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VARIATIONS OF STRUCTURAL RESPONSE TO UNDERWATER EXPLOSION
WITH CHARGE STANDOFF AND UNSYMMETRIC LOADING

INTRODUCTION

This interim report summarizes results obtained in conjunction with continuing
work toward extension of the Navy's Dynamic Design Analysis Method (DDAM) to
multiple foundation motion. A dynamic model of a hull section containing simulated
internal equipment with two supports was analyzed using the Variable Geometry
Submarine Model (VGSM) for response to underwater explosions with varying charge
standoffs. Charge weights were also varied such that the shock factor component
normal to the hull was maintained constant for each standoff. Both symmetric and
unsymmetric charge geometries with respect to the simulated equipment were
examined. Results show that there 1s a trend toward reduced severity of shock
predicted by this simulation for this equipment as the standoff 1s increased for
constant shock factor. The unsymmetric loading resulting in different foundation
motions of the two equipment supports shows a trend toward reduced severity of shock
for many locations when the foundation motions are uncorrelated (small standoff).
However, some locations, particularly, those excited by unsymmetric modes of
vibration, experience a significant increase in severity. A8 the unsymmetric charge
geometry becomes more approximately symmetric for larger standoffs, the foundation
motions become more correlated and the shock response approaches the symmetric
case., Acknowledgement to Mr. G, J., O'Hara is extended for his original assistance
and inspiration in the development of this study and analysis method.

BACKGROUND

Use of the VGSM program in combination with an internal equipment model to
simulate response to an underwater explosion 1is summarized in [1]. Figures 1
through 3 display, respectively, the VGSM model, the internal equipment model and
the subset of fixed base modes and frequencies of the internal equipment model used
in this study. Figure 4 1llustrates the symmetric and unsymmetric loading
geometries used in the simulation, identified as Case A and Case B, respectively.
The shock factor component normal to the hull at foundation 18 is maintained a
constant for both geometries as the charge weight and standoff are varied for six
standoff values. A time history length of 40 ms was used to obtain all respounses.,:
Reference [1] contains a verification of the numerical accuracy of computing
internal equipment respongses using VGSM as compared to very accurate modal
superposition calculations. Reference [2] contains information concerning VGSM,
version III methodology. It must be emphasized that the numerical techniques for
calculation of underwater shock response by VGSM (and probably any other method) are
subject to error due to many unknowns. Results are indicative of trends only, and
must be verifi{ed by tests., Points of curves in plots of structure response in this
report use gpline interpolation primarily for the sake of visualization of
trends. Many of the quantities which are displayed may be expected to have a
random character which cannot be adequately shown without considerably more

Manuscript approved November 28, 1983.



standoff data points. Note, that for convenience in plotting, the standoff
values for Case A were used for both Cases A and B, The standoff values for
these cases are virtually the same for plotting purposes except perhaps for
the smallest standoff (4.9m versus 5.6m).

VARIATION OF RESPONSE WITH ST ANDOFF

A measure of the variation of response with standoff is the variation of
the peak kinetic, potential, and total energies achieved by the structure as a
function of each standoff. The simulated equipment model kinetic energy is
calculated for each point in time from the summation of the‘Tg?etic energles
of all of the masses, o, having absolute velocities, z,, from

1 16 02
K.E. = -y z m z (1)
2 .t

The potential energy is due to the elastic straifg energy of the simulated
equipment model and is calculated from the relation ]
1 18 18

P.E. == f } ziKijzj (2),

where z; is the absolute displacement of my and K, is the stiffness
component in direction 1 due to displacement in direction j.

The three energy: quantities are plotted in Figs. 5, 6, and 7 for both
Case A and Case B. These quantities consider only energy within the simulated
equipment. It is apparent that a significant reduction in the energy input to
the structure has occurred with increasing standoff as determined through this
simulated explosion with the VGSM program.

For comparison purposes, Figs, 8 through Fig. 11 1illustrate the
overpressure, the time constant, energy per unit area, and the impulse per
unit area of the explosion at the hull, respectively, These quantities were
calculated using equations 6.12, 6.13, 6.14, 6.15 of reference [5].

The large differences in the pressure, energy and impulse curves for the
4,9m Case A standoff versus the 5.6m Case B standoff are due to the
sengitivity of these quantities to the standoff values. The calculations are
made for the point normal to the hull and closest to the explosion. Case A4,
being closer to the hull and centrally located with respect to the equipment
will result in greater loading of the equipment. This is the tradeoff which
results from maintaining the component of shock factor normal to the hull at
node 18 as a constant for both cases. This tradeoff explains the rapid
increase in the energy for the first standoff for Case A. The rapid decrease
of the energy for Case B may be due to unsymmetric loading effects, discussed

later.

The peak modal amplitudes for the absolute accelerations for Case A are
plotted versus standoff in Fig. 12, These accelerations are indicators of the
dynamic forces. The largest accelerations, due to mode 6, are seen to
decrease slowly as the standoff 1increases to 22m and thereafter to decrease
more rapidly. For mode 3, the accelerations increase with standoff, while for
modes 1 and "5 slow reduction with standoff occurs. Hence, the general trend



toward reduced response with standoff indicated by the energy plots 1is
corroborated by this acceleration plot with the exception that an increase did
occur for one of the modes examined.

VARIATION OF RESPONSE WITH UNSYMMETRIC LOADING

Peak absolute values of simulated equipment structure moments are plotted
versus standoff for various locations in Figs. 13 through Fig. 15. Bending
moments number 1, 2, and 3, refer to nodes 4, 6, and 14 of the equipment
model, respectively, Bending moment #1 1s higher for the unsymaetric
loading. This 1s probably because unsymmetric modes are excited and
contribute moment at node 4 controlling this response, Note the relatively
gentle increase in slope as standoff is reduced for bending moment #1. This
implies that as standoff is reduced, the unsymmetric modes, which are always
being excited for Case B, become, smoothly, more significant. However, in
Fig. 14, there is a sudden reduction for bending moment #2 at the 5.6m Case B
standoff. This moment is dominated by symmetric modes and the sudden
reduction may be due to reduced excitation of the symmetric modes because of
the pronounced unsymmetric loading. Bending moment #3 appears to be a mix
between the two being farther from the supports and less sensitive to the
input motions. The approximately equal responses for larger standoffs imply
that the foundation motions due to the unsymmetric shot are correlated and
rapidly approach the symmetric case. This correlation phenomenoT3w21 further
examined by plotting the normalized correlation coefficients ’ af the
motions of foundation nodes 17 and 18 versus standoff (Fig. 16). The improved
correlation with standoff is clear from these plots. The abrupt change in
moment rtesponse 1s accompanied bv an increase in the correlation of the
velocities and accelerations. A similar abrupt change also occurs for the
energy plots and occurs in other responses as well. It should be noted that
the apparently lower responses for Case B for the closest standoff for
gymmetrically excited locations are dependent upon the simulated equipment. A
statically indeterminant simulated equipment item might experience high
loading due to differential motions of the foundations, for example. The
gsimulated equipment model used in this simulation 1s statically determinant
and no additional stresses are induced statically due to differential motiouns.

A possible amplification of the response due to unsymmetric loading could
occur 1f the time delay of the loading at node 17 were calculated as a half
pericd of the dominant mode of the response. This possibility with respect to
response of suspension bridges is discussed in references [6], [7], and [8].
Hagselman shows +n [8] that an amplification as high as a factor of 2 may
occur in an idealized case. A geometric configuration intended to test this
possibility should be included in further studies.

ADDITIONAL EXAMPLES OF TRENDS TOWARD REDUCED RESPONSE WITH ST ANDOFF

Figure 17 through Figure 22 illustrate the variation of equipment spring
forces and reactions. 1In most cases, there 1s a trend toward marked reduction
in shock severity with standoff. The exceptions occur primarily for {internal
gpring forces between the two beams of the simulated equipment. A modest
increase 1in response occurs for Case A out to 22m for the supporting
gprings. Hence, {1t {3 important to note that there are sgome particular



locations where peak 1internal forces 1increase slightly with standoff as
predicted by this VGSM simulation. Figure 23 through Figure 25 illustrate the
variation of the equipment including the mass of the VGSM structure at the
support points. These figures are included for comparison and checking
purposes. Figure 23 displays the peak value of the sum of the m z, terms for
each standoff for Cases A and B, This 1s the sum of all gynamic loads
delivered to the equipment structure including the hull mass at the support
points and mavy also be viewed as the peak reaction force of the structure.
This may be compared to Fig. 21 which 1s equivalent to Fig. 23 except VGSM
masses have not been included. Hence, the VGSM mass responses predominate.
Figure 24 illustrates the correlation of Case A and Case B as Case B geometry
more nearly approximates that of Case A with increasing standoff. Figure 25
verifies that the shock factor has been maintained constant at node 18.
Figures 26 through 30 {1llustrate the variation of accelerations at important
points on the equipment model. As already mentioned, spline interpolation is
included for visualization, 48 these quantities may vary significantly
between the values of standoff calculated, significantly more values would be
required to more accurately characterize the motion. Figure 26 shows a
general trend toward reduction with standoff with the exception of an increase
in response at 22m standoff for Case A, Figure 27 shows that the acceleration
at the unsymmetrically excited location of mass 4 1is usually higher for Case
B. After an initial reduced response at 12m, the response is, approximately,
constant thereafter. In Figure 28, mass #6 experiences the same character of
response as bending moment #2 in TFig. 1l4. In Figure 29, Case B
predominates. Finally, the response of mass 14 in Fig. 30 is very similar to
that of bending moment #3 in Fig. 15.

CONCLUSIONS :

l. For symmetric loading, Case A, small increases in response with increasing
standoff are predicted in Figs. 17, 18, 19, 20, 22, and in Fig. 12 for mode
3. For most other responses, for Case A, large decreases in response and in
equipment energy are predicted. Therefore, the simulation predicts a trend
toward reduced response with standoff for symmetric loading of this symmetric
structure.

2. Considering the envelope of both Case A and Case B responses, small
1ncreases in structural response or energy occur in Figs. 5, 12, 15, 17, 18,
19, 20 and 21. For most other responses, large decreases are predicted as
standoff 1s increased. Therefore the simulation also predicts a trend toward
reduced response with standoff when the envelope of responses for both Case A
and Case B 13 considered,

3. For unsymmetric loading, Case B, significant increases in response above
those predicted for symmetric loading are predicted in Figs. 13, 19, 20, 22,
26, 27, and 29. Most of these locations are locations where unsymmetric modes
contribute to the response. The largest of these is shown in Fig. 27 where
the acceleration of mags 4 1is 72% higher than that predicted for the 22m
standoff for Case A. Therefore, the simulation predicts that responses due to
unsymmetric loading can be higher than those due to symmetric loading. This



suggésts that unsymmetric loadings should be <considered 1in design
calculations,

R, 4, For highly unsymmetric loading and 1little correlation of the 1input -

1 foundation motlons, locations which are normally dominated by symmetric modes @
show a trend toward reduced response with decorrelation, For locations which

are dominated by unsymmetric modes, however, decorrelation does not usually

reduce the response.
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Fig. 9 — Time constant of explosion at hull
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Fig. 10 — Energy/area of explosion at hull
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Fig. 11 — Impulse/area of explosion at hull
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Fig. 12 — Modal amplitudes for symmetric Case A
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Fig. 13 — Bending moment #1
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