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1. Introduction

Specialized array processors have been proposed as a means of handling compute-

bound problems in a cost-effective and efficient manner [4,5,61. These array processors

are typically made up of simple, identical processing elements that operate in syn-

chrony. Several array structures have been proposed that include linear arrays, rectangu-

Jar arrays and hexagonal arrays. Simplicity and regularity of linear, rectangular and hex-

agonal array processors render them suitable for VLSI implementation. High perfor-

mance is achieved by extensive use of pipelining and multiprocessing. In a typical appli-

cation, such arrays would be attached as peripheral devices to a host computer which

inserts input values into them and extracts output values from them.

A variety of algorithms have been designed for such arrays (1, 2, 5, 7, 10]. All these

algorithms exhibit the following feature. They are composed of streams of data travelling

in multiple directions at multiple speeds. Each processing element receives data from

each of the streams, performs some simple operation and pumps them out (possibly

updated). We will refer to such algorithms as "array algorithms". The array is typi-

cally comprised of identical processors, that is, they all execute the same set of instruc-

tions in every instruction cycle and they do not have any control unit. The array is

driven by a single-phase or two-phase global clock [9.

A few methodologies have been proposed for transforming high-level specifications

onto array algorithms [3,8,141. Though these methodologies are imaginative they lack a _ -

mathematical basis. In this paper we outline a mathematical framework for transforming

data-flow descriptions of matrix and related computations onto array machines and tree

machines. The research presented herein is an extension to our work on transformation

of high-level specifications onto linear-array algorithms [11J. In this paper we generalize / ...
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the formal model of a linear array developed in [111 to include two-dimensional arrays

(rectangular and hexagonal arrays). We also formalize another important model,

namely, tree machines having arbitrary structure. Algorithms on such tree machines are

particularly important. Any connected set of processors (that is, any two processors in

the set can communicate with each other either directly or indirectly through other pro-

cessors and communication links in the set) with no a priori topological restrictions can

be used to execute these algorithms by forming a spanning tree of the connected set of

processors. The connected set of processors could be the non-faulty processors in an

underlying host machine (like a rectangular or a hexagonal array) which has both faulty

and non-faulty processors and communication links. The hardware details of

reconfiguring such a connected component of processors are provided in [12,131.

This paper is organized as follows. In Section 2 we formalize the array and tree

machine models. We also introduce cube graphs which are data-flow descriptions of some

matrix and related computations. In Section 3 we provide a precise formulation of

correctly transforming cube graphs (referred to as mapping cube graphs in our terminol-

ogy) onto the array and tree models. Algorithms for mapping cube graphs onto the

array and tree models are also presented in Section 3. In the Appendix we provide a

proof that the algorithms in Section 3 correctly transform a cube graph into array and

tree algorithms.

2. Computational Models

We now formalize the array model, the tree model and cube graphs. We begin with

a formal definition of an array processor.
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2.1. Array Machine Model

Let I, 1., .. ,l. be z sets of sequences of integers where each Ij ranges from I to mj.

Let IC lX!,X..X1l.

Definition 2.1: An array machine Ar is a 4-tuple <NA!, TA, 6A, OAr> where:

1. NAr is a set of identical processors.

2. TAr{1,12,..,lk) is the set of labels.

3. 6At:NAt is a one-one function that assigns coordinates to every processor in

the Euclidean z-space.

4. Every processor in the array has k input ports and k output ports. with

each input port and output Dort assigned a unique label from TA.

5. The array is driven either by a single-phase or a two-phase global clock. A

phase can be viewed as the instruction cycle of a processor. In a single-phase

clocking scheme all processors are activated in every phase and every pro-

cessor computes a k-ary function OAr. In a two-phase clocking scheme, adja-

cent processors are activated during opposite phases of the clock and every

processor computes 0.,r in the phase it is active.

The value of z and the communication geometry determine the structure of the

array processor. In this paper we will be examining three types of array processors,

namely, linear, mesh and hexagonal arrays which are well-suited for VLSI implementa-

tion (4,91. We now formalize these three arrays. Our definition captures the "nearest-

neighbor" interconnection of these arrays and also the intuitive notion of a data stream

used earlier in the description of array algorithms. VIjETr, let nij be the neighborhood

conatant associated with label 1j.
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Definition 2.1: A linear array LAr is an array processor with z-1, that is, ICI . Besides

the linear array has the following communication features. Let p be a processor index.

Then, VtjETA, the output port labelled lj of p is connected to the input port labelled

lj of p+n(J where ntjE{l,-1,O).

Let LH, Lv and Lo be three disjoint sets of labels such that LHULVULO = TAr.

Definition 2.3: A meeh array MM is an array processor with z=2, that is, IClxI2 .

Besides, the mesh array has the following communication features. Let <p,q> denote

the coordinate of any processor in the mesh aray. Then,

I. VljELo, the output port labelled lj of <p,q> is connected to its own

input port labelled 1j, that is, nj=0.

2. VljELH, the output port Labelled lj is conected to the input port labelled lj

of <p+n1 ,q> where ngjE(1,-1).

3. VljELv, the output port labelled Lj is connected to the input port labelled

Uj of <p,q+n1 1> where ntiE{1,-41.

Let LHULvULOULT-ITAr be four disjoint sets of labels.

Definition 2.4: Let cE{1,-1) denote the hexagonal array constant. A hezagonal array

HA, is similar to a mesh aray with the additional communication feature that VljELT,

the output port labelled Lj of <p,q> is connected to the input port labelled lj of

<p+nj, q+n1 jc> where ntiE(1,-1).

Fig. 2.1, Fig. 2.2 and Fig. 2.3 illustrate a linear, mesh and hexagonal array proces-

sors. In the figures I, 12 and 13 denote external input ports and 01, 02 and 03 denote

external output ports.
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In Fig. 2.1, the links between processors directed from west to east are labelled I I

and those directed from east to west are labelled 12. The links connecting a processor

back to itself are labelled 13. The neighborhood constants are

U11= 0, n12 - -1, and n13 = 0.

In Fig. 2.2, the links directed from west to east are labelled I 1 and the links

directed from north to south are labelled 12. LH-(l1) and Lv-(12) and

nil 0 n' 2  .

In Fig. 2.3, the links pointing northeast are labelled 11, the links pointing southeast

are labelled 12 and the links directed from south to north are labelled 13. LH--(1),

Lv=(12) and Lr-(131. n14=-n1 2 -1 and n1 3 -l. The hexagonal array constant c-1.

We will refer to the processor whose input port labelled lj is connected to the

output port labelled lj of processor p as its neighbor with respect to label Lj. If a pro-

cessor q is the neighbor of p with respect to label tj then q can only receive data from p

on the link labelled tj connecting them. Similarly p can only send data to q on the same

link. The links connecting any two processors are unidirectional. Impose a direction on

the links such that the sender is at the tail end and the receiver at the other end. A

w
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stream then, is a directed path through processors and links having the same label.

We model the speed of data in streams by associating a queue of buffers in the

communication links. More precisely, let s be a processor in the array. Let

sit=<sit', sit2 , ..,sitk> denote the k-tuple input to processor s at time t where sit' is the

value at the input port labelled tj of processor s at time t. Let sot==<sot1, SOt 2, ..,sotk>

denote the k-tuple output computed by processor s at time t, that is, OA^sit)sot. Ele-

ments in a data stream travel at a constant velocity, and hence a non-zero positive delay

constant dtj is associated with every label Lj in T& such that so/ appears at the output

port labelled li of a at time t+dlj. The delay dij can be implemented as a queue using a

shift register of length dInl.

2.2. Tree Machine Model We are now in a position to formalize a tree machine

as follows.

Definition 2.5: A tree machine r, is a set of processors in a tree that are indexed by

some depth-first traversal of the tree. Besides it has the following communication

features. Let p be a proceesor index. Then, V/jETAr, the output port labelled Ij of p is

connected to the input port labelled li of p+nlj where ntiE(I,-1,0}. Besides, for every

label ljETA, and for every communication link between the output port of a processor

indexed p and the input port of the processor indexed p+n 1j, associate a delay

6(lj,p)-dtj+A(ij,p) where dij is the delay constant associated with any communication

link labelled lj, and A(lj,p) is the perturbation delay between processor p and p+nj.

A tree machine is a generalization of the linear array model (see definition 2.2).

The term tree machine signifies that the interconnection between processors in the array
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can be represented by an arbitrary tree, the vertices of which represent processors and

edges represent the adjacency relation between the processors. The corresponding

representation for a linear array could be a special case of a tree forming a path graph.

On any such tree of processors it is possible to simulate the data flow through a

linear array by routing the data streams through a closed path around the periphery of

the tree (see Fig. 2.4).

closed path:h
(abc ... hij) ?b

e g

Figure 2.4

The major difference between this "logical pipeline" in a tree machine and a "physical

pipeline" in the linear array model is that in the former, logically adjacent processors

(i.e., the pair indexed i and i+1 ) need not be physically adjacent. Since all the data

streams flow through the array at a finite velocity, the implication of this physical

separation is that the delay encountered by a data element in traversing the array from

processors i to i+I (or vice versa) is a function of both the delay constant associated

with the stream to which that element belongs and of the physical separation between

the processors.

Our tree machine model (definition 2.5) is motivated by this idea. The delay for a

data stream Ij between processors indexed p and p+nlj is represented by

.1,
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6(ij,p) - dlj+A(lj,p). The first quantity is the delay constant associated with any link

labelled Ij and the second quantity is the perturbation in this delay caused by the non-

adjacent physical arrangement of the logically adjacent processors p and p+nti.

2.3. Cube Graphs

We now provide a rormal definition of graphs that we will be mapping later on onto

linear, mesh and hexagonal arrays and tree machines.

Let G-<V,E,L3> be a labelled DAG where:

1. V-VGUSOGUSIG, and VG, SOG and SI G are three disjoint sets of ver-

tices with SOG the set of source vertices, SIG the set of sink vertices and VG

the set of remaining vertices, which we shall call computation vertices,

2. LG= ( 1,12,13) is a set of labels.

3. Every vertex in VG has three incident edges and three outgoing edges,

where each incident and outgoing edge is assigned a unique label from LC.

In any execution of G on the array or the tree, every computation vertex in G is a sin-

gle instance of a function evaluation that is performed in a cycle by a processor in the

array or the tree. As all processors compute the same function, every computation ver-

tex also represents the same function.

We can view the k incoming edges to a computation vertex v, as representing the k-

tuple input value to the processor that evaluates v. Similarly, we can view the k outgo-

ing edges from v1 as the k-tuple output value that is computed by the processor on

evaluating v. Throughout the rest of this paper we will adopt the terminology that a

source vertex represents an input value and a sink vertex represents an output value.

4..1
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Let J1 , J2 and J.3 be three sequences of integers ranging from 0 to hl, 0 to h.. and 0

to h3 respectively. Let JCJIXJ2 XJ 3.

Definition 2.6: G is a Cube Graph if there exists a one-one function F:V G - J that

satisfies the following: Let F 11, Fl 2 and F13 be three projection functions of F, that is, if

F(v)=<c1 ,c.,c 3 > then F1 1(V1)=c 1 , Fv 1 )=fc 2 and F 13(v,)=c 3 . Let v1 and vy be any

two computation vertices in VG. Then, for any label IjELG, there exists a path

comprised only of edges labelled Lj passing through v. and vy such that the distance

from v. to vy is d iff Flj(vy)=fFij(v)+d and ViiELG-{j), Fli(vy)=fF ,).

Henceforth, throughout the rest of this paper G will denote a cube -ph. A cube graph

is an object in Euclidean 3-Space and we will refer to the 3 axes 1 ,12' d and 13 rd

axes. h,>l, h2>l and h3>! are the maximum dimensions along !11", 12nd and 13'd axes

respectively. If v. is a computation vertex in a cube graph then we will denote F11(vx),

Fg.(v.) and F13(V.) by x(1 , x12 and.x13 respectively. Let v0 denote the vertex whose coo--

dinates are <0,0,0>.

3. Mapping Cube Graphs on Arrays and Trees

Intuitively mapping of G onto an array or tree machine assigns each computation

vertex of G to a processor in the machine at a particular time step and also fixes the

delay and neighborhood constant for every label in LG. Assuming discrete time steps, let

T-(0,1,2,..) be the sequence of natural numbers representing the progress of a compu-

tation from its start at time 0.

Definition 3.1: A mapping of G onto a linear, rectangular, hexagonal or tree machines

is a 4-tuple <PA,TA,NA,DA> where:
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1. Tt=LG

2. PA:VG--I and TA:VG-T are many-one functions mapping computation

vertices onto processors and time steps respectively.

3. Let I' be a set of positive non-zero integers. NA:LG-.{I,-1,0} and

DA:Lr--I + are many-one functions assigning neighborhood constants and

delay constants respectively.

[Note: NA(lj)=njj and DA(1j)djj

We next formalize a correct mapping.

Definition 3.2: A mapping is syntactically correct iff

1. VIjELG and for any pair of computation vertices v. and vy, if there is an

edge labelled Ij directed from v, to v., then PA(vy) is the neighbor of

PA(V1 ) with respect to label lj and TA(vy)=TA(v,)+dj.

2. No two values appear simultaneously rt the same input port of any pro-

cessor.

3.1. Linear Array Mapping

We now describe the algorithm to map G onto a linear array LAY. We begin by develop-

ing some appropriate terminology for describing the algorithm.

Let wL=---<wl,w.w 3 > be a triple where wjzI,w E{1,-1} and w3E{1,-1}.

Definition 3.3: A linear diagonalization DL of a cube graph is a pair <D,w> with the

following properties.



1. D={DI, D,, .., DO) is a family of sets of computation vertices and

DIUD2,U..UDk-VG.

2. VDpED, if V. and v., are in DP then "V1X11+w2X12+w 3X13

w 1y1 t+w~.y12+w 3yl3.

i=3 1=3
3. VDp ED and VDqED, p<q iff Vv,, in Dp and Vvy in Dq' Vwjx1, < E wvyg.

We will refer to WL as the linear din gonalizalion factor of a cube graph and to any DpED

i=3
as a linear diagonal. If v. is in D then we will refer to 7wx 1 a h egto ~

P w~~~~ixt stewegto 2

We assign consecutive indices to the diagonals in D in increasing order of their weights

with the diagonal having the least weight assigned index 1.

Algorithm

We are now in a position to describe the linear array mapping algorithm.

1. Perform a linear diagon'alization DL==<D,wL> of the cube graph. For every

DpED assign a proceesor indexed p.

2. Choose n11=wj, n12 -w 2 and n~, 3,=w3. This fixes the neighborhood con-

stants of the labels.

3. Choose d11 -I. If nj,-1 then choose d12 -2 else choose d1l,=i. Choose d13

as follows.

If n1,.-l then if hl-h 2+n, 3?O then choose d13=hl+1+2nl 3 else choose

d(3imh2+1+n1 3

If n1 --1 then if h,-h 1-in 13?O then choose ci, 3 -2h. +l+n 1 else choose

d1-h+1-
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4. Map vertices in D, onto processor i, that is, Vv., in Di let PA(v.,)-i.

'=3

5. Let TA(vj)=Vx 1 di, + t1 where TA(v 0)=t1

3.2. Mesh Array Mapping

W~e next describe the algorithm to map G onto a mesh array MAr.

Let w,-<w1 ,W.w 3 > be a triple where w 1-1, w2E{1,.1}, and W3 -1. Let

LGI - LHULv. Let IL1ELH and L3ELv.

Definition 3.4: A meash diagonalizutilon DM of a cube graph is a pair <D,w%.> with the

following properties.

V. D-(D. ~.D < . D,.~ is a family of sets of computation vertices

and D, ~UD- ,,U -U D<**>iniV(;.

2. or ny pq.ED ifvsand vy are in D<p.q> then VNiELH and VljELV,

Vw - Vwjy1, and Vw~j - wll

S ) EDJ and VD. , ED, p<r iff Vy. in D.,,,,> and Vv, in D<,,,,.

and VI-ELn. Vvixi, < Vwy, Similarly. q<s iff VIjELv,

We will refer to wA as the neash diagenalizatien factor of a cube graph and to any

D~pql ED as a meash id.ena. If Y. is in D<,,> then we will refer to Ewj1 xii where

I iELH as the horizontul weight and Vv.,j where 1jELv as the v'erticul weight of D<pq>

respectively. p and q will denote the horizontlu and rveica indices respectively.
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We assign consecutive horizontal indices to the diagonals in increasing order of their hor-

izontal weights with the diagonal having the least horizontal weight assigned the hor-

izontal index 1. Similarly, we assign consecutive vertical indices to the diagonals in

increasing order of their vertical weights with the diagonals having the least vertical

weight assigned the vertical index 1.

Algorithm

We are now in a position to describe the mesh array mapping algorithm.

1. Perform a mesh diagonalization DM - <D,wM> of the cube graph. For

every D<p,Q>ED assign a processor to the p row and qth column of a mesh.

2. Choose n1 1 =w 1, n12 -w 2 and n13 =w 3 . This fixes the neighborhood con-

stants of the labels.

3. Choose dl 1-l, d 13 -1. If w2l.=1 then choose d12-2 else choose d12-1.

4. Map vertices on D<p,,> onto the processor in the pth row and q column,

that is, Vv, in D<p,q>, let PA(vj)=<p,q>.

5. Let TA(v,)- xjd + t1 where TA(v 0)=t 1 .

3.3. Hexagonal Array Mapping

We describe the algorithm to map G onto a hexagonal array HAr. Let

wH-<wl,w2,w3 > be a triple where wt1-,w 221 and w3E(1,-1). Let the hexagonal

array constant cE{i,-I). Let LG - LH U LV U LT and let

II ELH, 12 ELv , and 13ELT.

Definition 3.4: A hezagonal diagonali:ation DH of a cube graph is a pair <D,wH> with

tj.
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the following properties.

1. D-=(D<jj>. D< 1 ..>, .., D<ma>) is a family of sets of computation vertices

and D<U>UD<1,2>U.. U D<,.>=VG.

2. For any D<p q>ED, if v. and vy are in D<pq> then

W1X1 1 +w'X 1 3 = wjy,1 +w 3y 3 and w~xf2 +W 3 Xg3 C = wy12 +w 3Yl 3 C.

3. VD<p,q>ED and VD<r,>ED, p<r iff Vv, in D<p,q> and Vvy in D<,,.>

w1x11+w 3x1 3 < wty, +w3y( 3. Similarly, q<s iff

W2X1 +W 3 XV$C < W2Yl2f+W3y/3C.

We will refer to wH as the hezagonal diagonalization factor of a cube graph and to

any D<p,q>ED as a hezagonal diagonal. If v. is in D<p,q> then we will refer to

WlXl 1+w 3 X 3 as the horizontal weight and W2X, 2 +W 3 XI 3 C as the vertical weight of D<p;q>

respectively. p and q will denote the horizontal and vertical indices respectively.

We assign consecutive horizontal indices to the diagonals in increasing order of

their horizontal weights with the diagonal having the least horizontal weight assigned

the horizontal index 1. Similarly, we assign consecutive vertical indices to the diagonals

in increasing order of their vertical weights with the diagonals having the least vertical

weight assigned the vertical index 1.

Algorithm

We now describe the hexagonal array mapping algorithm.

1. Perform a hexagonal diagonalization DH - <D,wH> of the cube graph.

For every D<pq>ED assign a processor to the pth row and qth column of a

mesh.

I'



2. Choose n1 -wI, n 2 -w 2 and n13-w 3. This fixes the neighborhood con-

stants of the labels.

3. Choose dl 1 =l, d12 -1 and d13-1.

4. Map vertices on D<pq> onto the processor in the pth row and qth column,

that is, Vv. in D<p,,>, let PA(v)-<p,q>.

5. Let TA(v.)=-- xjdj + tj where TA(v 0)=t 1 .

3.4. Mapping on Tree Machines

Unlike in the linear-array mapping we are required to constrain the choice of

w1, w2 and w3. Let <w 1 ,W2 ,W3>E(<1,l,l >, <1-1,-i >). A linear diagonalization is per-

formed on the cube graph before being mapped onto the tree amchine. The first four

steps involved in mapping a cube graph on a tree processor is the same as the first four

steps in mapping cube graphs onto linear arrays. An additional step is involved for

fixing the perturbation delays as follows. Let p be a processor index in the tree. (Recall

that indexing is done by a depth-first traversal of the tree.)

case 1: If <w 1 ,w2,w3>-<l,1,1> then A( l,p)-A(2,p)=A(3,p).

case 2: If <W 1 ,W2 ,W3 >-< 1-,-i> then A(! l,p)-A(/2,p+1)-A(13,p+1).

The final step involves fixing the times at which the vertices are mapped. Let vxEDp.

i---- p-I

Then TA(v)-tl+ E x1 d,1+ F A(I 1,j) where TA(v 0)=t.
i= 1 j -l

The constraints on the delay perturbations (cases I and 2 above) are motivated by

the following discussion. Let T be an arbitrary tree whose vertices are nurbered by

some depth-first traversal of the tree as shown in Fig. 3.1. The vertex numbered i will be

referred to as vi. Now replace each edge in the tree by a pair of edges between the two

p -
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vertices and consider a closed path in this graph from v, back to itself that visits all the

vertices in the order v1, V1 ,.., va as shown in Fig. 3.2.

M i
V1  

a 1

V .01: Forward Edge

b - V-- : Reverse Edge

?V2 '%V4
V6 341'-h closed path (abc--hij)

V3V

V5  V6v5

Figure 3.1 Figure 3.2

Such a path is composed of forward edges (those encountered while traversing from vi to

vj, i<j ) and reveree edges (those used to backtrack over previously visited vertices).

Each reverse edge is assumed to have a constant delay d associated with it; a forward

edge has a delay (d1,,d 12 or d13) which depends on the label (11,12 or 13) of the stream

traversing the edge.

In case 1, all the three streams 11, 12 and 13 traverse the closed path mentioned

above. If there are x. reverse edges in this path between v. and v,+1 (note xp>O), then

the effective delay for a stream labelled Ij in traversing between vp and v,+ 1 is

6(Lj,p)==d11+xpd, corresponding to a delay perturbation xpd. Note that the perturbation

delay between vp and vp+ l for any p, is the same for all labels.

In case 2, elements of stream I I propagate from v, to the leaf vertices in a series of

local broadcast steps. An element at v. is broadcast to all vertices Vq, q>p, that are

adjacent to v. in the tree as shown in Fig. 3.3.

-- - II I l .II 
II . .. I1, .... . ... ..

9. 

... ... .
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VI

aa Broadcast path for 1

I0

122 - -- 4 : Forward edges for 12, 13

b V4
C d -- : Reverse edges for 12, 13

e Van IV ,. g 9  6 path followed by 12 and 13:
f (jih.... cba)

V5

Figure 3.3

The elements encounter a delay dil in moving from vp to Vq. Owing to the depth-first

numbering scheme, the difference between the time at which the values of a data ele-

ment reaches vp.l and the time at which it reaches vp, is (xp-l)dtl, where xp is the

number of reverse edges between vp and vp+'. Note however, that the element does not

traverse these reverse edges, but a copy of its value reaches vp+, by the direct broadcast

path. Thus if xp=0 (i.e.,vp and v,,, are physically adjacent in the tree) then the element

will reach vp+ l, d,1 cycles later than it reaches vp; else it will reach vp.1 at the same or

earlier time than it reaches v.. The effective delay encountered between vp and vp+ s is

6(1 ,p)--(x-)d 1, corresponding to a perturbation &(I 1,p)--xpdu 1.

Elements of streams of 11 and 12 traverse a closed path around the tree as before,

but in the direction opposite to that in case 1, that is, in the direction v,,v3 . 1 ,..,v 1. The

effective delay for either of these streams (say 12) between vp+ 1 and Vp is d 2 +xpd,

corresponding to a perturbation A(12,p+1)-xpd-A(3,p+1). The conditions in case 2

can be satisfied by choosing d-dil.

In the appendix we have shown that the mapping algorithms for tree machines,

linear, mesh and hexagonal arrays correctly map a cube graph.



Recall that the host machine inserts input values and extracts the result values

from the array. We now describe the evaluation of the times at which insertion and

extraction must be done. Also recall that the source vertex represents an initial value

and the sink vertex representt a final value. Without loss of generality, let v. be the

computation vertex connected to a source (sink) vertex by an edge labelled . The delays

in the links having identical labels are all the same. Hence, if the distance of the proces-

sor (onto which v, is mapped) from the external input (output) port is k then the input

(output) value represented by the source (sink) vertex must be inserted (extracted) into

(from) the array by the host at time t-k n,(t+k ni).

We next synthesize three algorithms to illustrate our mapping techniques. The

first involves synthesis of a novel linear-array matrix multiplication algorithm that we

first reported in (101. We will then synthesize another matrix multiplication algorithm on

the tree machine. In our final example we will synthesize an algorithm for multiplication

of band matrices on a hexagonal array that appeared in (5].

Example 3.1 Consider multiplication of two dense matrices A and B as shown below.

A program for computing this multiplication is given by the following recurrence.
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c(,'+ ). c,)+a kbj, 1: ik< 2 and 1:5j.53

The data-flow description of this computation is shown in Fig. 3.4.

b22

0 12 13

'12 131:

(3) (3) (3
423 921 '22 2

~'kt 22
21 *2 2 1 2

JI &

Figure 3.4

In Fig. 3.4, pij and qjj denote computation vertices. The horizontal, vertical and oblique

incident edges of pi, ame labelled 11, 12 and 13 respectively. Similarly the horizontal,

vertical and oblique outgoing edges of pij ane labelled 11, 12 and 13 respectively. If the

horizontal, vertical and oblique incident edges of p,, or q.- represent the values a, b and

c respectively then the horizontal, vertical and oblique outgoing edges of PIj or k

represent the values a, b and c+ab respectively. In Fig. 3.4, the oblique input edge

incident on pij represents the value call) which iq 0. The oblique outgoing edge from %1,

reresents the final (output) value c. 3 of c,1, i.e., ajjb,1+a 2b2i.

The graph in Fig. 3.4 is a cube graph as illustrated in Fig. 3.5. The cube graph is

shown without the source and sink vertices for purposes of clarity. The maximum
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dimensions of I jIh,12 'd and 3 rd axes is 2, 1 and I respectively, i.e., h--2, h2 -I and

hs1-1.

< 0,0,0> < 1 0O> -C .0, 0 >

, 27/

/ /..0- 11 . /20
/ 7

2 1

21~ 22Ot 2

I //

Figure 3 .5

We next map this graph onto a linear array using the linear-array mapping algo-

rithm.

Let WL-<Wl, W21 W3>-<l,l,-I>. For this choice of WL, the set D of diagonals

is comprised of DI-( q 1 , 1D 2 -( Pu' q12 , q21  ) D 3 ( P12< 'P.O q13  C

1) PI1P 21 q23 ), s p

We use D-5 processors indexed from I to S. The neighborhood constants for

labels 11,,12 and 13 are n-1, n2l1 and n13 -1. The vertices in Di are mapped onto

processor indexed i. The delays for the labels 11, 12 and 13 are d1 -1, d( 2-2 and

dt 3-l. The resulting mapping of the entire cube graph is shown in Fig. 3.6. The times
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at which a computation vertex is mapped is indicated by the side of the computaion ver-

tex, for instance, %,1 is mapped onto processor 3 at time t1+2. If A and B were nXn

matrices then the synthesized algorithm above would require 0(n) processors and will

take (n) time steps to compute the result matrix.

14 ,*4 3

Figure 3-6

Example 3.2: Consider again multiplication of the two matrices in the previous exam-

pie. We will synthesize a tree algorithm for multiplying the two matrices.

Let wL-<ww 2 ,w3>-<1,-*,1>. For this choice Of WL, the set D of diagonals is

comprised of Dl-( ql2l ), D)2 m( ql22, q11i, P21 ), D)3 -(q 3, Cq12 , p22, p1 ),D,-(q 13 , P23, P12

We use IDI-5 processors indexed from I to 5. The neighborhood constants for

labels 11, 12 and 13 are u1 1-1, n1 2 -n! 3 -- Vertices in Di are all mapped onto
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processor indexed i. The delays for labels 11, 12 and 13 are dtl-,dt2= and d13 =8-.

Let the five vertex tree representing the tree array be as shown in Fig. 3.7 below.

V1

V2  0v5

V3  V4

Figure 3.7

Since the choice of nil, n12, and n13 satisfies case 2, we choose the delay d along reverse

edges to be equal d1 l. The perturbations in the delay for 11 satisfy A(11.1)O,

A(L 1,2)=0, a(L 1,3)-1 (there is one reverse edge between v3 and v4) and A(1 1,4)-2.

The perturbations for 12 and 13 satisfy A(12,j)(13,j)-A(i,j-1), j=2,..,5. The

effective delay between logically adjacent processors (6 ' s) is shown in Fig. 3.8 for each

stream. The resulting mapping of the cube graph is also shown in the Fig. 3.8. The

times at which a computation vertex is mapped is calculated from the final step of the

mapping algorithm for tree machines and is ijidicated by the side of the computation

vertex. If A and B were nXn matrices then the tree algorithm will require O(n) proces-

sors and interestingly, O(n 2 ) time steps to compute the result matrix!!

L,
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t+7 t2 +8 q +

q I ;3

t+2 t+12

adjcetpocssos orth tree of2 Fiur 3.7)

Fiur 3.8

aml 33 CNsiders onultipl nicatioe t bandemtrie AdBay shtwn blowial

wherein aii and b,, denote the [iJtb entries in A and B respectively.

4
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11 12  bzl b2 2  b±3

21 1 -22 1 -23 b 2 1  b2 2  b2 3  b 2 4

a3 1 a3 2 a 33 a 3 4  b3 2 b3 3 b 3 4 b3
b3 b b~q b

b43 b44 b45 b46

53 :154 1.65

.11, 
b64 b 6r b6a

6g4 9.5

Let C=AXB be the result matrix. The data-flow description in Fig. 3.9 represents mul-

tiplication of AXB. The horizontal, lateral and vertical edges are labelled 11, 12 and 13

respectively. In Fig. 3.9, vij +1 is the computation vertex at a vertical distance k from

vi'. Thus, v' is the computation vertex at a vertical distance 2 from v 1. The program

graph in Fig. 3.9 is a cube graph as illustrated in Fig. 3.10. We next map this graph on a

hexagonal array using the hexagonal array mapping algorithm.

Let wH <wl,w2,w>-<l,l,-1> and c=1. It can be verified that for this choice

of wH the set of diagonals D is comprised of ( Dij I I<i,j<_4}.

The hexagonal array is comprised of 4 rows and columns of processors which are

identical to the procesors used in example 3.1. LH={l1}, Lv={12} and LT ={I3}. The

neighborhood constants for the labels are ng=n1 --1 and n, 3 =-1. The delays are

d1 1 =d1 =fd 3 =1. The constant c for the array is 1. Fig. 3.11 iluustrates the mapping.
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Conclusion

In this paper we formalized linear, mesh and hexagonal array processors suitable for

VLSI implementation. We aIso presented a model of a tree machine. We then presented

novel algorithms for dense matrix multiplication on a linear array and the tree machine.

We also derived a hexagoral array algorithm for multiplying band matrices. Our linear-

array algorithm for multiplying dense matrices is particularly useful in situations where

the I/O bandwidth is limited as the algorithm requires only a constant (three) number of

I/O ports for inserting the elements of A and B matrices and retrieving the result values.

The tree algorithm has the same features as the linear-array algorithm. More impor-

tantly, the tree algorithm is robust to harware faults in the underlying host.
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Appendix

We first prove that the mapping algorithm for the tree machine correctly maps the

cube graph. We begin by first showing that the mapping preserves the neighborhood

constant of the labels.

Theorem A.1: Let IELG and let n1 and d, be its neighborhood and delay constants

respectively. If v and vy are a pair of computation vertices with an edge labelled I

directed from v. to v. then PA(vy)-PA(v)+n,.

Proof: Let v, and v. be the vertices in diagonals Dp and Dq respectively and Wp and Wq

be the weights of Dp and Dq respectively. So,

W1X, 1 +W 2 X1 2 +W 3 X( 3sWp, and

w1y1 -+w2y, 2+w 3Y13=Wq

We will show that the theorem holds for 1-11 as the proofs for 1-12 and 1-13 are

similar.

Let e be the edge labelled I directed from v, to vy. From the definition of a cube

graph we obtain y, 1-x 1 +l, y12 -x 1 2 and y 13 -x 13. Consequently, wq-wp-wjlI. Since

the diagonals are indexed in order of their weights, it follows that index of Dq must be

one more than the index of D., that is, qfp+l.

The mapping algorithm maps vertices in D onto processor p and those of Dq onto

processor p+wl and hence PA(vy)-PA(v)+w1 . Also from the mapping algorithm

il--wj. So the theorem holds for i-11.

We next show that the mapping preserves the delay constant of every label .
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Theorem A.2: Let IELG and let n, and di be its neighborhood and delay constants

respectively. Let v and v, be a pair of vertices with an edge labelled 1 directed from vz

to v,. If v, is in diagonal D. then TA(v,)-TA(vx)+6(1,p).

Proof: We have to consider the two cases when n1 1=n 12 nl 3l-I and

nil-1, ni2-ni 3 =-1.

ca" 1: ni l- 1 2 - ni 3 - 1.

Let vyEDq and 1-11 with no loss of generality. From the final step in the mapping algo-

rithm for the tree machine we obtain:

$ p-I

TA(v)==t + x + EA(I j)

3 q-1
TA(v,)-t + rytjdi + ,A(I lj)

1=1 j'=1

By definition of a cube graph we have, x12 - Y12 x13 = Y13 and yi1 - x1l + I. From

theorem A.1 we obtain PA(v,)==PA(v,)+1, i.e., q=p+l. Therefore,

TA(v,)-TA(vx)-d 1 + A( 1,j) - I-EA(t 1J)
j=1 j-1

,,dil + A(t 1,j)==dj+A(t 1,p)=-6(t 1,p)
i=p

ae 2a n11 1, n1 2 =1n1 3 -.

If b-11 then the proof is the same as that used in case 1. Else let 1-12 with no loss of

generality. Again by definition of a cube graph we have,

x- , Xt - Y13 and Y12 - x12 + 1. From theorem A.1 we obtain PA(v7)-PA(v).-

1, i.e., q'=p-1. So,

q-1 p-I

TA(vY)TA(vt)-d1 2 + AV I j) - E A(/lj)

-d, 2.- C(,J- + A(A ,AU I E VI,))
d12- A(I l,q)-d12 + 4(12,q+ l)-d12 +a(I 2,p)
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-6(1 2,p)

rn

We have to next establish that no two values appear simultaneously at the input port of

any processor and the following definition and lemma comes in handy for proving it.

Definition A.1 For any label I ELG, a major path labelled I in G is a directed path from

a source vertex to a sink vertex such that all the edges in the path are labelled L

Lemma A.1: Let IELG and nE(1,-1). Let P1 and P2 be two distinct major paths

labelled I in G and let v, and vy be the computation vertices adjacent to the source ver-

tices in PI and P 2 respectively. Let PA(v) - s1, PA(vy) - s2 where 51:_3 2 . Let

TA(vx) - t, and TA(v,) - t2 . If the input/output values represented by the source and

sink vertices of P1 and P2 appear simultaneously at the input port of a processor then

02 - 1

(t2 - tl)n,-(s2 - s1)d, + n,( E &(I I

Proof: Again we need to consider the two cases when nllsn 12 snI3  and

came 1s nil n 2 - a13 - 1.

Since PA(v1 ) 3 a1 and PA(vy) - 32, we have v.EDl and vyED,,. Assume without loss of

generality that the input values represented by the source vertices of P1 and P 2 appear

simultaneously at the input port of processor a. Let s_.s5 2 and the proof will be simi-

lar for other values of s. Let t be the time at which both the values appear at the input

port labelled I of a. The time taken by the input value represented by the source vertex

$,- I

of P, to reach the input port labelled I of s 1 is t+ E 6(,j) which is TA(v1 ). Similarly,

ii a
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the time taken by the input value represented by the source vertex Of P2 to reach the

input port labelled I of s2 is t+ E 6(I1j) which is TA(vy) and hence,
i-1

t- - TA(v,)-t+s - s)dr+ ( I 1, j), and

t2 - TA(vy)-t+(s2 - s)dri- A(I1, j), and hence,
32-1

t- 
-

A(1j)

Since n - I by hypothesis, we obtain (t, - tj)n1 -(s 2 - sl)dg+n( A(ftj)).
J-Si

came 2: nil - 1, 112 - n18 - -1.

If i 1, same proof as case I holds else assume 1-12 with no loss of generality.

012-1, and s2 >s2s!. As illustrated in the figure below, if the two values have to meet

at s at time t then t 2 >t 1>t.

t ti -. ?

Now t-tj+ 6(12,j)-tj+(s1 - s)dt 2+ A(I2j) is the time taken by the input
j !1 j-s+l

value represented by the source vertex of P1 to reach s,

St St

and t-t 2 + F b( 2j)-t 2 +(s 2 - s)d1 2+ A(I2j) is the time taken by the input value
j=S+l jms 1

represented by the source vertex of P2 to reach s.

Since the values meet at s, the time t is the same in both the equations and hence,

t2 - t)-(s - 32)d,2+ , Al(2jy) E A(I,j)
jan+1 j-8+l

82-{- 2)d.( &( 2tj) - A( 2l!j))

-g

jm.t+1

.4€
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8t 1

Since A(12,j)==-A(1I j-1) we have, (t 2 - tl)-(s 1 - s2 )d12 + &( A(1,k)
k==u1

62-1

Also as n12  0 - , so (t2 - tl)n,2==(s 2 - S)d12+n,4 . A(1 l,k)). 

We next show that the mapping ensures that no two input/output values appear

simultaneously at the input port of any processor.

Theorem A.3 Let LELG. Let P1 and P 2 be two distinct major paths in G labelled L

The mapping ensures that the input/output value represented by the source/sink ver-

tices of P1 and P2 never appear simultaneously at the input port labelled I of any proces-

sor.

Proof: Let v1 and vy be the vertices adjacent to the source vertices in P1 and P, respec-

tively. From the mapping algorithm we obtain,

3
PA(v)-PA(vf)-A(P)f E kinti where ki=yi-xii and -hi. kit5h,.

i=1

Let vzEDp, vyEDq and p5q with no loss of generality. From the mapping algorithm we

also obtain,

3 q-1 p-I

TA(vy)-TA(v.)f= T- F2(yli - xli)di+ E A(I Ij)- E A(I 1j)
i==! j=1i j=1i

3 q-I

kd,1+ E A(I I j)
ifif j=p

Now assume that the input/output value represented by the source/sink vertices of P1

and P2 appear simultaneously at the input port labelled t I of a processor. By lemma

A.1 we have,

q-i

(,IT)nll-(,Ip)dlt+nll( E A(I ij)) which is the same as
j-p
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3 q-I q-1

nII(V kdI)+n 1( , A(I lj))-(AP)dI1 +nI1 ( E A(I j)) and hence,
I-sP

(AP)dII-n 1( kidi ) .....
i-I

We next show that (*) cannot be satisfied.

1. Let n12 ==1 and so by the mapping algorithm, dIst= and d12=2. P1 and P2

are distinct major paths labelled I 1 and so k2==k 3 #'O.

a. Let hI-h 2+n 1 3>0. So d 3 ==h 1 +1+2ni 3  and (*) reduces to

k3(h1+l+n,3 )+k2=O. Now h1+l+n/3>l and so k27&0 and k37&0.

Besides h2<h,+n13 and -h2 _k2 <h2 and so (*) cannot be satisfied.

b. Let hI-h2+nIs<0 and so d 3 ==ht+nI 3 and (*) reduces to k3h2+k 2=0.

Now h>1 and so k2O and k37&. Besides -h2<k 2 _5h2 and so (*)

cannot be satisfied.

2. Let n12-1. So dI=1I and dt2 =1.

a. Let h2hl+nt32_0 and so d13 -2h2 +--n"3 . So (*) reduces to

2k2+k 3(2h 2+)-O. As h2 2.1, so 2h+1>3 and so k27AO and k390.

Besides -h2<k 2 <h2 and so -(2h 2+1) 2k2<2h2+1 and so (*) cannot be

satisfied.

b. Let h2-hl+n 13<0 and so d1 =2hI+I-nI3. So (*) reduces to

2k 2+k(2h+I.2u3)-0. Now I<h 2<hl-n 3. So 2h 1+I-2nI 3>1 and

hence k2yO and k3 0. Besides -h 2 5 _k2 5 h2  and so

F -(2h 2+1-2nI 3)<2k2<2h+1-2n1 3 and hence (*) cannot be satisfied.

Using the inequality relationships between kI, k2, k3 and hl, h2, hs we can similarly

i-s i-s

establish that the two equations AP d12 -( E kidI) nI2 and AP d, 3-( 3 kid,) ng3
i-l i=-l
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c:nnot be satisfied and hence no two input/output values will appear simultane-

ously at the input port of any processor labelled 12 or 13.

Proof that the linear-array mapping algorithm correctly maps a cube graph on a

linear array follows immediately from the proof of correctness of mapping cube graphs

onto tree machines by letting the perturbation delay 6's be zero in the above proofs.

It can be easily established that if v. and vy are two computation vertices con-

nected by an edge labelled I then the mesh-array mapping algorithm maps the vertices

on processors which are on the same horizontal row if IELH (like processors 11, 12 and

13 in Fig. 2.2) or on the same vertical column if IE Lv (like processors 11, 21 and 31 in

Fig. 2.2).

It can be similarly established that the hexagonal-array mapping algorithm maps

the two vertices on the same row of processors aligned in a north-easterty direction (like

processors 11, 12 and 13 in Fig. 2.3) if IELH. If IELV they are mapped on a row of pro-

cessors aligned in a north-westerly direction (like processors 11, 21 and 31 in fig 3.3) and

if I ELT the vertices are mapped on the same column of processors (like processors 21

and 12 in Fig. 3.3). All these rows and columns constitute a linear array and hence the

correctness proof used above can be used to establish that the mesh and hexagonal-

array mapping algorithms also map cube graphs correctly.



UNCLASSIFIED
SECURI"Y CLASSIFICATION OF THIS PAGE (1

4
hen Date Entered)

REPORT DOCUMENTAION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

I REPORT NUMBER 2. GOVT AC CS'N NO. . RECIPIENT'S CATALOG NUMBER

AFOSR-Ift 84-0 
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

ON MAPPING CUBE GRAPHS ON VLSI ARRAY ".ccA,.,c./ A' pdI?
AND TREE ARCHITECTURES

6. PERFORMING ORG. REPORT NUMBER

CAR-TR-40; CS-TR-1358
7. AUTHOR(.) S. CONTRACT OR GRANT NUMBER(s)

I.V. Ramakrishnan F49620-83-C-0082
P. J. Varman

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AREA S WORK UNIT NUMBERS

Dept. of Comp. Sci. Dept. of Elec. Engin. E &

iniversity of MD Rice University /io,. =

:ollege Park, MD20742Houston, TX 77001
1 I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

ath. & Info. Sciences, AFOSR/NM ecember 1983
3olling AFB 13. NUMBER OF PAGES
agqhi natn ( N

14. MONITRING YNAME& AODRESS(f different from Controlling Office) IS. SECURITY CLASS. (of this report)

UNCLASSIFIED

1Sa. DECLASSIFICATION, DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

12. KEY WORDS (Continue on reverse side if necessary and OdentJfy by block number)

Computer architectures
VLSI
Arrays
Trees
Cube graphs

20. ABSTRACT (Continue on reverse side It necessary and identify by block number)

We formalize a model of array architectures suitable for VLSI
implementation. A formal model of an arbitrarily structured tree
machine is also presented. A mathematical framework is developed
to transform cube graphs, which are data-flow descriptions of cer-
tain matrix computations, onto the array and tree models. All pub-
lished algorithms for these computations can be obtained using the
mathematical framework. In addition, novel linear-array algorithms
for matrix multiplication are obtained. More importantly, the

DD I jAN 73 1473 EDIIO N OF I NOV65 IS OBSOLETE
UTNCLASS IFI ED

SECURITY CLASSIFICATION OF THIS PAGE (NWhen Dare Entered)



UNCLASSIFIED

algorithms obtained for the tree model are of special significance.
Besides their novelty, the independence of the tree algorithms from
a specific inter-processor communication geometry make them robust
to hardware faults as opposed to algorithms that are based on speci-
fic interconnection requirements.

UNCLASSIFIED

-:Id




