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ABSTRACT

We formalize a model of array architectures suitable for VLSI implementation. A
formal model of an arbitrarily structured tree machine is also presented. A mathemati-
cal framework is developed to transform cube graphs, which are data-flow descriptions of
certain matrix computations, onto the array and tree models. All published algorithms
for these computations can be obtained using the mathematical framework. In addition,
novel linear-array algorithms for matrix multiplication are obtained. More importantly,
the algorithms obtained for the tree model are of special significance. Besides their no-
velty, the independence of the tree algorithms from a specific inter-processor communica-
tion geometry make them robust to hardware faults as opposed to algorithms that are

based on specific interconnection requirements.
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1. Introduction

Specialized array processors have been proposed as a means of handling compute-
bound problems in a cost-effective and efficient manner [4,5,8]. These array processors
are typically made up of simple, identical processing elements that operate in syn-
chrony. Several array structures have been proposed that include linear arrays, rectangu-
lar arrays and hexagonal arrays. Simplicity and regularity of linear, rectangular and hex-
agonal array processors render them suitable for VLSI implementation. High perfor-
mance is achieved by extensive use of pipelining and multiprocessing. In a typical appli-
cation, such arrays would be attached as peripheral devices to a host computer which

inserts input values into them and extracts output values from them.

A variety of algorithms have been designed for such arrays (1, 2, 5, 7, 10]. All these
algorithms exhibit the following feature. They are composed of streams of data travelling
in multiple directions at multiple speeds. Each processing element receives data from
each of the streams, performs some simple operation and pumps them out (possibly
updated). We will refer to such algorithms as ‘“‘array algorithms”. The array is typi-
cally comprised of sdentical processors, that is, they all execute the same set of instruc-
tions in every instruction cycle and they do not have any control unit. The array is
driven by a single-phase or two-phase global clock [9).

A few methodologies have been proposed for transforming high-level specifications

onto array algorithms [3,8,14]. Though these methodologies are imaginative they lack a

mathematical basis. In this paper we outline a mathematical framework for transforming

data-flow descriptions of matrix and related computations onto array machines and tree X
Ve

machines. The research presented herein is an extension to our work on transformation - - —

of high-level specifications onto linear-array algorithms (11]. In this paper we generalize /
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the formal model of a linear array developed in {11] to include two-dimensional arrays
(rectangular and hexagonal arrays). We also formalize another important model,
namely, tree machines having arbitrary structure. Algorithms on such tree machines are
particularly important. Any connected set of processors (that is, any two processors in
the set can communicate with each other either directly or indirectly through other pro-
cessors and communication links in the set) with no a priori topological restrictions can
be used to execute these algorithms by forming a spanning tree of the connected set of
processors. The connected set of processors could be the non-fauity processors in an
underlying host machine (like a rectangular or a hexagonal array) which has both faulty
and non-faulty processors and communication links. The hardware details of

reconfiguring such a connected component of processors are provided in [12,13].

This paper is organized as follows. In Section 2 we formalize the array and tree
machine models. We also introduce cube graphs which are data-flow descriptions of some
matrix and related computétions. In Section 3 we provide a precise formulation of
correctly transforming cube graphs (referred to as mapping cube graphs in our terminol-
ogy) onto the array and tree models. Algorithms for mapping cube graphs onto the
array and tree models are also presented in Section 3. In the Appendix we provide a
proof that the algorithms in Section 3 correctly transform a cube graph into array and

tree algorithms.

2. Computational Models

We now formalize the array model, the tree model and cube graphs. We begin with

a formal definition of an array processor.
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2.1. Array Machine Model

Let 1), I, .., be z sets of sequences of integers where each I; ranges from 1 to m;.

Let IC1, X1, X.. X1,

Definition 2.1: An array machine Ar is a 4-tuple <Ny, Tya;, 645 ¥4,> where:
1. Ny, is a set of identical processors.
2. T,=={l11,12,.1k} is the set of labels.

3.  8,:Nya, is 3 one-one function that assigns coordinates to every processor in

the Euclidean z-space.

4. Every processor in the array has k input ports and k output ports. with

each input port and output port assigned a unique label from T,,.

5. The array is driven either by a single-phase or a two-phase global clock. A
phase can be viewed as the instruction cycle of a processor. In a single-phase
clocking scheme all processors are activated in every phase and every pro-
cessor computes a k-ary function ¢,,. In a two-phase clocking scheme, adja-
cent processors are activated during opposite phases of the clock and every

processor computes ¥, in the phase it is active.

The value of z and the commurication geometry determine the structure of the
array processor. In this paper we will be examining three types of array processors,
namely, linear, mesh and hexagonal arrays which are well-suited for VLSI implementa-
tion {4,9]. We now formalize these three arrays. Our definition captures the ‘‘nearest-
neighbor’’ interconnection of these arrays and also the intuitive notion of a data stream
used earlier in the description of array algorithms. /€T, let n;; be the neighborhood

constant associated with label {j.
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l Definition 2.2: A linear array L,, is an array processor with z=1, that is, ICl,. Besides
the linear array has the following communication features. Let p be a processor index.

Then, \f{JET,,, the output port labelled [j of p is connected to the input port labelled

Let Ly, Ly and Lo be three disjoint sets of labels such that Ly| JLy| Lo == T,

i

lj of p+n;, where n;;€{1,-1,0}. ’
!
f
!
|

Definition 3.3: A mesh array M,, is an array processor with 2=2, that is, ICI, XI,.
Besides, the mesh array has the following communication features. Let <p,q> denote :
the coordinate of any processor in the mesh array. Then, ;
1. VljELy, the output port labelled Ij of <p,q> is connected to its own
input port labelled !, that is, n;;=0.
2. \fljELy, the output port labelled !j is conected to the input port labelled !
of <p+nyj,q> where n;;€{1,-1}.
3. \flj€ELy, the output port labelled !j is connected to the input port labelled ‘
ljof <p,q+n;;> where n;;€{1,-1}. |

Let Ly Lv{JLo|Lr=Tx, be four disjoint sets of labels.

Definition 3.4: Let c€{1,-1} denote the hexagonal array constant. A hezagonal array
H,, is similar to a mesh array with the additional communication feature that \f!j€Lr,
the output port labelled Ij of <p,q> is connected to the input port labelled {j of
<p+ny;, q+n;;c> where n;;€{1,-1}.

Fig. 2.1, Fig. 2.2 and Fig. 2.3 illustrate a linear, mesh and hexagonal array proces-
sors. In the figures I;, I, and I; denote external input ports and O,, O, and Oy denote

external output ports.
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Figure 2-1 Figure 2:2 Figure 2.3

In Fig. 2.1, the links between processors directed from west to east are labelled 1
and those directed from east to west are labelled 2. The links connecting a processor
back to itself are labelled 3. . The neighborhood constants are

n;; == 0, n;, == -1, and n;; == 0.

In Fig. 2.2, the links directed from west to east are labelled /1 and the links
directed from north to south are labelled [2. Ly=={l{1} and Ly=={l/2} and
n;; =ngp = 1.

In Fig. 2.3, the links pointing northeast are labelled {1, the links pointing southeast
are labelled 2 and the links directed from south to morth are labelled 3. Ly=={l1},

Ly={12} and Ly=={{3}. n;;==n;,==1 and n;;==-1. The hexagonal array constant c==-1.

We will refer to the processor whose input port labelled ! is connected to the
output port labelled [j of processor p as its neighbor with respect to label 1. If a pro-
cessor q is the neighbor of p with respect to label ! then q can only receive data from p
on the link labelled [j connecting them. Similarly p can only send data to q on the same
link. The links connecting any two processors are unidirectional. Impose a direction on

the links such that the sender is at the tail end and the receiver at the other end. A




stream then, is a directed path through processors and links having the same label.

We model the speed of data in streams by associating a queue of buffers in the
commupication links. More precisely, let s be a processor in the array. Let
si;=<si)!, si?, .. si*> denote the k-tuple input to processor s at time t where si/ is the
value at the input port labelled ¢j of processor s at time t. Let so,==<so,!, 0%, ..,s0k>
denote the k-tuple output computed by processor s at time t, that is, ¥, (si;)=s0,. Ele-
ments in a data stream travel at a constant velocity, and hence a non-zero positive delay
conatant d,; is associated with every label /j in T,, such that so] appears at the output
port labelled {j of s at time t+d,;. The delay d;; can be implemented as a queue using a

shift register of length d;-1.

2.2. Tree Machine Model We are now in a position to formalize a tree machine

as follows.

Definition 2.5: A trec machine I',, is a set of processors in a tree that are indexed by
some depth-first traversal of the tree. Besides it has the following communication
features. Let p be a proceesor index. Then, \f{jET,,, the output port labelled ! of p is
connected to the input port labelled !j of p+n;; where n;;€{1,-1,0}. Besides, for every
label 1JET,,, and for every communication link between the output port of a processor
indexed p and the input port of the processor indexed p+n;j, associate a delay
&1j,p)=d;;+A(lj,p) where d,; is the delay constant associated with any communication

link labelled !, and A(/j,p) is the perturbation delay between processor p and p+ny;.

A tree machine is a generalization of the linear array model (see definition 2.2).

The term tree machine signifies that the interconnection between processors in the array
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can be represented by an arbitrary tree, the vertices of which represent processors and
edges represent the adjacency relation between the processors. The corresponding

representation for a linear array could be a special case of a tree forming a path graph.
On any such tree of processors it is possible to simulate the data flow through a
linear array by routing the data streams through a closed path around the periphery of

the tree (see Fig. 2.4).

closed path:
(abc ... hij)

The major difference b.etween this “logical pipeline” in a tree machine and a “physical
pipeline” in the linear array model is that in the former, logically adjacent processors
(i.e., the pair indexed i and i+1 ) need not be physically adjacent. Since all the data
streams flow through the array at a finite velocity, the implication of this physical
separation is that the delay encountered by a data element in traversing the array from
processors i to i+1 (or vice versa) is a function of both the delay constant associated
with the stream to which that element belongs and of the physical separation between

the processors.

Our tree machine model (definition 2.5) is motivated by this idea. The delay for a

data stream [j between processors indexed p and p+n;; is represented by




&1j,p) = d;;+3(1j,p). The first quantity is the delay constant associated with any link
labelled !j and the second quantity is the perturbation in this delay caused by the non-

adjacent physical arrangement of the logically adjacent processors p and p+ny;.

2.3. Cube Graphs

We now provide a formal definition of graphs that we will be mapping later on onto

linear, mesh and hexagonal arrays and tree machines.

Let G=<V,E,L;> be a labelled DAG where:

1. V=Vg{JSOg|JSlg, and Vg, SOg and Slg are three disjoint sets of ver-
tices with SOg the set of scurce vertices, Sl the set of sink vertices and Vg

the set of remaining vertices, which we shall czll computation vertices,
2. Lg={l1,12,(3}) is a set of labels.

3. Every vertex in Vg has three incident edges and three outgoing edges,

where each incident and outgcing edge is assigned a unique label from Lg.

In any execution of G on the array or the tree, every computation vertex in G is a sin-
gle instance of a function evaluation that is performed in a cycle by a processor in the
array or the tree. As all processors compute the same function, every computation ver-
tex also represents the same function.

We can view the k incoming edges to a computation vertex v, as representing the k-
tuple input value to the processor that evaluates v,. Similarly, we can view the k outgo-
ing edges from v, as the k-tuple output value that is computed by the processor on

evaluating v,. Throughout the rest of this paper we will adopt the terminology that a

source vertex represents an input value and a sink vertex represents an output value.




Let J; J,and J; be three sequences of integers ranging from 0 to h;, 0 to h, and 0

to hy respectively. Let JC&J; XJ,X Js.

Definition 2.8: G is a Cube Graph iff there exists a one-one function F:Vg — J that
satisfies the following: Let F;,, F;, and F;, be three projection functions of F, that is, if
F(vy)=<¢;,ca,cs> then Fyy(vy)=c,, Fs(vs)==c2 and F;y(v;)=c;. Let v, and v, be any
two computation vertices in Vg. Then, for any label /jEL;, there exists a path
comprised only of edges labelled /j passing through v, and v, such that the distance
from v, to v, is d iff F,j(v,)=F(v,)+d and li€L{lj}, Fii{vy)=F ).

Henceforth, throughout the rest of this paper G will denote a cube ~ph. A cube graph
is an object in Euclidean 3-Space and we will refer to the 3 axes ¢ 2% and {3
axes. b;>1, h,>1 and hy>1 are the maximum dimensions along /1%, 12° and /3™ axes
respectively. If v, is a computation vertex in a cube graph then we will denote F,(v,),
Fiv,) and Fy(v,) by xq,, X;, and.x;, respectively. Let v, denote the vertex whose coo--

dinates are <0,0,0>.

3. Mapping Cube Graphs on Arrays and Trees

Intuitively mapping of G onto an array or tree machine assigns each computation
vertex of G to a processor in the machine at a particular time step and also fixes the
delay and neighborhood constant for every label in Lg. Assuming discrete time steps, let
T={0,1,2,..} be the sequence of natural numbers representing the progress of a compu-

tation from its start at time 0.

Definition 3.1: A mapping of G onto a linear, rectangular, hexagonal or tree machines

is a 4-tuple <PA,TA,NA,DA> where:
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l. Tir=LG

2. PA:Vg—Il and TA:Vg—T are many-one functions mapping computation

vertices onto processors and time steps respectively.

3. Let I™ be a set of positive non-zero integers. NA:Lg—{1,-1,0} and
DA:Lg—I" are many-one functions assigning neighborhood constants and

delay constants respectively.
[Note: NA(/j)=n,; and DA(!j)=d; |

We next formalize a correct mapping.

Definition 3.2: A mapping is syntactically correct iff

1.  V!j€Lg and for any pair of computation vertices v, and v,, if there is an
edge labelled 1j directed from v, to v, then PA(v,) is the neighbor of

PA(V,) with respect to label {j and TA(v,)=TA(v,)+d,;.

2. No two values appear simultaneously -t the same input port of any pro-

cessor.

3.1. Linear Array Mapping

We now describe the algorithm to map G onto a linear array L,,. We begin by develop-

ing some appropriate terminology for describing the algorithm.
Let w =< w ,w,w;> be a triple where w,=1,w,€{1,-1} and w;€{1,-1}.

Definition 3.3: A linear diagonalization Dy, of a cube graph is a pair <D,#> with the

following properties.




11

1. D={D,, D;, .., D} is a family of sets of computation vertices and

D, UD:y-UDx=Vs.

2. \DyeD, if v, and v, are in D, then wx;;+Wxio+Wwyx;y =

WY +Woy o+ Wayys.

i=3 i=3
3. YYD, €D and ¥YD(€D, p<qiff \/v,in D, and v, in D, Lwix;; < ¥ wiyy,.

=1 i=1

\We will refer to w; as the linear diagonalization factor of a cube graph and to any D,eD

i=3
as a linear diagonal. If v, is in D, then we will refer to ¥, wix,; as the weight of D,.

=1
We assign consecutive indices to the diagonals in D in increasing order of their weights

with the diagonal having the least weight assigned index 1.

Algorithm
We are now in a position to describe the linear array mapping algorithm.

1.  Perform a linear diagonlalization Dy=<D,w; > of the cube graph. For every
D,€D assign a proceesor indexed p.
2. Choose n;;=w,, n;,==w, and n;;=w;. This fixes the neighborhood con- !
stants of the labels. :
3. Choose d;y==1. If n;;=1 then choose d;;==2 else choose d;;=1. Choose d;,
as follows.

If nj;==1 then if h;-h,+n;320 then choose d;;=h,+1+2n;; else choose .

diy=h,+1+n;;

If n;y==-1 then if hy-h,+n;3>0 then choose d;;=2h,+1+n,; else choose

dy3==2h,+1-n;.
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Map vertices in D, onto processor i, that is, /v, in D, , let PA(v,)=i.

1=3
Let TA(v,)=Y x;d;; + t; where TA(vo)=t,

3.2. Mesh Array Mapping

We pext describe the algorithm to map G onto a mesh array M,,.

Let wy=<w,w.w;> be a triple where w,=1, w,E{1-1}, and wy;=]1. Let

LG = LHULV' Let ’16[4" and l3GLV

Definition 3.4: A mesh diagonalization Dy of a cube graph is a pair <D.wy> with the

following properties.

1.

[ 242

D={D.,,. D.y:> -..D_.pys>} is afamily of sets of computation vertices
aad D, ~UD"I.‘\U - Dims>=Vq.
For aay D, .€D. if v, and v, are in D, ;> then Vfli€Ly and V/!j€ELy,

S'K:‘ , - S"Jll “d ;"jx“ - ;'l)yl)
= I 1 ]

yD ., €D and ¥D_,, €D. p<r iff ¥v, in Dy and Yy, in D_,,..

and VIIEL“ S'h!la < S',.’“. Slmllarly' q<s iff VleLv,

1y {y

' -
ALY < L"r’
4 0

[N

We will refer to w\, as the mesh diagonalization factor of a cube graph and to any

D.pq €D as a3 mesh disgonal. If v, is in D, then we will refer to Y w;x;; where

L

[i€Ly as the Aorizontel weight and Y w, x,, where I JELy as the vertical weight of Depos
h)

respectively. p and q will denote the Aorizontal and vertical indices respectively.

|
!
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We assign consecutive horizontal indices to the diagonals in increasing order of their hor-
izontal weights with the diagonal having the least horizontal weight assigned the hor-
izontal index 1. Similarly, we assign consecutive vertical indices to the diagonals in
increasing order of their vertical weights with the diagonals having the least vertical

weight assigned the vertical index 1.

Algorithm
We are now in a position to describe the mesh array mapping algorithm.
1. Perform a mesh diagonalization Dy == <D,w\(> of the cube graph. For
every D, .- €D assign a processor to the p'® row and q** column of a mesh.
2. Choose n;;=w,, n;;=w, and n;;=w;. This fixes the neighborhood con-
stants of the labels.

3. Choose d;;=1, d;3==1. If w,==1 then choose d;,==2 else choose d;,=1.

4. Map vertices on D, . onto the processor in the p'® row and q'"* column,
that is, /v, in D.p o5, let PA(v)=<p,q>.

i=3
5. Let TA(v,)=\ x;d;; + t; where TA(vo)==t,.

=1

3.3. Hexagonal Array Mapping

We describe the algorithm to map G onto a hexagonal array H,, Let
wym=< W, Wo,Ws> be a triple where w =1,w,=1 and w,€{1.-1}. Let the hexagonal
array constant cE{1,-1}. Let Le=LyULlvyLlr and let

{1 €Ly, {2 €Ly, and I3 €L

Definition 3.4: A hezagonal diagonalization Dy of a cube graph is a pair <D.wy> with




the following properties.

D={D<;1> D«i2> .+ Dcma>} is a family of sets of computation vertices
and Doy 5 UD<i2>U - U P<ma>=Va-

For any D p-€D, if v, and v, are in D.,q, then
WX/ +WaXy3 = WY+ WaY 3 aDd WoX;o+W3X[3C == W,¥10+W 3y sc.
VD<pq>€ED and YD €D, p<r il \fv; in Dpq> and Vfv, in D,
WX +Waxs < WY +HWaY s Similarly, q<s iff

WXt WiX(sC < WoY 2 +Wayisc.

We will refer to wy as the hczagonal diagonalization factor of a cube graph and to

any Do, 4>€ED as a hezagonal diagonal If v, is in D, then we will refer to

WX+ W3X)3 as the horizontal weight and wox;o+Wsx;sc as the vertical weight of D, o

respectively. p and q will denote the Aorizontal and vertical indices respectively.

We assign consecutive horizontal indices to the diagonals in increasing order of

their horizontal weights with the diagonal having the least horizontal weight assigned

the horizontal index 1. Similarly, we assign consecutive vertical indices to the diagonals

in increasing order of their vertical weights with the diagonals having the least vertical

weight assigned the vertical index 1.

Algorithm

We now describe the hexagonal array mapping algorithm.

1.

Perform a hexagonal diagonalization Dy == <D,wy> of the cube graph.

For every D, (€D assign a processor to the p*® row and q'* column of a

mesh.
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2. Choose nj =w,;, nj;==w, and n;y;==w;. This fixes the neighborhood con-

stants of the labels.
3. Choose d;;=1, d;;=1 and d;;==1.

4. Map vertices on D, ;> onto the processor in the p** row and ¢** column,

that is, /v, in D o5, let PA(v,)=<p,q>.

i=3
5. Let TA(v,)=Y, x;id;; + t; where TA(vy)=t,.

=1

3.4. Mapping on Tree Machines

Unlike in the linear-array mapping we are required to comstrain the choice of
w, W, and wy. Let <w, w, w;>€{<1,1,1>, <1,-1,-1>}. A linear diagonalization is per-
formed on the cube graph before being mapped onto the tree amchine. The first four
steps involved in mapping a cube graph on a tree processor is the same as the first four
steps in mapping cube graphs onto linear arrays. An additional step is involved for
fixing the perturbation delays as follows. Let p be a processor index in the tree. (Recall
that indexing is done by a depth-first traversal of the tree.)
case 1: If <w, w,w,>a=<1,1,1> then A(l1,p}=A(I2,p)=A(I3,p).

case 2: If <w,,wywy>=<1,:-1,-1> then A(!1,p)=-A(I2,p+1)=-A(13,p+1).
The final step involves fixing the times at which the vertices are mapped. Let v.€ED,.

i=3 p-1
Then TA(v,)==t,+ Y x;;d;i+ 3, A(!1,j) where TA(vo)=t,.

i=1 =1
The constraints on the delay perturbations (cases 1 and 2 above) are motivated by
the following discussion. Let T be an arbitrary tree whose vertices are numbered by
some depth-first traversal of the tree as shown in Fig. 3.1. The vertex numbered i will be

referred to as v;. Now replace each edge in the tree by a pair of edges between the two




1 10

vertices and consider a closed path in this graph from v, back to itself that visits all the

vertices in the order v, v,, ,.., v, as shown in Fig. 3.2.

~——p» : Forward Edge

~ - =& ;. Reverse Edge

closed path : (abc-=hij)

(9]

Figure 3.1 . Figure 3.2

Such a path is composed of forward edges (those encountered while traversing from v; to

v;, i<j ) and reverse edges (those used to backtrack over previously visited vertices).
Each reverse edge is assumed to have a constant delay d associated with it; a forward 3

edge has a delay (d;,d;; or d;3) which depends on the label (/1,/2 or {3) of the stream !

traversing the edge.

In case 1, all the three streams !1, I2 and !3 traverse the closed path mentioned
above. If there are x, reverse edges in this path between v, and v, (note x,>0), then
the effective delay for a stream labelled /j in traversing betwesn v, and v, is
8(1j,p)=d;;+x,d, corresponding to a delay perturbation x,d. Note that the perturbation

delay between v, and v, for any p, is the same for all labels.

In case 2, elements of stream [1 propagate from v, to the leaf vertices in a series of

local broadcast steps. An element at v, is broadcast to all vertices v, q>p, that are

adjacent to v, in the tree as shown in Fig. 3.3.




: th for 1
=J= : Broadcast pa or 1,

~— : Forward edges for l,, 14

«==¢p : Reverse edges for 12, l3
path followed by 12 and 13:

(jin....cba)

Figure 3.3

The elements encounter a delay d;, in moving from v, to v,. Owing to the depth-first
numbering scheme, the difference between the time at which the values of a data ele-
ment reaches v,,, and the time at which it reaches v, is (x,-1)d;;, where x; is the
number of reverse edges between v, and v,,,. Note however, that the element does not
traverse these reverse edges, but a copy of its value reaches v,,, by the direct broadcast
path. Thus if x,=0 (i.e.,v; and v, are physically adjacent in the tree) then the element
will reach vy, di; cycles later than it reaches v,; else it will reach v,,, at the same or
earlier time than it reaches v,. The effective delay encountered ovetween v, and v, is
&11,p)=-(x,~1)d;;, corresponding to a perturbation A({1,p)=-x,d;,.

Elements of streams of {1 and [2 traverse a closed path around the tree as before,
but in the direction opposite to that in case 1, that is, in the direction v,,v, ,,..,v;. The
effective delay for either of these streams (say [2) between v, and v, is d;;+x,d,
corresponding to a perturbation A(/2,p+1)==x,d=A(/3,p+1). The conditions in case 2

can be satisfied by choosing d=d;,.

In the appendix we have shown that the mapping algorithms for tree machines,

linear, mesh and hexagonal arrays correctly map a cube graph.

© e e —————— ~ .

_ by,
Nt BIPREEIAN-.




e

IR, s

18

Recall that the host machine inserts input values and extracts the result values
from the array. We now describe the evaluation of the times at which insertion and
extraction must be dome. Also recall that the source vertex represents an initial value
and the sink vertex represent: a final value. Without loss of generality, let v, be the
computation vertex connected to a source (sink) vertex by an edge labelled I The delays
in the links having identical labels are all the same. Hence, if the distance of the proces-
sor (onto which v, is mapped) from the external input (output) port is k then the input
(output) value represented by the source (sink) vertex must be inserted (extracted) into
(from) the array by the hast at time t-k n; (t+k n)).
We next synthesize three algorithms to illustrate our mapping techniques. The
first involves synthesis of a novel linear-array matrix multiplication algorithm that we
first reported in [10]. We will then synthesize another matrix multiplication algorithm on

the tree machine. In our final example we will synthesize an algorithm for multiplication

of band matrices on a hexagonal array that appeared in [5].

Example 3.1 Consider multiplication of two dense matrices A and B as shown below.

A program for computing this multiplication is given by the following recurrence.




Ci’l)-o

The data-flow description of this computation is shown in Fig. 3.4.

Figure 3.4

@

In Fig. 3.4, p;; and q;; denote computation vertices. The horizontal, vertical and oblique
incident edges of p;; are labelled {1, {2 and {3 respectively. Similarly the horizontal,
vertical and oblique outgoing edges of p;; are labelled /1, {2 and /3 respectively. If the
horizontal, vertical and oblique incident edges of p;; or q;; represent the values a, b and
¢ respectively then the horizontal, vertical and oblique outgoing edges of p;; or g;
represent the values a, bt and c+ab respectively. In Fig. 3.4, the oblique input edge
incident on p;; represents the value cig’) which is 0. The oblique outgoing edge from g;;
reresents the final (outpat) value ¥ of ¢ i.e., by +azby;.

The graph in Fig. 3.4 is a cube graph as illustrated in Fig. 3.5. The cube graph is

shown without the source and sink vertices for purposes of clarity. The maximum




dimensions of /1'*,12% and /3™ axes is 2, 1 and 1 respectively, i.e., by=2, h,=] apd

hs-l. .

<0.00> <1 00> <200> 1
e e e W — T m = c— K b
/1 L
/ ’” / “'3 ] ’lJ i

, T /; |

| S ' -
, | ’ i

/ /
|
../‘°-‘A°> ‘ZH.C» i_ <210>

|

| N
I
AN

<0.L)> <ilr>

“a ‘22 ‘23

Figure 3.5

We next map this graph onto a linear array using the linear-array mapping algo-
rithm.

Let w =<w,, w,, wy>=<1,1,-1>. For this choice of w,, the set D of diagonals
is comprised of Dy={ q, }, Do={ py, 21 }» Dy={ P2 Pop» s %2 }

) Dy={p13; P22; %s }, Ds=={pos }.

We use |D|==5 processors indexed from 1 to 5. The neighborhood constants for
labels 11, {2 and {3 are o/ =1, g;;==1 and n;y==-1. The vertices in D; are mapped onto
processor indexed i. The delays for the labels {1, {2 and {3 are d;;==I, d;;=2 and

d;y=1. The resulting mapping of the entire cube graph is shown in Fig. 3.6. The times
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at which a computation vertex is mapped is indicated by the side of the computaion ver-
tex, for instance, p,, is mapped onto processor 3 at time t,+2. If A and B were nXn
matrices then the synthesized algorithm above would require O(n) processors and will

take O(n’) time steps to compute the result matrix.

1 —s T — —;..:——t,,——
I)'—’ﬁ 3 }—-— 3 }—‘; 4 - 3 E_:z;

0y —| ol |

-y

Figure 3-6

Example 3.2: Consider again multiplication of the two matrices in the previous exam-
ple. We will synthesize a tree algorithm for multiplying the two matrices.

Let w s=<w, wow;>==<1,-1,-1>. For this choice of w;, the set D of diagonals is
comprised of Dy={ qz; }, Dy={ az, qu, P21 }, Dy={azs, U2, P22, Pu1}.Dy=={as, P2y, P12
}, Ds={pys }.

We use |D|==5 processors indexed from 1 to 5. The neighborhood constants for

labels 11, {2 and /3 are n;;==1, n;,==n;y==—1. Vertices in D; are all mapped onto




processor indexed i. The delays for labels {1, {2 and {3 are d;;=1,d;;,=1 and d;;=86.

Let the five vertex tree representing the tree array be as shown in Fig. 3.7 below.

Figare 3.7

Since the choice of ny, nys, and n;, satisfies case 2, we choose the delay d along reverse
edges to be equal d;;. The perturbations in the delay for /1 satisfy A(/1.1)=0,
A(11,2)=0, A(11,3)=-1 (there is one reverse edge between v, and v,) and A(!1,4)=-2.
The perturbations for 12 and I3 satisfy A(l2,j)=A(I3,))=-A(l1,j-1), j=2,..,5. The
effective delay between logically adjacent processors (6 ' s) is shown in Fig. 3.8 for each
stream. The resulting mapping of the cube graph is also shown in the Fig. 3.8. The
times at which a computation vertex is mapped is calculated from the final step of the
mapping algorithm for tree machines and is indicated by the side of the computation

vertex. If A and B were nXn matrices then the tree algerithm will require O(n) proces-

sors and interestingly, O(n®) time steps to compute the result matrix !




(Numbers on edges indicate the effective delay between logically
adjacent processors for the tree of Figure 3.7)

Figure 3.8 f

Example 3.3 Consider multiplication of two band matrices A and B as shown below

wherein a;; and b;; denote the [ij|'* entries in A and B respectively.
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Let C=A XB be the result matrix. The data-flow description in Fig. 3.9 represents mul-
tiplication of AXB. The horizontal, lateral and vertical edges are labelled {1, {2 and {3

respectively. In Fig. 3.9, v,}‘“ is the computation vertex at a vertical distance k from

vi). Thus, v is the computation vertex at a vertical distance 2 from v,;. The program

graph in Fig. 3.9 is a cube graph as illustrated in Fig. 3.10. We next map this graph on a

hexagonal array using the hexagonal array mapping algorithm.

Let wy=<w,,w,,w;>=<1,1,-1> and c=1. It can be verified that for this choice
of wy the set of diagonals D is comprised of { D;; | 1<i,j<4}.

The hexagonal array is comprised of 4 rows and columns of pracessors which are
identical to the procesors used in example 3.1. Ly={{1}, Ly={!2} and Ly={/3}. The
neighborhood constants for the labels are n;;=n;,=1 and n;;==-1. The delays are

d;;==d;;==d;3=1. The constant c for the array is 1. Fig. 3.11 iluustrates the mapping.
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Conclusion

In this paper we formalized linear, mesh and hexagonal array processors suitable for

VLSI implementation. We also presented a model of a tree machine. We then presented

novel algorithms for dense matrix multiplication on a linear array and the tree machine.

We also derived a hexagoral array algorithm for multiplying band matrices. Our linear-

array algorithm for multiplying dense matrices is particularly useful in situations where

the I/O bandwidth is limited as the algorithm requires only a constant (three) number of

/O ports for inserting the elements of A and B matrices and retrieving the result values.

The tree algorithm has the same features as the linear-array algorithm. More impor-

tantly, the tree algorithm is robust to harware faults in the underlying host.
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Appendix

We first prove that the mapping algorithm for the tree machine correctly maps the
cube graph. We begin by first showing that the mapping preserves the neighborbood

constant of the labels.

Theorem A.l: Let IEL; and let n, and d; be its neighborhood and delay constants
respectively. If v, and v, are a pair of computation vertices with an edge labelled {

directed from v, to v, then PA(v,)=PA(v,)+n,.

Proof: Let v, and v, be the vertices in diagonals D, and D, respectively and w, and w,

be the weights of D, and D respectively. So,

X ,+w2x,2+w3x,3—wp, and
W Y+ WoY 2t WaY 3w,

We will show that the theorem holds for l=={1 as the proofs for I==I2 and l=!3 are
similar.

Let e be the edge labelled [ directed from v, to v,. From the definition of a cube
graph we obtain y;;==x;;+1, y;o==x;; and y;y==x,5. Consequently, w -w ==w; =1. Since
the diagonals are indexed in order of their weights, it follows that index of D, must be

one more than the index of D, that is, q=p+1.

The mapping algorithm maps vertices in D, onto processor p and those of D, onto
processor p+w, and hence PA(v,)=PA(v,)+w,. Also from the mapping algorithm

;;==w,. So the theorem holds for l==!1. |

We next show that the mapping preserves the delay constant of every label [.
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Theorem A.2: Let [EL; and let n; and d; be its neighborhood and delay constants

respectively. Let v, and v, be a pair of vertices with an edge labelled ! directed from v,

to v,. If v, is in diagonal D, then TA(v,)=TA(v,)}+&1,p).

Proof: We have to consider the two cases when nj=n;,=np;;=1 and
nyy=1, njo==nz=-1.

case 1: n; =n), = ny =1,

Let v,€D, and /=[] with no loss of generality. From the final step in the mapping algo-

rithm for the tree machine we obtain:

3 p-1
TA(V )=$1 + ‘ax“dﬁ + ZAUIJ)

i=1 j=l
TA(vy)=¢, + En.dc. + EAU Lj)
=1 =1

By definition of a cube graph we have, x;o == y;5, X;3 = y;; and y;;, = x,; + 1. From

theorem A.1 we obtain PA(vy)=PA(v,)+1, i.e., g=p+1. Therefore,

1 p-1
TA(v,FTA(v)=d;, + A1) - 5 A(IL,j)

ysl Ju=1

'-dll + E A(l l’.‘)sdll+A(‘ l,p)aé(, I,P)
1=p

case 2: ny==1, nj,=n y==-1,
If ={1 then the proof is the same as that used in case 1. Else let [=!2 with no loss of
generality. Again by definition of a cube graph we have,

== ¥)) s X3 ™= ¥i3 and y;o == x;, + 1. From theorem A.l we obtain PA(v,)=PA(v,)-

1, i.e,, gm=p-1, So,

TA(v,FTA(vy)=d,; + ):A(n,,) -Saq)

1-1

oL
w=d; -( ZA(' lu)-ZA(ll.J))
mdi; - A(11,q)edig + A 2,q+1Jmmdyy + AUI2,p)
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=512,p)

a

We have to next establish that no two values appear simultaneously at the input port of

any processor and the following definition and lemma comes in handy for proving it.

Definition A.1 For any label [ EL;, a major path labelled {in G is a directed path from

a source vertex to a sink vertex such that all the edges in the path are labelled L

Lemma A.l: Let {€Lg and n;€{1,-1}. Let P, and P, be two distinct major paths
labelled /in G and let v, and v, be the computation vertices adjacent to the source ver-
tices in P, and P, respectively. Let PA(vy) ==s,, PA(v,) =13, where s, <s,. Let
TA(v,) = t; and TA(v,) = t,. If the input/output values represented by the source and

sink vertices of P, and P, appear simultaneously at the input port of a processor then

(t2 - ty)nym=(s; - 3)d; + 0y & A1)

j=,
Proof: Again we need to conmsider the two cases when nj==n;,=n;, and
o =1,0=0;3=-1.
casel: Dn; ==n,==pn; =],
Since PA(v,) == s, and PA(v,) = s,, we have v,ED, and v,ED, . Assume without loss of
generality that the input values represented by the source vertices of P, and P, appear
simultaneously at the input port of processor s. Let s<s,<s, and the proof will be simi-
lar for other values of s. Let t be the time at which both the values appear at the input

port labelled I of s. The time taken by the input value represented by the source vertex

.‘-l

of P, to reach the input port labelled I of s, is t+ Y &I,j) which is TA(v,). Similarly,

oo




the time taken by the input value represented by the source vertex of P, to reach the

input port labelled { of s, is t+'glﬁlj) which is TA(v,) and hence,
=0
”y-1
t; = TA(v,)=t+(s; - s)d+ ,E A(l1, j), and
ty = TA(vy)=t+(s; - s)dri-':i::A(l 1, j), and hence,
b - tymm(ey - s,)drf':é'lam,j)
iy ]
Since n; = 1 by hypothesis, we obtain (t, - t,)n;=(s, - s,)dﬁ-n,("zz—:lA(ll,j)).
=

case 3: n;; =1, njp = n;y = -1,

If =1, same proof as case 1 holds else assume l=!2 with no loss of generality.
Bj;=-1, and 3,>s,>s. As illustrated in the figure below, if the two values have to meet

at s at time t then t,2>t, >t.

S Sl "‘2
o

1 2

®
i+ @

Wm—

t t

5 n
Now ta=t,+ Y §12,j)m=t;+(s; - s)d;o+ Y, A(12,j) is the time taken by the input

j=w+1 jat 4l

value represented by the source vertex of P, to reach s,

2 52
and t==to+ 3 H12,j)=t,+(s; - s)djo+ 35 A(12,j) is the time taken by the input value

j=s+1 j=s+1

represented by the source vertex of P, to reach s.

Since the values meet at s, the time t is the same in both the equations and hence,

(b - t)=(s; - )i+ B AUZF T A(I2)

j=:;+l 3-:-::
=(s - s2)dizx( ¥ A(I2))- 3 A(2)

j—.o+! Ju=9+-1

-(o - M 3 A(I2)

j-. 1+ 1




l,‘l

Since A(l2,))=-A(I1,j-1) we have, (t; - t,)==(s, - s,)d;;+ ¥ A({1,k)

k=1,
-1
Also as njy == -1, 30 (t; ~ t,)njp==(s; - Sn)dlz"'nlz(kz A(l1,k)). O
-

We next show that the mapping ensures that no two input/output values appear

simultaneously at the input port of any processor.

Theorem A.3 Let i€lg. Let P, and P, be two distinct major paths in G labelled (.
The mapping ensures that the input/output value represented by the source/sink ver-
tices of P, and P, never appear simultaneously at the input port labelled { of any proces-

sor.

Proof: Let v, and v, be the vertices adjacent to the source vertices in P, and P, respec-

tively. From the mapping algorithm we obtain,

3
PA(v,}PA(v,)=A(P)= ¥ k;n; where k;=y,-x; and -b;<k;<h,

Let v,€D,, v;€D, and p<q with no loss of generality. From the mapping algorithm we

also obtain,

3 q-! p-!
TA(vy}TA(v,)=AT== Y {y;; - x;iMsi+ ¥ A(I 1,3} Y A(11,j)

i=1 j=1 =1
3 a1 .
=Y kd;+ 3 a(1,j)
i==1 j=p
Now assume that the input/output value represented by the source/sink vertices of P,

and P, appear simultaneously at the input port labelled {1 of a processor. By lemma

A.l we have,

(AT)n; (=(AP)M;+n;{ qﬁA(l i,j)) which is the same as
j=p




a4

gy é kidyi)+nyy( E A(11,j))=(AP)d+n( E A(11,))) and hence,

1=1 i=3j=p =P
(AP)d,,=n,l(2kid,i) ..... (*)..
i=1

We next show that (+) cannot be satisfied.

1. Let n;;==1 and so by the mapping algorithm, d,;=1 and d,;=2. P, and P,

are distinct major paths labelled {1 and so k,=k;50.

a. Let hgh,+n;3>0. So d;y=h;+1+2n;y; and (¢) reduces to
k,(h,+l+n,3)+k3==0. Now hr‘"l‘f’l\[aZl and so kg#ﬂ and k3740.

Besides h,<h;+n;3 and -h,<k,<h, and so (*) cannot be satisfied.

b. Let hi-hy+n;3<0 and so d;y==h;+n;3 and (#) reduces to ksh,+k,=0.
Now h,>1 and so k.70 and k;50. Besides -h,<k,<h, and so (*)
cannot be satisfied.

2. Let nj;=1. So d;;==1 and d;;=1.

a. Let hyb,+n;3>0 and so d;3=2h,+1-+nj3. So (*) reduces to
2k, +ky(2h,+1)=0. As hy>1, so 2h,+1>3 and so k€0 and k,740.
Besides -h, <k, <h, and so -(2h,+1)<2k,<2h,+1 and so (*) cannot be
satisfied.

b. Let hyh;+n;3<0 and so d;;=2h;+1-nys. So (*) reduces to

'} 9k, +ky(2h,+1-2n;5)=0. Now 1<h,<hy-nj5. So 2h,+1-2n;3>1 and

hence k.30 and  ky50.  Besides -h;<k,<h, and so

~(2h;+1-2n,5)< 2k, <2h,+1-2n;5 and hence (*) cannot be satisfied.

Using the inequality relationships between k;, ks, ky and hy, by, hy we can similarly

=3 im=3
establish that the two equations AP d,z—(.z kd;) n;, and AP d,,-(Ek,-d“) Dy
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cznnot be satizfied and hence no two input/output values will appear simultane-

ously at the input port of any processor labelled {2 or {3. d

Proof that the linear-array mapping algorithm correctly maps a cube graph on a
linear array follows immediately from the proof of correctness of mapping cube graphs

onto tree machines by letting the perturbation delay é's be zero in the above proofs.

It can be easily established that if v, and v, are two computation vertices con-
nected by an edge labelled { then the mesh-array mapping algorithm maps the vertices
on processors which are on the same horizontal row if /€Ly (like processors 11, 12 and !
13 in Fig. 2.2) or on the same vertical column if /€ Ly (like processors 11, 21 ard 31 in
Fig. 2.2).

It can be similarly established that the hexagonal-array mapping algorithm maps
the two vertices on the same row of processors aligned in a north-easterly direction (like
processors 11, 12 and 13 in Fig. 2.3) if I€Ly. If /€Ly they are mapped on a row of pro-
cessors aligned in a north-westerly direction (like processors 11, 21 and 31 in fig 3.3) and
if /€Ly the vertices are mapped on the same column of processors (like processors 21
and 12 in Fig. 3.3). All these rows and columns constitute a ‘linear array and hence the

correctness proof used above can be used to establish that the mesh and hexagonal- |

array mapping algorithms also map cube graphs correctly.
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