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-W employ a quadratic expansion to investigate the behavior of the

ordinary residuals in nonlinear regression. In particular, ederive

quadratic approximations for the mean and variance of the ordinary residuals,

and the covariances between the ordinary residuals and the fitted values.

This investigation leads to the conclusion that the ordinary residuals can

produce misleading results when used in dia stic methods analogous to those

for linear regression. consequently, we suggest a new type of residual that

overcomes many of the potential shortcomings of the ordinary residuals 4
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SIGNIFICANCE AND EXPLANATION

Statistical methods for the analysis of experimental data are necessarily

dependent on the specification of a model, a mathematical formila that

describes the behavior of the data up to a few unknown parameters. Generally,

a model can be visualized as

Datum (D) - Systematic component (S) + Random component (R)

or in abbreviated form D - S + R. The specification of a model often

involves making assumptions, such as "the data are normally distributed," that

may have little prior substantive support. Consequently, it becomes necessary

to use the data to assess the adequacy of the model. Such assessments are

extremely important in statistical analyses since erroneous assumptions can

lead to erroneous conclusions (the mistaken conclusion that a drug is not

carcinogenic could have devastating results).

Models that are linear in the unknown parameters, P,...,ep, have

systematic components that can be expressed as

s = xe 1. + x 2 e 2 + ... + Xpep

where the Xi's are nonrandom experimental variables whose values are known.

Many methods of assessing model adequacy are available for such linear

models. However, relatively little is known about how to assess model

adequacy when S is nonlinear in the parameters; for example

S - exp{Xle I + ... + XpIp}. The purpose of this paper is to provide a

foundation for the development of methods for assessing the adequacy of models

that are nonlinear in the parameters.

The responsibility for the wording and views expressed in this descriptive
sumary lies with NRC, and not with the authors of this report.
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poR. D. Cook and C L. Twah a

~1. INTRODUCTION

Diagnostic methods ore useful for assessing the adequacy of assumptions underlying the
modeling process and for identifying unexpeced characteristics of the data that may

i seriously influence conclusions or require special attention. It is widely hold that the

diagnostic phase is an important part of any regression analysis.

A variety of diagnostic methods are available to aid in analyses based on linear

regression models (Cook and Weisberg 1982 provide a review). For the most part, the

development of these methods is dependent on a thorough study and characterization of the

exact small sample behavior of a few fundamental building blocks such as the ordinary

residuals and related statistics. The interpretation of standard residual plots, for

example, depends on the knowledge that the exi..ctations of the residuals are zero under a

correct model.

In more complicated settings such as nonlinear regression, the exact small sample

behavior of the corresponding building blocks is generally intractable so that some degree

of approximation is necessary. in addition, the nonlinear regression problem involves new

concerns that do not have counterparts in linear regression and thus that may require the

development of new diagnostic methods.

Diagnostics for nonlinear regression can be constructed by using first-order

extensions of analogous methods for 1.near regression (see, for example, Cook and Weisborg

1982). Generally, these diagnostics are based on the assumption that the usual tangent

plane approximation to the solution locus is adequate, so that the nonlinear model is

essentially linear in a neighborhood of the estimated parameters. %hile such diagnostic

methods are certainly useful as first approximations and will often provide important

information, a deeper analysis may be required for an adequate understanding of nonlinear

regression.

*Department of Statistics and Operations Malsarch, New York University, Now York, NY 10006

Oponsored in part by the United 3tates Army under Contract No. DAAG29-80-C-0041.



In this paper, we investigate properties of the ordinary residuals and related

quantities from nonlinear regression. This investigation is based on the quadratic

approximation of the ordinary residuals developed in section 2. In section 3, we derive

informative expressions for the expectation and variance of the vector of ordinary

residuals, and discuss why these residuals may not be an adequate basis for diagnostics

ethods. In section 4, we propose a new type of residual for use in nonlinear

regression. It is shown that these new residuals overcome many of the failings of the

ordinary residuals and that they can be used in much the same way as the ordinary resiuale

from linear regression. In the remainder of this section, we establish notation and

briefly review relevant background material.

The standard nonlinear regression model can be represented as

yi - f(xiO ) + cis 4 - 1,1,...,n (1)

where xi  represents a vector of known explanatory variables ass-ceiated with the i-th

observable response yiD 0 is a p x I vector of unknown parameters, the response

function f is assumed to be known, continuous and twice differentiable in 0, and the

errors Ci are assumed to be independent, identically distributed normal random variables

with mean 0 and variance 2 . For this model, the maximum likelihood estimator S of

* can be found by minimizing the objective function

- )2 (2), ,,71e) " (YL - f(xL
"0 12

12

Kennedy and Gentle (1980) discuss computational methods for obtaining Of for our purposes

A A

we assume that 6 is available. The asymptotic behavior of S is investigated by Wu

(1981) who provides additional references. The usual estimator of a2 is

.2-J(O)/(n - p)

For notational convenience, let fi - f(xi,8), i - 1,2,...,n, and let V denote the

n x p matrix with elemnts fr - 3f /30 , i - 1,2,...,n, r - 1,2,..,p. Unless

indicated otherwise, all derivatives are evaluated at the true parameter values. Various

quadratic expansions used in the following sections involve the p x p matrices Mi,

-2-
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i ,..,~ the elements of W, are f ra . 2- /9 ro, , - l.2,... op. Theme

~ matrices can be written conveniently in an n x p x p array W (Rates and Watts, 1980).

7h kj-th "column" of W is the kj-th second derivative vector with elements fkci
is

i =1,2,...,n, while the i-th face Vi of V is the p x p matrix consisting of the i-

th elements of the second derivative vectors.

Accessionl For

NTIS GRA&I

i< IUnannounced 0
Just ifIc at 10

By

DistributiOl/
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2. ORDINARY MRSIDUALS

The n x 1 vector of ordinary residuals e can be written as

* = y - f(e) (3)

where Y and f() are n x I vectors with elements yi and fNxif,), i - 1,2,...,n,

respectively. The vector e is of course a function of the errors ti =, 1,2,...n.

To investigate the properties of e, we use the quadratic expansion of the right side of

(3) obtained by ignoring all terms that involve cubic and higher powers in the errors.

This method of approximation in closely related to that in Cox and Snell (1968), Box (1971)

and Clarke (1980).

The standard quadratic expansion of f(;) about the true value 0* is

f(e) a f(O*) + ve - e*) +. (e O*)TW(S - e.) (4)

where W is the n x p x p array with i-th face Wi , i - 1,2,...,n. Multiplication

involving three dimensional arrays is defined as in Bates and Matts (1980) so that the

third term of (4) is an n x 1 vector with elements (6 - )TV I(6 - 0-)/2,

i 1 1,2,...,n. Substituting (4) into (3) we obtain the initial representation

e- V -v -#TV (S)

where for notational convenience * - 6 - . Since cubic and higher powers in the Ci'

are to be ignored, the standard first-order approximation (V V) 'vT (Cox and Snell,

1968) can be substituted into the third term of (5):

*W4 - CTV(V V)-,N(VTV)- VTC (6)

lb evaluate the second term of (5), we require a quadratic approximation of #. Such

an approximation can be obtained from the quadratic expansion of the likelihood equations

about the true value e (cox and Snell, 1968). As shown in the Appendix, this yields

4 aV + C (Tti)i)VTV) 1 v7 £ - I P 1
( TV(VTV) ' W(VTV) 'VT - 1 (7)

where Pl V(VTV) 1
'V

T  
is the projection operator for the column space of V and I  is

the i-th column of I - Pr.

-4-
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In the remainder of this paper, we use C(F) to indicate the column space of the

matrix F. Thus for example, the tangent plane at 0* is the affine subspace

f(O*) + C(V). The orthogonal complement of COP) will be denoted by C'(F).

Expressions (6) and (7), which form the essential ingredients of (5), can be expressed

more informatively in terum of the QR-decomposition V - QR of V. Here Q is an

n x n matrix with orthogonal columns and RT = (LT,0) where L is a p x p,

nonsingular, upper triangular matrix. Partition Q = (U,N) where U is n x p. The

columns of U form an orthonormal basis for C(V) and the columns of N form an

orthonormal basis for C'(V) so that C(W) - C' (V). In terms of the transformed

coordinates I - L(9 - 6), the first and second derivative vectors are given by the

columns of U and - L-TWLI. Phe i-th face of V is simply

S" (L- 8)i
Using the QR-decomposition to simplify (6) and (7), and substituting the resulting

expressions into (5) gives

e w - U Ti )(C 2 T(TT) (9)

i

TT T T
where (T ,nT ) Q £ is the vector of rotated errors. The components of Q C are, of

course, independent and follow the same distribution as that assumed for C.

Some additional discussion of (9) should prove useful. First, the ab-th element of

the p x p matrix - ). C ii)l is .T ab - ab where w ab is the ab-th

second derivative vector in the I coordinates i.e. wab is the ab-th column of W. This

matrix is closely related to the effective residual curvature matrix B described in

Hamilton, Watts and Bates (1982): a is obtained from 9 by replacing c with e.

Second, the final term of (9) can be written as

NNT (T T) = N(FTA T)

-T T (10)

where A is the (n - p) x p x p intrinsic curvature array (Dates and Watts, 1980) and

V3 is obtained from -V by projecting each second derivative vector onto C(N). Third,

-5-



it is easily seen that the approximation given in (9) is invariant under parameter

transformations, as expected. Finally, the first term Nn - eT is simply the standard

linear approximation.

It follows from the above discussion that a can be expressed informatively as

e I jT* T (11e W Nn - UB T - 2TO

In terms of the basis U, the elements of -BT are the coordinates of the projection

of e onto ClV). while (n - - TTAr) contains the coordinates in the basis provided

by N of the projection of e onto CM(V).

Equation (11) gives our final quadratic approximation of e. n the next section, we

use this approximation to investigate the moments of e.



3. KMOMNTS o •

Since T and n are independent, it follows immediately from (11) that, to the

degree of accuracy provided by the quadratic approximation,

. 1 Z(T"r N )
21 NNTT )
T

N NWTd (12)

where d is an n x 1 vector with elements - 2tr(Ci)/2 - -a 2trt(V
T
V)

1
Vw 1/2,

i - 1,2,...,n. The vector d is essentially the expected difference between the linear

and quadratic approximations of f(i) (see eq. 4) so that Ms is the projection of this

expected difference onto C(N). The expectation of e can also bo expressed in terms of

A:

Xe - N- N aii (13)

where ai is an (n - p) x 1 vector with elements ajiie J - 1,2,...tn - p, and

ajii is the i-th diagonal element of the J-th face of A. The results in equations (12)

and (13) agree with those of Cox and Snell (1968) for the special case of model (1.

From the discussion at the end of section 2, it is easily seen that the three addends

in equation (11) are uncorrelated so that

Var(e) - Var(N) + Var(UBT) + . Var('r)

SNNT
2 
+ U(ZB BT)UT0

2 
+ 1 Var(TTr) (14)fin 4

The matrix Bn can be written as B. = ) niAi where Ai is the i-th face of A and ni

is the i-th component of n, i - 1,2,....,n - p. From this it follows immediately that

z(B ST)- (15)

2wher. K TeT, )NT  and the ij-th element of Var(T AT)
where K =£A . Next, a(''O NVrVr(T)

is Cov(TT ATTTA T) - 2o
4
tr(AiAj). i,j - 1...,n - p. Substituting this and (15) into

(14) yields

-7-
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Var(es) = M1
2 

+ UXt4 + I NZkTO4  (16)

where 2 is the (n - p) x (n - p) matrix with elements tr(AiAj).

Alternatively, Z can be expressed as

T( VT~,w) (17)
ab

From this and the forms of the first and second terms in (16). we see that Var(e) is

positive semi-definite so that the standard linear approximation will underestimate the

variances of the residuals. The amount of underestimation depends heavily on the intrinsic

curvature array A, as should be clear from an inspection of (16). However, there is some

doubt about the usefulness of using the olemants of A as indicators of the adequacy of

the linear approximation. In terms of the basis W, the columns of A contain the

coordinates of the projections of the second derivative vectors Wab onto C' (V). If the

basis for C'(V) is changed A will change. On the other hand (16) is invariant under

such changes.

In linear regression, the interpretation of the standard diagnostic plot of the

residuals versus the fitted values depends on the fact that the plotted quantities are

uncorrelated. The interpretation of the corresponding plot in nonlinear regression may be

more difficult since the residuals e and fitted values f(;) are generally correlated.

The previous development allows for a rather straightforward determination of the nature of

j the dependence between e and f(S): From (11),

f(;) = fiS9) + U, + UB T + - (18)
i 2

Using (18), (11) and the symmetry of the error distribution, we find that

Cov(*,f(S)) -Var(US T) - - Var(rTv) (19)I

so that

Var(e) I NT2 - Cov(e,f(l)) (20)

Thus, the covariances between the corresponding elements of e and f(S) are negative.

These covariances will be small when the linear and quadratic approximations of Var(e)

are close.



The results of this section clearly indicate that diagnostic methods based on the

standard linear approximation can potentially fail. For example, an ordinary residual may

appear to be unusually large because its expectation differs substantially from zero, or

because the linear approximation of Var(e) does not accurately reflect its variance. A

plot of the ordinary residuals may exhibit systematic features because the corresponding

plot of Be exhibits such features, or because Cov(e,f(O)) is not sufficiently small.

Generally, unusual characteristics of e alone are not sufficient to infer a failing of

the model or data. In the next section we suggest ways to overcome the apparent

shortcomings of the ordinary residuals.

1 -9-
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4. PRW BTZD IBUIOUAL8

A variety of useful diagnostic can be obtained by projecting e onto selected

subspaces. An a class we call theme projected residuals.

Recall from (11) that the difference between the linear and quadratic approximations

of a depends on US"T and "Tr *. These terms account for the potential problems that

may be encountered in diagnostic analyses based on linear approximations. Clearly, UBDT

is in C(U) and iTWNW is in C(O), the column space spanned by MN b

a,b - 1,2,...,p, which is a subspace of C(N) - C'(U). Thus, the effect of these terms

can be removed by projecting a onto C'(U,V) - C'(U,V) - C'(VW).

Iet P12 1 P1  and P2 /1  denote the projection operators for C(UW), C(U) and

C(tfV), respectively. Projection operators for orthogonal subspaces will be indicated

by P'. Then P 12 - P1 + P2/ 1 and

P20- P;e - P2/1'

-NUT - P 2/1 (21)

The first term of (21) is the linear approximation the second term reflects the adjustment

necessary to remove the ,uadratic component of e. Zf the columns of im are "small", so

that the second derivatives are unimportant, we will have P 2e ' a and nothing will be

lost by considering P12
e
. On the other hand, if the second derivatives are important, the

adjustment provided by (21) will be important also.

The projected residuals have several useful properties in common with the residuals

from linear regression. First, we clearly have B(Pj 2 e)- 0. Second, the projected

residuals and the fitted values are uncorrelated. This property follows since P;2e

depends only on n which is independent of 1. Finally,

Var(P';2e P;202 (22)

and

i(eP a) - 0
2 tr(P ) * (23)

From (22) we see that the construction of Studentized projected residuals is

-10-
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r2
straightforward, while (23) shows how to construct estimates of 02 that are free of the

bias contributed by the quadratic terms.

The projected residuals overcome many of the shortcomings of the ordinary residuals

and can be interpreted in such the same way as the residuals from linear regression. For

example, suppose that the response function is off by a term g(O) so that the true

response function is f(i) + g(B). In this case the errors become e + g(0) and the

projected residuals are

P; 2 e - P 2g(0) + p;2•

As in linear regression, a plot of P12 e against the explanatory variables associated with

g(9) may reveal the presence of the systematic component P 2g(B).

A potentir' disadvantage of the projected residuals is that there is no longer an

exact correspondence between residuals and observations. There is, however, an approximate

correspondence between the projected residuals and the errors in roughly the same way that

there is a correspondence between the ordinary residuals and the errors in linear

regression. Suppose, for example, that the first error contains an outlier of magnitude

0 so that g(O) - 8b, where b, is the first standard basis vector. Then

P;2e - P'2b, + 112C

As in linear regression, the first component of P12e will be inflated by an amount that

is usually in excess of the amount that the remaining residuals are inflated.

i
ft -11-



5. ILLUSTRATIONS

For our first illustration, we consider the class of partially nonlinear models with

response functions of the form

fCO) - XG + 0g(y) (24)

where X is a known full rank n x (p - 2) matrix, 9T 
. (a TBY) and B and y are

scalars. This class of response functions occurs often in practice and in the statistical

literature. In particular, (24) allows for transformations of explanatory variables in

linear regression.

For the response function described by (24) it is easily seen that

V - [Xg(Y),g 
1 

l) (25)

where g () is the n x 1 vector with elements 2g,(T)/0Y, i - 1,2,...,n. Further,

there are only two nonzero second derivative vectors, w,, . g (y) and w - Bg2 ()

22 2
where g (y) has elements 32giMY . Thus,

C(V,W) - C(X,g(y),gI(Y),g
2
(y)) (26)

and

Pi2
e 

" s - P2/1
e

- ply - P2/1Y

where P1 is the projection operator foe" C'(V) and P2/1 is the projection operator for

C(NN T2()). The linear approximation will work well whenever g2(y) is in or lies close

to C(V)1 that is, whenever the residuals from the regression of g 2(T) on V are

sufficiently small. Otherwise, the adjustment P2 /1 e will be important.

This condition for the adequacy of the linear approximation is also reflected by Be

given by (12) and Var(e) given by (16): Evaluating (12) we find

go -1 0Var (;)p~g2(y)  (7
e 2 ~rT (27)

AA

where Var (Y) is the large sample variance of T, i.e. the appropriate element of

(vTv)-'I
2 - 

It can also be established that the second and third terms of (16) will be

small if P;g2 () is small (see equation 17).

Our second illustration, which is primarily numerical, is based on the model

f(x,o) = 1 + a2(x - 04) + 3{(x - 4)
2 

+ s)
1/2  

(28)

-12-
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and data met 3 from Ratkovsky (1983, Table 6.18). The data consist of 27 observations on

radioactivity counts y at equally spaced time intervals, x - 1,2....,27. In this

example, all derivatives are estimated by substituting the maximum likelihood estimates

given by Ratkovsky (1983, Table 6.19) for unknown parameters.

For this model and data set, the difference between the linear and quadratic

approximations of Var(ei) is small. Generally, the quadratic part of (16) accounts for

only about 3% of the total variance. Since the contribution of the quadratic terms is

small, the linear approximation of Var(ei) with - a - .3095 was used to construct the

vector 8(e) of Studentixd ordinary residuals with elements eA/o(P )/
2  

Nore and in

the remainder of this discussion, a *hat" above any quantity indicates evaluation at 6.

For reference, a scatter plot of the elements of 8(e) versus x is given as Figure

1 and an index plot of diag(P1 ) versus x is given as Figure 2. The corresponding plot

of the ordinary residuals is similar to that displayed in Figure 1. Notice from Figure 2

that the first two or three cases in addition to the cases, particularly the 1,ast, that

fall on the plateau of the response function will have relatively large influences on the

fitted model.

A plot of im versus x Is given as Figure 3. For ease of interpretation, the

elements of s helt- been scaled in the same way as the elmnts of 8(e). The plot of

the unscaled Us versus x is similar. he residual expectations are clearly patterned,

although their expected sizes indicate that the residual biases are not likely to play a

dominant role in diagnostic plots. If the experimental error were increased, however,

patterns such as that in Figure 3 could become extremely important.

We next turn to the projected residuals, Pi2 e. The difference between the variances

of the ordinary and projected residuals is indicated in Fiqure 4 which is a plot of

(dia,(;P)-dia(;:2 )) versus x. Figure 5 gives a plot of (S(e)- P;2 )) versus x,

where S(P;I2 ) is the vector of Studentized projected residuals constructed by using (22)

and (233) (a - .3141). Again, a pattern in clearly evident and the largest differences

occur on the plateau of the response fv , The magnitudes of the differences are, of

course, large enough to produce notic - in various diagnostics. For example,

' ' ' II I I ; " '.



Figure 1. Ratkovuky Daes Scatter plot of the
Studentimed residuals S Ce) versus a.
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Fiure 2. flatkowsky Data: Scatter plot of diag(i 1 versus x.
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Figure 3. Ratkowsky Data: Scatter plot of the estimated
residual expectation ie versus x.
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Figure 4. Ratkowsky Data: Scatter plot of
D (diagO') -dia9(P 2I versus x.
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Figure 5. Ratkowsky Date:a Scatter plot of
S d =(S(s) -S(P 1 2 e) vesu X.

8d

e S Is Is 28 2S 30
S x



the largest absolute Studentized ordinary residual is 1(0)22 - -2.2 and the largest

absolute Studentiztd projected residual is 8(P;20)2 - -2.5, which reflects an increase

in the chance that case 22 say be an outlier.

The general patterns in Figures 3 and S are quite similar. We can explain this

occurrence with a heuristic argument that also serves to point out some of the detail

behind this example. First, the plot of a - P20 versus x is very similar to those in

Figures 3 and S so that we can consider unscaled rather than Studentited residuals.

Second, from (11) and (21)

P - '2 - P1 2 *

P2r £- U3T 
2

T7
1  (29)

so that PIP12e ' -UbnT which can be estimated by substituting estimates for unknown

parameters. In the example at hand, the estimated elements of U"T are small relative to

those of P12e. Next, of the 15 second derivative vectors, 12 are in C(V). Of the

remaining 3 vectors only one contributes substantially to the determination of P12e .

?bus, P12S is roughly a random scalar times a single column of V * Since

Be X -(P 1 2 e) we can expect Figures 3 and 5 to look similar.

(I

-19-
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6. DISCUSSION

There is clearly a close relationship between the results of this paper and methods

for assessing intrinsic curvature (ates and Watts 1980). As expected, we have found that

the difference between the ordinary and projected residuals is negligible when the maximum

intrinsic curvature is sufficiently small. Such behavior might be taken as justification

for using the maximum intrinsic curvature as a diagnostic to indicate when the difference

between the ordinary and projected residuals is likely to be substantial. However, the

intrinsic curvature and the projected residuals both necessitate the often tedious

construction of the second derivative vectors. Once these vectors are available, the

construction of the projected residuals is straightforward and can be carried out in most

standard regression programs. It does not seem sensible to rely on a diagnostic that is no

easier to construct than the quantity of primary interest.

In our experience, the projected residuals rarely alter the patterns of ordinary

residual plots in a way that comqpletely changes our interpretation, although we see no

inherent reason why such drastic changes cannot occur with some frequency in particular

applications. On the other hand, summry statistics computed from residuals often change

in important ways.

Numerical problems may be encountered during the construction of the projected

residuals when the second derivative vectors lie close to C(V) so that the model is

essentially linear. For example, when using standard regression programs to compute the

projected residuals, all of the second derivative vectors will occasionally be deleted

automatically because of high correlations with the columns of V.

Finally, the results described in this paper rely on the accuracy of the various

quadratic approximations, of course. In principle, all results can be extended by earring

the approximations to a higher order. The practical advantages of such extensions,

however, are unclear.

-20-



APPENDIX

Derivation of Rquation (7)

Let L - L(e) denote the log likelihood for model (1) and without loss of generality

assme that a
2  is known. Further, let Lr - 3L/3e, Lr - 3Lr/3O* and let

Lrat - Lrs/
3

t . The quadratic expansion of the likelihood equations Lr (0) - 0,

r - 1,2,...,p, about the true value 0' is

L+ *L 4T ) at~rmt " 0 (A.1)

a a,t

where #k is the k-th component of * - (e - 6').

The first term of (A.1) in simply Lr f - /a r - 1,2,...,p, or in matrix

notation

(Lr) - v/ 0
2  (A.2)

For the second term, (r C f rol fr f V 2sotaaeodtr - it)o so that

oa2( L rm) - CiW,* - V V$ (A.3)

Next,

Lrs-  ( ra~t. ratf rmt a 'imrt" 2 /

L n (C t - f reft- fr ft- f af )/oa

Since the approximation im to be constructed by ignoring terms involving cubi,, and higher

powers in the ei's, the first term of Lrt is set to zero. This gives for( r - 1,2,...,,p

02 n , P rat rat rt
( f + f f + f ff

mtrt ~ t i i I i i im 8t i uwt

4 ra t r at
yi,t at i i ii

or in matrix notation,
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, st ) -f2 ) (V",)Vi + V?('?wV)) (A.4)
5,t £

where is the i-th row of V.

Finally, substituting (A.2), (A.3) and (A.4) into (A.1) and rearranging terms we find

that

(TV) + )~(c~ - T OW VT#w

or

V4 - Hc + VVV)
-  

( 1 - I ) 5i

Substituting the standard linear approximation for the $'a on the right side of (A.5)

yields equation (7).

A
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