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Abstract

-we preentssan iterative method for solving large sparse nonsymmetric linear systems of equations that
enhances Manteuffel's adaptive Chebyshev method with a conjugate gradient-like method. The new
method replaces the modified power method for computing needed eigenvalue estimates with.Arnoldi's
method, which can be used to simultaneously compute cigenvalues and to improve the approximate
solution. Convergence analysis and numerical experiments suggest that the method is more efficient
than the original adaptive Chehyshev algorithm.

Key Words: Iterative methods, Chebyshev methods, conjugate gradient methods, adaptive methods,
nonsymmetric matrices, sparse matrices.
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1. Introduction

The adaptive Chebyshev algorithm of Manteuffel 1I, 13) is an iterative method for solving large

sparse real nonsymmetric systems of linear equations of the form

Ax - b, (1)

where the coefficient matrix A has positive-definite symmetric part. Starting from an initial guess, x0,

the method generates a sequence of iterates (x.) whose residuals {r- b - Axj) satisfy

r - Pi(A)r, (2)

where

T. is the j'th Chebyshev polynomial of the first kind

T(z) - cosh(j cosh'(t)),

and c and d are iteration parameters that depend on the convex hull of the spectrum of A. Two

properties of the Chebyshev polynomials make this algorithm effective. First, for an appropriate choice

of the iteration parameters, the residual polynomials P(A) decrease rapidly in norm, so that the

algorithm is rapidly convergent 1131. Second, the three-term recurrence for Chebyshev

polynomials induces an inexpensive recurrence for the cowputation of each iterate xj.

Because the iteration parameters depend on the convex hull of the spectrum of A, estimates of the

extreme eigenvalues of A are needed. Manteuffel's algorithm computes these estimates dynamically [111.

It starts with a (possibly arbitrary) guess for the required parameters and monitors the convergence of

the iterates generated. If convergence is deemed unsatisfactory, then information produced during the

iteration is used to compute eigenvalue estimates. These, in turn, are used to compute new iteration

parameters, and the Chebyshev iteration is restarted with the new parameters. This adaptive procedure

is repeated until good iteration parameters are found, after which the Chebyshev method can proceed

with no further adaptive steps.

The eigenvalue computation makes use of the residuals generated by the previous Chebyshev Iteration.

The underlying numerical method is a modified version of the power method. If the values of the

s iteration parameters used by the Chebyshev iteration are inaccurate, then the residuals generated may
t. diverge. Although divergent residuals may enhance the ability of the adaptive procedure to obtain

accurate eigenvalue estimates and iteration parameters, the residual norms may increase by several

"- I - : . ... ,' • m -,,.,
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orders of magnitude before good iteration parameter are found (6, 71. Thus, the adaptive Chebyshev

method may do a considerable amount of work to compute iteration parameters before it makes any

improvement in the accuracy of the approximate solution of the linear system.

In this paper, we present an alternative to the eigenvalue computation part of the Manteuffel

algorithm that decreases the sensitivity of the Chebyshev method to iteration parameters. We replace

the modified power method for computing eigenvalues with Arnoldi's method 1, 181, a generalization of

the Lancos method 116 that estimates the eigenvalues of a nonsymmetric matrix A by reducing it to

upper-Hessenberg form. An advantage of this method comes from its relationship to conjugate padient-

like iterative methods for solving nonsymmetric linear systems (5, 17, 201. At relatively little extra

expense, information provided by Arnoldi's method can be used to perform several steps of an iterative

method that improves the quality of the solution iterate prior to restarting the Chebyshev iteration with

new parameters. The hybd method combines the basic Chebyshev method with this conjugate

gradient-like iteration, which is performed whenever new eigenvalue estimates are computed.

In Section 2, we briefly describe the original adaptive Chebyshev method. In Section 3, we describe

Amoldi's method and its relationship to conjugate gradient-like iterative methods for nonsymmetric

linear systems, and we present a convergence result for one of these iterative methods. In Section 4, we

define the hybrid method and discuss its advantages, and in Section 5, we present the results of some

numerical experiments comparing the performances of the hybrid method, the adaptive Chebyshev

method and the CG-like method Orthomin [4, 5, 23, 251 in solving some discretised non-self-adjoint

elliptic partial differential equations.
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2. The Adaptive Chebyshev Method

In this section, we give a brief overview of Manteuffel's adaptive Chebyshev method. For given

iteration parameters c and d, the basic Chebyshev iteration is [131:

Algorithm 1: The Chebyshev method.
1. Start: Choose an initial guess x., compute r. - b - Ax0 and p* I
. Iterate: FOR j-0 STEP I UNTIL convergence DO:

I xj,, -xj I+pj
r - b - Axj

2d/(2d - c2), j - 0
jd - (c/2 tr .j > 1

j+l - dj+l - 1

p3+1 - oj+rj+. + oi+lPj

The cost is one matrix-vector product plus 2N multiplications per step. The storage required is 4N

words for x,, Axj, r,, and p3. The residuals {r3) satisfy (2) and (3), and P is a member of

- {real polynomials of deree j such that Pj(0-l}. (4)

The parameters c and d define the center, d, and foci, d:kc, of a family of confocal ellipses in the

complex plane. There is a smallest member of this family, the smallest ellipee, that contains the

spectrum of A. If the closure of the smallest ellipse does not contain the origin, then Algorithm

1 converges. Moreover, convergence is nearly optimum in the sense that as j increases, Pj rapidly

approaches the polynomial in with minimum uniform norm over the smallest ellipse.

If the spectrum of A lies in the right half plane, then there is an infinite number of smallest ellipses,

each of which uniquely corresponds to a set of Chebyshev iteration parameters. For any particular

choice of parameters, the rate of convergence of the Chebyshev iteration is [13, 22, 24]

- log (max S(q)), (5)-V ~'E.(A)

! ' dos + [Kd-s92 -c€il'3

S(s) = Sc'd() - d + dz -c 1 / 2(' (6)

The iteration count for convergence is (approximately) inversely proportional to the reciprocal of the rate

of convergence. Hence, the beet dlipe is defined to e that smallest ellipse for which the rate of

convergence is greatest. The adaptive Chebyshev method starts with (possibly arbitrary) initial vatum,

0 .4
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for the iteration parameters and monitors the convergence of the Chebyshev iteration (Algorithm 1). If

convergence is deemed unsatisfactory (i.e. the residuals are diverging or converging less rapidly than (5)

suggests) after step a, then the adaptive procedure

1. estimates eigenvalues on the convex hull of the spectrum of A (111, and

2. computes the iteration parameters for the best ellipse containing these eigenvalue

estimates 1131.

The Chebyshev iteration is then restarted with the new parameters. The adaptive procedure is repeated

as often as is deemed necessary, until good parameters are found, after which the Chebyshev iteration is

performed until convergence.

The second step of the adaptive procedure, the computation of iteration parameters, requires negligible

machine resources, and we omit a discussion of it here.

The eigenvalue estimates are computed by a modified power method, which is based on the fact that,

asymptotically,

Pi(Z) s(,O ,

so that

where S(A) is the linear operator induced by S(z). That is, the residuals resemble the vectors generated
by the power method for S(A). If, for given iteration parameters, some eigenvalue of S(A) has modulus

greater than one and r0 has a component in the corresponding eigenvector, then the residuals will diverge

but will eventually become rich in that eigenvector. If there are m such eigenvalues, then eventually the

sequence of m+l residuals

will be nearly linearly dependent. Estimates for m eigenvalues of S(A) are then given by the roots of the

jm'th.depree polynomial

of + 2S + ... + 01Sn't + s m ,

whose coefficients {e) . are the solution to the least squares problem

min row-110 + r*+fl3 , (7)

wbere 0r,...r. denaoes the matrix with columns (r)+m-I fill. Estimates for eigenvalues of A can

be eomputed from the relatioship



pSW)

between eigenvalues {p) of S(A) and (X) of A.

Hence, the modified power method consists of m Chebyshev steps to generate the residuals (rj e+m

followed by the computation of the least squares solution to (7), and the computation of new eigenvalue

estimates and iteration parameters. The Chebyshev steps require m matrix-vector products and 2mN

multiplications. If (7) is solved using the normal equations, then [(m2+3m)/2]N multiplications are

needed to compute the inner products
0_r~k, O<j<m-1, O<k<m. (8)

Therefore, the dominant cost is m matrix-vector products plus f(m2+7m)/2JN additional multiplications.

The storage requirement (over that of the Chebyshev iteration) is mN words to save the vectors

(r.+,j }.,.

Note that an "unmodified" power method could be used instead of the modified power method by
replacing {r.+jj)m I with {AJr.1)nI in (7) [111. We will examine a technique that is mathematically

equivalent to the unmodified power method in Section 5.

S. Arnoldi's Method and Its Relation to Iterative Linear Solvers

In this section, we describe Arnoldi's method for computing eigenvalues of nonsymmetric matrices,

show how it can be used as the basis for iterative methods for solving linear systems, and derive a

convergence bound for one of these linear solvers.

Given an arbitrary vector v1 such that NVII12 - 1, Arnoldi's method (1, 181 is a Galerkin method on

the Krylov subepace Km - span(v,,Avl,...Am''vj) for approximating the eigenvalues of A. That is, it

finds a set of eigenvalue estimates (Xl,...,)* such that there exist nonzero ui E Km, i-l,...,m, for which

(Aui - Xiuiv) - 0, i - l,...,m (O)

for all v E Ki. It accomplishes this by constructing an orthonormal matrix V. - [v 1,...,vm] whose

columns (vj3) span K,, and then computing the eigenvalues of VTAVm.

•~ ~ ~ ~ ~ ~ ~~A M III " ....
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Algorithm 2t Anoldi's method.
1. Start: Choose an initial vector v such that lyvU 2-, and a step number m.
5. fterate: FOR j-I STEP 1 UNTIL m DO

hq - (Avjvi), ji-1l....

-j+i am An, - E 1 v
Vj+, -- j+1/hi+Ij

Notice that this method is essentially a Grim-Schmidt process for orthonormaliuing the Krylov

sequence {v1,Al,...,Amlvi). In a practical implementation, it is usually more suitable to use a modified

Gram-Schmidt process. The orthonormal matrix V is such that VTAV - H , where Hm is the mxm

upper-Hessenberg matrix whose (ij) entry is the scalar hij. The method generalizes the symmetric

Lanczos algorithm to nonsymmetric matrices. Recall that in the symmetric case, Hm is symmetric and

tridiagonal (161.

In an implementation, it is not necessary to compute the nonialized vectors {vj); it suffices to

compute and save the norms {Iiis). It is also not necessary to compute im+1" With these conventions,

the cost of Arnoldi's method is m matrix-vector products and (m2+m)N multiplications. The storage

requirement is (m+1)N words for (vj~)! I and Av 1201.

Suppose now that x0 is a guess to the solution of (1), with residual r0 - - Ax0 . Let Km

span(r 0,Ar0,...,A" 'r 0j. One way to solve (1) iteratively is to compute an approximate solution xm E x0

+ K. such that the Galerkin condition

(rm,v) - O, vEKi (10)

holds. But if v, - r/DjrjJz, then the Arnoldi vectors {v,)' , span Km, so that

-M X 0 +  VmYm ' 
j

rm - r. - Asm - rII0v - AVmy.,

for some Y. E R'. Since the Arnoldi vectors are orthonormal,(10) is imposed by computing

Ym " W0frolije1,

where ej is the j'th unit vector in RI. Hence, the algorithm 1171: r

ta-
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Algorithm 3: The full orthogonalization method (FOM).
1. Start: Choose an initial guess x., compute r. - b - Ax. and Vl-ro/I1ro11 2.
5. Iterate: Perform m steps of Algorithm 2 starting with vr l
S. Form the solution:

Solve Hmy. - Ir0lel,
compute x - x 0 + VmYm ,

where V. and Hm are determined by Arnoldi's method.

Algorithm 3 is also referred to as Arnoldi's method for solving linear systems. It is theoretically

equivalent to the ORTHORES method developed by Young and Jea [25], which is modelled after a

version of the conjugate gradient method described by Engeli et. al. 18J.

A drawback of Algorithm 3 is that the approximate solution xm does not satisfy an optimality

property. An alternative is the generalized minimal residual method (GMRES) developed by Sand and
Schultz 1201, which uses the Arnoldi basis to compute the point xm E x+ Km whose residual norm

lb - Axm1 2 is minimum. Let v, - r0/I1r0IU2, let 0 - IIr0112, and let fii'denote the (m+l)xm matrix

obtained by appending to Hm a row with single nonzero entry hm+1, m in column m. Then the Arnoldi

basis matrices V. and V,+ 1 - (v1,...,Vm+l] satisfy
AV m  V iIHm (11)

The GMRES iterate is given by x. + s, where z is the solution of the least squares problem

m S - A(x--z) 2 - mn 11r0 - Az 2 ,- min ,ft - AVmyI 2 . (12)

Umng (11) and the fact that Vm+ I is orthonormal, the last expression in (12) is equal to

i( M I+ie - VM+, imy12 - min , - R .y12 . (13)
Hence, the GMRES iterate is given by x. + Vmy m, where y. is the solution to the upper-Hessenberg

least squares problem on the right hand side of (13).

Algorithm 4: The generalized minimal residual method.
1. Start: Choose an initial guess xo, compute r. - b - Axo and vl-r0/HrOH2 , set 1 - 0 Ir0 2.
I Iterate: Perform m steps of Algorithm 2 starting with v! .
. Form the eolution: Find y, mimimizing 1#e -Hyl 2 and compute x. - xo + Vmym, where

VM and Rm are determined by Arnoldi's method.

GMRES is a generalization of the MINRES algorithm presented by Paige and Saunders (1]. It is

mathematically equivalent to Young and Jes's ORTHODIR 1251, for arbitrary nonsingular matrices A.

For matrices with positive-definite symmetric part, it is also equivalent to the generalized conjugate
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residual method [4, 5J and a method of Axelsson [2J. For large step numbers, it requires one third the

multiplications and one half the storage of these methods (20!.

For both FOM and GMRES, once (v}) I and H. are computed, the dominant cost of computing xm

is mN multiplications. Hence, the cost of both methods is m matrix-vector products plus (mn+2m)N

multiplications. In addition to storage for xj, (m+1)N words are needed for the Arnoldi computation.

We remark that for both methods, the residual norm lib - Axm112 can be monitored during Step 2

without explicitly computing x., so that Step 2 can be stopped as soon as the approximate solution is

sufficiently accurate (201.

An error analysis of GMRES can be found in (201. We derive a new result here that will demonstrate

its effectiveness in the hybrid method. Note that the residual rm - b - Ax. satisfies
IJrtlhI2 - miu IIP.(A)r112 ,

where P. is defined by (4). Assume that A is diagonalizable,

A - UAIu 1 , (14)

where A is the diagonal matrix of eigenvalues {XJN and U - [u,...,UNJ is the matrix of eigenvectors of

A. Note that U and A may be complex. Suppose that the initial residual is dominated by m

eigenvectors, i.e.

r - . au + e, (5
J.1 

j ul

where IPhI12 is small in comparison to 1 &juj1I 2, and that, moreover the sum in (15) satisfies

if some complex uk appears in E ojuj, then its conjugate 5k appears also. (18)1.1

(In general, this might require including small components in the sum, with a corresponding increase in

Theorm : If A is diagonalisable and the initial residual satisfies (15) - (16), then the

residual norm after m steps of GMRES satisfies

' Or,.N. 5 O~u9211tr'n2 C. Jle12

where c - max .

Prof, Let Um- Aum,...,u,], Al - diadQki...,).), and - (alp..., ,)T, so that (15) is

equivalent to

0 - Urea + e.
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Consider the polynomial

Which satisfies ~,X)-0, 1 <j 5m, FJO) -1. Hence

P.(A)U U*P,(A) -O0,

so that

P,(A)ro - jA)Uma + P,(A)e -P;,(A)e.

Moreover, by 16, Phas real coefficients so that

:511 = ,, gJ" IIP,(Am112 < tj(e 2

The an.-tion then follows with

m- II~(A,)R2 - max I~(~).(17)

Q.E.D.

Note that the constant c, des depend on (X)! and it may not be small if, for example, these

eigenvalues an small relative to the others. However, if (\)nare the in dominant eigenvalues of A

(i.e. JIk 2! \,) for j < i, k >mi), then

for k > mn, so that

c < 2.

Moreover, if (Xnane large relative to the remaining eigenvalues, then typically

In hi cnc. will beof order one, and themi steps of GMRES reduce the residual norm to the order of

Ph povied hatthe condition number of U is not too large.

4h ybi method cobnsthe approaches of the previous two sections. It uses the basic Chebyshev

iteatonof lgrihm , utreplaces the modified poe ehdfor computing eigenvalues with

mrodisaethod, from wihinformation is also used toipoetesolution iterate. Either FOM or
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SMRES could be used for the solution update; we favor GMRES because of its minimization property.

In the following implementation, the convergence of the Chebyshev iteration is monitored by examining

the norms of the generated residuals, and the adaptive procedure is invoked if the residual norm exceeds

a specified tolerance r relative to the norm of r"i - rmin(c,d), the smallest residual encountered with

the current iteration parameters. In addition, the adaptive procedure is invoked periodically, after at

most s Chebyshev steps, and it is used to generate initial eigenvalue estimates from which initial

iteration parameters are obtained.'

Algorithm 5: The hybrid method.

Choose x0. Compute r0 - b - Ax0 .

UNTIL Convergence DO

Adaptive Steps: Set vI  - the current normalized residual, perform m
Arnoldi/GMRES steps (Algorithm 4), and use the new eigenvalue
estimates to update (or initialize) the iteration parameters.

Chebyehev Steps: Set jmx-j+s.

WHILE (flrjI2/llrminm2 <r and j+l <Jmax)
Compute xj+l by the Chebyshev iteration.

The Chebyshev step requires one matrix-vector product and 2N multiplications per iteration, and the

adaptive step requires m matrix-vector products and (m2 +2m)N multiplications. As with the modified

power method, the eigenvalue estimates provided by Arnoldi's method lie in the field of values of A but

not necessarily in the con-rex hull of the spectrum of A, so that the hybrid method is only rigorously

applicable to linear systems with positive-definite symmetric part. The storage requirement for the

adaptive step is mN words, the same as fir the modified power method, since the first Arnoldi vector

can share storage with the residual of the Chebyshev iteration.

There are two main differences between the original adaptive Chebyshev method and the hybrid

method:

1. Different eigenvalue computations: the adaptive Chebyshev method uses the modified

power method based on the operator S(A), whereas the hybrid method uses Arnoldi's

method, which is based on a Krylov subspace in A.

2. Purification: the hybrid method uses the GMRES steps to improve the approximate

i

tManteuffel's method 13I for computing iteration parameters from cigenvalue estimates is still used.

P I '+ ... ... . + : .... . . ..-r
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solution.

A third difference is that in the hybrid method, the initial eigenvalue estimates provided by Arnoldi's

method can be used to compute initial iteration parameters; the original Chebyshev method requires an

initial guess.

We do not know whether the use of Arnoldi's method alone offers any advantage, i.e. whether

Arnoldi's method provides more accurate eigenvalue estimates than the modified power method.

Arnoldi's method is mathematically equivalent to the "unmodified" power method discussed by

Manteuffel [111, who observed no significant difference between the unmodified and modified methods.

Numerical experiments comparing the two techniques are described in Section 5.

The effect of the GMRES steps can be explained by a heuristic analysis based on Theorem 1. Assume

that A is diagonalisable as in (14). If the initial residual for the hybrid method has the form
N

r0 --E yuj

then after s Chebyshev iterations, the residual is approximately equal to (131
N

J.1 j J 3

where

S(X-) d-X + [(d. cJ 11 2

and c, d ae the iteration parameters used in the Chebyshev step. Suppose that these parameters are

inaccurate, so that the components in the directions of some eigenvectors are not being damped out.

This mens that some of the (rj) satisfy fri>l, so that Ill 3o 1 and the terms with these coefficients

dominate (18). Note that jr)l - Ifr1, so that if some complex eigenvector is not being damped out, then

neither is its conjugate. For some m, therefore, F satisfies (15) (with a. - ry.) and (16). If the
J J

corresponding eigenvalues (Y of A are the dominant ones, then Theorem I suggests that the m GMRES
II

steps purifv the residual of the eigenvectors whose coefficients had been growing during the Chebysev

iteration. Moreover, since F is the starting vector for the Arnoldi computation and is presumably rich in

these eigenvectors, the new eigenvalue estimates will be good approximations to the corresponding

eigenvalues. Hence, the new iteration parameters will produce Chebyshev polynomials that continue to

damp out these components.

Although the correct value of m to use in the adaptive step is not known in general, this analysis still

shows that a GMRES steps will tend to damp out the m dominant components of (18). The analysis
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applies as well even if the iteration parameters are accurate but not optimal, i.e. the Chebyshev iteration

is damping out all components but better parameters exist. In this case, some components will not be

damped out as rapidly as others during the Chebyshev step, and these will eventually be dominant in
(18).

Since the purification step seems to provide the important advantage of the hybrid method, it is

natural to ask whether a similar idea can be implemented with the modified power method, which uses

{rs+j P S(Arj_0 to compute eigenvalue estimates. One such procedure consists of computing

E x,+ + sPan~r,,...,r+ml}(10

for which 0r - 11b - Afl12 is minimum. This requires the solution of the least squares problem
I ! rin Jjr8+ mn - or+;l.(20)

To solve (20) using the normal equations, it is necessary to compute the inner products

(Ar,+jAr.+k), 0 <j < k < m-1, (21)

(%+m,Ar.+j), 0 < < m-1. (22)

Note that the recurrence for the Chebyshev iteration induces a three-term residual recurrence

l. i . - r.
Ar ai n- Jr,+-J (23)

Therefore, except when j-0, all the quantities of (21) can be computed in terms of

(r.+t j,+u), t - j-Ijj+l, u - k-l,k,k+l,

which are available from the modified power method (see (8) above). Similarly, except when ju=O and

j-m-I, the terms of (22) are available from the modified power method. Moreover, the same trick can

be used for j--0 in (21) if r.,i is saved and ((rl,,+k)n. are computed; and for j-0 and j--m-1 in

(22) if (r,.l,r,) and (r,+,,r,+m) are computed. Hence (20) can be solved with a total of m+3 inner

products. The computation of i requires an additional mN multiplications, so that purification can be

added to the modified power method with (2m+3)N multiplications. Combining this with the

Km2+7m)/21N multiplications and m matrix-vector products required for the modified power method,

the cost of this adaptive procedure is m matrix-vector products plus Km2+llm+6)/21N multiplications.

This contrasts with m matrix-vector products and (m2+2m)N multiplications for the hybrid method.

Thus, the number of matrix-vector products is the same as for the hybrid method, but the number of

additional operations is different. The coefficient of N for the additional operation counts of both

methods, for several values of m, is shown in Table 4-1. The storage requirement is (m+1)N words, for

A"U
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(r.+,! and ral, which is N greater than for the hybrid method.2

---------------------------------------------------------
a = 2 4 6 a 101

4--------------------------------------------------------------------------

I Hybrid 1 8 24 46 80 1201
*------------------------4------------ ------------------------- 4

I Nodified Power with Puriflcaton I 16 83 54 79 108 I
-------------------------------------- 4-------------------------------------

Table 4-1: Coefficient of N in multiplication count of purification adaptive steps.

Finally, we note that similar methods for annihilating eigencomponents have been developed in slightly

different contexts by Sand and Sameh [191 and by Jesperson and 3uning [101.

S. Numerical Experiments

*In this section, we describe the results of numerical experiments in which the methods discussed above

are used to solve some nonsymmetric linear systems arising from the discretisation of non-self-adjoint

elliptic boundary value problems. We examine four methods based on four choices for the adaptive

procedure:

(A) CHEB: the modified power method with no purification;

(B) HYBRID: Arnoldi's method with purification by GMRES;

(C) CHEB-MIN: the modified power method with purification added by solving (20);

(D) CHEB-ARNOLDI: Arnoldi's method without purification.

The experiments were run on a VAXII-780 in double precision (56 bit mantissa). The Chebyshev

iterations were based on a slightly modified version of MAnteuffel's Chebyshev code 12e. The

eigenvalues of the uppe Hessenberg matrix Hv generated by Antoldi's method were computed using

EISPACK 1211.

Table 5-1 summarizes the work and storae requirements for the adaptive procedures of each of the

four methods. The matrix-vector products are denoted by Av.

As in Algoithm 5, the adaptive procedure of each method is invoked if

VNots h the spate in (19) does not contain the most recent infommat vailable, since r is excluded. We exclude it
to avoid the conputation of Ar* in (20). Alo, a less expensive purification, with no reference to re'l, could be performed it re
wee excluded. The given method i a compromise between the two alternatives.

'a " 

.. . ..
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I CHEB I HYBRID I CHEB-MIN I CHEB-ARNOLDII
*----4--------------4--- ---------------- 4------------ ------- 4------ --------------

I Work m mAy+ I amAv+ s mAw + m Aw +
1 W+m2 70111/2 I (m242mN 1(m2+ll46)N/2 I (m2*m)N 1

4----------- +----------------------------------------------------------------

Storage I ON I ON I WO*1N I ON I
4-----------------------4-------------------4-------------------4---------------------

Table &-1: Work and storage requirements for the adaptive procedures.

fl12l > r Urmati, 2 1 (24)

where rmin is the smallest residual encountered for the current parameters, sad r-2. For HYBRID and

CHEB-MIN, it is also invoked after at most s-20 Chebyshev steps so that the purification step is

performed periodically. Since no purification occurs in CHEB and CHEB-ARNOLDI, these techniques

allow the Chebyshev iteration to proceed if the convergence seems to agree with the predicted rate of

convergence.3 HYBRID and CHEB-ARNOLDI compute initial values for the iteration parameters c and d

from eigenvalue estimates provided by Arnoldi's method applied to the initial residual. CHEB and

CHEB-MIN use c-0 and d-1 as the initial iteration parameters. Following [111, we use m-4 as the

size of the Arnoldi and modified power bases in an effort to identify the dominant and subdominant

complex eigenvalue pair. Table 5-2 contas the work and storage costs of the adaptive procedures for

this value of Mn.

4----------4------------------4-------------------4---------------------4

I CHES I H4YBRID I CHEB-NIN I CHEO-ARNOLDZ
------------------------ 4---------------- --- 4-------------------4---------------------

I Work 1 4 Av +22N 1 4 Av +24N 1 4 Av +S3N 1 4 Av+20N
4--------------------4-------------------4-------------------4---------------------

Storage I 4N 1 411 1 SN I U I
4-----------------------4-------------------4-------------------4---------------------

Table 6-2: Costs of the adaptive procedures, m-.4.

For the test problem, we use the elliptic partial differential equation

.- eyxx- (e'Yuy)y + 4((X+Y)uy + ((X+Y)u)yf + (I/(1+X+yflu - f, (25)

wher -1 is a ral KAaa paramete and the right hand sid f is chosen so that the solution is

I1 jis the index of se tinst CaM h Ieate comrsponding to the current Iteration parameters, then asymptotically
Ir,,LjurI 1 is bounded by mtax E(X1 I .T(A) (131. The heuristic, built into the original cods 111, is to compuet new
parameters only IV 3r,J~,/ 1 > 2 8(d).



u(xJ) - x C" sin(Xx) sin(ry).I
We pose (26) on the unit square (0_5x: r1) with homogeneous Dirichlet boundary conditions and

diacretise using the ive-point second order centered finite difference scheme on a uniform 47x47 grid,

producing a linear system

Ax - b (26)

of order N - 2209. We use the values '7-6 and -y-60. In addition, we precosdition (26) with

incomplete factorizations. We use both the incomplete LU (ILU) and modified incomplete LU (MILU)

factorizations with no extra fill-in (see (3, 6, 9, 141 for the details concerning these techniques). The

actual linear systems on which the various iterative methods are tested have the form

X!- [AQ'l] [Qxj - b - ,i where Q is the preconditiosing matriz. We thus have four test problems:

e Problem I: v-S6 , ILU preconditioning

e Problem 2: y-p6, MILU preconditioning

* Problem 3: 7-60, ILU preconditioning

9 Problem 4: -p-60, MILU preconditioning.

For all tests, the initial guess is x.-O and the stopping criterion is Dr,1 2/RrU 2 < 10" .

Table 6-3 shows the number of iterations required to satisfy the stopping criterion, where an iteration

for the four adaptive Chebyshev methods is defined to be either a Chebyshev step or an Arnoldi step.

Thus, one iteration does not correspond to a fixed amount of work, although each iteration contains one

matrix-vector product.
t-- ------------ .......--

I CHED I HYBRIDI CHEB- I CHEB- I ORTHO-1
I I I KIN IARNOLDII NIN(1)I

--------------------------------- --------------- ---- 4--- +------- +

I ProblemI 1 90 1 60 1 64 1 77 1 78 1
*--------------------------4-------- ------- ------- 4---------

I Problem 2 I 35 I 27 I 84 I 44 I 32 I
* 4------------------------------------------ --- 4--------------------

I Problem I 86 I 42 I 81 1 59 I 82 1
*-------4----------4--- +------- 4--------------------------

I Problem4l 81 27 I 81 I 84 I 21 I
,---------4---------------#------- -----------------------------

Table 5-81 Iterations to convergence.

Figurs 6.1 - 6.4 show the performance of the methods on each of the four problems. The coordiates

_ , .
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are residual norm Hrill2 (on a logarithmic scale) vs. multiplications. As a benchmark, for each problem

we also include the performance of the conjugate gradient-like method Orthomin(l) [4, 5, 23, 251. Note

that numerical experiments indicating that Chebyshev methods (as well as Orthomin) are more effective

than the conjugate gradient method applied to the normal equations and the biconjugate gradient

method are presented in 15, 6, 71.

In examining this data, we consider three main issues:

1. the effect of the purification steps in HYBRID and CHEB-MIN;

2. the effect of the different eigenvalue estimators: Arnoldi's method in HYBRID and CHEB-

ARNOLDI vs. the modified power method in CHEB and CHEB-MIN;

3. the different choice of initial parameters: an initial Arnoldi computation in HYBRID and

CHEB-ARNOLDI vs. initial guesses of d-l, c-0 in CHEB and CHEB-MIN.

The rust issue is clearcut: for all four problems, the method with purification is superior to its

analogue without purification. This is explained by the analysis of Section 4: if the residuals from the

Chebyshev steps we diverging, then the purification essentially annihilates the eigenvector components

that are growing, at relatively little extra cost.

A direct comparison between the two techniques for estimating eigenvalues is somewhat difncult

because of the different roles of the growth tolerance parameter r. In the modified power method, four

Chebyshev iterations are performed after the condition (24) is violated, so that the residuals will become

very rich in the needed eigenvectors. In contrast, Anmoldi's method is performed as soon as (24) is

violated, so that the residuals will probably not be dominated as much by these eigenvectors. Without

purification, Arnoldi's method (in CHEB-ARNOLDI) does not seem as effective as the modified power

method (in CHEB). However, the combined Arsoldi/GMRES step of HYBRID appears to be more

effective than the purified modified power step of CHEB-MIN. It is both less expensive (for m-"4), and
it strongly limits the growth of the residual.

For the third issue, note tha inaccurate initial iteration parameters cause the residuals generated by

CHEB and CHEB-MIN to diverge by several orders of magnitude in Problems 1, 2 and 4 (the missing

eigeuvalues take some time to assert themselves in Problem 1). This difficulty is avoided by HYBRID in

Problems I and 2, where fairly accurate initial eigenvalue estimates combine with the strict growth

tolerance r-2 to prevent divergence. HYBRID does not handle Problem 4 as well. This is because the

initial Arnoldi estimate determine a domain of convergence for the Chebyshev iteration that just mimes



ii

one eigenvalue, and the next Chebyshev iteration diverges too slowly for the adaptive procedure to be

invoked until the maximum number of 20 steps is performed. in Problem 3, the eigenvalues are

clustered near I so that the initial parameters for CHEB and CHEB-MIN are accurate, whereas Arnoldi's

method has some difficulty identifying them. The use of Arnoldi's method for initial eigeuvalue

estimates tends to make the overall performance somewhat smoother, although it may not be necessary

if good initial parameters are available.

Finally, note that the performances of Orthomin(l) and the Chebyshev methods are very close. The

slopes of the Chebyshev curves are steeper, reflecting their lower cost per step (4, 5, 131, but the overhead

of the adaptive steps increases their total cost.

Aeknow/edmerste. The authors wish to thank Tom Manteuffel for providing us with a copy of his

Chebyshev code, without which this project would have been nearly impossible, and Martin Schultz and

Stan Eienstat for several helpful suggestions during the preparation of this paper.
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