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ABSTRACT
\\

—The numerical solution of partial differential equations in unbounded
domains requires a finite computational domain. Often one obtains a finite
domain by introducing an artificial boundary and imposing boundary conditions
there. This paper derives exact boundary conditions at an artificial boundary
for partial differential equations in cylinders. An abstract theory is
developed to analyze the general linear problem. Solvability requirements and
estimates of the solution of the resulting finite problem are obtained by use
of the notions of exponential and ordinary dichotomies. Useful
repregsentations of the boundary conditions are derived using separation of
variables for problems with constant tails. The constant tail results are
extended to problems whose coefficients obtain limits at infinity by use of an
abstract perturbation theory. The perturbation theory approach is also
applied to a class of nonlinear problems. General asymptotic formulas for the
boundary conditions are derived and displayed in detail.

AMS (MOS) Subject Classifications: 35A05, 35A40, 35C20, 65N99
Key Worde: Artificial boundary conditions, asymptotic expansions for PDE's.

Work Unit Number 3 - Numerical Analysis and Scientific Computing
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3 :
) In various applications the need to solve boundary value problems for i
;iéj ) partial differential equations in unbounded domains arises. Important P
:ié} examples include the problems of fluid flow in long channels and past %
R bodies. In order to solve such problems numerically, it is necessary to '
;sg compute on a finite mesh. One approach to this problem is to introduce an 1
ézi artificial boundary and solve the problem on the finite domain which it
™ creates. Here, we consider the question of what boundary conditions to impose
'éﬁ at the artificial boundary.
:g? First, we develop an abstract framework for the analysis of the problem,
ujv discovering a useful characterization of the exact boundary conditions which
?is‘ should be imposed. These can be easily represented (and implemented) using
éﬁs . separation of variables for problems which are independent of the unbounded
{ coordinate. For other problems, including a large class of nonlinear ones, we
32?; develop a perturbation theory which leads to general asymptotic expansions of '
:gﬁ the exact boundary condition. These expansions are presented in detail. ]
e The theory, as presented in this paper, is mainly applicable to elliptic
EJ? boundary value problems (and ordinary differential equations). However, in
s:; other works, the authors extend these ideas to parabolic and hyperbolic
i% problems. Also, some numerical experiments will be presented.
3
: o
s
:;»

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.
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EXACT BOUNDARY CONDITIONS AT AN ARTIFICAL BOUNDARY
FOR PARTIAL DIFPERENTIAL BOQUATIONS IN CYLINDERS

Thomas Hagstrom and H. B. hllor'
1. Introduction

Many of the boundary value problems arising in applied mathematics are given on
unbounded domains. BExamples include the problems of fluid flow and wave propagation in
channels or past bodies. The numerical solution of these problems, however, requires a
finite domain. In this paper, we develop a theory for the exact reduction of a boundary
value problem for a partial differential equation on an unbounded cylindrical domain to a
problem on a bounded domain. That is, an “"artificial® boundary is introduced and the
proper boundary condition to be imposed there is derived. 1In other works, (8] and (9], we
use our theory to solve nonlinear problems of both elliptic and parabolic type.

Yor ordinary differential equations, exact reduction theories have been developed by
many authors: deHoog and Weiss (5], Keller and Lentini [11], Jepson and Keller (10} and
Markowich (12]). Pew works on artificial boundary conditions for partial differential
equations, on the other hand, have discussed exact conditions. An exception is the paper
of Gustafsson and Kreiss (6], where the form »>f the proper conditions for a general hyper-
bolic problem is derived. They go on to find representations of the exact conditions in
various simple cases for problems of both hyperbolic and elliptic type.

We illustrate the derivation of exact conditions with the following example:

a) V2u + alx,ghu = £ix,y), (x,y) € [0,#) x 2, 2 < B
b) eclx,y) -g% (x,y) + dlx,y)ulx,y) = Yolx,y), ¥ € N

o) aly) $2 (0,y) + blyhulo,y) = volp), x e

(1.1)
4) lim u(x,y) = 0
Xre

*
Applied Mathematics, California Institute of Technology, Pasadena, CA.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. Supported in part
by the U.S8. Department of Energy under Contract No. DE-AS03-768SF-00767.
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b

;

. clx,y) = c (y), Alx,y) = 4 (y), alx,y) = a_(y), x> x4 1

e)
t(x.x) - Yn(pr, =0, x> Xo .

bt
v

(We say that (1.1) has a constant tail, due to condition (1.1e).) We choose some point

XxX=71> x, as the location of the artificial boundary. 1In the “"tail”, x> T, we have:

AN AL

a) Vu+ a(ylu=0, (x,y) € [1,%) x 0 7

X4

A (1.2) ) c () 3 (x,y) + 4 (pulxy) =0, yean
]

;! c) lim u{x,y) =0 .

'5 X e

Problem (1.2) can be easily analyzed by separation of variables. Consider the following

&
g eigenvalue problem:
o
3 2
: a) Vx Y (p) +a (Y (y) =wY (y), yea
: )
> (1.3) b) e (¥) 35 ¥, (¥) + 4, ()Y (y) =0, y € n
3 [.ay Piy) = 1
c) ndx n(x) .
’ Given certain assumptions on the boundary condition, (1.3b), the set of eigenfunctions,
! {Yn}, is complete in that subspace of :.z(n) consisting of functions satisfying it. (See
’ Berezanskii [3].) Por simplicity, we further assume that the w, are distinct and that
@ =0 is not an eigenvalue. We rewrite the {usn) in the following way:
w = cz >0 = 1 m
Al n n ’ n revey ' :-:
3 (1.4)
[« e
! w o= A2 co, n=m, w2, -
: ;.'
. ) Expanding u in terms of the Y,'s, - _
- !
3 (1.5) wix,y) = § ()Y (y) o
n=1 ’ \';
‘, problem (1.2) becomes: .::\1
3 o
§ e
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'ﬂzc o N = 1'.-0,-
a) c---{2 , x € [1,2)
chn, ne=ml, ®2,...

(1.6)
b) lim cu(x) - o, ne= 1,2;0.. .
xH
As (1.6a) can be trivially solved, we see that (1.6b) is satisfied if and only if:

a) cn(‘l’) - c;‘('r) =0, n= 1,,..,M 7

(1.7)
9 b) c"‘('r) - -Ancn(t). ne=ml, mH2,.00
: : This allows us to replace (1.1) by an equivalent finite domain problem:
A%
) a a) % alx,ylu = £({x,y), (x,y) € [0,7) x Q ,
iy
‘ B clxg) 32 (xy) + alx.glutany) = Yg(x,y), x €30
B
< du - D)
N (1.8) c) al(y) 3= (0,) + b(ylul0,y) = v,(y), y & ?
-',‘i
< a) [ody wt, Y () = [ ay 22 (1) (g) = 0, n = 1
Xt gdt (TP (1) = [ody w0 (LY (2) =0, n = Leeem g
ﬁiq“ du
. Jote 33 (1Y () = <A [ody u(T, )Y (y), n = w1, me2,...
.\
'4 . That is, (1.1) has a solution if and only if (1.8) does and the solutions agree on a finite
\Y
A ‘ domain.
- & > In section 2 of this work we derive boundary conditions for the reduction of a general
LR~
. b
,.' partial differential equation in a semi-infinite cylindrical domain to a finite one. These
& turn out to be the requirement that the appropriate data at the artificial boundary lie in
B a certain affine set. We find it convenjent to rewrite the problem as an ordinary
; differential equation in a Banach space, making transparent the connection between our
‘ reduction and the reduction theorems for the case of ordinary differential equations. In
2
or! section 3 we introduce the notion of a dichotomy for our abstract equation and use it to
develop error estimates and solvability regquirements for the finite problem.
3 We first consider the problem of representing the boundary conditions in section 4.
4
-.;' Here separation of variables is used to analyze constant tail problems such as the one

presented above. The exact representation we obtain is equivalent to (1.8d) in that case.
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We develop a perturbation theory to analyze non-constant tail problems in section S.
Assuming the limiting problem at infinity can be solved by separation of variables, a
perturbation expansion of the exact boundary condition can be calculated. We carry out
this expansion for the Helmholtz equation exterior to a body, recovering the conditions of
Bayliss, Gunzsburger and Turkel (2}. Pinally, in section 6, nonlinear problems are
considered. We use the perturbation theory of the preceding section to prove, under
ccrt;in conditions, the existence of an exact nonlinear boundary condition and to calculate
an expansion which approximates it.

We note that many authors have derived boundary conditions for specific problems. We
do not, in general, attempt to examine the connection between their conditions and ours.
For more discussion of these connections as well as for a more extensive bibliography, the

reader is referred to Hagstrom [7].

2. Basic Linear Reduction Theorem

We consider abstract boundary value problems of the form:

a) %"-A(x)ui-t(x). 0 <x<»

c) lim Bu(x) =0 .
X+
In addition we may impose:
4) fJu(x)!l bounded as x + »
For scme Banach space, B, we seek u(x) € B for x e (0,%). We suppose that A(x), By
and B, are linear operators with domain in B, to which we also constrain the range of
A(x). PFinally, f£(x) e B.

Problems of form (1.1) can be obtained from general partial differential equation

problems in cylindrical domains. Specifically we consider

(2.2) ( Z », (g%, 3! )w = glx,y)
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on the cylindrical domain

o o et 410" 2 2
g ey e
LACA L_{}“Jﬂ v

Exy
>,

(x,y) € [0,#) x 2, R c&" .

Homogeneous boundary conditions are imposed on 30 involving ® and its normal

]
JU PR

LA

- derivatives;
A . o
¥ (2.3) jZ By, J(x) = (x,y) =0, y €30 .
5K We further suppose that, subject to these boundary conditions,
ot
: -1 3
i P (x.y, W’ \

exists for all x. Now (2.2) can be rewritten in the form of (2.1a) by introducing

ey

. 3n-1w
h %W n=-1
! Ix h
-3 ;
‘A n=-2
e - | 8__w :
v & :
4 o
’{1 The space, B, is some space of n-tuples of functions on I which satisfy the homogeneous
.
i::‘ - boundary conditions, (2.3). It is necessary to eliminate inhomogeneous conditions on 3 )
i in order to reduce the problem to the abstract form. This can be accomplished by subtract~-
: ': N ing a function that satisfies the inhomogeneous condition. We note that the functions
-3 B affect P_' and, ultimately, A(x).
_"' 2,3 n
v Returning to (2.1) we choose some finite point, x = t, and attempt to reduce the
N -
infinite problem on [0,®) to a finite one on [0,t]. We define A(t;f), the admissible
'-f.': set of Cauchy data at x = T, as the set leading to solutions, u, in the tail,
by &
iq‘ x € [t,»). More precisely we have:
} Definition 2.5. The set A(T:;f) c B, the admissible set at x = t, is the set of all
uy € B such that there exists u(x) € B, x € [t,»), satisfying:
Wil
A
. a) Panmustx, 1cxce
AN !
5 Y (2.5) s
s b) u(r) = u .
: ' as well as (2.1c,4) as appropriate. K
s .
A R
" ) :
. \. 5= «l
LY «
b'-*
S 'v‘ .
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It is now possible to write down an exact reduction of (2.1) to a problem on a finite
domain. We state the reduction as a theorem whose proof follows immediately from the

definition of A(T:f).

Theorem 2.6. Problem (2.1) has a solution if and only if the following problem has a

golution:
a) %- Alx)a + £(x), x € [0,1]
(2.6) b) Bgw(0) =Y, 3

c) wi(t) e A(tf) .

Purthermore, whenever (2.1) has a solution u(x), (2.6) has a solution which is identical

to u on [0,1].

Proof: Suppose (2.6) has a solution. Then, by the definition of A(t;f), there exists

ut(x), x € [1,#), satisfying (2.1a) and (2.1c,d) as appropriate as well as w(T) = wt o).

Define

w(x) x € [0,T)
u(x) =

utix) xeft,e .

Theri, u is a solution of (2.1). ©Now, suppose that (2.1) has a solution. The restriction
of u to [t,») satisfies (2.5) and (2.1c,d) and, hence, by the definition of A(t;f),

u(t) € A(1;f). This implies that the restriction of u to [0,T] satisfies (2.6),

completing the proof.

The set A(T;f) is an affine subset of B. A convenient representation of A can be
found in terms of its underlying linear subspace and some particular element of B. we

consider the homogeneous problem in the tail associated with (2.1):

a) %- Al(x)v, x e (t,) ;

b) 1lim B v(x) = 0 ;
(2.7) x+o
and, if (2.1Q) is imposed,
¢) HIv(x)l bounded as x + o« ,

-6~
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3 We define A(t), the admissible space at x = t, as the set of all Cauchy data leading to .:

solutions of (2.7). That is:

3 Definition 2.8. The set A(T) c B, the admissible space at x = 1, is the set of all ot
’ ._‘J
Q) vy € B such that (2.7) has a solution satisfying:
= (2.8) wT) = vy . -
b2 N -
0 e
. We note that A(t) is independent of the inhomogeneous term in (2.1). We further require n
y 7N
e a particular solution, up(x), which satisfies: "o
N S
K du, ,
:‘. a) == A(x)up + £(x), x € [1,») -
' b) lim B.up(x) =0 3
N X+
™) (2.9)
Tt and, if (2.1d) is imposed
o
D c) Iup(x)l bounded as x + = .
_. We note that if A(T;f) is non-empty, at least one such up(x) must exist. It is now
\’ possible to prove:
)
: Theorem 2.10. let u, € B. Then v, € A(T;f) 1if and only if, for any particular solution
i up(x)
o, -
v (2.10) uy up('r) e A(t)y .
f- Proof: The proof is an immediate consequence of the definitions of A(t;f), A(t) and
o'
“ u,(x) combined with the linearity of (2.1).
If we assume that there exists a projection operator, Q(t), into A(t), we can
<
’l
§, rewrite (2.10):
L]
- (I-Q(1))(u,y - up(t)) =0 .
’C
In particular, the boundary condition, {2.6c), can be replaced by:
(2.6c') (I=-Q(T))w(T) = (I-Q(t))up(r) . _
S" We emphasize that up(x) can be any particular solution. .{
-:; Pinally, we write down a corollary of Theorem 2.6 which concerns the uniqueness of s
, I :_-
solutions. ! =
A
L.‘..
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Corollary. Suppose that for all vy © A(r) solutions to the Cauchy problem defined by
(2.7a) and (2.8) are unigque. Then (2.6) has a unique solution if and only if (2.1) does.
Proof: Assuming uniqueness of solutions to (2.1) immediately yields uniqueness for

(2.6). In the other direction, note that the assumption above guarantees the uniqueness
of u,(x) which, combined with the uniqueness of the finite interval solution, implies the

uniqueness of u.

3. Solvabjlity of the Finite Problem

In this section we assume that solutions to the homogeneous .u problems:

dv
a) ax - A(x)v, X < x < x] if X, > Xq1 %X, € x < X, if X > Xy 3

(3.1)

b) vixg) = v,
are unique for all XgeX, € [0,7). We define a solution operator S(xq,Xp7A)} in the
following way:
Definition 3.2. let v, e B. 1If there exists a solution, v(x) to problem (3.1) then
(3.2) S(x4,%g3R)Vy = vixg) .
Otherwise, v, is said to be outside the domain of S(x4,XgiA).

The linearity of the differential equation implies the linearity of S. The stated
uniqueness of solutions implies the consistency of the definition. Note that it is
certainly necessary to restrict the domain of 8 for ill-posed Cauchy problems such as
those which arise in the study of elliptic equations. Whenever S exists, however, it
does have the familiar semi-group properties:

a) s(x1.x.ya)s(x',xorh) = S(x1.xotl) H
(3.3)

b) S(x,,xq1A) = I .
The notion of dichotomies is very useful in what follows. First we present
definitions of exponential and ordinary dichotomies. These are adapted from Daletskiy and
Krein [4], with some modifications required by the possible non-existence of solutions.

Definition 3.4. We say that the problem

v e e .
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(3.4) e nxlv, xe (o

L ]
has an exponential dichotomy if, for any x @€ [0,®), the space B can be decomposed into

a direct sum of subspaces 8_(x') and B,(x') such that:

*
a) If veB_ (x) then, for some N_ and a_> 0

L]
i) S(x,x'xh)v exists for any x > x [}

(3.5)
*
. -a_(x=x )
ii) I18(x,x jA)vl € N_e vk .
*
b) If ve B+(x ) then, for some N and a >0
* f < L
(3.6) i) S(x,x ;A)v exists for any x € x ;
L ]
- -0 (x -x)
1i) is(x,x ;A)vl < N+e vk .
-
¢) There exists Y > 0, independent of x , such that
inf fu+u l >y .
(3.7) . + -
“teBt(x )
Iu*l-1

(This infemum is typically called the angular distance between B+(x.) and B_(x').)
An ordinary dichotomy is defined as above except that at =0 is allowed. No
"continuity” of the spaces as functions of x' has so far been required. In general, we

impose a sort of continuity in the form of the following "no-mixing”™ condition.

Definition 3.8. The dichotomy (3.5 - 3.7) satisfies the no-mixing condition if whenever
a) Q(x) is the projection operator into B_(x)

b) S(x1,x°;A)v exists
(3.8)
then

c) Q(x1)s(x1,xoyn)v - S(x1,xo;A)Q(xo)v .

FOTSTRY ATV

A
¢ ¢

s

Cete®
(]
A

.

§, 00,0 0,0 0
ey v 0 _F_ 8 .



220 AR TR Fal TS IR TARY
\r E-E‘.*; "\é-' § RSO0 :‘.‘ "-.'-x N0y
> g L'ng.{n.'! ‘._A.'CL':A.

“ LS,

LK Y

Assuming that the homogeneous problem has a dichotomy in the tail and that B_(x)
coincides with the admissible space, A(x), it is possible to write down an integral
expression for a particular solution, up(x) which is valid whenever I1f(x)] is
integrable;

(3.9) u (x) = I7 stx.pradatpietp)dp - [7 S(x,prA)(1-0(p))f(pIap .

(The validity of (2.9a) follows from the direct differentiation of (3.9) while (2.9b) is
insured by the identity of B_(x) and A(x) combined with the absolute convergence of the
integrals.) Note that it is always the case that B_(x) = A(x) 1if there is an exponential
dichotomy. Then, only boundedness of Ifl need be assumed.

Formula (3.9) is extremely useful in the development of a perturbation theory. For
now, we simply use it to write down a new expression for the boundary condition, (2.6c):
(3.10) (1-(t))a(t) = -7 8(r,p)(1-Q(p))E(p)dp .

Extending the dichotomy to the entire interval, we now can prove an exjstence theorea
for the finite boundary value problem (2.6).

Theores 3.11. Suppose that solutions to all Cauchy problems (3.1) are unique for
xXg,xq € [0,T] and that (3.1a) has a non-mixing ordinary dichotomy on ([0,T] with
projector 0O(x) into B_(x). Also assume that B_{(T) = A(X). Then (2.6) has a solution
for arbitrary f£(x), up(t) and Yo in the range of B, if and only if the operator
(I-Q(0))w
(3.11) % =
Boln

has an inverse with domain containing all pairs of the form:

0
(3.12) + Y € Range (Bj) .

Y
The solution is unique and bounded in terms of the inhomogeneous data if and only if this
(restricted) inverse is.
Proof: We use the ordinary dichotomy defined by Q(x) to solve certain initial value
problems. let
(3.13) w,(x) = S(x,TIAN(I-0(T))u (1) + [T S(x,psA) (I-Q(P))E(pIap .

This exists for all x on [0,t] by the definition of Q. If we seek solutions to (2.6)

-10~-
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in the form

(3.14) o(x) = w (x) +w_(x)
then © is a solution if and only if w_ wsolves
“-
8) = Mxlu_ + 0ix)f(x)

(3.15) b) sou_(O) - 70 - lou*(O) ’

c) (I-Q(T))au_(t) =0 .

We write o_(x) in the form:

(3.16) ©_(x) = 8(x,0)A)w_(0) + ]: 8(x,p1A)Q(p)E(p)dp .
The integral term again exists by the definition of Q 90 that this representation is
valid for any solution of (3.15a). By (3.15¢c) and (3.8¢c) we have:
0= (I=Q(t))w_(T) = 8(t,0;A)(I~Q(0))w_(0)
which, by the uniqueness of solutions to the Cauchy problem, implies
(I-Q(0))w_(0) = 0 .

Hence, we can find a solution to (3.15) if and only if we can simultanecusly solve:

(I-0(0))w_(0) = 0 ;

Byw_(0) = vy - Byw (0)
which in component form yields (3.11), completing the proof.

Estimates of the solution in terms of the inhomogeneous data are now obtained from the

;.'\ explicit representation in terms of ®w, and o_. Assume that
*2g )
s.f;»:" a) 18{x,psA)Q(p)! € X_(x,p), 0 S pE<x< T ;
AN
_-:tj b) 18(x,psA) (I-Q(P)M < K (x,p), 0 S X< PC T
| e

(317 ) 1w % <xuy, vye Range (B,)
F \ { 0
?‘.::":j a) 1Bl <Ky .
TN .
'f'-_'f
3 Then we have, directly estimating (3.13) and (3.16) and using the fact that ©O(0)w_(0) =
A
ﬁ w_(0)
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'n

Talx)1 € K_(x, 00K 1Yol + max 1£(x)1 f" K_(x,p)dp
xe(0,7]

(3.18) + max 10OV (fL K (x,p)dp + X_(x,0)K K /5 ®,(0.p)ep)
xe[0,T]

+ lup(T)l(K+(x,t) + K_(x,O)!.xox+(0,t)) .
BEquation (3.18) allows us to estimate the errors caused by approximations to Q1)

and up(t). Suppose we solve the following finite problem instead of (2.6):

d”a
a) &= " A(x)u. + f(x), 0< x< 1

(3.19) b) Bou.(O) = YO ’
] * »
c) (1-Q (r))u.(t) = (I-Q ('r))np(t) H

where Q.(t) and u;('r) differ from Q(t) and up('r)- We define the error, e(x), by
e{x) = w(x) - m.(x)

and find that it satisfies:

a) %-A(x)e, 0< x< 1

b) Bje(0) =0

(3.20) e) (I-9(T)le(r) = (1-Q(T))(u (1) - u;('r))

* *
+ (O(t) - ©Q (t))(up(r) - m‘(t))
z A(t) .
Note that A(T), by construction, is in the range of I - Q(t1). (We assume, of course,
that u.(x) exists.) Therefore we have:
(I-0(1))A(T) = A(T) .

We now plug into (3.18) to obtain:

(3.21) te(x)¥ < (K (x,7) + K_(x,0)K KoK, (0,7))0A(TIT

Purther specializing to the case of an exponential dichotomy this becomes:
a_ (x=-T) -a_x -a,T

(3.22) le(x)) < (N+e + N e x¢xou+e JHA(T)Y .

That is, the large part of the error decays exponentially off the artificial boundary.
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4. Problems with Constant Tails

In this section we restrict ourselves to problems which are autonomous in x for x
sufficiently large. That is, we assume there exists T such that:

(4.1) Alx) T A, x>T1 .

We also require that the constant coefficient problem in the tail be separazble. That is,
we require that a complete spectral representation be associated with A_:

Assumption 4.2. There exists a countable set of pairs, (Xn,un), with xn a complex

number, w, € B and 0 not an accumulation point of {Xn) and there exist adjoint pairs,

L 2
(Xn,vn), with v, e Dual (B), satisfying

1) Au =) u ]

@ n nn
* -
(4.2) 11) A_vn = Xnvn '

111) (v-.un) -G.n .

Furthermore, any function u € B can be uniquely written in the form:

-»
(4.3) u=s § cus oo = (v,m .
n=1

Using the eigenfunction expansions defined above, it is easy to write down conditions
for the existence of dichotomies for the constant problem as well as representations of the
various operators discussed in the preceding sections. In particular we have the following
theorem, whose proof follows immediately from the (formal) solution of the Cauchy problem
in terms of the eigenfunction expansions. (For the details of these see Hagatrom ([7).)

Theorem 4.4. a) If all eigenvalues, A of A, are bounded away from the imaginary

nl

axis, then the homogeneous problem associated with A, has an exponential dichotomy with

spaces
B

+

-pun{\x1 : Re X, > o}

(4.4)
B

-pcn{u1 t Re Ay < 0} .

The exponents, a are given by:

t'
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.
X
a, = g.1.b.|Re "1' ; X
Rel >0 ,
i
(4.5)
a_ = g.l.b.lh Xil . 4
R Rel <0 .
2 \‘: i
*a § . -
‘{§ b) ILet B, be defined as above and let B, be given by:
L (4.6) Bo H span{ui : Re Xi =0} .
- Let 8; ® 8; be any direct sum decomposition of B,. Then an ordinary dichotomy is .
'.,1 .
o -
) induced by the spaces B, © s; and B_ e Bj. R
\ !
; We note that by the conclusions of part (b), there can be many ordinary dichotomies .
associated with a problem whose operator has eigenvalues with zero real part. Which of
4
2y y these is the right one to use for the boundary condition depends on the boundary operator o
A at infinity, B_,. Representations of the solution operator, S, are also easy to obtain.
f The theorem above can be applied to the example of section 1, problem (1.1). g
- Rewriting the problem in first order form according to transformation (2.4), the operator i
. ‘ .f
M A, 1is given by:
2 ) )
-, 0 -V - l- -
oY) X 1
Ly A” = . -

It's eigenvalues are given by tln and tiﬂn: defined by the reduced eigenvalue problem
(1.3) through equation (1.4). If (1.3) had no positive eigenvalues, the problem in the

tail would have an exponential dichotomy. In the case of an ordinary dichotomy, the

1

“M‘s‘_
WL

boundary condition (1.7a) corresponds to the choice:

oy

(S R S R LR
AN CAN A M

RS GG

.........

. + _ - .
‘ n' Bo = Bol BO =g . .
Oh't o
,: If, instead of (1.1d), some other condition was imposed (for example a radiation condition) A
i QS this choice would change. We note that using the integral representation of the boundary
- condition, (3.10), the condition that the inhomogeneous term vanish in the tail can be .
MY .
'\f replaced by an integrability assumption. The boundary condition, (1.7), is then replaced »
:- { -
\.3. by: A
. 1 xn c"‘('r) A (8-1) 1 xn tn(l) :
1 1 = n
- - = - = f dge
- 2 1 2t 1 4
] = e 0 ! 0 :
& n n [y
3 ;
] -14-
R0y ¢
) >
< -
’, 4
s .
'QF r)
1 J.
o,
o’ )
o2 >
's ——
% R
CCN .




et ..
- s
\j 2
I .J
! ¥
s vhich implies Y
-3 (s-1) W
| (4.7) el (T) = =\ c (T) = [T dse £.(8), n = w1, w2, . —
N : *
-';‘ Por the imaginary eigenvalues we have: e
¢ '
k' _ o
- ‘ c"‘(‘t) ; -ia (8=-1) 1 ia, ta (8-1) 1 ia fn(l) -
- - - ]. asle " +e " =
* 21 -
c (1) 1 1 “
n Ta 1 1 0 —
a ia
. which implies .1
'.f-‘ c'(1) = = [T cosla_(s~T)1f_(s)as -
b n T n n s
* (4.8) ‘.
c (1) =1 [* sinfa_(s-1)])2 (s)ds .
. n a ‘T n n
b n
‘ For a general partial differential equation with a constant tail, the eigenvalue
[)
:' : problem of its operator, A,, can be reduced to an eigenvalue problem for a partial
"‘i\
differential operator. In particular, it's eigenvalues, A, correspond to solutions of:
°
M n
™ (4.9) (1 »x v =0,
Al =0 X
33
s coupled with the appropriate boundary conditions. This is the eigenvalue problem

. associated with the lLaplace transform in x of the equation in the tail. We note that in

]

Ly

(:‘ practice it is the reduced eigenvalue problem, (4.9), which we suggest be solved to obtain
::" the boundary conditions. The reduction to first order form is made in an effort to

)

simplify the theory. The use of (4.9) to derive boundary conditions was first suggested by
'y Gustafsson and Kreiss [6]).

The completeness of the eigenfunctions of A, depends on the completeness of the

: eigenfunctions of (4.9). This property doesn't hold in general and is difficult to

- check. For a class of elliptic and parabolic problems, Agmon and Kirenberg [1, Thm. 5.8]
. establish the completeness of the eigenfunctions and generalized eigenfunctions of (4.9)
whose eigenvalues have negative real part in the class of solutions which are absolutely

g integrable along with their first n - 1 x derivatives. In this case, the solution of

{(4.9) is guaranteed to yield a representation of the admissible space.
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5. Perturbation Theory and Asymptotic Boundary Conditions

In the preceding section we found useful representations of the projection operator,
Q(t), of the admissible space and of the particular solution, \lp(l) for equations of the
form (2.1) with constant tails. In the present section we relax this assusption and
replace it with:
(5.1) lim A(x) = A, .

D

Equivalently we write:

A(x) = A_ + B(x)

(5.2) lim IB(x)} = 0 .

xe

Assuming A, has a dichotomy, it is possible to make an asymptotic analysis of the
perturbed problem defined by A(x). In particular, we cbtain representations of the

projector, ©(t), into the admissible space. Consider the homogeneous problem in the

tail:
a) -:—;-- AV + B(x)V, x> T
(5.3) b) 1lim B w(x) =0
x>

c) flu(x)! bounded as x + »

Treating B(x)v as an inhomogeneous term, we have, by (3.10), that v(x) must satisfy:
(5.4) (1-Q (t))v(T) = = [ 8(t,psA, ) (1-Q (P))B(R)V(PIED .
Also, from (3.10), we have a representation of v which mst be valid if v exists;
v(x) = 8(x,TIAL)0 (T)v(1) + [T S(x,piAl)Q_(P)B(pIv(P)dp
(5.5)
- [, 8tx,p1a ) (1-Q_(p))B(P)V(PIED .
Let any Eo e A (1) be given and replace Q_(t)v{T) in (5.5) by Eo- If the following
condition holds:
(5.6) sup IU: 8(x,p1A)Q_(p)B(P) * dp -~ ]; 8(x,p1A, ) (I-Q_(p))B(p) * dp]l = K < 1 ,

xT
then the contraction mapping theorem can be used to establish the existence of a unique

-16-
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A !
Y *of
2 bounded solution to equation (5.5), v(x,{o). Purthermore, we clearly have that:
1 [
Q.v(nﬁo) - Eo !
. I
. (5.7) - L.
: (T=Q(T)Iv(TIEy) = = J; 8trpIA ) (I-Q (P))B(R)V(PIE )dp - :::
] .
. -2
N Hence, whenever (5.6) is valid, we can find, for any £, € A (1), a unique slement, )
v(nEo). of A(T). A projector into A(Tr) is given implicitly by (5.7): L
. (5.8) QTIE = Q (T)E - [ ap8(T,pIA ) (I-Q (P))BIRPIVIPIQ(T)E) . a
O RS
Ee These conditions lead us to the following theorem: o
¢ .
‘ Theorem 3.9. We suppose that either the unperturbed problem has an ordinary dichotomy and
; IB(x)1 is integrable or that the unperturbed problem has an exponential dichotomy. Then, ':'
3 for Tt sufficiently large, a unique solution, v(xvio), exists for any Eo e A.(t) and ]:
v -,
o (5.8) is valiad. .-
Proof: It is only necessary to satisfy (5.6). In the first case we have: =
4 K< m, +n) [T iB0xax i
|‘ '.-.
N while in the second we have: ’.-\,
B o
%, LN .
K< (= + —) max IB(x)1 . g
. % - 1T N
-:‘ For both cases, the assumptions on B allow us to make the right-hand sides arbitrarily :::f
:: small by choosing t sufficiently large, completing the proof. ‘_
3 %
The contraction mapping solution of equation (5.5) leads to a natural iterative .
procedure for the approximation of v(x;Eo) and, ultimately, of the operator Q. We let: . ‘
V (0 ¥
A, v )(x:!:o) = 8(x,TIAE, N
3 N
. ¢1 ‘.-
b4 (5.9) V™) = v g + (¥ ap six,pin g (pI(eIv ™ (p1E ) a
- (n) e
< = [ ap stx,piA NI (PNIB(RIV " (p1€) . N
'}_ Then, by the contraction estimates: \
o A
- -~
. -
~ \
\“ ’
-
, -17- -
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3
3
.
g
.
¢

et e A A\

n+t

(5.10) lv(n)(mEo) - viagg < X w0 .
We define our nth approximation to A(T), Q(n)(‘r). by:
(5.11) 0™ (115 = ()€ - [T ap str,pan) (1-0_tp1)BtpIv " Vipig (r26) .
The error due to this approximation is estimated by:
n+1
(5.12) to(rE - o™ (1Er ¢ e 19! P g e

(Note: in all cases the norm of a B-valued function of x is taken to be the maximum in
x of its B norms.)

We now apply these results to the case when the constant tail problem has an
exponential dichotomy and A, has a complete spectrum. VWe assume that B(x) has an
expansion of the form:

(5.13) B(x) -%B(” *1—23(2) teee o

(The expansions could easily be carried out for more general forms.) Plugging into the

formulas above we have:

A (x~T) A_(x=p) A_(p=t)
(1) . n . X n n
vV imE) = ) cpe + ) I Jiape B (pP)c e

n n m

(5.14) Rel <0 Rel <0 Rel <0
A_ (x=~p) A_(p-t)
. . n n
- ) Y f: dp e am(p)c_e '
n n
Rcln>0 R.A-<0
where
cn - (vnog) H

(5.15)

Bn-(x) = (vn,n(x)u-) .

Using (5.13) and approximating the integrals using integration by parts yields to within an

1
o(-—z) error:
T

-18-
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o )
£ "
Y o, i
w~ 1
-

\"f\: 1
\)'1 .
") 1) A_(x=~1) A_(x-1)

Lo V("(xvﬁ) = J uwe ox"(x-” + ¥ ! wu c (2 " -8 " )

: nn naA=A m x T

n n ] m n
.'\;:'. Re} <0 Re) <0 Red_<0

'\ 1

b (5.16) L L
=
b n A_(x-1)

;- A_(x=1) B n
i . (1) n x nm e
v ) %2Pam %n® log() + ) ) Y2 X 2 m x : -

. n n n " n
, l%: Rel_<0 Re) >0 Rel_<0 :
- '1
23
'-"-' Putting this expression into (5.11) and approximating the integrals in a similar fashion
“ yields:

03
/ - - . (1 . 1.(2) 1

5 AR E ®2%n + '); z “n(nnl + T Bn- )cl (x_-xn)f
\ \' R.Xn<0 hln>0 h\.(b
SN
¥ e 7Y eptMe 1

n I e W
fk Rel >0 Rel <0 n

n »
\?\
ASAS

2 (5.17) ) i ) “n‘x(.;)';:.)". . 1
<. n ) » T (x_-xn)(xj-xn)
Rel >0 Rel <0 Re) <0

n 3 n
e - . (N (1) 1 1
- + 13 ) uplielle, —1——sody

”\ n 3 n T (x_-xj)(x_-xn) T
. mn>o Re) j>c) nl-d)

N

s cn - ‘vnlg) .
o~

::: The generality of the expansion given above makes its automatic computation a real

3,

) :::. possibility. Note that the expansion is equivalent to the one obtained by Jepson and
I

Keller [10] for ordinary differential equations.

.-:’ Formula (5.17) can ba applied to the laplacian example, (1.1), where the potential
Y
\

;;3 a(y) 1is replaced by:

J-'_:f (5.18) alx,y) = agly) + % aly) + ‘—2 aly) +eee

Fy x

e .

Then, the matrix elements I'(':’ are given by:




(1) o1
B a—; fn ay Y ()Y (y)a (y) -

(5.19)

Expansions of a particular solution can be derived in a similar manner. let 1y, (x)

be any particular solution of the unperturbed problem. Then, a solution of the integral

equation:
(5.20) ulx) = u (x) + [¥ 8(x,p)Q (P)B(PIu(p)p - [ S(x,p)(I-Q (p))B(P)ulp)dp
is a particular solution of the perturbed problem. Given the inequality (5.6), a unique
bounded solution of (5.20) exists by the contraction mapping theorem. It can be
approximated by an iterative process analogous to the one described by equation (5.9).
Perturbations of the inhomogeneous term could also be included.

Pinally, we note that (5.17) is valid for some problems which do not satisfy (5.6).
An important example is afforded by the exterior Helmholtz problem in two dimensions. The
equation in the tail is:
2

+-‘7—3+ u=0re(t,,0elo02n
r

@

32\1
(5.21) —
ar

together with boundary conditions

LIRS
1k
@

a) u periodic in 0

(5.22) 1
p) lim 28 - tkw -0 .
e

Rewritten in first order form these become:

22
2 °
? w 0 kx,,0 1,7 O,..w 1 0 w 0
) Ty MG ) 3l o (W) ()
(5.23) b) (:) periodic in 8
1
c) 1im r2(w - iku) = 0 .
e
" There are two obstacles to the application of the preceding theory to problem
y (5.23). The first is that the perturbation
3 ?

o ——
202

L
2\0 ©




is apparently unbounded. The second is that the perturbation

1p0
r'‘o o
is non-integrable while the limiting eguation,
? w 0 kz w 0
(5.24) 3 (“) + (_1 0 )(u) = (o) ¢

has an ordinary rather than an exponential dichotomy. Nonetheless, it is possible to apply
formula (5.17), or any higher order approximation to the boundary condition, to this
problem. (It is necessary, of course, to identify the imaginary eigenvalue ik with
oigonv‘aluu with negative real part and =ik with eigenvalues with positive real part when

applying the formulas.) The resulting boundary condition is:

_1 -
w(r), 11 -11:‘ w(t), 1 1 1t 23 2 2 |,w(t)
ST E T AT L 1 7+ e ;9'2') o eey!?
ix 2k 2
(.1 -ix
1 1172 72 |etn
i 2 A H T la(ny?
A R+
(5.25) 1
1 1172 27| e
M I \_1_ 1 !
2ik 2
_1 -ix
1 1{°2 72 fwn 1 0
. =7 3| 1]t =t
Ak 2
which can be written:
2
3u 1 1 3" 1
(5.26) = (1,0) = iku(t,98) - — “(toe) - — (1,0) - - “(T'e) .
D 2zt 24xt? 30% sikr?

The validity of (5.26) can be established by other means. See, for example, Bayliss,

Gunzburger and Turkel [2]). We note that the error depends on higher 6 derivatives of u.

6. MNonlinear Problems
In this final section we apply the perturbation theory to nonlinear problems. We

restrict ourselves to abstract problems of the form:
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Y

du X

a) a-r(u).x)r ] =

b lim ulx) = g, N

(6.1) X+ ’:
c} Plu,) =0 , e

where u(x) is an element of some Banach space, B, and F is a nonlinear operator with ,
domain and range in B. letting v = u-u,, we rewrite (6.1): :.
) Xor (v + RV > -

a) & 0 (Ve v), xX>T 3 -

(6.2) b) lim v(x) =0 ; f
x>

. o

c) R(v) = Fluv) - l'“(u.)v . :

e

One approach to the solution of (6.1) or (6.2) would be Newton's method. Then, the

theory of the preceding sections could be applied at each stage of the iteration. We,
however, choose to work directly with (6.2), deriving exact boundary conditions which can : .
be approximated by the methods of section 5. ‘
We generalize the notion of an admissible set (Definition 2.5) to be applicable to b,
(6.2). Note that it is no longer an affine subset of B Central to our analysis is the
behavior of solutions to the linearized problem in the tail: :
& Ny

(6.3) x ru(u.)m, x>t . o
Treating the nonlinearity, R(v), as an inhomogeneous term leads to the following ) :

‘..\

equations for v, which are analagous to (5.4) and (5.5); ...\_
- ‘:\

(6.4) (I-Q (T)v(T) = - !'r S(Y,ptPu(u.))(I-Q_(p))R(v(p))dp H A
-

vix) = 8(x,TiP (u,))0 (t)v(T) + [T S(x,pIF (u_))Q (PIR(V(P))dp

(6.5) '\-
- .‘_

- [, s(x/p1F (u ))(1-Q (p))R(V(P)Idp .

Here, Q_ projects into the admissible space of the linearized problem (6.3). As in the
,b.'
linear case, the condition that (6.4) and (6.5) be simultaneously solvable is viewed as a U
condition for the admissibility of v(Tt). S
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Following the derivation for the linear problem, we let Eo € A, (Tt) be given and use
a contraction argument to establish the existence of a solution to the integral equation,
(6.5), with Q_(Tt)v(T) replaced by Eo. Due to the nonlinearity, some additional
assumptions are needed:

Assumption 6.6.
a) There exists § > 0 such that if uq,u, € B ana luil <§,1i=1,2, then

sup 1/ S(x,p1F (u,))Q (p) (R(u,) = R(u,))dp - [78(x/PIF (u)) (I-Q_(p)) (R(u,) - R(u,))dp
X1

< Klu1 - uzl, K<1 o

b) There exists 61 >0 such that if ueB and ful ¢ §, then

sup 1/ S(x,ps7 (u,))Q, (PIR(u)du = [ S(x,psF (u,))(I-Q_(p)IR(u)dpl € §-§, .
x0T

c) sup Is(x,Tylu(q-))Eol < 61 .
x>T

Given these, a solution to (6.5) is guaranteed by the contraction mapping theorenm.
Donoting.thil solution by v(x:Eo), an exact boundary condition, valid for small boundary
data, can be written down from (6.4):

(6.6) (I-Q_(T))v(T) = = ]: S(T,psF (U ))(I-Q (P)IR(VIPIQ, (T)V(T)))dp .
An approximation to (6.6) can be obtained from an iterative approximation to the

solution of (6.5):

&) vV 0ug) = six,tir (w06

(

(6.7) B v Vixig ) = vk + [F sxpir, (w10, (IR (psE )1 ap

- J7 stxopr¥, tu, 1) (10 (BR(V M (piE Nap

The nth approximation to the boundary condition is, then, given by:

(6.8) (1-0_(1v(1) = = [T dps(T,piP (u,)) (10 (pHIR(V ) (prg_(tIvit))) .
Error estimates follow as in the linear case anAd will be proportional to xn*1lv(°)l
which, in turn, we expect to be proportional to lv(r)ln+2. Note that R will often be

given as an expansion:

~ L 1
(6.9) R(v) 3 F“u(u-)vv + 3 r““u(u.)vvv +ere o
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::' We take as many terms in this expansion when evaluating the integrals as is consistent with .
N8 .
> .
: the number of terms in (6.7) we intend to retain.
N
-:: Assume now that the linearized operator, r“(u-), has a complete spectrum. Then, in
e
'}'-g order to satisfy part (a) of assumption (6.6), it is necessary to assume that there is an
Y-
&5 exponential dichotomy. From (6.9) we derive the following representation of R(v) in
terms of the eigenfunctions of F (u,):
‘
.ﬁ\ -»
by ©oa) ve ) cu, e = (v ,u) g
SN n=1
<P
h (6.10) b) R(v) = ), Y (Ve ¥ () ~ )_ alMe e, + 2 8" cc 4.
y * ne1 ’ 13 173 13k 473k
.
N
o (n) (n) 1z
;‘ c) uij = (vn, 2 'uu“i“j)' Bijk (vn, 3 mm u, ju Yeooe o
e, )
The function Vv "(x;E) is given by:
b
N A_(x=1) c.c A, M x=T) A _(x-T)
} 1 - ¥ n . . . n i iy _an
' v (xg) )- ®n%n® * L )' )' “ncij (A, 42 =2 ) (e e
o n n i 3 19 n
» n.xn<o mxn<o nex <0 n.xjm
)
j A 1+A 3
‘:J )- 2 )' Xn(x-t)
\ + u al.c.c.e (x=1)
-_‘I-: n i j ij 1 j
'.‘:’ (6.11) naxn<o mxi<o nexj«)
A i+x j-xn
X (A, +3, ) (x-1)
" . % . i3 3
0 + ) ) } w elice e + o(1E1%)
- . g + -
e n H 3 137473 A 8 3 x
- Rel >0 Rel, <0 mxjw
' - Cn = (Vnrs) .
'9: This yields the following approximation to the boundary condition, which we write in terms
‘:} of the expansion coefficients. Here, n is such that Re An > 0.

'- Wt

{"e"(-_(f:fv.‘s
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3 TP N 3 k 3
Rel, <0 Rel,<0 Re), <0 Rel, <0 Rel <0
(6.12) X’. Xj l l { n ij 3 3 } k 1
- a, & +a,,.a c,C, C
i 3 X H i3k Ji ke 1°kL (Xk+xl*xi-ln)(li*lj-xn)
mxi<o mxj<o mxk<o mxl«)
. . 1
+ )3 ) I {a®ad, +a®ad,} c,cc - ~ .
i 3 Xk ' i3 ke Ji ke 1’k 2 (in-ll'fll Xn)(lk*fll Xj)

' mx1<o Raxj>0 mxk<o R.Xl<0
This general formula can be applied, for example, to nonlinear elliptic problems of

the form:

a) vz\l - f(urX)r (x'x’ e [t,») xQ

¢) lim ulx,y) = v (y)
xHe

where u_(y) satisfies:

a) V;u. -flu,,y), yen ;
(6.14)
b) Bgu, =0, yean .
The linearized equation in the tail is given by:
(6.15) ‘ Vv - £ tugiv=0
which is of the form analyzed in section 3. The condition that (6.15) have an exponential

dichotomy is that all eigenvalues, a of the problem

nl
2
a) VY ~f (u,y)Y =aY,yen ;

xn
(6.16)

b) BY =0, yed ;

be negative. Then, the following boundary condition can be derived from (6.12):
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e = he -} TR W 13k X A, 4A 4N
i=1 §=1 190 te1 4=t k=1 PRl Rl el

T Y OV T %% 1 1
(6.17) + 3 ¥ ) la ( - )
151 351 ket gly 130K NI AN T XA

n= 1,2,3,¢e¢

Here we have:
€y = ]n ayy, (PIVit,y)

A = /-ci ]

i
(6.18)

1
q:j - In dx 5 f\m(“.'x)vi(x)vj (x)!n(X) H

n 1
Bygx = Jo&tg £ uu (% VY (DY (Y, (Y, ()
The quadratic approximation to this condition is used in a numerical computation by the

authors in (8].
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