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Hydration Level and Body Fluids 1

Lb ABSTRACT

, During exercise in the heat, sweat output often exceeds water intake

' resulting in hypohydration which is defined as a body fluid deficit. This fluid

deficit is comprised of water loss from both the intracellular and extracellular

fluid compartments. Hypohydration during exercise causes a greater heat

storage and reduces endurance in comparison to euhydration levels. The greater

heat storage is attributed to a decreased sweating rate as well as a decreased

cutaneous blood flow. These response decrements have been related to both

plasma hyperosmolality and a plasma hypovolemia. Subject gender, acclimation

state and aerobic fitness do not alter the hypohydration response.

Hyperhydration, or body fluid excess, does not appear to provide a clear

advantage during exercise-heat stress, but may delay the development of

hypohydration. '

Key words: dehydration, heat stress, hormones, hyperhydration, hypohydration,

osmolality, peripheral blood flow, plasma volume, sweating rate, temperature

regulation, water requirements
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Hydration Level and Body Fluids 2

During muscular exercise in the heat, thermoregulatory responses have

been shown to be influenced primarily by aerobic fitness (1), acclimation state

(2), and hydration level (3). Aerobically fit individuals who are heat acclimated

and fully hydrated will have less body heat storage and optimal performance

during exercise-heat stress. Hydration level is particularly important during

exercise performance in the heat, since body fluid deficit will neutralize the

thermoregulatory advantages conferred by aerobic fitness (') and heat

acclimation (5,6). Greenleaf (7) notes three body fluid levels: euhydration,

hypohydration and hyperhydration. Euhydration refers to "normal" body fluid

content; whereas, hypohydration and hyperhydration refer to body fluid deficit

and excess, respectively (7). Greenleaf (7) defines the more common term

"dehydration" as the dynamic loss of body fluids or the transition from

euhydration to hypohydration.

BODY FLUID LOSS: In hot environments, body fluid is primarily lost via

eccrine sweat gland secretion, which enables evaporative cooling of the body

(8,9). Urinary fluid loss is decreased during heat stress relative to moderate

environmental conditions (10,11). In addition, both exercise and hypohydration

have been reported to decrease urine output below control levels (12). The

volume of body fluid secreted as sweat can vary greatly. For a given individual,

sweating rate is dependent upon environmental conditions (ambient temperature,

dew point, radiant load, air velocity), clothing (insulation, moisture permeability)

and physical activity level (10,13). Adolph and associates (10) reported that in a

desert environment, soldiers performing normal daily activities had sweating

rates ranging from 160 to 600 g. m- 2 . h- 1. The amount of body fluid lost by

" -2. -Isweat can be excessive, and sweating rates approaching 1000 g m 2 h are

frequently reported (10,13,14). Table I provides an example of water

,,. . - ,/,+:+. "..,. ,,, .,:./...'............................................................................,..-... -. . ..- , ...



Hydration Level and Body Fluids 3

requirements for a 70 kg man working in a hot-dry environment (15).

Dehydration will occur if the volume of fluid ingested is less than sweat output.

However, the simple ingestion of fluids may not insure maintenance of

euhydration since both exercise and heat stress result in large reductions in

splanchnic blood flow (16), and thus reduce absorption rate.

TABLE I ABOUT HERE

Water intake may be equal to fluid loss over a 24-hour period in the heat

(10). Within the 24-hour period in the heat, however, marked body water deficits

may occur (10,11). Adolph and associates (10) reported that in the desert,

euhydration was only re-established during the noon and evening meals.

Apparently, food increases the palatability of water and assures more complete

rehydration. Therefore, thirst may not provide a good index of body water

requirements. Several studies (10,11,17,18) have reported that ad libitum water

intake results in incomplete fluid replacement or "voluntary" dehydration during

exercise in the heat. Recently, Hubbard et al. (19) examined the influence of

water temperature and flavoring on "voluntary" dehydration during exercise-heat

stress, and reported that water cooling and flavoring collectively increased

water intake by 120%.

An individual's state of heat acclimation may also influence the level of

"voluntary" dehydration incurred during exercise in the heat (17,20). Figure I

presents data redrawn from Eichna et al. (17) on the "voluntary" dehydration

(water deficit) incurred during exercise in a cool environment and during six

consecutive days in a hot-dry (49°C, 25% rh) environment. It can be noted that

the water deficit was much greater during the initial exercise-heat exposures. In

agreement with these findings, Greenleaf et al. (20) reported that water deficit

. ,. ...



Hydration Level and Body Fluids 4

during exercise-heat stress was reduced by approximately 30% after the initial

four days of heat acclimation. Therefore, heat acclimation may improve the

relationship between thirst and body water needs (17, 20).

FIGURE 1 ABOUT HERE

As previously noted, sweat output is the primary avenue of body fluid loss

during exercise in the heat. Sweat loss will result in a reduction of total body

water if an adequate amount of fluid is not replaced. Total body water

constitutes approximately 60% of an average adult's body weight (21), so a 70 kg

individual would have a total body water of about 42 liters. Therefore, a fluid

loss equal to 5% of body weight would constitute 8% of total body water for this

individual. Total body water is divided into an intracellular and extracellular

fluid compartment. The intracellular compartment is the sum of all fluids within

cells, and the extracellular compartment includes all fluids outside of the cells.

The intracellular fluid compartment contains 67% (28 liters) of total body water;

extracellular fluid is distributed between the interstitium (26% or 11 liters) and

plasma (7% or 3 liters). The fluid compartments are separated by water-

permeable cell membranes which allow fluid exchange between compartments.

Such exc! ange between compartments depends upon the gradients of colloid,

tissue and hydrostatic pressures (21). As a consequence of this free fluid

exchange, hypohydration should cause some water loss from each compartment.

The question arises as to how fluid loss is partitioned between these

compartments during hypohydration. Costill et al. (22) have calculated the

contribution of intracellular, interstitial and plasma fluid to the total body water

loss in resting subjects at three hypohydration levels. Subjects were dehydrated

o '".', ' " r ,".
"
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Hydration Level and Body Fluids 5

by 2%, 4% and 6% of total body weight using a combination of exercise and heat.

Intracellular fluid accounted for 30% of the water loss at the 2% hypohydration

level, and for 50% of the water loss at both the 4% and 6% hypohydration levels.

Interstitial fluid accounted for 60% of water loss at the 2% hypohydration level,

and for 40% of water loss at both the 4% and 6% hypohydration levels. Plasma

fluid represented 10% of fluid loss at all three hypohydration levels. Therefore,

at rest during low levels of hypohydration, water loss primarily occurred from

the extracellular fluid compartment; however, at increasing hypohydration levels

water loss was equally distributed between intra- and extracellular

compartments.

Muscular exercise alters the colloid, tissue and hydrostatic pressure

gradients between compartments resulting in additional fluid shifts. In

particular, plasma volume shifts during exercise in the heat have been well

studied (23-29). Hypohydration has been reported to either have no effect upon

(24,26, 27), or to alter (27,28,29) the magnitude of vascular fluid shifts during

exercise in the heat. Some of this inconsistency may be due to the varied

protocols used to achieve fluid deficits. For example, several investigators

elicited hypohydration with diuretics that caused iso-osmotic hypovolemia

(24,29) as opposed to the hyperosmotic hypovolemia characteristic of

hypohydration from sweating. Thus, vascular fluid shifts produced by diuretic-

induced hypohydration may not be indicative of that which occurs during

exercise in the heat. In addition, other investigators used a marginal

hypohydration level (26) or did not report the hydration level (27). Recently, our . .

laboratory (28) examined the effects of hypohydration (5%) on plasma volume

shifts during exercise in the heat. For heat-acclimated subjects, we observed a -

hemoconcentration when hypohydrated and a hemodilution when euhydrated

during light intensity exercise. Our study also demonstrated that when male and
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female subjects are matched for maximal aerobic power, gender does not alter

the vascular fluid shifts when either euhydrated or hypohydrated (28).

Eccrine sweat is ordinarily hypotonic relative to the plasma (30).

Therefore, the plasma will become hyperosmotic when hypohydration is primarily

mediated by sweat output (6,31). Plasma osmolality has been reported to

increase from about 283 mosmol *kg -l when euhydrated to levels approaching

300 mosmol o kg - I when hypohydrated by exercise-heat stress (28,31). Sodium

and potassium ions are primarily responsible for the elevated plasma osmolality

during hypohydration (31). Several investigators have suggested that plasma

hyperosmolality (32,33) as well as decreased plasma volume (29,34) contribute to

the less efficient thermoregulatory responses when hypohydrated during exercise

in the heat. However, such fluctuations in osmolality and plasma volume are the

triggering mechanism for adaptive responses to conserve body fluids.

HORMONAL RESPONSES: Ordinarily, a decreased plasma volume and

simultaneous elevation in plasma osmolality stimulate hypothalamic

osmoreceptors initiating neural responses which increase vasopressin secretion

and stimulate the thirst sensation (21,35). Consequently, vasopressin increases

water reabsorption by the renal distal tubules, thus conserving vascular fluid and

attenuating the dehydration process. Animal studies indicate that the renin-

angiotensin system also stimulates the release of vasopressin and aldosterone,

and increases the sensation of thirst. For example, Severs et al. (36) reported

that the central administration of angiotensin 1I to rats was as effective in

stimulating drinking behavior as cellular dehydration or hypovolernia. Mann et

al. (37) demonstrated that a circulating angiotensin II concentration of

approximately 200 fmol * i - 1 represents the dipsogenic threshold for rats.

Thus, neural and endocrinological mechanisms for stimulated water conservation

and consumption are operative under a variety of hypohydration influences.
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r There are many reports documenting that circulating concentrations of the

fluid-electrolyte regulatory hormones are elevated in man during acute heat

exposure or even during exercise in a cool environment. For example, elevations I
in circulating levels of aldosterone, renin activity, cortisol and vasopressin
during sedentary exposure to several different thermal stresses have been

observed (38,39,40). Likewise in exercising humans without heat stress, several

investigators have documented increments in the same group of hormones

(41,42,43). These hormonal responses are modulated by heat acclimation (44),

saline loading (45), potassium supplements (46) and physical training (42).

Our laboratory examined the effects of hypohydration and heat acclimation

on circulating aldosterone and renin activity during exercise in several

environments (47). When at rest in a moderate environment, hypohydration

significantly elevated circulating aldosterone and plasma renin activity. We also

observed that plasma renin activity was significantly elevated during exercise-

heat stress and that these increments were markedly accentuated by

hypohydration and attenuated by heat acclimation. Further, the increased A

aldosterone levels observed during exercise in the heat were even greater during

hypohydration. Heat acclimation did not influence the aldosterone hormonal

responses (47). Conversely, in experiments in which plasma volume was

expanded by hyperoncotic albumin administration, we reported reduced responses

in aldosterone and angiotensin I levels at several sampling intervals during

exercise in the heat (48).
!

It is apparent that humans manifest a variety of endocrinological

adaptations designed to stimulate fluid consumption and reduce fluid and

electrolyte loss during thermal and exercise stress. Contributing to the

prevention of hypohydration and the maintenance of fluid horneostasis are

hormonally mediated responses including increases in the sensitivity of the thirst

,JI
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Hydration Level and Body Fluids 8

mechanism and elevated antidiuretic and antinatriuretic activity. Less studied

have been the effects of hormones on gastric emptying, intestinal absorption and

the partitioning of water loss among the body fluid compartments during several

hypohydration levels.

PHYSIOLOGICAL RESPONSES: Adolph and associat( '!0) in their book

entitled Physiology of Man in the Desert describe the symp , associated with

hypohydration in the desert. They state that these symptoms occur throughout a

broad range of water deficits (as represented by percent decrease of body

weight), and that there is considerable intersubject variability for these

symptoms. Thirst is reported to occur after a 2% water deficit, but does not

increase in intensity with greater hypohydration levels. A 4% to 6% water

deficit is associated with anorexia, impatience and headache; whereas, a 6% to

10% water deficit is associated with vertigo, dyspnea, cyanosis and spasticity.

An individual who has incurred more than a 12% water deficit will be unable to

swallow and will need assistance with rehydration. Adolph and associates (10)

estimated that depending upon environmental conditions and exposure time, the

lethal hypohydration level is between 15% to 25% water deficit.
-i

Table 2 presents a summary of investigations examining the

thermoregulatory effects of hypohydration for resting subjects in the heat

(31,49-52). These investigations were selected to represent a continuum from a

marginal (Q%) to the largest (6%) level of fluid deficit reported for these

conditions. Caution should be employed when comparing the results of different

investigations because of differences in subject populations (age, fitness,

acclimation state, gender), environmental conditions (ambient temperatures, dew

point) and duration of water deficit. The equal signs in the table denote no

significant difference, while the arrows represent the direction of the significant
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difference between euhydration and hypohydration. A marginal water deficit

(1-2?6) does not appear to alter resting values for heart rate (HR), core

temperature (Tc), sweating rate (A or peripheral blood flow (PBF). However,
tepeatr (T) watn ae N,,

0 hypohydration levels of 3% to 6% resulted in significantly elevated heart rate,

core temperature, and reduced sweating rate and peripheral blood flows than

during euhydration experiments. In addition, a trend for greater increments in

core temperature appeared to occur for the 6% than 3% water deficit.

TABLE 2 ABOUT HERE

Gender (6), acclimation state (6) and aerobic fitnes. (4) do not alter the

elevated thermoregulatory responses when hypohydrated during exercise in the

heat. Table 3 presents a summary of investigations examining the

thermoregulatory effects of hypohydration for subjects performing light

intensity exercise in the heat (3,6,15,24,34,49,53,54). Again, these investigations

represent a continuum from marginal (203) to the largest (7%) water deficits

reported for these conditions. As with Table 2, it is tenuous to make direct

comparisons among the studies. Unlike rest (Table 2), a 2% water deficit during

exercise significantly reduced sweating rate by 3%, and elevated both heart rate

by 10 bpm and core temperature by 0.5 C in comparison to euhydration levels.

It can be noted that considerable inter-investigation variability exists for the

magnitude of elevated heart rate when hypohydrated. For example, a 3% water

deficit elevated heart rates by a range of 3-40 bpm. This variability is probably

in part accounted for by differences in subject populations, exercise intensity

and duration, and environmental conditions. In contrast, little variability was
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found for the increment in core temperature when hypohydrated; a 2% and 7%

water deficit elevated core temperatures by 0.5°C and 0.7 0C above euhydration

levels, respectively.

TABLE 3 ABOUT HERE

It is generally assumed that with increasing hypohydration level there is a

gradation of elevated core temperature response. It is possible, however, that

the elevated core temperature response could represent a "threshold" or "all or

none" effect. We are not familiar with research that thoroughly examines the

effects of different hypohydration levels on the magnitude of elevated core

temperature responses during exercise in the heat. Strydom and Holdsworth (3)

examined core temperature elevations for two hypohydration levels (low and

high) employing independent observations for each exercise-heat test; however,

they only had 2 subjects and used a broad range of water deficits for the low

(3-5%) and high (5-8%) hypohydration tests. They found significantly higher core

temperatures during the high than low hypohydration tests. Other studies

reporting values for a gradation of elevated core temperatures with increasing

water deficits have interpolated from one hypohydration level (55) and/or

employed prolonged exercise-heat exposure to elicit a progressive dehydration

(10,56). Therefore, research is needed on the effects of different hypohydration

levels on thermoregulatory responses during exercise in the heat.

The relative contribution of evaporative (E ), radiative and convective
sk

heat exchange during exercise depends upon the specific environmental

conditions. When ambient temperature approaches body temperature, Esk

provides the primary mechanism to dissipate metabolic heat during exercise.

A* •. . - .•-
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Table 3 indicates that hypohydration is associated with reduced (3,6,53,54) or

unchanged (15,24,49) sweating rates during exercise-heat stress. It is important

to note that some investigators reported that there was no change in sweating

rate, despite significantly elevated core temperature (24,49). Therefore, during

hypohydration sweating rate would be lower for a given core temperature, and

the potential for heat dissipation via Esk would be reduced (8). These findings

are consistent with recent data which indicate that hypovolemia caused reduced

slope ( A Asw / T c) of sweating rate responses during exercise (29). Therefore, a

reduced slope for the sweating rate response would result in an elevated core

temperature during exercise-heat stress.

The exact physiological mechanisms mediating the reduced sweating rate

response when hypohydrated are not clearly defined. However, the singular and

combined effects of plasma hyperosmolality (54,57,58) and hypovolemia (29,50)

have been suggested. Senay (54) has reported a significant inverse relationship

between plasma osmolality and the sweating rate when hypohydrated. Harrison

et al. (59) have presented data indicating that plasma hyperosmolality will

elevate core temperature responses during exercise-heat stress, despite the

maintenance of euhydration. Hyperosmolality may have a direct central nervous

system effect at the hypothalamic thermoregulatory centers (33), or a peripheral

effect at the eccrine sweat gland (57). Fortney et al. (29) have provided strong

evidence that an iso-osmotic hypovolemia caused a reduced sweating rate and

elevated core temperaiure response during exercise in the heat. These

investigators theorized that hypovolemia may have altered the activity of atrial

baroreceptors which have afferent input to the hypothalamus. Therefore, a

reduced atrial filling pressure might modify neural information to the

hypothalamic thermoregulatory centers controlling sweating rate (29).

a "a
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The influence of hypohydration on cardiovascular responses to exercise has
J.

0 been investigated (34,60,61). During submaximal exercise in a neutral

environment, hypohydration (5%) elicited increased heart rate and reduced

stroke volume with no change in cardiac output relative to euhydration levels

(60). Apparently, during hypohydration, a decreased blood volume reduces the

end diastolic ventricular volume and stroke volume, requiring a compensatory

increase of heart rate to maintain cardiac output. During submaximal exercise

with moderate (34) or severe (61) thermal strain, hypohydration (3 to 4%) elicited

increased heart rate, reduced stroke volume and reduced cardiac output relative

to euhydration levels. The combination of exercise and heat strain results in

competition between central and peripheral circulation for a limited blood

volume (16,61). As body temperature increases during exercise, cutaneous

vasodilation occurs thus decreasing venous resistance and pressure. As a result

of decreased blood volume and blood displacement to cutaneous vascular beds,

venous return and thus cardiac output will be decreased below euhydration levels

(34,61). Nadel et al. (34) reported that these conditions also reduce cutaneous

blood flow for a given core temperature and thus the potential for radiative and

convective heat exchange.

Table 4 presents the effects of hypohydration on maximal aerobic power

and physical work capacity (PWC). In the absence of heat stress, a relatively

large water deficit (6 to 7%) has a minimal effect on maximal aerobic power
4-

"" (5,62), but reduces physical work capacity (62). In a hot environment, Craig and

Cummings (63) demonstrated that small (2%) to moderate (4%) water deficits

significantly reduce maximal aerobic power and physical work capacity. In

addition, these decrements increased with the magnitude of the water deficit.

Consistent with these findings, hypohydration (W%) combined with hyperthermia

in a moderate environment, significantly reduced maximal aerobic power by 6%

5.. ..- '' ' ' -. ., .; , . , . . , ° , . . . . , . . . . . .. , ., - . ,. ",',' ,,., ' .,...- " 'I , : .,,:, " , '" "
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and exercise time by 12% from euhydration levels (64). These investigations

clearly demonstrate that maximal exercise performance is reduced when

hypohydration is combined with thermal strain. The physiological mechanism

responsible for reduced aerobic power is probably an inability to maximally

increase cardiac output (and hence oxygen delivery).

TABLE 4 ABOUT HERE

HYPERHYDRATION: If hypohydration reduces performance during

exercise-heat stress, can excess body fluids improve performance beyond the

levels achieved when euhydrated? Moroff and Bass (53) examined the influence

of excessive fluid ingestion on thermoregulatory responses to exercise in the

heat. They reported that hyperhydration significantly reduced core

temperatures while elevating sweating rates above control levels. During the

control experiments, however, their subjects were slightly ( > 1%) hypohydrated.

Therefore, these results may have demonstrated the effects of hypohydration

rather than hyperhydration. More recently, Greenleaf and Castle (55) reported
that excessive fluid ingestion did not alter core temperature or sweating rate

values from control levels during exercise in the heat.

If hyperhydration did improve performance during exercise-heat stress,

these improvements would most likely be mediated by hypervolemia or expanded

blood volume. In fact, some of the thermoregulatory advantages gained through

heat acclimation have been associated with an expanded plasma volume (65).

Two recent studies on the effects of artificially expanded plasma volume have

reported no differences in core temperature (34,66), sweating rate (66), cardiac

output (34), arterial blood pressure (66), or peripheral blood flow (34) in

..-. ".......................'... , ..:'"% .. ,.'. ... '""" I'!. i",, ".4. .. '•"=
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comparison to normo-volemic control levels during exercise-heat stress. Both

studies found that plasma volume expansion lowered heart rate responses during

exercise in the heat (34,66). In contrast, Fortney et al. (29) reported that an

artificially expanded blood volume significantly lowered core temperature below

control levels during exercise. This was observed despite no difference in

sweating rate in a 300 C environment. These studies indicate that the

thermoregulatory advantages of hyperhydration are quite small and may be

affected by the protocol inducing hypervolemia.

SUMMARY: A relevant topic to the 1984 Summer Olympics is the

influence of hydration and body fluids on exercise performance. Of particular

interest are distance running events requiring prolonged performance at high

metabolic rates in hot environments. The potential for dehydration is great, as

marathon runners have been reported to incur fluid deficits in the range of 4 to

7% of body weight (67,68). As discussed, hypohydration will increase thermal

strain above the level encountered with euhydration. Continued athletic

performance with incomplete rehydration will initiate a cycle of elevated core

temperature causing greater thermal drive for sweating and further dehydration

(15). This cycle could lead to heat exhaustion or even heat stroke (69). it has

been recommended that runners ingest fluid prior to competition to insure

. euhydration, and frequently ingest fluids during competition to help prevent heat

injuries during long distance running (69). Knowledge of the physiological actions

of hypohydration should help physicians to prevent such heat injuries.

* a .. ''- . **e.. .."..
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HUMAN RESEARCH

Human subjects participated in these studies after giving their free and
informed voluntary consent. Investigators adhered to AR 70-25 and USAMRDC
Regulation 70-25 on Use of Volunteers in Research.

The views, opinions, and/or findings contained in this report are those of
the author(s) and should not be construed as an official Department of the
Army position, policy, or decision, unless so designated by other official
documentation.
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