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RESEARCH OBJECTIVES 

The objective of this research program has been to develop real¬ 

istic macroscopic constitutive relations which describe static and 

dynamic properties of geotechnical materials (soils and rocks). To 

this end a coordinated theoretical and experimental activity has been 

followed . 

The theoretical work includes a balanced combination of statist¬ 

ical microscopic (at the grain size level) modeling and a nonclassi- 

cal elasto-plastic macroscopic formulation. The latter includes the 

effects of internal friction, plastic compressibility, and pressure 

sensitivity, as well as anisotropy which is commonly observed in 

geotechnical materials. The following specific goals have been 

sought: (a) to develop three-dimensional constitutive relations under 

ordinary or high pressures (such as those induced by blasting or tec¬ 

tonic forces which may cause a large amount of densification by rela¬ 

tive motion and possible crushing of grains); and (b) to examine and 

characterize the behavior of saturated granular materials under 

dynamic loading. The latter item includes characterization of possi¬ 

ble liquefaction and subsidence which may be induced in granular 

materials under confining pressure by ground vibration or passage of 

waves . 

The theoretical work has been carefully coordinated with key 

experiments in order to: (a) understand the basic physics of the pro¬ 

cess, both at macroscopic and microscopic levels; (b) to verify the 

ill 
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corresponding theoretical predictions; and (c) to establish relevant 

material parameters. 
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ORGANIZATION OF THIS REPORT 

This report is organized in the following manner. 

In Chapter I we divide the basic research area into several log¬ 

ical units, discuss briefly each logical unit, and list papers that 

have been completed in each unit, together with a brief abstract of 

each paper. At the end of Chapter I a list of scientific articles 

completed under this project is given. In Chapter I, we also give 

the list of participants and related information. Chapters II-V each 

presents a complete research effort which although finished, has not 

yet been published. 
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CHAPTER I 

RESEARCH ACCOMPLISHMENTS 

The research carried out at Northwestern University under grant 

No. AFOSR 80-0017 has been a coordinated experimental and theoretical 

effort to understand and quantify the mechanical behavior of geoma- 

tenals (soil and rocks) under moderate, as well as high pressures. 

The research includes both micromechanical modeling and phenomenolog¬ 

ical plasticity. Broadly speaking, two categories of investigation 

can be identified: the mechanics of granular materials; and the 

mechanics of rocks. In the sequel, effort in each of these areas is 

examined in greater detail. 

1. MECHANICS OF GRANULAR MATERIALS 

Attention has been focused on the mechanical response of cohe- 

sionless granular masses which support the overall applied loads 

through contact friction. It is shown that the fabric of the granu¬ 

lar mass plays a dominant role in characterizing its overall 

behavior. Fabric refers to the relative arrangement of the grains at 

the micro-level. It has the most fundamental influence on the den¬ 

sification and liquefaction potentials of granular bodies. Our 

research, therefore, focuses on the following basic aspects: 1) 

description of fabric and its relation to other fundamental quanti¬ 

ties hat characterize the behavior of granular masses; 2) the influ¬ 

ence of fabric on densification and liquefaction potentials of granu¬ 

lar masses; and 3) phenomenological plasticity approach to the 
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description of the flow of granular masses. 

In the sequel we list papers pertaining to each of the above two 

areas» together with a brief abstract of each paper. 

1.1. Fabric and Micromechanics of Granular Materials 

The basic aim here is to obtain a macroscopic description of the 

mechanical behavior of granular masses from an examination of the 

microscopic, grain-to-grain interaction which brings into focus the 

importance of fabric and anisotropy. Significant progress in this 

fundamental direction has been made» as summarized below in connec* 

tion with each publication that has been completed. 

(1) "A Micromechanical .Description of Granular Material Behavior,n by 
J. Christoffersen, M. M. Mehrabadi, and S. Nemat-Nasser, Journal 
Oi Applied Mechanics. (1981) 339-344. 

Considered is a sample of cohesionless granular material, in 
which the individual granules are regarded rigid, and which is 
subjected to overall macroscopic average stresses. On the 
basis of the principle of virtual work, and by an examination 
of the manner by which adjacent granules transmit forces 
through their contacts» a general representation is estab¬ 
lished for the macroscopic stresses in terms of the volume 
average of the (tensorial) product of the contact forces and 
the vectors which connect the centroids of adjacent contacting 
grrnules. Then the corresponding kinematics is examined and 
tie overall macroscopic deformation rate and spin tensors are 
developed in terms of the volume average of relevant micro¬ 
scopic kinematical variables. As an illustration of the appli¬ 
cation of the general expressions developed, two explicit 
macroscopic results are deduced: (1) a dilatancy equation 
which both qualitatively and quantitatively seems to be in 
accord with experimental observation, and (2) a noncoaxiality 
equation which seems to support the vertex plasticity model. 
Since the development is based on a microstructural consider¬ 
ation, all material coefficients entering the results have 
well-defined physical interpretations. 

4 



(2) "On statistical Description of Stress and Fabric in Granular 
Materials," by M. M. Mehrabadi, S. Nemat-Nasser, and M. Oda, 
International Innrnal fax. Numerical and Analytical Methods ia 
Geomechanics. & (1982) 95-108. 

The notion of overall macroscopic stress in granular masses is 
examined from a fundamental point of view by a statistical 
consideration of the contact forces that are transmitted by 
the contacting granules at the microscale. This examination 
leads in a natural way to relations between the macroscopic 
stress and the resulting granular fabric. The overall 
stresses are expressed in terms of the contact forces in two 
different but complementary ways: (1) by a statistical averag¬ 
ing over the sample volume of contact forces and "branches" 
which are vectors connecting the centroids of two contacting 
granules; and (2) by defining the overall tractions transmit¬ 
ted across an interior imagined plane as the sum of the con¬ 
tact forces which represent the mechanical effect of granules 
on one side of a unit area of this plane, upon those on the 
other side. Conditions under which the two representations of 
overall stresses are equivalent, are examined in detail. In 
addition, explicit results are given, which define stresses in 
terms of the fabric and other microstructural characteristics 
of the granular mass. 

(3) "A Statistical Study of Fabric in a Random Assembly of Spherical 
Granules," by M. Oda, S. Nemat-Nasser, and M. M. Mehrabadi, 
Internat lona 1 Janinal fnx. Numerical and Analytical Methods ¿a 
Ceomechanics. 6. (1982) 77-94. 

It is commonly accepted that the mechanical behavior of granu¬ 
lar masses is strongly affected by their microstructure, 
namely the relative arrangement of voids and particles, i.e. 
the granular fabric. Therefore, parameters which characterize 
the granular fabric are of paramount importance in a fundamen¬ 
tal description of the overall macroscopic stresses and defor¬ 
mation measures. In this paper several measures of granular 
fabric are introduced for a random assembly of spherical 
granules, using a statistical approach. In particular, a 
second-order symmetric tensor, F. . 
sidération» which seems to be of fuiídamentaf68 import anee Cfor 
the description of fabric, and which is closely relaced to the 
distribution of the contact normals in the assembly. The 
relation between fabric measures presented here and those dis¬ 
cussed by other investigators is also discussed. 

(4) "Some Experimentally Based Fundamental Results on the Mechanical 
Behavior of Granular Materials," by M. Oda, J. Konishi, and S. 
Nemat-Nasser, Geotechniqnp. (1980) 479-495. 



This works shows, on the basis of experimental results, the 
importance of fabric on the mechanical behavior of granular 

masses. It is summarized as follows: 
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Porosity (or void ratio) is one of the most important index 

measures of granular materials. It alone is not, however, 

enough for a reasonably complete description of the basic pro¬ 

perties of materials of ' this kind. The fabric ellipsoid 

appears to be a good second index measure. It is closely 

related to the probability density function E(a.ß) which 

defines the angular distribution of the contact normals. 

Based on experimental evidence the following is concluded. 

The fabric ellipsoid is closely related to the stress ellip¬ 

soid and characterizes a second-order tensor with a clear phy¬ 

sical meaning; the principal axes of the fabric ellipsoid seem 

to tend toward those of the stress ellipsoid and this appears 

to hold whether the principal stress axes rotate gradually or 

discontinuously during a course of deformation; and there 

seems to exist a quantitative relation between the fabric 

ellipsoid and the overall applied stressest especially in the 

post-failure states. It appears that the function E(a,ß) con¬ 

tinuously changes in a manner so as to increase the ability of 

the material to withstand the increased applied stresses. The 

changes of the fabric, characterized by the changes of E(a,ß), 

result in the hardening (or softening) of the granular materi¬ 

als in a given deformation course. 

(5) "Anisotropic Strength of Cohesionless Sands," by M. Oda, Journal 

of. ¿lift Geotechnical Engineering Division. ASCE, 107. No. GT9 
(1981) 1219-1231. 

Natural in situ soils are neither isotropic nor homogeneous. 

They often possess layered structures, e.g., alternating 

layers having quite different particle size distribution, 

where in each homogeneous layer nonspherical particles have a 

strong tendency to exist parallel or nearly parallel to the 

layered structures . The anisotropy and heterogeneity may 

have considerable influence on the strength and other proper¬ 

ties of soils; e.g., on the shear strength of clays and sands, 

and on the bearing capacity of sand. 

In this paper, the writer reports some results of plane 

strain tests on samples having layered structures as well as 

being anisotropic. The results may provide guidance for 

estimating the internal friction angle of soils with compli¬ 
cated properties. 

(6) "Fabric and Its Influence on Mechanical Behavior of Granular 

Materials," by S. Nemat-Nasser, Deformation and. Failure ai Granu¬ 

lai. Materials» Proc. IUTAM Symp., Delft, The Netherlands, Aug. 

31-Sept. 3, 1982, P. A. Vermeer and H. J. Luger (eds.), A. A. 

Balkema/Rotterdam (1982) 37-42. 
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Some relevant measures of granular fabric are reviewed in 
relation to the overall stress and the dilatant behavior of 
granular masses, and the results are illustrated for simple 
shearing of two-dimensional granules. Recent experimental 
results are cited, which show the influence of fabric on the 
overall shear-induced rate of volume expansion and volume con¬ 
traction. 

(7) "Inherent Anisotropy and Shear Strength of Assembly of Oval 
Cross-Sectional Rods," by J. Konishi, M. Oda, and S. Nemat- 
rrtíff/ó Bgfroraation ani Eailure oí granular Materials. Proc. 
IUTAM Symp., Delft, The Netherlands, Aug. 31-Sept. 3, 1982, P. A. 
Vermeer and H. J. huger (eds.), A. A. Balkema/Rotterdam (1982) 
403-412. 

The authors have conducted an experimental study on biaxial 
deformation of two-dimensional assemblies of rod-shaped pho¬ 
toelastic particles with oval cross section to understand and 
quantify the behavior of granular materials and the evolution 
of their microstructure. In each test the overall deformation 
and corresponding forces are measured and at various stages of 
deformation photoelastic photographs are taken to measure 
various microscopic quantities to evaluate the microstructure 
and its relation to the overall macroscopic mechanical 
behavior. In this paper, the effect of inherent anisotropy 
associated with the initial orientation of the long (cross- 
sectional) axis of the particles with respect to the bedding 
plane, and the influence of inter-particle friction and parti¬ 
cle shape are discussed relating to the macroscopic behavior. 

(8) "Experimental Micromechanical Evaluation of Strength of Granular 
Materials: Effects of Particle Rolling," by M. Oda, J. Konishi, 
and S. Nemat-Nasser, Meshaoics ol Materials 1 (1982) 269-283. 

Biaxial compression tests have been performed on assemblies of 
oval cross-sectional rods, in an effort to evaluate the 
effects of interparticle friction, particle shape, and initial 
fabric on the overall strength of granular materials. The 
variation in the spatial arrangement of the particles (fabric) 
and particle rolling and sliding are monitored by taking 
potoelastic pictures at various stages during the course of 
deformation. Based on this, the following conclusions are 
obtained: (1) Particle rolling appears to be a major micro¬ 
scopic deformation mechanism, especially when interparticle 
friction is large. (2) There are relatively few contacts at 
which relative sliding is dominant, and this seems to be true 
even when the assembly reaches the overall failure state; this 
observation is in contradiction to the common assumption that 
particle sliding is the major microscopic deformation mode. 
(3) During the course of deformation and up to the peak 
stress, new contacts are continually formed in such a manner 



that the contact unit normals tend to concentrate more in a 
direction parallel to the maximum principal compression. This 
concentration of unit normals seems to be closely related to 
the formation of new column-like load paths which carry the 
increasing axial stress under constant lateral force. After 
the peak stress, such a column-like microstructure disappears 
and considerable rearrangement of the load paths takes place, 
leading to a more diffused (homogeneous) microstructure in the 
critical state. (4) If a fabric tensor F..,i,j = 1,2,3, is 
defined to be proportional to the volume average of the quan¬ 
tity m^m., when m.’s are the rectangular Cartesian components 
of a unitJvector along a vector that connects the centroids of 
two typical contacting granules, then it appears that the 
overall stress with components a., tends to become coaxial 
with the fabric tensor F. ., as tÃi overall deformation contin¬ 
ues. For two-dimensionaiJgranules the result a.. = anF.. + 

(k summed) obtained by Mehrabadi, Nemit-Nasser^and 
Oda lint. i. Numer. Anal. Methods Geomech. £., 1982, 95) by 
micromechanical modeling is confirmed experimentally; an and 
ßg are material parameters. 

(9) "Induced Anisotropy in Assemblies of Oval Cross-Sectional Rods in 
Biaxial Compression," by J. Konishi, M. Oda, and S. Nemat-Nasser, 
Mechanics OÍ granular Materials! Hex Models and Constitutive 
Relations» Proc. U.S.-Japan Seminar, Ithaca, NY, Aug. 23-27, 
1982, J. T. Jenkins and M. Satake (eds.), Elsevier Science Pub¬ 
lishers (1983) 31-39. 

The microstructure (or the fabric) of granular materials 
changes during their plastic flow in response to applied 
loads, resulting in load-induced anisotropy. Based on previ¬ 
ous experiments (by the present authors and by other research¬ 
ers) we have concluded that the evolution of fabric is closely 
related to the variation in the distribution of the contact 
normals, and that this distribution seems to have a close 
relation to the overall applied stress: the distribution of 
contact normals changes in such a manner as to produce a 
greater concentration of contact normals along an orientation 
which parallels the direction of maximum principal compres¬ 
sion. How does an initially strongly anisotropic fabric 
change in response to an applied load? In order to investi¬ 
gate this problem, we have performed a series of biaxial 
compression tests on two-dimensional assemblies of photoelas¬ 
tic rods with oval cross-sections» where each assembly is 
formed by stacking the rods within a tilted loading frame at 
desired angle, producing a strong initial anisotropy. 

(10) "Micromechanically Based Rate Constitutive Descriptions for 
Granular Materials," by S. Nemat-Nasser, and M. M. Mehrabadi, 
Mechanics of Engineering Materials. C. S. Desai and R. H. Gal¬ 
lagher (eds.), John Wiley & Sons, in press. 



For a granular mass which supports the overall applied loads 
through contact friction, the overall stress is related to 
suitable measures of fabric (or microstructure). An active 
contact is viewed as the basic micro-element, and the associ¬ 
ated local velocity gradient is decomposed into an inelastic 
contribution that does not affect the fabric, and an accomo¬ 
dating contribution due to fabric changes. Local objective 
stress rate measures are developed and related to the local 
deformation rate by means of simple suitable stress rate - 
fabric strain rate relations, and a simple frictional flow 
rule. In terms of the nominal stress rate and the velocity 
gradient, a generalized self-consistent method is used to 
obtain the overall instantaneous moduli from the corresponding 
local quantities. 

1.2. The Influence of Fabric on Densification and Liquefaction of 
Granular Masses 

Chapters II and III give comprehensive accounts of the liquefac¬ 

tion phenomenon, emphasizing some very recent discoveries on the 

influence of fabric on this phenomenon. Below we list published 

papers relating to liquefaction, together with their summaries. 

(1) "Liquefaction of Soil During Earthquakes," by S. Nemat-Nasser, 
Dynamic Response ûf. Structures. Proc . ASCE-EMD Special 1-t-v Genf., 
Atlanta, Georgia, Jan. 15-16, 1981, G. Hart (ed.). Am. Soc. Civil 
Engineers (1980) 376-385. 

Recent theoretical results on liquefaction of cohesionless 
saturated sand are summarized. Then some experimental obser¬ 
vations of the effect of prior straining on the liquefaction 
resistance are mentioned. 

(2) "On Dynamic and Static Behavior of Granular Materials," by S. 
Nemat-Nasser, Soil tigchaaics--Transient and Cyclic Loads. G. N. 
Pande and 0. C. Zienkiewicz (eds.), John Wiley & Sons (1982), Ch. 
16, 439-458. 

The paper summarizes some recent work by the author and his 
associates on the dynamic and static behavior of granular 
materials (saturated undrained, or drained sands), consisting 
of three complementary aspects: (1) densification and 
liquefaction of sand in cyclic shearing (strain- or stress- 
controlled cases); (2) application of plasticity theory (with 
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plastic volumetric changes and including internal friction) 
for the description of the sand behavior in monotone loading 
regimes; and (3) development of the basic rate constitutive 
relations by a statistical averaging which is based on the 
behavior of individual grains at microscale. 

(3) "Influence of Fabric on Liquefaction and Densification Potential 
of Cohesionless Sand(" by S. Nemat-Nasser and Y. Tobita. Mechan- 
ifii ai Materials. 1 (1982) 43-62. 

For simple shearing under constant pressure, the effects of 
fabric on liquefaction and densification potentials of 
saturated cohesionless granular materials are examined 
theoretically and experimentally. The fabric is identified 
with the distribution of the dilatancy angles (the angle 
between the sliding and the macroscopic shearing directions), 
and the influence of prestraining on this distribution and 
hence on the macroscopic sample behavior is studied. It is 
shown that prestraining with zero residual stress can reduce 
resistance to liquefaction by one or even two orders of magni¬ 
tude. although the sample density and other conditions are 
kept the same. The micromechanical features responsible for 
this and related behaviors, are examined in some detail. 
Finally, some tentative results on the effect of the inherent 
anisotropy that is produced during sample preparation are 
reported, showing that a method which yields samples more 
resistive in triaxial cyclic tests may provide samples less 
resistive in cyclic shearing. 

1.3. Phenomenological Plasticity Approach 

Two fundamental features distinguish soil response from that of 

metals: 1) soils are frictional materials and, therefore, highly 

pressure-sensitive, whereas, for metals, pressure sensitivity is 

secondary; 2) soils are highly dilatant and undergo permanent 

volumetric strains, whereas most metals are essentially incompress¬ 

ible plastically. Therefore, classical plasticity does not apply 

directly to soils. Under this research project, we have developed 

some nonclassical plasticity theories which, while quite simple, seem 

to provide good descriptions of soil response at high pressures and 
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even at high temperatures. Chapter V gives an account of this theory 

and provides a number of illustrations. Below we list related pub¬ 

lished papers together with their summaries. 

(1) "On Constitutive Behavior of Fault Materials," by S. Nemat- 
Nasser, in Solid Eaxlh gfiflphysics and Geotechnology. Proc. ASME 
Symp., Chicago, IL, Nov. 16-21, 1980, S. Nemat-Nasser (ed.), 
AMD-Vol. 42, The Am. Soc. Mech. Engineers (1980) 31-37. 

It is commonly believed that the assessment of precursory 
events which may lead to instability in shallow earthquakes 
hinges critically on the constitutive law of both the intact 
elastic earth and the nonlinear fault zone. A rate- 
independent plasticity theory of deformation and flow of geo¬ 
logical materials is presented, and the effects of pressure, 
temperature, dilatancy, stress triaxiality, noncoaxiality of 
stress and plastic strain rate tensors, rate of loading, and 
pore water pressure are reviewed in the context of the theory. 

(2) "A Plasticity Model for Flow of Granular Materials under Triaxial 
Stress States," by J. F. Dorris and S. Nemat-Nasser; Interna¬ 

tional Journal Ql Solids and Structures. 1£ (1982) 497-531. 

For finite deformations of granular materials, a plasticity 
theory is developed which accounts for the true stress triaxi¬ 
ality, pressure sensitivity, and dilatancy. The effect of 
stress triaxiality is introduced by including the third devia- 
toric stress invariant in the yield function and the flow 
potential. For illustration, the true triaxial test on the 
cubical sample is analyzed in detail, the results are compared 
with experimental observations of true triaxial test on loose 
and dense samples of sand* and good correlation is obtained. 

(3) "Instability of a Half-Space with Frictional Materials," by H. 
Horii and S. Nemat-Nasser, Journal QÍ. Applied Mathematics an¿ 
Ehyaics (zamp). n (1982) 1-16. 

The instability of an initially half-space which consists of 
dilatant frictional materials is examined. It is assumed that 
the material response is governed by elastoplastic constitu¬ 
tive relations that include plastic compressibility (or dila¬ 
tancy) and frictional effects, and hence involves a nonassoci- 
ative flow rule. Stability limits are established, and it is 
shown that (unlike for elastic materials) for this class of 
materials folding by surface instability can be initiated at 
compressive forces that are considerably smaller than the ini¬ 
tial shear modulus. The results are illustrated in terms of 
some published data on certain sandstones. 
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2. MECHANICS OF ROCKS 

Another area in which significant fundamental results have been 

obtained during the course of this research is the mechanics of 

rocks• with particular attention to the influence of microcracks on 

the overall behavior of rocks, and on the basic failure mechanisms at 

various confining pressures. Chapter IV gives a comprehensive 

account of our latest findings in the description of the failure 

mechanism. Below is a list of the related published papers, together 

with their summaries. 

(1) "Compression Induced Nonplanar Crack Extension with Application 
to Splitting, Exfoliation, and Rockburst," by S. Nemat-Nasser and 

H. Horii, Journal ni Saophyaical Research. SI. No. B8, August 10 
(1982) 6805-6821. 

Uniaxial compression of plates of brittle materials containing 
pre-existing planar cracks oriented at certain angles with 
respect to the direction of overall compression has revealed 
that the relative frictional sliding of the faces of the pre¬ 
existing cracks may produce, at their tips, tension cracks 
which deviate at sharp angles from the sliding plane. These 
tension cracks then continue to grow in a stable manner with 
increasing axial compression, curving toward an orientation 
parallel to the direction of axial compression. Within the 
framework of linear fracture mechanics, the out-of-plane 
extension of a pre-existing straight crack, induced by overall 
far-field compression, is analyzed, and various parameters 
which characterize the growth process are quantified. It is 
shown analytically that, for a wide range of pre-existing 
crack orientations, the out-of-plane crack extension initiates 
at an angle close to 70° from the direction of pre-existing 
crack, the exact value of this angle, of course, depends on 
the friction factor and the orientation of the pre-existing 
crack. It is found that the growth process is stable ini¬ 
tially, but the rate of increase of the length of the extended 
portion with respect to the increasing axial compression 
dramatically increases after a certain extension length is 
attained, and in fact, this length becomes unbounded if a 
small lateral tension also exists. Various limiting cases are 
examined and the corresponding analytical estimates are com¬ 
pared with the numerical results, arriving at good 
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correlations. A series of qualitative experiments is per¬ 

formed on thin plates of Columbian Resin CR 39, arriving at 

excellent agreement with the analytical results. In light of 

the analysis, the phenomena of axial splitting, exfoliation 

(or sheet fracture), and rockburst are examined, and it is 

suggested that they may all be the results of the out-of-plane 

(tensile) extension of pre-existing cracks, induced by large 

overall far-field compressions. This assertion is then sup¬ 

ported by a series of experiments which show that the relative 

frictional sliding of the faces of one or even an array of 

pre existing cracks does not result in coplanar (sliding mode) 

crack growth, but rather leads to the formation of tension 

cracks which grow in the direction of maximum compression. 

Moreover, a pre-existing crack close to a free boundary grows 

in a similar manner under compression parallel to the boun¬ 

dary, and shows no tendency to move toward the free surface. 

Possible lateral buckling which may result, and which may 

cause further unstable crack extension, is illustrated experi¬ 

mentally, and discussed in an effort to shed light on the 

phenomena of rockburst and surface spalling. 

(2) "Curved Crack Growth in Brittle Solids under Farfield Compres¬ 

sion," by H. Horii and S. Nemat-Nasser, 1982 Advanrps 

Aerospace Structures and Materials. Symp., ASME Winter Annual 

Meeting, Phoenix, AZ, Nov. 14-19, 1982, R. M. Laurenson and U. 
Yuceoglu, (eds.), ASME Publ. AD-03 (1982) 75-81. 

In the presence of a closed crack which undergoes frictional 

sliding, first Muskhelishvili’s complex stress potentials are 

obtained for a pair of dislocations which are symmetrically 

situated with respect to the origin; plane strain or plane 

stress conditions are assumed. Then these potentials are used 

to formulate the required integral equation for the disloca¬ 

tion density function defined on the path of the curved exten¬ 

sion of the pre-existing straight closed crack, in such a 

manner that traction-free conditions are satisfied there. 

the aid of this integral equation the curved extension 

path is estimated incrementally, using the criterion that the 

crack grows in the direction which renders the Mode II stress 

intensity factor zero, i.e., the criterion of local symmetry; 

this condition yields essentially the same results as the cri¬ 

terion of the maximum Mode I stress intensity factor. It is 

shown that the crack path curves in the direction of the max¬ 

imum compression, and may grow in an unstable manner if some 

lateral tension also acts. On the basis of this, phenomena of 

axial splitting, sheet fracture, and rockburst are explained, 
and results are verified by experiments. 

(3) "Overall Moduli of Solids with microcracks: Load-Induced Aniso¬ 

tropy," by H. Horii and S. Nemat-Nasser, Journal q£ Meehan ira 
and Ehygicg q± Solids. 1L (1983) 155-171. 
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For a linearly elastic brittle solid containing microcracks 
that may be closed or may undergo frictional sliding, a gen¬ 
eral method is developed for estimating the overall instan¬ 
taneous moduli which depend on the loading conditions. When 
the cracks are all open and when they are randomly distri¬ 
buted, then the overall response is isotropic. The moduli for 
this case have been obtained by Budiansky and O’Connell (Int. 

!• Salida Struct « 12» 1976, 81). On the other hand, when some 
cracks close, and when some closed cracks undergo frictional 
sliding, then the overall response becomes anisotropic and 
dependent on the loading conditions, as well as on the loading 
path. The self-consistent method is used to estimate the 
overall moduli. The effects of crack closure and load-induced 
anisotropy are included. Several illustrative examples are 
worked out, showing the important influence of the load path 
on the overall response when crack closure and frictional 
sliding are involved. 

(4) "Estimate of Stress Intensity Factors for Interacting Cracks," by 
H. Horii and S. Nemat-Nasser, 1983 Advances in Aerospace Struc- 

• tures. Materials, and Dynamics. Symp. on Composites, ASHE Winter 
Annual Meeting, Boston, MA, Nov. 13-18, 1983, U. Yuceoglu, R. L. 
Sierakowski, and D. A. Glasgow (eds.), ASME Publ. AD-06 (1983) 
111-117. 

An effective method, called the method of "pseudo-tractions", 
is proposed* which can be used to solve two-dimensional prob¬ 
lems of an infinitely extended linearly elastic solid contain¬ 
ing cracks. The method places no restriction on the number 
and geometry of cracks, and provides convergent series solu¬ 
tions, as well as simple approximate analytic estimates for 
problems of this kind. The application of the results to the 
problem of shear failure of rock samples and other brittle 
solids under axial compression and confining pressure, is also 
briefly discussed. 

(5) "Growth of Microcracks in Rocks, and Load-Induced Anisotropy," by 
H. Horii and S. Nemat-Nasser, Hydraulic Fracturing and Gpothprinal 

Energy» Proc. Japan-0.S. Seminar, Tokyo & Post-Seminar Symposium, 
Sendai, Nov. 2-9, 1982, S. Nemat-Nasser, H. Abe, and S. Hirakawa 
(eds.), Martinus Nijhoff (1983) 519-528. 

The effect of microcracks on overall mechanical properties of 
rocks and other brittle solids is considered, emphasizing 
their influence on the overall moduli, on the load-induced 
anisotropy, and on the failure of the solid by the formation 
of tension cracks at tips of sliding microcracks under the 
overall farfield compression. 
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3. LIST OF PUBLICATIONS COMPLETED UNDER THIS GRANT 

M. Oda, J. Konishi, and S. Nemat-Nasser, "Some Experimentally Based 
Fundamental Results on the Mechanical Behavior of Granular 
Materials," Geotechnigne. (1980) 479-495. 

S. Nemat-Nasser, "On Constitutive Behavior of Fault Materials," Solid 
Earlh geophysics and. Geotechnology. Proc. ASME Symp., Chicago, 
IL, Nov. 16-21, 1980, S. Nemat-Nasser (ed.), ASME Publ. AMD-Vol. 
42, (1980) 31-37. 

J. Christoffersen, M. M. Mehrabadi, and S. Nemat-Nasser, "A 
Micromechanical Description of Granular Material Behavior," Jour- 
nal ai Applied Mechanics. (1981) 339-344. 

M. Oda, "Anisotropic Strength of Cohesionless Sands," GeotechmVa1 
Eagrg. Hist., ASCE, ifll. No. GT9 (1981) 1219-1231. 

S. Nemat-Nasser, "Liquefaction of Soil During Earthquakes," Dynamic 
Response Of Structures. Proc. ASCE-EMD Specialty Conf., Atlanta, 
GA, Jan. 15-16, 1981, G. Hart (ed.), American Society of Civil 
Engineers (1981), 376-385. 

M. Oda, S. Nemat-Nasser, and M. M. Mehrabadi, "A Statistical Study of 
Fabric in a Random Assembly of Spherical Granules," Int11 ±. for 
Numerical an^- Analytical Methods in. Geomechanics. & (1982) 77-94. 

M. M. Mehrabadi, S. Nemat-Nasser, and M. Oda, "On Statistical 
Description of Stress and Fabric in Granular Materials," Im'l J.. 
fai. Huaerical and Analytical Methods, in Geomechanics. $. (1982) 
7J*10o • 

S. Nemat-Nasser. "On Dynamic and Static Behavior of Granular Materi¬ 
als," Sûü Mechanics--Ir.ansient and Cyclic Loads. G. N. Pande and 
0. C. Zienkiewicz (eds.), John Wiley & Sons (1982), Ch. 16, 439- 
458 • 

J. F. Dorris and S. Nemat-Nasser, "A Plasticity Model for Flow of 
Granular Materials under Triaxial Stress States," Int'l J. Solids 
Structures, id (1982) 497-531. 

S. Nemat-Nasser and Y. Tobita, "Influence of Fabric on Liquefaction 
and Densification Potential of Cohesionless Sand," Mechanics of 
Materials» 1 (1982) 43-62. 

H. Horii and S. Nemat-Nasser, "Instability of a Half-Space with Fric¬ 
tional Materials," ZAMP. 21 (1982) 1-16. 

S. Nemat-Nasser and H. Horii, "Compression Induced Crack Kinking and 
Curving W1 t" Vi Afir»! _ rr* /« i • • with Application to Splitting, Exfoliation, and 



Rockburst,n Journal oí geophysical Research, sz. N0.B8, Aug. 10 
(1982) 6805-6821. 

S. Nemat-Nasser, "Fabric and Its Influence on Mechanical Behavior of 
Granular Materials," Efiformation and Failure oí. Granular Materi- 
als.. P. A. Vermeer and H. J. Luger (eds.), Proc. lUTAM-symp., 
Delft, The Netherlands, Aug. 31-Sept. 3, 1982; A. A. Balkema/ 
Rotterdam (1982) 37-42. 

J. Konishi, M. Oda, and S. Nemat-Nasser, "Inherent Anisotropy and 
Shear Strength of Assemblies of Oval Cross-Sectional Rods," 
Efiforaation and Failure OÍ. Granular Materials. P. A. Vermeer and 
H. J. Luger (eds.), Proc. lUTAM-Symp., Delft, The Netherlands, 
Aug. 31-Sept. 3, 1982; A. A. Balkema/Rotterdam (1982) 403-412. 

H. Horii and S. Nemat-Nasser, "Curved Crack Growth in Brittle Solids 
under FarfieTd Compression," 1982 Advances ia Aerospace Strnc- 
tnxfii and Materials. Proc. ASME Symp., Phoenix, AZ, Nov. 14-19, 
1982, R. M. Laurenson and D. Yuceoglu (eds.), ASME Publ. AD-03 
(1982) 75-81. 

M. Oda, J. Kon-ishi, and S. Nemat-Nasser, "Experimental Micromechani¬ 
cal Evaluation of Strength of Granular Materials; Effects of Par¬ 
ticle Rolling," Mechanics of Materials. 1 (1982) 269-283. 

H. Horii and S. Nemat-Nasser, "Overall Moduli of Solids with Micro¬ 
cracks: Load-Induced Anisotropy," J.. Mech. Phvs. Solids. 31 
(1983) 155-171. 

J. Konishi, M. Oda, and S. Nemat-Nasser, "Induced Anisotropy in 
Assemblies of Oval Cross-Sectional Rods in Biaxial Compression," 
Mechanics Of granular Materials: Hes Models and Constituí-jyp 
Relations. Proc. Ü.S.-Japan Seminar, Ithaca, NY, Aug. 23-27, 
1982, J. T. Jenkins and M. Satake (eds.), Elsevier Science Pub¬ 
lishers (1983) 31-39. 

S. Nemat-Nasser and H. Horii, "Growth of Microcracks in Rocks, and 
Load-Induced Anisotropy," Rydraulic Fracturing and. Geothermal 
Energy» Proc. Japan-U.S. Seminar, Tokyo & Post-Seminar Symposium, 
Sendai, Nov. 2-9, 1982, S. Nemat-Nasser, H. Abi, and S. Hirakawa 
(eds.), Martinus Nijhoff (1983) 519-528. 

R. Horii and S. Nemat-Nasser, "Estimate of Stress Intensity Factors 
for Interacting Cracks," lâfii Advances ia Aerospace Structures. 
Materials and Bynamics. U. Yuceoglu, R. L. Sierakowski, and D. A. 
Glasgow (eds.), ASME Publ. AD-06 (1983) 111-117. 

S. Nemat-Nasser and M. M. Mehrabadi, "Micromechanically Based Rate 
Constitutive Descriptions of Granular Materials," Mechanics of. 
Engineering Materials. C. S. Desai and R. H. Gallagher (eds.), 
John Wiley & Sons, in press. 
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S. Nemat-Nasser, "Liquefaction and Densification of Cohesionless 

Granular Masses in Cyclic Shearing," Numerical Models ia 

Geomechaoical Easineering Practice. A. A. Balkema, in press. 

S. Nemat-Nasser and K. Takahashi, "Does Preliquefaction or Prestrain¬ 

ing Reduce Sands’ Resistance to Reliquefaction or Densification?" 

1. Geotech. Engrg. ASCE. submitted. 

H. Horii and S. Nemat-Nasser, "Compression-Induced Micro-Crack Growth 

in Brittle Solids: Axial Splitting and Shear Failure," Geo- 

phys. Research, submitted. 

B. Rowshandel and S. Nemat-Nasser, "Finite Strain Rock Plasticity: 

Stress Triaxiality, Pressure, and Temperature Effects", to be 

submitted for publication in Geophvs. Research. 
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Shinshu University, Wakasato, Japan) 

MORTEZA M. MEHRABADI (Presently: Assistant Professor, Department 
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Dissertation: Overall Response and 

Failure of Brittle Solids Containing 
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"On Mechanics of Granular Materials," University of Missouri- 

Rolla, Rolla, Missouri, March 1980. 

"Plasticity and Flow of Geological Materials" Rensselaer 

Polytechnic Institute, Troy, New York, April 8, 1980. 

"Plasticity and Flow of Geological Materials," Danish Center for 

Applied Mathematics and Mechanics, The Technical Universtity 

of Denmark, Lyngby, Denmark, June 16, 1980. 
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Workshop on Nonuniform and Localized Plasticity, Salva 

Regina College, Newport, RI, August 5-9, 1980. 

"A Micromechanical Description of Granular Material Behavior," 

XVth International Congress of Theoretical and Applied 
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- 

"On Constitutive Behavior of Fault Materials," ASME Symposium on 
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"Liquefaction of Soil During Earthquakes," ASCE-EMD Specialty 
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"Mechanics of Granular Materials," Colloquia Series, Department 
of Aerospace Engineering and Mechanics, University of Min¬ 
nesota, Minneapolis, MN, November 6-8, 1981. 

"Earthquake Induced Ground Failure; Liquefaction: Experiment and 
Theory," Department of Applied Mechanics and Engineering 
Science, University of California, San Diego, La Jolla, CA, 
January 25-26, 1982. 

"Crack Propagation in Rocks with Application to Exfoliation and 
Rock Bursts," Department of Geological Sciences, 
Northwestern University, Evanston, IL, May 14, 1982. 

U.S.-Japan Seminar on New Models and Constitutive Relations in 
the Mechanics of Granular Materials, Ithaca, NY, August 22- 
27, 1982: 

Three papers were presented: 

1) "Stress, Dilatancy, and Fabric in Granular Materials"; 

2) "Experimental Micromechanical Evaluation of Strength of 
Granular Materials: Effects of Particle Rolling" 
(presented by M. Oda); 

3) "Induced Anisotropy in Assemblies of Oval Cross-Sectional 
Rods in Biaxial Compression" (presented by J. Konishi). 

IUTAH Symposium on Deformation and Failure of Granular Materials, 
Delft, The Netherlands, August 31-September 3, 1982: 

Two papers were presented: 

1) "Fabric and Its Influence on Mechanical Behavior of 
Granular Materials"; 
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Oval Cross-Sectional Rods" (presented by J. Konishi). 

International Workshop on Constitutive Behavior of Soils, Greno¬ 
ble, France, September 6-8, 1982: Chairman of Session on 
Complex Elastic-Plastic Laws. 

Some Micromechanical Aspects of Geotechnical Materials," Keynote 
Lecture, International Symposium on Numerical Models in 
Geomechanics, Zurich, Switzerland, September 13-17, 1982. 

AFOSR Workshop on the Research Aspects of Blast-Induced Liquefac¬ 
tion of Soils, September 28, 1982: Participated in discus¬ 
sion on present and future research. 
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"Compression Induced Crack Kinking and Curving with Application 
to Splitting, Exfoliation, and Rockburst," 19th Annual Meet¬ 
ing of the Society of Engineering Science, Rolla, MO, 
October 27-29, 1982. 

"Growth of Microcracks in Rocks, and Load-Induced Anisotropy," 
Symposium on Fracture Mechanics Approach to Hydraulic Frac¬ 
turing and Geothermal Energy, Sendai, Japan, November 8-9, 
1982. 

"Curved Crack Growth in Brittle Solids Under Far-Field Compres¬ 
sion," ASME Winter Annual Meeting, Aerospace Division Sympo¬ 
sium on Advances in Aerospace Structures and Materials, 
Phoenix, AZ, November 14-19, 1982 (presented by H. Horii). 

"A Micromechanically Based Rate Constitutive Description of 
Granular Materials," International Conference on Constitu¬ 
tive Laws for Engineering Materials: Theory and Application, 
Tucson, AZ, January 10-14, 1983. 

"On Micromechanical Aspects of Rock Failure and Mechanical 
Response," Mechanics Seminar Series, The University of Utah, 
Salt Lake City, UT, January 14, 1983. 

"Macroscopic Response and Failure of Solids with Microcracks: 
Theory and Experiment," Workshop on Media with Microstruc¬ 
ture and Wave Propagation Houghton, MI, January 24-25, 1983. 

"Induced Anisotropy and Texture in Elastoplastic Composites and 
Jointed Rocks at Finite Strains," CNRS International Collo¬ 
quium on Failure Criteria of Structured Media, Grenoble, 
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ASME-AMD Symposium on the Mechanics of Ice, Rocks, and Soils, 
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Engineering Conference, Houston, TX, June 20-22, 1983: 

1) Organizer of the four-session symposium for the Committee 
on Geomechanics (SNN Chairman) of the Applied Mechanics 
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2) Presented a paper: "Microcracking and Failure in Axial 
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20th Annual Meeting of the Society of Engineering Science, 
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1) Coordinator of three sessions on Geomechanics of the Com¬ 
mittee on Geophysics of SES; 

2) Organizer of one of the Geomechanics sessions; 

3) Presented a paper: "Microcrack Interaction and Rock 
Failure". 

1983 ASCE Annual Convention, Houston, TX, October 17-21, 1983: 

1) Organizer of a session on Developments in Analytical and 
Theoretical Aspects of Constitutive Modelling for the 
Engineering Mechanics Division, Committee on Mathematical 
Methods, ASCE; 

2) Presented a paper: "Micromechanics of Rock and Concrete 
Failure". 

"Micromechanics of Brittle Failure in Compression," ASME Winter 
Annual Meeting, Boston, MA, November 13-18, 1983 (presented 
by H. Horii). 

B. consultative and. Advisory Functions Ln. Other Agencies nr Labora¬ 
tories 

Consulting for the Department of Defense, Defense Advanced 
Research Projects Agency: 

1) Organizer of a Workshop — sponsored by DARPA and NSF -- 

on the Theoretical Foundation for Large-Scale Computa¬ 
tions of Nonlinear Material Behavior, Northwestern 
University, Evanston, IL, October 24-26, 1983; 

2) Local chairman and coordinator for the workshop; 

3) Presented a general lecture: "Theoretical Foundations of 
Plasticity"; 

4) Editor of the workshop proceedings (to be published by 
Martinus Nijhoff, The Hague, The Netherlands). 
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LIQUEFACTION AND DENSIFICATION OF COHESIONLESS GRANULAR MASSES 
IN CYCLIC SHEARING 

S. Nemat-Nasser 
Department of Civil Engineering 

Northwestern University 
Evanston, IL 60201 

ABSTRACT 

For cyclic shearing of saturated cohesionless granular masses, 

first the unified liquefaction (undrained sample) and densification 

(drained sample) theory of Nemat-Nasser and Shokooh (1978, 1979) is 

summarized, the basic equations are reported, and the theoretical 

predictions are comparid with the corresponding experimental results. 

Then, the effect of pre-straining (drained) or pre-liquefaction 

(undrained) of the sample on its subsequent response is examined in 

the light of Nemat-Nasser's (1980) micro-mechanical consideration of 

simple shearing. In particular, it is shown that the liquefaction 

potential of the sample under cyclic shearing does not necessarily 

decrease because of pre-liquefaction or pre-straining, but, rather, 

that this resistance increases if the pre-liquefaction (or pre¬ 

straining) test is terminated at zero residual strain, and it 

dg’creases if the pre-liquefaction is terminated at zero residual 

8tg68Sj a similar tendency is observed for the sample resistance to 

densification. 
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1. INTRODUCTION 

Cyclic shearing of a sample of cohesionless granules (sand) 

under fixed confining pressure produces overall densification. The 

granules move relative to each other in response to the applied 

shearing, and the sample tends to compact after each cycle in the 

presence of confinement. If the sample is saturated and is 

undrained. the densification tendency produces an increase in pore 

water pressure which in turn reduces the interparticular friction 

forces. These frictional forces diminish considerably when the pore 

water pressure attains values close to the confining pressure. The 

shearing resistance of the sample at such a state is very small, and 

the sample momentarily behaves like a liquid (hence, the term 

liquefaction). If on the other band, the saturated sample is 

drained, its cyclic shearing at suitably small frequencies increases 

its density and hence, its shearing resistance. 

Large-scale liquefaction has been observed as a result of earth¬ 

quake ground motion, as well as of explosions. Well-known examples 

are earthquake-induced liquefaction in Niigata, Japan (1964), and 

massive soil failure in Anchorage, Alaska (1964). A brief historical 

account is given by Seed and Idriss (1982), in a recent monograph 

addressed to practical aspects of this phenomenon. Since the Niigata 

and Alaska earthquakes, considerable effort has been devoted to exam¬ 

ining the mechanism of liquefaction; Seed and Lee (1966), Seed and 

Idriss(1967), Peacock and Seed (1968), Finn, Emery, and Gupta (1970), 
im 
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(1975)» Martin, Finn, and Seed (1975), and Nemat-Nasser and Shokooh 

(1977, 1978, 1979). Although a major part of this activity has been 

experimental, some attempt has been made to quantify the estimate of 

the liquefaction potential of cohesionless sand by relating the 

number of cycles required for liquefaction to the normalized shear 

stress amplitude; see, e.g., Martin, Finn, and Seed (1975). A sys¬ 

tematic approach based on an energy consideration, for both liquefac¬ 

tion and densification estimates, has been presented by Nemat-Nasser 

and Shokooh (1978, 1979); see also Nemat-Nasser (1982), where, in 

addition to the energy approach, liquefaction is analyzed with the 

aid of dimensional analysis. 

Theories of this kind assume isotropic materials and are essen¬ 

tially of a one-parameter description; this parameter usually is the 

initial void ratio, or equivalently, the relative density. There¬ 

fore, they do not take into account any anisotropy that may exist 

prior to shearing. 

It has been shown experimentally by Finn, Bransby, arid Pickering 

(1970), and later confirmed by Ishihara, Tatsuoka, and Yasuda (1975), 

Seed, Mori, and Chan (1977), Ishihara and Okada (1978), and Nemat- 

Nasser and Tobita (1982), that pre-shear-straining of a drained sam¬ 

ple at a relatively large shear-strain amplitude reduces considerably 

the sample's resistance to liquefaction. Nemat-Nasser and Tobita 

(1982) have employed a micro-mechanical model of dilatancy, proposed 

by Nemat-Nasser (1980b), in order to explain this phenomenon. 
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The micro-mechanical consideration suggests, and laboratory 

experiments confirm, that the resistance to liquefaction of a pre¬ 

shear-strained (drained), or pre-liquefied (undrained) sample dimin¬ 

ishes considerably if the pre-straining or the pre-liquefaction in 

simple shearing under fixed confinement is terminated at zero shear 

Stress » whereas this resistance certainly does not decrease, and 

perhaps increases, if the pre-straining or the pre-liquefaction is 

terminated at zero shear strain ; see Nemat-Nasser and Tobita (1982), 

and Nemat-Nasser and Takahashi (1983). 

This remarkable result seems to have important practical impli¬ 

cations, because it is of considerable concern whether or not a site 

liquefied during an earthquake possesses any resistance to further 

liquefaction in aftershocks. 

In this review paper, first the unified liquefaction and densi¬ 

fication theory of Nemat-Nasser and Shokooh (1978, 1979) is summa- 

rized* and it is indicated how the theory has been used to estimate 

liquefaction potential for random loading; see. Pires, Wen, and Ang 

(1983). The bas ic equations are reported and the experimental veri¬ 

fications used by Nemat-Nasser and Shokooh are reproduced. Then, the 

micro-mechanical theory of Nemat-Nasser (1980b) is summarized and its 

application to the analysis of liquefaction phenomena is reviewed. 

Finally, some recent experimental results by Nemat-Nasser and Tobita 

(1982) and Nemat-Nasser and Takahashi (1983), are reported. The 

experiments have been designed in the light of the micro-mechanical 

consideration of Nemat-Nasser (1980b), with the specific purpose of 

-•„V . 

. 

•-V 

-'i 
• ' - -::1 

Ë #1 

. m 

(*« ■ 

t :wm 
.V.'" 1 V a*' 

■-V-, -1 
. • «:•. ■ 

k » in ^ 

mmw : » « • 
s." 1 .A.'V'i 

. 

i k ** * s 
■ “ V* 

a"- ■ V -.1 

'»■■y 

N ’ • • ï 
'w s. 

Wi 
i m. 

. <\ -r 



L.-.V 

ï-' 

I . 

M 

U 

> V* / 

^wy-wy wy wy-wy , .-«u.p,,, V,,, ., M., |üB^,, ^ jg,« iui^ 11 lllllfNyillRI^nnp« 1^15111 IMP 1111 Ullflip 

bringing into the open the influence of induced» as well as inherent» 

anisotropy (fabric) on the mechanical response of cohesionless 

granules subjected to cyclic shearing. 
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2. A SIMPLE LIQUEFACTION AND DENSIFICATION THEORY 

First we consider cyclic shearing at constant shear stress 

amplitude, x* and a fixed wave-form under constant pressure, <rc. Then 

we examine cyclic shearing with variable amplitude and wave-form. 

2.1 Cyclic Shearing 

For cyclic shearing, we set 

x(t) -x^(t), -1 á0(t) S 1, tQ = x/oc, (2.1) 

where 0(t) defines the wave-form, and Tq is the normalized shear 

stress amplitude. We also normalize the pore water pressure, p • as 

P s pw/<v (2*2) 

and note that liquefaction initiation corresponds to the state at 

which p -*• 1. 

2.2 An Energy Approach (Nemat-Nasser and Shokooh, 1979) 

To change the void ratio of a saturated drained granular sample 

from e to e + de by cyclic shearing, an increment of energy, dW, is 

required for rearranging the particles. This requiied energy 

increases as the void ratio, e, decreases, and becomes rather large 

when e attains its absolute minimum e^. If the sample is undrained, 

then the tendency toward densification results in an increase in the 

pore water pressure. This in turn decreases the effective forces 

between contacting granules, and therefore reduces the energy, dW, 



1 
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required for particle rearrangement. Hence one may write 

dW = -V 
de 

f(l+p) g(e-e )’ 
m 

(2.3) 

where v is a constant with the physical dimensions of dW, and f and g 

are two non-decreasing material functions with the following proper¬ 

ties : 

f(l) = 1, f’ a 0, g(0) = 0, g» i 0. 

For the undrained sample* we have 

e°c 
de --dp 

X 
V 

which reduces (2.3) to 

dW = , 'fri"+p)dgCe-e )* v = 

(2.4) 

(2.5) 

(2.6) 

The liquefaction initiation is identified with the state where 

the value of the pore water pressure approaches that of the confining 

pressure* i.e. when p ( = PW/0C^ ^ 1* *or problems relating to 

earthquake-induced liquefaction* the confining pressure a is rather 
c 

small* say* of the order of 10 to 100 psi; most experimental data are 

for oc < 10 psi. Since the bulk modulus of water is about 300,000 

psi, the volumetric strain and the corresponding work per unit volume 

per unit confining pressure (dimensionless work) are of the or*-»r of 

-5 _4 
10 to 10 * and hence can be ignored without introducing any 

measurable error. Therefore, the void ratio e in (2.6) can be 

replaced by its initial value eQ. With this substitution and upon 

integration, we obtain, from (2.6), 
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dp * 
f(l+pf) * (2.7) AW = ve0 / 

8^e0"em' 0 

It should be noted that the representation (2.3) is somewhat 

special in the sense that no coupling between p and (e-e ) is 
m 

included. A more general form would be to use» instead of f(l+p) 

g(e-e ), the function F(p,e-e ). However, since for the drained case, m r m 

p = 0, and for the undrained case, e ~ 6q, it appears that the form 

(2.3) is adequate for our purposes. 

Nemat-Nasser and Shokooh (1977,1978,1979) consider the following 

simple approximations for f and g: 

g(e-e ) = (e-e ) . n > 1, m m 

f(l+p) = (l+p)r, r > 1, 

(2.8) 

(2.9) 

and obtain good correlation with some published experimental results 

for both densification of dry sand and liquefaction of saturated 

undrained sand. Pires, Wen, and Ang (1983), by relating the theory 

of Nemat-Nasser and Shokooh to experimentally-based observations of 

Seed, Martin, and Lysmer (1976), note an alternative form for the 

function f: 

fU+p) = [0. »in^tiîî) =0.(¾]-1. (2.10) 

where 9 - 0.7, according to these authors. Being based on experimen¬ 

tal observations, (2.10) may indeed produce better results than the 

simple form (2.9). In the present review, however, we side with sim¬ 

plicity and thus use (2.9) in the sequel. 
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Substitution from (2.9) into (2.7) yields 

VG 

AW = ÏÜ -e ) [1 • * > 1. (2.11) 
0 m 

where v s v/(r-l). 

For the densification of the drained sample, on the other hand, 

p s 0, and one obtains, from (2.3) and (2.8), by integration, 

6 S ®m + C(Vem)1"n + ''AW:il/Cl"n). n>lt (2*12) 

where v = (n-l)/v. 

In Eqs. (2.11) and (2.12) v and v are as yet free parameters, 

and AW is the total energy used to attain the corresponding pore 

water pressure in (2.11), and densification in (2.12). To complete 

the formulation, we seek to estimate the energy increment AW in 

(2.11) and (2.12). 

Since AW is the energy consumed in rearranging the granules, 

Nemat-Nasser and Shokooh (1979) suggest that it may be estimated in 

terms of the corresponding hysteretic loop. A typical loop of this 

kind is sketched in Fig. 1. Let be the area enclosed by this loop. 

It is easy to show (Nemat-Nasser and Shokooh, 1979) that, in view of 

symmetry, one may set A^sh^tQ^+a with a a positive even integer, and 

that h^ is an increasing function of the number of preceding cycles, 

N. if the incremental work for each cycle is taken to be propor¬ 

tional to A^, one may write rv-f n . >v -. v % 
.* .... 2» V». . 



Furthermore* for large stress amplitudes, one may assume h propor¬ 

tional to N (see Nemat-Nasser and Shokooh for a discussion of this), 

i.e. h - hN, and obtain 

= ) Cl - (l-^p)1^], ^ = V /h. (2.14) 

Since a is even, it can be fixed immediately by inspection of 

experimental data. For Monterey Mo. 0 sand, data from De Alba, Chan, 

and Seed (1975) suggest a = 4. This has been verified by experiments 

at Northwestern University by the author and his former student Mr. 

Y. Tobita. Indeed, setting N = for p s 1 (at liquefaction), (2.14) 

yields 

,1+a _ 

N1 *U0~emy 
(2.15) 

where q is a material constant. Figure 2 shows typical experimental 

results on circular cylindrical samples of Monterey No. 0 sand, 

tested in a dynamic simple shear apparatus; see Nemat-Nasser and 

Tobita (1982) for a description of the test procedure. 

Nemat-Nasser and Shokooh use (2.8) and show that the quantity 

q - N,tî+0(en-e )n/eft, 
1 U U m 0 (2.16) 

with a = 4 and q = 3.5, is indeed a constant for a number of experi¬ 

ments reported by De Alba, Chan, and Seed (1975) for relatively loose 

to dense (but not very dense, i.e. for D^ less than, say, 70Z) sam¬ 

ples; see Table 1. Nemat-Nasser and Shokooh suggest that, for dense 



samples, h in the expression h = hN, tends to become larger, and, 

since ri is inversely proportional to h, Eq. (2.14)2, it decreases 

with increasing D^; see Table 1. 

With q fixed and g given by (2.8), Eq. (2.14) yields the pore 

water pressure in terms of the number of cycles, for various densi¬ 

ties and stress amplitudes; Figs. 3 and 4. If the number of cycles 

is normalized with respect to N , then we obtain the standard result 

given by Fig. 5. The fit here is as good as the simple assumption 

(2.9) permits. To improve this fit, a more elaborate expression, 

e.g. (2.10), must be used. Figure 6 compares the calculated results 

of (2.16) with the experimental data; additional comparison with 

experiments is given by Nemat-Nasser and Shokooh (1979). 

To illustrate how the densification estimate (2.12) relates to 

experimental data on sand, we observe that most experimental results 

reported for the densification of drained sand in cyclic shearing are 

for strain-controlled tests. Hence, we must express AW in terms of 

the strain amplitude and the number of cycles. A simple approach 

is to approximate the curve QOP in Fig. 1 by Yq ~ where ß must 

be an odd integer, and from (2.13) obtain 

AH = 5(H) r¿1+a)/|'. (2.17) 

Again, for large strain amplitudes, say, Yq > 0.1%, we may assume 

k(N) ~ k^N, whereas for small strain amplitudes the experimental 

results of Silver and Seed (1971a,b) and Youd (1970,1972) seem to 

— 1/2 
suggest ic(N) - kjN / . In this manner, (2.12) becomes 
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for small strain amplitudes, and 

(2.18) 

e = e m + [(eQ-eJ1"11 + k1NYJ1"a)/ß]1/(1'a) (2.19) 

for large strain amplitudes. To compare these results with experi¬ 

mental data, we follow Nemat-Nasser and Shokooh (1979), and use data 

reported by Youd (1972,1977). In this case, standard gradation 

Ottawa sands were densified in a Norwegian Geotechnical Institute 

type simple shear apparatus. Strains from 0.043Z to 8.52 were used, 

with the number of cycles from 1 to 150,000. Figures 7 and 8 compare 

these with the estimates obtained from (2.18) and (2.19) with a = 4, 

ß = 5. n = 3.5, and k2 = 7000 for (2.18) and kj = 1000 for (2.19). 

It is clear that Eqs. (2.18) and (2.19) do encompass the essen¬ 

tial features of the densification phenomenon of sand in cyclic 

shearing. These equations, however, assume no inherent anisotropy for 

the granular mass, and are intended to apply to cases where very 

large numbers of cycles are involved. 

2.3 Irregular Shearing 

Since the theory presented in the preceding subsection is based 

on an energy concept, it lends itself to extension for application to 

irregular and even random loading, as discussed by Pires, Wen, and 

Ang (1983). 
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The area of the hysteretic loop» in general, depends on the his¬ 

tory of deformation, on the wave-form, and on the stress amplitude. 

To simplify, however, one may assume that, for the ith cycle the 

area depends on the current stress amplitude. Let the wave-form 

be fixed. Then AW after N cycles may be expressed as 

AW (2.20) 

where e^ and t. are the void ratio and the shear stress amplitude in 

.th 
the i cycle» respectively. Some simplifying assumptions can be 

made in order to render (2.20) useful. A detailed account of a pos¬ 

sible approach is given by Pires, Wen, and Ang (1983). 
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3. EFFECT OF FABRIC ON LIQUEFACTION AND DENSIFICATION POTENTIAL OF 

GRANULAR MASSES 

It is well known that granular fabric (or anisotropy) greatly 

affects the overall response of the granular mass; see» e.g., Lafeber 

(1966), Arthur and Menzies (1972), Oda (1972), Mahmood and Mitchell 

(1974), Oda and Konishi (1974), Ladd (1977), Mulilis et al. (1977), 

and Oda, Konishi, and Nemat-Nasser (1980, 1982). In particular, it 

has been shown by Finn, Bransby, and Pickering (1970), and further 

confirmed by Ishihara, Tatsuoka, and Yasuda (1975), Seed, Mori, and 

Chan (1977), Ishihara and Okada (1978), Nemat-Nasser and Tobita 

(1982), and Nemat-Nasser and Takahashi (1983), that if the fabric of 

a saturated sand sample is changed by pre-liquefaction or pre¬ 

straining in a stress-controlled test» then the potential to subse¬ 

quent liquefaction or densification under cyclic loading greatly 

increases. A remarkable fact, first noted by Nemat-Nasser and Tobita 

(1982) and recently thoroughly tested by Nemat-Nasser and Takahashi 

(1983), is that in cyclic shearing under constant confining pressure, 

the sample resistance to further liquefaction actually increases if 

the initial (pre)liquefaction cyclic test is terminated at zero resi¬ 

dual strain» while this resistance is greatly reduced if the initial 

(pre)liquefaction cyclic test is terminated at zero residual shear 

stress « Thus it is not the pre-liquefaction per se that affects the 

sebsequent sample strength, but rather, it is the fabric of the 

granular mass. Indeed, Nemat-Nasser and Tobita (1982) explain this 

rather dramatic change in the response of a pre-liquefied sample in 
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terms of the granular fabric characterized by the distribution of the 

microscopic dilatancy angles« i.e. the distribution of the orienta¬ 

tion of the contact normals (at active contacts) measured relative to 

the normal of the overall macroscopic shear plane. They show that 

this distribution has a profound effect on the sample’s potential to 

densification under drained conditions and» therefore» on its 

liquefaction potential when saturated and undrained. This result also 

suggests that the distribution of the dilatancy angles and. there¬ 

fore, the fabric of a granualar material in simple cyclic shearing, 

is more directly related to the total shear strain rather than to the 

shear stress. 

In this section, we shall first review the micro-mechanical 

model of Nemat-Nasser (1980b), and then relate this model to the 

observed fabric-induced changes of the liquefaction and densification 
* 

potential of sand in cyclic shearing. 

3.1 A Micro-Mechanical Model in Simple Shearing (Nemat-Nasser, 

1980b, and Nemat-Nasser and Tobita, 1982) 

Consider uniform shearing of a sample of a granular mass under 

constant (uniform) normal stress and variable (uniform) shear 

Figs. 9a,b. For the sake of modeling, it will be assumed 

that the sample area. A, is constrained to remain constant, so that 

volume changes are accompanied by appropriate changes of sample 

height, h. The macroscopic volume V = Ah is regarded to be statisti¬ 

cally representative. 
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on the The macroscopic shearing is in the x-direction, but 

micro-scale, grains must override each other and thus, their motion 

occurs over planes which pass through active contact points. as 

illustrated in Fig. 9c. 

Denote by v the angle which the "sliding" direction at a typical 

active contact (C in Fig. 9c) forms with the x-axis. v is. called the 

dilatancv angle.. It. is. positive if. the direction of. motion is. upward,, 

and. negative when it. is. downward . the first contributing to. volume 

expansion, and the second to contraction: here positive dilatancy 

refers to volume expansion. 

At each instant the macroscopic volume V contains a large number 

of active contacts, each associated with its own dilatancy angle. Let 

V contain n families with dilatancy angles » i ~ l*2.....n. For 

the sake of modeling* ve assign elementary volume V^. area A^. and 

\th height h^ to the i family, in such a manner that 

vis AiV i-i i* 
(3.1) 

and denote by 

V. 
i 

P; " v (3.2) 

..th the volume fraction of the i family. 

.th 
Consider the forces acting on the i family which are symboli¬ 

cally shown in Fig. 9d by a granule of dilatancy angle v^. The local 

stresses and in general* are different from the overall 
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macroscopic stresses t and a. In Fig. 9d, 

T. = A.t., N. = A.a.. 
1 13- 1 11 (3.3) 

The actual motion occurs in the x*-direction. Therefore, in the x*, 

y*-coordinate system the tangential and normal forces, denoted by T* 

and N*, must relate in accordance with the friction law 

T* = N* tan0 , 
1 1 vji’ (3.4) 

where is regarded as the actual angle of friction.-If we define 

x. 
tan0 . s —, 

I 0. 
X 

(3.5) 

then from the balance of forces we obtain 

tan*ji s tan(0£“v^) or 0£ - V. = 0^, (3.6) 

showing that granules with negative dilatancy angles become active 

first. 

Consider now the motion of the i^*1 granule in the x*-direction, 

and calculate the rate of work per unit volume by 

w. 
¢., s. 

- _J: _ *.* _k_ 
X. sin0 ¢. 
1 Ji_1 

i V. “ V. Ai sinv. ” sin(0 +v.) sinv. 7.* 
il i I* i il 

(3.7) 

where fi./sinv. is the velocity in the redirection, and 7. = A.fi.. 
il iii 

We assume that at the micro-level, the Mohr-Coulomb failure cri¬ 

terion applies. Then the local pressure p^ equals t^/sin 0^ cos0^ , 

Fig. 9f, and hence 
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As has been pointed out by Nemat-Nasser (1980b), granules with 

negative dilatancy angles are initially activated and, therefore, 

p(v) is initially biased toward negative dilatancy angles. Physically 

this is because the normal force ÎT hinders the motion of an active 

granule with a positive dilatancy angle, whereas it assists if the 

granule has a negative dilatancy angle; compare Fig. 9d with Fig. 9e. 

This explains the observed initial densification. Note, however, 

that even with a distribution function p(v) which is symmetrical with 

respect to v = 0 and hence |v”l = v+, the right-hand side of Eq. 

(3.11) would be negative; that is, Eq.(3.11) incorporates in a 

natural manner the nonsysnueLrical influence of the normal stress ^ on 

"upgoing" and "downgoing" granules. 
i 4 

As the shearing proceeds, the distribution function p(v) becomes 

more biased toward the positive dilatancy angles. Hence, more weight 

is given to positive v’8 Eq. (3.11), as shearing progresses. Even¬ 

tually, when a suitable bias toward positive dilatancy angles is 

attained, the integral in (3.11) vanishes, marking the attainment of 

a minimum void ratio (or maximum density). After this state, con¬ 

tinual shearing in the same direction results in a volume expansion, 

until the peak stress is reached, which, according to the theoretical 

considerations of Nemat-Nasser and Shokooh (1980), must correspond to 

a maximum rate of dilatancy. After that the rate of dilatancy begins 

to decrease in the post-failure regime, presumably becoming zero 

asymptotically at the critical state. 
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The three loading regimes -- initial densification (I) leading 

to dilatancy up to the peak stress (II) and then continuing in the 

post-failure behavior to the critical state (III) — are shown 

schematically in Fig. 10. Subdivisions of this kind play an important 

role in the understanding of the effect of history on subsequent 

behavior of granular materials in cyclic loading. Before this is 

examined in connection with drained and undrained experiments, an 

important point relating to load reversal should be emphasized in the 

context of Eq. (3.11). 

Suppose the sample in Fig. 9a is sheared clockwise under con¬ 

stant 0. beginning with t = 0 and continuing until a state in loading 

regime II is attained, where further shearing in the same direction 

results in volume expansion. Ât this state the distribution function 

p(v) is strongly biased toward positive v'9* Suppose now the magni¬ 

tude of the shear stress is gradually reduced to zero, keeping the 

normal stress 9 constant. It is clear that some active contacts with 

previously (i.e. during the clockwise loading) large positive dila¬ 

tancy angles, such as the one shown in Fig. 9d. may begin to move 

down as their corresponding shear stress is reduced; for example in 

Fig. 9d. if V£ is large enough and is reduced* while remains 

essentially the same» the particle may move down along the x*-axis 

under the action of N^. if there are no other constraints. Because of 

this, it is expected that the distribution of contact normals as well 

as the dilatancy angles will change somewhat as the shear stress is 

reduced to zero. However, it is reasonable to expect that even with 
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these changes, when r in Fig. 9a is reduced to zero, a strong bias 

toward gasitive dilatancy angles far clockwise shearing still will 

remain. Now, upon load reversal, namely as r is gradually increased 

counter-clockwise from zero in Fig. 9a, the direction of in Fig. 

9d will change, and a graYÍQUSly positiva dilatancy behaves now as. a 

aegative ora; the direction of the x*-axis is now reversed. Thus, a 

strong tendency toward large densification is expected upon shear 

load reversal. This means that, for example, a pre-straining into the 

loading regime II under undrained conditions can lead to immediate 

liquefaction, if load reversal is implemented under undrained 

(saturated) conditions. This is indeed observed by Finn, Bransby, 

and Pickering (1970) and Ishihara and Okada (1978) and is re¬ 

established by Nemat-Nasser and Tobita (1982) and Nemat-Nasser and 

Takahashi (1983). In the sequel we shall describe a number of experi¬ 

ments under both drained and undrained conditions, which were specif¬ 

ically designed to test the implications of Eq. (3.11) and, there¬ 

fore, the effect of fabric. 

Figure 11, taken from Nemat-Nasser and Tobita (1982), represents 

the results of a series of experiments on the effects of pre¬ 

straining and pre-liquefaction on subsequent behavior under nndrainpri 

conditions. The saturated drained sample of initial void ratio 0.649 

is first stressed over the path OC. At point C the drainage of the 

saturated sample is discontinued, so that branch CDE represents 

unloading (from C to D) and load reversal (from D to E) under 

undrained conditions. Since during the drained loading from 0 to B to 

I’ ,L -'••I 
«■ . * 



C the stress state moves into loading regime II with p(v) developing 

a strong bias toward positive dilatancy angles, a tendency toward 

liquefaction occurs immediately upon load reversal. The test is ter¬ 

minated at point F with a residual strain of approximately 8.2%, the 

sample is drained and reconsolidated to the void ratio of 0.635, and 
* 

a new test under undrained conditions is performed. The result is 

shown by the curve numbered 1 at the upper and lower peaks in Fig. 

11. The other curves in this figure are obtained by reconsolidation 

of the sample after liquefaction. The numbers at the upper and lower 

peaks denote the number of times the sample has been pre-liquefied; 

the upper number within parentheses associated with each curve gives 

the corresponding void ratio* and the lower number the corresponding 

residual shear strain. As expected, the residual shear strain 

decreases with the number of pre-liquefactions, which may be attri¬ 

buted to the resulting smaller void ratio. The sample, once lique¬ 

fied, shows a large displacement around an average shear stress of 

about 15 kN/m , regardless of the number of preceding liquefactions. 

Thus, densification due to reconsolidation after liquefaction does 

not have much effect on the subsequent undrained behavior up to 

liquefaction initiation, although it does reduce the observed strain 

amplitude to a certain extent. 

To further emphasize the directional dependency, namely, the 

fabric formation due to pre-straining, a virgin sample is subjected 

to loading, unloading, reverse loading, and then unloading to zero 

stress, with an overall stress amplitude of 67.4 kN/m , under drained 
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conditions. The void ratio and the residual shear strain at the com¬ 

pletion of this cycle are 0.649 and 5.1%, respectively. An undrained 

test is then performed at the overall stress amplitude of 21 kN/m2. 

The corresponding stress path is shown in Fig. 12. The loading path 

AB represents reloading in the same direction as the final half-cycle 

during the drained test. Hencei essentially no pore pressure build-up 

occurs. Some pressure is generated over the unloading branch BC, and 

a dramatic pore pressure is developed upon load reversal over the 

loading branch CD. This last loading branch is in the direction oppo¬ 

site to the direction of loading and unloading that has been imple¬ 

mented under the drained conditions« and which has resulted in 5.1% 

residual shear strain. Such strong directional dependency supports 

the concept of the formation of bias in the distribution of dilatancy 

angles during pre-straining. Branch DE corresponds to dilatancy and, 

therefore, pore pressure decreases. Thus, upon unloading from E to F 

and reverse loading from F to G, extensive pore pressure is gen¬ 

erated. 

In all the above tests the pre-straining is terminated at zero 

ahaar stress. From the micro-mechanical consideration of Nemat- 

Nasser (1980b), one concludes that, if the fabric as it is described 

by the distribution of the dilatancy angles, p(v), is the key 

ingredient in introducing dramatic changes in sample behavior because 

of pre-straining, then a pre-straining over a cycle of relatively 

large strain amplitude which terminates with zero residual shear 

SLtrain, should result in a considerably different subsequent 

• AW. 
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response from the one which terminates with zero residnal shear 

Stress,. This is because, as the shear strain approaches zero, the 

particles tend to move into a more isotropic distribution of the 

dilatancy angles than when the shear stress is brought to zero. In 

fact, as discussed before, unless a very large strain amplitude is 

involved, unloading to zero shear stress does not completely destroy 

the fabric, whereas unloading to zero shear strain does to a large 

extent. 

To provide experimental support for the above assertions, two 

tests are performed on a sample of essentially the same void ratio. 

In the first test, shown in Fig. 13, the sample first is sub¬ 

jected to the stress half-cycle, ABC, under drained conditions, ter¬ 

minating at point C with zero shear stress. Then under undrained con- 

cl it ions cyclic stress of amplitude 21 kN/m is applied, where the 

sample liquefies between the second and third cycles; note no pore 

pressure build-up from A to D; note also ratcheting toward the left 

in Fig. 13. 

In the second test the pre-straining under drained conditions is 

terminated at agio, shear strain, as shown in Fig. 14 by branches 

ABC. The sample is then subjected to cyclic loading of stress ampli- 

2 
tude 21 kN/m , and it is observed that liquefaction occurs during the 

seventh cycle, which essentially is the same as for the virgin sam¬ 

ple. Further examination reveals that the pre-strained sample with 

zero residual shear strain does not show a strong directional depen- 
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dency, as does Che pre-strained sample with finite residual shear 

strain (but zero residual shear stress). 

In an effort to further verify these facts and, in addition, to 

examine the influence of the sample preparation on the mechanical 

response of cohesionless sands in cyclic shearing, Nemat-Nasser and 

Takahashi (1983) have made a series of strain-controlled tests on 

Monterey No. 0 sand samples. The same apparatus as the one used by 

Nemat-Nasser and Tobita (1982) is employed, except that the horizon¬ 

tal shearing device is modified in such a manner as to control the 

horizontal stroke and to measure the corresponding resulting horizon¬ 

tal force. Two sample preparation techniques are used: moist tamping 

and pluviating dry sand through air. The following basic results are 

obtained: 

¢1) In cyclic simple shearing, the resistance to re-liquefaction 

(undrained) or densification (drained) of a pre-liquefied sample 

actually increases, because of the concomitant densification, if 

the pre-liquefaction is terminated at zero shear strain, but 

this resistance becomes very small, if the pre-liquefaction is 

terminated at zero residual shear stress. 

(2) The inherent anisotropy associated with sample preparation tech¬ 

niques affects both the densification and liquefaction potential 

of the sample. 

(3) Within each cycle of simple shearing, the induced anisotropy is 

essentially wiped out in the neighborhood of the zero shear 
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atraiu» and the anisotropy that exists at this state is basi¬ 

cally due to the sample preparation techniques (i.e. it is the 

inherent anisotropy), provided that the sample is not very loose 

and the strain amplitude is not very large. 

For simple cyclic shearing, the distribution of the dilatancy 

angles characterizing the fabric may be related to the shear 

strain and, in this manner, the densification pattern may be 

estimated. 
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FIGURE CAPTIONS 

Figure 1 

Figure 2 

Figure 3 

Figure 4 

Figure 5 

Figure 6 

Figure 7 

Figure 8 

Figure 9 

: A typical maximum shear stress-maximum shear strain curve 

in cyclic shearing (from Hardin and Dmevicht 1972). 

: Normalized shear stress amplitude versus number of cycles 

to liquefaction (from Nemat-Nasser. 1980a). 

: Normalized excess pore water pressure p versus nuaber of 

cycles in cyclic shearing of undrained saturated sand 

(data from De Alba> Chan« and Seed« 1975). 

: Normalized excess pore water pressure p versus number of 

cycles in cyclic shearing of undrained saturated sand 

(data from De Alba« Chan« and Seed* 1975). 

: Normalized excess pore water pressure p versus normalized 

number of cycles in cyclic shearing of undrained 

saturated sand (data from De Alba« Chan« and Seed« 1975). 

: Normalized shear stress amplitude Tq versus number of 

cycles to liquefaction (data from De Alba« Chan, and 

Seed. 1975). 

: Void ratio e versus number of cycles in cyclic shearing 

of dry sand (data from Toud» 1972). 

: Void ratio e versus number of cycles in cyclic shearing 

of dry sand (data from Toud. 1977). 

: (a) Simple shearing (plane strain) under constant normal 

stress ai x is the shear stress and y is the 

corresponding shear strain. 

(b) A statistically representative sample of volume V 



h. 

> Figure 10: 
* 
« 

i 

. 

Figure 11: 

Ah; N = oA is the total normal force and T = tA is 

the total tangential force acting on the sample. 

(c) At the active contact C, the sliding direction makes 

the angle v with the macroscopic shearing x- 

direction; v is the dilatancy angle. 

(d) Forces acting on a granule with positive dilatancy 

angle v^; note that normal force ÎT hinders sliding 

for v. >0. 
i 

(e) An active contact with negative dilatancy angle; note 

that normal force IT assists sliding. 

(f) The Mohr-Coulomb failure criterion is assumed to 

apply at the local micro level; a. and t. are the 
i i 

local normal shear stresses, and p^ is the local 

pressure. 

Three loading regimes in monotone shearing: Regime I 

corresponds to densification, regime II begins with dila¬ 

tancy and ends at the peak stress, and regime III per¬ 

tains to post-failure response. 
2 

Under 100 kN/m confining pressure, a drained sample is 

quasi-statically sheared over the loading branch OBC. At 

C the drainage is discontinued, and over (quasi-static) 

unloading (C to D) and load reversal (D to E) the sample 

liquefies. At F, residual strain is 8.22. The sample is 

drained and reconsolidated to 100 kN/m showing 0.635 

void ratio. Then the new liquefaction test is performed 

(curve marked 1). Other curves are obtained in the same 
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manner. Numbers at upper and lower peaks denote the 

number of pre-liquefactions. The upper number in 

parentheses denotes the void ratio, and the lower one, 

the corresponding residual shear strain (Z). Shear stress 

and shear strain are the horizontal force and displace¬ 

ment divided respectively by the sample area and the sam¬ 

ple height (from Nemat-Nasser and Tobita, 1982). 

Figure 12: A drained sample is subjected quasi-statically to a 

stress cycle (solid line in the insert figure) of ampli- 

tude 67.4 kN/m under 100 kN/m confining pressure. 

ABCDEF is the load path of the subsequent quasi-static 

undrained test. AB is the reloading in the direction of 

the final half-cycle of the drained test; it shows no 

pore pressure build-up. CD is in the opposite direction; 

it shows dramatic pore pressure build-up (from Nemat- 

Nasser and Tobita, 1982). 

2 
Figure 13: Under 100 kN/m confining pressure, a drained sample is 

subjected quasi-statically to a half-cycle of stressing 

(ABC) with zero residual sheer stress at C. The sample 

2 
liquefies in the third cycle of 21 kN/m average shear 

stress amplitude applied quasi-statically under undrained 

conditions (from Nemat-Nasser and Tobita, 1982). 

Figure 14: Under 100 kN/m confining pressure* a drained sample is 

subjected quasi-statically to a half-cycle of straining 

(ABC) with zero residual shear strain at C. The sample 

liquefies in the seventh cycle of 21 kN/m average shear 
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CHAPTER III 

DOES PRELIQUEFACTION OR PRESTAINING REDUCE SANDS' RESISTANCE 
RELIQUEFACTION OR DENSIFICATION?* 

by 
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DOES PRELIQUEFACTION OR PRESTRAINING REDUCE 

SANDS' RESISTANCE TO RELIQUEFACTION OR DENSIFICATION? 

by 

S. Nemat-Nasser and K. Takahashi 

Department of Civil Engineering 

Northwestern University 

Evanston, IL 60201 

ABSTRACT 

It is shown for simple shearing that the liquefaction and den¬ 

sification potentials of a cohesionless sample of sand do not neces¬ 

sarily decrease because of preliquefaction or because of large ampli¬ 

tude (drained) prestraining. In fact, in simple shearing, the resis¬ 

tance to liquefaction (undrained) or densification (drained) of a 

preliquefied sample actually increases, as a result of the concomi¬ 

tant densification, if the preliquefaction is terminated at zero 

residual shear strain,» whereas this resistance is reduced consider¬ 

ably, if the preliquefaction is terminated at zero residual shear 

atreaa« The inherent anisotropy associated with dry pluviating and 

moist tamping sample preparation techniques is shown to affect the 

sample response to consolidation and to simple cyclic shearing. It 

is found that, within each cycle of simple shearing, the induced 

anisotropy is essentially wiped out in the neighborhood of the zero 

shear atraia (but not at zero shear stress ), and the anisotropy that 

remains at this state basically stems from the sample preparation 

technique. With the aid of the dilatancy, fabric-relation proposed 

by Nemat-Nasser (1980) for simple shearing, the volumetric strain of 

the sample is estimated using a simple distribution function for 

illustration purposes, and the results are compared with the experi¬ 

mental data. 
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1. INTRODUCTION 

Roughly speaking, two types of anisotropy (or fabric) are often 

distinguished when describing the mechanical response of granular 

materials: (1) inherent anisotropy which arises in laboratory samples 

from the sample preparation technique, and in natural settings from 

the deposition process; and (2) induced anisotropy which emerges in 

the course of deformation in response to applied loads. For example, 

when a sample is formed from slightly elongated granules by pluviat- 

ing (dry) through air, the granules tend to lie with their longer 

axes in the horizontal plane, whereas when the granules are moist and 

the sample is formed by layering and tamping, the distribution of the 

orientations of the longer axes tends to be more or less random. On 

the other hand, a sample formed under uniform confining pressure from 

identical spherical granules does not have any inherent anisotropies, 

but it may be rendered anisotropic by subjecting it to a history of, 

say, shearing. In this case, the particles rearrange themselves 

because of the loading, and this results in the redistribution of the 

contact normals, which, to a large extent, characterizes the fabric. 

It is commonly accepted and experimentally demonstrated that 

both types of anisotropy may have a profound effect-on the mechanical 

response and on the strength of granular masses; see, e.g., Lafeber 
% 

(1966), Arthur and Menzies (1972), Oda (1972), Mahmood and Mitchell 

(1974), Oda and Konishi (1974), Ladd (1977), Mulilis aL al. (1977), 

and Oda, Konishi and Nemat-Nasser (1980). In particular, the 

liquefaction potential of saturated undrained granular bodies, as 
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well as their tendency toward densification under drained conditions, 

may be altered dramatically by suitable prestraining which results in 

a change in the granular fabric: see Finn, Bransby and Pickering 

(1970), Tatsuoka and Ishihara (1974), Ishihara, Tatsuoka and Yasuda 

(1975), Ishihara and Okada (1978), and Nemat-Nasser and Tobita 

(1982). 

An interesting observation first made by Finn, Bransby and Pick¬ 

ering (1970), and later confirmed by, e.g., Ishihara, Tatsuoka and 

Yasuda (1975), Seed, Mori and Chan (1977), Ishihara and Okada (1978), 

and Nemat-Nasser and Tobita (1982), is that, once a sample is lique¬ 

fied, its resistance (after reconsolidation) to further liquefaction 

is considerably diminished, even though the density of the reconsoli¬ 

dated sample may have increased. From a practical point of view, 

this has far-reaching implications, as it suggests that a site that 

has been liquefied in an earthquake may not possess much resistance 

to liquefaction during possible aftershocks. In a recent work, 

Nemat-Nasser and Tobita (1982) illustrate experimentally that, while 

this may be true for certain cyclic loading, it may not have general 

validity. Indeed, these authors report results of experiments where 

a saturated sample of Monterey No. 0 sand is liquefied in cyclic 

shearing under constant confining pressure, and where the sample 

resistance to further liquefaction is considerably reduced if the 

initial liquefaction is terminated at zero residual shear stress. 

while the resistance to further liquefaction is essentially unaltered 

if the initial liquefaction is terminated at zero residual shear 



strain. Nemat-Nasser and Tobita explain this rather dramatic change 

in the response of a preliquefied sample in terms of the granular 

fabric characterized by the distribution of the microscopic dilatancy 

angles, i.e. the distribution of the orientation of the contact nor¬ 

mals (at active contacts) measured relative to the normal of the 

overall macroscopic shear plane. They show that this distribution 

has a profound effect on the sample's potential to densification 

under drained conditions and, therefore, on its liquefaction poten¬ 

tial when saturated and undrained. This result also suggests that 

the distribution of the dilatancy angles and, therefore, the fabric 

of a granular material in simple cyclic shearing, is more directly 

related to the total shear strain rather than to the shear stress. 

The bias in the fabric created either by drained prestraining of 

large shear strain amplitude,* o.‘ by liquefaction, is essentially 

wiped out if the test is terminated at zero shear strain, whereas the 

bias remains if the test is completed at zero shear stress. 

In an effort to further verify these facts and, in addition, to 

examine the influence of the sample preparation on the mechanical 

response of cohesionless sands in cyclic shearing, we have made a 

series of atrain-controlled tests on Monterey No. 0 sand samples. 

The same apparatus as the one used by Nemat-Nasser and Tobita (198?.) 

is employed, except that the horizontal shearing device is modified 

in such a manner as to control the horizontal stroke, and to measure 

*The strain amplitude is, however, kept below tha*, corresponding 
to the peak stress. 



the corresponding resulting horizontal force. Two sample preparation 

techniques are used: moist tamping and pluviating dry sand through 

air. The following basic results are obtained: 

1) In cyclic simple shearing, the resistance tc reliquefaction 

(undrained) or densification (drained) of a preliquefied sample actu¬ 

ally increases, because of the concomitant densification, if the 

preliquefaction is terminated at zero residual shear strain, but this 

resistance becomes very small, if the preliquefaction is terminated 

at zero residual shear stress. 

2) The inherent anisotropy associated with sample preparation tech¬ 

niques affects both the densification and liquefaction potential of 

the sample. 

3) Within each cycle of simple shearing, the induced anisotropy is 

essentially wiped out in the neighborhood of the zero shear strain. 

and the anisotropy that exists at this state is basically due to the 
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sample preparation techniques (i.e. it is the inherent anisotropy), 

provided that the sample is not very loose and the strain amplitude 

is not very large. 

4) For simple cyclic shearing, the distribution of the dilatancy 

angles characterizing the fabric may be related to the shear strain 

and, in this manner, the densification pattern may be estimated. 



fjS 

KN 

L ■• V i. 

K • 

2. SIMPLE SHEAR TEST 

Samples are prepared from Monterey No. 0 sand with a specific 

gravity of 2.65, and maximum and minimum void ratios of 0.83 and 

0.53, respectively. 

On the average, the diameter and height of the samples are 7.1 

cm and 3.1 cm, respectively. 

Waterproof sandpaper is attached to the surfaces of the top and 

base platens to prevent slip between the platens and the specimen. 
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Two sample preparation methods are used: moist tamping and dry 

pluviating. In the moist tamping method, sand which has been mixed 

with 8% water by weight is poured into the mold by spoon and then 

tamped with a rod, in order to obtain the desired height. The sample 

is poured in three layers, each about 1 cm thick. In the dry pluvi¬ 

ating method, air-dried sand is pluviated through air from a certain 

height by means of a funnel and a vinyl pipe of 6 mm inner diameter. 

Although the drop-height is changed in order to change sample den¬ 

sity, the method yields relatively dense samples, in general. The 

surface of the dry sand is trimmed in the manner suggested by 

Mulilis, Chan and Seed (1975). 

Carbon dioxide (Ct^) ¿g percolated for half an hour through the 

specimen to obtain a satisfactory degree of saturation, and then de- 

aired water is circulated through the specimen for one hour. A back 

pressure of 100 kN/m^ is applied to achieve saturation with a B-value 
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i exceeding 0.95. 

The test apparatus used is a simple shear apparatus with a 

deformation control system. Horizontal force is applied by a mechan¬ 

ical system with an electric motor through a load cell which controls 

the stroke and monitors the intensity of the load transmitted to the 

specimen. Vertical force is applied by a pneumatic device, and the 

load is monotored by a load cell on the top platen. Linear variable 

'V; 
differential transformers (LVDT) are used to monitor the horizontal 

•A 
and vertical displacements. Drainage lines are provided through both 

the top and base platens. The pressure transducer is installed in 

the drainage line, and pore pressure is measured by preventing 

drainage through the specimen. In the case of drained tests, 

drainage lines are led to a standpipe and the change of volume of the 

specimen is measured from the water level in the standpipe. 

Output from all transducers is recorded automatically in a 

micro-computer through an A/D converter (except for the volume 

1 change), and the load deformation relation is also recorded by an 

X,Y-pletter. 

It should be pointed out that in experiments of this kind, nei¬ 

ther the states of strain and stress within the sample, nor tractions 

applied over the boundaries of the sample are uniform. The limita¬ 

tions of the so-called simple shear test of this kind have been exam¬ 

ined by Wood and Budhu (1980). Indeed, the stress distribution in 

circular cylindrical samples sheared in the sample shear apparatus, 

85 



is non-uniform and actually three-dimensional. Nevertheless, since 

all tests are made under similar basic conditions, the conclusions 

reflect the comparative changes that have been created in the sample 

by different histories and, therefore, they do capture the essential 

fundamental character of the material response. 

Since flexible membranes are used, the sample area changes in 

the course of deformation. The average area is calculated from the 

measured volume and the vertical displacement. No effort is made to 

correct the measured volumetric strains for the effect of the "mem¬ 

brane penetration" which is known to be rather important in tests of 

this kind (see, e.g., Newland and Allely (1959) and El-Sohby and 

Andrawes (1972)) because it is more the qualitative, rather than the 

quantitative, nature of the tests that is at focus in this paper. 

Moreover, since all tests are performed under essentially similar 

conditions, the comparative conclusions should remain valid even if 

there is a systematic error in the measured volumetric strains, espe¬ 

cially when the confining pressure remains the same. 

All tests are performed with the horizontal displacement con¬ 

trolled . 
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3. DEFORMATION DURING CONSOLIDATION 

Consolidation (drained) produces different deformations in the 

samplet depending on the preparation technique. For samples prepared 

by pluviating dry sand through air, grains are packed with their 

longer axes in the horizontal plane, whereas in moist tamping the 

orientation of the grains is essentially random, in view of the 

capillary forces holding the grains together. Therefore, in the 

latter case, the sample tends to have a more random (isotropic) 

fabric, as suggested by Ladd (1977). 

Table 1 lists the tests performed in this study. Figures 1 and 

2 present the relations between the sample height change (Ah) and the 

sample volume change (Ay), and between the sample height change and 

the sample diameter change (Ad) for different indicated K-values (K = 

where is the effective lateral pressure, and av is the 

effective vertical pressure). 

The effect of the K-value on the test results is as expected, 

since an increase in the lateral pressure results in a greater 

lateral contraction, and, therefore, for larger K-values, smaller 

vertical contraction results. However, samples prepared by the dry 

pluviating method show smaller vertical contraction and even vertical 

expansion (for K = 2) than those prepared by moist tamping. The 

results of Figs. 1 and 2 clearly show a greater tendency toward 

diametral contraction for the dry pluviating samples than for the 

moist tamping ones, while the corresponding volume changes may be 
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nearly the same. It is therefore concluded that the biased particle 

orientation created by the preparation technique produces an inherent 

anisotropy in samples made by dry pluviating. 
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4. INFLUENCE OF PRESTRAINING AND PRELIQUEFACTION 

Figures 3a and b show the results of prestraining and preli¬ 

quefaction on samples prepared by dry pluviating. In Fig. 3a the 

solid curve marked n0B represents drained cyclic shearing with strain 

amplitude of 42, which produces initial densification followed by 

dilation, then densification upon strain reversal, changing to dila¬ 

tion at about zero strain, and continuing with dilation until strain 

reversal. The cycle is completed at zero, residual shear strain. The 

sample is then reconsolidated and, under undrainpd conditions, it is 

subjected to cyclic shearing of 0.8% strain amplitude. The sample 

liquefies in 20 cycles, essentially the same as for a virgin sample; 

had the preliquefaction been terminated at zero residual shea^ 

3-LrfcSS» the sample would have then re-liquefied in only one cycle; 

see Nemat-Nasser and Tobita (1982, Figs. 13, 14, and 15, pp. 56-58). 

The sample is then drained and consolidated and, under drained 

conditions, it is subjected to another cycle of straining of 4% max¬ 

imum amplitude. The result is shown by the dash-dot curve marked ’’l" 

in Fig. 3a. As is seen, the response is essentially the same as that 

of the virgin sample. 

It has been demonstrated by Nemat-Nasser and Tobita (1982, Figs. 

7 and 8, p. 52) that a preliquefied sample shows a strong directio lal 

bias when the initial liquefaction test is terminated at zero resi¬ 

dual shear Stress. Specifically, if in the subsequent drained test 

the load path retraces the final half of the stress cycle which had 
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produced liquefaction, then the sample shows very small densification 

or even dilation, whereas when the load path in the drained test con¬ 

tinues and completes the half terminal cycle that had caused 

liquefaction, then large densification is observed. 

In contrast, no such directional bias in densification is 

observed when the preliquefaction test is terminated at zero residual 

shear atraia» 

After the second cycle of prestraining marked by "l* in Fig. 3a, 

the sample is subjected to another undrained cyclic shearing of 0.8¾ 

strain amplitude. It liquefies after 20.5 cycles. The dash-dot-dot 

curve marked "l" in Fig. 3a is the result of a subsequent cycle of 

the drained test. Since the sample has densified, and since, because 

of zero residual shear strain after each liquefaction, the fabric is 

essentially unbiased, considerably greater dilation is observed. As 

is seen from the result in Fig. 3b, the corresponding shear stress 

amplitudes have increased, so that the sample has become stronger, 

with greater resistance to densification and less potential toward 

liquefaction. 

In Figs. 4a and b we report typical results of the effect of 

small amplitude prestraining and preliquefaction on a sample prepared 

by moist tamping. The solid curve in Fig. 4a marked "0n corresponds 

to the virgin sample. Continuous densification occurs, since the 

shear strain amplitude is small. Upon completion of the drained test 

(solid curve in Fig. 4a), the sample is consolidated and, under 



undrained conditions, it is subjected to cyclic straining of 1% 

strain amplitude. It liquefies after 10 cycles, essentially the same 

as for the virgin sample. The dash-dot curve marked nl* in Fig. 4a 

is the result of a subsequent drained test on this preliquefied sam¬ 

ple. The sample does not show any directional bias. Upon completion 

of this drained test, the sample is again liquefied by cyclic shear¬ 

ing of 12 strain amplitude. It shows no reduction in its resistance 

to liquefaction. Indeed, as is seen from Fig. 4b, the sample has 

strengthened in view of its greater density, after each liquefaction. 

The dash-dot-dot curve marked "2" in Fig. 4a represents the results 

of the final drained shear test on the same sample. 

From the results presented in this section, which are typical 

for atrain-Cflntrglled cyclic shearing, it is evident that prestrain¬ 

ing with large shear strain amplitude, or preliquefaction, does not 

necessarily reduce the sample's resistance to liquefaction or densi¬ 

fication. It all seems to depend on how preliquefaction or prestrain¬ 

ing is terminated: if the termination is at zero residual shear 

stress. then resistance to subsequent liquefaction or densification 

is reduced considerably; on the other hand, if the termination is at 

zero residual shear strain, this resistance is not changed or even 

may be increased. These observations may be useful in developing 

techniques by which the liquefaction potential of sites which 

recently have liquefied during an earthquake may be estimated by 

b 

field inspections, 
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5. DEFORMATION DURING CYCLIC SHEARING 

In this section sample deformation during strain-controlled 

drained cyclic shearing is examined» focusing attention on the 

effects of inherent anisotropy induced by sample preparation tech¬ 

niques (i.e. dry pluviating versus moist tamping), on the effects of 

confinement (i.e. the K-value), and on the effects of sample density. 

A set of typical results is shown in Figs. 5a to d. for a sample 

prepared by the dry pluviating method and strained for 20 cycles at 

4Z maximum shear strain amplitude. Thirty to sixty data points are 

obtained for the first three, the fifth, the tenth, and the twentieth 

cycles, and only six data points for the remaining cycles. These six 

data points are taken when the shear stress and shear strain are zero 

(4 points), and when the shear strain is maximum (2 points). The 

corresponding stress-strain loops are shown in Fig. 5a, where t is 

the shear stress obtained by dividing the total horizontal force by 

the initial sample area, and a is the mean stress. Figures 5b and c 
ffl 

represent the history of the volumetric strain in terms of shear 

strain and normalired shear stress (i.e. » respectively. Exami¬ 

nation of Fig. 5b reveals that in each cycle, sample dilation changes 

to densification at points of shear strain reversal. Furthermore, 

starting at the point of strain reversal in each cycle, the sample 

begins to densify until a point close to zero shear strain, where 

densification ceases and dilation begins. This corresponds to the 

state termed by Ishihara, Tatsuoka and Yasuda (1975) "phase transi¬ 

tion". It represents a state where significant changes in granular 
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fabric begin to take place;* see Nemat-Nasser and Tobita (1982). 

Indeed, it is precisely for this fact that, if a drained prestraining 

is terminated at this state (i.e. zero shear strain), the sample the sample 

exhibits negligibly small bias in its fabri ic; see Section 3. Note 

from Fig. 5b that the state in question corresponds to the maximum 

volumetric strain over each half-cycle. To identify this state in 

the sequel, we shall refer to it as "point of zero dilatancy". and we 

shall assume (subject to negligibly small errors) that the point of 

zero dilatancy coincides with the point of zero shear strain for each 

half-cycle.** 

Figure 5d gives the vertical strain (strain measured along the 

axis of the cylindrical sample) as a function of volumetric strain. 

In this figure the locus of points of zero dilatancy is identified by 

a solid curve. Numbers on this solid curve denote the corresponding 

cycle. We shall refer to the locus of points of zero dilatancy as 

the "zero dilatancy curve". 

Figure 6 shows the zero dilatancy curves for all the tests 

listed in Table 1. The numbers written next to the circular or tri¬ 

angular marks designate the relative density of the sample. Open 

circles or triangles are data- for dry pluviated samples, whereas the 

For triaxial tests, Luong (1980) attributes a similar signifi¬ 
cance to the zero dilatancy state which he calls the "characteristic 
state"• 

It should be noted that these comments are intended to apply to 
S1 ran ! o r* xrt* lie» _ i __ mt _ • ... r c j simple cyclic shearing only, 
quires further study. 

Their generalization to other cases re- 
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corresponding solid geometric marks are for samples prepared by moist 

tamping. 

There are four groups of data points, each associated with a 

different K-value, as indicated; see Table 1 for the list of strain 

amplitudes used. 

The distribution of the data points in Fig. 6 closely correlates 

with that of Fig. 1. Indeed, the ratio of the abscissa over the 

ordinate of each data point in Fig. 6 is essentialy the same as the 

corresponding ratio in Fig. 1. This fact appears to be rather impor¬ 

tant, because the distribution of data points in Fig. 1 closely 

relates to the influence of the inherent aaisotropg» Therefore, it 

may be concluded that the distribution of the points of zero dila- 

tancy in Fig. 6 also reflects the effects of inherent anisotropy.- In 

other words, samples with the same K-value. with the. sane relative 

density, subjected to. cyclic shearing oí. the. same sixain amplitude, 

will have distict zero dilatancy curves. if. and only if. they have. 

different inherent anisotropies- 

In Fig. 6 there are eleven curves associated with isotropic con¬ 

finement (K = 1). Six open circles represent the result of 20 cycles 

of straining of samples prepared by the dry pluviating method. Four 

open circles marked 75, 80, 82, and 80 (Z relative density) from left 

to right, respectively, correspond to 0.5, 1, 2, and 4Z maximum 

strain amplitudes. Therefore, the total volumetric strain at points 

of zero dilatancy increases with increasing maximum strain amplitude 
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for the same number of cycles. Continuing to examine data points in 

Fig. 6 for isotropic confinement, it is clearly seen that the 

volumetric strain for the sample obtained by dry pluviating far 

exceeds the corresponding volumetric strain of the sample obtained by 

moist tamping. In particular, since for K = 1 the vertical strain 

for all samples is rather small, the difference in volumetric strain 

essentially reflects the difference in the diametral strain: i.e. the 

dry pluviated sample has a greater tendency toward lateral contrac¬ 

tion than the moist tamped sample« 

The data associated with K = 0.7 reveals that the sample 

obtained by dry pluviating shows about 1% volumetric strain, while 

the moist tamped sample shows zero volumetric strain. A similar ten¬ 

dency is observed for K = 0.5: the sample obtained by moist tamping 

shows greater volumetric expansion than that obtained by dry pluviat¬ 

ing. Data points associated with K = 2 correspond to tests where the 

lateral confinement pressure is twice the vertical one. For the 

three left-most curves marked with relative densities 81, 83, and 85 

(Z), rather dense samples, the volumetric strains are very small 

(about 0.1Z). However, the sample obtained by dry pluviating exhi¬ 

bits 2Z, whereas the sample prepared by moist tamping shows only 1Z 

extension. This means that the decrease in the cross-sectional 

area of the dry pluviated sample is twice that of the moist tamped 

sample: under large lateral confinement pressure, the dry pluviated 

sample contracts more readily than the moist tamped one. 
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There are four curves for K = 2 associated with relative densi¬ 

ties 72, 65, 51, and 43 (Z). The above comments apply to the data 

points with relative densities 72 and 65Z. However, curves associ¬ 

ated with 51 and 43Z relative densities undergo considerable densifi¬ 

cation, and, therefore, the differences caused by the sample prepara¬ 

tion method seem to become secondary, especially since the sample 

with 43Z initial relative density is subjected to shear straining of 

8Z maximum amplitude, and that with 51Z relative density is subjected 

to shear straining of 5Z maximum amplitude. 

Summarizing the main points, it appears that in drained simple 

cyclic shearing of a granular material, the point of zero dilatancy 

occurs very close to the point of zero shear strain over each half¬ 

cycle. At this point the anisotropy or the fabric induced by shear¬ 

ing over the half-cycle seems to be negligibly small» so that only 

the inherent anisotropy manifests its effects. It is therefore rea¬ 

sonable to assume that the induced fabric over each half-cycle in 

this kind of test depends more directly on the magnitude of the shear 

strain, rather than the shear stress, provided that the shear strain 

amplitude is not too large (i.e. does not exceed that corresponding 

to the peak stress), and that the sample is not too loose. 
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6. STRESS-DTLATANCY CHARACTERISTICS 

' .N 

Detailea stress-strain relations are obtained in drained cyclic 

shearing from closely spaced measured data points. From these, the 

* 1 dV "dilatancy parameter,n --=- —, is calculated by numerical differen- 
¥0 

tiation (using five neighboring points), for each stress ratio t/a . 
m 

(The shear stress, t, and the shear strain, Y, are regarded positive 

when clockwise; the volumetric strain, aV/Vq, is taken positive in 

1 dV AV 1 
is the volumetric strain per unit shear¬ 

ing; and Vq is the initial sample volume.) 

compaction; ==- — r ’ v0 dr v0 ir 

Figure 7 shows for the same' mean stress, o , and the same max- m 

imum shear strain amplitude, Yq, results of a large number of cyclic 

tests corresponding to different K-values (14 loops for K = 2, 10 

loops for K = 1, 4 loops for K = 0.7, 4 loops for K = 0.5, and 2 

loops for K = 0.4) and different relative densities, and correspond¬ 

ing to both dry pluviating and moist tamping sample preparation tech¬ 

niques . 

Two cycles for each test are included in Fig. 7. The loops con¬ 

sist of two parallel loading segments of positive slopes, and two 

unloading segments with vertical or negative inclinations. The 

unloading segments are not as clearly identifiable as the loading 

ones; see also Figs. 8 to 10. 

For triaxial tests, Tatsuoka (1978) obtains stress, dilatancy- 

relations which appear to be independent of the sample density, the 

initial fabric, and the mean pressure. Results of Fig. 7 suggest 
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that the stress-dilatancy behavior in simple shear may also be 

independent of the sample density* (at least when only a few cycles 

are involved) and the initial fabric, but, as we shall show in the 

sequel, it is oclL independent of the mean stress. Loops in Fig. 7 

expand outward with decreasing K-values, showing that the dilatancy 

is affected by the K-value. 

The effect of the mean pressure, is displayed by the data of 

Figs. 8 and 9, and the effect of the maximum shear strain amplitude, 

Yq, by the results in Fig. 10. The loops expand with decreasing 

and with increasing Yq. 

From Fig. 10, it is seen that the unloading segments of the 

loops associated with small values of Yq are almost vertical, whereas 

those for larger values of Yq show distinct negative slopes, the mag¬ 

nitude increases with increasing yq. This suggests that, for large 

shear strain amplitudes,** the sample actually begins to densify even 

during the unloading, while for small strain amplitudes densification 

starts only close to the state of the stress reversal. Nemat-Nasser 

(1980) has presented a micromechanical model which seems to account 

*This comment applies only to the relation between the dilatancy 
parameter, “1/Vq dV/dY, and the normalized shear stress, t/o , when a 
few cycles are involved. The total volumetric compaction and other 
dilatational factors are clearly dependent on the initial sample den¬ 
sity; see Nemat-Nasser and Shokooh (1979). 

**This and related comments may not apply when the shear strain 
amplitude is so large as to exceed that corresponding to the peak 
stress. Essentially all tests reported in the present work are at 
pre-peak strain amplitudes. 
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i for this phenomenon. A brief review of this model will now be 

presented together with an illustrative estimate of the volumetric 

compaction. 

The model considers two-dimensional shearing of a layer of a 

granular mass under uniform applied normal compressive stress» u» and 

uniform shear stressf x, which is viewed positive when clockwise. 

The macroscopic shear flow is the result of microscopic motion (rol¬ 

ling and sliding) of grains relative to each other at active contact 

points. Figure 11 illustrates this. The angle v is called the 

(micro) dilatancy angle. It varies from active contact to active 

contact» and when there are a very large number of such contacts, one 

may assume a continuous change and introduce a distribution-density 

function p(v) in such a manner that p(v^)dv represents the volume 

fraction of active granules whose dilatancy angles are between and 

v0 + dV* V iS- Positive alisa iL gradue g S vo lume expansion: Fig. 11. 

By considering the balance of forces transmitted across each active 

contact, and by equating the rate of frictional dissipation at active 

contacts within a unit volume to the rate of the overall stress-work, 

Nemat-Nasser (1980) obtains the following dilatancy equation: 

H v. 

1 dV 1 /-0 , v- 
T d7 = - p(v) cos(0ji + v)sin v dv* 

vo 
(i) 

where is the ngrain-to-grainn friction angle, and where the Mohr- 

Coulomb failure criterion is used to characterize the local (at the 

micro-level) flow process. 
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Nemat-Nasser (1980) points out that upon shearing and under nor¬ 

mal pressure, granules with negative dilatancy angles are activated 

first» leading to a distribution-density function p(v) which ini¬ 

tially is biased toward negative dilatancy angles. Intuitively, this 

follows from the physical observation that the local normal force N 

hinders the motion of an active granule with positive dilatancy angle 

v, whereas it assists when v is negative; Figs. 11b and c. Hence, 

upon shearing under confinement, an initial densification is expected 

and is invariably observed. 

As shearing proceeds, the distribution-density function, p(v), 

tends to become biased toward positive dilatancy angles, and this 

leads to subsequent dilation. During this stage, a greater number of 

active contacts have positive dilatancy angles, and this number 

increases with increasing shear strain amplitude, up to the strain 

corresponding to the peak stress. Now, if, after a microstate of this 

kind is attained, unloading begins, then some of the granules with 

suitably large dilatancy angles may actually start a downward motion 

under the action of the normal force N, which leads to densification. 

It is this micromechanical reason which seems to underlie the 

observed negative slopes during unloading in Figs. 8 to 10 for large 

(but still pre-peak) strain amplitudes and not for the small ones. 

Other aspects of Eq. (1) are discussed and illustrated by 

Nemat-Nasser (1980) and Nemat-Nasser and Tobita (1982). Here we 

shall seek to apply (1) in order to estimate volumetric chan?es 

observed in a cycle of simple shearing. 
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To this end, and for illustration only, we shall use the sim¬ 

plest form for the distribution function p(v), i.e. 

p(v) = for ' v0 + e á v " v0 + e* (2) 

p(v) = 0 otherwise, 

and assume that the location of the centroid, s, of this uniform dis¬ 

tribution is a linear function of the strain over each half-cycle, 

e = ay + b. (3) 

This is a crude approximation,* but it serves to illustrate the basic 

point. 

From (1) and (2), we have 

and integration from to y^t corresponding to to now yields 

sin 2Vq 

4vq cos 0 

(5) 

where (3/ is also used. Since small volumetric changes are involved. 

we set V2 =^+ AV, and obtain ¿n^/V^ = 2,n(l Thus, 

for y changing from y ■ 0, at which V = 7q, to some y S yg, we have 

*Note that we do ua£. suggest (2) and (3) as "good" functional 
forms for defining the distribution function p(v), but that even with 
such simple and crude functions, reasonable estimates emerge from the 
general dilatancyt fabric-relation (1). 



'. ’r’j 'j** ’.■« ’.I1 V '.*’ '>,.- * Ï '.l. * ' 

Ay 
V y tan0n 

1 sin2vo 
+ —-—- sin(aY) [sin( aY+2b) + cos(aY+2b) tan0J1] . (6) 2a 2V, 0 ‘0 

Note that in applying (4) to a full cycle, E must be appropriately 

interpreted; Nemat-Nasser (1980), pp. 70-71. Equation (6) applies to 

a 1/4-cycle only, i.e. for Y = 0 to Y = YQ. On the other hand, (5) 

applies over a full 1/2-cycle, e.g., for Y - Y to Y = 0 to Y = -Yq. 

Figure 12 illustrates these results for = 45 (rather unrealistic. 

but illustrative), vq = 25°, a = 16, and b = 0.08. In this figure, 

the experimental data are also showni It is important to bear in 

mind that the net densification over each complete cycle decreases 

with an increasing number of cycles; see, e.g., Youd (1970, 1972) and 

Silver and Seed (1971). This is not directly leflected in Eq. (5). 

One may do this by combining Eq. (5) with the densification equation 

given by Nemat-Nasser and Shokooh (1979), which estimates the void 

ratio as a function of the shear strain amplitude and the number of 

cycles, i.e. 

e = e m + C(e0 - e^1"“ + kN1/2 Y0]1/(1"n), (7) 

where e^ is the minimum void ratio, N is the number of cycles, and k 

and n are free parameters which must be fixed from experimental 

results; the range of variation of n is about 3 to 4 and k may take 

values between 500 to 1500, for Monterey No. 0 sand. Since the total 

volumetric strain, measured per unit initial volume, relates to the 

void ratio by 

Ay e0 " e 

1 + V 
(8) 
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Eq. (7) may be used to "normalizen the dilatancy equation (5) in such 

a manner as to yield a net densification which reflects the number of 

preceding cycles N« Note» however» that Eq. (7) applies when a very 

large number of cycles are involved. For only a few cycles of shear¬ 

ing, the above-mentioned normalization may not be required. 
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Table 1 

Specimen 
Preparation 

Method 

Dry Pluvrating 

Moist Tamping 

ah 
K (=-7) 

°0 

0.4 

0.5 

0.7 

1 

0.5 

0.7 

1 

2 

0', o¿ 
V h 

(kN/m2) 

100, 40 

100, 50 

100, 70 

40. 40 

80, 80 

100,100 

160,160 

50,100 

100, 50 

100, 70 

looaoo 
50,100 

No. of 
Specimens 
Tested 

1 

1 

1 

2 

4 

3 

2 

4 

1 

1 

5 

3 

Y0 
(2) 

8 

8 

8 

2, 4 

0.5,1,2,4 

8,10 

2, 4 

5,6,8 

8 

8 

0.5,3,4,8,10 

5,6,8 
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Number 
of 

Cycles 

2 

2 

2 

10,20 

20 

2 

10,20 

2 

2 

2 

1.2 

2 
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Figure 1: Relation between sample height change (Ah) and the 

sample volume changes (aV) for indicated K-values and 

the mean stress o^î solid marks are for moist tamping 

(MT) and the others are for dry pluviating sample 

preparation techniques. 

Figure 2: Relation between sample height change (Ah) and the 

sample diameter change (AD) for indicated K-values and 

the mean stress solid marks are for moist tamping 

(MT) and the others are for dry pluviating sample 

preparation techniques. 

Figure 3(a): Volumetric strain, shear strain-relations for a dry 

pluviated sample: the solid curve marked "0W is for a 

virgin sample; the other curves are after liquefaction 

by cyclic shearing of 0.8Z strain amplitude. All 

tests are terminated at zero residual strain, after 

which the sample shows no directional bias in densifi¬ 

cation. 

Figure 3(b): Volumetric strain, stress ratio-relations associated 

with Fig. 3(a); note the sample resistance has 

increased by preliquefaction (terminated at zero resi¬ 

dual strain). 

Figure 4(a): Volumetric strain, shear strain-relations for a moist 
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tamped sample: the solid curve marked "O" is for a 

virgin sample; the other curves are after liquefaction 

by cyclic shearing of U strain amplitude. All tests 

are terminated at zero residual strain, after which 

the sample shows no directional bias in densification. 

Figure 4(b): Volumetric strain, stress ratio-relations associated 

with Fig. 4(a). 

Figure 5(a): Stress ratio, shear strain-relations for a dry pluvi- 

ated sample: 20 cycles at 4Z strain amplitude. 

Figure 5(b): Volumetric strain, shear strain-relations associated 

with Fig. 5(a); note zero dilatancy occurring at about 

zero strain on each half-cycle. 

Figure 5(c): Volumetric strain, stress ratio-relations associated 

with Fig. 5(a). 

Figure 5(d): Vertical (axial) strain, volumetric strain-relations 

associated with Fig. 5(a): the solid curve is the 

locus of "points of zero dilatancy", and the numbers 

denote the corresponding cycle. 

Figure 6: The zero dilatancy curves for all tests listed in 

Table 1: solid marks are for moist tamped, and others 

are for dry pluviated samples; numbers indicate the 

corresponding relative densities (2); the associated 

K-values are as indicated. 
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Figure 7: 

Figure 8¡ 

Figure 10: 

Figure 11: 

Figure 12: 

A ■H h'->% 
■* -v'"» ^. \ ■V"’" '’. * a. - ■.*'.«ï '> ■_* \- 

Stress ratio, dilatancy-relations at constant mean 

stress and strain amplitude. 

Stress ratio, dilatancy-relations at 22 strain ampli¬ 

tude: _or =40 kN/m , m _<j = 80 kN/m , and m 

_<r = 160 kN/m . m 

Figure 9: Stress ratio, dilatancy-relations, at 4* strain ampli¬ 

tude: _ a =40 kN/m , m _<j = 80 kN/m , and m 

a = 160 kN/m . tn 

Stress ratio, dilatancy-relations at 100 kN/in mean 

stress: (outer) Tq = 82»_(outer) y0 = 4%, 

(middle) yq = 22, - - (inner) yn = 12, and 
*0 

( inner) Yq = 0.52. 

(a) Simple shearing (plane strain) under constant 

overall shear stress t and normal stress a. (b) 

Forces acting on an active granule with positive dila- 

tancy angle vî note that normal force N hinders the 

motion for v > 0. (c) Forces acting on an active 

granule with negative dilatancy angle vî note that 

normal force N assists the motion for v < 0. 

Volumetric strain, shear-strain relations in cyclic 

shear at 22 strain amplitude: open circles are calcu¬ 

lo lated results from Eq. (5) with a = 45°. = 25°, 
H n 

a = 16, and b = 0.08. 
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COMPRESSION-INDUCED MICRO-CRACK GROWTH 

IN BRITTLE SOLIDS: 

AXIAL SPLITTING AND SHEAR FAILURE 

by 

H. Horii and S. Nemat-Nasser 

Department of Civil Engineering 

Northwestern University 
Evanston, IL 60201 

ABSTRACT 

Axial splitting is explained in teras of the out-of-plane growth of a 

pre-existing crack under far-field compression. It is shown analytically, 

and verified by model experiments, that, because of the frictional sliding 

of the faces of the pre-existing crack (induced by the resolved shear 

stress), tension cracks develop at the tips of the pre-existing crack. 

These tension cracks then grow with increasing compression and become 

parallel to the direction of the maximum far-field compression. When a 

lateral compression also exists, the crack growth is stable and stops at 

some finite length. With a small lateral tension, on the other hand, the 

crack growth becomes unstable after a certain extension length is attained. 

This is considered to be the fundamental mechanism of axial splitting 

observed in uniaxially compressed rock specimens. 

To reveal the mechanism of shear failure, a row of suitably oriented 

cracks is considered, and their simultaneous out-of-plane unstable growth 



which may lead to possible macroscopic faulting, is examined. On the basis 

of this model, the variations of the "ultimate strength" and the orienta¬ 

tion of the overall fault plane with confining pressure are estimated* and 

the results are compared with some published experimental data. It turns 

out that the micro-cracking failure theory developed in this manner is in 

good agreement with published experimental data. The results of model 

experiments performed on plates of Columbia Resin CR39 which contain pre- 

existing cracks of suitable distributions and sizes, are shown to support 

qualitatively the analytical results. 
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1. INTRODUCTION 

Solids such as rocks and concrete by their nature contain numerous 

micro-cracks and inhomogeneities. Materials of this kind fail under axial 

compression by axial splitting, when the confining pressure is zero or very 

small, and by faulting or shear failure, when the confining pressure is 

moderate, but still below the brittle-ductile transition value; see, for 

example, Peng and Johnson (1972). The inclination of the macroscopic frac¬ 

ture surfaces relative to the compression axis increases with increasing 

confining pressure, almost attaining the constant value-of 30* in the shear 

failure stage. In the brittle-ductile transition stage, plastic flow takes 

place along the failure plane, and the fracture angle increases. Above the 

brittle-ductile transition pressure* a more uniform plastic flow of the 

specimen occurs; Griggs and Handin (1960). 

In addition to their macroscopic failure features, the "strength" of 

rocks, and other similar brittle solids, is greatly affected by the confin- 

ing pressure. Generally speaking, the strength versus confining pressure 

curve consists of a non-linear initial part, followed by a linear shear 

failure part, and then by a non-linear portion corresponding to pressures 

close to the brittle-ductile transition value; Mogi (1966). 

In this paper we consider brittle failure at pressures below the 

brittle-ductile transition value. In this regime the growth and interac¬ 

tion of micro-cracks are considered to be the dominant controlling micro¬ 

mechanisms of macroscopic failure. 



Peng and Johnson (1972) have studied the process of fracture propaga¬ 

tion and faulting in specimens of Chelmsford granite with various end¬ 

boundary conditions. They have observed that axial splitting occurs when 

no confining pressure is applied> whereas failure by faulting takes place 

under triazL-l stressing, the former being affected by the end conditions, 

the latter being essentially independent of the end-boundary conditions. 

One of the most remarkable microscopic observations is that of Hallbauer, 

Wagner and Cook (1973). Their photographic studies show how the develop¬ 

ment of fracture and micro-cracks is related to the overall stress-strain 

relations. Micro-cracking is observed to be mainly intra-granular and 

parallel to the direction of the maximum compression. The most interesting 

observation relevant to the main objective of the present article is that 

regions of high crack-density emerge along a plane which eventually becomes 

a macroscopic shear fracture* and that the shear fracture plane does not 

materialize until the applied axial compression is very close to the ulti¬ 

mate strength of the specimen. 

Experiments on glass and photo-elastic plates by Brace and Bombolakis 

(1963) have shown that pre-existing cracks may be the source of 

compression-induced micro-cracking. McClintock and Walsh (1963) have pro¬ 

posed a modified Griffith theory which includes frictional effects. 

Nemat-Nasser and Horii (1982) have presented an analytical solution of 

compress ion-induced, out-of-plane crack extension which may become 

unstable, leading to axial splitting. These models are based on the idea 

that frictional sliding along pre-existing cracks results in the formation 

of tension cracks at the tips of the pre-existing cracks. Tension cracks 

may develop in brittle solidsfrom other sources (or stress concentrators) 
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thaa the pre-existing cracks. Microscopic observations by Tapponnier and 

Brace (1976), Mosher et al. (1975), and Hallbauer et al. (1973) seem to 

support this. From the "modeling" point of view, on the other hand, it may 

be adequate to assume that these other micro-cracking sources have effects 

similar to those of the pre-existing cracks> and in fact may be represented 

by some equivalent pre-existing cracks. 

Based on these observations, we seek in the present work to examine 

analytically and with model experimentation the consequences of the follow¬ 

ing micro-mechanical "model" of brittle failure. 

In a sample containing micro-cracks of various sizes, larger pre¬ 

existing cracks are expected to be fewer in number and farther apart than 

smaller ones. Under axial compression, suitably oriented larger cracks 

begin to extend first. Relative frictional sliding of their faces produces 

at their tips tension cracks which deviate at sharp angles from the sliding 

plane. These tension cracks continue to grow with increasing axial 

compression, curving toward an orientation parallel to the direction of 

axial compression. In the absence of* confining pressure, this growth 

regime may become unstable leading to axial splitting if some lateral ten¬ 

sion exists because of the end-conditions. On the other hand, if a suit¬ 

ably large confining pressure exists, the out-of-plane growth of (pre¬ 

existing) large cracks is soon arrested. Then, as the axial load is 

further increased, smaller cracks become activated as they interact with 

each other. At a certain stage of loading, sets of suitably arranged small 

cracks of favorable inclination suddenly grow out of their own planes in an 

unstable fashion, which leads to the formation of the macroscopic fracture 
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plane. The orientation of this fracture plane and the critical axial load 

depend on the confining pressure. .. 

. - V 

This paper is organized in the following manner. In Section 2 we con¬ 

sider axial splitting. This follows our previous work, Nemat-Nasser and 

Horii (1982), where out-of-plane growth by frictional sliding of pre¬ 

existing cracks is shown to result in axial splitting under axial compres¬ 

sion, if some small lateral tension also exists. Detailed calculations are 

given in Appendix A for a complete two-dimensional solution of out-of-plane 

curved growth of a pre-existing crack under far-field overall compression. 

Numerical results are presented which considerably improve and correct our 

previous approximate results, leading to a better correlation with model 

experiments. 

Shear failure is examined in Section 3. As a "model" for simulating 

microscopic events which may be instrumental for the macroscopic shear 

failure, we consider a row of suitably oriented cracks, and examine their 

simultaneous out-of-plane unstable growth which may lead to possible 

macroscopic faulting. The physical implications of this model are dis¬ 

cussed. The variations of the ultimate strength and the orientation of the 

overall fault plane with confining pressure are estimated, and the results 

are compared with some published experimental data. Here again, for the 

sake of clarity, only the results are discussed and the detailed mathemati¬ 

cal calculations are presented in Appendix B. Sections 2 and 3 also 

include the results of a number of model studies on thin plates of Columbia 

resin CR39, containing suitably arranged pre-existing cracks of various 

sizes and distributions. In order to clearly demonstrate the influence of 
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confining pressure on the failure mechanism, two sets of specimens with 

essentially identical crack arrangements are tested, one with, the other 

without confinement. The results are discussed in Sections 2 and 3. 

It turns out that the micro-cracking failure theory developed in this 

paper is not only in good qualitative accord with the results of laboratory 

experiments on rocks, but that it also allows specific quantitative esti¬ 

mates in agreement with some published data. 
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2. AXIAL SPLITTING 

Under axial compression a suitably oriented pre-existing crack may 

grow out of its plane by the formation of tension cracks at its tips due to 

the relative sliding of its faces. The tension cracks grow at sharp angles 

relative to the orientation of the pre-existing crack and curve toward a 

direction parallel to the axial compression. This has been illustrated in 

plates of photo-elastic materials and glass containing pre-existing cracks, 

by Brace and Bombolakis(1963), Hoek and 3ieniawski(1965)» and Nemat-Nasser 

and Horii(1982). Typical examples are shown in Figs.l and 2. 

A remarkable result obtained analytically by Nemat-Nasser and 

Horii(1982)t and illustrated experimentally in Figs.l and 2. is that the 

presence of slight far-field lateral tension renders the out-of-plane 

curved crack growth unstable, in the sense that* after a suitable critical 

length is attained, the crack grows spontaneously and without an increase 

in axial compression, leading to the splitting of the specimen. On the 

other hand* if far-field lateral compression is present, then no such 

unstable growth is observed. Indeed, calculation shows and experiment ver¬ 

ifies that, if the far-field lateral compression is a small percentage of 

the far-field axial compression, then the out-of-plane curved (tension) 

crack attains a finite length, and does not grow any further. 

Figure 1 shows crack growth under axial compression of a barrel-shaped 

specimen. In this case, a slight lateral tension exists, because of the 

geometry of the specimen, and thus, out-of-plane crack extension is 

unstable. Figure 2 shows a dogbone-shaped specimen, where lateral compres¬ 

sion accompanies the axial one. In this case, the crack growth is stable. 
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A complete analytic (two-dimensional) solution for the out-of-plane 

curved crack growth of the kind illustrated in Figs.l and 2> is presented 

in Appendix A. This solution improves on and corrects our previous approx¬ 

imate estimates, Nemat-Nasser and Horii(1982). Consequently, the calcu¬ 

lated crack profiles compare much better with the experimentally observed 

ones. Figure 3 illustrates this. 

The most significant result that emerged from the analytical calcula¬ 

tions is the relation between the axial compression and the length of the 

extended curved crack. This is affected by lateral tension and compres¬ 

sion. Figure 4 defines the notation used, and Figs.5a.b show typical axial 

load versus extended crack length relations, for indicated lateral tensions 

in Fig.5a. and lateral compressions in Fig.3b. As is seen, the presence of 

lateral tension leads to instability after a peak axial stress is attained, 

whereas lateral compression arrests crack growth. 

Since the ordinate in Fig.5a is l<r^I/jtc7Kc, where is the axial 

compression* c is half the length of the pre-existing crack, and K is the 
c 

critical value of the Mode I stress intensity factor, it is seen that, for 

a given curved extension length, ¿/c. the corresponding axial compression. 

1/2 
is inversely proportional to e . Therefore, in a specimen which 

includes isolated pre-existing cracks, the larger cracks are activated 

first. Indeed, if some lateral tension exists or is produced as a conse¬ 

quence of sample geometry (Fig.l) or the presence of other inhomogeneities, 

or. in fact, as a consequence of the crack growth itself, then the large 

isolated cracks would extend in an unstable manner, joining each other and 

leading to axial splitting. Figure 6 is an illustration of such a split- 
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ting process. However, the most dramatic example is given in Fig.7. Here, 

the specimen contains (Fig.7a) a number of large cracks and a row of suit¬ 

ably arranged smaller cracks. Upon axial compression, the larger cracks 

are activated and begin to grow (Figs.7b,c), and finally lead to axial 

splitting (Fig.7c) and actual shattering of the specimen (Fig.7d), while 

the majority of the small cracks are not activated at all. 

The significance of this result may be better appreciated if we com¬ 

pare Fig.7 with Fig.8 which shows the growth regime of the cracks in a sam¬ 

ple with essentially the same pre-existing cracks, but with some lateral 

compression (produced by the Poisson effect in the presence of flexible 

lateral confinement) acting on the specimen. Here again, first large 

cracks are activated (Fig.8b). However, these are soon arrested and, at a 

certain stage, some of the smaller cracks (Fig.8c) are suddenly activated. 

Immediately after this, and without an increase in the load, the entire row 

of smaller cracks is suddenly and spontaneously activated (Fig.8d), leading 

to "macroscopic" shear failure upon further loading (Fig.Se). 

The calculation for the optimal orientation and other aspects of this 

latter failure process is discussed in the following section, where the 

results of additional model experiments are also given. 

Às is pointed out in Appendix A, 2q.(8) of Nemat-Nasser and 

Horii(1982) involves an algebraic error which, although it does not affect 

the qualitative results discussed by the authors, does change the numerical 

results to a certain extent for large value of ¿/c. Figure 5b, for exam¬ 

ple, is the corrected version of Fig.5 of Nemat-Nasser and Horii(1982). 

Since these authors use the numerical results of their Fig.5 to explain 
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aadal failure observed by Peng and Johnson(1972) for samples of Chelmsford 

granite with different inserts, it is appropriate to make some comments 

here. 

Peng and Johnson report the following data for Chelmsford granite: The 

average initial crack length 2c - 0.025 in, the fracture toughness K = 
c 

1/2 
500 psi in , tensile strength T = 1,200 psi, and compressive strength C = 

24,000 psi for steel disk insert, 18,500 psi for teflon insert, and 15,000 

psi for neoprene insert. 

From the relation = T/ïïc, the effective crack length for tensile 

fracture is 2c = 0.11 in. Using this value, Nemat-Nasser and Horii(1982) 

report the normalized compressive strength C/ñc/K , to be 20 for the steel c 

disk insert, 15.4 for the teflon insert, and 12.5 for the neoprene insert. 

They plot these values in their Fig.5. 

On the other hand, if we recognize that the fracture occurs under 

overall compressive force and* therefore, is different from that under ten¬ 

sile forces, and therefore use the reported observed initial crack length 

2c s 0.025 in, the normalized compressive strength, CJlc/K^, becomes 9.5 

for the steel insert, 7.3 for the teflon insert, and 5.9 for the neoprene 

insert. These values seem to agree well with the corrected numerical 

results of the present Fig.5b. Indeed, ?eng(1971) reports radial tensile 

stress of 6-8Z of applied compression for neoprene insert, and 4-6* for the 

teflon insert. 

Nemat-Nasser and 3orii(1982) also use the numerical results of their 

Fig.5 to estimate the order of magnitude of tectonic stresses required to 
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cause exfoliation. The corrected results of the present Fig.5b do not, 

however, affect such order-of-magnitude estimates, although they tend to 

suggest smaller necessary tectonic forces. 
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3. SHEAR FAILURE 

Based on the observations by Rallbauer at a±. (1973) and our own model 

studies» it appears that shear failure may be modeled to be the result of 

unstable growth of suitably oriented sets of small closely-spaced interact¬ 

ing pre-existing cracks« Indeed» Hallbauer aX. report a nearly uniform 

distribution of crack density in rock specimens, compressed axially under 

confining pressure» up to axial loads very close to their maximum values. 

These authors observe that» for axial compressions very close to the ulti¬ 

mate strength» a region of high crack density begins to emerge rapidly. 

Moreover» in this high-density crack zone the orientation of cracks is 

almost parallel to the axial compression» implying that these are tension 

cracks. The high-density crack zone eventually produces the macroscopic 

shear failure plane. 

It therefore appears that one essential feature of shear failure is 

the interaction of smaller cracks which leads to their unstable growth. To 

capture this feature» we first consider a row of equally spaced cracks of 

equal initial size and of common orientation» and calculate for a given 

confining pressure the optimal common orientation in such a manner as to 

minimize the critical value of the axial compression (the ultimate 

strength) required to initiate their out-of-plane unstable growth. This 

calculation- also yields a range for possible values of the overall orienta¬ 

tion of the failure plane. Then by assuming a reasonable and simple rela¬ 

tion between the spacing and the size of such optimally oriented cracks» we 

estimate the ultimate strength and a range of possible values of the 

overall fault plane orientation as functions of the confining pressure. 
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This leads to results which are in good qualitative and quantitative agree- 

ment with experimental data. 

Figure 9 shows a typical array of cracks of the common initial length 

2c and of overall orientation 0 relative to the maximum axial compression. 

The cracks are spaced along the 0-orientation at the common distance 

d. The (common) orientation of each crack relative to the o^-axis is 

denoted by y. The pre-existing cracks are assumed to be closed, undergoing 

frictional sliding, with the coefficient of friction taken to be 0.4. 

We fix the confining stress 

orientation y, and calculate^ the 

function of the axial compression 0^ 

tation 0. Typical results are shown 

the crack spacing d/c, and the crack 

out-of-plane extension length f/c as a 

for different values of overall orien- 

in Fig.10. 

In general, for a suitably large value of the overall orientation 

angle 0, the axial compression is a monotonieally increasing function of 

i/c. For the example shown in Fig.10, where d/c = 4, lo,I/ñc/X =0.1, and 
z c 

y = 0*24n, this happens when 0 exceeds 0.2x. However, for smaller values 

of 0, the axial compression first increases with increasing f/c, attains a 

peak value, drops monotonieally to a minimum value, and then begins to rise 

again. This suggests that, at a critical value of the axial stress, a set 

of optimally oriented cracks of this kind can suddenly become unstable, and 

the cracks grow out of their planes. 

^The method of solution and analytical details are given in Appendix 3. 
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To calculate the optimal value for the orientation angle y, we fix 

d/c, and plot the peak values of cr^ for each and each r» as functions of 

0> Tbis is illustrated in Fig.11. We then choose that value of y which 

leads to the smallest axial compression for a suitable overall orientation 

0. This smallest axial compression is defined to be the ultimate strength. 

In the example of Fig.11, y s 0.24« is the optimal crack orientation. 

Figure 12 shows the axial stress versus crack extension length curves 

at indicated constant values of the overall orientation 0. Several 

features of these curves require further consideration. First, the peak 

values of the axial stress for the value of 0 from 0.16« to 0.2« fall in a 

very narrow range, i.e. lAojl/ïïc/K^ "* 0.3. This suggests that the presence 

of inhomogeneities and other imperfections invariably should introduce some 

uncertainty into the actual orientation of the final fracture plane. 

Indeed, the orientation of fracture planes observed in experiments has a 

wide variation even for similar samples. À second interesting feature of 

the curves in Fig.12 is that the difference between the peak values of the 

curves increases as the overall orientation angle 0 decreases. This sug- 

gests that, for a given confining pressure, the range of the overall frac¬ 

ture angle is, in fact, limited. For example, for the data in Fig.12 it 

would be difficult to argue that secondary effects due to imperfections and 

;< “homogeneities could be such that the "stress barrier" corresponding to 0 

< 0.16« could be overcome. Therefore, for the data of this figure, the 

fiuel fracture orientation may be judged to fall somewhere between 0.16« 

and 0.195«, which relate to a maximum "stress barrier" of lAo-!/«c/X = 
2 c 

0.3} see Fig.11, À final noteworthy feature of the curves in Fig.12 is the 

emergence of second local minima for curves associated with smaller overall 
UK*«## _ 
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orientations ¢. As 0 decreases, the out-of-plane extended portions of 

adjacent pre-existing cracks are more closely spaced and therefore, have 

stronger interaction. The first minimum is essentially due to the interac¬ 

tion between the extended parts of the adjacent cracks, and the second one 

is due to the interaction between the extended parts and the adjacent pre¬ 

existing cracks. This is illustrated in Fig.13, where, for three values of 

0, the out-of-plane extension parts are given for three different indicated 

values of 4/c. 

So far, we have shown how to obtain the ultimafe strength and a range 

for the possible values of the overall failure orientation for fixed values 

of d/c and ^ Nov we examine the influence of the confining pressure on 

the ultimate strength and the overall failure orientation, for constant d/c 

~ 4. Figure 14a shows the ultimate strength as a function of the confining 

pressure, and Fig.14b gives the variation of the overall failure angle 0 

with the confining pressure, for indicated values of the "stress barrier" 

which must be overcome. It is interesting to note that for zero stress 

barrier, the orientation of the failure plane actually decreases with 

increasing confining pressure, although the introduction of a small stress 

barrier diminishes this decrease. This is quite an important fact which, 

when superficially viewed, may suggest a trend opposite to experimental 

observation. However, we have to note that in an actual specimen which 

contains many cracks of different sizes with different spacings, the 

optimal value of d/c may not remain constant as the confining pressure 

increases, and that the overall fault angle observed in experiments is not 

necessarily a smooth monotonically increasing function of the confining 

pressure. Hence a careful examination of the influence of d/c seems to be 
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in order. 

Figures 15 and 16 represent results similar to those of Fig.14, but 

for different crack spacings, i.e. d/c = 6 for Fig.15, and d/c = 8 for 

Fig.16. It is seen that an increasing d/c increases the magnitude of the 

ultimate strength, as well as its rate of change with lateral compression, 

but it decreases the optimal overall fault orientation. This is further 

illustrated in Fig.17 which gives the variations of the ultimate strength, 

its rate of change with respect to the confining pressure, and the overall 

failure angle as functions of d/c, for zero confining pressure. Note that, 

in all these results the stresses are normalized, using the crack size c. 

Therefore, the influence of the crack size c, and the crack spacing d, may 

not be transparent. 

Ve now consider a reasonable relation between the crack size and its 

spacing, and seek to determine the optimal crack spacing d/c as a function 

of confining pressure. For an actual sample, we assume that there are many 

optimally oriented sets of cracks with various d/c, each being ,,optimal,, 

for a certain confining pressure. 

The distribution of d/e depends on the crack size. Let the minimum 

crack size be denoted by cn» and the corresponding crack spa. ing by dffl. 

Since smaller cracks are greater in number and closer in spacing, it is 

reasonable to expect that d/c is a aonotonieally increasing function of 
m 

c/c . The simplest relation of this kind is in 

d / c \l+a d 

T *Ht) • »‘T- *>0- m ' m 
(1) 
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or equivalently. 

c \a 
(2) 

In addition we introduce the largest crack size c^ since the size of cracks 

found in an actual sample is bounded. With this or a similar relation, we 

calculate the ultimate strength, 1er, Une /K , now normalized using c • as a i me m 

function of d/c or c/c for each confining pressure. Typical results are 

shown in Fig.18 for b = d/c = 3.5, a = 0.25 and eje = 20. Hence, for om am 

each confining pressure, we can identify the crack spacing and crack size 

which yield the smallest axial stress; this then is the ultimate strength 

for the considered confining pressure. In this manner, we obtain the ulti¬ 

mate strength, the range for the possible values of the fault orientation, 

and the optimal value of d/c or c/c^ as functions of the confining pres¬ 

sure. Typical results corresponding to Fig.18, are shown in Figs.19a,b, 

and c. 

The strength, pressure-curve is separated into an initial nonlinear 

part and a relatively linear part. Comparing Figs.19a and c, it is seen 

that in the initial nonlinear part the size of active cracks decreases from 

the maximum c^, to the minimum c^, and in the linear part cracks of minimum 

size are active. As is seen in Fig.19b* the expected fault plane angle, 0, 

is rather small for small confining pressures, but increases sharply and 

stays around 30* at high pressures. In the first part, cracks of maximum 

size are active. In the second (transition) part, the size of active 

cracks decreases with increasing lateral pressure. And for the last part 

which corresponds to the linear segment of the strength, pressure-curve, 

cracks of minimum size are active. These qualitative results of our 
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"model" agree well with experimental observations; Griggs and Handin(1960), 

and Mogi(1966). 

As shown above, once parameters which characterize crack distribution 

are given, one can estimate the ultimate strength and the range for the 

possible values of the fault orientation, as functions of the confining 

pressure. These parameters may be obtained from the strength,pressure- 

curve observed in experiments, as follows. 

Since the linear part of the strength,pressure-curve corresponds to 

the minimum crack size, the spacing d /c may be specified from the slope SI TQ * 

of this linear part of the strength,pressure-curve. Figure 20a shows typi¬ 

cal slopes of the strength curve, So^/a^» as functions of d/c, for indi¬ 

cated • Next we determine the parameter a, from the coordinates of 

the point which separates the initial nonlinear and linear parts of the 

observed strength,pressure-curve. Figure 20b shows the stress ratio 

at the separation point, as a function of the parameter a, for indicated 

values of dn/ca* Once d^/c^ is established, the parameter a can be read 

off Fig.20b for a given stress ratio, oj/oj. Note that a suitable value 

^or CB ™»t also be chosen, but the final results are not sensitive to 

this parameter. 

Since the stress ratio, is independent of the normalization 

factor Kc//nc^, this factor is not needed in the above procedure. Its 

value may, however, be fixed in such a manner as to fit the observed data. 

The parameters used to obtain Figs.18 and 19 have been chosen from data on 

Westerly granite reported by Wawersik and 3race(1971). These data are 

plotted in Fig.19a, using the normalization factor K //¡tc = 27*10 psi. c 1 m 
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The calculated strength,pressure-curve is in good agreement with the exper¬ 

imental data. This, of course, is expected, since the free parameters have 

been chosen in order to'fit the experimental points. The orientation of 

the overall failure, however, seems to have the right trend, although the 

experimental data points are scattered over a wide range. 

Figures 21a,b show a comparison with experimental data on Darley Dale 

sandstone reported by Murrell(1965). In this case, we have set d /c = 
m m 

3.0. . . 0.18. VcB = 10, and Kc//jtc^ s 8x10 psi. Both the calculated 

strength,pressure-curve and the orientation of the overall fault plane are 

in good accord with the observed data. 

An interesting feature of our theory of shear failure is that the 

orientation of the final failure plane is, in general, different from the 

orientation of the individual cracks which participate in producing the 

failure plané. To test this and to further accentuate the fundamentally 

different mechanisms which may be involved in failure by axial splitting 

and shear failure, we have performed model experiments on two specimens 

with essentially identical pre-existing crack patterns, one with, and the 

other without confinement. These are shown in Figs.22 and 23. 

▲s is seen from Figs.22a and 23a, both specimens contain a number of 

very small equal-sized cracks, each oriented at 43* relative to the axial 

compression. The test associated with Fig.22 is done under lateral 

compression, produced-by the Poisson effect because of partial lateral con¬ 

straint. As discussed in Section 2, the larger cracks are activated first. 

Figs.22b and 23b. These are soon arrested for the specimen with confine¬ 

ment (Fig.22c), whereas without confinement they continue to grow 



(Fig.23c). Indeed, in the latter case, these cracks extend and join each 

other, leading to axial splitting (Fig.23d), while many of the smaller 

cracks remain inactive. The specimen eventually shatters, as shown in 

Fig.23e. On the other hand, in the presence of confinement, smaller cracks 

soon become activated (Fig.22d), as larger cracks are arrested. Then, a 

suitably oriented set of smaller cracks grows in an unstable manner, lead¬ 

ing to a final fracture plane (Fig.22e) which is clearly distinct from the 

orientation of the participating individual cracks. 
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APPENDIX A 

Consider a two-dimensional (plane strain or plane stress' problem of 

out-of-plane crack extension under compression, as shown in Fig. 4. The 

pre-existing crack PP' of length 2c has undergone frictional sliding under 

far-fieId compression, which has resulted in the formation of centrally 

symmetric tension crack extensions PQ and P'Q* of equal length l . With 

respect to the Oxy-coordinate system, let the crack extension profile be 

defined by x = c+g(r) and y - f(r) where r measures length along the curved 

crack. Here and are t^ie principal stresses at infinity and y is the 

angle between a principal direction and the x-axis. Let e" • <j* and r" 
X y xy 

denote the components of stresses at infinity in the Oxy-coordinate system. 

We consider the case where ^ < 0, lo^ > Icjl and 0 < y < jt/2. Then 

is always negative. 

It is assumed that the pre-existing crack PP' is closed and transmits 

frictional shear tractions. Hence the boundary conditions on PP* are 

+ 
« = u » 
7 7 

+ _ - 

TX7 ' Txy + “V 
(Al) 

where superscripts and denote the values of the indicated quantity 

on the upper and lower faces of the pre-existing crack, respectively; tc 

and |i are the cohesive force and the coefficient of friction (both posi¬ 

tive). Since PQ and P'Q' are tensile crack extensions, we assume stress 

free conditions along PQ and P'Q'; 

*8 * Tr0 5 °- 
(A2) 
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Following Nemat-Nasser and HoriK 1982) » we consider 

a’í* 
^'Y 

ii 
K' M . 
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1 

Muskhelishvili’sdgSS) stress functions = * + <&„ and = f + for a 
D o R D o R 

pair of antisymmetric dislocations at zq and -z in the complex z-plane» 

which satisfy the following conditions along ??’: 

To + TR = ^o* <ra = 0. (A3) 

and stress functions « = # + # _ and ? = ? + ♦ _ for the external 
at oto a>K at aaQ aa& 

forces at infinity, which satisfy the following conditions along PP1: 

X + r - s “T + uo t xy «R c H y ".i = »• (A4) 

where oq and xQ* oa and cr^ and and o-a and T-a are the normal and 

shear stresses due to * and f , ¢. and ?_, # and f , and # n and ? 
O OS S ato ato «R atR 

respectively, and 

*-x 

*o * alvr- ’o = ílaíír - «»-TT 
o o z -z 

s (öf-aß)CF(z,zo)+F(z,zo)]+(zo-zo)CaßG(z,zo)+cßG(z,zo)], 

. i 

** **,*•♦*• •♦r (A5) 

* = (a* + a")/4, ? * (o"-o")/2+ít" , •o y X «o y X xy 

= l^’y-^c)1^1 - x/(z2-c2)1/2]. 

f.R = j(T*y-poVc)iC-zc2/(z2-c2)3/2+2z/(z2- 2-c2)1/2-2], 

with 

z (z2-c2)1/2 Z 
F(z,zo)=Cl - - / 2 2,1/23 2 °2 * 

z (z -c ) Z -z o o 
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where 

M^r.s) = l/h-e2l9h7h2. H2(r.s) = l/h+e2l9/h; 

h(r,s) * Cg(s)-g(r)+i(f(s)-f(r))]/(s-r), (A12) 

1 2iA Z+Zo 
L« (r>z*8)aßUÍF(z»z )+F(ztZ ) }+ßD{(z -z )G(z,z +e 9--, I ooooo z+zo (2,2 ,2 

0 

L,(r,z,0)=-ßOiF(z,z )+F(z.z ) }-ßO{(z -z )G(z,z ) }-=^= +e2i,9-7r » 
Z 0 0 00 0 z+z z+z 

0 0 

0{F(z.z )}=ÜÍ0;F(z,z )}=-F(z»z )+F(z,z )+e2^9[2F(z,z )+(z-z)F' 
0 0 0 0 0 

(z.z i], 0 
2 

et .N-l.f 2 Z 2i0r (z-z)c . 2z 
S(z»0)-ji{ « 2,1/2", 2 2,1/2 * 2 2,3/2 J 2 2,l/2"23}’ 

(z -c ) (z -c ) (a -z ) (z -c ) 
0 

with z = z(s). z a 2 (r) and 0 = 0(s) given by (A9). Equations (All) with 
0 0 

(A10) fora a singular integral equation for dislocation density a. Solving 

this integral equation» we obtain the stress intensity factors at the tips 

of the out-of-plane extensions,i.e. at points Q and Q1» from 

Kl+iKu a lim i(2n)3/2U-r)1/2Co(r)M1(¿,«)+o(r)M2(¿ .-¾ )]. (A13) 
ni 

For straight crack extensions we have 

2ÍA ¿0 jfl 
«1=0» H2a2e . 0(s)a0=const.» z=c+se »and zo=c+re . (AH) 

For the straight crack extension» the above formulation becomes ident¬ 

ical with that of Neaat-Nasser and Horii(1982)* except for F(z.z ) and 

G(z»z ) which are corrected according to (A6). This correction alters the 
0 

numerical results of Nemat-Nasser and Horii(1982) somewhat for large values 

of f/c. and the new results are given in Figs. 3 and Al-5. 
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For curved crack extensions, with given crack profile, f(r) and g(r), 

the singular integral equation (All) with (A10) is solved numerically using 

a method suggested by Gerasoulis(1982), and the stress intensity factors 

are obtained through (A16). The crack profile, defined by f(r) and g(r), 

is obtained by an incremental procedure where we consider a sequence of 

incremental straight extensions, each with an orientation which maximizes 

the opening mode stress intensity factor, Kj. at the extended crack tip. 

Typical results of curved extension are shown in Figs. 3 and 5 and are dis¬ 

cussed in Section 2. 

Nemat-¡lasser and Horii(1982) suggest an approximate scheme for calcu¬ 

lating the crack extension profile, on the basis of the results of atraiyhr 

cr*c^ extension calculations; see their Eqs.(21) and the corresponding dis¬ 

cussion. Figure 3 compares the calculated crack extension profile for the 

approximate solution and the complete curved crack extension solution; for 

additional comparative results, see Horii and Nemat-Nasser(1983). It is 

8®*n that the straight crack extension model is in good qualitative accord 

with the more complete curved crack extension solution. Therefore, for the 

sake of simplicity in calculation, the straight crack extension model will 

he used in the sequel and in Appendix B. 

vill be seen in Appendix B, the method of pseudo-tractions requires 

an explicit solution of the singular integral equation (A8). This integral 

equation can, of course, be solved as accurately as desired,in the manner 

discussed by Nemat-Nasser and Horii(1982). However, for application to the 

unstable growth of a row of pre-existing cracks, the stress intensity fac¬ 

tors and other parameters must be calculated repeatedly for a range of 



values of confining pressure, individual crack orientaion, and other 

relevant parameters. To simplify this procedure, we introduce an approxi¬ 

mate method for the solution of the singular integral equation (A8), which 

seens to yield results adequately accurate for our numerical estimates. 

To this end we assume the following form for the distribution of 

dislocation density: 

a(r} = ---T75CnR(2r/i-l) + iqIr/1 ] 
CrU-r)]1/2 

(A15) 

R X 
which satisfies (A10), where q and q are two real unknown parameters to 

be determined. Furthermore, we approximate the integrand of the second 

term in (All) as 

aCrjL.Cr.a.eJ+^rjL^r.z.Q) =---^{[(q^+iq1)!. (2 ,z,0) 

1 2 Cr(i-r)j /2 1 

+(qR-iqI)L2(2,z,0)]r/2-qICL1(O,z,0)+L2(O,z,0)](l-r/2)}. (A16) 

Making use of (A15) and (A16), (All) becomes 

(A17) 

where 

(A18) 

Since s may be suitably chosen, we consider, for convenience, the following 

expressions : 



P»y* wy ir/^v« 
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/-0.075(i/c)+0.475, for X/c<l 

0.0074a/c)3+0.0156W/c)2-0.104(i/c)+0.489, for l<l/c<A. (A19) 

(*V ^0,015(^/0)+0.335, for 4< Vc 

From (A13), (A17) and (A18), we have 

Zz + iKjj = (2,T)3/2ei9(nR - in1)/ 1/2. (A20) 

Equations (A19) can be solved easily for q and q and the stress 

intensity factors at the tips of straight crack extensions are obtained 

from (A20). Adopting the fracture criterion that the most favorable orien¬ 

tation of the crack extension results in the maximum value of we can 

specify the kink angle, 6. 

The results of the approximate solution are compared vitft the numeri¬ 

cal solutions in Fig. A5. It is seen that the drastic approximation shown 

above provides a relatively good accuracy. 
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APPENDIX B 
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Consider an unbounded solid with a row of periodically extended pre¬ 

existing cracks which have grown out of their own planes, as a result of 

suitably applied far-field compressive forces. The pre-existing cracks are 

of equal size, 2c, are equally spaced along the 0-orientation at a distance 

d, and have a common orientation, y, with respect to the s^-direction. The 

out-of-plane extensions are assumed to be straight with equal length,'2, 

and equal "kink" angle, 9, measured with respect to the common orientation 

of the pre-existing cracks. 

The boundary cond'tions (Al), with x s 0, are assumed to hold on all c 

pre-existing cracks, and along their extensions the stress-free condition 

(A2) is applied. 

The problem is solved by making use of the method of pseudo-tractions, 

Horii and Nemat-Nasser(1983) » which is the method for the problem of an 

infinite solid containing micro-inhomogeneities such as cracks or holes. 

The solution to the original problem is obtained by the superposition of 

the solutions of a number of sub-problems, and of the solution of the prob¬ 

lem of an infinitely extended homogeneous solid under applied far-field 

stresses; Fig. Bl. Each sub-problem involves an infinite homogeneous solid 

containing only one of the cracks of the original solid. For each sub¬ 

problem, the boundary conditions along pre-existing crack ??' are 

u s u„* f + r + X - ji(e + <j + « )• 
7 7 *7 *7 x7 7 7 7 

and along its extensions ?Q and F'Q', 

(Bl) 

r.V, 
rJV V.v 
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The quantities or^, <rQ, and trQ will be called the "pseudo-tractions". 

They are the unknown functions which oust be determined in such a manner as 

to satisfy all boundary conditions of the original problem. The require¬ 

ment that the sum of the sub-problems must be equivalent to the original 

problem leads to a system of integral equations for these pseudo-tractions. 

These are the "consistency conditions". By discretizing the unknown 

pseudo-tractions y the system of integral equations is reduced to a system 

of algebraic equations. Because of symmetry, the pseudo-tractions are the 

same for all cracks. For simplicity, we approximate the pseudo-tractions 

by piece-vise constant functions, i.e«« we assume that or^ and are con- 
y xy 

P P stants along PP’» and and are constants along PQ and PfQ* 

Following the approximate method proposed in Appendix A. the solution 

of a typical sub-problem is given by 

A1 A2 

A3 A4 

r a 
It + t^ - |i(o"+ o^)]ReCS] + + xy xy e 0 
Ct" + *L- |i(o"+ <TP)]ImCs] + t\+ tp. xy xy 1 y ’y r0 r0 

vbere S is given in (A12), and A's are given in (A18). 

(B3) 

The normal and shear tractions, and r^» acting at a point z on a 

plane inclined from the x-direction by the angle y. are given by 

o+ir ^ 
F Pt a BjCz.ifJq1* BjCz.yîq1* CT^+r^y-jiíOy+OyJlSCz.y), (B4) 

vhere 

Bjíz.y) s 2ReC2I1-I2]+e2l*(2I1-I2+2II1-II2) 
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B2(z,ÿ) = -ZIoCl^+ie^^C-^+II^+ilCL^ .zfy)-L2(¿ ,z.ÿ)]. 

wich 

= ^/- 
rdr -19 

~nr =r n{- 
z - c 

* ^ oCr(¿-r)]^2(z-c-re^0) ^ [(z-c)(z-zt)]^2 
- 1}. 

2 
I- * /■ dr 

oCr(2 -r) ]^2z-c-re^9 C( z-c) (z-zt) ] 
1/2* 

II 
i=T/ 

^ r(z-c-re^9)dr 

1 oCrU-r)]1/2(z-c-rei0)2, 

-3i9 (z-c)C(z-c)(3z-3z..-z+c)+(z-c) (z..-c)e 219 

f ^ 2[(z-c)(z-zt)] 
ITT -1}. 
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Thee Che "consisCency conditions" lead to 

P . P -c -c I. r • R / Pm-,c 
V"*7 Cln 1' C'x7 '*y' “'V V3 ’ 

P • P —6 R I ? m * ^ i ®, P\t —6 
VlTr9 Cl1' C21' + Ctzy+ Txy‘ Jl(V * 

where 

+ 2 2 B4Íz**0)» 
J »-=1 J ln gis2 J ® n=l 

N 
c! s 4 I CB.(z' ,9)+B.(z^,9)] + 2 I B.(z .0) » 
J Vl J ln J ln ns2 J ® 

FC * 4 I S(z? »0)+2 2 S(z .0), ci ¿n _« m n=l m=2 
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In Eqa.(B.), the first term in the right-hand side of each equation 

corresponds to the tractions on one particular crack, produced because of 

the presence of the adjacent cracks, and the second term corresponds to 

those produced by all other cracks. The second term in (B7) can be 

expanded in even powers of c/md and, in this manner, each series can be 

summed, neglecting high order terms. In the calculations, N is taken to be 

10 10, and terms of order higher than (c/d) are neglected. 

For given values of d/c, y, 0, f/c, and 0, the system of alge- 
n r p p p p 

braie equations (B2) and (B6) is solved for n . n , o , t . o«» and x\> y xy 0 r0 

Then the stress intensity factors at the tips of the extended cracks are 

obtained from (A20). The "kink" angle 0 is determined such that the open¬ 

ing mode stress intensity factor, K^, is maximized, i.e. from (A21). Set¬ 

ting the value of K. equal to the fracture toughness, K , ve obtain the 

required axial compression, o^, for a given crack extension length 2/c. 

For fixed values of d/c, y, and 0, ve calculate the axial compression 

Oj for each crack extension length 2/c, and for different values of 

It turns out that the plot of o^ as a function of *or each 2/c, is a 

straight line. Typical results are shown in Fig. 32 for d/c = 4, y = 
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FINITE STRAIN ROCK PIASTICITY; STRESS TRIAXIALITY, PRESSURE, AND 
TEMPERATURE EFFECTS 

B. Rowshandel and S. Nemat-Nasser 

Department of Civil Engineering 
Northwestern University 

Evanston, IL 60201 

ABSTRACT 

A rate-independent elasto-plasticity theory is used to model the 

deformation of geological materials at shallow crustal depths, where 

rate effects may be regarded as secondary. The effects of confining 

pressure, material strain hardening (or softening due to volumetric 

strains), and temperature are included. The corresponding elasto- 

plastic rate constitutive relations are developed. To study the 

effects of pressure and temperature on the constitutive parameters, 

we use some published data of laboratory experiments on certain 

rocks. It is shown that the model gives a reasonable (at least qual¬ 

itatively) description of the behavior of a wide variety of geologi¬ 

cal materials over a relatively wide range of pressures and moderate 

temperatures. Based on this theory, dilatancy (inelastic volumetric 

expansion) of a granite is studied, and it is found that for conven¬ 

tional triaxial stress states, dilatancy sets in once the deviatoric 

stress reaches the kinetic shear resistance of the rock. As an 

illustration, stress-strain curves for granite are then predicted at 

various depths, for possible application to the study of crustal 

deformation and to the prediction of fault behavior. 
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1. INTRODUCTION 

Over the past two decades there has been growing interest in 

experimental rock mechanics, aimed at a better understanding of cru¬ 

stal deformation and concomitant earthquake mechanisms. A review of 

some work on the shear strength of rocks is given by Barton (1976), 

and recent advances in the rheology of the lithosphere are examined 

by Kirby ( 1983). 

For earthquake prediction, the description of the thermomechani¬ 

cal properties of fault materials, the process of fault deformation, 

and the associated .fault instability are of major concern. For the 

actual calculation of fault deformation, many authors have assumed 

simple behavior for the fault; see, for example, Stuart (1979) and 

the more recent review on the models of crustal deformation by Rundle 

(1983). The concept of a diffusionless dilatancy model for earth¬ 

quake precursors is discussed by Stuart (1974). In this model, the 

nonlinear weakening of the fault zone (embedded in an elastic contin¬ 

uum) is viewed as the cause of instability. As pointed out by Stuart 

(1974), in this and related earthquake models, the assessment of ins¬ 

tability critically depends on the type of constitutive relations 

employed for the fault zone, as well as for the intact elastic earth. 

Therefore, a systematic development of realistic constitutive rela¬ 

tions for fault materials, and crustal rocks, is central to any type 

of quantitative estimate of fault instability. 
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The process of flow and fracture of crustal rocks, especially at 

great depths, is very complex due to the simultaneous presence of 

many factors. Pressure, temperature, and strain rate are the most 

influential factors. 

The development of accurate constitutive equations for the fault 

zone requires results of laboratory tests on rocks, particularly for 

the post-failure phase of deformation and under conditions similar to 

those of the fault itself. However, not enough experimental data 

exist. Particularly due to the high compliance of conventional test¬ 

ing machines, little is known about the post-peak behavior of rocks 

under general loading conditions. The results of a few controlled 

laboratory tests on intact rock samples (e.g., Wawersik and 

Fairhurst, 1970, Wawersik and Brace, 1971, Rummel, Alheid, and Frohn, 

1978, and Wong, 1982) suggest an initial elastic behavior followed by 

pre-peak dilation which is an indication of microcrack formation, 

post-peak dilation, and a phase of deformation at nearly constant 

sliding stress. 

The dominant small-scale mechanisms of deformation in rocks in 

both laboratory and crustal conditions corresponding to shallow 

earthquakes, appear to be cataclastic microcracking and plastic flow. 

Cataclastic behavior is due to microcracking and the relative move¬ 

ment of microcrack surfaces. This mechanism of deformation basically 

involves the nucléation of microcracks and thir frictional sliding. 

Consequently, it is expected to be strongly pressure-dependent. The 

mechanism of both shearing and dilatant behavior in this phase of 



deformation is similar to that which occurs in soils and other granu¬ 

lar materials. 

Constitutive equations representing the nonlinear behavior of 

fault materials, must include the effects of the complete state of 

stress (that is, the confining pressure, differential stress, and 

stress triaxiality), temperature, dilatancy, pore pressure, strain- 

rate, and strain hardening. Constitutive equations which include all 

these factors are not available. Also, it will be quite some time 

before enough quantitative information on the deformation of rocks 

and minerals is obtained to develop comperhensive relations. 

Common failure criteria such as those of Navier-Coulomb and 

Mohr, for example, involve only the major and minor principal 

stresses. The intermediate principal stress, however, has an appre¬ 

ciable effect on both the yield stress and the fracture stress. This 

has been demonstrated by Mogi (1971,1972) through a series of tests. 

The state of stress in the fault region is in fact triaxial, and dif¬ 

ferent types of faulting (i.e. strike-slip, thrust, and normal) are 

associated with different orientations of the three principal stress 

components within the crust, relative to the ground surface; Price 

(1966). 

Various theories have been developed in order to model the 

behavior of geomaterials under stress. For example, Rudnicki and 

Rice (1975), considering pressure and dilatancy, have suggested a 

vertex theory for the behavior of brittle rocks under compressive 



stresses. Nemat-Nasser and Shokooh (1980) established a theory for 

the flow of compressible materials by modifying the classical 

theory of plasticity. Their theory accounts for plastic dilatancy, 

pressure, and frictional effects. This theory was further general¬ 

ized by Dorris and Nemat-Nasser (1982) to take into account the 

effect of the intermediate principal stress. Its practical applica¬ 

bility, especially for sand, has been demonstrated by these authors. 

There are several other related studies, and the reader is referred 

to Mroz (1980), Nemat-Nasser and Shokooh (1980), and Dorris and 

Nemat-Nasser (1982), for discussion and additional references. 

Since the behavior of intact rocks after the initiation of 

microcracking is cataclastic, dilatant, pressure sensitive, and 

accompanied by finite deformation, a similar theory could describe 

the deformation of intact rocks after the onset of inelasticity, as 

well as the behavior of fault materials at shallow depths. A quali¬ 

tative study has been done by Nemat-Nasser (1980). In the present 

study, the above theory is used to describe the behavior of intact 

rocks under laboratory conditions, as well as that of shallow crustal 

rocks . 



2. FORMULATION 

The total deformation rate D is regarded to consist of two 

accompanying contributions: an elastic recoverable one, De, and an 

inelastic one, D1, 

D = D6 + D1 (2.1) 

For intact rocks, as well as for particulate frictional materi¬ 

als, the elastic deformation is usually very small, and therefore, 

one may employ Hooke’s law to describe this contribution. 

The inelastic deformation rate D1, in general, consists of a 

rate-independent component Dp and a rate-dependent part Dv, 

(2.2) 

where superscript p corresponds to the slip-induced plastic flow com¬ 

mon in crystalline solids at moderate temperatures, and superscript v 

pertains to linear and nonlinear viscous flow or creep prevalent at 

elevated temperatures. Both mechanisms persist throughout the cru¬ 

stal depth into the lower part of the lithosphere. However, the 

mechanism of rate-independent, slip-induced inelasticity is expected 

to be dominant at shallow depths, whereas nonlinear creep character¬ 

izes inelasticity at greater depths. Based on dislocation models and 

on experiments, the thermally activated creep of crystalline materi¬ 

als at elevated temperatures is often described by the following 

one-dimensional creep law: 



is the activation where y is the strain-rate, t is the stress, Q 

energy, R is the gas constant, T is the absolute temperature, fo is a 

reference stress, and the exponent n varies with the material; see, 

for example. Heard (1963), Carter and Ave'Lallemant (1970), Heard and 

Raleigh (1972), Carter (1976), Heard (1976), Weertman (1978), Tullis 

(1979), Kirby (1980), Carter et al. (1981), Caristan (1982), and 

Kirby (1983). A useful three-dimensional version of this expression 

would be 

Q_ 
RT 

(2.3 )b e 
O O 

where £ is the stress tensor and ^ is representative of the overall 

stress; for example, one may choose 

(2.4) 

where prime denotes the deviatoric part and repeated indices are 

summed. 

The main objective of the current paper is to develop the con¬ 

stitutive relations associated with the slip-induced, highly 

pressure-sensitive part of the deformation rate designated above by 

Dp. As mentioned before, Dp is expected to be the dominant part of 



the inelastic flow at shallow crustal depths. Indeed, for the sake 

of modeling, it may be reasonable to assume that for typical crustal 

temperature gradients down to depths of 10-15 km, the deformation 

rate tensor is given by 

D = De + Dp (2.5) 

and at greater depths it is given by 

D = De + Dv 
<>W «V« (2.6) 

Naturally, this is an arbitrary subdivision, but it is useful for 

constitutive modeling. Of course, in the actual application, all 

three components of the deformation rate may be included. In the 

remaining part of this work, we shall concentrate on developing con¬ 

stitutive relations for the deformation mechanisms associated with 

(2.5). 

It is convenient to consider a fixed rectangular Cartesian coor¬ 

dinate system with coordinate axes x^» i = 1,2,3, to denote the velo¬ 

city field by v^, and to express the components of the deformation 

rate tensor by 

(2.7) 

where comma followed by an index denotes partial differentiation with 

respect to the corresponding coordinate. Similarly, the components of 

the material spin tensor, W, are given by 



m 

•r. *• 
'.i 

y;r 

m 

w. . = 4- (v. . - V. .) 
IJ 2 1,J J,1 (2.8) 

At finite strains and rotations the material rate of stress is not 

objective, since it also includes the rate of change of stress 

observed in the fixed reference coordinates, because of the spin of 

the material element. A commonly used objective stress rate is 

J-J Mik\j - Vu (2.9) 

This is the stress flux measured in the coordinate system which is 

currently spinning with the material. 

Using an isotropic hypoelastic relation, we write for the elas¬ 

tic part of the deformation rate 

0=. = 

* » 
®. . 
JLI 
2|i 

★ 
a 

kk 
kk 

W~ (2.10)a,b 

where H and k are the shear modulus and the bulk modulus, respec¬ 

tively. 

The part D is assumed to be derivable from a plastic potential 

0?. = A ij da 

g 
(2.11) 

. • 
where A is calculated from the consistency condition f =0, which 
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guarantees that the stress state remains on the yield surface f=0 

during the plastic flow. 

The flow potential g and the yield function f are hyper-surfaces 

in the six-dimensional stress space. The yield surface marks the 

boundary of the region in which the material state is elastic and on 

which it is elasto-plastic. Stress states outside of the yield sur¬ 

face are not admissible. When the flow potential coincides with the 

yield surface» we have the so-called associative flow rule. This 

generally applies to pressure-insensitive, plastically incompressible 

metals. Geomaterials, in general, are highly pressure-sensitive and 

plastically compressible (dilatant). It has been shown by Nemat- 

Nasser and Shokooh (1980) that an associative flow rule for materials 

of this kind leads to contradiction, because it then requires that 

the overall friction coefficient which is always positive, equals the 

rate of plastic volumetric strain which may be positive, negative, or 

zero, depending on the deformation state. In the present work, 

therefore, we shall use a nonassociative flow rule. 

Following Dorris and Nemat-Nasser (1982), we consider the fol¬ 

lowing yield function and flow potential, which include the effects of 

pressure, intermediate stress, plastic volumetric strain, and plastic 

distortional strain: 

f = t [l + C(T1)] - F(p,A,y;T) (2.12) 

V V V ' 

/•W-. -■ .•„VA- -f 

• ’V ' V " 
Wr*’ —-I*.'—--* 

*• «* „*• ,* 

*• 

V * 

-* V V J+ m"* 
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g = t Q + + (2.13) 

In these equations, T is the temperature as before, ^ is defined by 

equation (2.4), \ is the total plastic volumetric strain measured 

from a reference state of mass density Po, y is the effective distor- 

tional plastic strain, n represents the effect of the third stress 

invariant, and p is the hydrostatic pressure. These quantities are 

given by 

4 = ^Dkkdf>'' y'-fo <2I>?- J^V. 

,J. ,.1 
n _3* ' 

X 

» i t 

3 - y oijojk°ki (2.14) 

where p is the current mass density, and 9 measures time (a monotone 

load parameter). Note that, when C = 0, the influence of \ and y is 

suppressed and G = -F is assumed, then the classical plasticity 

theory results; lili (1950). 

It is convenient to represent the function C as 

C(u) = ßn (2.15) 

where ß is a scalar function of the stress state. 

The condition f = 0 is used to obtain the scalar multiplier in 

equation (2.11). Differentiating (2.12) with respect to time parame¬ 

ter 0 and using equations (2.11)-(2.15), we have 
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(2.16) 

Here r is defined by 

= \ 1/2 

do* an* ' 
ij ij 

(2.17) 

and hence 

r'Jl Ä- (2.18) 

Differentiating equation (2.13) with respect to an(i substi¬ 

tuting the result into equation (2.11)> we obtain the following 

expression for the plastic part of the deformation rate: 

D?. = X. . 
ij 

i 
<r. . 

2t 
+ ß ( 

« ! 

®ikffkj a!. J, 6. . 
Jdr.3 ) - JL1 (2ß —T5 ^ 3 (2.19) 

The corresponding spherical and deviatoric parts are 

0G 
Dv = X a- 
kk op (2.20) 

d? . = X <; 
ij 

-:.( i- 
2T 

f » 

(2.21) 

respectively. Equation (2.20), combined with (2.18) and (2.14b) 

yields 
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3. TRUE TRIAXIAL TEST 

la this case the three principal stresses, cr^, oand are 

distinct. Let ^ > ^ 03* stress tensor in the principal coor¬ 

dinate system then is 

r ^ 0 o 
0 o2 0 

0 0® 
3 J 

(3.1) 

We define the triaxiality parameter by 

a2 ~ q3 
®1 - ®3 (3.2) 

Using equation (3.2), the maximum shear stress 

t - *! -°3 
(3.3) 

and the pressure’ 

1_2 3 
(3.4) 

we obtain 

We use the term 'pressure' for the spherical part, p, of the 
stress tensor, as stated in equation (3.4), For conventional triaxi¬ 
al tests, ^ ®2 ** °3* term 'confining pressure' usually refers 
to the lateral pressure, ®2 = To avoid confusion, we use the term 
'lateral pressure' for the case of conventional triaxial tests. 



.. * 

If 
* >v 

h«..' 
r,V 

k;.-c 

:(5 

■■;■ 

V 

(2/3M2 - b) 0 0 

0 (2/3)t(-l + 2b) 0 

0 0 -(2/3)t(1 + b) 
(3.5) 

which is the deviatoric part of the stress. Using (3.5) in equation 

(2.14), we obtain the following expressions for the deviatoric stress 

invariants and Xj and for q: 

2_2 T2 = J2 = A*V , j3 = bV , n-i: 
A3 

(3.6) 

where A and B depend on b only, 

A2 - y (b2 - b + 1) , B3 = ¿I (2b3 - 3b2 - 3b + 2) 

The yield function f and the flow potential g (equations (2.12) and 

(2.13), respectively) become 

f = ÇT - F(p,A,y;T) 

8 = G(p ,A ,y ;T) 

(3.7) 

(3.8) 

where 

Ç = A + ß (3.9) 

which depends on b only. 

From equations (2.20) and (2.21) it is seen that as far as the 

ac plastic potential g is concerned, onlyappears in the formula- 
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tion. To obtain an expression relating this parameter to (from 

equation (2.12)), the rate of plastic work will be computed and com¬ 

pared with an approximate value of the energy dissipation. The rate 

of plastic work per unit current volume is 

W 
P 

a. .D? . a- .0? . pD 
kk (3.10) 

where the first term on the right-hand side is the rate of distor- 

tional plastic work and the second term is the rate of plastic work 

associated with volumetric strain. The first term, using equations 

(2.11) and (2.18), becomes 

a- .D? . (3.11)a 

and the second term, in view of equation (2.20), reduces to 

= P 
JLiG 
rvÆ 

(3.11)b 

Therefore the total rate of plastic work is 

¡•n 

i 
iv* "i -. 

Î: 

w (3.12) 

To derive an expression for the rate of energy dissipation, we 

with the yield function as expressed in equation (3.7), 

start 
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f = Çr - F 

from which it follows that 

dt = _1 3F 

dp Ç ap (3.13) 

which is the change in resistance to flow per unit change in pres¬ 

sure. The parameter — is a material property which is related to 

the coefficient of sliding friction. For constant* we may assume 

(3.14) 

where is the cohesion and is zero for non-cohesive materials. For 

intact rocks the initial stage of deformation is governed by Hooke's 

law and the plastic deformation becomes appreciable after the onset 

of microcracking; Brace (1976). For the material in a cataclastic 

regime, one may set = 0 in equation (3.14). 

We then combine (3.14) with the expression given for the effec¬ 

tive distortional rate of deformation by equation (2.18) to obtain 

(3.15) 

The change in resistance to flow with pressure, i.e. BF/gp like 

the coefficient of internal friction, is a decreasing function of the 

pressure p, especially for lower pressures. A more realistic form 

would be (see Figure 5a) FqC with Fq and a as constants depending 

on the material. However, a constant value for the above parameter 

is satisfactory if we use its average value in the pressure range 
(0,p). 
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Assuming there will be no other source of work or dissipation, 

equate (3.12) and (3.15) to obtain 

we 

i£. rv£( LiL+l£ ) . e J. 
3p ç ap p (3.If) 

Employing equations (3.6) and (3.16), the expression for the scalar 

multiplier X from equation (2.16) can be written in the following 

form: 

At(l + ß “ ) - p 
AJ 

: aF 
ap 

ar P 3A Ç ap p rv/2 p . 

where r is 

y/1/2 + ßq + ß2(2/3 - 4t,2) 

which is obtained using equations (2.17) and (3.8). 
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4. STATE OF STRESS WITHIN EARTHQUAKE FAULTS 

The state of stress within earthquake faults is one of true 

triaxial compression, as expressed in equation (3.1). The type of 

faulting (strike-slip, thrust, normal, or any combination of these) 

depends on the orientation of the principal axes (x^, i = 1,2,3) 

relative to the ground surface. For example, depending on whether 

ffl » or ff3 ^-8 vertical, we have normal, strike-slip, or thrust 

faulting, respectively. These three cases are illustrated graphically 

in Figure 1. 

In strain-softening earthquake models, instability is usually 

defined in terms of the relative stiffnesses of the fault zone and 

the (elastic) surroundings; see, e.g. Rudnicki (1980) and Stuart 

(1981). Therefore, for the earthquake instability criterion, we 

assume that it occurs on a plane on which the (magnitude of the) 

slope of the load-deformation curve in the post-peak region equals 

the unloading stiffness of the elastic surroundings. 

We now introduce a new right-handed coordinate system X with 

normal to the plane of the fault and with along the strike of the 

fault. Let a be the matrix which transforms X into X. Then the state 

of stress with reference to X is 

o = a a a (4.1) 

Similarly the deformation rate tensor becomes 
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The quantities of interest for finding the fault stiffness are 

the stress rate and the rate of displacement on the fault planet i.e. 

°23 and °23‘ 

For the case of isotropic» linearly elastic surrounding materi¬ 

als, the plane of shear failure makes an angle of 45° with the max¬ 

imum and minimum principal stresses. For the purpose of demonstra¬ 

tion, we consider a strike-slip fault (Figure lb). The transforma¬ 

tion matrix is (see Figure 2) 

a = 

0 

1 

0 

)/2/2 \j~2/2 

0 0 

/2/2 -Æ/2 

The deviatoric stress in the X system is 

- » 
a 

-(2/3)t(l 

0 

0 

Hence from (4.4), 

_ i 
at = r 

23 

2b) 0 0 

(l/3)t(l - 2b) T 

* (1/3)t(1 

(4.3) 

(4.4) 

which is the maximum shear stress acting on the fault plane; the 

corresponding elastic and plastic rates of deformation are 



r:-, 
* 'J* *_• .* 

-e r 
°23 = 2M (4.5) 

3 A (4.6) 

»here équation» (2.19) and (4.4) are used to obtain (4.6). 

»e no» substitute (ron (4.5) and (4.6) into (2.5). »e also sub¬ 

stitute for 4 from (3.17). Assuming that the confining pressure does 

not change appreciably during deformation at a fixed depth, our 

stress rate-deformation rate equation in the direction of the strike 

of the fault becomes 

;{CI+ \T)(Í + - 
23 * 24 

* £ , l_dF T( 
3A ( 5 a; + 7 

Ç 
(4.7) 

T\Jl P 
- ) 

Equation (4.7) provides the information on the stiffness of the 

fault. The constants P. b. A. B, Í. and r. as defined in equations 

(2.15), (3.2). (3.6), (3.9), and (3.18), depend on the rate of 

stress. However, it is noted that, of these six constants, only the 

first two (i.e. b and P) are independent. The rest are functions of 

b. P. or both. On the other hand. P (the elastic shear modulus of 

the fault). jr, a4, and äp are material dependent. As discussed by 

Dorris and Hemat-Hasser (1982), the parameter, may be taken in 

the form (see Appendix) 
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5. CONVENTIONAL TRIAXIAL TEST > <% =^) 

For this type of loading, we have 

b = 0, ß = 0 (5.1)a ,b 

Using (5.1)a,b in equations (3.6), (3.9), and (3.1ö), we obtain 

J0 = t2 = 4 X1 T --L£.r3 a2_4. n3 _ 16 v 
* — 27 » ^ 3 » B - > (5.1)c—h 

r = 
6’ ' - 2 

For each test the axial deformation is measured against the dif¬ 

ferential stress applied at various “"lateral' pressures ®^ • 

Therefore, to use the experimental data, we express the differential 

stress in terms of Dn. Using equations (2.19), (3.5), (3.16), and 

(5.1)c ,d, we obtain 

hi 
S 

i .¿8F 
_2 T 

2 Tip 3 p + 
Æ % 

3 P 
(5.2) 

For constant lateral pressure ®3> using equations (3.3) and (3.4), we 

have 

' 2 ’ 
P =fT (5.3) 

Substitution of (5.1) and (5.3) into (3.17) yields 

; , 2 2^dF . 

Ü + IF + % _ _2 T } 3f 
(5.4) 

9y 2 dp 9A 
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Therefore equation (5.2) becomes 

hi 

1,, 2 2Äf s/ , 1 3f 2 t \ß rc s 
MC  -S-5— )( 1 + X ã-h + t   ) 3 9 dp 2 dp 3 p 3 p 

SP aF . Tc 
77 +“r^-2 + p 

Note that in the present case, 

_2 t 3jf 

/5” a4 

(5.5) 

r = X (5.6) 

From Hooke's law and since kept constant, it follows that 

e 2* 
11 K (5.7) 

where is the Young modulus of the material. Substituting from 

(5.5) and (5.7) into (2.5), we get the expression for the total rate 

of deformation in terms of * and the material parameters. Using this 

expression, the slope of the differential stress, axial strain curve 

is written as 

K 
(*! - V 

'11 
(5.8) 

Í, 
1 
K + 
e 

I Æ 3P w . 1^ 3F 2t \¡3 X 
o ™ g ^ ^ ^ ^ ~ ^ ^ * 2 dp 3 p 3 p 

V 

ÏL . (Ji ÏL ^ la _2I>|3f 
3y P ^ 2 3p p ~ P 3A 

Figure 3 is a schematic representation of equation (5.8). 
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6. RESULTS AND DISCUSSION 

Experimental data have been used to evaluate the material param¬ 

eters in the constitutive equation (5.8) for the case of the conven¬ 

tional triaxial state of stress. These parameters include the dis- 

3 F A TT 
tortional hardening, —, the dilatancy hardening, the change in 

resistance to flow with confining pressure, and the elastic 
dp 

modulus, Ke. All these parameters, in general, depend on many fac¬ 

tors, the most important ones being pressure, temperature, and 

strain-rate. 

The effects of pressure and temperature have been studied rather 

extensively by many investigators; e.g., Griggs, Turner, and Heard 

(1960), Paterson (1970), Balderman (1974), Stesky et al. (1974), 

Tullis and Yund (1977), Evans and Goetze (1979), Caristan (1982), and 

Wong (1982). 

The early work of Griggs, Turner, and Heard (1960) is a thorough 

study of the effect of temperature on the deformation of a wide 

variety of rocks under high confining pressures. A review of more 

recent research on high-temperature deformation of rocks and minerals 

is given by Tullis (1979). Although the degree of sensitivity to 

temperature is different for different rocks and minerals, the 

overall influence seems to be the same. Decrease in strength and 

cataclastic deformation and increase in ductility are observed with a 

rise in temperature. 

Increasing pressure tends to increase strength and ductility; 

Paterson (1970) and Heard (1976). It promotes ductility by 
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inhibiting the opening of cracks and the sliding of faults. The 

effect of pressure on rock-strength (i.e. on peak stress) is more 

pronounced in the brittle regime. While high-temperature creep of 

rocks is relatively insensitive to pressure, a negative pressure sen¬ 

sitivity of strength is reported by Caristan (1982) for Maryland dia¬ 

base in the brittle- ductile transition regime. 

Another important factor affecting the deformation process in 

rocks is pore pressure. This effect is directly related to the dila- 

tancy and therefore should be more pronounced for brittle failure. It 

usually has an effect opposite to that of the confining pressure, and 

hence the confining pressure minus the pore pressure is used as the 

effective pressure; Byerlee and Brace (1972). However, the impor¬ 

tance of this depends on the strain-rate as compared with the permea¬ 

bility of the fissured rock, and on whether or not the rock is 

saturated. For example, a high permeability and a low deformation 

rate allow the flow of fluid from the surroundings into the fractured 

rock, and so the concept of effective stress is applicable. On the 

other hand, if the combined effect of permeability and strain-rate 

does not lead to fast'* flow of fluid into the fractured zone, the 

resistance of the material to deformation is believed to increase, 

i.e. dilatancy hardening; Rice (1975), Rice and Rudnicki (1979), and 

Rudnicki (1983). If the fractured zone is already saturated, then 

small permeability causes weakening if there is densification, and 
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hardening if there is dilatancy.* Therefore, the coupling of pore 

fluid diffusion and rock deformation also introduces a time- 

dependency in the response of the brittle rock during deformation. A 

review of pore pressure effects in rock deformation is given by Mar¬ 

tin (1979). 

Strain-rate, roughly speaking, is observed to have an effect 

opposite to temperature. That is, decreasing the strain-rate causes 

ductility to increase and strength to decrease; e.g., Heard (1963, 

1972), Heard and Raleigh (1972), Rutter (1972), and Balderman (1974). 

More precisely, the influence of strain-rate depends on the type of 

deformation mechanism. For example, at low pressures and tempera¬ 

tures, where the mechanism of deformation is cataclastic, rate- 

dependence is very small, while at higher pressures, and especially 

at elevated temperatures, this dependence is significant; Heard 

(1963) and Heard and Raleigh (1972). The strength of Maryland dia¬ 

base has been observed not to change appreciably with the strain-rate 

in the brittle regime but to decrease with decreasing strain-rate in 

the creep and transitional regimes; Caristan (1982). Steady-state 

flow prevails at high temperatures and low strain-rates; e.g., Heard 

(1972). 

Often, the main purpose of laboratory experiments is to simulate 

conditions at crustal depths. Due to the relatively fast rate of 

«Up t " 

This phenomenon is most vivid in saturated cohesionless sands, 
where a tendency toward densification may lead to a complete loss of 
instantaneous strength, i.e. liquefaction; see Nemat-Nasser and 
Shokooh (1979). 



loading in these tests, the measured strength and the pressure and 

temperature obtained for the brittle-ductile transition are always 

considerably larger than field evidence seems to suggest; Heard 

(1960), Paterson (1970), and Rutter (1972). 

Shallow earthquakes usually occur at depths of up to 20 km. The 

confining pressure and temperature at these depths could be as high 

as 10 kb (for compressive tectonic regions) and ^400-600^, depending 

on the geological structure and the metamorphism of the rock. For 

example, Heard (1976) reports rangas of 250-400^ at 15 km and 450- 
O 

600 C at 30 km in depth for the continental crust, based on the find¬ 

ings of several researchers. Strain-rates across geological faults 

could vary within a wide range, depending on the tectonic velocity 

within the region and the geometry of the fault; Sibson (1977). The 

largest strain-rate believed attainable in nature, accompanying 

quasi-static crustal deformation, is still orders of magnitude 

smaller than the laboratory ones. As far as the pore pressure is 

concerned, considering the probable crushed and porous nature of the 

material, faults could be a suitable conduit of water, even in dry 

regions. Accordingly, there is no doubt that a thorough study of the 

effect of the above factors on the behavior of both intact and 

crushed rocks is essential for a better understanding of crustal 

deformation. 

Laboratory investigations of pre- and post-failure flow and 

fracture of rocks have produced large amuont of significant data: see 

e.g., Griggs, Turner, and Heard (1960), Heard (1960, 1963), Paterson 



(1970), Heard and 

(1977) for data on 

(1970), Wawersik 

(1978) for data on 

theories could be 

as guides. 

Raleigh (1972), Rutter (1972), and Tullis and Yund 

the pre-failure regime, and Wawersik and Fairhurst 

and Brace (1971), and Rummel, Alheid, and Frohn 

the post-failure regime. Therefore, satisfactory 

developed with these and similar experimental data 

The equations developed in Section 5 are used with some of the 

experimental results to investigate the effects of pressure and tem¬ 

perature, and the combined effect of both, on the material parame- 

. 3f 3F 0F , u L 3 
Cers’ fTp* 3Ã* sTy 'through a and p), and in the constitutive equa¬ 

tion (5.8). Stress-strain curves are then developed for certain 

rocks. 

6.1. Pressure Effect 

For illustration, we use the experimental stress-strain curves 

on granite at various pressures obtained by Rummel, Alheid, and Frchn 

(1978) (see Figure 4a). The numerical values of the corresponding 

parameters obtained for the theoretical stress-strain curves in Fig¬ 

ure 4b are listed in Table 1 and plotted in Figures 5a-d. A quick 

look at the data points in these figures indicates that the effect of 

pressure on all the parameters decreases as the pressure increases. 

Therefore, we use exponential expressions of the following form to 

represent the effect of pressure on these parameters: 

+ Cle 
"V3 

(6.1) 

.-*/V 
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where Cq, Cp and C2 are constants. Based on the data in Table 1, we 

obtain 

-1.8a_ 
(03) * 0.8 + 0.6 e (6.2) 

dF , N _ o^ca A..« -°3 (03) = 2750 - 2550 e 
-0.95Ol 

(6.3) 

0(^3) = 775 - 500 e 
-3a, 

(6.4) 

p(a3) = 40 + 120 e (6.5) 

Equations (6.2)-(6.5) are shown graphically in Figures 5a-d (solid 

curves), along with the corresponding data points. The only remain¬ 

ing material parameter in equation (5.8) is Ke, the elastic modulus, 

or alternatively, the slope of the stress-strain curve at zero 

According to Figure 4a the initial slope does not change 

appreciably with pressure. However, a slight increase in the slope 

with lateral pressure is noticeable. In general, an increase of the 

elastic modulus with pressure is expected, due to closure of micro¬ 

cracks. The following expression is used to describe this depen¬ 

dency: 

K (o,) » 280 (1 - 0.1 e e d 

-0.9a. 
(6.6) 

Dsing equations (6.2)-(6.6) in (5.8), the corresponding theoretical 

stress-strain curves are obtained and presented in Figure 4b. 
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Examination of Figures 5a-d reveals the following: 

. • 3F 
a) The change of flow resistance with pressure, ■=— (which is a 

op 

measure of internal friction), is a decreasing function of pressure 

(Figure 5a). The Coulomb theory of failure predicts a constant coef¬ 

ficient of friction, and Mohr's theory predicts one which decreases 

with pressure. These theories, however, are satisfactory for rela¬ 

tively low confining pressures and when the state of stress is not 

too complex. 

0F 
b) The variation of parameter is shown in Figure 5b. An 

oA 

almost linear change in this parameter is observed for lower pres¬ 

sures. This dependency seems to be reduced at intermediate pressures 

and the curve levels off at higher pressures. 

\ • • 0F 
c) The distortional hardening parameter, —, seems to be an 

increasing function of pressure at low pressures (e.g., < 0*5 kb), 

and to be pressure-independent at higher pressures. This conclusion 

is embedded in Figures 5c,d which show the variation of distortional 

hardening coefficients a and p, respectively. The dependence of a on 

pressure, as shown in Figure 5c, seems to be significant for lateral 

pressures greater than ^0.5 kb, while for lower pressures, is an 

increasing function of pressure. This is, perhaps, an indication of 

low pressure-sensitivity in the brittle regime of the deformation 

process, which was discussed earlier in light of experimental 
A 

results. The hardening exponent p is a decreasing function of pres¬ 

sure for lower pressures (0-0.5 kb) and is constant for higher pres- 
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sures (Figure 5d). 

‘w'.n’ -, 
d) The initial slope of the stress-strain curves in Figures 4a,b 

seems to be a weak function of pressure. This is probably due to the 

fact that this material has been originally intact and relatively 

flawless. A pronounced increase in the moduli with pressure is 

expected for rocks with initial flaws and microcracks. 

In Figures 5a-d it is observed that all curves level off beyond 

a certain lateral pressure This pressure sensitivity of material 

parameters at low pressures and low sensitivity at higher pressures, 

is in agreement with experimental results. 

Based on the variation of the parameters with pressure, stress- 

strain curves for other confining pressures can be obtained. This is 

especially useful in determining the pressure at which the transition 

from brittle to ductile behavior occurs. As can be seen from Figure 

4a, the granite rock tested indicates a brittle behavior for all con¬ 

fining pressures used in the test (up to 3 kb), and the post-peak 

drop in stress is pronounced even at 3 kb pressure. Dilatancy, how¬ 

ever, diminishes with confining pressure. This is observed in exper¬ 

iments on rocks by several researchers; e.g., Brace, Paulding, .and 

Scholz (1966), Scholz (1968), Edmond and Paterson (1972), and Rummel, 

Alheid, and Frohn (1978). 

* ,> ^ 
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c */ 
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At the brittle-ductile transition, the drop in stress disap¬ 

pears. Figure 6 shows the theoretical stress—strain curves at vari¬ 

ous pressures obtained, using the values of the parameters listed in 
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Table 1. Based on this figure, the behavior of the considered rock 

(at room temperature and for loading rate corresponding to the exper¬ 

iment) is estimated to be brittle at 20 kb pressure, and to involve a 

stress-drop on the order of a few kilobars. Therefore, based on the 

extrapolation made here, the brittle-ductile transition pressure, 

under the conditions of this experiment (Rummel, Alheid, and Frohn, 

1978), is predicted to be somewhat above 20 kb. However large, this 

value seems to be consistent with experimental results. For example, 

Byerlee and Brace (1969) report unstable faulting of various rocks at 

room temperature and 7-10 kb confining pressure. Byerlee (1967), 

•based on extrapolation of frictional and shear strength data, sug¬ 

gests 10 kb as the brittle-ductile transition pressure for Westerly 

granite. Brittle shear fracture is observed in some materials by 

Bridgman (1936) at normal stresses as high as 50 kb. Of course, com¬ 

pared with the transition pressure within the crust, a value of 20 kb 

is too large. However, if we include the effect of high crustal tem¬ 

peratures (of the order of hundreds of degrees C), low geological 

strain-rates (about 10"10-10~15/sec versus 10_1-10"6/sec for most 

laboratory experiments), and other factors contributing to ductility, 

the predicted value appears reasonable; Brace and Byerlee (1970). 

Figure 7 shows the theoretical volumetric strain curves for 

granite at various pressures as functions of axial strain. The solid 

curves correspond to pressures shown in Figures 4a,b and the dotted 

ones are obtained for higher pressures, based on extrapolation. A 

slight initial compaction is observed for all pressures. The low 



level of compaction must be due to the originally non-porous nature 

of the rock. Dilatancy, that is, plastic volumetric expansion, on 

the other hand, reaches an appreciable level. As can be seen from 

Figure 7, both the magnitude and the rate of dilatancy are larger at 

lower pressures. This is in agreement with the experimental results 

discussed earlier. The onset of dilatancy is also pressure- 

dependent. The ratio of the stress at which dilatancy begins to the 

peak stress is given in Table 2 for pressures corresponding to Figure 

4b. This ratio varies between 0.4-0.7 for the considered experiment. 

Laboratory experiments on various rocks suggest that dilatancy in 

rocks begins at stresses of approximately half the peak stress; e.g., 

Wawersik and Fairhurst (1970), Wawersik and Brace (1971), Brace 

(1976), and Rummel, Alheid, and Frohn (1978). 

6.2. Temperature Effect 

To incorporate the effect of temperature, we use the results of 

experiments on granite and basalt by Griggs, Turner, and Heard 

(1960), performed at 5 kb pressure and at temperatures ranging from 

room temperature to 800 C. The experimental curves are shown in 

Figures 8a,b for granite and basalt, respectively, and the 

corresponding numerical values of parameters |I., a, and p are 

listed in Tables 3 and 4. To study the dependence of various parame¬ 

ters on temperature, they are plotted in Figures 9a-d for both rocks. 

From these figures the following conclusions are obtained: 



9 F 
a) The internai friction parameter, is a decreasing func¬ 

tion of temperature. This is probably due to the smoothing effect 

that temperature has on the sliding surfa-'es (see Figure 9a). This 

drop with temperature, however, seems to be faster at higher tempera¬ 

tures. This may be due to a change in the deformation mechanism at 

elevated temperatures. From Figure 9a, we take 400 °C as the tem¬ 

perature above which this parameter begins to decrease substantially 

with increasing temperature, for both granite and basalt. Based on 

this reference temperature, the following relations seem to describe 

9F 
the variation ofwith temperature for the two rocks: 

3F 

■Jp 
(T) 

0.9 - 0.13(-^q)2 , (granite) 

0.8 - 0.08(^¾)2 

(6.7)a,b 

(basalt) 

b) Figure 9b shows that data points do not follow any clear 

0F 
pattern for the variation of with temperature. This may be due to 

the fact that the complete post-peak behavior of the rock is not 

known for the set of experimental results used here. Hence, we 

assume that this parameter is temperature independent and use the 

following constant values: 

^ (T) 
3A V ' 

1050 , (granite) 

550 , (basalt) 
(6.8)a,b 

Dilatancy itself, however, decreases with temperature. This is 

because of the effect that temperature has on enhancing ductility and 

preventing microcrack formation. 
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sion 

c) The parameters a and p in the distortional hardening expres¬ 

are decreasing functions of temperature for both rocks, as can 

be seen from the data points in Figures 9c,d. The following relations 

are chosen to fit the data points: 

C Tc . iTrt —0.0043T i . X /5 + 170 e , (granite) 

a(T) = j (6.9)a,b 
ft X -0.0055T ,, , X k 6 + 37 e , (basalt) 

^ ft X i«; -0.004T , . X r 5 + 25 e , (granite) 

p(T) = ^ 
,n -0.004T ,, , , 
50 e , (basalt) 

(6.10)a,b 

The appreciable effect that temperature has on reducing both the ini¬ 

tial distortional hardening parameter, a, and the rate of hardening, 
A 

defined by p, should probably be attributed to the lesser entangle¬ 

ment and faster removal of dislocations at higher temperatures. 

d) The variation of the initial slope of the stress-strain 

curves with temperature is represented by the following relations: 

K0(T) = 

400 (1 - 
1200 

700 (1 "TTÕÕ > ■ 

) , (granite) 

(basalt) 

(6.11)a,b 

Based on equation's (6.7)-(6.11), or equivalently, or Figures 

9a-d, the corresponding theoretical stress-strain curves are 

developed for both granite and basalt. These are presented in Fig¬ 

ures 10a,b, respectively. 
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No attempt is made here to discuss the brittle-ductile transi¬ 

tion temperature of these two rocks using the results of our theory. 

In fact, since we have treated the temperature as a parameter, have 

not explored the possibility of other deformation mechanisms at 

elevated temperatures, and also have ignored rate effects at large 

temperatures, we are in no position to draw any conclusions on the 

value of the transition temperature. This is because the mechanism 

of deformation at high temperatures changes from basically micro¬ 

cracking and faulting to one of dislocation glide and climb, which is 

rate-controlled and highly temperature-sensitive; Weertman (1978). 

6.3. Depth Effect 

Next we consider the combined effect of pressure and tempera¬ 

ture. In particular, we are interested in the deformation process at 

shallow crustal depths. We assume that pressure and temperature 

affect deformation independently. We also assume constant pressure 

and temperature gradients within the crust. For example, we use a 

pressure gradient of 0.25 kb/km, and a temperature gradient of 

30 C/km. The 30 C/km temperature gradient is large compared to the 

Q 

10-20 C/km, usually taken for the continental crust. However, for 

illustration, the above value is chosen, assuming the temperature 

distribution to be higher in shear zones and earthquake faults, due 

to possible heat anomaly there. The pressure and the temperature 

T are, therefore, expressed as 
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ct3(X1) = 0.25 Xx (6.12) 

KX^ = 30 X1 (6.13) 

where, in the above relations, X^, a^, and T are in units of km, kb, 
O 

and C, respectively. Substituting for and T, we obtain the fol¬ 

lowing relations for the material parameters in terms of depth X^: 

j9F 
dp '~1 

-0.46X 
1 

(X,) = (0.8 - 0.6 e 1 )(1 - 8xl0~4 X^ ) (6.14) 

-0.23X 
(Xx) » 2500 - 2000 e 

3F 
(6.15) 

-0.75X, -0.12X. 
)( 1 + 5 e 1 ) 

w • A «.A . 

a(X,) = (600 - 400 e 1 w i . c - 1 (6.16) 

Ä -X. -0.12X. 
piXj) = (8 + 24 e 1 )(1 + 5 e 1 ) (6.17) 

-0.23X, 
kjjiX^ = (340 - 40 e 1 )(1 - 0.025X1 ) (6.18) 

Figures lla-e are graphic representations of these relations. 

Note that two different sets of experimental data are used to 

obtain equations (6.14) to (6.18): one set for the temperature effect 

(Figure 8a) reported by Griggs, Turner, and Heard (1960); and the 

other set for the pressure and dilatancy effects (Figure 4a) pub¬ 

lished by Rummel, Alheid, and Frohn (1978). Even though in both 

tests granite (Westerly granite in the former and Fichtelgebirge 
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granite in the latter) is used, the two tests are essentially unre¬ 

lated. In view of this, the assumption that there is no coupling 

between pressure and temperature, and the fact that rate effects are 

not included, the results embodied in equations (6.14) to (6.18) 

should be regarded as illustrative rather than conclusive. 

Figure 12 shows our estimate of the stress-strain curves for 

granite down to a 30 km depth. This figure reveals the pronounced 

effect that temperature has on lowering the strength, the brittle¬ 

ness, and the dilatancy of this rock (compare Figures 12 and 6). 

Based on this figure, the rock has its maximum strength at depths of 

around 15 km. Near the surface, it is brittle and has a low shear 

strength. This is due to the low confining pressure at shallow 

depths. It is also observed from Figure 12 that the post-peak 

stress-drop is larger at smaller depths. This corresponds to larger 

dilatancy near the surface due to lower pressure, as discussed ear¬ 

lier. At greater depths, on the other hand, especially due to high 

temperatures, the ductility is greater, and the material attains its 

maximum strength at larger strains. Dilatancy decreases with depth 

and is not noticeable beyond a 15 km depth, according to Figure 12. 

This figure also suggests a maximum differential stress of about 8 kb 

at a depth of ~15 km for intact granite. The figure, however, is 

developed from experiments performed at very high loading rates com¬ 

pared to the tectonic ones. Hence, any conclusion based on this fig¬ 

ure is appropriate in the event that the strain-rate does not sub¬ 

stantially affect the deformation. This could be the case at rela- 
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tively low temperatures, i.e. for crustal rocks at shallow depths and 

where the temperature gradient is small. For Westerly granite, Wong 

(1982) reports low sensitivity to the strain-rate at temperatures up 

® —SA 
to 600 C when the strain-rate is in the range 10 -lO'/sec. As men¬ 

tioned earlier, the effect of the strain-rate is important at 

elevated temperatures (e.g., 450 C assumed at 15 km depth). Thus, 

the predicted 8 kb differential stress seems to be too large for 

intact crustal granitic rocks. For temperatures above 500 °C, the 

rate and viscosity effects must be explicitly included in the consti¬ 

tutive modeling of this kind of rocks. However, treating the strain- 

rate as a parameter, as we did temperature, we may quantitatively 

study the effect of the strain-rate on the costitutive functions, and 

in this manner estimate stress—strain curves for rocks at various 

strain-rates. 

As a final point, we should like to mention that the objective 

is to develop a general constitutive equation for crustal rocks, and 

especially for the material within fault zones. The results may then 

be used for a detailed study of the mechanics of earthquake faulting. 

The emphasis in the present study has been to incorporate the factors 

affecting deformation at shallow depths. 
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APPENDIX 

Selection of the Constitutive Parameters 

From equation (5.8) we have, for the slope of the differential 

stress-axial strain curve. 

r -i 

K 
(I_ 1 + Ifü. 2 r Æ Tc , 
V3 9 aPM 1 2 9p 3 F 3 F- 

3F +_^(y/3 3F + _ _2 t 

V 3y P 2 3p p 
V® 

3F 
(A. 1 ) 

p 6A 

A typical response is sketched in Figure (A-l). To find the 

appropriate values for the material parameters, K , 
e 3P 9A 

and 3F 
e’ a?’ 3A* a“u ay’ 

we first make the following assumptions and observations, using this 

figure: 

1. The deformation for very small strain is essentially elastic, 

even though plastic deformation begins with the onset of loading. 

This implies that 

K « Kn 
e 0 (A.2) 

where K0 is the initial slope of the curve. 

2. The hardening effect disappears at large strains, i.e. 

3F 

9y 
-* 0 as y -> oo (A.3) 

Accordingly, an exponentially decaying form is assumed for — as fol- 
3y 

lows : 
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(for further discussion, see Nemat-Nasser and Shokooh, 1980). a and 

p in equation (A.4) are material- dependent parameters. 

3. At large strains, sliding occurs on failure planes at a con¬ 

stant differential stress, the kinetic shear resistance t, , i.e. 
k 

■c(y) ** Tk as y _ « (A.5) 

4. Also at large strains, the stress-strain curve levels off, so 

the slope becomes zero, 

K -*• 0 as y (A.6) 

Using equations (A.l), and (A.4MA.6) we obtain the following 

results. 

0 as y 

3F _ 4 Tk _2 \ 

3P = 3 P ~ fi V 

Substituting (A.8) into (3.16) and using (5.1), we get 

(A.7) 

(A.8) 

3G 2 Tk ~ 

3p = p 
(A.9) 

This equation suggests that the material dilates when the shear 

stress exceeds the frictional sliding strength, t^, and that the 



a_’_t 
ÎÜ 

n 
onset of pre-peak dilatancy is marked by t = t 

5. At the peak of the stress-strain curve, 

^ * V ^ ■ V (A.10) 

and using (A.l) and (A.9), we get the following expression for a in 

3F. terms of p and 
aA' 

2 p0 P*m 3F Tm " Tk 

/5 3A (A.11) 

6. After the onset of microfracturing and in the cataclastic 

regime, the internal cohesion may be neglected. Therefore, equation 

(A.8) reduces to 

3F ^ 4 ^k 
3P ~ 3 p (A.12) 

Equations (A.2), (A.8), (A.9), (A.11), and (A.12) can be used to 

obtain numerical values for the parameters. Then, since these param¬ 

eters do not depend on the state of stress, they can be used in the 

constitutive equation for the fault material (equation (4.7)) to 

investigate stable deformation and earthquake instability within the 

fault. 
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Table 1 

Table 2: 

: Material parameters in the 

at various pressures. 

o3(kb) 0 0.075 

dY/dp 1.60 1.32 

OF/dA 820 1270 

a 260 365 

p 1000 130 

a3(kb) 0.78 1.08 

3F/dp 0.95 0.89 

dY/d\ 2000 2170 

a 720 775 

p 45 49 

constitutive equation for granite 

0.17 0.33 0.55 

1.19 1.07 1.02 

1460 1650 1860 

510 650 620 

100 62 49 

1.57 2.46 3.00 

0.85 0.81 0.80 

2480 2660 2650 

690 714 775 

40 50 42 

Ratios of the stress at which dilatancy starts to the peak 
stress for granite at various pressures. 

o3(kb) 0 0.075 0.17 0.33 0.55 

x/xmax 0,32 °-38 °-42 °-43 0.49 

a3(kb) 0.78 1.08 

Ana* °-50 °-52 

1.57 2.46 3.00 

0.59 0.60 0.62 
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Table 3: Material parameters in the constitutive equation for granite 
at various temperatures. 

T( C) 

aF/3p 

3F/3A 

25 

0.90 

1060 

230 

27 

300 

0.84 

1090 

115 

13 

500 

0.63 

1280 

145 

4.0 

800 

0.41 

930 

95 

5.0 

Table 4: Material parameters in the constitutive equation for basalt 
at various temperatures. 

T( C) 

3F/3p 

3F/3A 

25 

0.82 

430 

330 

45 

300 

0.79 

730 

75 

20 

500 

0.66 

490 

41 

7.0 

700 

0.43 

450 

13 

2.3 

800 

0.25 

670 

10 

2.0 
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Figure 11c: Variation of a with depth for granite. 

Figure lid: Variation of p with depth for granite. 

Figure lie: Variation of K» with depth for granite. 

Figure 12: Stress-strain curves for granite at various depths, 

Figure A-l: Schematic diagram showing a typical stress-strain 

curve for rocks in conventional triaxial loading. 
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