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ABSTRACT

The numerical solution of partial differential equations in unbounded

domains requires a finite computational domain. Often one obtains a finite

domain by introducing an artificial boundary and imposing boundary conditions

there. This paper derives exact boundary conditions at an artificial boundary

for partial differential equations in cylinders. An abstract theory is

developed to analyze the general linear problem. Solvability requirements and

estimates of the solution of the resulting finite problem are obtained by use

of the notions of exponential and ordinary dichotomies. Useful

representations of the boundary conditions are derived using separation of

• -variables for problems with constant tails. The constant tall results are

extended to problems whose coefficients obtain limits at infinity by use of an

abstract perturbation theory. The perturbation theory approach is also

applied to a class of nonlinear problems. General asymptotic formulas for the

boundary conditions are derived and displayed in detail.
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SIGNIFICANC AND EXPLANATION

In various applications the need to solve boundary value problems for

partial differential equations in unbounded domains arises. Important

*:. examples include the problem of fluid flow in long channels and past

bodies. In order to solve such problems numerically, it is necessary to

compute on a finite mesh. One approach to this problem is to introduce an

artificial boundary and solve the problem on the finite domain which it

creates. Here, we consider the question of what boundary conditions to impose

at the artificial boundary.

First, we develop an abstract framework for the analysis of the problem,

discovering a useful characterization of the exact boundary conditions which

should be imposed. These can be easily represented (and implemented) using

separation of variables for problems which are independent of the unbounded

coordinate. For other problems, including a large class of nonlinear ones, we

develop a perturbation theory which leads to general asymptotic expansions of

the exact boundary condition. These expansions are presented in detail.

The theory, as presented in this paper, is mainly applicable to elliptic

boundary value problems (and ordinary differential equations). However, in

other works, the authors extend these ideas to parabolic and hyperbolic

problems. Also, some numerical experiments will be presented.

The responsibility for the wording and views expressed in this descriptive
summary lies with NRC, and not with the authors of this report. )des
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EXACT BOUNDARY CONDITIONS AT AN ARTIFICAL BOUNDARY
FOR PARTIAL DIFFERENTIAL EQUATIONS IN CYLINDERS

Thomas Hagstrom and H. B. Keller

1. Introduction

Many of the boundary value problems arising in applied mathematics are given on

unbounded domains. Examples include the problems of fluid flow and wave propagation in

channels or past bodies. The numerical solution of these problems, however, requires a

finite domain. In this paper, we develop a theory for the exact reduction of a boundary

value problem for a partial differential equation on an unbounded cylindrical domain to a

problem on a bounded domain. That in, an *artificial* boundary is introduced and the

proper boundary condition to be imposed there is derived. In other works, [8) and [91, we

use our theory to solve nonlinear problems of both elliptic and parabolic type.

For ordinary differential equations, exact reduction theories have been developed by

many authors: defoog and Weiss (51, Keller and Lentini [ill, Jepson and Keller [101 and

Markovich (12). Few work. on artificial boundary conditions for partial differential

equations, on the other hand, have discussed exact conditions. An exception is the paper

of Gautafsson and Kreiss (6] where the form -f the proper conditions for a general hyper-

bolic problem is derived. They go on to find representations of the exact conditions in

various simple cases for problems of both hyperbolic and elliptic type.

We illustrate the derivation of exact conditions with the following example:

a) V2u + a(x,Z)u " f(x,X), (x,X) e t0,) x n, a c 1can-1

b) c(x,Z) au (x.X) + d(x,z)u(xx) = y (x,x), X e an

au
c) a(X) - (oz ) + b(,X)u(O,X) =yO(), X e n

( 1.1)

d) lim u(x,X) - 0
X+W

Ap plied Mathematics, California institute of Technology, Pasadena, CA.
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c(x,,) - c(v) d(xX) dvX), a(x,X) - a.(), x x x o

f(x,Z ) - YQ(x,2) - 0, x ) x0

(We say that (1.1) has a constant tail, due to condition (1.1e).) We choose some point

x - T x 0 am the location of the artificial boundary. In the Otailm, x w r we have:

a) V 2u + a.(X)u = 0, (x,X) e [T,-) x a

(1.2) b) c() 3u (xX) + d..(X)u(x,y) - 0, v, e an i

c) lin u(x,j) - 0 .

Problem (1-2) can be easily analyzed by separation of variables. Consider the following

eigenvalue problems

a) V2 Ynly) + a(X)Y n(X) = tonnlZY X , e a

(1.3) b) co(X) Y X) + de(-)Yn(X) - 0, X e SQ p

Given certain assumptions on the boundary condition, (1.3b), the set of eigenfunctions,

{Yn) , is complete in that subspace of L2 (fl) consisting of functions satisfying it. (See

Berezanskii [3].) For simplicity, we further assume that the wn are distinct and that

w = 0 is not an eigenvalue. We rewrite the (1%) in the following way:n

2
w n % > 0, n - 1,...,m p

(1.4)

w 2 (0, n m+l, U+2,...n n

Expanding u in terms of the Yn's,

(1.5) u(xZ) = cn(x)Yn(X)
n-I

problem (1.2) becomes:

-2-%
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(1 .. .(1n 2. cn n m +1, W+2, ...

b ) c ) c,( ) - 0, n ,... ,

b) c'(t) =-Ann(T), n - +1 +2,....-

This allows us to replace (1.1) by an equivalent finite domain problems

a) V2u + a(x,z)u - f(x,Z), (xz) e 10,,) x ;

b) c(x.Z) au ( + d(xa,)u(uz) =

a)u
(1.8) c) a(Z) T (0,X ) + b(Z)u(O,Z) - Y0 (x), Q e ,

d) JQdX u(TrZ)Yn(X) -  Z a, (-1aZ)Yn - 0, n - 1.... a

a. (T#X)Yn(X) - -A nd' u(r,,)Yn(,z), n - m4*1, n-2...

That is, (1.1) has a solution if and only if (1.8) does and the solutions agree on a finite

domain.

In section 2 of this work we derive boundary oonditions for the reduction of a general

partial differential equation in a sei-infinite cylindrical domain to a finite one. These

turn out to be the requirement that the appropriate data at the artificial boundary lie in

a certain affine set. We find it convenient to rewrite the problem as an ordinary

differential equation in a uSnach space, making transparent the connection between our

reduction and the reduction theorems for the case of ordinary differential equations. In

section 3 we introduce the notion of a dichotomy for our abstract equation and use it to

develop error estimates and solvability requirements for the finite problem.

We first consider the problem of representing the boundary conditions in section 4.

Here separation of variables is used to analyze constant tail problems such as the one

presented above. The exact representation we obtain is equivalent to (1.8d) in that case.

-3-
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We develop a perturbation theory to analyze non-constant tail problems in section 5.

Assuming the limiting problem at infinity can be solved by separation of variables, a

perturbation expansion of the exact boundary condition can be calculated. We carry out

this expansion for the Helmholtz equation exterior to a body, recovering the conditions of

Bayliss, Glnxburger and Turkel (2). Finally, in section 6, nonlinear problems are

considered. We use the perturbation theory of the preceding section to prove, under

certain conditions, the existence of an exact nonlinear boundary condition and to calculate

an expansion which approximates it.

We note that many authors have derived boundary conditions for specific problems. We

do not, in general, attempt to examine the connection between their conditions and ours.

For more discussion of these connections as well as for a more extensive bibliography, the

reader is referred to Ragstrom (7].

2. Basic Linear Reduction Theorem

We consider abstract boundary value problem of the forms

du
a) --A(x)u + f(x), 0 < x <

dx

(2.1) b) B0 u(O) - Yo

C) list 3,u(x) -0 

In addition we may impose:

d) Iu(x)I bounded as x+

For some anach space, 8, we seek u(x) e 8 for x e (0,-). we suppose that A(x), B0

and a. are linear operators with domain in 8, to which we also constrain the range of

A(x). Finally, f(x) e a.

Problems of form (1.1) can be obtained from general partial differential equation

problem in cylindrical domains. 8pecifically we consider
n a a =

(2.2) 1~ P f-Z x -(x,x)I

a.-4- :%-

a% .

% %
I
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on the cylindrical domain

(xZ) e (0,.) X0, C so3

.1Homogeneous boundary conditions are imposed on DO involving to and its normal

derivativest

* (2.3) B o,3(X) .*. (xq) o , v e an

We further suppose that, subject to these boundary conditions,

P;' (' "Y L-

-~ exists for all x. Now (2.2) can be rewritten in the form of (2.1a) by introducing

n-2
(2.4) u- 2

a

The space, Bis some space of n-tuples of functions an 0 which satisfy the homogeneous

~~! boundary conditions, (2.*3).* It is necessary to eliminate inhomogeneous conditions on 30

in order to reduce the problem to the abstract form. This can be accomplished by subtract-

ing a function that satisfies the inhomogeneous condition. We note that the functions

affet P 1  and, ultimately, AWx.

Returning to (2.1) we choose some finite point, x - T, and attempt to reduce the

infinite problem on [0,.) to a finite one on [0,T]. We define A(rif), the admissible

set of Cauchy date at X - T, as the set leading to solutions, u, in the tail,

x e [T,-). More precisely we have:

Definition 2.5. The set ?dTjf) C 5, the admissible set at x - T, is the set of all

uo eB such that there exists u(x) 6 s, x e IT,-), satisfying:

*a) u- A(x)u +f(x),T <x( <

(2.5)
*b) U(T) U u0

as well as (2.1c,d) as appropriate.

I b% 1%e



It is now possible to write down an exact reduction of (2.1) to a problem on a finite

domain. We state the reduction as a theorem whose proof follows immediately from the

definition of A(tf).

Theorem 2.6. Problem (2.1) has a solution if and only if the following problem has a

solution:

a) A(x)w + f(x), x e (o,i]
dx

(2.6) b) BOW(O) " YO P

C) W)(T) e A(Tjf).

Furthermore, whenever (2.1) has a solution u(x), (2.6) has a solution which is identical

to u on [0,r].

Proof: Suppose (2.6) has a solution. Then, by the definition of A(Trf), there exists

u +*(x), x e IT,-), satisfying (2.1a) and (2.1c,d) as appropriate as well as W(T) U (T).

Define

MWx x e (O,r]

u(x)
.u+(x) x e [T,-)

Then, u is a solution of (2.1). Now, suppose that (2.1) has a solution. The restriction

of u to T,-) satisfies (2.5) and (2.1c,d) and, hence, by the definition of A(Tf),

u(T) e A(Tf). This implies that the restriction of u to [0,T] satisfies (2.6),

completing the proof.

The set A(Tf) is an affine subset of 8. A convenient representation of A can be

found in terms of its underlying linear subspace and some particular element of 5. We

consider the homogeneous problem in the tail associated with (2.1):

dv
a) - A(x)v, x e (T,-).

b) lim LSv(x) - 0 "

(2.7) X+

and, if (2.1d) is imposed,

c) Iv(x)l bounded as x +

-6-
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We define ACM), the admissible space at x T, as the set of all Cauchy data leading to

solutions of (2.7). That is:

Definition 2.8. The set AT) C 8, the admissible space at x - T, is the set of all

ve e 8 such that (2.7) has a solution satisfying:

(2.8) V(T) - v0

We note that AMt) is independent of the inhomogeneous term in (2.1). We further require

a particular solution, uP(x). which satisfies.

dup

a) - Alx)u + flx), x e [T,_)

b) lm nBu(x) - 0

(2.9) x.-

and, if (2.1d) is imposed ,

c) lu (x)l bounded as x + .

We note that if k(Tf) is non-empty, at least one such up(x) must exist. It is now

possible to proves

Theorem 2.10. Let u0 e B. Then u0 e A(tif) if and only if, for any particular solution 9%

uP(x)

(2.10) u0 - u.(T) e At) .
C'.

Proof: The proof is an Iumediate consequence of the definitions of A(Tf), A(T) and

. uPx) combined with the linearity of (2.1).

If we assume that there exists a projection operator, Q(T), into A(T), we can

rewrite (2.10):

(I-Q(Tllu 0 - UPIT) - 0.

In particular, the boundary condition, (2.6c), can be replaced by:

(2.6c') (I-Q(T))N(T) - (I-Q(T))u (T)

we emphasize that up(x) can be any particular solution. Cr

Finally, we write down a corollary of Theorem 2.6 which concerns the uniqueness of

solutions. •

.,4
-7-
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Corollary. Suppose that for all v 0 e AT) solutions to the Cauchy problem defined by

(2.7a) and (2.8) are unique. Then (2.6) has a unique solution if and only if (2.1) does.

Proof: Assuming uniqueness of solutions to (2.1) immediately yields uniqueness for

(2.6). In the other direction, note that the assumption above guarantees the uniqueness

of u+(x) which, combined with the uniqueness of the finite interval solution, implies the

uniqueness of u.

3. Solvability of the Finite Problem

In this section we assume that solutions to the homogeneous a problems:

a) E- A(x)v, x 0  x x 1  if x > x 0 I x I 4 x x 0  if x > x

(3.1)
b) v(x0 ) - v0

are unique for all x 0 ,x 1 e [0,-). we define a solution operator S(xl,x0,A) in the

following way:

Definition 3.2. IAt v 0 e B. If there exists a solution, v(x) to problem (3.1) then

(3.2) S(Xl,X0 x)v0 - V(Xl)

Otherwise, v0  is said to be outside the domain of S(xl1 x0iA).

The linearity of the differential equation implies the linearity of S. The stated

uniqueness of solutions implies the consistency of the definition. Note that it is

certainly necessary to restrict the domain of S for ill-posed Cauchy problems such as

those which arise in the study of elliptic equations. Whenever S exists, however, it

does have the familiar semi-group properties:

a) S(xlX A)S(x ,x 0 IA) = S(x 1 ,x 0 A)

(3.3)
b) S(x 0 ,x0gA) - I

The notion of dichotomies is very useful in what follows. First we present

definitions of exponential and ordinary dichotomies. These are adapted from Daletskiy and

Krein 14), with some modifications required by the possible non-existence of solutions.

Definition 3.4. We say that the problem

.JV.

".' "'"""" ....''''.'". . '".' ' -"." "- ,":""". :".., , , ':'''.,.,. ' ... -. ' ," .. " . ."""," , """ ".. '.'..'%,",
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(d3.4 A(x)v, x e [0,-)

has an exponential dichotomy if, for any x e [0,w), the space 5 can be decomposed into

Na direct sum of subspaces 8_(x*) and -+(x*) such that:
%* a

' a) If v e B (x) then, for some N and a > 0

(35) i) S(x,x ;A)v exists for any x > x

-0 (x-x
ii) IS(x,x 1A)vl 4 N e Ivi

b) if v e 8+(x) then, for some N+ and a+ > 0

i) S(x,x 1A)v exists for any x 4 x(3.6)

4 -a+lx -x)
ii) IS(x,x iA)vl 4 N+e IvI

c) There exists y > 0, independent of x , such that

inf .lu++u_l ;o y .(3.7) e f (x

lu1=1

. (This infenum is typically called the angular distance between + (x*) and B_(x*).)

An ordinary dichotomy is defined as above except that a: - 0 is allowed. No

mcontinuityu of the spaces as functions of x* has so far been required. In general, we

impose a sort of continuity in the form of the following "no-mixing* condition.

Definition 3.8. The dichotomy (3.5 - 3.7) satisfies the no-mixing condition if whenever

a) Q(x) is the projection operator into 8_(x)

b) S(xl,x 0 1A)v exists

(3.8)
then

c) Q(xl)S(xl,XouA)v - S(xl,XoA)Q(xo)v

-9--

4,o' "

. .. . . . . .



Assuming that the homogeneous problem has a dichotomy in the tail and that 5.(x)

coincides with the admissible space, A(x), it is possible to write down an integral

expression for a particular solution, up(x) which is valid whenever If(x)l is

inteqrablel

(3.9)) S(XpA)Q(p)f(p)dp - x S(x,p1A)(Z-Q(p))f(p)dp

(The validity of (2.9a) follows from the direct differentiation of (3.9) while (2.9b) is

insured by the identity of 8_(x) and A(x) combined with the absolute convergence of the

integrals.) Note that it is always the case that B_(x) - A(x) if there is an exponential

dichotomy. Then, only boundedness of If! need be assumed.

Formula (3.9) is extremely useful in the development of a perturbation theory. For

now, we simply use it to write down a new expression for the boundary condition, (2.6)s

(3.10) (I-g(r))w(r) -"-J S(T,p)(Z-Q(p))f(p)dp

Extending the dichotomy to the entire interval, we now can prove an exJqtonce theorem

for the finite boundary value problem (2.6).

Theorem 3.11. Suppose that solutions to all Cauchy problems (3.1) are unique for

x0,xl e [0,T] and that (3.1a) has a non-mixing ordinary dichotomy on 10,T] with

projector Q(x) into 5_(x). Also assume that 8_() - A(M). Then (2.6) has a solution

for arbitrary f(x), U(T) ad TOin the range of 0 if and only if the operator

€ (I-Q(O) 1w

(3.11) OW

has an inverse with domain containing all pairs of the form:

* (3.12) y , e Range (BO).

The solution is unique and bounded in terms of the inhomogeneous data if and only if this

(restricted) inverse is.

Proof: We use the ordinary dichotomy defined by Q(x) to solve certain initial value

problems. Let

(3.13) W+(x) = S(XT1A)(I-Q(T))U (T) + f' S(x,p;A)(x-Q(p))f(p)dp

This exists for all x on [0,T) by the definition of Q. If we seek solutions to (2.6)

-10-
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in the form

(3.14) u(x) - *+(x) + W.x)

then v is a solution if and only if w. solves

do-
) a s - A(x)w*+ Q(x)f(x) a

(3.15) b) S0u(0) Y - 300+(0) P

c c) (I-Q(T))m- C) - 0

Ns write W(x) in the forms

(3.16) U lx) - S(xOIA)N.(O) + fx 8(x,pAl)Q(p)f(p)dp

The integral term again exists by the definition of Q so that this representation in

valid for any solution of (3.15a). By (3.1Sc) and (3.8c) we haves

0 - (z-g(r))m.() - (r,OIA)(Z-Q(O))N(O) I

which, by the uniqueness of solutions to the Cauchy problem, implies

(I-Q(0))m (0) - 0
:.-

Hence, we can find a solution to (3.15) if end only if we can simultaneously solves

(!-.(o))N.(o) - 0 ;

sne-(O) - - bO+(°) I

which in component form yields (3.11), completing the proof.

Nstimates of the solution in terus of the inhomogeneous data are now obtained from the

explicit representation in terms of w+ and *-.. Assume that

a) 18(x,pIA)Q(p)I 4 K(x~p), 0 4 p 4 x 4 T I

b) 18(xpsA)(I-Q(p))I 4 K+(x,p), 0 4 x 4 p C T
(3.17)110
(3.17) c) 1-1C01 'C, IYI, Y e Range (3o )  1

d) 18 0 1 IC 0

Then we have, directly estimating (3.13) and (3.16) and using the fact that Q(0)w_(0) -

%os %.

! -11-
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r- .w -I 4 r . EIL 16.V VTPW-N6 ow . W% -.

OW(x)lI C K(x,0)K1y 01 + max Iflx)I f K_(x,p)dp
x [0 ,T]

(3.18) + max nf(x)e (T X K+(x,p)dp + K.(xO)K, 0 J T K (0,p)dp)
xe(O,']

+ UPn(T)I(K+(xT) + K_(x),,X XK+ (0,T)) •

Jkjuation (3.19) allow us to estimate the errors caused by approximations to Q(T)

and u (T). Suppose we solve the following finite problem instead of (2.6):

do

a) -- A(x)w + flx), 0 ( x ( Tdx a

(3.19) b) B0%(0) - Yo

C) (I-Q*(T)I)lT M (I-Q*(T))up(T) I
a 0

where Q*(T) and u (T) differ from Q(T) and u (T). We define the error, e(x), by

p p

e~x) - n(x) - e( X)

and find that it satisfies:

a) *4*e - A(x)e, 0 1 x lC T

dx

b) B0 e(0) - 0

(3.20) c) (I-Q(T))e(T) - (I-Q(T)))( ) - U CT)
p

+ (Q(T) Q (r)Cu pC) - 0alM)

-A(T)

Note that AT), by construction, is in the range of I - Q(T). (We assume, of course,

that %e(x) exists.) Therefore we have:

(I-Q(T))A(T) - A(T)

We now plug into (3.18) to obtain:

(3.21) Ie(x)I (X +(x,T) + K (XO) .OK+(0,T))IA(T)I •

Further specializing to the case of an exponential dichotomy this becomes:

a (x-T) -Ux -0+TIII

(3.22) Iex)I C (N+e + Ne K # X0N + e )RA

That in, the large part of the error decays exponentially off the artificial boundary.
.

-12-
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4. Problems with Constant Tails I
In this section we restrict ourselves to problems which are autonomous in x for x

sufficiently large. That is, we assume there exists T such thatt

(4.1) A(x) E A , x ) T

We also require that the constant coefficient problem in the tail be separable. That is,

we require that a complete spectral representation be associated with At

Assumption 4.2. There exists a countable set of pairs, (Ah un), with A a complex
n# n n

number, u e S and 0 not an accumulation point of (I and there exist adjoint pairs,

1nvn), with vn e Dual (B), satisfying

i) Au Xu I
1n n n

(4.2) ii) A-v - vn  1

(vmu n ) - gun

Furthermore, any function u e B can be uniquely written in the form:

(4.3) u - OnUn n - (vnu)

Using the eigenfunction expansions defined above, it is easy to write down conditions

for the existence of dichotomies for the constant problem as well as representations of the

various operators discussed in the preceding sections. Zn particular we have the following

theorem, whose proof follows immediately from the (formal) solution of the Cauchy problem

in terms of the eigenfunction expansions. (For the details of these see Hlagetrom (7].)

Theorem 4.4. a) If all eigenvalues, An' of A6 are bounded away from the imaginary

axis, then the homogeneous problem associated with A. has an exponential dichotomy with

spaces

8+ span(ui t Re A > 0)

(4.4)
B_-span(ui : A 0, .

The exponents, a., are given by:

-13-

V % %



%- g.1 
]b 

ex

(4.5) Re .bI e <0 1 j
S - g.l.b, lR. Xh

b) Let B+ be defined as above and lot 8 0 be given by:

(4.6) 0 . spanfut : Re , - O}

Let B+ 0 8 be any direct sum decomposition of So. Then an ordinary dichotomy is

induced by the spaces + * B and _ o

We note that by the conclusions of part (b), there can be many ordinary dichotomies

associated with a problem whose operator has eigenvalues with zero real part. Which of

these is the right one to use for the boundary condition depends on the boundary operator

at infinity, B. . Representations of the solution operator, S, are also easy to obtain.

The theorem above can be applied to the example of section 1, problem (1.1).

Rewriting the problem in first order form according to transformation (2.4), the operator

A. is given by:

It's eiqenvalues are given by n and im n, defined by the reduced eigenvalue problem

(1.3) through equation (1.4). If (1.3) had no positive eigenvalues, the problem in the

tail would have an exponential dichotomy. In the case of an ordinary dichotomy, the

boundary condition (1.7a) corresponds to the choice:

80+ = 801 8; - 2g •

4. If, instead of (1.1d), some other condition was imposed (for example a radiation condition)

this choice would change. We note that using the integral representation of the boundary

condition, (3.10), the condition that the inhomogeneous term vanish in the tail can be

replaced by an integrability assumption. The boundary condition, (1.7), is then replaced

by:

I c1

.4W

nn

-14-
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which implies
de' 8l-T )

(4.7) C()M -Xc(T) - de fn(), n =m1, u+2,... .
n n n T n

Per the imaginary elgenvalues we have:

c I (a)
I'~ 'a nc (8-l) :Ii -i n~ (o-n " 1a  0

nl -/ I I)
which implies

c'(T) " " J cosan(s-r)]ffn(a)d

(4.8) 1 V

Cn( - T in[Un(s-T)]fn(l)d

For a general partial differential equation with a constant tail, the eigenvalue

problem of its operator, A, can be reduced to an eigenvalue problem for a partial

differential operator. Zn particular, it's sigenvalues, A, correspond to solutions of:

n 
a(4.9) [ (~jZ, )X:]T(,) - o

coupled with the appropriate boundary conditions. This is the eigenvalue problem

associated with the Laplace transform In x of the equation in the tail. go note that in

practice it is the reduced eigenvalue problem, (4.9), which we suggest be solved to obtain

the boundary conditions. The reduction to first order form is made in an effort to

simplify the theory. The use of (4.9) to derive boundary conditions was first suggested by

Gustafsson and Kreiss [e].

The completeness of the eigenfunctions of A depends on the completeness of the

eigenfunctions of (4.9). This property doesn't hold in general and is difficult to

check. For a class of elliptic and parabolic problems, Agmon and Virenberg [1, Thu. 5.8]

establish the completeness of the eigenfunctions and generalized eigenfunctions of (4.9)

whose eigenvalues have negative real part in the class of solutions which are absolutely

integrable along with their first n - I x derivatives. In this case, the solution of

(4.9) is guaranteed to yield a representation of the admissible space.

- -1 5-
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S. Perturbation Theory and Asymptotic oundary Conditions

In the preceding section we found useful representations of the projection operator,

Q(T), of the admissible space and of the particular solution, up(x) for equations of the

form (2.1) with constant tails. In the present section we relax this assumption and

replace it wit)':

(5.1) IUn A(x) -*

'-4 quivalently we writat

A x),A x)

(5.2) I- IB(x)l - 0

SAsuming A. has a dichotomy, it is possible to make an asymptotic analysis of the

'S perturbed problem defined by A(x). in particular, we obtain representation* of the

projector, Q(T), into the admissible space. Consider the homogeneous problem in the

tail:

al ) m + B(x)v, x ) T

(S.3) b) lim Bv(x) - 0 1
X4-

c) Iu(x)I bounded as x +

Treating B(x)v as an inhomogeneous term, we have, by (3.10), that v(x) must satisfy:

(5.4) (I-Q,(t))v(r) - - " S(r,pFA )(I-Q',(p))B(p)v(p)dp •

Also, from (3.10), we have a representation of v which must be valid if v exists

v(x) - S(x,TIAo)Q.()v(T) + fx S(x,plA.)Q.(p)U(p)v(p)dp
(5.5)

- t S(xppA )(I-QO(p))B(p)v(p)dp

Let any E e A( () be given and replace q.(T)v(T) in (5.5) by to. If the following

condition holde,

(5.6) sp *(Jx S(x,plA)Q.(p)B(p) • dp - J" s(x,pgA)(z-Q(p))3(p) • dp]I - I <
X)TT x

then the contraction mapping theorem can be used to establish the existence of a unique

-16-"o

I

- 9. . .



.5''

bounded solution to equation (5.5), v(xCO). Furthermore, ws clearly have that:

(5.7)
(T-QoIr))vCTuO) -. - T J (TP;.A()I-Q(p)B(p)vlp1Co)dp

C0

Nonce, whenever (5.6) is valid, we can find, for any C0 a AM(T), a unique element,

of A(M). A projector into A(T) is given implicitly by (5.7):

(5.0) Q(T)c - Q(T)t - f" dpn(T,p;a)(z-Q(p)) v(pQ;.(T)E)

These conditions lead us to the following theorems

Theorem 5.9. We suppose that either the unperturbed problem has an ordinary dichotomy and

I(x)l Is Integrable or that the unperturbed problem has an exponential dichotomy. Then,

- for T sufficiently large, a unique solution, v(xgio), exists for any C0 a A.(T) and

(5.8) In valid. "

Proof It is only necessary to satisfy (5.6). In the first case we haves

K( 1+ + U-) I3(x)Id x

while in the second we haves

a, + a 30

-

For both cam, the assumptions on 2 allow on to make the right-hand sides arbitrarily

small by choosing i sufficiently large, completing the proof.

The contraction mapping solution of equation (5.5) leads to a natural iterative

procedure for the approximation of v(xC 0 ) and, ultimately, of the operator Q. We lets

(0)v otx 0 ) . 3(x, F0..0

(5.9) v(n+1) (XICO - v(O) (XIC0+ dp 8(x,pjA)Q,(p)B(p)v(n)(pit O0

dp *(xgp1A.)(-Q.p))np)Yvn (pit O)

Then, by the contraction estimatess

-17-
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n +  1

(5.10) IVlnl(xIE 0 ) -VxIC0) ' I (xIEO) .

We define our nth approximation to A(T), Q(n)(M, by:
(n)

(5.11) (r I- -()I STp slt,pA I-(pla) (n-I)
= - (-Q.(p))B(p)v (pI,(T)E)

The error due to this approximation is estimated bys

(S.12) IQ(T)C[ - Q(n)(T)E~i < !!! .VO xQ(M

(note: in all cases the norm of a 8-valuod function of x is taken to be the maximm in

x of its 8 n .)

We nov apply these results to the case when the constant tail problem has an

exponential dichotomy and A, has a complete spectrum. We assume that B(x) has an

expansion of the form-
(5.13) 3(x) - (1) + (2)

x x 2

(Ths expansions could easily be carried out for more general forms.) Plugging into the

formulas above we have:

VM(IcaX n ( x-T) +f e'n (x-p)B ) a A alP- )

n a1 in n am

(5.14) RO)n<0 Rn<0

pan (x-p) E11A( jLr
- : : *nn(p)c..

n m

ReA >0 Ren (0
n

where

cn - (v E
(5.15)

one(x) - (vn'n(x)ua)

Using (5.13) and approximating the integrals using integration by parts yields to within an

0(-) error:

-18-
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A (x.r) D(1) a (x-T) n (x-')vl')(-, )- ! uc%.e ) ux -~.("~ " )
nnY =- c x T

t n a En
Re)n<lO Flxn<O )mA<O

(5.16) 3 ft

A ( o) a 3(1 -) -
+ u c0n log(~) X + ~~.

n n a n nt
Rfn<0 l*Xn >0 UA (0

Putting this expression into (5.11) and approximating the integrals in a similar fashion

yields$

.11u7 + 1 n1217€ I
n. ra a )c~(A-A )

ftx ft 3 U
l ~. R.n (0 usA~n>0 ms),<0

+ u B117€
n nt (As -) 2r2

ne )OR (0m-nRexn> Rex <0 p

(5.17 . * *(1)l(11€  1'-*,In i. I.~ n: :m 2mxlmXn1.~n
t 0 n JS a T 2(Ai-A )(A J-A

Rexn>O Re <0 R <0

+ uan ,d1.11"a 2 + 0(31a '• tA )(Am-A) tz

Rex n,>0 Rexj,0 Rel<0

c.- (V.t)

' bThe generality of the expansion given above sakes its automatic computation a real

possibility. Not* that the expansion is equivalent to the one obtained by Jepeon and

Meller 110] for ordinary differential equations.

Formula (5.17) can be applied to the LAplacian example, (1.1), where the potential

a(Z) is replaced bys

(5.13) a(,,x 7 - a0(1 ) + - aI(X) +.. a 2 (X) -L..
x

Then, the matrix elements BM are given bys

*t J~.

i*.*****.~~**.*......*.x. .*..'*\

C *C (4~* *~*4 * ..-.l*-



(5.19) B(i) Y(Z)Y(X)ai(X)flU 2T- nnm

Expansions of a particular solution can be derived in a similar manner. Let u.(x)

be any particular solution of the unperturbed problem. Then, a solution of the integral

equation:

(5.20) u(x) - u.(x) + 7S(x,p)Q.(p)n3(p)u(p,)dp - :S(x,p)(I-Q .(p))S(p)u(p)dp

is a particular solution of the perturbed problem. Given the inequality (5.6), a unique

bounded solution of (5.20) exists by the contraction mapping theorem. It can be

approximated by an iterative process analogous to the one described by equation (5.9).

Perturbations of the inhomogeneous term could also be included.

Finally, we note that (5.17) is valid for some problems which do not satisfy (5.6).

An important example is afforded by the exterior Helmholts problem in two dimensions. The

equation in the tail is:

(5.21) 2 + + + u ,r eCT,-), a e 10,2w)
Sr2  r 2a

2

together with boundary conditions

a) u periodic in 8
(5.22)1/3 u

b) liha r 2 (,a-- iku) -0
rI

Pewritten in first order form these become:

a)o ++ - o k,2 ++ (0,,3 - + O_ 2 o 1 l o u o) 0

3r u~ 1 0 U r ~0 0 u 0 0 ) 0~ ~

(5.23) b) () periodic in e i
u

c) l r 2 (w - iku) 0

There are two obstacles to the application of the preceding theory to problem

(5.23). The first is that the perturbation

( 0
r
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in apparently unbounded. The second is that the perturbation
I (1 0)

.0 0)
in non-integrable while the limiting equation,

0 k2 . .wO (o)

(5.24) i' ( + (- 0 k M W 
I

has an ordinary rather than an exponential dichotomy. Nonetheless, it is possible to apply

formula (5.17), or any higher order approximation to the boundary condition, to this

problem. (It is necessary, of course, to identify the imaginary eigenvalue ik with

eigenvalues with negative real part and -ik with *igenvalues with positive real part when

applying the formulas.) The resulting boundary condition is,

U(M) 2 1 1 ?U() 2ikT "2 + 21k =2)1 1a(-I )

- IN I
(- I -ik

+ k Ii 2 WT
4k ~ 2 I I U

2 1 1
(5 .25 ) , .2 1 -k 2

1 . 1_ I 2 lik (t
+ L 1 2 2i ())

4k2V2 4 I I uM4k '
I2ik 2

j 1-ik

which can be written,

-3.26) 1 1 a2U 1
(.26) (,) iku(,) u(?,O) 2T 21k -2s- (T 2I2?2ikT 2 ae 8i)r 2

The validity of (5.26) can be established by other means. Bse, for example, Bayliss,

Gunzburger and Turkel [2]. We note that the error depends on higher 6 derivatives of u.

6. Nonlinear Problems

In this final section we apply the perturbation theory to nonlinear problems. We

Z: restrict ourselves to abstract problems of the forms

-21-
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L . , ,a.. - : . . . . . .. . . - . , . , . - - . . .* . a . a. .

a) " 1(u), x ) T

-q (6.1) b lim u(x) - ut
X+W

c. C) F(u.) - 0*9

where u(x) is an element of some Banach space, B, and F is a nonlinear operator with

domain and range in B. Letting v - u-u., we rewrite (6.1):

a) v - F(U.)v + R(v), x ) r

(6.2) b) 1in v(x) - 0 1

c) R(v) B F(u.+v) - 1u(U.)v

One approach to the solution of (6.1) or (6.2) would be Newton's method. Then, the

theory of the preceding sections could be applied at each stage of the iteration. We,

however, choose to work directly with (6.2), deriving exact boundary conditions which can

be approximated by the methods of section 5.

We generalize the notion of an admissible set (Definition 2.5) to be applicable to

(6.2). Note that it is no longer an affine subset of IL Central to our analysis is the

behavior of solutions to the linearized problem in the tail:

(6.3) F- F(u)W, x ) Tr*a; u

Treating the nonlinearity, R(v), as an inhomogeneous term leads to the following

equations for v, which are analagous to (5.4) and (5.5);

(6.4) (I-Q.(T))v(T) - - 1 slpPFu)llI-Q(pl)Rlvlpl)dp

V(X) mB(x,T;F u) )Q.(T)V(T) + f
X 
$(x,pJFul%) )Q.lpIRlv(p) )d p

v~~f: = ~ + f S(x.pulIu))Qpp)R~v~p))dp1(6.5)

-u

Here, Qm projects into the admissible apace of the linearized problem (6.3). As in the

linear case, the condition that (6.4) and (6.5) be simultaneously solvable is viewed as a

condition for the admissibility of V(W).

-22-
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Following the derivation for the linear problem, we let E0 e A.(T) be given and use

a contraction argument to establish the existence of a solution to the integral equation,

(6.5), with Qi(T)v(T) replaced by &0" Due to the nonlinearity, some additional

assumptions are needed:

Assumption 6.6.

a) There exists 8 > 0 such that if UlU 2 e 8 and luil ( 5, i = 1,2, then

sup |Ix S(x,p;F (U%))Q.(p)(R(u1 ) - R(u 2 ))dp - f S(x,p;F (U%))(I-Q,(p)) (R(u 1 ) - R(u2))dpl

- KIU - u2 1, K < xI2

b) There exists 51 > 0 such that if u e 8 and uO < 5, then

9, sup If, S(x,p, (u.))Q(p)R(u)du - f: S(xp'F u(p))(I-.(p))R(u)dp' 4 8-81
X)T

c) sup ES(x,lF u.))I < 81
xuPT

Given these, a solution to (6.5) is guaranteed by the contraction mapping theorem.

Denoting this solution by v(xi~o), an exact boundary condition, valid for small boundary

data, can be written down from (6.4):

(6.61 (X-Q (T))V(T) - fT STrpjF(u))(I- (p))R(v(iQ,(T)VCT)))dP

An approximation to (6.6) can be obtained from an iterative approximation to the

solution of (6.5):

a) v ( ,C ) S(x,T~r u (% 0

(n1)(0) ~ x(n) .
(6.7) b) v (n+ x 0 ) = v (x;E 0) + fT S(x,piFul.))Q.(p)R(v (p;E 0 ))dp

-: S(x,p;uF Cu.))I-Q(p)R(v(n) (p0))dp .

The nth approximation to the boundary condition is, then, given by:

(6.8) (I-Q.(T))V(T) - - f dpS(T,pjF u ( u )) (I-Q .(p ) )e (v (n)
(p

l
Q
.
(T )v (T ) ) )

Error estimates follow as in the linear case and will be proportional to Kn+lv(O)l

which, in turn, we expect to be proportional to Iv(r)In+2 . Note that R will often be

given as an expansion:

(6.9) R(v) F ()vv + -F u )vv
2 uU 6 uuu
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4:! We take as many terms in this expansion when evaluating the integrals as is consistent with

the number of terms in (6.7) we intend to retain.

Assume now that the linearized operator, u(u), has a complete spectrum. Then, in

order to satisfy part (a) of assumption (6.6), it is necessary to assume that there is an

exponential dichotomy. From (6.9) we derive the following representation of R(v) in

terms of the eigenfunctions of Fu(u.)s

a) v - cnuns cn -(VnU)a .
n=i

(6.10) b) R(V n(Un Yn(v) a c cc k+...

n-i I cicn i,J,k

C) aI(n) (v Fuu (n) .(vn.

Lj - n ,  uui ' ijk n 6 uuUijU

The function v (x ) is given by:

n~~( x ' ' )  n cc (it ) (x-'r n( x-'r)
n n Lij iL nv (x,,- U. uc 0 + Ul a .i (t - (*  -e

n n n Ln
Rex n<0 Ren<0 Be). Le0 A -<0

n
+nua cicc, (x-r)

n n n+ e. e (P-.i< (0

(6.11n) m + jn L

Rexn>0 PAX <0 Rex <0
n i j

cn I L •

This yields the following approximation to the boundary condition, which we write in terms
of the expansion coefficients. Here, n is such that Re 7n > 0.

n n
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. F . . -. 7..7.

-n  .t+P + i) . jkCIC'jCkA +X A. -x
L j i j k i kfn

Re(6.1O ReAO ROX Re<0<O Rex jO ,k(O
(6.12) -x ~{ni +nuL ,~A15

a jk + n j

KeXi<O k.jO inexk<O RSXA(O

% ijict ji kI i k I XXx

<01( Box <0 Rex'k<0 3A <

[This general foremla can be applied, for example, to nonlinear elliptic problems of -SC

i the forms

!a) V2u - flu,X), Ix,X) • (r,-) x fie

+ (6.13)(b) e n +

c) )a u(x,x) - uTZ) -

where satisfies:

a) 2u f(u,,), -e

(6.14)

b) l nm - o, • an .

whe linearized equation in the tail i given by:

(6.15) - f(u, Zev 0 I

which is of the form analyzed in section 3. The condition that (6.15) have an exponential

dichotomy is that all eigenvalues, (ns of the problem

a) V 2 Y -f (U, )Y a Y X e
Xn u n n n

(6.16)

b) BOYn- O, Z e 3

be negative. Then, the following boundary condition can be derived from (6.12):

-25-
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-l c -- 9 ...-. .- .. 

n n n i-I J-1ijj Xi +A .j+A i- i-I- k-I ijk AiIAj4+Ak +A n

i-i J-I k-i -la V =t+AilA n k I j i+nXj

Here we have:

cj fn J y di(Z)V(T,,y)

0 n

ijk~~ f fuu-1 lu(u.SX)Yi(X)Yj(y)yk(X)yn(X)

7hs quadratic approximation to this condition is used in a numerical computation by the

authors in (8).
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