can be established
N

independently of the details of the flow and follow from the structure of the

Euler equations and symmetry of the flow.

e,
e’y
"

N 4
.

ﬁi Because equation (l.1) is real, it follows that 1if ¥' is a mode, so is
b its complex conjugate Y'*. Thus if ¢ is an eigenvalue, for a value p, o* is
\E an eigenvalue for =-p or equivalently 1l-p, and we have the eigenvalue-
T eigéenvector gets
»%
;;; o, {6 (7}, p (2.1)
;;I
A " *
e o*, {o_ (N}, -p (2.2)
N
/ Let us suppose further that the undisturbed flow has fore and aft symmetry,
- 1.e. 1t 1s possible to choose the origin so that
% :
: 3
% g
]
o .1
G N O O A L AR e T T N T T e e L N R L L L e RIS -f.*‘

CRCHLR T
) Lot ¥,
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¥(x,y) = ¥(-x,y) (2.3)
y
Then the perturbation equation (1.2) is invariant under the i
?.; , transformation t + -t, x + -x; and we therefore have an eigenvalue-eigenvector ]
i.:.'
\'i; set ;
o i
N ~.{s_ }, -p (2.4) *
\5 n ]
'ﬁJ 4
o
v Taking the complex conjugate of (2.4) gives the set
s
S
I ot {e* ). e (2.5)
N .
¥ o We conclude therefore that for undisturbed flows with fore and aft
e
‘Z:; symmetry, and this will include all the cases considered in the present paper,
o
f'-
the eigenvalues for given p will come in pairs with o or -o* being an
:‘ . eigenvalue if the other is. It follows that the flow is unstable if ¢ is not
: pure imaginary. We also conclude that there is a symmetry about p = 0 or
Ay
bk p = 1/2, since the eigenvalue for p 1is the complex conjugate of the one
: } for -p or 1l-p. Thus if o(p) denotes the eigenvalue, unstable modes satisfy
"-
23
N
Re 0 (p) = Re 0 (-p) (2.6)
{ Al
I
N
‘; There are alao damped modes with growth rate -Res satisfying the same
i
T equation. It must be realized, however, that ¢ may be multivalued and the
;.': equality in (2.6) may refer to different branches. It was the failure to
- realize this possibility that led Saffman and Schatzman to an incorrect
o
T assertion about the mosi unstable modes of the Karman vortex street.
r~
'-J .
29 :
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When symmetry about the axis of the motion exists it gives information on
the parity of the components of the eigenvectors but does not appear to give
any further results about the eigenvalues themselves. Reflexional symmetry
implies that -¥(x + d, -y) describes the same flow field, where d = 0 for
the single row of symmetrical double row, and d = 1/2 for the staggered
double row. The perturbation equation is invariant under the
transformation x+ x +d, y+ -y, ¥ + - ¥, and hence there is an eigenvalue-
elgenvector set

o, {1y ()}, (2.7)

For d = 0, the eigenvectors are therefore either even or odd in y, and
for d = 1/2 they have a more complex symmetry.

When the vortices are small, the modes of oscillation will correspond to
those of an array of small circular vortices, and we expect therefore that the
disturbances will be of two types. First will be the cooperative modes of
arrays of point vortices, for which the characteristic frequencies are of
order P/lz. and second will be the oscillations of a single vortex for which
the characteristic frequencies are mv/2, where w = I'/A is the magnitude of
the vorticity inside the vortex of circulationT and area A, and m is the
angular wave number. These modes are readily distinguishable, at least for
small vortices, and provide a convenient way to group the normal modes.

For the single row (mixing layer), the small vortex case indicates that
there are two degrees of freedom for each type of mode, and the eigenvalues
for each p will coﬁe in pairs, 9, and Gy where o, = -01* if the mode is
unstable, and % and o, are pure imaginary but unequal if the mode is

stable. The symmetry about p = 1/2 also gives a further two

Mg v 2 s
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eigenvalues o.* and °2* for 1l=-p. If unstable, there are then two distinct

1
branches, one with positive and the other with negative real part, which are

not equal at p = 1/2 and analyticity in p and (2.6) then impliea that the

growth rate of unstable modes is such that

dRe ¢

s =0 for p=1/2 (2.8)

and that Ikeu | is a maximum for the pairing mode. (It could in principle be
a minimum but contimious dependence upon the size rules this out fo  »all
vortices, since it is a maximum for point vortices.) Also Im(c) m be zero
at p = 1/2 for the unstable modes as otherwise the eigenvalue wi rat be
continuougs. Note that p = 0 1is a singular limit as the disturban.e
wavelength is going to infinity, and hence (2.8) need not hold there.

In contrast, for the double row (wake), the small vortex analysis
indicates that there are four degrees of freedom for each mode, two for each
row, and the eigenvalues for each p will come in quartets

G1s Tgs Tqs Oy s | where 1f unstable 0y = o;* and/or o, = o 4%,
There are now four branches. The symmetry about p =0 or p = 1/2 now
implies that 01*(9) = 03(-p), etc. (01* (r) = gy (-p) violates the
continuity of Im(s) at p = 1/2 unless the imaginary part vanishes, and this
is contradicted by the small vortex results.) It does not follow therefore
that Re o, 1is symmetrical about p =0 or p = I/é when there is
instability. PFor p = 1/2, the quartet of eigenvalues will be such
that 0, o*, 0, and -o* are all eigenvalues, but the real and imaginary
parts that coincide come from different branches, and (2.8) does not
necesgarily hold. Contrary to the statement by Saffman and Schatzman and in

agreement with Kida's results, the p -%Q disturbance will not be the most

Dy VRN




unstable disturbance.

In figure 1, we show a sketch of the dependence of the four complex
growth rates on p for the cooperative modes for zero area and general x.
this special case, the system is degenerate and there is symmetry about
both 0 = 0 and p = 1/2. In addition, for the exceptional
value h/f =« = Ko the circle of instability reduces to a point and the
imaginary values of ¢ meet in a cross. Figures 2, 3 and 4 show how these
curves may change when the area of the vortices is finite. Pigure 2 is an
example where the street remains unstable for p = 1/2, but the pairing
instability is not the most unstable disturbance. Figure 3 is a sketch of a
possible behavior in which the street is unstable, but the pairing instability
with p = 1/2 41is stabilized by finite area. Figure 4 is the case where
finite area has stabilized the street. It can be seen that the symmetry of
reflection about ¢ = 0 and p = 1/2 is satisfied, but the symmetry about the
axes, which is true for zero area, breaks down when the area is finite.

For «x away from Kc‘ it 18 clear that figure 1 will first change into
figure 2 when the area becomes finite and may later change into figures 3 and
4 when the area becomes larger. Note that these results depend upon fore and
aft symmetry, but the sizes of the vortices in one row need not be the same as

those in the other row. The task is to determine whether the special case of

figure 1 forxk = Ke changes into figure 2, 3 or 4 whena = A/R.2 is finite for

values of x very close to xc. There 1s also a fourth possibility that for
finite area there 18 an exceptional value of x, which should depend upon area,
such that figure 3 is degenerate, f.e. the ovals shrink into points and the
imaginary values meet in crosses.

The high frequency shape modes, which do not exist for point vortices,

are found to be stable, provided the vortices are not too large, and their
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Figure 1.
Sketch of dependence of real and imaginary parts of the growth rate on wavenunmber
p for zero area and a typical value of x. For «k = Ko the oval shrinks to a point

and the imaginary parts form two crosses.
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Figure 3.
Sketch of dependence on p of an unstable quartet of eigenvalues vwhen the pairing
mode is stable. A degenerate case may exist in which the ovals shrink to two points

and imaginary parts form two crosses.
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oscillation frequencies, which will be modified by the intersctions, are as in
figure 4.
We now concentrate on the staggered double row and discuss the detailed
problem of what should be calculated and how we shall proceed.
‘ 3. The Karman street of small vortices
...lJ
S The complex growth rates ¢ will be the eigenvalues of an infinite systea
1384
4 My = 0¢ @3.1)
o
A Y
;\_3 where M will have an expansion of the form
‘J
8 ree? A, LA
Lo _2{ M_, +M +_!.u1+_5.n2+...] (3.2)
« L ) L
o
\‘i Invariance with respect to the sign of £ requires that the expansion of M
R3S
? ) goes in powers of a and not in powers of Ya ,although the detailed solution is
% an expansion in ! /t. The mstrices M, depend upon the aspect ratio « and the
)¢
:Q::: subharmonic wavenumber p. The matrix M_y vwhich produces shape deformation
L)
': modes is given by the simple calculation for the oscillations of an isolated
;%: circular vortex, while M, which produces the cooperative oscillations of the
; ;.:: centroids is found from the Karman calculation of point vortices. M,, etc.,
2
‘ have to be found by laborious algebra. The eigenvectors of M.; and Mg are
"_, independent. In the absence of degeneracy, which occurs when two or more of
o
oo the eigenvalues are equal, the eigenvalues will be analytic functions of the
parameters.
A .
, . From the general symmetry arguments of section 2, we know that the
>
.:_: eigenvalues will appear in quartets, which will satisfy quadratic equations
X
5
LK)
~ 4
S
e
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2
[6 -1 :’2'- 5,(pak,a)] 2 = ’;—4— B(pia)  (3.3)

y . 2

[0 -1 ;r,- S4(pc,a)]% = E—; Hy(pok o) (3.4)

bt where S;, S3, H) and Hj are real and dimensionless. The symmetry about

p=0 or p=1/2 implies

ss(?a*) bd 'sl('Pv*)p H3(Ps*) - 31('1”*) (3.5)

ﬁ Non-trivial degeneracy occurs if and when H; and H, vanish, and by
N it
K", changes of stability, where o changes from complex to pure imaginary can only E
- occur at such points. With regard, therefore, to the main problem of the *
: stabilization of the Karman vortex street by finite area vortices, the 7
“»
; interest is in the functions H; and H3; and their zeros.
~
& These functions are known in the limit a = 0, which can be thought of as
! either finite size vortices infinitely far apart, as is appropriate for the
J .
]ﬁ shape modes, or point vortices separated by a finite distance, as is
g
hat appropriate for the cooperative modes. It appears from our present numerical
4 calculations and those of Saffman and Schatzman that B, and Hj are
: negative for the shape modes when a > 0 (but not too large) which therefore
4
= remain stable, and we leave these modes for the present and concentrate on the
- cooperative modes. In this case,
" 2
L 2 2
:& H,(px,0) = Ha(px,0) = z—-[Zp(l-p) - sech“ (k)]
= - z—{cosh(lep) - 2p cosh(nk) cosh(xx(1-2p)) ] /cosh (nc)
ﬁ (3.6)
-
"
o<,
>3 The equality of H) and H3 when a = O means that for point vortices the
M
4
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eigenvalues occur in pairs such that -v is an eigenvalue if o is. This is
also a consequence of the fact that point vortices form a Hamiltonian system
! a with x and y coordinates as conjugate variables. It is important to
Jsj realize that this additional symmetry is a consequence of a zero area
;E; degeneracy and is broken at finite area.
»

The p—~x plane for a = 0 is divided up into regions of stability and

Eﬁ instability and the boundaries look like a diagonal cross with center at
) .
. p=1/2 andk = Kot where co.h(tnc) = /7 (see Saffman and Schatzman (1982)

figure 2). PFor ¢ not close to Kq» the effect of finite area is to displace

the boundaries of the stability regions, and the results are not of pressing

ave

» ‘i<‘l.'l "'

{ importance. For small asrea, the main interest lies in the behavior of p
"%
Iy close to 1/2 and x nearly equal to k. Let

o
1 \- ¢
1~
W p'=p-1/2, «x' =g - Ko 3.7)

oy then we need the expansion of H; and Hy for small P',x' and a.

Lo

AS

}: The numerical results of Saffman and Schatzman for p' = 0, our present
)

arguments and results (see last paragr-ph of §4) and the analysis of Kida

2l

indicate that there are no terms in the expansion linear in a, and that the

,:: dominant terms of the expansion are

)

e 2 2 2 2 2 4

i;: H1/3(p"’°) - cl" + °zP' + 3% k'+/= €4 p'+ cs2 +ooee (3.8) 1
e R
.y |
o The first coefficient, c¢;, 1is positive and the second one, cj, 1is g
Zi? negative. Both are given analytically by the point vortex theory. The third X
:&: and fourth are given analytically by the Kida expansion. The last K

coefficient, cs5, can be deduced from the Saffman and Schatzman calculation,
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vhich demonstrated that it was negative (and also gives cj3). These numerical
results exclude an 03 term. An a’p' or aan' term could be present, but is
unimportant compared with the ab tern in its effect on the stablility

boundary. Notice that Kida's expansion does not include all a‘ terms
consistently, since they are not included in the dynamics, and hence his
expression for the fifth term is incomplete. His quantitative conclusions
about the stabilization near the critical point are therefore invalid.

The numerical values of these coefficients determined by the earlier work

are as follows. From the Karman expressions,
¢, = 12.1761, cy = -0.700541 (3.9)

From the results for the stability boundary for p = 1/2 given in equation
(3.19) of the Saffman and Schatzman paper, wvhich relate the values
of a and x for which H; or Hj vanish vhen p' = 0, we have the

estimates
Sy = -12.88, <55 = -11.60 (3.10)

From the analytical expression given by Kida's equation (3.29), and the

formulae of his (3.10)~(3.11), we find that
Ky = -13.52, oK, = 6.49, K5~ -12.33 (3.11)
It can be seen that the c; and cg are in reasonable agreement. This is

consistent with Kida's statement that his results agree with those of Saffman

and Schatzman for p = 1/2, as will be discussed in more detail at the end of




I Ju

| e

g

ey

Ly

I
SaA .

v
3

XXX ek

]

| e
YA

---------

the section, see equations (3.20)-(3.22).

The stabilization of the street is determined for small area by (3.8).

We complete the squares and write the right~hand-side of (3.8) as

cl(:'+c3n2)2 + e (p'+/- c4a2)2

Zc,

!°1
(3.12)

+-a“(c5-c23/ﬁc1-c2‘/4c2)

The stabilization or destabilization of the street by finite area therefore

If D 4is positive the street is made unstable in the vicinity of the critical
point by finite area. If D 1is negative the street is stabilized for a range
of ¢ of order cz by finite area.

If D=0, then the critical point remains an isolated value of
stability but the aspect ratio of the stable street is altered by a value of
order az. In this case, it would be necessary to go to yet higher order
in a to deteruine the stability question.

For a fixed a, the stability boundaries in the c'-p' plane are given by
the vanishing of (3.12) which gives two hyperbolae. The interiors of the
hyperbolae, marked by cross-hatching, contain the unstable modes. There are
tvo main possibilities depending upon the values of the ¢ coefficients.
Figure 5 shows the stability boundaries for p close to 1/2

and x near <. when D 1g negative. There is a region of stability bounded

LTS TS TR I A O S et vy e D N IR IR T L T O T bl
B e A N e T T L T et T T T e e
. B et N 2L . P . o Te Lt . . P PR R N B ST ., oL .
. - .~ L Y . . -




Eran AR Ak LT R

(2) (3) (4)

(Xaz, p.az )
[ ]
000
EX X,
Z20%%%% x!
RS
A
[
(za?,-pua?)

Figure 5.

Stability boundary in the k' - p' plane when finite area stabilizes. Hyperbolae
would cross at centers if D = 0. Cross hatched areas denote instability regions
for modes 1 and 3. Numbers in parentheses show corresponding figure for growth rate

as function of p.
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by the two hyperbolae with centers at x' = Xaz and p' = % uaz, vhere

A= 'Cs ue= -c‘
= m e

The distance between the vertices giving the range of x for which there

is stabilicty 1is

§x = (-D/c, )t/ %2 (3.15)

1
In this case, finite area stabilizes the street for a range of aspect ratio.
On the other hand, 1f D 1is positive, then the stability boundaries are
as shown in figure 6. Now, there is always a value of p which gives an
unstable mode and finite area destabilizes the street by removing the neutral

case. If
> (-n/cz)l’2 (3.16)

there is a lens of stability along the p' = O axis and the boundaries are as
shown in figure 6. The pairing mode is then stabilized, but there is a range

of unstable values of p of width
6p = (-D/ct/%? (3.17)

If (3.16) is not satisfied, the hyperbolae overlap and there is no
stabilization of the pairing mode.
If D =0, the hyperbolae degenerate into crosses meeting at the points

given by (3.14) and the street is stable for one special value of x equal

NP 'A.J"I‘Ll 9 La‘ <
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Figure 6.

shown, the pairing instability p' = 0 is stabilized.
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Using Kida's values given by (3.11) we find that D = ~1.04. Using ,#
3
-l
"

Saffman and Schatzman's estimate of c3 and cg, and Kida's value of ¢4,
ve have D = 0.037. There is no reason why these estimates should not be of
opposite sign, because as explained above there is an error in Kida's cg- It
appears, therefore that D is small and the question of stabilization dy
finite area will be delicate. Either a consistent perturbation expansion of
order a‘ should be carried out, or a further numerical investigation be
attempted. The algebra entailed in the former is horrific (Saffman and
Schatzman did consider carrying out such an expansion for the simpler
P = 1/2 case, but decided in favor of a numerical calculation), and it was
again decided to go to a numerical approach.

We discuss in the next two sections our method for calculating the steady
shapes and stability boundaries, which we use to investigate the stability of

the cooperative modes. It also gives the high frequency shape modes, and has

the advantage that it is easily applied to a wider class of problems. With
respect to the street stability, the numerical results indicate that D {is
actually zero to within the limit of numerical accuracy. Kida's results that
there i{s a range of x for which finite area stabilizes disturbances of

arbitrary p appears therefore to be incorrect.

RN . ) Y IRIND

On the other hand, Kida's expansion should give the coefficient

of 02 exactly in closed form for all p and x. Away from the critical point,
there will be values Pgs g at which the stability of point vortices
changes. To determine the effects of finite area for these values, we require

an expaansion

Hl(p,x,a) = cl(x-xs) + cz(p-ps) + cjaz (3.18)




-
::{ and & similar expansion for Hsy. Here, c; and c, are known functions of )
-~ _-.-
S Pg which vanish for pg = 1/2, and the same is true for ¢y which {s given -
- * 4
{3 by Kida's results. For P, # 1/2, (3.18) 18 sufficlent for the determination i
an of the stability properties for small a. However, the coefficients in (3.18)
~:‘.- 4
,;3 vanish when pg, = 1/2, and there the expansion (3.8) is required. X
> :
- The discussion of this section shows that from Kida's expressions for 4
:§ Hy and Hj correct to O(az) combined with the numerical results which give ?
- * . . ’
o the coefficient cg, we can construct an expression for the effect of finite ]
\',' <
- size on the stability boundaries which is uniformly valid to 0(a2) for all i
kY
i‘ p and x. We have for the cooperative modes ;
2 4
o B (p,x,a) = "linear theory” ;
-\’ " " 2 X
M + "Kida a (3.19) .
"\
o + "numerical” a

with Hy given by (3.5). Kida's analysis also gives S; and S5 correct
to 0(a2).

For the special case of disturbances with p = 1/2, p' = 0, Saffman and

KRR B
.‘
st incbdndnnin i Rt

- Schatzman found that for small area the street was stabilized for aspect

ratios in the range

K -. oy

2

Ry

= -0.583 a2 < k' < 1.644 a (3.20)
3
e

‘s According to (3.8), the range of values is

-b.a? <k' < bt (3.21)
o 1 2 ’

o
-~

=

S
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$E vhere b
A ;
SR ]
: c3 = cy(by = by), cg = =cybyby (3.22) &
’Ei Kida's values of c3 and cs5 give by = 0.60, by = 1.70; which agree ;
= reasonably with the values found by Saffman and Schatzman. i
§§ 4. Calculation of steady shapes
ié We describe the method here in the context of the staggered double row.
- Modifications for other flow configurations are simple and easy to
%ﬁ implement. Saffman and Schatzman employed a boundary integral method. This
Eéj has the advantage that it can be employed for finite area, but it suffers from
?’ the disadvantage of being rather hard to implement for disturbances of
Ez arbitrary wavenumber (although this possibility is under investigation) and
SZ also being hard to check analytically. The method we employ here follows one

} suggested by Dr. Javier Jimenez and is based on an expansion in inverse powers
ﬂé of & . This can be thought of as an expansion in core radius or /;, but we
AE choose to keep the area of the vortices finite and suppose the separation &
» is large, with h/% kept fixed. In principle, the algebra can be done and a
:E consistent perturbation expansion developed, but this is beyond our present
E% resources (even with the aid of symbolic manipulation programs) and we do the ;
;. algebra arithmetically. Unfortunately, the detailed approach does not allow a
fi the retention of high order terms in a completely uniform manner, so checking 3
;?E with Kida's perturbation results suffers from uncertainty.
= The shape of a vortex in the first row is assumed to be described by the
ig exterior conformal map of the unit circle Ic' =13
= z = Rlc{l + al/c + 32/2:2 + -u} (4.1)
1
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Vortices in the second row have the expansion
2
z = Rg{l + b, /g +b,/t"+ e} (4.2)

These series may fail to converge before the solutions actually break down by
vortices coming into contact, but we assume that there is convergence for a
finite range of area.

Our first task is to calculate the velocity field induced by a single
vortex containing vorticity w, of shape (4.1). To do this, we employ
(following Jimenez) the so-called Schwarz functions, which are analytic
functions of z equal to 2z* on a contour. To find the Schwarz function for
the contour (4.l), we expand the expression conjugate to (4.1), remembering

that Z* = 1/ on the contour,
zh = R*llc{l +at . + 3*2;2+ vee} . (4.3)
as a Laurent series in 2z, giving an expansion
2% = go/z + g1 /22 + gy/z ..t + £z + £azi4... (4.4)
The complex velocity u = iv 1induced by the vortex is analytic outside the

vortex, and such that u - {v + ﬂnlz*lz is analytic inside the vortex. It

follows by inspection that the exterior velocity field is

1w %)) g 8
1 1 2
u-{ivs= 3 [—;+;—2—+-—3+'°°} (4.5)

The interior velocity field which can be expressed in terms of the f etc.,

n’

.......
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A 1s not required. It remains to describe how the g, are found in terms of ‘
\ the a,.

'7 To do this, we multiply (4.4) by z" and integrate around a contour in

‘ ~ the z-plane, giving
X :
:“ gn-lﬁz*zndz-lﬁz*:ni’-d: N
"‘,_< = coefft of :o in product z* £® :’—;- (4.6) 3
3

>

v when (4.1) is substituted for z and (4.3) for z*.

e Stmilarly. .
= t
\: »
< ' 0 n dg*

'y - * - .

g%, " coefft of ¢ in product =z z & 4.7) -
3{_: the minus sign arising from reversal of the sense of the contour.

1 There are alternative expresions for the g, 1in terms of moments of the '
“;‘ shape of the vortex. Since _r
5 %
Y R
\: - 'd 1 .

u-ivezta {fiz"_—z% (4.8) -

» it follows that 3

3 ;
\|

) - (2 P ';'

T8, flf z'" dx'dy (4.9) .

. where the integral is over the vortex. In particular, gg 1s

the area/x, and 81 1s proportional to the displacement of the centroid ‘

-;: relative to the z origin. _

A -

-.;. Similarly, we obtain an expression for velocity induced by the vortex

A -

(4.2) ~

3 :

) :
)]

%
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vhere the h, are related to the b, by the formula snalogous to (4.6). ;1

We also obtain the conjugate velocity

) 8% 8% 8%

and similarly for the second vortex, where the g*, are related to the a,
and a*; by (4.7).

An expression can now be written down for the complex velocity produced
by the two staggered rows. The origins in the first row will be supp'osed to
be at the points mt, » { m < ®, and in the second row at the
points mt - £(d + ix). The separation £ need not be real; its phase
determines the angle between the x-axis and the direction of the rows.
Indeed, it proved convenient in the actual calculations to take £ to be pure
imaginary. The relative stagger d and the aspect ratio xk are real. For the
Karman vortex street, d = 1/2. Por the symmetrical double row, d = O.
Arbitrary values of d wmay be considered, but we shall not do so. Then at a

point with coordinate 2z relative to a vortex in the first row

—1"'1 T v n
u-1iv = Z 2
Tn-O m=-o (z-ml)nﬂ
~lw, ® o= h
2 n
— 1 1 w1 YU -1V, (4.12)

n=0 me-e (z-m¢ + 2(d + ix))

and at a point with coordinate 2z relative to a vortex in the second row
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: =R
K u=ivae
E? n=) ge-e (z-nl)"+1
s.':

\ -in - » 8 .
A — 1 1 n ey * U - 4V, (413) ,
e o0 w== (z-m-L(d+ix)) .
-

1)
4; U and V are components of “he velocity at infinity which balances the self '
fi induced motion of the street and brings the vortices to rest.
N
Expressions for the conjugate velocities u + iv are obtained by X
replacing 1 with -1, g, with g*,, h, with h*,, and 2 with 2%, '

For steady motion, the shapes of the vortices are given by the condition

v 5 A

Ve

that their boundaries are streamlines, i.¢. u - iv 1is parallel to the Q

-
o tangent ds/ds. This is expressed by the equation; \
:Q N
.-' .
R (¢) = (u-tv)z 2+ (uv)p 220  (4.14) -
” x 3 :
I-‘T :
:3 vhen [g]| = 1, to be satisfied on the first and second vortices, i.e. with “
u=- iv given by (4.12) and 2z given by (4.1), and u - iv given by (4.13)
A
i: and z given by (4.2), and the appropriate conjugate expressions,
Y
N respectively. This provides equations for the unknown coefficients R, a,,
.
_ Ry, b, and the, translation velocity Q= U - 4V and Q* = U + 1V, .
:: It is expected that locally unique (isolated) solutions will exist 1if the .
; areas of the vortices, the positions of the ceniroids, and the strengths of N
, N\
g the vortices are given. The question to be discussed now is the actual 4
.3 procedure to be employed. E
jﬁ The straightforwvard way, and the one that is implicit in the present E
formulation, is to develop a series expansion in a, the solution »
:5 K
v N
i N
5 :




1. for a = O being known. It i{s convenient to suppose that the vortices have :
i% finite areas and strengths, and that the limit a = 0 is obtained by E
& letting £ + ». Then we can develop the velocity by expanding the terms in -
\}- (4.12) and (§.13) and their conjugates as power series in 1/¢ and calculate !
- the unknowns as series in the same variable. This is feasible in principle, i,

but impossible in practice at present, especially when it is remembered that

the stabilization problem requires retention of terms of order 1-9 in order to
4

D (
S paga i e s

retain consistently effects of order a . An alternative approach, and the one i
that ve employed, is to use the computer to do the algebra arithmetically as
) follows.
21 We pick two integers N and L. The series (4.1), (4.2) and their ’
:: conjugates are truncated to keep the first N + 1 terms, i.e. we include ay, %
;i by, a*y and b*y. Newton iteration will be employed to find the values of "
S these (in general) complex numbers. For this purpose we then calculate 8
:; numerically, starting with a first guess for the 2N + 2 unknowns Ry, b
y /J

a1, +++58N, R*, a%y,...,a*y, from (4.6) and (4.7), the values of gq»

81s+-18Ns 8%)s 8%1s+-+»8*y- In fact, go and g*y are put equal to the

-
o e, J
wtataal 8

glven area A; of the vortex divided by r, and the difference between the

i values calculated from (4.6) and (4.7) are used as a check on the accuracy of .
E the calculation. Similarly, we calculate the hn and h*,. For reasons that 3
eP are important for the stability calculation and will be made clear later, we -
ri treat quantities and their conjugates as independent variables, e.g. Ry .;
rz and R*l are regarded as independent complex numbers. Of course, the :
“

ot

solution will not be physically sensible unless the final answers are complex
conjugates of each other. So far, we then have 4N + 4 complex unknowns.

We now expand (4.12) as a power series in 1/f retaining terms of

-
i
S
B~
-~
N
e

order 2L, This gives a triple series N
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N
\
4w, N L-n-l P -
1 z 1
u-iv-—-z—z Zgl(pnﬂ)—TI —_— d
N n=0 p=0 ©° ’ Pl e WP X
N ..l
3 (4.15)
2 -, N L-n-l P -
-, 2 z z 1
) 8 B(p, o) +Q
¥ ? pro LT e (amd=1x)P
.
v vhere B(p,n) is the coefficient of zP in the binomial expansion of
3 (142)"™. The vorticities are w, =T/A; and w, = -T/A, . The sums with
\ respect to m can be done in closed form, see appendix B. We now substitute
> the truncated expansion (4.1) into (4.15) and obtain u - {v evaluated on the
: boundary of the vortex as a series of positive and negative powers of { .
2
4 Differentiation of (4.1), etc., gives a series in { for dz/d;, etc., and
N substitution into (4.14) gives a series of positive and negative powers
- of §{ with complex coefficients which are analytical functions of d
1 and ¢, contain inverse powers of £, and are numerical functions of the
) 4N + 4 unknowns, Ry, a,, etc. They also contain the two unknown complex
X velocities Q = U - 1V and Q% = U + 1V, which will also be regarded as
' independent complex unknowns.
: To obtain equations for these 4N + 6 unknowns, we calculate the
: coefficients of ‘n in the expression (4.14) for values of n in the
range N < n { N, for vortices in the first and second row, and denote these
X 4N + 2 complex quantities (2N + 1 for each row) by E;(n) and Ey(n). We
. obtain 4N + 2 equations for the unknowns by requiring
X
% El(n) = 0, Ez(n) =0, -N< n< N (4.16a,b)
L
‘,"' We have not yet said anything about the position of the origins inside
N
~
ry
- -31-
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the vortices, from which the separation x is measured. It is convenient to
require that the centroids coincide with the origins. These coanstraints upon

the variables are equivalent to the four equations
g1 = '*1 - hl - h*l LY 4.17)

Two further equations are found from the condition that the vortices have

given area. Defining the area by
Al =% RIR*I{I - ‘2‘*2 - 2‘3.*3 - ooo-(N-l).N.*N} (6 018)

and a similar expression for Aj;, which are correct when starred quantities
are complex conjugates, and which are identical to g, = g*o - Al/l in this
case, we have two further equations.

Thus altogether, we have 4N + 8 equations for 4N + 6 unknowns. The
equations are, hounver. not independent. Firstly, E;(0) and E(0) are
identically zero, and secondly there are two independent constraints oa the
Ej(n) and Ez(n). The reasons are as follows.

On the surface of the vortex
(u ~ iv)dz = (ua + 1un)da (4.19)

vwhere u, and u, are the tangential and normal components and ds 1is the
element of length. Also, Z = exp(i6). It follows that Zun ds = R () do.
Now the velocity field that we construct above is an exact solution of the
Euler equations and hence must automatically satisfy the equation of

continuity. Thus, automatically




Pude =0 = [ R (z)de = 2wEO) (4.20)

. and hence the vanishing of E;(0) and Ey(0) are just consistency checks and
N not independent equations.
2O Next, consider the consistency condition (A6) derived in Appendix A.

Since,
D [ | (u % iv)dxdy = H(x + 1iy) u_ds
we can revwrite this equation for constant vorticity as

-j\ "lfi(z * z*) R (7)d0 +-w2f2(z £ z%*) R (g)d® =0
(N (4.21)

Thus we have two constraints relating the components of R () on the two
~ vortices which are imposed by kinematics. Sinc; z 1is given by (4.1), etc.,
-{S the relations are between all the Ej(n) and Ez(n), but since the dominant
;; terms in the expansions are the leading ones, it is expected that it suffices
) to throw away the equations for Ep(l1) and Eg(-1). The existence of (4.21)
0y will ensure that the converged solution will make these quantities zero
automatically, and in fact the accuracy of the solution can be monitored by
their values.

To summarise, we now have 4N + 4 independent complex equations from
(6.17) (4 equationa), (4.18) (2 equations), (4.16a) with n = 0 excluded (2N
equations), and (4.16b) with n =0, n=1 and n = -1 excluded (2N - 2

ff equations). However, we still have 4N + 6 complex unknowns R, a,;, Ry,

their conjugates, and the two complex velocities. Two further equations

\
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are therefore required. These are obtained by noting that the phase of [ is
arbitrary, and that this can be fixed by specifying the phases of R; and
Ry. We do this by requiring that {n the final solution R; and Ry should

be real, which is imposed by the two complex equations
Ry = R*;, Ry = R¥%; (4.22)

The number of equations and unknowns is now equal. The test that the
counting has been done consistently is the non-vanishing of the Jacobian of
the system. (The constraints embodied in (4.21) were in fact discovered
mumerically by the vanishing of the Jacobian when the n = +/-1 equations of
(4.16b) were not excluded.)

For given values of the parameters, a first guess was taken, usually the
circular vortex approximation, and solutions were calculated by solving the
system with Newton iteration. It is necessary to decide on suitable values
of N and L. Taking L =1 gives circular vortices, since the induced
velocity in the neighborhood of a vortex is then constant. To calculate
deformation consistently to order a, it is necessary to take L =2 and {t 1‘
then sufficient to take N = 2 which gives vortices of elliptical shape.l
This corresponds exactly to what can be called the elliptical vortex
approximation (Saffman and Szeto 1981). The exterior velocity induced by a
uniform vortex of elliptical shape differs by terms of relative order az from
that of a circular vortex of the.same circulation, so at this order the
cooperative behavior, i.e. translation velocity and stability properties, will
be the same as for point vortices. This explains why there are no terms
linear fna in (3.8). The first significant effect of area comes with L =

5, which gives a consistent calculation of 0(c2) effects. The value of N
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should be at least L, and there is little point in taking larger values.

The accuracy of the solution can be tested by comparing with the results of
Saffman and Schatzman (1982) and the steady solutions correct to
order c?'givcn by Kida. Unfortunately, the numerical method does not ignore )
smaller terms, and results obtained with L = 5 cannot agree exactly with
Kida's, but the diiference should be of order ab. For the investigation of
stability, at least near the critical value of x = Kot it 1is necessary to
take L =9 and N =8 or larger to ensure retention of all terms O(ak) .
5. Stability

We wish to consider the stability to infinitesimal two dimensional
disturbances of the steady shapes calculated by thé method described in § 4.
It is assumed that the boundaries are deformed by disturbances and that the
vorticity inside the vortices remains constant. There are of course a
continuuq of oscillations associated with changes of the vorticity

distribution, but these are not relevant to the intrinsic stability of the

street to disturbances produced by motion of boundaries or the action of
conservative forces. We suppose now that the coefficients of the expansions
(4.1), etc., are perturbed by infinitesimal functions of time which are
denoted by primes. The linearized unsteady boundary condition that the vortex

boundaries are material boundaries gives the equation

dz'* _dz dz'

= (u' - 1v')g -:%+ (u' +1v') ¢ %cﬂ

dz'*
dz

dz'

dz

+ (u-1v)g + (u +1v) (5.1)
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to be satisfied on each vortex of the rows. Unprimed quantities denote the
undisturbed steady state.
We now have to handle the problem that for subharmonic disturbances the
i: oscillations of each vortex may be different, so that we appear to be faced
f: with infinitely many equations for infinitely many unknowns, irrespective of
any truncation that is employed. This difficulty is overcome as follows. The

velocity induced by a vortex is an analytic function of the coefficients.

Let (u - iv)u denote the velocity induced by the vortex centered at mi.
Then, for example, the change in this velocity at a fixed value of =z

produced by the perturbation ‘.n,m is

- t o ' - d(u = iv) _,
(u iv )m _——d‘n e n (5.2)

where u - iv 18 given by (4.5) as a function of the undisturbed

coefficients. Because of the periodicity of the undisturbed motion, the

4 derivative in (5.2) 18 the same function of z - mt for every vortex in the
same row. Expressions similar to (5.2) hold for the conjugate velocity and
the velocities induced by the vortices in the other row. It follows therefore
that normal mode solutions of (5.1) can be obtained by restricting attention
to one vortex in each row, namely the vortices given by (4.1) and (4.2), and

‘ supposing that the perturbations of the other vortices are related to the

~ perturbations of these vortices by relations

' - ' inmf % = " imf
ne >R R'.e ’ Rl,m R 1¢e (5.3)

= r'% o™ (5.4)

N

n,m
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f 1s related to the subharmonic wave number p by

f= 2p (5.5)

Notice the subtle point that although the undisturbed solution must have
the property that a, and a*,, etc., are complex conjugates for it to be
physically sensible, this need not be true of infinitesimal perturbations.
There is no contradiction here, as will be explained in more detail later. It
is of course just the manifestation in the present context of the fact that
the eigenfunction of a real problem may be complex.

The perturbed velocity u' - iv' can now be calculated. We have the

undisturbed velocity induced by the vortices as givenm by (4.12),

-{w L) L] g
u-~-{ivae= -—zl

n
=0 pe-e (z-mt)T'L
h
> ATt Q
~~ (z-mt¥(d + ix))

-m [ )
2
I 1
T o0 me—= (z-miid (d+ix))"TL

2
2! = vac(l + al/; + 32/; + )
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+RZ(L+a' /g +a leP+ ) (5.8)
1 1 2
and g'y,, etc., are the perturbations for the vortices (4.1) and (4.2) and

are obtained from (4.7), etc. The differentiation with respect to z in

ry T 5y
it} NS

. ST e e

" Y. - P

(5.7) is done because the velocity has to be evaluated on ’C' = 1 and the

D

Ly

.
. % '. .

boundary condition (5.1) will be evaluated in terms of 7.

Cad
o et
.

The boundary condition is now linear in all the perturbations and

solutions are searched for in which all primed quantities are proportional

to exp(ot). If we denote the variables R'y, a'p, R'*), a'*,, R'y, b'; R'%)y,

b'*n by a vector ¢, the boundary condition gives an eigenvalue eq:ation of

the form

g N()e=M¢ (5.9)

i where, at least in principle, the functions M and N are known functions of

the undisturbed shape and the subharmonic wavenumber p. (The infinite sums

with respect to m in (5.7) can be done in closed form, see Appendix B.)

Again in principle, the eigenvalue ¢ can be developed as a series in

inverse powers of £, but the algebralc complexity is fearsome and numerical

methods were employed. Corresponding to a steady solution with some N and

L, the same truncation was applied to the perturbations, {.e. terms with

suffix greater than N were discarded. This gives a column vector with

4N + 4 rows for ¢. The forms like (4.15) were employed for the calculation

of the velocity and 1ts perturbation, which leads to an expression of the

boundary condition as a series of positive and negative powers of . 4N + 2

equations are obtained by equating the coefficients of ™ to zero for n in

the range -N < n < N for each vortex. Two further equations are obtained hy

fixing the phase by requiring

-----

......
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SO0 R'y =R'%) , R'p =R'% (5.10)

i:-. The problem has now become one of calculating the eigenvalues of a generalized
:;ES - complex eigenvalue equation of order 4N + 4, which can be approached in

;égs standard ways. No'difficulty was found in accomplishing this.

1 Some comments are in order. First, it will be noted that the boundary
;E;? conditions for the unsteady calculation are different from those of the steady
;i;; flow. In the latter case, it is necessary to ensure that the equations are

sia independent. This is unnecessary for uunsteady calculations, where all that {s

:i: needed is to ensure that the equations are not incomsistent. Therefore any
It;: integral constraint that leads to dependence of steady equations will be

Ejf automatically satisfied by a consistent evolution equation. We therefore

;fss retain the equations that come from the terms independent of 7 and the

ﬁ;? coefficients of { and :-1 for the second vortex. Satisfaction of

{.: the  independent terms in equivalent to conserving area in unsteady flow, and
ifa . it can be verified from the computer results that all modes with ¢ # 0 keep
igﬂ the area constant. Indeed, this provides a check on the accuracy of the

f'f eigenvalues and eigenvectors. As described, the calcﬁlation

iéa keeps Wy and w, constant. There is a neighboring equilibrium state in which
;EEE the velocity of the array is the same (Q and Q* are not perturbed) and the
\‘f strengths and sizes of the vortices are altered. We expect corresponding to

;3 this state that there will be two zero eigenvalues in which the eigenfunction
3;Ei does not conserve area. These are indeed found. They could have been
ﬁié eliminated by imposing area conservation to reduce the number of unknowns, but
;iis this would have been less convenient. The retention of (5.10) gives two
;EE; infinite eigenvalues, and it proved easier to make the eigenvector satisfy
‘;;4 (5.10) throughout the calculation and actually solve a 4N + 2 order
2
5
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:.:‘-j system. This gives N quartets of eigenvalues, one of which is the
\‘
<& 4
ﬁﬁ cooperative mode and the others are the first N-1 oscillation modes, and the )

two neutral modes in which the area changes.

Secondly, we find perturbations which coatain componenta
ot + imf y eot + {inmf

—— f
4 &
SR TR

like a'ne and o for the m~th vortex, and these are not

complex conjugates of each other. To avoid confusion, we denote the

:ﬂi perturbation to a*, by Eﬁn. They produce contributions to 2'p and z'*,

~ which are respectively

N
A i "n(f)RI ea(f)t + imf

- (5.11) }
o n-1

N & ;
'J

~‘: :l R* Cn"lec(f)t + imf (5'12)

n 1

2 '
2 Now change f 1into =-f (or 2x - f). We get the contributions to 2z', and
) . z'*m

h\_

:' a' (-£)R eo(-—f)t: - imf

::'_ n 1 (5 13)

o T y

<y 4 .

-‘-‘ _ - _ ;
- 3 R*lcn-leo( f)t - imf (5.14) »

n." n

Because of the symmetry expressed by (2.2), o(~f) = o*(f), and

\
S
o

.

.

.
-
\.

'\*. a'n(-f) = ('a_'n(f))*, where the star here denotes actual complex coﬁjugate. .
‘; Thus (5%11) is the complex conjugate of (5.14), and (5.12) is the complex ~
" conjugate of (5.13). Physically realistic perturbations are therefore
‘ obtained by adding (5.11) and (5.13) for the disturbance to z, and (5.12) :
i and (5.14) for the disturbance to 2z, and (5.12) and (5.14) for the C
.-‘ disturbance to z*m. A
.
3
>
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6. Results
Steady shapes were calculated for a range of a and x using the method

of §4 and the stability of these shapes to infinitesimsl disturbances was
calculated using the method of section 5. For the majority of the

calculations, the value of N = 8 and L = 9 were chosen. Results were
checked in two ways. First, calculations were done with N = 16, L = 17,
and N = 32, L = 33. Second an alternative code which employed the
'{nterior’ mapping of the exterior of the vortex into the interior of the unit
circle was employed instead of (4.1). This method was used with
L=N=12. For a less then 0.1, there was no significant difference between
any of the results. Calculations using N = 8 gnd L = 9 required about 15
minutes of CPU for the computation of the steady shapes and about the sanme
time for the computation of the eigenvalues on a VAX 11/750 computer. Most of
the time went for the calculation of the Jacobian and the matrices. A large
amount of data was amassed. Here we summarise the salient features.

The behavior of the shape modes showed no surprises. In fact, the effect
of finite area on the oscillation frequencies was generally insignificant.
The modes were all stable and what small change there was due to finite area
was consistent with the symmetry requirements.

The interest lay entirely in the behavior of the cooperative modes and in
particular, the effect of finite area on the stability boundaries in
the p = x plane for fixed area. A typical set of results is shown in figure
7. These are for the case a = 0.05. The ratio r >rtex radius to
longitudinal separation is 0.1262. The solid lines show the stability
boundary in the vicinity of the critical point. The dashed lines are the
stability boundary according to equation (3.30) of Kida (1982). It will be

seen that the numerical results indicate that the stability boundary is the
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Figure 7.
Numerical results for the stability boundary in the x-p plane for a = 0.05. Solid
line 1s result of calculation. Dashed line is Kida's prediction. Stable reglons

are above and below the cross. Also shown is the cross for zero Q.
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degenerate case of figures 5 and 6, in which the hyperbola is a pair of

.straight lines meeting at the center py, Kye In this case, the dependence

of growth rate c on p fork = Ky would be the degenerate case of figure 3 in
vhich the ovals shrink to two points at. Px and 1l-px. The existence of the
cross is confirmed by the plot in figure 8 of the difference in the values
of p on the stability boundary versus x very close to Px and Kye The
numerical points were found to lie on two straight lines which met at a value
of the difference indistinguishable from zero. Similar results were found for
all other values of a employed. In fact, some runs were done for the
relatively large value of a = 0.1854 (using N = 32), and showed the same
behavior. These results imply that the street is always unstable except for
the special value k = Ky

For the values of x shown in figure 8, Kida's results imply that the
street is stable. (Note that the results drawn in figure 7 show that the
pairing mode with p = 0.5 1is stabilized by finite area, as calculated by
Saffman and Schatzman 1982). This disagreement is not unexpected, since as
argued in section 3 Kida's calculation {s not consistent to 00&‘) as 1is
necessary to determine the behavior near the center of the hyperbolae.
However, according to the argument summarized by equation (3.18), the change
in the stability boundary away from the cross would be of order cz and should
be correctly calculated to this order by Kida's theory. The discrepancy
between the numerical results and Kida's results shown in figure 7 is due to
the value of a being too large for the perturbation theory to be accurate.
This is confirmed by the results for a = 0.025 shown in figure 9, where the
disagreement is confined to the vicinity of the cross.

The arguments of gsection 3 imply that Pg ~ 1/2 and Ky = K should be

proportional to qz. Results are given in table 1 and shown in figure 10. It
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: Distance between upper and lower branches of the cross near Ky and Px
- for a = 0.05. Similar results hold for values of a up to 0.2.
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Stability boundary for a = 0.025. Kida's predictions now agree with the numerical
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. Figure 10,

; Pogition of the center of the cross for various «. Solid lines show
B :

Py 172 and xi]'/z versus a. Dashed line is tangent at origin.
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N TABLE 1

] .005 0125 .025 .05 .0927 .1854

1.38(-5) 8.50(~5) 3.25(-4) 1.19(=3) 3.33(-3) 7.96(-3)

ey P'x 1.16(=4) 7.27(~4) 2.95(-3) 1.20(~2) 4.15(-2) 1.52(-1)

-+
Zoet
A .552 .544 .520 476 .388 232
N
% .
] M 4.64 4.65 4.72 4.80 4.89 4.42
)




was found that p'y was closer to quadratic than x'x which deviated

considerably for the larger a. Assuming to a first approximation

that x'x and p'y are quadratic plus cubic in a, we have from the results

', for a = 0.005 and « = 0.0125 that A = 0.557 and u = 4.63. It follows from -
A i
: equations (3.14) and (3.15) that o
y .
®
. cy = 13.6, cg = 6.49. (6.1) &
: N
W\ :.
) The agreement of these values with those calculated by Kida (see equation 2nd
. 3.11) 1s very good. However, the existence of the crosses implies that R
> o
D =0, and hence from equation (3.13) ;3
] _:.
d
::l CS = =11.2 (602) :.
¥ %
- The value of cg agrees well with the value predicted from the Saffman and
N Schatzman results for p = 1/2. The important result is the difference
o between (6.2) and Kida's value given in (3.11), which leads him to predict -
"
P stabilization in contrast to the numerical calculations. A consistent o
. perturbation expansion to order a‘ is of course required, but this 1is no i
“
o simple matter.
7 It may be of interest to give a trivial example which illustrates the
consistency problem. Suppose we have the quadratic equation i:

x2+ax+b.0, ..L:

IEhl. TR A oA,
1)

. a=-2+e+0 (), b=1-¢+0c) <
- x:.\'
g .
~ \"
N A

A

S
\ >
: -48~- RS
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.......
....................
...........




Then x = 1 + 0(e), but use of the quadratic formula shows immediately that
the O(c) tera cannot be calculated without knowledge of the O(cz) terms in
a and b.
A strange property of our results is that there was no sign for any value
of a of the crosses breaking up into hyperbolae. This implies that the

functions H; and Hy are for finite area of the form

H(px @) = D« —x)? =D, (p = )2 (6.3)

where D; and Dy are functions of p,k,x, and Ky» Px 8re functions
of a only. A general result of this kind should be capable of simple proof,
and not require extensive computation.

It is known experimentally that the observed values of x in the vortex
street wake of a cylinder increase with dovnltreai distance, as presumably
does the area due to viscous diffusion. It would be of interest to determine
if the variation of x and a were such as to keep the street in the state of
stability as described by the plot in figure 10, but this is at present
difficult to do as the size of the vortices is not easily estimated from the
data.
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Appendix A Kinematic Constraints

Consider the double row with voftices of strengths rl and rz in two
parallel horizontal rows. Suppose that the velocity at infinity is U,V
above the top row and U,V below the bottom row. Conservation of mass
requires that V 1is the same above and below. The equivalence of circulation

and vorticity flux gives the relation
Uy -0, =(r) +T,)/2 (Al)

vhere £ 1is the distance between neighboring vortices in the same row-. We

note the vector identity
sxe=95u)) -u- Ty (A2)

Further, for two-dimensional flow, w = wk, where k is normal to the plane.

Then using Green's theorem,
fg x'u_) dxdy = =k x [u w dxdy

o zu’nds - [u (u+ n)de

- - 2 2 _ 2
1Ve (U, -U)+35(v,%-10°) (A3)
where the integral is over one wavelength of the flow.
Now the left hand side of (A3) is proportional in magnitude to the
velocity of the vorticity centroid, and this is zero if the flow is steady.

Hence in this case, either
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or

y Iy=- (AS)
The former case is the mixing layer, where the speed of the vortices is the
arithmetic mean of the speeds on the two sides. The latter is the wake, where
the vortex speed is not the arithmetic mean and the circulations are equal and
opposite. These results show that there cannot be a contimuous family of
steady solutions going from wake to mixing layer with Uy changing
continuously from U; to -U;.

Of importance for our numerical method is the fact that for the wake
wvhere (A5) holds, the right hand side of the identity (A3) vanishes and hence

generally, writing separately the contributions to the left hand side from the

vortices in each row, we have

J yow dxdy 4,/ uw dxdy = 0 (A6)

which is a consequence of the kinematic relation between velocity and
vorticity. Thus whenever the vorticity field is chosen so that one part of
(A6) vanishes, as is required for the solution to be steady, the other side
must also vanish automatically. Hence equating separately to zero the parts
of (A6) in a calculation of steady flow does not give independent equations.

This is the justification for dropping the equations for the coefficients

of  and c-l on the second row vortices.
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{ Appendix B Sum Formulae

R The calculation of the steady shapes and stability requires the

: evaluation in closed forms of the infinite sums ‘
A

o o _inf

I — (B1)
m=~e (mts)

oo where 8 1s an arbitrary complex number, f 18 an arbitrary real number

;% and n 1s a positive integer. If 8 = 0, the term with m = 0 in the sum

¢ is8 excluded.
_:; It is convenient to deal separately with s = 0 and s # 0. For the

:3 first case, we have for n = 1, by direct summation or the elementary theory

] of Fourier series,

= - nf

5 ) = {(v-f) O Cf <2

N m=-. n

(B2)

i

- =0 for £=0 or £ = 2r.

N .

k4 Values outside this range are obtained by applying periodicity in f.

~i For n > 1, we integrate (B2) n - 1 times with respect to £, choosing the ?
T s
.5 arbitrary constants so that the resulting expression is 2r periodic in f. i»
¥ For s # 0, we have the formulae

E LY L8(2n-f)

.~ - 2n1——25---- 0<f < 2n,

: s (ors) e is _ 1

=7 cotwns f =0 or f = 2n.
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. Differentiation n ~ 1 times with respect to s gives the sums for
-
ﬁjz arbitrary n. Note that it is only for n =1 that the sum is not a

2.
( continuous function of f.

N The processes of integration and differentiation are easily automated and ]

can be evaluated by symbolic manipulation programs.

A

)

AT

o'
e 2 5{

P ASLAN
.
RREARLIE.

T
.

-9 B
-- -" -‘
o ]

LYl

H
GAL 1
o ‘
2 .
o 1
RS ¢
S .
;
toy

a.

]

._l

.,

BN

s

S TR L., . . - .
Lo A v : N o R DY . KR -,
BRI A - . Lot e TS ey T e e p .
~u N ; » . L Ry B N TR S I S S e
-ﬂ--l&-l“'n!}-ll“' OV TN A A e A



L)
. Baker, G. R., Saffman P. G. & Sheffield J. S. Structure of a linear array of hollow g
o vortices of finite cross section. J. Fluid Mech. 74, (1976) pp 469- .
e 476.
S Boldman, D. R., Brinich, P. F. & Goldstein, M. E. Vortex shedding from a blunt
{ trailing edge with equal and unequal external mean velocities. J.
j:J Fluid Mech. 75, (1976) pp 721-735.
%S Deem, G. S. & Zabusky, N. J. Vortex waves; stationary V sgtates, interactions,
e recurrence and breaking. Phys. Rev. Lett. 40 (1978) pp 859-862.
Domm, U. 1955 The stability of vortex streets with consideration of the spread of
vorticity of the individual vortices. J. Aero. Sci 22 (1955) pp 750-
754.
Havelock, T. H. The stability of motion of rectilinear vortices in ring .
formation. Phil. Mag. (7) 11, (1931) pp 617-633.
. £
Ay Kida, S. 1982 Stabilizing effects of finite core on Karman vortex street. J. Fluid
,;4 Mech. 122, (1982) pp 487-504, )
-~ . |
oN
- Lamb, H. Hydrodynamics 1932 (6th Ed) Cambridge University Press. ;
. i
A Pierehumbert, R. T. & Widnall, S. E. The structure of organized vortices in a free 4
e shear layer. J. Fluid Mech. 102 (1981) pp 301-313. s
ﬁ;, Saffman, P. G. & Schatzman, J. C. Stability of a vortex street of finite r
;?: vortices. J. Fluid Mech. 117 (1982) pp 171-185. o
i . Saffman, P. G. & Szeto, R. Structure of a linear array of uniform vortices. Stud. /
o App. Math. 65, (1981) pp 223-248. v
< -
ﬁ.;::
;%:
W
Ol e Ay
S 5
) g
g0 .
i 3
.:; L)
b
A .
ke :
i -

s -54-




SECURITY CLASSIFICATION OF THIS PAGE (When Dete Entered)

{ »
READ INSTRUCTIONS
[ REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
- [T REPORT NUMBER 2. GOVY ACCESSION NOJ] 5. RECIPIENT'S CATALOG NUMBER |
o 2634 p.A4/39 ¥/
AT 4. TITLE (an! Subtitle) 8. TYPE OF REPORT & PERIOD COVERED
L. Summary Report - no specific
e The Stability of Inviscid Vortex Streets of reporting period
\"_4, Finite Cored Vortices 6. PERFORMING ORG. REPORT NUMBER
I
\{f:: [ auTrowce 3. CONTRACT OR GRANT NUMBER(s)
in D.I, Meiron, P,G, Saffman and J.C. Schatzman DAAG29-80-C-0041
:f-ﬁ:}l 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. ::ggn.hg o‘#x"dﬁi‘r"u%'!.°dz‘§s" TASK
Mathematics Research Center, University of
L 610 Walnut Street Wisconsin :\brll‘,ugi:nmlmb?r 1 -
e Madison, Wisconsin 53706 Pp-lec Analysis
11. CONTROLLHG OF FICE NAME AND ADDRESS 12. REPORT DATE
- U. S. Army Research Office January 1984
2N P.O. Box 12211 13. NUMBER OF PAGES
A Research Trian%le Park, North Carolina 27709 54
e . MONITORING AGENCY NAME & ADDRESS(I] different from Controiling Office) | 18. SECURITY CLASS. (of this report)
UNCLASSIFIED
Ll 182, DECL ASSIFICATION/ DOWNGRADING
-~ SCHEOULE
iy I —
o J16. DISTRIBUTION STATEMENT (of this Report)
>,
'.‘,::.j , Approved for public release; distribution unlimited.
\
~
_‘.:_ 17. DISTRIBUTION STATEMENT (of the abatract entered In Block 20, If different from Report)
\-
N 18. SUPPLEMENTARY NOTES
o
o
i
n 19. KEY WORDS (Continue on reverse side if necessary and identify by block number)
)
v ;
AL Karman vortex street, stability,
‘ ng 20. ABSTRACT (Continue on reveree side 1f necessary and identify by block number)
;::; The stability of two-dimensional infinitesimal disturlances of the inviscid
:’::: Karman vortex street of finite area vortices is reexamined. Numerical results
b ‘::.; are obtained for the growth rate and oscillation frequencies of disturbances
_?; of arbitrary subharmonic wavenumber and the stability boundaries are
ENE
./:;\.: calculated, The stabilization of the pairing instabil ity by finite area
.i~ L]
Yo DD , 5%"s 1473  €oimion oF 1 NOV 65 18 OBSOLETE UNCLASSIFIED
-1 SECURITY CLASSIFICATION OF THIS PAGE (When Data Enteced)




B

LI N SN

AN~

Q
[l S

20, ABSTRACT (cont,)

. demonstrated by Saffman and Schatzman (1982) is confirmed and also Kida's
(1982) result that this is not the most unstable disturbance when the area is

: finite, Contrary, however, to Kida's quantitative predictions, it is now

] ; found that finite area does not stabilize the street to infinitesimal two-

dimensional disturbances of arbitrary wavelength and that it is always

unstable except for one isolated value of the aspect ratio which depends upon

= the size of the vortices.
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