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. Abstract
> Given a prescribed order in which to introduce zeroes, and constraints on the architecture

it is shown how to develop a paralle] QR factorifation based on fast Givens' rotations for a rect-
angular array of processors, suitable to VLS] implementation. Urnlike designs based on standard
Givens' transformations, the present one requires no square root computations. Assuming each
processor performs the elementary operations {+, ¢, /), less than rocessors can achieve the
decomposition of a #-banded, order n matrix in time O(n).

Application is made to a variant of Bareiss’ G-Algorithm for the solution of weighted multiple
linear least squares problems. Given & different right hand side vectors, (#% + kw) processors

compute the factorisation in O(n + k) steps.
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“ 1. Introduction

Several recent papers, surveyed in [HI83], demonstrate that a QR decomposition based on
Givens’ rotations lends itself well to parallel implementation on a rectangular grid of processors
in silicon. In [H183] it is shown how less than O(w?) processors accomplish the decomposition of
sn order n matrix with bandwidth w in time en, ¢ a small constant. However, all extant designs
make use of standard Givens’ rotations. Their drawback is the need to compute a square root and
4w multiplications for each element to be removed. Muitiplication and even more 30 square root
still belong to the most expensive operations, in terms of both chip area and time; their avoidance
is desirable. :

Fast Givens’ rotations are the remedy. Rather than to the original matrix A, they are applied
to a factored form A = DA, D being a nonsingular diagonal matrix. The square root is obviated
and the number of multiplications reduced by fifty percent.

Fast Givens’ rotations (their properties are summarised in [Ham74]), as they occur in the
context of QR decomposition, are used for

o updating of the solution of linear systems in unconstrained optimisation of bomogeneous func-
tions |[KK78],

o solution of linear systems in the revised simplex method for linear programming [HW79),

e solution to linear least squares problems |Gen73),

o similarity transformations in the Jacobi method, reduction to Hessenberg form and the QR
method for eigenvalue computations [Rat82].

The processor grid is easily extended to bandle solutions of linear least squares problems as
in [Gen73] with multiple right hand sides. An interesting extension is possible, though. Slightly
modifying the processors to compute Bareiss’ G-Transformations of order 2, one obtains a processor
grid for the solution of weighted least squares problems.

As for the organisation of this paper, a brief description of standard and fast Givens’ rotations
is followed by some comments on the restrictions placed on parallel architectures by technolozy.
Therealter the QR algorithm is presented, interconnections and data flow of the processor array
are determined and finally applied to the solution of weighted linear least squares problems. The
Jast section remarks on how to extend the design to lower triangular decompositions and matrices
the bandwidths of which disagree with the array size.

Housebolder’s notation will be used throughout the paper.

3. Standard and Fast Glvens' Rotatlons

The Givens’ plane rotation is a computationally stable device for introducing zeros into a
matrix, and it will be illustrated hew it inserts a gero in the (2,1) entry a 2 X n matrix, n 2 1. S
The standard Givens’ rotation |Wilk65}, which alters the matrix proper, is a 2 x 2 transfor-
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To do away with square roots and a major portion of the multiplications, fast Givens’ rotations
|Gen?73, Ham74] modify the matrix in factored form

(5 fe Bl e - o),
Application of the standard transformation yields
(8 &)(¢ & m k)= a)@ i)
(§ &) ok omad)=-(2 ) (o).
§= V&,’a}, +6ad,, v=bhoufs, o=bonls,

blal; = vhay + ohay, 6ok = —obay; + 1hos;.

There are several choices [Hamm74) for 6} and §; which permit a; and o); to be computed with
only two multiplications; among them two which - when properly combined - permit easy control
of element growth :

Now,

80

(8 &)= %) @
and
(5 8)=(7 &) ®
Regarding case (s),
e R

Square roots are avoided by obeerving that

snd thus one has
(% ok oa)-(h ) (o)

and

Note, that
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i Similarly, one obtains for situation (b)

(0'" O'n oo a',.)_ %;s%:' 1 (0" ae ... O)g
0 a%f ... a}, pat| su J\an ez ... am)/’
£ 3]
with $2al,
= l+—§_§" a2z,
i ( ‘z"n) =
as well as

Pivoting ensures stability :

6§ O a; i =
(ﬁ f,)(ﬂi,)' (O'c:ie)(gf;)' -'fé;!o;.ﬂsc;oi.

case (§), otherwise.

3. Parallel Archltectare

The following paragraphs will illustrate the development of a fast-Givens-QR method for a
parallel processor device to be implemented in silicon (VLSI for instance). Constraints imposed by
technology and fabrication demand regular (and if possible planar) processor interconnections as
well as processor communication on a nearest neighbour basis. The obvious choice of structure is a
rectangular array of synchronously operating processors. Furthermore, to keep the chip area min-
imal, processors should perform no other than the elementary operations, addition, multiplication
and divsion.

The constraint of local dats exchange suggests a combination of pipelining and multiprocessing
to achieve good processor utilisation and speed up in eomputation time. Pipelining is efficient for
long matrices, which often possess s narrow dense band. The hardware should reflect the features
of the matrix : a processor count proportional to the bandwidth, not the order of the matrix.
Counsequently, 1/O occurs by codiagonals rather than rows or columns.

A QR method, chosen with regard to the preceeding thoughts, is presented next; it will be
followed by a derivation of data flow and distribution of operations on the processor grid.

4. Parallel QR Decomposition
The QR decomposition of a matrix A determines a factorisation

A=QR,

into an upper triangular matrix R and an orthogonal matrix @, the product of Givens rotations.
For fast Givens’ transformations in particular, this takes the form

DA = QD'R,

given that A = DA, again R is upper triangular, Q orthogonal and D, I are nonsingular diagonal
matrices.




- W‘ﬁ-.n.'

Matrices to be considered are square, of order n, with a (presumably narrow and dense) band
of width

wv=p+g+l,

¢ 2 0 being the number of subdiagonals and p > 0 the number of superdiagonals.

(P1) The QR factorisation preserves the bandwidth w of a matrix A : elimination of apy;
causes fill-in aj4i-1 i4w~1-

Sameh and Kuck {SK78] proposed & simple elimination strategy which, subject to (P2) below,
adheres to regular data flow and local communication : banded matrices are reduced to triangular
(banded) form through annihilation of elements by subdiagonals, starting from without towards
the main diagonal, while proceeding from top to bottom within a subdisgonal. Formally, if ag41,1
is removed at time ¢ = 1 then ag pqisisremoved at t =k 46,0k <g-1,1SsSn-q+k.
In the example below for ¢ = 2,p = 3,n = 6, matrix entry (k + s,s) contains the time of removal
of (subdiagonal) element (& + ¢,s).

[ )

NWH N
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(P2) Elements are removed by rotations in adjacent planes : elimination of a4 takes place
by rotating planes £ 4+ —1and & +5.

(P3) Each row, excepting the first and the last, is modified by two successive rotations.

To keep indexing in the algorithms consistent, it is presumed that rows affected by less than two
rotations participate in identity transformations. Under the temporary assumption that pivoting
is unnecessary, the above strategy leads to the following (still sequential) algorithm, implementing
case (a). For each subdiagonal k, ¢ 2 k 2 1, the auxiliary variable A, represents intermediate
values of diagonal elements between two rotations (and so do matrix elements with fractional
superscripts - remember (P3)); i the hardware implementation it will correspond to a register.
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D% =D, AW= A;
fork=gq...1, A, -5:');
fork=gq...1,
Jori=1. .n-k,
{determine FGR which removes ith element of kth subdiagonal, case (a)}

- 2
t}"".) = aw_.-"-/a&.-ﬂ P l’{.".) = l’;"') (Jm) /Al

(&)
P o 1 M
—l’;"o 1 '

r=1]+ :{"" :;""’,

{update ith element of (k — 1)st subdiagonal)

i -
offit) ;= ralidl,, R+4)
{update diagonal matriz)

6,(,"-1)‘ 0) -;(Ab 0)
(‘3 a)=" \o &%)

Jorg=1...0~1,
{apply FGR to sth element of (k — 5 — 1)at and (k — 5)th codiagonal)

alt=t) . o)
( ‘H:i';+’) Py P(‘"’ ( “:‘:)"t'f’ ) 3 [k +"‘+l]
Chbiiti Cotiiti
D =D, R= A0,
Hence,
D=1 4(4=1) o Q) p(B) 4B qg2k21,
and

Q(.) = Q(.v".) e Q(‘v‘)’
where Q4 stands for the ‘proper embedding’ of P(*9) in the n x n identity matrix.

§. Processor Vector

All iterations of the innermost j-loop, expressed as equations [k + 3,5 + 3], could be executed
in parallel, if P(*9 were to be globally broadcast to at least w processors. As this is to be
shunned, the iterations are performed successively in different processors through which P(#)
is pipelined. Each codiagonal is input to a different processor, starting from the left with the
outermost subdiagonal entering processor 1. Thereby due to (P1), a vector of w processors suffices
to eliminate the outermost subdiagonal in 2n steps (a step is defined as the computation time of
the slowest processor).

S Consider the example ¢ = 2 during the first pass through the k-loop (k = g = 2). The compu-
tation of D will be disregarded for a moment. Sinee at least w processors are available let processor
J compute equation (2 + 5,5+ 5]. Thus, for processor 1 to remove aﬁ) by generating P{3Y) at time
¢ = , it must also contain ag,“, see Figure 1. In the next time step A + 1, P{>1) is ready to be

§
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Figure 1: Derivation of Data Flow.
6




input into processor 2, together with c&;) and a&). Processor 2 then computes equation [2,2],

resulting in agg and ci‘}). According to (P3), ag,h bas to participale in a second rotation for

the removal of oﬂ. Consequently, ag, available at t = A + 2, has to enter processar 1 together

with 03 for the determination of P(*3),

It is now possible to construct the processor vector, depicted in Figure 2. After having entered
a processor from below to participate in the first rotation, a matrix element enters the left neighbour
for the second rotation, and thereafter exits the top of that processor. Moreover, input to and
computation inside a processor occur only every other time step; hence, successive codingonal
elements are separated by one time unit.

In detail, assuming input to the processor vector commences at ¢ = 1, then a sub- or maindi-
agonal element "S;'«o)-i..‘ is input to the vector through processor g—k+1 at ¢ = k+2i-1; it is output

from the vector as ai’;‘) via processor g~ k at t = k + 24, 0 € £ £ g. Similarly, a superdiagonal

'
element of-'}“- enters processor g+ k+ 1 at t = £+ 27 - 1, while af-",:."-) leaves processor ¢ + & at

t=k<+ 2

The computation of I’ remains to be discussed. Since 61(2. and A; depend on the same values
as P4 they can also be detcrmined in processor 1, but do not have to be broadcast. Aa now
denotes a register in processor 1; at the cutset it is initialised with & (§; is not aflected by the
remcval of subdiagenal 2). The contents of Ay are determined during the computation of P29
and kept there till needed for the formation of P(2+1), D enters processor 1 along with the 2nd

subdiagonal (63,'). ; and ag‘-"- are input at the same time) and leaves with the, new outermost, 1st
subdiagonal (6'(:_),- and °‘:’2-'.-‘ are output togetker). Note, that during the annihilation of subdiagonal
k,rows 1...k—1 of A®) and D¥) remain unaffected.

8. Processors
Only two different kinds of processors, sketched in Figure 3(a) and (b), will be employed for

_ the trisngularisation. The leftmost, first, processor in & vector computes equations {k + ¢, ], while

to its right, processor 5 determines [k + ¢,s + 5]. When idle or no input is available, processor |
generates identity rotations. The default input for matrix elements is zero.

7. Processor Array

For the annihilation of g subdiagonals, either a single processor vector is used repeatedly
(before the (g = k + 1)st pass register Ay in processor 1 is initialised with §;, g > k > 1) orelse a
g x w array, consisting of g ‘stacked’ processor vectors, performs the reduction at oxnce.

In the Jatter case, counting from top to bottom, vector & is responsible for eliminating subdi-
agonal k. A and D are input to the bottom of the array, while R and D’ are available at the top.
The matrix Q leaves the right side in factored form. Thus, denoting the sth processor from the
left in the kth vector by (&, ), processor (k,1) computes equations {k + ¢,¢] and processor (£, )
equations [k +5,5+ 3]. Figure 4 illustrates the data flow for a 2 x w array when g = 2. At the outset
of the computation, register A, in processor (&,1) contains §. The computation time comes to
2(n~1+gq).

8. Welighted Maltiple Linear Least Squares Problems

With minor modifications the processor arrsy is adjusted to solve multiple weighted linear
least squares problems for m x n matrices A with m 2 n and rank(A) = n,

(Az = b)TW(Az = b) = |[D(Az~ )z =min, D=Wi, 1<I<h
)
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Figure 2: Processor Vector for w = 5, Input Matrix with
p=q=2
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(b) Partial Computation Trace.
Processor 1 is initialised with 6.

Figure 2: Processor Vector for v = 5, Input Matrix with
p=q=2
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Figure 3: Processors.
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The discussion will omit the backsubstitution and focus on the triangular decomposition.
The G-Transformations of Bareiss for weighted linear jeast squares problems [Bar82] are, like
Housecbholder Traasformations, intended to remove all elements in a column.

! Let

| B® = [A,b)
and Q¥ an orthogonal transformation that eliminates the last n — k elements in column k of DA,
s B+ w QUHIBB), Q< k<1,
" _

R= B(l-l,’ Q= Q("" . __Q(”.
With ponsingular diagonal matrices D(),
c® = (D(m;)“ QWD®, 1<k<n~-1,
so that
[A(,....,,"}t-m] = Db+ gle41) [A"",b}"’] , 0Sk<n-1,
if
[ A(O»,o}"’] =[A,4].

The underling idea is to update W9 instead of D) and thus cbviate square roots.

It turns out, however, that matrices Q{*) of order 2 ure equal to standard Givens’ rotations.
Applying 2 x 2 matrices G} to band matrices in the order prescribed by Sameh and Kuck [SK78),
one obtains a method of the same structure as before. The 2 x 2 transformations are determined
a2 follows. Let '

- w3 0
4 ( 0 wz) '
where Q is a standard Givens’ rotation

o=(% )

Am agy 032 ... Qa A'B 0'" 0:2 vee 0:.
an oz ... amn)’ 0 af ... a}, )’

and
A'=Qwia,

with
6-w;a§,+ma§l. Y= ﬂ;ﬁl, aa\’@.

Choose

w'-(‘ o)

0 o)
‘hm o o
G‘(W')-‘ini’(:‘g‘: -‘?‘),

and

A=w)lca.
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Note, that

ag)= 1.

Accordingly, the complete decomposition algorithm is written as

wio

= w, A(" = A;

Jori=m1...h, =iy

Jork=g...1, A.su{";

Jork=gqg...1,
Jori=1l...n-k,

{determine G to remove ith dlement of kth subdiagonal}
A YA R
§=4, (ah,-é:'.-) +w£+),- c,'l,-'.-) ,

c(m-( asofih 1o “ifp’.-t'(si-.e/")

(] (2-3)
-03.-..-/ °6+v'£l'¢' 1
{update ith element of (k ~ 1)st subdiegonal)
afithi=1, [ +11]

{updats diogonal maetriz}

(w(b";,-)l 0 )- (‘ u")‘a?.°h )!
0 A 0 Zexeaecs
fory=1...0~1,
{epply G 1o ith clement of (k ~ 5 — 1)t and (k ~ 5)1k codisgonal)

°£::',-’l 5 (£,5) a(..-!) )
( (=1 )'G g ( "{.‘,”"*’)= [k +1,14])
Cotsids Bitiitg
Jori=1..A,
{apply G to (k + 1 = 1)st and (k4 s)th element of lth right hand side vector)
(ﬂ,‘,;.ﬁ’.,)-a(w(sé:‘); nk+1]

WaWw® RaA®,

Aguin, if the defining elements of the transformation are zero precautions similar to the pre-

vious ones

have to be ¢aken.

The interconnections and the data flow of the processor array remain, only the processors
have to be sligbtly reprogrammed. In addition, A processor columns of g processors are appended

to the left
processors
are compu

of the array for the computation of equations [1, k + s, resulting in a total of q(w + k)
. Now, processor (k,1) transmits G(*9) to its left and right, so [k + 4,5 + 5] and [I, k + 1)
ted concurrently. The kth processor (from top) in the Ith column (from the richt) has a

register Ars which, like Ay, enforces (P2); compare Figure 3(c). If the entry equsl to one in G&+)
is implicitly assumed, the transformation can be represented and transmitted by three cumbers.
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The processor array for A = p = ¢ = 2 is depicted in Figure 4. In general, f§;; enters g~/
steps before a;;; and succeeding elements of §; enter every two steps. ﬂﬁ) is output 5 steps after

aﬁ’. Starting the input with fSy; at ¢ = 1, the computation time comes to 2m + 3(g —~ 1) + A steps.

9. Remarks

The time to for the QR factorisation of a rectangular m x n matrix in ¢ X v array is
2(max{m,n} + ¢ —1). The factorisation of full d>nse matrices requires m — 1 processor vectors of
length m + n — 1 and time 2(max{m,n} + m — 1); hence is less efficient.

A lower tringular, QL decomposition, is obtained by reversing the direction of the horizontal
interconnections and computing equations [£,¢] in the rightmost processor, as in [H183] for standard
Givens’ rotations.

Matrices, whose bandwidth exceeds the length of & processor vector, must be partitioned into
smaller submatrices of suitable size. They are then separately , in proper order, input to the
array. ‘Recycling’ of already computed rotations might be necessary. Matrices with too small a
bandwidth are input left bound.

13
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to the left of tbe arny for the ccmpunnon of equations [1,k + 1), mt.!ung in s total of (v + k)
processors. Now, processor (k, 1) transmits G(44) to its left and right, so [k + 4,6 + ) and [I, k + 1)
are computed concurrently. The kth processor (from top) in the /th column (from the richt) has a
register Ays which, like A;, enforces (F2); compare Figure 3(c). If the entry equal to one in Gk
is implicitly assumed, the transformation can be represented and transmitted by three cumbers.
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