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—We employ a quadratic expansion to investigate the behavior of the
ordinary residuals in nonlinear regression. 1In particular.f‘%’derive
quadratic approximations for the mean and variance of the ordinary residuals,
and the covariances between the ordinary residuals and the fitted values.
This investigation leads to the conclusion that the ordinary residuals can

produce misleading results when used in diagnostic methods analogous to those

for linear regression. Consequently, we suggest a new type of residual that

overcomes many of the potential shortcomings of the ordinary residuals/ PF e S
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SIGNIFICANCE AND EXPLANATION

Statistical methods for the analysis of experimental data are necessarily

dependent on the specification of a model, a mathematical formula that

1 5 n R BT DI

N describes the behavior of the data up to a few unknown parameters. Generally,

L4

a model can be visualized as
Datum (D) = Systematic component (S) + Random component (R)

or in abbreviated form D = S + R. The specification of a model often

——

involves making assumptions, such as "the data are normally distributed," that
may have little prior substantive support. Consequently, it becomes necessary
to use the data to assess the adequacy of the model. Such assessments are

extremely important in statistical analyses since erroneous assumptions can

lead to erroneous conclusions (the mistaken conclusion that a drug is not
carcinogenic could have devastating results).
Models that are linear in the unknown parameters, 61,....0p, have
systematic components that can be expressed as
S = 3101 + xzez + .0 + xpep

where the X;'s are nonrandom experimental variables whose values are known.

y-on SR MR

Many methods of assessing model adequacy are available for such linear

models. However, relatively little is known about how to asseas model
adequacy when 8 is nonlinear in the parameters; for example

1 % S = exp{X8, + ... + xppFJ° The purpose of this paper is to provide a

4 4 foundation for the development of methods for assessing the adequacy of models

that are nonlinear in the parameters.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.
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RESIDUALS IN NORLINEAR REGRESSION

R. D. Cook and C. L. Tsai®
1. INTRODUCTION

Diagnostic methods are useful for assessing the adequacy of assumptions underlying the
modeling process and for identifying unexpected characteristics of the data that may
seriously influence concliusions or require special attention. It is widely held that the
diagnostic phase is an important part of any regression analysis.

A variety of diagnostic methods are available to aid in analyses based on linear
regression models (Cook and Weisberg 1982 provide s review). For the most part, the
development of these methods is dependent on a thorough study and characterization of the
exact small sample behavior of a few fundamental building blocks such as the ordinary
residuals and related statistics. The interpretation of standard residual plots, for
example, depends on the knowledge that the expectations of the residuals are zero under a
correct model.

In more complicated gettings such as nonlinear regression, the exact small sample
behavior of the corresponding building blocks is generally intractable so that sowe degree
of approximation is necessary. In addition, the nonlinear regression problem involves new
concerns that do not have counterparts in linear regression and thus that may require the
development of new diagnostic methods.

Diagnostics for nonlinear regression can be constructed by using first-order
extensions of analogous methods for l.inear regression (see, for example, Cook and Weisborg
1982). Generally, these diagnostics are based on the assumption that the usual tangent
plane approximation to the solution locus is adequate,so that the nonlinear model is
easentially linear in a neighborhood of the estimated parameters. While such diagnostic
methods are certainly useful as first approximations and will often provide important
information, a deeper analysis may be required for an adequate understanding of nonlinear

regression.

*Department of Statistics and Operations Research, New York University, New York, NY 10006

Sponsored in part by the United States Army under Contract No. DAAG29-80-C-0041.




In this paper, we investigate properties of the ordinary residuals and related

quantities from nonlinear regression. This investigation is based on the quadratic
approximation of the ordinary residuals developed in section 2. In section 3, we derive
informative expressions for the expectation and variance of the vector of ordinmary
residuals, and discuss why these residuals may not be an adequate basis for diagnostics
methods. In section 4, we propose a new type of residual for use in nonlinear
' regression. It is shown that these new residuals overcome many of the failings of the
ordinary residuals and that they can be used in much the same way as the ordinary resicuals
i : from linear regression. In the remainder of this section, we establish notation and
briefly review relevant background wmaterial.
The standard nonlinear regression model can be represented as
Yy - f(xi,e) e, 1= 145,000 n (1)

where x; represents a vector of known explanatory variables asscciated with the i-th

observable response vy, 8 is a p x 1 vector of unknown parameters, the response
function £ is assumed to be known, continuous and twice differentiable in 0, and the

errors E; are assumed to be independent, identically distributed normal random variables

with mean 0 and variance 12- For this model, the maximum likelihood estimator @ of

f 8 can be found by minimizing the objective function

T 2
: J(0) = ) (y, - £x,,0)) 2)
| 1=1

Kennedy and Gentle (1980) discuss computational methods for obtaining €7 for our purposes

we assume that 8 is available. The asymptotic behavior of & is investigated by Wu

{1981) who provides additional references. The usual estimator of cz is

s = 38)/(n - p) .

For notational convenieace, let f:l. - f(xi,e), i=1%2,...,n, and let V denote the

L
: n x p matrix with elements f: - 3!1/30r, i=1,2,i0e,n, = 1,2,.4e,ps Unless
1 indicated otherwise, all derivatives are evaluated at the true paramster values. Various

quadratic expansions used in the following sections involve the p X p matrices W;,




1= 12,..0,n; the elements of W, sre f:' = azfiﬂorae., r,8, = 1,2,..s,p. These

matrices can be written conveniently in an n x px p array W (Bates and Watts, 1980).

The kj-th "column” of W is the kj=th second derivative vector with elements f'{j,

o A

' M i=12,...,n, while the i-th face W, of W is the p x p matrix consisting of the i-

] ' th elements of the second derivative vectors.
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2. QRDINARY RESIDUALS

The n x 1 vector of ordinary residuals e can be written as

€=y - £08) (3)
where Y and !(6) are n * 1 vectors with elements yy and !(xl,a), i=1,2,...,n,
respectively. The vector e 1is of course a function of the errors €40 1= 1,2,...,n. ‘
To investigate the properties of e, we use the quadratic expansion of the right side of
(3) obtained by ignoring all terms that involve cubic and higher powers in the errors.

This method of approximation is closely related to that in Cox and Snell (1968), Box (1971)
and Clarke (1980).

The standard quadratic expansion of t(a) about the true value 0* g

£(8) = £(8%) + V(8 - 84) + 3 (8 - 00)Tw(d - 0%) )

where W is the n X p x p array with i-th face W, 41=12...,n. Multiplication
involving three dimensional arrays is defined as in Bates and Watts (1980) so that the
third term of (4) is an n x 1 vector with elements (8 - 0')1h1(a - 8%)/2,
i=1,2,...,n. Substituting (4) into (3) we obtain the initial representation

e=c-v-14Tm (s)

where for notational convenience ¢ = 6 - 6%, since cubic and higher powers in the ci'.

are to be ignored, the standard first-order approximation ¢ = (VTV)-1VT€ (Cox and Snell,

1968) can be substituted into the third term of (5):

1 1

T = V(v TevTv T e (6)

To evaluate the second term of (5), we require a quadratic approximation of ¢. Such
an approximation can be obtained from the gquadratic expansion of the likelihood equations

about the true value 6* (Cox and Snell, 1968). As shown in the Appendix, this yields

n
e+ vy Y € Teow, v Ve - e e TvivTn ! -1
Let 75

ve =P wviny "Wy

1

where P, = V(vTV)"vT is the projection operator for the column space of V and li is

the i-th column of I - P4.

-g-
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In the remainder of this paper, we use C(F) to indicate the column space of the
matrix P. Thus for example, the tangent plane at 0 is the affine subspace
£(6*) + C(V). The orthogonal complement of C(F) will be denoted by C'(F).
Expressions (6) and (7), which form the essential ingredients of (5), can be expressed
more informatively in terms of the QR-decomposition V = QR of V. Here Q 1is an
n x n matrix with orthogonal columns and R = (LT,O) where L is a p x p,
nonsingular, upper triangular matrix. Partition Q = (U,N) where U is n x p. The
columns of U form an orthonormal basis for C(V) and the columns of N form an
orthonormal basis for C'(V) so that C(N) = C'(V). 1In terms of the transformed
coordinates § = L(O - 6%), the first and second derivative vectors are given by the
columns of U and W = L"TwL"'. ‘Phe i-th face of W is simply
LALR A (8)
Using the QR-decomposition to simplify (6) and (7), and substituting the resulting

expressions into (5) gives
L. Y 1.7 T~
ex Ny -U) (€2 )W1 =~ NN (1 Wr) 9)
i 1774 2

where (TT.nT) - QTc is the vector of rotated errors. The components of QTe are, of
course, independent and follow the same distribution as that assumed for €.

Some additional discussion of (9) should prove useful. First, the ab-th element of

T~

T ~ T, T, T ~
the p x p matrix B = ) (e lj_)W‘l is € M'w, =n N w,p, vhere w_ .,  is the ab-th

second derivative vector in the 8§ coordinates i.e. ;ab is the ab-th column of W. This
matrix is closely related to the effective residual curvature matrix B described in
Hamilton, Watts and Bates (1982): B is obtained from Bn by replacing € with e.
Second, the final term of (9) can be written as
Wl () = N(eTAn)
- W (10)

where A is the (n - p) x p x p intrinsic curvature array (Bates and Watts, 1980) and

"7. is obtained from [ by projecting each second derivative vector onto C(N). Thirq,

-5=




it is easily seen that the approximation given in (9) is invariant under parameter

transformations, as expected. Finally, the first term MNn = NNTE is simply the standard
linear approximation.

It follows from the above discussion that e can be expressed informatively as

exMn - UBT -+ T (n
n 2
In terms of the basis U, the elements of -Bnt are the coordinates of the projection

of e onto C(V), while (n - %-TTAT) contains the coordinates in the basis provided

by N of the projection of e onto C'(V).
Equation (11) gives our final guadratic approximation of e. 1In the next section, we

use this approximation to investigate the moments of e.




3. MOMENTS OF e

Since T and n are independent, it follows immediately from (11) that, to the

degree of accuracy provided by the quadratic approximation,

BEe = - %-!(Tmﬁut)

. - - '21' WTE(r T )
= NNT4 (12)

where 4 is an n x 1 vector with elements -oztx(ﬁi)/2 - -!Jzt:t[(V"l"v)-.1

Ull/Zv
i=1,2,...,n. The vector 4@ is essentially the expected difference between the linear
and quadratic approximations of f£(8) (see eq. 4) so that BEs is the projection of this
expected difference onto C(N). The expectation of e can also ke expressed in terms of
A:

2

e =-2_y §_’ a (13)
2 11
i

where a5, is an (n - p) x 1 vector with elements 'jli' j=1,2,¢e0,n - p, and
2444 is the i-th diagonal element of the j-th face of A. The results in equations (12)
and (13) agree with those of Cox and Snell (1968) for the special case of model (1).

From the discussion at the end of section 2, it is easily seen that the three addends

in equation (11) are uncorrelated so that
var(e) = Var{(Nn) + vhr(UBnr) + % th(fqﬁ't)
= 702 + u(snna':)u"az + -“. var (1T (14)

The matrix Bn

is the i-th component of n, i = 1,2,.,.,n - p. From this it follows immediately that
2

can be written as B, = )) nyA; vhere A; 1is the i-th face of A and ny

T -
E(3,B ) = 0°K (15)

vhere K =T A, Next, Var(t'Wir) = N Var(t"AUN" and the 1j-th element of Var(t”Ar)

TA T) = 204tr(nilj), i1, = 1,.¢.,n -~ p. Substituting this and (15) into

is Cov(tTA T,t 3

i

(14) yields

LT T g




o

var(e) = Mi"o? + uxuTo? + 3 nanTot (16)

T 2

where Z ia the (n - p) x (n ~ p) matrix with elements tt(AiAj)-

Alternatively, 2 can be expressed as

z = N°(

» 0

~ ~T
g vabwab)N “an

From this and the forws of the first and second terms in (16), we see that Var(e) is
positive gsemi-definite so that the standard linear approximation will underestimate the
variances of the residuals. The amount of undereatimation depends heavily on the intrinsic
curvatuyre array A, as should be clear from an inspection of (16). However, there is some
doubt about the usefulness of using the clements of A as indicators of the adequacy of
the linear approximation. 1In terms of the hasis N, the columns of A contain the
coordinates of the projections of the second derivative vectors =‘b onto C'(V). If the
basis for C'(V) 1s changed A will change. On the other hand (16) is invariant under
such changes.

In linear regression, the interpretation of the standard diagnostic plot of the
residuals versus the fitted values depends on the fact that the plotted quantities are
uncorrelated. The interpretation of the corresponding plot in nonlinear regression may be
more difficult since the residuals e and fitted values f(s) are generally correlated.
The previous development. allows for a rather straightforward determination of the nature of
the dependence between e and :(8)= From (11),

!(;) = £(0*) + Ut + UBnt + % bl (18)
Using (18), (11) and the symmetry of the error distribution, we find that
Covle, £(8)) = ~Var(us 1) - § var(x"#*r) (19)
so that

2 _ covie,£(8)) (20)

var(e) = Ww's
Thus, the covariances between the corresponding elements of e and f(®) are negative.
These covariances will be small when the linear and quadratic approximations of Var(e)

are close.
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The results of this section clearly indicate that diagnostic methods based on the
standard linear approximation can potentially fail. For example, an ordinary residual may
appear to be unusually large because its expectation differs substantially from zero, or
because the linear approximation of Var(e) does not accurately reflect its variance. A
plot of the ordinary residuals may exhibit systematic features because the corresponding
plot of Ee exhibits such features, or because cOv(e,f(a)) is not sufficiently small.
Generally, unusual characteristics of e alone are not sufficient to infer a failing of
the model or data. In the next section we suggest ways to overcome the apparent

shortcomings of the ordinary residuals.
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4. PROJECTED RESIDUALS
A variety of useful diagnostic can be ohtained by projecting e onto selected

subspaces. As a class we call these projected residuals.

Recall from (11) that the difference between the linear and quadratic approximations
of e depends on UB"T and TT;.?- These terms account for the potential problems that
may be encountered in diagnostic analyses based on linear approximations. Clearly, unnt
is in c(U) and 1T is in C(a.). the column space spanned by "M1=ib'
a,b= 1,2,...,p, which is a subspace of C(N) = C'(U). Thus, the effect of these terms
can be removed by projecting e onto C'(U,i’) - C'(U,a) = C'(V,W).

Let P.,, P, and P2/1 denote the projection operators for c(u,ﬁ), c(u) and

c(i'), respectiveiy. Projection operators for orthogonal subspaces will be indicated

by P'. Then P12 - P1 + Pz/' and
P;ze - P;o - P2/1o

- Te -
NN"e P2/1€ . (21)

The first term of (21) is the linear approximation; the second term reflects the adjustment
necessary to remove the yuadratic component of e. If the columns of " are “small", so
that the second derivatives are unimportant, we will have P;ze « e and nothing will be
lost by considering Pjj,e. On the other hand, if the second derivatives are important, the
adjuatment provided by (21) will be important also.

The projected residuals have several useful properties in common with the residuals
from linear regression. Pirst, we clearly have E(Pj,e)= 0. Second, the projected
residuals and the fitted values are uncorrelated. This property follows since P;ze

depends only on n vwvhich is independent of Tt. Finally,

2
Vlr(P;Ze) P;za (22)
and
Ete™p, &) = o?er(py,) . (23)

From (22) we see that the construction of Studentized projected rasiduals is

-{0=




straightforward, while (23) shows how to construct estimates of 62 that are free of the
bias contributed by the guadratic terms.

The projected residuals overcome many of the shortcomings of the ordinary residuals
and can be interpreted in much the same way as the residuals from linear regression. For
example, suppose that the response function is off by a term g(8) so that the true
response function ia £(0) + g(B). In this case the errors become € + g(f) and the
projected residuals are

P;zo = P1,9(B) ¢+ Pi,€
As in linear regresaion, a plot of Pj;e against the explanatory variables associated with
g{8) may reveal the presence of the systematic component P;zg(a).

A potentis’ disadvantage of the projected residuals is that there is no longer an
exact correspondence between residuals and observations. There is, however, an approximate
correspondence between the projected residuals and the errors in roughly the same way that
there is a correspondence between the ordinary residuals and the errors in linear
regression. Suppose, for example, that the first error contains an ocutlier of magnitude

8 so that g(8) = 8b1 where by is the first standard basis vector. Then
Pla® = BR3Py * Pyt -
As in linear regression, the first component of P;ze will be inflated by an amount that

is usually in excess of the amount that the remaining residuals are inflated.

-ff=

% sy
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S. JILLUSTRATIONS
For our first illustration, we consider the class of partially nonlinear models with
response functions of the form
£(0) = Xa + 8g(Y) (24)

T - (GT,B:Y) and B and Y are

where X is a known full rank n x (p - 2) matrix, 0
scalars. This class of response functions occurs often in practice and in the statistical
literature. In particular, (24) allows for transformations of explanatory variables in
linear regression.
For the response function described by (24) it is easily seen that
Vv = (X,9(v),88' (V)] (25)

where q'(Y) is the n % 1 vector with elements 99, ,{Y)/3Yy, i = 1,2,...,n. PFurther,
i

there are only two nonzero second derivative vectors, 'Bv = 91(1) and wyy = Bgz(y)
where gz(Y) has elements 3291(1)/312- Thus,
c(v,u) = c(x,gty),q' (1), g% (YD) (26)

and
Pjje = Pje - 92/1e
= PIY - Py ¥
where P{ is the projection operator for C'(V) and P2/1 is the projection operator for
C(NNng(Y))- The linear approximation will work well whenever gz(v) is in or lies close
to C(V); that is, whenever the residuals from the regression of 92(7) on V are
sufficiently small. Otherwise, the adjustment Py/1e will be important.
This condition for the adequacy of the linear approximation is also reflected by Ee
given by (12) and Var(e) given by (16): Evaluating (12) we find
Ee = - 1 8 var, (Y)2!g’(v) T an
where Varl(;) is the large sample variance of ;, i.e. the appropriate element of
(VEV)-icz- It can also be established that the second and third terms of (16) will be
small if P;gz(Y) is small (see equation 17).
Our second illustration, which is primarily numerical, is based on the model

1/2

2
£(x,8) = 8, +06,(x = 8,) +8,{(x-0)" +8.]) (28)

-12=




and data set 3 from Ratkowsky (1983, Table 6.18). The data consist of 27 observations on
radiocactivity counts y at equally spaced time intervals, x = 1,2,...,27. 1In this
example, all derivatives are estimated by substituting the maximum likelihood estimates
given by Ratkowsky (1983, Table 6.19) for unknown parameters.

For this model and data set, the difference between the linear and quadratic
approximations of Var{(e,) is small. Generally, the quadratic part of (16) accounts for
only about 38 of the total variance. 8ince the contribution of the gquadratic terms is
amall, the linear approximation of Vlr(oi) with ; =g = ,3095 was used to construct the

. Vs

vector S(e) of Studentized ordinary residuales with slements ‘1/°(’;)11

the remainder of this discussion, a "hat" above any quantity indicates evaluation at 6.

« HRere and in

For reference, a scatter plot of the elements of 8S(e) versus x 1is civen as Figure
1 and an index plot of dllg(;’) versus x is given as Pigure 2. The corresponding plot
of the ordinary residuals is similar to that displayed in Pigure 1. MNotice from Figure 2
that the first two or three cases in addition to the cases, particularly the last, that
fall on the plateau of the response function will have relatively large influences on the
fitted model.

A plot of ;. versus x is given as Pigure 3. PFor ease of interpretation, the
elements of ;. ha. - been scaled in the same way as the elements of S(e). The plot of
the unscaled ;c versus x is similar. The residual expectations are clearly patterned,
although their expected sizes indicate that the residual biases are not likely to play a
dominant role in diagnostic plots. If the experimental error were increased, however,
patterns such as that in Figure 3 could become extremely important.

We next turn to the projected residuals, Pjje. The difference between the variances

of the ordinary and projected residuals is indicated in Pigure 4 which is a plot of

(dinq(r;)-diuq(r;z)) versus x. PFigure 5 gives a plot of (S(e) - I!P;zo)) versus x,

wvhere S(P;zo) is the vector of Studentized projected residuals constructed by using (22)
and (23) (o = .3141). Again, a pattern is clearly evident and the largest differences
occur on the plateau of the response fu-. The magnitudes of the differences are, of

course, large enough to produce notic:: ‘ - in various diagnostics. Por example,




N

Figure 1. Ratkowsky Data: Scatter plot of the
Studentized residuals S(e) versus x.
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Figure 2. Ratkowsky Data: Scatter plot of diag(il) versus x.
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Figure 3. Ratkowsky Data: Scatter plot of the estimated
residual expectation Ee versus x.
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Figure 4. Ratkowsky Data: Scatter plot of
D= (diaq(Pi) - diag(Piz)) versus x.
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Pigure 5. Ratkowsky Data: Scatter plot of
Sd = (S({e) ~ S(Pize)) versus Xx.
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the largest absolute Studentized ordinary residual is 8(e)y, = -2.2 and the largest

absoluts Studentized projected residual is 8(?;20)22 = =2,5, which reflects an increase

in the chance that case 22 may be an outlier.

The general patterns in Figures 3 and 5 are quite similar. We can explain this
occurrence with a heuristic argument that also serves to point out some of the detail
behind this example. First, the plot of e - ;;20 versus x is very similar to those in

Figures 3 and 5 so that we can consider unscaled rather than Studentized residuals.

Second, froam (11) and (21)

e - P!

12 " Py

= p e-uant—-;-t?i"r (29)

2/1

80 that P.Pi.e = -m!“t which can be estimated by substituting eatimates for unknown

parameters. In the example at hand, the estimated elements of Unn'r are small relative to

those of Pyj0. Next, of the 1S second derivative vectors, 12 are in C(V). Of the

remaining 3 vectors only one contributes substantially to the determination of P‘zo.
Thus, Pype is roughly a random scalar times a single columm of ;.. Since

Ze = E(P ,e) we can expect Pigures 3 and 5 to look similar.

~19-
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6. DISCUSSION

There is clearly a close relationship between the results of this paper and methods
for assessing intrinaic curvature (Bates and Watts 1980). As expected, we have found that
the difference between the ordinary and projected residuals is negligible when the maximum
intrinsic curvature is sufficiently small. Such behavior might be taken as justification
for using the maximum intrinsic curvature as a diagnostic to indicate when the difference
between the ordinary and projected residuals is likely to be substantial. However, the
intrinsic curvature and the projected residuals both necessitate the often tedious
construction of the second derivative vectors. Once these vectors are available, the
construction of the projected residuals is straightforward and can be carried out in most
standard regression programs. It does not geem sensible to rely on a diagnostic that is no
sasier to construct than the quantity of primary interest.

In our experience, the projected residuals rarely alter the pattcrns of ordinary
residual plots in a way that completely changes our interpretation, although we see no

inherent reason why such drastic changes cannot occur with some frequency in particular

applications. On the other hand, summary statistics computed from residuals often change

in important ways.

‘ Wumerical problems may be encountered during the construction of the projected
residuals when the second derivative vectors lie close to C(V) 8o that the model is

essentially linear. For example, when using standard regression programs to compute the

automatically because of high correlations with the columns of V.
Finally, the results described in this paper rely on the accuracy of the various
quadratic approximations, of course. In principle, all results can be extended by carring

the approximations to a higher order. The practical advantages of such extensions,

Sremas e

however, are unclear.

( projected residuals, all of the second derivative vectors will occasionally be deleted
{
[




APPENDIX

Derivation of Equation (7)

Let L = L(8) denote the log likelihood for model (1) and without loss of generality
2

assume that 0° is known. Further, let L = 3L/30r, Lyg = 3L,/28_ and let
Loyt = aLr'/aet. The guadratic expansion of the likelihood equations Lr(e) =0,
r=1,2,...,p, about the true value 6* ig

1 .

- &

Lr * % ’lbtl *3 2 ‘n‘th-t 0 (A. 1)

s,t

where ¢, is the k-th component of é = (6 ~-87),
n

The first term of (A.1) is simply L! - Z cifi/az, r=1,2,...,p, or in matrix
i

notation
(L) = V'e/o? (A.2)
For the second term, L. = ) (tifi' - f:f:)/dz so that
i
(T ot )= e - v (A.3)
s rs 14 °
[ ] i
| Next,
n
: rst rs, t r st s, rt 2
| Loge ™ % te,r; £0f, - £f £,£,5)/0

.
|
)
|
1

Since the approximation is to be constructed by ignoring terms involving cubi.: and higher
powers in the ei'o, the first term of Lyge is set to zero. This gives for

T = 1,2,00e,p

2 g rs_t r_ st s_rt
° f $ef:Lrge = LA PR PP L

s,t

"oy

s,t
=1 ) e et ¢ ]l
{s,t

or in matrix notation,
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2 - - T T, T
oL et ) = -f2) (e + vieTw) (A.4)
s,t i
where Vr is the i-th row of V.
Pinally, substituting (A.2), (A.3) and (A.4) into (A.1) and rearranging terms we find
that

Tyra « vTe o V _ T IR B )
(V'V)p = Ve + % (ei V10)Hi¢ 5V (¢7vd)

or

1

ve = me + v(vw 'Y (e, - v'fO)HiO - -% H(6Tw) (A.5)
1

Substituting the standard linear approximation for the ¢'s on the right side of (A.S)

yields equation (7).
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