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Abstract 
- Given a prescribed order in which to introduce zeroes, and constraints on the architecture 

it is shown how to develop a parallel QR factorisation based on fast Givens' rotations for a rect- 
angular array of processors, suitable to VLSI implementation. Unlike designs based on standard 
Givens' transformations, the present one requires no square root computations. Assuming each 
processor performs the elementary operations (+,«,/), less than ^coprocessors can achieve the 
decomposition of a »0-banded, order n matrix la time 0(n). 

Application is made to a variant of Bareiss* G-Algorithm for the solution of weighted multiple 
linear least squares problems. Given k different right hand side vectors, (** + kw) processors 
compute the factorisation in 0(n + k) steps. 
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1. Introduction 
Several recent papers, surveyed in [HI83], demonstrate that a QR decomposition based on 

Givens' rotations lends itself well to parallel implementation on a rectangular grid of processors 
in silicon. In [HI83] it is shown how less than 0(v*) processors accomplish the decomposition of 
an order n matrix with bandwidth w in time en, c a small constant. However, all extant designs 
make use of standard Givens' rotations. Their drawback is the need to compute a square root and 
4« multiplications for each element to be removed. Multiplication and even more so square root 
•till belong to the most expensive operations, in terms of both chip area and time; their avoidance 
is desirable. 

Fast Givens* rotations are the remedy. Rather than to the original matrix A, they are applied 
to a factored form A = DA, D being a nonsingular diagonal matrix. The square root is obviated 
and the number of multiplications reduced by fifty percent. 

Fast Givens' rotations (their properties are summarised in (Ham74])t as they occur La the 
context of QR decomposition, are used for 

• updating of the solution of linear systems in unconstrained optimisation of homogeneous func- 
tions [KK78], 

• solution of linear systems in the revised simplex method for linear programming [H W79], 
• solution to linear least squares problems [Gen73], 
• similarity transformations in the Jacobi method, reduction to Hessenberg form and the QR 

method for eigenvalue computations [Rat82]. 

The processor grid is easily extended to handle solutions of linear least squares problems as 
in |Gen73] with multiple right hand sides. An interesting extension is possible, though. Slightly 
modifying the processors to compute Bareiss' G-Tr ausformst ions of order 2, one obtains a processor 
grid for the solution of weighted least squares problems. 

As for the organisation of this paper, a brief description of standard and fast Givens' rotations 
is followed by some comments on the restrictions placed on parallel architectures by technology. 
Thereafter the QR algorithm is presented, interconnections and data Bow of the processor array 
are determined and finally applied to the solution of weighted linear least squares problems. The 
last section remarks on how to extend the design to lower triangular decompositions and matrices 
the bandwidth» of which disagree with the array sise. 

Householder's notation will be used throughout the paper. 

3. Standard and last Givens' Rotations 
The Givens' plane rotation is a computationally stable device for introducing zeros into a 

matrix, and it will be illustrated how it inserts a tero in the (2,1) entry a 2 x n matrix, n > 1. 
The standard Givens' rotation |Wilk65], which alters the matrix proper, is a 2 x 2 transfor- 
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To do mw»y with »quart roots and * major portion of the multiplications, fist Givens' rotations 
(Gen73, Ham74] modify the matrix in factored form 
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There are several choices [Haram74] for 6[ and C2 which permit o'u and o'^ to be computed with 
only two multiplications; among them two which • when properly combined • permit easy control 
of element growth : 
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Similarly, one obtains for situation (b) 
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S. Parallel ArddUetor» 

Tbe following paragraphs will illustrate the development of a fast-Givens-QR method for a 
parallel processor device to be implemented in silicon (VLSI for instance). Constraints imposed by 
technology and fabrication demand regular (and if possible planar) processor interconnections as 
well as processor communication on a nearest neighbour basis. The obvious choice of structure is a 
rectangular array of synchronously operating processors. Furthermore, to keep the chip area min* 
imal, processors should perform no other than the elementary operations, addition, multiplication 
and divsion. 

The constraint of local data exchange suggests a combination of pipelining and multiprocessing 
to achieve good processor utilisation and speed up in computation time. Pipelining is efficient for 
long matrices, which often possess a narrow dense band. The hardware should reflect the features 
of the matrix : a processor count proportional to the bandwidth, not tbe order of the matrix. 
Consequently, I/O occurs by codiagonals rather than rows or columns. 

A QR method, chosen with regard to the preceeding thoughts, is presented next; it will be 
followed by a derivation of data flow and distribution of operations on the processor grid. 

«. Parallel QR Decomposition 

The QR decomposition of a matrix Ä determines a factorisation 

into an upper triangular matrix R and an orthogonal matrix Q, the product of Given* rotations. 
For fast Givens' transformations in particular, this takes the form 

DA - QD*R, 

given that A • DA, again R is upper triangular, Q orthogonal and D, & are nonsingular diagonal 
matrices. 



Matrices to be considered are square, of order n, with a (presumably narrow and dense) band 
of width 

*«p + ?+ 1, 

g > 0 being the number of subdiagonab and » > 0 the number of superdiagonab. 

(PI) The QR factorisation preserves the bandwidth w of a matrix A 
causes fill-in am-t^-t. 

elimination of £**+,> 

Sameh and Kuek [SK78] proposed a simple elimination strategy which, subject to (P2) below, 
adheres to regular data flow and local communication : banded matrices are reduced to triangular 
(banded) form through annihilation of elements by subdiagonab, starting from without towards 
the mam diagonal, while proceeding1 from top to bottom within a subdiagonal. Formally, if Q^+IJ 
is removed at time t = 1 then a*-*-«,.- » removed att = t + i, 0<*<o-l,l<»<n-o + *. 
hi the example below for o «* 2,p •* 3,n = 6, matrix entry (k •+• I,I) rontain» the time of removal 
of (subdiagonal) element (k + i, •'). 

* X X X 

2 X X X X 

1 3 X X X X 

2 4 X X X 

3 6 X X 

4 6 X. 

(P2) Elements are removed by rotations in adjacent planet: elimination of o*+,,,• takes place 
by rotating planes k +1* - 1 and k -r i. 

(P3) Each row, excepting the first and the last, b modified by two successive rotations. 

To keep indexing in the algorithms consistent, it is presumed that rows affected by less than two 
rotations participate in identity transformations. Under the temporary assumption that pivoting 
is unnecessary, the above strategy leads to the following (still sequential) algorithm, implementing 
case (a). For each subdiagonal k, q > k > 1, the auxiliary variable A* represents intermediate 
values of diagonal elements between two rotations (and so do matrix elements with fractional 
superscripts • remember (P3)); in the hardware implementation it will correspond to a register. 
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/or*-o...l,   A»-^; 
/or 4 = q...l, 

/or • « I... n — ft, 
{determine FGR which remove* ith element of kth oukiiogonol, ease (a)) 

p(*fl (     1 *i'°\ 

(*.o.(*.o r « 1 + »J 
{update »(A element of [k — l)«t atisa'iasona/} 
.(*-D »2Ä, 
{update dtaj onai matrix} 

/or /•» 1.. .m — 1, 
{apply FGR to ith element of [k-j- l)«t and (k-j)th eodiogtmol) 

(k+ 1,1] 
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[k + U+Jl 

IT 

*A+M4/ 

Hence, 
Dl*'i)A(>->) » QW^W^W,      , > k z ,, 

g(*)1Bg(*.»-»)...(2(*.i)> 

where Q^ stands for the 'proper embedding' of plh,il in the n x n identity matrix. 

S. Processor Vector 

AJI iterations of the innermost /-loop, expressed as equations [k +1, i + j], could be executed 
in parallel, if P**'^ were to be globally broadcast to at least w processors. As this is to be 
shunned, the iterations are performed successively in different processors through which P^ 
is pipelined. Each eodiagonal is input to a different processor, starting from the left with the 
outermost subdiagonal entering processor 1. Thereby due to (Pi), a vector of w processors suffices 
to eliminate the outermost subdiagonal in 2r» steps (a step is denned as the computation time of 
the slowest processor). 

Consider the example f « 2 during the first pass through the Jfc-loop {k • a *= 2). The compu- 
tation of D will be disregarded for a moment. Since at least w processors are available let processor 
/compute equation (2 + M + /J. Thus, for processor 1 to remove a,*, by generating P<:'1' at time 

f m A, it must also contain at{ , see Figure 1. In the next time step X + 1, />(*•<) is ready to be 
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input into processor 2, together with a\J   and a,^.  Processor 2 then compotes equation [2,2], 

M ><_'_*> resulting in aJJ, and a^J'. According to (P3), o]^J' has to participate in a second rotation for 

the removal of a["^. Consequently, a,*j, available at t = A -*- 2, has to enter processor 1 together 

with o£j for the determination of P^2K 
It b now possible to construct the processor vector, depicted in Figure 2. After having entered 

a processor from below to participate in the first rotation, a matrix element enters the left neighbour 
for the second rotation, and thereafter exits the top of that processor. Moreover, input to »Dd 
computation inside a processor occur only every other time step; hence, successive codiagonal 
elements are separated by one time unit. 

In detail, assuming input to the processor vector commences a* t = 1, then a sub- or maindi- 
agonal element aj^,- b input to the vector through processor «-ifc+1 at i « *+2»-1; it is output 

from the vector as o^1,- via processor q - k at I = k + 2i', 0 < k < q. Similarly, a superdiagonal 

element aj*t+t- enters processor q + k -r 1 at * « k + 2i' - 1, while a^J leaves processor q -f k at 
f « * + 2i. 

The computation of 7? remains to be discussed. Since jj^ and A» depend on the same values 
as P':,*\ they can also be determined in processor 1, but do not have to be broadcast. A» now 
denotes a register in processor 1; at the outset it b initialised with h (h b no* affected by the 
remcval of subdiagona) 2). Tbe contents of A2 are determined during the computation of P'&ti 
and kept there till needed for the formation of pt2-'*1). D enters processor 1 along with the 2nd 
subdiagonal (K+i^ "»d O;^,-,- arc input at the same time) and leaves with the, new outermost, 1st 

subdiagonal (S^ and of+,-,,- are output together). Note, that during the annihilation of subdiagonal 
k, rows 1... k - 1 of A<*> and £<*> remain unaffected. 

6. Processors 

Only two different kinds of processors, sketched in Figure 3(a) and (b), will be employed for 
the triangularisation. Tbe leftmost, first, processor in a vector computes equations [k -f «', ij, while 
to its right, processor j determines [jfc + >,»+/]. When idle or no input b available, processor 1 
generates identity rotations. The default input for matrix elements b zero. 

7. Processor Array 
For the annihilation of q subdiagonab, either a single processor vector b used repeatedly 

(before the (o - k + 1 )st pass register Af in processor 1 b initialised with *t, q > k > 1) or else a 
q x w array, consisting of q 'stacked' processor vectors, performs the reduction at once. 

In the latter case, counting from top to bottom, vector k is responsible for eliminating subdi- 
agonal k. A and D are input to the bottom of the array, while R and Pf are available at tbe top. 
The matrix Q leaves the right side in factored form. Thus, denoting the /th processor from the 
left in the ith vector by (*,/), processor (k,l\ computes equations [k + t,•') and processor (it,,;') 
equations \k +1, i'+j]. Figure 4 illustrates the data flow for a 2 x w array when q = 2. At tbe outset 
of the computation, register A* in processor (k, I) contains eV The computation time comes to 
2(n-l+o). 

t. Walghttd MaltlpU Ltaaar Least Sqttaras Problems 
With minor modifications the processor array b adjusted to solve multiple weighted linear 

least squares problems for m x n matrices A with m>n and ronk(A) - n, 

{Ax - hi)TW(Ax - •() • lD(Ax - it)h - m*n,    D m W J,    !</<*. 
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The discussion will omit the backsubstitution tod focus on the triangular decomposition. 
The G-Transform»tions of Barriss for weighted linear least squares problems [Bar82] are, like 

Householder Transformations, intended to remove all elements in a column. 
Let 

ß<0)-M,»,l 
and <5(4) an orthogonal transformation that eliminates the last n-k elements in column k of DA, 
then 

B(*+i).g(Hi)B(»)i    0<*<n-l, 

and 

With nonsingular diagonal matrices D^, 

so that 

if 

C<«-(/)<*•»))    QWflW,    l<t<n-l, 

[A0«>, ,j*+U] , Dl>+i)GW) [^(»), .(*)] ,    o S k £ n - 1, 

The underling idea b to update IV M instead of D'^ and thus obviate square roots. 
It turns out, however, that matrices <?'*) of order 2 are equal to standard Givens' rotations. 

Applying 2x2 matrices C**' to band matrices is the order prescribed by Sameh and Kuck [SK78], 
one obtains a method of the same structure as before. The 2x2 transformations are determined 
as follows. Let 

W-(Ul    °\      Am(°n    °»   —   °l*\      A'-(a"    °«    —   a*A 

and 
A'~QWIA, 

where Q is * standard Givens' rotation 
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with 

Choose 

thus 

e.whwi-CX T), 
\     an *     / 

and 

11 



— "" 

Note, that 
«u • I. 

Accordingly, the complete decomposition algorithm ia «ritten as 

WM m W,    A1'* « A; 
iM /or 1-1...»,    •}"-•!; 

forkm9...l,    At-w^; 
for t*{...l, 

for i » 1... n - 4, 
{determine G to remove ith element of kth ovkdiagonat) 

«-*(.£&)'•«&(.&)*. 

{update ith element of (k - !)#< aukdiagonal) 

a*+.-i.. • *« 
{update diagonal matrix) 

for j** !...• — 1, 
{apply G to ith element of {k — j- 1)*< and (4 - j)tft rodiagonal) 

[k + M] 

[fc + U+J] 

forl = l...h, 
{apply G to{k + i- l)st and (k + i)th element of Ith right hand tide vector) 

Again, if the defining elements of the transformation are cero precautions similar to the pre- 
Ttoua ones have to be taken. 

The interconnections and the data flow of the processor array remain, only the processors 
hare to be slightly reprogrammed. In addition, ft processor columns of q processors are appended 
to the left of the array for the computation of equations [(,* + t], resulting in a total of G(V + k) 
processors. Now, processor (*,1) transmits C(i') to its left and right, no [k + i,i + j] and [/, k + i] 
are computed concurrently. The kth processor (from top) in the /th column (from the rirht) has a 
register A/,» which, like A*, enforces (P2); compare Figure 3(c). If the entry equal to one in G(i'!"> 
is implicitly assumed, the transformation can br represented and transmitted by three cumbers. 
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11K processor array forA«=»«c = 2is depicted in Figure 4. In general, ßu enters q -1 
steps before an; and roeceedinf dements of t; enter every two steps. /}j°' » output j steps after 
M 
Hi Starting the input with Al •* * • J»the computation time comes to 2m + 3{o - 1) + h steps. 

9. Remarks 
The time to for the QR factorisation of a rectangular m x n matrix in q x v array is 

2(maz{m, n} + a -1). The factorisation of fall dnse matrices requires m - 1 processor vectors of 
length m + n - 1 and time 2(max(m,n} + m - 1); hence is less efficient. 

A lower tringular, QL decomposition, is obtained by reversing the direction of the horizontal 
interconnections and computing equations [k, t] in the rightmost processor, as in [HI83] for standard 
Givens' rotations. 

Matrices, whose bandwidth exceeds the length of a processor vector, must be partitioned into 
smaller submatrices of suitable size. They are then separately , in proper order, input to the 
array. 'Recycling' of already computed rotations might be necessary. Matrices with too small a 
bandwidth are input left bound. 
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to tbe left of the »my for the computation of equations [i,k + i], resulting in • total of g(«> + t) 
processors. Now, processor (*, 1) transmits C'4'*) to its left and rieht, to [k + i,i + /] and [/, * + i] 
are computed concurrently. The itb processor (from top) in the fth column (from the riebt) has a 
register A;,» which, like A*, enforces (P2); compare Figure 3(c). If the entry equal to one in G'14-1"* 
is implicitly assumed, the transformation can be represented and transmitted by three cumbers. 
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