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o ,, - Abstract

Systolic arrays are constructd for bandwidth reduction and singular value decomposition
of m x n matrices, wlog, m 9n. The underlying algorithms are unconditionally stable.

Independently of the bandwidth, wo, or the order of the matrix, a 4P processor array
accomplishes a reduction to bidiagonal form in time O(wom 2/k 2 ); subsequent determina-
tion of a singular value by the Golub-Reinsch SVD iteration takes O(n) steps. With O(m)
4w2 processor arrays the reduction time becomes sublinear, resulting in 0(m/w+sn) steps
to compute a singular values, compared to sequential times of 0(m 2 +.n) or 0(mw2+&n).
The army sizes, in contrast to many other designs, do not depend on the order, m or
n, of the matrix rendering it possible to proc f arbitrary size.-Sinii-iit
and output occurs, as in previous designsHelp83, KuLe781, by diagonals arrays can be
directly appended to further reduce the computation time. Consequently, the designs will
be most efficient for matrices with a fairly small and dense band.
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Introduction

In response to the increasing demands for computing power as well as for real time processing,
which exceed the capabilities of single processor systems, the implementation of systolic arrays in
very large scale integrated (VLSI) circuits represents a cost effective way to exploit parallelism.

A systolic array can be described as an array of simple processors that routes data in a regular
fashion, fully exploits parallel-pipelined processing and makes maximum use of data fetched from
memory. The basic design philosophy is stated in [KuLe78, Kung8l], according to which numerous
designs for triangular decompositions, linear system solution and eigenvalue problems have been
proposed (some of those are surveyed in [Help831). The present paper introduces designs for
bandwidth reduction and singular value computations of densely banded matrices.

Since systolic arrays rely heavily on pipelining, they are very efficient for long matrices. Hence,
the number of processors per array (including I/O ports) should not depend on the order of the
matrix. Aside from its order, mx n, another topological characteristic of a matrix is the bandwidth,
v. Frequently, tw is small (w = 3,5 for P DEs), so inexpensive arrays of w or w2 processors can
process arbitarily long matrices and achieve excellent hardware utilisation. Furthermore, input
and output does not occur by rows or columns but rather codiagonals (subdiagonals, diagonal,
superdiagonals). If input and output addressing schemes are identical, it becomes feasible to
chain several (possibly different) arrays so as to directly pipeline the results from one into the
other obviating the need for intermittent memory transfers. From a numerical point of view, the

-underlying algorithms must be unconditionally stable, on account of the largely data independent
control, and permit easy decomposition of the problem in case of a disagreement between hardware
and input sizes.

The already existing designs for singular value computations (SVD) possess a hardware com-
plexity proportional to the order of the matrix, superlinear time complexity and little capability
for handling problems that are larger than the given hardware. An O(n2 ) processor singular value
array of [FiLP821 relies on a version of Hestenes' method where intermediate quantities are not
properly updated; a formal convergence proof is not provided. [BrLu82 construct an array for a
one-sided orthogonalisation method due to Hestenes which uses either a linearly connected mesh of
O(n) processors and O(mn) steps to determine a singular value or else a two-dimensional O(mn)
processor array with a non-planar interconnection structure and time O(n log in). The method is
quadratically convergent; experience suggests that 6 to 10 iterations per singular value provide for
sufficient numerical accuracy. In [BrLV83aJ a similar architecture of 0(n2) processors implements
a cyclic Jacobi method for the SVD in O(m + n logn) steps. With the addition of QR and matrix
multiplication arrays, the generalised SVD for matrices A E Rre x " and B 6 RPx " is computed in
O(llogn) units of time on 0(12) processors, 1 2 m,n,p. With reference to the previous works,
Schreiber [Schr83b] suggests a method to cope with problems that do not match the array size. In
[Schr83a] he proposes a kn processor design which reduces a matrix to upper triangular form with
bandwidth k+ 1 in time 0(mn/k). A k(k+ 1) processor array from [Help83j is used to implement a
SVD iteration on k + 1 diagonal matrices (analogous to the Golub-Reinsch iteration for bidiagonal
matrices) in time 6n + O(k). For k = 0 (Vn) this amounts to processor and hardware requirements
of (

In contrast, the final bandwidth reduction design presented here consists of I planar, ortho_-
onally connected arrays of 4k(-' + 1) processors each with an array traversal time of 2(n + 41k)
steps, E 'e 1. An iteration of the subsequent Golub-Reinsch SVD iteration for bidiagonal matrices
can be done in 2n steps. On the average 3 iterations are required to find a singular value [ParlO].

The time to find 8 singular value comes to O(wm /1 +en) and O(m2 /w+ an) if k is proportional

to v. In the event that T - O(m) arrays are available the time is further reduced to O(m/w + an)
as opposed to the sequential process with O(m2 w2 + en) steps. The bandwidth reduction array
is flexible in the sense that it can handle matrices of arbitrary size and bandwidth. The data
addressing scheme is identical to the one employed in [Help83, KuLe781; consequently a variety of
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arrays can be chained to avoid costly memory transfers and repeated alignment of data. The basic
operations in all algorithms are generation and application of Givens' plane rotations, resulting in
unconditional stability of all computations.

The following is an overview of the methods to be implemented:
1. Algorithm BWO. A 2 x (w - 3) array removes the leading element of one subdiagonal and one

superdiagonal. If I arrays are chained, a reduction to bidiagonal form takes O(n2 v/4) steps.

2. Algorithm BWK. A 4kx(c+l) array removes the leading (v-1 -k) elements ofk subdiagonals
or k superdiagonals. If I arrays are chained, bidiagonal form is achieved in O(n ,v/ 2) steps.

3. Algorithm SVE. A 4 processor matrix transposition array directly chained to a 4 processor
matrix multiplication army forms the product ATA in time 2n + 4, while a 3 processor linearly
connected mesh accomplishes one (explicitly shifted) QR iteration in 4n + 2 steps.

4. Algorithm SVI. A 5 processor array performs one (implicitly shifted) Golub-Reinsch iteration
for bidiagonal matrices in time 2n + 3. An analysis of numerical accuracy, computation time
and hardware flexibility reveals a combination of 2 and 4 as most advantegeous.
As for the organisation of this paper, the sequential versions of the algorithms are discussed

in the above order, followed by a description of their systolic, parallel implementations. One
paragraph on matrix transposition arrays is included.

The following assumptions will be made throughout the paper. The terms 'cell' and 'proces-
sor' are used interchangeably. Processors perform one of three operations : generation of plane
rotations, application (propagation) of plane rotations or shifting of elements (output of an ele-
ment unaltered to the left, right or top f the processor). A systolic array is made up of linearly
connected meshes of processors (introduced in [HeIp83I) which eliminate at most one subdiagonal
or one superdiagonal. Cells of a linearly connected mesh are numbered consecutively from left to
right, starting with 1. Linear meshes within an array are nuimbered from bottom to top, again
starting with 1. Overbars, e.g., v, k, indicate hardware parameters.

As a matter of consistency, time is measured with -'egard to plane rotations. One unit of
time (or time step) is long enough to acommodate either the generation or the application of
a plane rotation. For a detailed account on the execution time of addition, multiplication and
square root operations involved in a rotation the reader is referred to [SaKu78]. Implementation
of the algorithms is not affected by the synchronicity or asynchronicity of the arrays. However,
the determination of computation speed is based on synchronous designs, where the computation
time of the slowest processor is taken as a unit. The traversal time of an m x n matrix, m 'a n,
through an array of k linear meshes is

T(m, 2(m + - .

In most of the figures, only the indices instead of the matrix elements proper will be displayed,
since it is the position within the array that matters rather than the value of an element. One bit
data lines are omitted in illustrations, their value is obvious from the direction of data flow.

Plane Rotations

The singular value decomposition of a matrix A E R 'n  can be represented as

A = UEVT,

where U and V are orthogonal matrices and E a nonnegative diagonal matrix. Its diagonal elements,
the eigenvalues of v/'ATA, are called the singular values of A.

In order to avoid an inordinate number of arithmetic operations the matrices to be considered
are of bidiagonal form (i > " or i <"- I =s aj - 0). A stable reduction to this simpler form

B.. PAQT
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by orthogonal equivalence transformations does not alter the singular values of the original matrix
A. The orthogonal matrices P and Q are products of Givens' plane rotations.

The standard Givens' rotation, P, is a computationally stable device for introducing a single
zero element into a vector or matrix [Parl80, Wilk65j.

C 2 +.=12

t k> 1,P(2 p 22 ... z" k.
Wt W2 ... Ykh ' -2..V

where
if W1-0 then z'1Iz, c=1, a=O,

zt C (PI)
else zi , -, Si

z - exi + Sri, V - -ez, + , 2<i<k. (P2)

A detailed treatment of plane rotations and their implementation in VLSI is found in [HeIp83,
1pse83. Time complexity will be measured in terms of plane rotations generated or applied, i.e.,
(P1) or (P2), each, is assumed to count a one time step.

All of the algorithms to follow (including the singular value computations) rely solely on
the reduction of the bandwidth through Givens' Rotations. Because these eliminations proceed
codiagonalwise from without toward the diagonal and the elimination strategy for the ensuing
fill-in, known as 'chasing the bulge' [Part80], is similar to one by Rutishauser [Ruti63, Wilk65]
the width of the band in any given row at all times is preserved. Consequently, the amount of
hardware for the systolic networks will be independent of the matrix dimensions.

Sequential Bandwidth Reductions

Two bandwidth reduction methods, chosen to avoid temporary increase of the width of the
band, are presented. The first one removes the outermost sub- and superdiagonal while the second
one eliminates k sub- or superdiagonals at the same time. Assume for the time being that matrices
are square of order n.

Removal of the outermost codiagonal pair, i.e., the qth subdiagonal and the pth superdiagonal,
is accomplished by chasing the bulge from two sides as shown in Algorithm BWO [Ruti63].

Repeat until the matrix A is of order 1:
1. Generate and apply P4 1, 1 and P,,+l to annihilate elements aq+tl and a,,+,, respectively,

causing fill-in aq,. and a.,p.
2. Removal of the leading subdiagonal element in step I entails rotations +i , t1,irw .1 in

the upper and P +(j_1)(w t -),i(w-)+ in the lower triangle of A,. > 1, whit e imnation of the
leading superdiagonal element in step 1 entails removal of fill-in by + in
the lower and P(.- 1 ,(p+ll+i(tl) in the upper triangle of A, i _> 1.

3. Disregard the leading row and column in all subsequent steps.

Algorithm BWO. Removal of the Outermost Codiagonal Pair of a Matrix A.

The sequence of steps I to 3 is executed 0(n) times as it annihilates one superdiagonal and
one subdiagonal element per loop traversal. 0(n') rotations are generated, each of which takes
O(w) steps to be applied. The fill-in created and removed in step 2 occurs in subdiagonal (q + 1)

and superdiagonal (p + 1). After each pass through the loop the matrix order is considered to

3
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reduced by one. If for simplicity q - p - 1 is presumed, the bandwidth of the matrix is reduced by
two after each removal of a codiagonal pair and the number of time steps amounts to

q n- n-s

S= (w - 2(j - 1))(n - q + j)(n - q + i-I)

1 2z 2 n +O ).

= q. (w, + 1)- 4 +

For differing p and q, the computation time is proportional to O(wn max(p,q)); the dominant
factor may double, since the width of the band is reduced I q - p + I I times by one instead of two.

The second method is based on a different order of elimination; k I codiagonals are removed
by pre(post)multiplication, thereby introducing fll-in which is annihilated by post(pre)multi-
plication. The leading rows and columns now containing zeros in those codiagonals are deflated.
Then the process is repeated on the remaining matrix, still having (q + 1) elements in its leading
column and (p + 1) elements in its leading row. The fill-in which arises while eliminating one set
of codiagonals is entirely removed before proceeding with the elimination of a further set. This is
illustrated in algorithm BWK where one loop traversal causes the annihilation of the (w, - k - 1)
leading elements of each of the k outermost subdiagonals.

Repeat until the matrix A is of order I:
1. Generate Givens' rotations to eliminate by premultiplication the k outermost subdiagonals

thereby causing fill-in of k additional superdiagonals.
2. Generate Givens' rotations to remove by postmultiplication this fill-in and thereby restore the

previously removed subdiagonals (now containing zeros in their (w - k - 1) leading positions).
3. Disregard the (w - k - 1) leading rows and columns.

Algorithm BWK. Removal of k : q Subdiagonals in a Matrix A.

Figure I gives an example of a reduction to bidiagonal form of a matrix with q = 2 and p = 3; in
this case annihilation of subdiagonals takes place before annihilation of superdiagonals.

As will be shown subsequently, elimination of one subdiagonal implies deflation of the (wo - 2)
leading rows and columns in step 3. When starting the removal of the next subdiagonal, the
bandwidth is essentially decreased to o = wo - 1. As before, the leading (w' - 2) rows and columns
can be disregarded. Thus, annihilation of k subdiagonals requires deflation of (w - k - 1) rows and
columns in step 3 of Algorithm BWK.

4!4(r i'4



000 0000++ 0000
00000 oooo++ 0000
000000 oooo++ 0000
000000 PRE oooo++ POS +oooo

000000 PR 0000 +OS +0000000000 - -- oooo++ . ++oooo Deflated00000 ooo0ooo+ ++oo oo Matrix
000000 0000 ++0000
00000 000 ++oooooo 000 00-oo
000 0 ++o

(a) Removal of q = 2 Subdiagonals.

0000 00 00
0000 00 00++
0000 +00 oo++
0000 ++oo 00++
0000 POS ++oo PRE oo++ Deflated

0000 ... ++oo - 00++ Matrix
0000 ++00 00++
0000 ++oo oo++
000 ++oo oo+
00 +-oo 00
0 ++o 0

(b) Subsequent Removal of p - 1 = 2 Superdiagonals.

+ Fill-in.
[ ~~~remu~lainRemaiig. matrix elements

8osmui plcations

Figure 1. Reduction to Bidiagonal Form of a Square Matrix, n = 11, p = 3, q - 2.

Consider the annihilation of the outermost, qth, subdiagonal of a matrix A with bandwidth
wf= p+q+ 1, for instance. The removal of its ith element a+i,i, 1 < i <_ n - (p+q), is effected by

, ( aq+i-l,i ... aq+i-Lp+q)-1 0 )_
(a q+i.i ... aq+ip+qi-i aHi=p44.

The f -t i+su•eriagon+l-s-i (p -I-i,p+q+i
•q-ii+l ... q+ip1.qNi-I a;+i,.€+i

The fill-in accumulates in superdiagona (p + 1) as a .i-l,++ 1 : i :5 n - (p + q). Elimination
of aq+i,i, where n - (p + q) + 1 < i < n - q, does not create new nonzero elements. Let A = A'.
Now remove element aq,+._l-,.N+i, 1 _5 5 is - q - (p + q) + 1, of this new superdiagonal by

aq+i- +q+i-,I a+i.++i

*Wp9+- I a' 0

aqjpjq-~i-1,p~~i-j fqs-q-,,ilqpi-i

0 idp~p~i-i-q+ppqi
a 0
- -+p+a+i-a -p-q,+i
ae- " € ++ie+€'p+i

\ aep 4i-t a¢.t+¢+i- IP +i

S
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which at the same time restores the qth subdiagonal with nonzero elements aq+p+,+i-IP+q+i-l,
1 :_ i :5 n - q - (p + q) + 1. Removal of aq~p+q+i-l,p+q+i- t for n - q - (p + q) + 25 # < n - q does
not result in the creation of further nonzero elements.

The first nonzero element of subdiagonal q, a&,j, occupies position (q+p+q, p+q). The deflated
matrix should be of the same shape as the original one, i.e., contain a dense (q + 1) x (p + 1)
leading submatrix. Moreover, iq,l should now be in row q + 1 and column 1. Consequently,
(q + p + q) - (q + 1) = w - 2 rows and (p + q) - I = w - 2 columns must be deflated.

Removal of superdiagonals takes place in an analogous manner. The systolic networks to be
presented require the set of k codiagonals to consist of either subdiagonals or superdiagonals, but
not both. Furthermore, it seems to be inconsequential whether subdiagonals are deleted first or
superdiagonals [Ipse83I.

The removal of k codiagonals (subdiagonals or superdiagonals) entails -1 passes through
the loop of Algorithm BWK, thus a reduction to bidiagonal form requires

(kj-[- k-]) _k i- I k(_ 1)

passes, assuming that k is fixed. To obtain the total number of arithmetic operations in a reduction
to bidiagonal form, observe that after each pass the order of the matrix is reduced by (tw - k -
1), while after r --'-I passes the bandwidth is decreased by k. Hence the elimination of q
subdiagonals takes time

qfh n/(w-i-jh)

Tkf (w -( 1)k) n n-(i-l1)(v-ljk)

$---1 '-=1

- ' / , - - )k) ( 2 +

j=1- I k
lq 2 Iq Iq/k

1 + n(w - q)

With tv-1 _ * v-I q tv-1
kf-g -.,o k k', b= kf - -- l

the last term becomes

/1 
_ +1 qE=t __ f j _ W ,-I I, - .

Thus,
lq 2 lq I 1q(k+1)

q "2 + I q + q 2( -q),
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Consequently, a reduction to bidiagonal form takes 0(n2w) steps for k = I and 0(n2 ) for k = O(w).
In general, reduction to bidiagonal form of rectangular matrices A E Rfmn ' requires time on

the order of v (max(m, n)), where v = w, or v = wZ :
m a n Let A = (AiA 2 )T, where A, is a n x n and A2 a I x n matrix, and I = m - n > 0. Since

the only nonzero elements of A2 constitute subdiagonals, their removal reduces the first
dimension, 1, of A2 while elimination of superdiagonals does not affect its order. Hence,
0(vm 2 ) steps are needed, resulting in a n x n matrix for the singular value decomposition.

m _< n Proceed as above with the transpose, AT, rendering a computation time of 0(vn2) as
well as a m x m matrix.

Sequential Singular Value Computations

Computation of singular values with the QR algorithm can be done explicitly and implicitly.
The explicit, straightforward, approach for computing the singular values of a matrix A E Rmx n
consists of using the explicitly shifted QR-algorithm to find the eigenvalues of ATA, as illustrated
in Algorithm SVE. In sequential computations the origin shift s9 is an eigenvalue of the trailing
principal 2 x 2 submatrix of ATAi.

1. B = ATAi (Ao = A).
2. Compute Bi - aI = QiRj.
3. Determine B . - QTRT + .i

Algorithm SVE. One Step of the Explicitly Shifted QR-Algorithm in the SVD Decomposition of a
Matrix A.

Orthogonal equivalence transformations allow both, a reduction of A to bidiagonal form before
commencing SVE or else a reduction of Bo to tridiagonal form after step 1 of SVE. Let A e Rn xo

have bandwidth w', I = min{m, n) and L = max r, n). As for the first possibility, the bandwidth
reduction yields a bidiagonal matrix A E/ Rx in time O(wL). Steps 1,2 and 3 deal with matrices
of bandwidth 2 or 3 in time 0(1). In the second case, matrix multiplication brings about an n x n
matrix B' of bandwidth 2w - 1 in time 0(w 2 L), followed by a reduction to tridiagonal form of B
in time O(w2n2). Steps 2 and 3 need 0(n) operations. Unless I = n, where the second alternative
requires less time, the first one is to be preferred. A delayed reduction doubles the bandwidth,
and hence the hardware, as well as the number of passes through the loop in Algorithms BWO
and BWK.

Information about the smaller singular values of A may be lost when restricting attention to
the rounded ATA. The following method avoids the explicit formation of ATA.

The Golub-Reinsch SVD iteration applies a variant of the implicitly shifted QR algorithm to
a bidiagonal matrix A E RhI", [GoRe7l) (since an upper bidiagonal matrix is zero below the nth
row, the matrix is assumed to be square).

4Find Pi, a Givens' rotation, so that

(Pi(ATA. - ai))21 = 0.

Set B,=APiT

and compute Ai+n by reducing Bi to bidiagonal form via orthogonal equivalence transformations,
requires 0(n) arithmetic operations. The algorithm is exhibited in detail as Algorithm SVI below.
If

7



then PT* has the same first column as Qi, hence B differs from Ai only in the first two rows and
columns. Accelerated convergence, associated with origin shifts, is achieved without having to
subtract the shift from the diagonal and later restore it (as in the explicitly shifted version) but
by means of concentrating the effect of the shift s, in the matrix Pi.

1. Find P so that (Pi(ATA, - SiI))21 = 0.
2. Determine Bi - AiPiT.
3. P= B;.
4. For j=2,3,...,n- I do

begin
4.1 Generate a premultiplication Pij-i to annihilate the element of IB in position (j,j- 1).
4.2 Apply Pj, 1 and generate a fill-in at position (j- I,j+ 1) of P'i-I~i.
4.3 Generate a postmultiplication P- to eliminate the element in position (j - I,j + 1)

and compute B--j+ 1 = (PIj-Pj)P 1. +1, while causing a fill-in at position (j + 1.j) rt

end.
5. Ai+ 1  -

Algorithm SVI. One Step of the Golub-Reinsch SVD Iteration for Bidiagonal Matrices A.

When given a lower bidiagonal matrix A its transpose AT will be considered, as the singular values
of A and AT are the same. For a diagonal matrix A only identity rotations are formed.

Roundoff Error In Algorithms BWO and BWK

Not only the time complexity but also a roundoff error analysis indicates that BWK is to be
preferred over BWO, since fewer rotations are generated and hence higher accuracy is attained.

Gentleman [Gent75 has shown that the application of plane rotations to a matrix A E R"xn
has a roundoff error bounded above by

, IA I1p (1 + ,''

where q is a multiple of the machine error and s is the maximal number of rotations applied to
any element. The following observations determine a for BWK and BWO.
BWK : In step I of BWK each row is affected by at most 2k different premultiplications (k to

eliminate elements in that very row and k for the row beneath). In step 2 an element
of a row is affected by at most 2k postmultiplications, giving a total of 4k rotations per
element per loop traversal. There are traversals, so

4kn
BWK = lk'

BWO The larger the bandwidth the smaller the percentage of elements which contribute to
the rounding error. Hence, the worst case (generation of rotations in adjacent rows or
columns) occurs in BWO when reducing a matrix with q = 1 and p = 2 to bidiagonal
form. By an argument similar to the previous one, each element is altered by at most 4
rotations. To eliminate a codiagonal pair n - 1 loop traversals are necessary resulting in

*,Wo 4(n - 1).

8
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For matters of comparison assume that k codiagonals are removed : BWO annihilates k/2 sub-
diagonals and k/2 superdiagonals, while BWK deletes k subdiagonals or k superdiagonals. BWO
renders higher accuracy than BWK only if

2k(n - 1) = k SBWO < SBWK 4kn
2B wK v-1- k'

which is the case for 2
w - 3 - 2 <k,

n -

namely a reduction to bidiagonal form,

sBwo = sBwc - 2(w - 2)(n + 1),

or a transformation to tridiagonal form

sBwo = sBWK - 2(w, - 3).

The above comparison presumes BWK to remove all codiagonals at once implying that A has
q = w - 2 or p = w - 1. In all but two situations BWK is executed separately for subdiagonals
and superdiagonals and thus more accurate than BWO.

Processors

The processors employed are simple extensions of cells 1, 1', 2, 2' and 3 in [Help83, lpse83]
with the same data flow. Processor 131 generates and/or applies rotations while B2 only applies
rotations. Cell B is a conglomerate of two 81 and two B2 cells, whereas S is needed to direct
(shift) data to appropriate processors. In addition, each processor is augmented with two one-bit
data lines which determine the direction of dataflow elemnts
left = 1 shifting of matrix elements to the left for subdiagonal elimination (premultiplications).

right = I shifting of matrix elements to the right for superdiagonal elimination (postmultiplica-
tions). Processors BI and B are additionally attached to a third bit ;ine, on. The three
bit lines determine the task performed by a processor.

In particular, cell BI generates rotations if on = 1 (behaving like cell I or ') and applies
them otherwise (cell 2 or 2'). If left = 1 then the rotations generated are premultiplications (as in
cell 1, or 2) and postmultiplications if right =1 (cell ', or 2'), see Figlure 2. Cell B2 propagates
rotations to the right and matrix elements to the left if left = 1 (like cell 2) and if right = 1
rotations to the left and elements to the right, shown in Figure 3. Figure 4 depicts cell S which
directs matrix elements straight upwards with a delay of one step if on = 0 (i.e., it functions astell .3 with identity rotations [Help831). If on = 1, it displaces them by one cell to the left if

left = I (similar to cell 2 with identity rotations [Help831) and to the right if right = I (cell 2'
with identity rotation). Figures 5, 6 and 7 depict I/O format and data flow through linear meshes

for subdiagonal elimination (left = 1), superdiagonal elimination (right = 1) and shifting upwards
(left = right = 0). The former are identical to the ones in [Help83].

Cell B is crucial for the correct execution of algorithms BWO and SVI, since it assures consis-
tent application of rotations as follows. The reduction of a matrix A by "re- and postmultiplications
results in a matrix B, where

B= ( ij) A (gQi) ,

and Pij and Qij are Givens' rotations. Parallelism is exploited by taking advantage of associativity
in matrix multiplication it is immaterial whether premultiplications or postmultiplications are

i iperformed first, however

9
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1. the order of premultiplications in (n,,i Pc) and postmultiplications in (nij Qi,) must be

preserved,
2. if Pij and Qkj are applied at the same time, they must not affect common elements; when

acting on the same elements (at different times), one must be completed before the other
commences.
In order to ascertain condition 2, B handles application of a rotation to three different element

pairs at the same time and thus enables premultiplications and postmultiplications to take place in
succeeding time intervals; so fill-in is generated in one before being removed in the next step. It joins
two linear meshes and forwards postmultiplications from top to bottom anA premultiplications from
bottom to top. The signals onpRE and onpos determine whether rotations are to be generated
and if so, of which type they are.

For ease of understanding (not necessarily conforming to physical reality) the data flow 'inside'
cell B will be depicted as similar to one in a combination of cells Bi and B2. Figure 8 presents
the programme of cell B along with an illustration of the element pairs that are affected. Diagonal
elements are input to the lower left comer and elements of the first superdiagonal to the lower
right. The neighbouring processor to the lower left delivers elements of the first subdiagonal and
the one to the lower right (if present) elements of the second superdiagonal. Five time steps are
necessary for a particular value to 'traverse' the processor. Because a diagonal element is the first
element of a matrix to enter the array under the current I/0 format, a postmultiplication (POS)
takes place before a premultiplication (PRE), either of which may be identity.

A
l1

'I _ _ _ _ _ _ _ _



on

right, right..
Icft'.j 0 lefto.g1
A1  P,

Vitt

(internal registers are P, z and Y)
right,. . rght,,;

le ftolt i fo=

If on= I then
If eft, =1 tenbegin (Generate premultiplications)

X.:= z'; (Input)

(9): P(') (Euton P

P =P; zj: 0; (Output)
end

erte {rghtt = 1)
begin (Generate postmultiplications)

z:= z(; (Inputj
(z 0) := (z y)PT; IEquations (P1))

r :-- P; z :0 0; (Output)
end

else (on 0)
begin (Propagate premultiplications)

P - Ij; n Zp ; (Input)

(O) :(;); (Equations (P2))

Pe :=- P; Z :-O; (Output)

~end

ewee (rght. )
begin (Propagate postmultiplications)

P - P'; z := z,; (Input)
(z ) := (z W)PT; (Equations (P2))
A, := P; 4r :Y y; (Output)

end
Fu 2. Cell ;.{npt

pt Figure 2. Celi BI.
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I ZI

righti,,, rightgg

leftout left.1
Pr

Yi,

(Internal registers are P, z and y)
rightt := righti.;~lefto~t := lefti.;

I Iv := Yin;
if lefti. - I then

begin (Propagate premultiplications)
P := ; z : Zr; (Input)
(;) := P(;); (Equations (P2))
P, := P; zi := V; (Output)

end
else (righti. = 1)

begin (Propagate postmultiplications)
P :- P; z := zi; (Input)
(z y) := (z y)PT; (Equations (P2))

P; Z, y; (Output)
end

Zgog := z.

(. Figure 3. Cell B2.
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ZI 1

riht
rlfhtR right.,a

Ie f tmug - le fto..

via

{Internal registers are z and y)
right.o. := righti.;
left.,g := left,.
if lefti j" 1 thon

begin (Shift left)
z., := Z,; za:" V..;

end
else If righti. = 1 then

begin (Shift right)
z0" := zI;z, :- Yin;

end
ebe (rigtet = lefti. = 0)

begin (Shift upwards)

end

Figure 4. Cell S.
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21 1222 13
32 23 1433 24
43 34 25

44 35
54 455

0

11
21 12

31 22 13
32 23

42 43 33 24
43 3453 44 3554 45

55

(a) Input/Output Format.

Figure 5. Linearly Connected Mesh for Subdiagonal Elimination (left = 1, right =0, e =5) and
Input p - q - 2.
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0

0t 
I

0

0

*1 0
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31 22 12
41 332 23
52 4 43 34

53 54 44 4
55 4

00

21 11
31 3222 23 13
42 43 33 34 24

53 54 44 45 35
54 45

(a) Input/Output Format.

Figure 6. Linearly Connected Mesh for Superdiagonal Elimination (left =0, right = ,*=5)
and Input p =q =2.
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00

00(12 1 g4322

(b) Partial Execution Trace.

Figure 6. Continuation.
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21 12
31 22 13

32 23
42 33 24

43 34
53 44 35

54 45
55

11
21 12

31 22 13
32 23

42 33 24
43 34

53 44 35
54 45

55

(a) Input/Output Format.

Figure 7. Linearly Connected Mesh for Shifting (left = right = 0, t = 5) and Input p = q = 2.
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viav

X3(z 0) :n (V3 :=)Yin

else f(Input rotations)
P := P.

12 22 := (91 22 selT

-Tut 1- x; Yost v2.iy; P.,: P; (Output)

(a) Poetmultiplication (POS).
Figure 8. Cell B.
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zovt

Vs z4 Zin

Y4 PO. t

Yin

{Internal registers are P, xi and yp, 15 i <5 4)
Z4 := Zi,; V4 := Yin;
If onPRE = I then (Generate rotations)8) :=P(;);

else (Input rotations)
P := p,";

(2 , ) := P(1;: a 4).
V2 14 12 1 14'

Zo,, := X2; Yout := Y2; Po., := P; (Output)
( Pa)~) : ;:). (Transpose and rename)

(b) Premultiplication (PRE).

Figure 8. Continuation.

A Systolic Array for Algorithm BWO

The concurrent order for the generation of plane rotations is described in [SaKu78, Help83].
Consider subdiagonal annihilation : after the ith element of the q - j + Ist subdiagonal has been
removed, rows I ... q + j + i - 2 will not be affected by further eliminations in this subdiagonal
and removal of the ith element of subdiagonal q - j can commence, 1 !5 j _< k, 1 !< i <_ n - q -
i + 1. Annihilation of subdiagonal elements in corresponding positions is staggered so as to avoid
interference of rotations. The analogue holds for superdiagonal eliminations.

4 In compliance with Algorithm BWO the array removes the leading elements of the outermost
sub- and superdiagonal along with the ensuing fill-in. It consists of two linear meshes, joined
through cell B (which in view of area and complexity accounts for four cells), bringing the total
number of processors to 2. - 3. The w - I processors in the bottom mesh are B2 cells. The ones
to the left of cell B have right = 1 and to the right left = 1. When q _> 2 and p _> 3 the two
leftmost and rightmost cells in the upper mesh are B1 cells, all others B2 and onpr, = onpw. = 0
for cell B (rotations are generated by the BI processors not B). Cells to the left of B have left = 1
and to the right of B right = 1. The inner BI cells remove the leading nonzero element of an
outermost codiagonal (subdiagonal q or superdiagonal p) by generating an appropriate rotation
(on - 1). For all subsequent elements they forward rotations (on - 0), generated by the outer
BI cells, to chase the bulge from subdiagonal q + I or superdiagonal p + 1. Figure 9 presents a
bandwidth reduction array with I/O format for q = 4 and 0 = 8 while Figure 10 displays the data
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flow for the example q = 2 and t = 6. The cases q < 2 or p < 3 are treated with an array similar
to the one used for the singular value decomposition, where B generates rotations and some of the
BI cells are dispensable.

21 1 12
31 2 22 2 1342 32 23 24 1442 33 24

52 43 34 255344 35 2663 6454 5545 463636455 46 36
74 65 66 56 47

76 67

0 0
11

21 22 12
41 31 32 22 23 13 1441 4 324 15
52 43 34 25

5344 35 2663 53 54 44 45 35 36 2
64 s5 46 37

74 65 56 47
75 76 66 67 57

76 67
77

Figure 9. Bandwidth Reduction Array for t = 8, 1 = 4, p = 5.
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o 0

0 0

00 =

Figure 10. Partial Execution Trace for a Bandwidth Reduction Array with q 2 and p=3.
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A traversal through the array is done in

T(n, 2) =2n + 3

steps. If the leading row and column is deflated after each pass through the array, the number of
steps for removal of the qth subdiagonal and pth superdiagonal comes to

ET(n i+,2) = 2(n - i +3)-I
iffi i----

= (n - r)(2n + 5) - (n - r)(n - r + 1)
=p 2 - r + 0(n),

where r = minip,q). As for the generation of rotations, the left inner B1 cell has on I 1 at
t = 1... q + 2 and on 0 thereafter, when on = 1 for the outer BI cell. Similarly, the right outer
BI cell is set to on = 1 at t = I...p + 2 , after which on becomes 0 and the outer BI processor
generates rotations.

If k :5 n - r such arrays are chained and for simplicity the k leading rows and columns are
deflated after each pass through the k arrays, the removal of a codiagonal pair takes time

(n-r)l/(n,)kE T(n -(i -l)k, 2k)= E 2(n- ik+ 3k)-1I

,- + (n-r)2

k k o ) T

The setting of bit lines now also depends on the position of the array in the k array network.
Only if the number of arrays, k, is proportional to the order of the matrix, is the resulting

computation time linear in n. A reduction to bidiagonal form takes t his ) steps. For small k
this represents a reduction in execution time of order tw as compared to the sequential case.

The last (reduction from w = 3 or 4 to to = 2) in a stage of bandwidth reduction arrays is
nearly identical to the array implementing Algorithm SVI. The resulting agreement in hardware
features and execution speeds of both arrays greatly facilitates their chaining. Unfortunately,
within a bandwidth array the complexity of different cell types varies greatly and so do their
execution times. If t, is the time for cell z to complete one step, then

tfin _5 tBI --5 tD.

As opposed to the SVI array which basically consists of one processor that generates rotations in
each step, 2w - 4 simpler processors work at the speed of one big, complex cell. Moreover, on
account of the large area occupied by cells BI and B, the ratio of bandwidth to area becomes only
appreciable for large bandwidths. Lastly, on account of the fixed positions for those cells not only
tw = i is necessary but also p = p and q = 1. Thus, max(p,q) differently sized arrays must be
available in order to accomodate the decreasing bandwidths.

Linear Muhes for Algorithm BWK

The design for algorithm BWK requires simpler hardware, already introduced in (Help83],
than that for BWO and allows processing of arbitrarily sized matrices. Two types of linear meshes,ii each comprising e cells, are employed; one performs actual computations, i.e., elimination of
codiagonals, and a second one properly positions (shifts) matrix elements.

26



A computation mesh consists of (0 - 2) BI and/or B2 cells, enclosed by a BI cell to the right
and to the left. Each mesh contains at most one BI cell with on = 1. The computation mesh, an
extension of the one in jHelp83j and obtained by replacing cells I and 1' by BI and 2 and 2' by
B2, can perform both, pre- and postmultiplications; which of the two, is determined by the value
of the bits left and right, and on in the BI cells.

If left = 1 a mesh performs premultiplications (Figure 5) and is called a QR mesh (q such
meshes combined effect a QR decomposition). If the matrix elements are routed so that the
outermost subdiagonal enters a BI cell with on = 1, this subdiagonal is eliminated, the resulting
rotation propagated to the left and thus a new superdiagonal (fill-in) generated. Because the
bandwidth is preserved, the remaining elements are displaced one cell to the left before output
from the mesh. Identity rotations are generated for a zero outermost subdiagonal. A BI cell with
on = I must be among the * - (w - 1) leftmost cells of the mesh to provide for enough space to
the right for the other t - I codiagonals. If all BI cells have on = 0, nonidentity rotations may
be input to the leftmost BI cell, which applies and then forwards them as before.

If right = 1, the mesh performs postmultiplications (Figure 6) and is called QL mesh (p of
those accomplish a QL factorisation). The outermost superdiagonal is annihilated when entering a
BI cell with on = l,the resulting rotations forwarded to the left and another subdiagonal is formed.
Again, preservation of bandwidth dictates that the remaining elements be displaced one cell to the
right before leaving the mesh. A zero superdiagonal causes formation of identity rotations. To
accomodate the (* - 1) codiagonals to the left of it, a Bi cell with n = 1 must be among the
rightmost *, - (w - 1) cells of the mesh.

The cases left = right = I or left = right = 0 are not allowed to occur. As a matrix elements
is displaced to either the left or right before exiting the array, it needs three time steps to traverse
the mesh.

A linear shift mesh consists of S cells (Figure 7). If left = 1 matrix elements are shifted one
cell to the left (as in a QR mesh with identity rotations), or one to the right for right = I (cf.
the QL mesh with identity rotations). Here too, the situation left = right = I is not permitted.
However, left = right = 0 causes shifting of elements straight upwards in that particular mesh.
Because of the delay element in S cells, the traversal time is the same as for a linear mesh, thereby
ascertaining that both mesh types work in a synchronised manner.

A Systolic Array for Algorithm BWK

An array ('module') is constructed which executes one pass through the loop of BWK; during
one module traversal the (a - k -1) leading elements of the k outermost subdiagonals are removed.
For the removal of 1 _<k < q subdiagonals, Jk/kl passes through the module are necessary. Hence,
k g k may be assumed for the subsequent analysis; moreover, as will be explained later, 0 _ v +,
is required (otherwise the matrix must be partitioned, for according strategies see [Ipse83j).

A module consists of four sets of linear meshes. The k QR meshes at the bottom of the module,
where input is entered, are followed by a group of shift meshes that direct matrix elements to the
proper positions for input to the k QL meshes. These in turn are succeeded by another group of
shift meshes which, upon output, will have placed matrix elements in the positions assumed at
input to the module. A sketch of the module is found in Figure 11.

The QR part causes removal of k subdiagonals along with fill-in of k superdiagonals. The
QL part erases this fill-in and restores the k previously eliminated subdiagonals except for their
(wv - k - 1) leading nonzero elements. Furthermore, the outer codiagonals are eliminated by the
lower meshes while the inner ones are removed by the upper meshes. More formally, mesh j of
the QR part removes the (q - " + l)st subdiagonal, k - k + 1 :5 j 5 k, by appending (k - k) zero
subdiagonals to the left of the band (hence, for k = 0, 4D > wv + k is required). Then subdiagonal
(q - k) will emerge from the leftmost cell of the top mesh in the QR part. Similarly, superdiagonal
(p + k - j + 1) is removed in mesh j of the QL part, k - k + 1 < j 5 k, and superdiagonal p
appears in the rightmost BI cell. In case the number of subdiagonals to be removed is less than
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the number of meshes, k < k, the lower (k - k) meshes of the QR and QL parts do not generate
rotations (on = 0 in all their BI cells). Tables 1 and 2 (with iu = tv) show processor time schedules
for the QR and QL parts.

On account of the shift groups, input and output patterns of a module are identical, so chaining
of modules is feasible. It remains to be determined how many meshes are to be present in a shift
group. Assuming, that data alignment is left justified in the QR and right justified in the QL part,
Tables 1 and 2, with ,u = e, show the diagonal, for instance, to leave cell (k - k) + (q + 1) - k of
mesh k in the QR part. For proper superdiagonal elimination it has to enter cell (e - (k - k) - p)
in mesh 1 of the QL group. Since * > w, the first shift group has to direct matrix elements to the
right. Analogously, cell (* + k - p) in the top mesh of the QL part delivers the diagonal, which has
to return to its original position in order to enter cell (k - k) + (q + 1) in the QR part. Hence, the
second group performs shifts to the right. In both cases, data have to be displaced by the same
number of places, (* - w) - (k - k).

For matching hardware and input dimenions, k = k and ,b = v + k, the displacement comes
to k, the difference between w and 4D. However, for , > w' + k the difference between v and e
can be arbitrary and so the amount of displacement. To avoid data dependent control or hardware
dimensions, both shift groups are modified as follows : a BI cell occupies position ik + 1, i > 0, in
every mesh. To avoid idle cells, fb = ck+ 1 for some E _ 1 bringing the number of BI cells per mesh
to e + 1. Instead of guiding elements toward the right boundary, the second shiftgroup now directs
elements toward the nearest possible BI cell which is never more than k cells away. On account of
the initial left justified data alignment, the first shift group still shifts toward cell 1. Consequently,
there are k meshes in each shift part and each element is shifted by ((V - w) - (k - k)) mod (k+1).
The preceeding ideas are applied to an example in Figure 12. Processor time schedules for all four
groups are given in Tables I to 4, iv = ((* - w) - (k - k)) mod (k + 1) in Table 2. Hence, the
number of steps for the traversal of a 4k x (Tk + 1) processor module amounts to

T(n,4k) = 2(n +4k) - I.

For the sake of simpler control deflation may be omitted, since only identity rotations are
generated for leading zero elements. Otherwise the leading (w - k - 1) rows and columns are
removed after pass through the module.
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2. Shift Group right = 1

QL Part right = 1

1. Shift Group left =0

QR Part left=I

J I Figure 11. Structure of a Module for Algorithm BWK (Subdiagonal Elimination).
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- - - = - = -- = right = O, left = 1
= - - - = = = = =right = O, left = 1
- - = = = =- = = right = O, left = 1

S= = = = = = = = right = left = 0
- - - = = = = = = = riht = left = 0

0 . .. 1 -, ., -, - 0
0 . .. 1 -, ,- . - 0

0 . . . . 1 -- 0 QL part
0 . . . . 0 '- ' - ' - . 0 (right = 1)
0 . .. 0 "- .- .- , 0

S =- --- - - = - -- = right = 1, left = 0

S- = = = = = " = = = right= 1,left= 0
= = " = = - i = = right = 1,left = 0
= = = = = = f - f right = left = 0
= = = - - - - -i - - right = left = 0

1 . . . . 0 - 0
1 0 0
1 . . . . 0 --- ,- ,- ,-- 0 QR part
o 0 - 0 (leftl=1)
0 . . . . 0 - "- '-- - 0

= Scell
o BI cell (on = 0)
1 BI cell (on = 1)( B2 cell

Figure 12. Schematised Module for Subdiagonal Elimination, k = 5, 2, Programmed for
q k =3, p 2 and w 6.
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Codiagonal Element enters Cell of Mesh at Time

Diagonal i +q+l 2i- I

Subdiagonal i s+1 I (q-l+l)+(2i-I)
q-1+1 0{l< is a(q- I+l0))

fi ~5Sq) __________

Superdiagonal i a+y-l+l I (p- '"l)+""(2i- )

P-_ +10 (lis -(I +l))

Diagonal i + (q+1) - U - !) j t

(1 :5 i<_s a) 0 S _<)

Subdiagonal i X+ I - (j - !) j (q -+I) +4 tij
q-1+1 ,(1 <5 i<s- (q -I+ )) :5 s 1<)

(A+ISq)

Subdiagonal i a+I-(j-1) k-k+j (q-I+I)+ t
q-1+l 05 s a m-(W- I+ )) (1 :5<5 k
(j)___

Superdoiagnal s+W-l+j j (p-t + I) +j
P-1+1 (Is a <-(P-1+1)) 05 s k<)

{1~L~p)-

Superdiagonal i x+v+1-(j-1) (k-k)+j (p+l- 1) +tij

0(:51:5j)

Assume,
1. 15k:, k !k and w+k<o;
2. element 1 of the diagonal enters at time t = 1;
3. t"=-(2i-1)+2(j-1);
4. z=z-k.

Table 1. Processor Time Schedule for Meshes in the QR Group of a Module for Subdiagonal
Elimination.
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Codiagonal Element enter* Cell of Mesb at Time

Diagonal i a-p 1 2i- 1

__________ _ 0 {1 i:m ______

Subdiagoa i -w+ I (q-+ 1) + (2i - 1)

(k + I'S15q) _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Superdiagomal i+k-l+1 I (p - i+ 1) + (2i - 1)

P+k-1+1 (I Si:5 n-(p+k-I+1)}

Diagonal -p + ( - 1) j tij

0 _.i_. } (:__j<!a)) _ _ _

Subdiagonal a - w + I + (q - I + 1) + t i

q-h+l t i:5nq-(q - l + 1)

Subdiagonal i s-w-l+j £-k+j (q - k +l) + tij
q-k+i (t _ iS a -(q - k+l)} (1:5 Ps k)

(1:5j S_____P_

Superdiagonai i j-+ j (p- 1+ 1) + t.,
p-1+1 (15 _i< Sa (p- I+ 1)) !_i<t

Superdiagonal i - I + (j - t) j (p + l) + si
p+1 (5 <i:5 a- (p+ 0) (5 Psj k- k)

Superdiagonal i a-t+(j- 1) 1-k+j (p -/) +to
p+I (<i:5_a- (P+ 0) lj 5 k)

{1 <1<_h-j+11________

Assume,
1. 1<k<_q,k<_kandw+k<_);
2. element 1 of the diagonal enters at time t = 1;
3. tij = (2i - 1) + 2(j"- 1);
4. z---- u - (k - k) - k;

5. k=eor ((O-w)-(k-k)) modk+l.

Table 2. Processor Time Schedule for Meshes in the QL Group of a Module for Subdiagonal
Elimination.
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Codi gosal Element entem Cell of Mesh at Time

Diomal i q-k+1 j

S ~j:5 I

Subdiag-al - jSubdhh o1!5 i (9 - 41 is Ps S

Ik+ IS 159} 1+ (i- ) &-S+i

Superdiaonai i w-I+1 j (P+ k - I + 1- + ti,
P~k-I~l {l : <i!5 a- (P +- +) 0I :5j 5k-2)

{_<______ _____________ (-~ i j-si

Assume,
1. I<_k:q,k!5kandW+k_*;
2. element I of the diagonal enters at time 8 - 1;
3. t, = (2i- 1) +2(j- 1);
4. meshes k- z+ 1,...,k shift to the right, all others upwards, 0:< z< k.

Table 3. Processor Time Schedule for Meshes in the First Shift Group of a Module for Subdiagonal
Elimination.
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Codiagonal Element enters Cell of Mesh at Time

Diagonal j

*--(.U- 1)

Subdiagonal I+1 i
1_ i a-- (q - + jSz) A+_)0: {! :5_e 9)-w -1 - (j-) L-Z+i

Superdiagonal (P--I+ i +!)+ ij
P-1+ ( {! <i:5,a-(P- 1+ 1))} {!<_ )li

{t_1<zp) *-l+j+2 L-X+j

Assume,
1. I:_k _q,k kand +k:_*;
2. element I of the diagonal enters at time t = 1;
3. t,, = (2i- 1) +2(j- 1);
4. meshes k- z+ 1,...,kshift to the right, all others upwards,O 5 z !_ k.

Table 4. Processor Time Schedule for Meshes in the Second Shift Group of a Module for Subdiag-
onal Elimination.

I'
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Programming of a Module

Given a module for subdiagonal elimination with parameters e and k, the following require-
ments must be satisfied : 'V- k+ I, k'>z, C :.

Meshes 1 ... k,2k+ 1 ... 3k : cell ik + 1 is a BI cell, all others are B2 cells, 0O< i:< .
Meshes k + 1... 2k,3k + 1... 4k : all cells are S cells.

The initial (default) state of the module is a follows:
1 . Bit Data Lines

Meshes 1 ... k (QR group) : left = 1, right = 0.
Meshes k + 1 ... 2k (I. shift group) : left = right = 0.
Meshes 2k + 1.. .3k (QL group) : left = 0, right = 1.
Meshes 3k + 1... 4k (2. shift group) : left = right = 0.
Meshes I...k,2k + 1 ...3k : cells ik + 1 (B1 cells), 1_ i5 ,have on =0.

2. Matrix and Rotation Lines
Mesh I : all matrix input lines are 0.
Meshes 1 ... k : the left rotation line of cell 1 contains the identity rotation.
Meshes 2k + 1 ... 3k : the right rotation line of cell e contains the identity rotation.
Meshes 1 ... k,3k + I .. .4k : the right matrix input to cell 0 is 0.
Meshes k + 1... 3k : the left matrix input to cell I is 0.

If the input matrix satisfies * < w + k, it is partitioned into submatrices of size n? x n', where
n' = LOD - k+ 1)/21; for details see [lpse83j. Thus, assume iv v+k. The programme in Figure 13
describes elimination of subdiagonals. If superdiagonals are to be annihilated, the functions of For
superdiagonal elimination the groups QR and QL are exchanged, as well as the shift groups I and
2 by accordingly modifying the bitlines left, right and on.

'E

-35



A Systolic Array ror Algorithm SVE

One iteration of SVE for bidiagonal matrices is implemented by taking advantage of simple
arrays for matrix transposition [lpse83], to be discussed in the next section, and QR decomposition
(HeIp83, Ipse83J. Formation of transposes 'on the fly' enhances the degree of pipelining and
avoids time consuming storage of data during a computation for the purpose of changes in address
patterns.

The initial formation of the bulge (step 1, i = 0) is done with the help of a four processor
matrix transposition array (Figure 14) and a four processor matrix multiplication array (KuLe78
in 2n - 1 and 3n + 2 steps, respectively. Steps 2 and 3 employ a linear three processor QR
decomposition array (Figure 15) with one BI and two B2 cells. Its inputs are (Bi - .9I) and RT,
respectively, and the execution time is 2(n - 1). Cell BI generates rotations in step 2 and forwards
the recycled rotations in step 3. Formation of the transpose RiT before step 3 and BT after step 3
is accomplished with fifteen and twelve processor networks (Figure 16) in 2(n + 6) and 2(n + 4)
steps, respectively. Because of hardware requirements for large bandwidths, w, as well as demands
on accuracy, the implicitly shifted method is recommended.

A
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Figure 14. Matrix Transposition Array for an Upper Bidiagonal Matrix.

-1 11 12

22 13

33

0

-} 11

21 22 12

32 2333

Figure 15. QR Array for a Tridiagonal Matrix.
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A 12
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33

(a) Upper Triangular Matrices.

Figure 16. Matrix Transposition Arrays for Matrices of Bandwidth v -3.
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(b) Tridiagonal Matrices.

Figure 16. Continuation.

Systolic Arrays for Matrix Transposition

The transpose of a matrix, in particular a banded matrix, can be obtained by reflecting the
codiagonals about the diagonal, whereby the ordering between successive elements of a codiagonal
is preserved. That is, the ith subdiagonal becomes the ith superdiagonal, 1 < i :5 q, and the
-th superdiagonal turns into the jth subdiagonal, 1 _ j <p. The square array of O v2 ) delay
elements has a low hardware cost for matrices of small bandwidth, in contrast to O(ni) cells for
dense matrices (the case w' - 2 is an exception, as only 2 not 4 cells are needed).
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Four kinds of delay elements, shown in Figure 17, direct the matrix elements. A pair of cells,
(L, R), acts as a 2 x 2 crossbar switch if both, L and R, receive their inputs at the same time. As
illustrated in Figure 18 for the case v = 6, the L and R cells are arranged in a chequered fashion as
a square orthogonally connected w2 processor array. At the left and right edges (1/O takes place
at the bottom and top edges) where they do not pair, a S cell (as before, but left = right = 0,
Figure 17) is used instead. For the (L, R) pair to properly function, data must be delivered and
output by non-time skewed codiagonals. It takes two time steps to traverse a mesh and values may
are input no sooner than every other cycle. This implies that the ith element of each codiagonal
enters the the jth linear mesh at time

T(i,j) - I = 2(i + j-1) - 1, 1 <_ i:5 n, 1 _j < ,

bringing the total traversal time to

T(n, to) = 2(n + v) - 1.

Absent values at the end of the 'shorter' codigonals are represented by a default value of zero. The
array size depends only on wi not on the particular values of p and q.

In case of a disagreement between matrix and hardware dimensions let the array be of di-
mension *; x *. If the bandwidth of the matrix is too small, vi < tv, then prior to input ab - Vi
codiagonals are arbitrarily attached to the outside of the band and removed on output. For the
opposite, * < wi, there is only a simple solution if a 1 x k array is available and k >. w is a multiple
of le. The transpose is available after rk/l1 passes through the array.

A non-time skewed codiagonal address pattern calls for a pre- and postprocessor to ensure
compatibility with the codiagonalwise I/O pattern of all the other arrays (Figures 14 and 16).
Let k be the larger of p and q. Consisting of D cells the preprocessor has the ith codiagonal
traverse k - i cells upwards (k for the diagonal) so corresponding elements of all codiagonals enter
the transposition array at the same time. Similarly, the ith codiagonal crosses i S cells in the
postprocessor (none for the diagonal) to re-establish the time skewed codiagonals. The number of
cells in the two adjustment arrays comes to

(k- i) + (k - i) + k + i+ i -- Wk,
i l + i----I i =----

and including the transposition array this makes v(tw + k) cells. If the first element, all, enters
the preprocessor at time t = 1 and a.. is the last element to leave the postprocessor, having to
traverse k + a' cells, then a transposition is completed in time

T(n, k + vi) = 2(n + k + vi) - I _ 2(n + 2).
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Figure 18. Matrix Transposition Armay with Non-Time Skewed Codiagonal 1/0 Format, e =6.
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A Systolic Array for Algorithm SVI

The processor array which implements SVI (except for step 1) is a special case of the bandwidth
reduction array (q = I,p = 2) and consists of three linearly connected meshes, a total of 5
processors, shown in Figure 19(a). The hardware count is independent of n. The bottom mesh,
consisting of B2 cells with right = 1, is responsible for the formation of

, ,= AiT,

that is the initial creation of the bulge (step 2 in SVI). P,, computed in a scalar unit (step 1 of
SVI), and the first element of Ai, all, enter the network at the same time. Alternatively, since Bi
differs from Ai only in the leading two rows and columns, it also could be determined by a scalar
unit and the bottom mesh omitted (Figure 19(b)). This layer alters matrix elements during the
first three time steps, all rotations following PT are identities.

. Reduction of B (step 4 of SVI) is done entirely by cell B which in turn performs computations
POS.2.1 and PRE.2.I, caused by on,, = on., = 1. POS.2.2 and PRE.2.2 are never encountered
during this iteration and can thus be disregarded. Another B2 cell in the second mesh delivers
elements of the bulge to cell B. The total time to determine A.+. - 7,, comes to

* T(n, 2) = 2n + 3,

and excluding the computation of Bi to 2n + 1. The network, I/O format and execution trace
are displayed in Figures 19 and 20. After each singular value comf itation, the trailing row and
column of Ai are disregarded.

The plain (unshifted) algorithm is linearly convergent. If Wilkinson's Shift [Wilk68I is used,
the algorithm is ultimately quadratically convergent and in practice seems to be cubically con-
vergent; three iterations on the average are enough to compute a singular value [Par80]. Since
the shift is determined from the trailing end of the matrix and applied to the leading part, it
obstructs the pipelining process and necessitates transfers to memory between iterations. Under
these circumstances, the average number of (arithmetic) steps for one singular value amounts to

3T(n, 2) = 6n + 5.

Research is under way to find means of accelerating convergence (obviating the need for intermittent
memory transfers) and hence a computation time of

T(n,2k) - 2(n + 2k) - 1 for some k> 1.

tj
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(a) Computation of B, Included in the Network and Indication to the Right of Intermediate Quan-

tities formed.j Figure 19. Systolic Arrays for Algorithm SVI.
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(b) Red uction of Bto Bidiagonal Form A.+1.

Figure 19. Continuation.
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Figure 20. Partial Execution Trace for the Network in Figure 19(a).
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