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n. Itroduction

The architectural differences between a serial and a parallel machine raise a number of

questions regarding the efficiency of established algorithms.( in-his paper we exploremeral

algorithms which solve the Poisson equation on rectangular regions in two dimensions. The

solution of the Poisson problem is an example of one of tle simplest nontrivial computations

which frequently occur in innermost loops of large scale scientific codes, and hence is a useful

test of different architectures for scientific computation. Weempeesolution times on the Vax

11/780 with solution times on the Floating Point System 104 (FPS-1O4) attached procemor.

Since the FPS-164 supports a sufficiently large memory and the host/attached processor I/O is

relatively slow, it is of interest to solve large problems entirely on the FPS-164. We explore the

performance of the FPS-164 on both portable FORTRAN programs which have not been tuned

to its architecture and on moderately tuned FORTRAN programs which make calls to the FPS

assembly languake math library, MATHLIB. Use of MATHLIB results in shorter programs

which are usually more efficient. We show that the speedup in execution time is more uniform

across the algorithms than might be anticipated and hence the choice of algorithm is still highly

significant. <-

In Section 2 we outline three standard algorithms, the complete Fourier algorithm based on

double Fourier transforms, the Fourier/Tridiagonal algorithm and the FACR(1) algorithm. In

Section 3 we examine the tridiagonal linear system solution, which is part of the latter two

algorithms, in more detail. We analyze the classical Gauss algorithm and examine a refinement

of the tridiagonal linear system solution based on ideas of Malcolm and Palmer 191, which

appear to be too little known (121. In Section 4, we consider optimizations of Cooley's [21

method for calculating the sine transform as a real transform of half size. We present timings

from our implementation of each of the algorithms for the Poisson problem in Section S.

Finally, we give concluding remarks in Section 6.

t STh Flosting Point System 164 attached pocemor (AP) ia 64 bit, 11-WLOP machine with a 1S-nanomeond A'
Ctch time. Multipk functional unite opth allow aW many a 10 smutaaeomu operations.

des
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2. Three Baule Algorithms

We begin by describing some fast direct methods which awe commonly used to solve the

Poisson equation

A U (1)

with Dirichlet boundary conditions in two dimensional rectangles.

For simplicity in notation we consider only the cane of the square. Define the grid points

(11,7k) - (ihkli) for i,k - O,...,n+1 with hi - 1/(n+l) and the corresponding function values

uik sa u(xilyk) and !ik a fAxiyk). We consider the simple 5-point discrete Poisson equation

W = fik' i,k = .. ,.(2)

where the 5-point Laplacian operator AM~h is defined by

&(b) U 4
Ugh h2  ik UIik MA i,.lh * ~ * (8)

subject to the boundary conditions

3 .%1.k .o = .8+1 = 0 i.k 1..n.(4)

In Sections 2.1-2.3, we describe three well known fast direct methods for solving the discrete

Poisson equation.

2.1. The Complete Fourier algorithm

The approach of using Fast Fourier techniques to solve the above finite difference equations

originates with Hockney 18). The first method we describe involves Fourier transforms in each

variable.

We eted the equences u = ui) and ( as fito be dd doubly periodic sequences of

period 2(n+1) in both variables. This is valid since u satisfies the boundary values (4) and we
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may set Ok- - -- , - 0 since equation (2) does not restrict the values of f on

the boundary.

For the $-point Laplacian operator, let d = (dik) be the doubly periodic sequence of period

2(n+l) defined by

do0 = 4. d_1.0 = d. 0 = do, 1 = do. 1  . dik = 0 otherwise.

With this notation, we may rewrite equation (2) as the convolution

d * u = h2 f (5)

which can be solved for u by using discrete double Fourier transfWrms.

A
Let x denote the discrete Fourier transform of the doubly periodic sequence x with period

2(n+1) in both variables. Equation (5) then implies

A AA
do h (6)

A

The Fourier transform d of d can easily be calculated to be

A 1 th 1 I 1 i Ik~dl- - 1- CSii7 ~~~7
dik = 4(nl1)2 1

A A
and therefore we can solve for uik:

A ,h 2 A (7)

The discretisation of the Poison problem, represented by equation (2) can now be solved by

the following algorithm:

A

1. Calculate the Fourier transform f.

2. Calculate A by (7).
A

8. Perform the inverse Fourier transform to recover u from U.

Lb*7- Nw.1.'. Z,
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We remark that since V is real and odd, it suffices in steps 1 and 2 to use a sine transform in

place of a Fourier transform.

The complete Fourier algorithm also provides an easy way to solve the 9-point discretiwion

and other more precise approximations to equation (2), see Henrici (71. For example, if we use

the fourth order 9-point discretization for the Laplacian
1

A ik N -2 0 + 4Ui-l.k *4uM. k 4. 4vik. 1 * 4ui ko

+ Ui.*kl + U i,.k,*1 + Ui. .io (8)

and for the right hand side of equation (2) we use the mean values g fgik), where

igik i I ( 8f ik *, fe~~ MA. f"lk MA, f i.k-I fo Yi~k+* 
)

'

we get an equation of the same form as (5) to solve:

d * u = h2 g. (10)

In this case, we have

d00 u 20. d._1 0 = d1.0 a d0 .1 a d0. = -4.

d_,._, 2 d-1.1 : d]._i = dl., a -2. and dia z 0 otherwise.

3.3. The Fourler/Trldlgonal algorithm

In the literature, this algorithm is often simply called the Fourier or basic Fourier algorithm,

see Temperton 112). It is based on matrix decomposition, see Busbee, Golub and Nielson I1.

The discretised Poisson equation (2M3), can written in matrix form:

Hu= h f my (11)



where the vector u (similarly t and y) may be written

U2  ui2

tnd INnd

and the nxn2 matrix M is block tridiagonal of block order a

I A 1 0

1 0 . (12)i0 1 A I

SI A

where A is the tridiagonal nxn matrix is defined by

•1 -4 1 0
A = (.5

S0 1 -4 1
1 -4

The eigenvalues Xk and eigenvectors vk m {Vik) of A ae known to be

X 2 4 ,2cos . k1.... * (14)

i Vn sin G!k : 1. . (15)

With VT - V (vik) and A the diagonal matrix diagQX), we have

VAY z A . (16)

We may rewrite equation (11) as



0

Au.+ U2  -Y,

u,..2 +Au,.,. + .i+ 2.... (7$UrN-I +Aus y

and with (18) this becomes

Au, + ' 2  -l

where

U= Vi*(9

yi= Vyj (20)

If we rearrange the equations (18), we get for each k-

"kl +U2k DIli

Us-1h 4 Xkak ya'ik

Thas we get the following algorithm:

1. Perform the transformatilon (20).

2. Solve the n tridiagonal linear systems (21).

8. Solve (19) for u,. i.e. perform the inverse

transform.
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2.3. The FACR(1) algorithm

Following Hockney [81, we start by eliminating the vectors ui with odd indices from equation

(17), i.e., considering u as a matrix, we eliminate the odd rows. We could also eliminate the

odd columns of u, f, see Temperton 1121.

In fact, for indices i -4,6,..,n-3,

i-2 Au * . yi-

Ui_ 1  Au, A u,,, =-i .(22)

U i "4 A u i +1 " U i +2 = Y i +I

and similar equations for i - 2 and i - n-I. Multiplying the middle equation of 22 by -A and

adding all three equations, we get

Ui= 2 * (21-A 2)Ui * u i-2 =Yi- - Ay i + y*.

and hence the following system, where we assume that n is odd. (For the case where n is even,

the last equation will differ.)

21-A2  1 2  12 Y + y - AY2
I 21-A2  U4  178 75 -Ay 4

I 21-A 2  1 U-3] Y-4 y.-2 " AyaLI 2I-A2i Lu6 .- I. *y* -m Ay 1  (23
1 21-A ~yio-2  Y y_

Continuing this step of eliminating of every other row leads to the algorithm of cyclic

reduction. In the literature this is sometimes refered to as the FACR (Fourier and Cyclicj Reduction) algorithm. We stop after one reduction step and use the Fourier/Tridiagonal

algorithm to solve system (23). This is called the FACR(I) algorithm. We replace matrix A of

Section 2.2 with the matrix 21 - A. Since B - 21 -A is a polynomial p - p(A) in A, it has

the same eigenvectors as A and eigenvalues X'B - PXA) - 2 - %A2. The solution on the odd

rows is obtained by solving the tridiagonal system corresponding to the middle equation of (22)

for u,:

S - -4d-
..... . ' -'I mlII41,1
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Ant 2 1-0

Au. . -i .- uOi-I 00=85 (24)

The algorithm is summarized as follows:

1. Sot up the right hand side of (28).

2. Solve (23) by the algorithm from (2.2).

8. Calculate the solution on the odd rows fron (24).
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3. Refinement of the Tridiagonal Linear System Solution

Two of the algorithms for solving the Poisson equation in rectangular regions require solving

many tridiagonal systems of linear equations.

The problem to be solved is of the form

A x = y (25)

where A is an nxn tridiagonal matrix of the form

I X, 1 0

A = (26)
0 1 X I

For all X we have IXI > 2. Therefore the system is definite and we are assured of the existence

of a solution.

Basically there are two important efficiency issues: (1) avoiding divisions, and (2) keeping the

pipelines filled. In Section 3.1 we discuss Gauss elimination and in Section 3.2 we describe the

improvements of the Malcolm and Palmer method [9].

3.1. The classic Gauss algorithm

The easiest way so solve the system (25) is the well known Gauss elimination in three steps:

1. LR-factorization: A - LR 4 with

1 12 O 1 r2 (
L ond R on (27)

0 1 In 0 1r,

4 We on notation A LR in preference to the usual LU notation to avoid confusion with the a from Section 2.

( -
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From A - LR we get recursion formulas for the elements Ik and rk:

I 1 lkrk 1 1k
1k+ + rk X.

2. Forward substitution: Lw - y,

V1 - 'I Y, k kj 1 k = 2. n.

3. Backward substitution: Rx - w

n =w xN =W -t k n-1 ,Ke=We  -,=W rkxk~l  k -,...l

This algorithm requires n multiplications, 2n divisions and 3n additions/subtractions.

Since 1, and rk are reciprocal values we need only one of them. To avoid as many divisions

as possible we eliminate Ik. If we define r. = I/I we get:
1 1

1. r rk  k =2. n. (28)
X rk

2. w1 = rY, Wk = rk(Yk - k-l) . k = 2,. n. (29)

3. x, =W , xk = wk - rkxk,, , k =-1 .... 1. (30)

This form of the algorithm needs 2n multiplications, n divisions, and 3n

additions/subtractions.

In applications where we have to solve several Poisson equations with the same mesh size, we

could precompute the r., but this would double the amount of storage.

'Nor-,- . ...



3.2. A more efficient algorithm to solve the tridiagonal systems

There exist several algorithms which improve the storage requirements of the tridiagonal

solver. The algorithm of Evans [3] and Evans and Hatopoulos [41 reduces the number of stored

elements rk from n to n/2. Fischer et a] [5] use a Fourier-Toeplitz method which does not need

to store any of the rk but which requires more operations.

On many machines, reducing the division count improves the efficiency of an algorithm. This

is particularly true on the FPS-184, as division is done in software and consumes much more

time than any other basic operation. The relevant times are

APFTN single division 29 cycles
APFTN vector division 18 cycles/element
APAL single division 22 cycles
APAL vector division 7 cycles/element

as compared to

multiplication 3 cycles
addition 2 cycles

Note that multiplication and addition operations may be initiated every cycle. Significant

savings can therefore be made by reducing the number of divisions.

Malcolm and Palmer 191 derive an algorithm which applies to linear systems with real,

symmetric, diagonally dominant, tridiagonal coefficient matrices with constant diagonals. This

algorithm needs both fewer operations and much less storage. Malcolm and Palmer

demonstrate that the entries Ik and the rk of Section 3.1 converge, and give lower and upper

bounds on the rate of convergence, as a function of X, to a relative error of t. We use an(equivalent upper bound,

ko 1111-1 log (31)

where w is defined by w m z2/zI, and where z, and z2 are the solutions of z = 1/(. - z), the

equation satisfied by the limit of rk, such that IzI > z2I. We derive Jr in Appendix A. To

solve each tridiagonal system, we compute k. from equation (31), perform only Ito steps in the

Gaussian elimination and use uk, for the remaining entries in the factor. It is this method that

we use for the tridiagonal solver in our implementation of the Fourier/Tridiagonal and
w



12

FACR(1) methods for solving ai Poisson problem.

If IXJ is not too close to 2 we have remarkably fast convergence, and k0 is the exact index of

convergence. In Table 3-1, we show the actual index of convergence for e = 10.16 for varying

values of X. In Table 3-1, keonv denotes the index where convergence actually takes place, (see

Appendix A), and ko denotes the estimate from (31).

X I keomw ko

2.0001 1445 1842
2.0010 492 682
2.0100 167 184
2.1000 56 58
2.5000 26 26
3.0000 19 19
4.0000 18 18
5.0000 11 11
6.0000 10 10

Table 3-1: Index of convergence (with e = 10 i6) in tridiagonal solver

This gives a dramatic reduction in the number of divisions when we solve Poisson's equation

using a nxn grid. In this case we solve n systems of form (25) with

X = k 4 + 2 cos k( . k : .

In Table 3-2, we display a count of the number of divisions required for problems of varying

f. size.

Due to the cost of evaluating (31), we start to cut the amount of work only when n > 31,

but for larger n we have eliminated almost the entire LR-factorization. Our programs use the

improved tridiagonal solver only for problems of size _> 31.

The effect of this method on the Fourier/Tridiagonal algorithm for the Poisson problem may

be seen by comparing the times spent solving n linear systems in the solution of the Poisson

problem. Refer to the Fourier/Tridiagonal algorithm in Section 2.2.

This method largely eliminates any advantage of preprocesing in that few factors need be
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9 divisions # divisions
n in the original using our index I

algori th = n2  of convergence

7 49 49 100.00
15 225 202 89.78
31 961 560 58.27
63 3969 1402 35.32
127 16129 3339 20.70
255 65025 7733 11.89
511 261121 17565 6.73

1023 1046529 89296 3.75
2047 4190209 86919 2.07

Table 3-2: Division count in the two tridiagonal solvers

n time for the time for I
original algorithm now algorithm

31 0.0088 0.0091 103
63 0.0388 0.0244 72

127 0.1331 0.0704 53
255 0.5271 0.2196 42
511 2.1036 0.7414 35

Table 3-3: Execution time (aec) to solve n tridiagonal systems in APFTN

computed; hence the need to store precomputed factors is eliminated. In addition, the solution

of the tridiagonal systems is no more expensive than the normalization in the complete Fourier

method, implying that the Fourier/Tridiagonal method is necessarily faster than the complete

Fourier method, regardless of the speed of the FFT.

A second major efficiency issue is pipelining. At cost in storage, we explore the tradeoff of

the faster run time that becomes possible by solving 4, 8, 16, 32, or n systems in parallel,

performing forward solves for multiple systems followed by the back solves. The results an

presented in Section S.
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4. The Fourier Transform

In this section, we compare the efficiency of different Fourier Transforms implemented on the

VAX and on the AP in FORTRAN, and on the AP using the FPS APMATH librsry routines.

We used compiler optimization level 3 of the Revision D04 APFTN compiler, We took

advantage of the problem being both real and odd to implement the sine transform for the

FFT, and we also present remults using the real FFT. The APMATH library includes a routine

for computing a real FFT, but not a sine transformation. We implement our sine

transormation using the algorithm by Cooley 121.

prob size n VAX AP AP

(FORTRAN) (FORTRAN) (LIBRARY ROUTINES)

256 0.06 0.0078 0.0032
520.19 0.0150 0.0066

1024 0.39 0.0312 0.0147
204 0.67 0.0642 0.0292
4096 2.23 0.1519 0.0645
6192 4.66 0.8166 0.1885

1684 10.8 0.6561 0.2913

Table 4-1v Execution time (ec) for owe complex FFT

Aprob size n VAX AP AP
(FORTRAN) (FORTRAN) (LIBRARY ROUTINES)

128 0.031 0.0028 0.0009
256 0.04 0.0043 0.0017
512 0.11 0.0096 0.0037

1024 0.24 0.0201 0.0076

*14096 1.12 0.0636 0.083

81t2 t2& .51 0.01M 0.0mi21

Not tht te raland the complex FFT require army* of length double the problem mise. The
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prob size n VAX AP AP
(FORTRAN) (FORTRAN) (Coo Iey)

128 0.02 0.0015 0.0006
256 0.03 0.0028 0.0018
512 0.05 0.0054 0.0021

1024 0.13 0.0121 0.0046
2048 0.25 0.0244 0.0091
4096 0.56 0.0497 0.0201
8192 1.22 0.1022 0.0400
16384 2.95 0.2275 0.0882

Table 4-3: Execution time (sec) for one sine transform

algorithm for the sine transform presented by Cooley 121 involves pack and unpack operations in

addition to a real transform. As the times for our sine transform are significantly higher than

the expected time of an APAL version, in our Poisson problem we vectorize the computation of

the n sine transforms by packing and unpacking some number of vectors, m, in one loop. This

allows the APFTN compiler to take significant advantage of pipelining. The storage cost of

performing m sine transforms in parallel is nxm/2. We save .0002 seconds per transform in the

255 by 255 size problem, which reduces the number of seconds per sine transform from .0013 to

.001. This compares very respectably to the time for a real transform of .0017 seconds. In the

511 by 511 size problem, the number of seconds per sine transform is reduced from .0021 to

.0018. The time for the real transform is .0037 seconds. Our tables in Section 5 refer to the

vectorized sine transform by the notation, Vecsin. Unles the vectorized sine method is

specifically mentioned, the sine transform we implemented is the non-vectorized implementation

of Cooley's algorithm.

Note that as is shown in Table 4-4, the complete Fourier algorithm has the most to gain fromIan efficient sine transform. In section & we show that even with the vectorsed sine transform,

the complete fourier algorithm is not competitive with the FACR(I) method.

-- ... I I I I. . .. " -" ' " -" ... . ....
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Fourier Fourier/Trid FACR(I)

Sine trensf. of length a 4n 2n n

Trid. systems of order n 0 a n/2*

Trid. systems of order n/2* 0 0 n

) n/2 may be either n/2 or n/2 ± 1/2

Table 4-4: Count of components required in each algorithm

b4

4r
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5. Numerical Results for the Polsson Problem

We present execution times for the two dimensional Poisson problem using the algorithms

described in the previous sections. Each algorithm was applied to diseretizations varying in size

from 31 x 31 points to 511 x 511 points. Each algorithm was implemented in FORTRAN77 on

• the VAX 11/780 with a FPA, in APFTN54 on the FPS-164, and in APFTN64 with extensive

* calls to APMATH library routines from the FPS math library. We used compiler optimimation

level 3 of the Revision D04 APFTN compiler. The FPS-164 supports sufficiently large memory

that the problems run on the FPS-164 were solved entirely on the FPS-164.

One set of tests was run using the real Fast Fourier Transform for the FFT. A second set of

tests was run substituting the sine transformation for the real FFT, cf. Section 4.

The times apply to the solution of the Poisson equation and do not include the overhead costs

of the transfer of program and data to the AP or of paging on the VAX. These are considered

separately. The VAX was run single-user with an unrealistically large working-set to eliminate

dependence on working set size.

5.1. Computation times

Our results indicate that the gain from the FPS-164 architecture is more uniform across

algorithms than might be anticipated. Graphs for each algorithm are presented in Figure 6-1.

The ratios of timings on the two machines for the algorithms using the real FFT ar presented

in Table 5-2.

The results presented in Figure 5-1 and Table -1 are for FORTRAN programs which, other

than for calls to the MATHLIB, have not been specially tuned for the APFTN compiler. In this

table, the sine transform refers to the non-vectorized implementation of Cooley's algorithm. In

the remainder of this section, we examine several possible improvements to these three

algorithms.

We begin by presenting a breakdown of the percentage of time spent in each section of the

programs. (See Table 5-3.)

To determine whether or not the complete Fourier algorithm is necessarily less efficient on

the parallel architecture of the AP, we rst vectorised the normalization, which reduced the

nii ,|I II •= ,-- -,
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Poisson Problem
Using Real Transform Using Sine Transform
FFT FFT/Trid FACR(1 FFT FFT/Trid FACR(1)

VAX (FORTRAN) 0.62 0.86 0.25 0.44 0.28 0.29
31M3 AP (FORTRAN) 0.10 0.05 0.03 0.08 0.04 0.03

AP (NATHID) 0.04 0.03 0.02 0.04 0.03 0.02

VAX (FORTRAN) 2.61 1.49 0.99 1.64 1.00 0.73
63163 AP (FORTRAN) 0.34 0.19 0.12 0.24 0.14 0.10

AP (NATHLIB) 0.16 0.10 0.08 0.18 0.10 0.08

VAX (FORTRAN) 10.89 5.99 8.98 6.72 4.12 3.90
127x127 AP (FORTRAN) 1.21 0.67 0.43 0.87 0.50 0.85

AP (MATHLIB) 0.62 0.37 0.27 0.46 0.29 0.24

VAX (FORTRAN) 50.33 27.95 17.78 26.86 16.47 14.5
255x255 AP (FORTRAN) 5.30 2.85 1.76 3.20 1.79 1.23

AP (NATHLIB) 2.42 1.39 1.00 1.77 1.07 0.85

VAX (FORTRAN) 206.9 116.74 74.84 128.07 78.59 58.16
5114511 AP (FORTRAN) 21.31 11.26 6.89 13.64 7.43 4.99

AP (MATHLID) 10.22 5.65 8.97 6.76 3.93 3.10

Table 5-1: Execution times (sec) to solve Poisson's eqution

AlIgor ithn VAX/AP(FTN) AP(FTN)/AP(MATHLIB) VAX/AP(RATHLID)

Fourier 10.59 2.08 22.08
Fourier/Trid 11.25 1.99 22.54

FACR(1) 11.84 1.74 20.56

Table 5-2: Ratios of times (sec) on different architectures for each algorithm usng real FFT

percentage of time spent in the normalization from 17% to 8%. (See Table &-4.) For the 285 x

255 se problem, .16 seconds was saved by the vectorised divide in a mormealiatiom that

otherwise took .28 seconds, for a 57% reduction in normalization time, and a 10% savings in

the entire Poisson problem.

As was discussed in Section 4, the complete Fourier algorithm has the =Ag to gpin from an

efficient sine transform. We implemented the vectorized sine transorn from Section 4 for each
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of our algorithms. These results are given in Table 6-5.

31x31 127x127 511611
Preparation 0.5 0.1 0.0
Sine FFT in X 21.9 20.9 20.7

Fourier Sine FFT in Y 22.1 21.0 20.7
Normalization 11.5 16.0 17.1
Back FFT in Y 22.1 21.0 20.7
Back FFT in X 21.9 20.9 20.7

Preparation 0.5 0.1 0.0
Sine FFT 33.0 28.5 27.5

FFT/Trid Trid System 30.4 39.8 41.9
(Std Trid) Back FFT 83.0 28.6 27.5

Normal1i zation 3. 1 3.1 8.0

Preparation 0.5 0.1 0.0
Sine FFT 32.6 35.1 37.8

FFT/Trid Trid System 31.1 25.9 20.3
(Now Trid) Beck FFT 32.6 35.1 87.8

Normalization 8.1 3.9 4.2

Preparation 0.4 0.1 0.0
Odd/Even Reduc 8.0 10.6 12.2
Sine FFT 18.8 20.4 22.6

FACR(1) Trid System 26.2 22.7 17.5
(Now Trid) Back FFT 18.8 20.4 22.6

Normalization 6.4 6.1 6.6
Solve Odd Rows 22.4 19.7 18.5

Table 5-: % time spent in each algorithm using sine transform, MATHLIB

Poisson Probl em

Using Reel Transform Using Sine Transform
Fourier Fourier(Voc) Fourier Fourier(Vec)

81:31 .04 .04 .04 .04
"63 .16 .16 .13 .18
127x127 .62 .58 .46 .48
211255 2.42 2.27 1.78 1.61
511i511 10.22 9.6 6.76 6.11

Table 5.4 Time times (see) wing Fourier method with Veediv and MATHLIB

The veetelsod size trasaforn don rat is a moticable improvenent is compete time

' - , i 1 , - . m. =mm . .....
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Poisson Problem
Fourier Fourier Fourier Fourier FACR(l) FACR(I) F/Trid F/Trid

Vecdiv Vecsin Veediv Vecsin Vecsin
Veesin

31x31 .04 .04 .03 .03 .02 .02 .08 .02
6363 .13 .13 .10 .09 .08 .07 .10 .08
127x127 .46 .43 .37 .33 .24 .21 .29 .25
255255 1.78 1.61 1.46 1.30 .85 .77 1.07 .95
511x511 6.78 6.11 n/a n/a 3.10 2.87 3.93 3.52

Table -S: Times (sec) using complete Fourier method with optimizations and MATHLIB

although it is more storage intensive. Note however that the FACR(1) method still provides a

significant savings in time over the complete Fourier method.

To cut some of the added storage costs, we explored the method of solving m systems instead

of all n systems in the FACR(I) algorithm in parallel, for m - 16, 32, and 64. We noted that

for loops of size less than 32, the efficiency of the APMATH routines over APFTN optimization

level 3 is overshadowed by the overhead of the subroutine calls. We present times for the

APFTN-vetorized sine transform in Table 5-6.

Poisson Problem
block=16 block-32 block:64

3131 .02 .02 .02
63:63 .08 .07 .07
127x127 .28 .22 .22
2655256 .81 .79 .77
511:511 2.95 2.87 n/I

Table -6: Times (sec), blocked-vectorized sine "nsform, FACR(1) method, MATHLIB

An additional optimization which is important in the cae where multiple problems re being

solved is the preprocessing of the normalization in the complete Fourier algorithm. Our

preprocesing consists of storing the reciprocal of the normalization constants, enabling
normalization to be done by a vector multiply. We present times for the preprocessed complete

Fourier algrithm in Table 5-7.

We next consider the Fourier/Tridiagonal algrithm. We try to enable the maximum

amount of pipelining in the tridiagonal solver by performing the orwward substitutions rot m

( -,
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Poisson Problem
preprocessing Fourier-vectaul-vocsift
time excluding preprocessing

31x3l .00 .03
633 .01 .09
127x127 .03 .34
255x265 .12 1.22

Table 6-7: Execution times (sec) using Fourier method with preprocessing

systems in parllel followed by the backward substitutions in the solution of the tridiagonal

linear systems, cf. Section 3.2. In Table 5-8, we present times for problems of sizes as large as

255 x: 255 using the real FFT. Though the method becomes more stormg intensive as m grows,

we found that our times did mot improve uales i was > 31. Note that the improvement in

the FACR(I) algorithm is necessarily less since only n/2 tridiagonal linear systems are solved.

Fourer/rid Fourier/Vec-Trid FACR(1 FACR(1/Vec-Trid

oftle AT8:I rTies andthc een to whichossa' e xitin copile utliitThe t imigo sles

optmiatonof the FP oplrand the release. Optimization level 3 of Version D04 of the
APTN4compiler wa e nalthe tatu of this paper. Previous runs had been made using

optmiztio leel (de t erorsatopt level 3) of the Version C compiler, also at optimization
levl o th D4 omile. e resntthsetimes for comparison in Tabme 5-9.

Notetha th arhitetur oftheFPS-164 offers a degree of parallelism that is no" fully
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Fourier/Trid using Sine Transform. APFTN
Opt2.RevC 0pt2.RsvD04 Opt3.RevD04

3131 .10 .05 .04
63x63 .33 .19 .14
127x127 1.16 .67 .50
255x255 4.39 2.44 1.07
511X511 18.29 10.01 5.0

FACRC1) using Sine Transform, APFTN
Opt2.RevC Opt2.RevD04 OptS.RevD04

3131 .04 .04 .03
6363 .15 .13 .10
127x127 .53 .48 .35
255x255 2.00 1.89 1.23
511.511 8.3 error 4.99

FACR(1) using Sine Transform. HATHLIB
Opt2.RevC Opt2.RevD04 Opt,.RevD04

3131 .03 .03 .02
6363 .10 .09 .08
127x127 .31 .28 .24
256x265 1.10 1.06 .85
5111511 4.03 3.94 3.10

Table 6-9: Execution times (sec) for Version C and Version D APFTN compiler

utilized by any version of the compiler. The sections of the program which make use of the

APAL math library improve the running time of the entire Poisson problem by factors of as

much as 2, depending on the algorithm. We are expecting research in radical compiler

techniques at Yale to provide a FORTRAN compiler that will reduce these factors [6].

We conclude by comparing the best times we were able to calculate for the FPS-164 against

the published results obtained for the CDC 7600 by Swarztrauber 111. We graph the time to

solve the Poisson equation for each of our three algorithms, making use of MATHLIB calls and

vectorization. These are presented in Figure 5-2.

. .. . ..1 - - -
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BEST TIME COMPARISONS ON FPS-164 VS CDC-7600

5.5
5.0

4.0
3.S3.0

2.5
2.0

1.5
1.0

.5
0
50 100 ISO 200 250 300 350 400 150 500 550

PROBLEM SIZE (2-0tMENSI NA.. SQUARE)
D - DOUBLE FIURIER (VECOIV.VECSINI
T - FOURIER/TRID (VECSIN)
R - FACR(I) (VECSIN)
I - 7600 RESULTS - FOURIER/TRID
2 - 7600 RESULTS - FACR(!1

Figure 6-2: Best times for the solution of the Poisson problem on the AP

5.3. Overhead in using the AP

We have found the time required to transfer the data over the Unibus connecting the AP and

the VAX to be significant. For the 31x31, 127x127 and 811x511 size problems, the entire

overhead including data transfer has been .8, 1.1, and 5.9 seconds. Our real throughput time tof transfer the data over the Unibus has been less than one half megabyte per second.

The FPS-164 supports a D64 subsystem which is directly eonnected to the FPS-164 1/O bus.

This has a maximum 1.2 megabyte/second transfer rate, which is comparable to the Unibus
'J transer rate. One problem of future interest is the out-of-core Poison problem. See

tSchultz [101 for an algorithm analysis of this problem. We expect future results which make wse

of a bulk memory system which we have interfaced to the FPS-164 1/0 bus which achieves a 41

megabyte/second transfer rate.

-f
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6. Conclusions

Some of the conclusions that should be noted are the following:

e The Malcolm and Palmer technique for the solution of the specialized tridiagonal

system of linear equations which results from the Poisson problem is very efficient.

* Efficient implementation of transforms lessen the difference between the complete

Fourier, Fourier/Tridiagonal and FACR(I) methods on the FPS-104. However, the

most efficient method for the FPS-164 architecture is still the FACR(I) method5 .

o Except for very small problems, in each of the algorithms, utilization of the

MATHLIB improves the execution time over FORTRAN code of up to a factor of 2.

o The overhead of data throughput is significant in proportion to the compute time on

the FPS-104.

* Optimized code for the FPS-164 has been shown to be more efficient than standard

code for the same algorithm on the CDC 7600.

Acknowledgments

We wish to thank Professor Stanley C. Eisenstat for his comments and suggestions.

'I

SOur FACR(I) method makes use of the Maleolm and Palmer solution of the tridiagoal system of linear

equations.
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Appendix A

Upper bound for Convergent Tridiagonal Solver

In Section 3, we outlined the fast tridiagonal solver presented by Malcolm and Palmer 19).

They present upper and lower bounds of convergence of the r. of equation (28). In this

Appendix, we solve the nonlinear difference equation (28) explicitly and subsequently arrive at

an equivalent upper bound of convergence to a predefined accuracy.

Let sI and z2 be the solutions of z = I/ - z), the equation satisfied by the limit of rk, such

that la > jz2J. Let w := z2/zI For X < - 2, as in the Poisson equation, we have ) < z, < z.

< 0 and therefore 0 < w < 1.

Clearly

zi - z2  2

X z I + Z2 = ZI I + W ) 2

and

It can be shown by induction t(t

k
z -1 -

is the general solution of the recurrence formula (28). This satisfies r, - l/X. Given the

induction hypothesis, it follows that:

1 -

z 02- \-Il - 2 +Z-2Wk' 1)I I I I

NOR
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Note that -k 1/ = and is monotone for k --* cc.

It is easy to determine the index k. such that r. o has converged with maximum relative

error t. We determine a simple upper bound, ko.

(I*I

W kk <oE]

This expression for J.is equivalent to the upper bound given by Malcolm and P'almer.

.A-
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