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ABSTRACT

‘The non-linear 2lasto-plastic ra2sponses of a3 submerged

cylindrical shell to an underwatar shock wave have been
inves+igated. OUsing the EPSA (Blasto-Plastic Shell
Analysis) cd>da, the gross responses of homogeneous and
ring-stiffened shells werz evaluatai. The ralevan<t pac-ame-
ters have been displayed and evaluatad using PATRAN-G cdolor
graphics systam. An interface modala was developed between
EPSA and PATRAN-G . The deformations and von Mises stresses
throughout the shell have been qualitatively evaluated.r
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I. INTRODUCTION

iy e e i e > G

A. GENERAL PRESENTATION OF THE PHENOMENA

Great progress has bean made ia the static and dyranmic
analysis of complex structures through the continued devel-
opment of discrete element methods of struc*ural analysis.
Treamendcus iaprovements in computing power havs mad=
pcssible the study of fully roalinsar problems.

The analysis of the rasponse of a structure submerged in
a fluid, is severely complicated by the intrusion of signif-
icant fluid-structure interaction z2ffacts. Rzcently, the
devalopment of a variety of surfacz interac+tion approxima-
tions has provided +he means for 2 more efficient analysis
of the coupling between the structure and <*he surrounding
fluid.

Computer codes for structural analysis are well-
developed so +that the fluid-structure interaction is, forc
tha mos% part, handled by adding new <capabilities +*o
existing structural analysis prograas.

It is a vwell known fact that the primary threat <*o 2
submerced structure is the shock wave that =zesults from an
underwater explosion. However, th2 complexity of the phys-
ical phenomena involved, along with the difficulties encoun-
tered in obtaining experimental ra2sults have been serious
drawbacks for the analysis of thes: types of problems. Bu*
there is a definite need <for investigations of large defor-
mations and buckling problems in a structure submitted “o an
underva<er explosion.

1




B. OBJECTIVES

This study deals with the ndnlinear response of 1a
submerced cylindrical shell to a shock wave. The existing
finite element code EPSA (Elasto~Plastic Shell Analysis)
{Ref. 1] which includes nonlinear affects and a surfacs
interaction approximation was selected for the study. In
order to alleviate the tedious intarpretation 5f resul<s at
poirnts throughout <the shell, PATRAN-G, a c¢olor graphics
system, was used. PATRAN-3 allows for a global representa-
tion of a quantity distribution over the s<iructure rather
than the discrete representation given by a computer output.
The2 objectives of this study ware to merge the £inite
elament code EPSA with the color graphics systaa PATRAN-G,
and to conduct an analysis of <%he response of various types
of cylindrical shells to 2 spherical shock wave generated by
an wnderwater explosion.

12
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IT. THE EPSA CONPUTER PROGRAN

A. PRESENTATION

EPSA (Elasto-Plastic Shell Analysis) [Ref. 1] is a
computer program developed by Weidlinger Associates and
funded by DNA/NAVSEA/CNR for ¢he purpose of the analysis of
submerged s*iffened shells under dynamic loadings. It incor-
porates a number 5f specific featuras which are geared for a
more efficient analysis.

In particular, EPSA allows:
~The analysis 5f shells in an acoustic medium, subjected to
both low and'hiqh frequency shock lsadings.
~An efficient modelling of the elasto-plastic behavior
-The inclusion of 1large displacsmen%t effects to analyze
dynamic buckling situations and post-buckling bekavior.
~-The modelling of stiffeners and intarnal structures.
-The fluid-structure interaction effect

The following sections describe the equations of motion
for a submerged structural shell in an infinite fiuid
sujected to a pressure loading and inves+igate the modelling
of the surrounding fluid. The last sections are devoted to
the finite element discratization as well as to specific
features concaerning EPSA.

B. EQUATIONS OF MOTION FOR THE SHELL

Considering a thin shell of thickness h , volume V, area
B submerged in an infinite fluid (figure 2.1). The shell
stress resultants are defined from the stress tensor by :

13




h/2 h/2

Nij= [Oi] dt and Hijzj O'ijt 5 &
h/2 . ' “h/2 .
The distribution of strains (911'922912) is assumed +o bhe

linear, the curvatures at aid-height are (k;ykak3 -

by z 1?:! oy (Mgg)
ny (Ngg) NyjiNgs)
\
klO'!"l"DH
2e- | |
Pigare 2.1 Shell Stress State. !
Applying +he principle of virtual work gives: |
]
T T T f
[[S}{GeldR =[{P} {§u}dRr - fp[ﬂ}[Gu}dR (2.1) {
R R R

Where
{u} = (aj,usy, v F is the displacement vactor at each point
{s}=(N11,N22 ,N1-5,877 ,M22,M712 )T is the stress resultant
vec-or

T ;
(e}a(ell,e22 .2e12k11 ,k22,2k12) is the strain resultant

vector
pis the mass per unit area for the shall.

Tha symbol § will refer %5 a virtual gquantity, and the dot
or star denotes a differentiation with respect ts> tinme.

14




The first tera of equation (2.1) rapresents the virzual work
of internal forces , the seccnd rzpresents the virtual work
of external farces (i.e. pressure, point loading, e€%c), and
the third one represents the contributioa of inertia forces
in the wvirtual wo>rk. Thus, this last term expresses the
effects of dynamic phenomena on th2 structure.

C. PLOID BODELING

In the case of a submerged structure, the external
forces are the pressures applied at the <fluid-structure
interfacsa.

As the shock wave hits the stuctuze it gets reflected,
thus inducing a pressure term p. . In addition, the motionms
of the shell will also generate a radiated wave, with a
pressure contribution p,.,

Therefore, <*the pressure at ¢th=2 fluid structure interface is
the sum of the incident, reflected and radiated pressures:

P =Pj * Pr * Pra (2.2)

Where

P = To*tal dynamic pressura.

P; = Pressure associated with incilent free fi2ld pressure
vave.

Py = Reflected pressure due to the iateraction of the inci-
dent wave with the structure, <“he structure being fixed and
rigid.

Pra= Radiated pressure due to the normal movements of the
surface of +he structure in the fluid

Ps®* Pr* Prais called the scattered pressure.

The methods for getting the scattered pressure p will
nov be investigated. Assuming a spherical wave in an

15
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acoustic medium with a sourd speedi c , the pressure is
determined by the well known wave 23juation:

czvzp = %25_ (2.3)

and the proper conditions at the boundaries of +he fluid
domain .,

One alternative for solving tha2 previous prcblem would
be simply to use a2 finite element discretization of par* of
the fluid domain , imposing a raliation condition at the
boundary [Ref. 2]. However, this would rejuire a very
significant fraction of the computiag effort that could not
be devoted to the structural modelling.

Therefore, a more efficiant way of computing the scat+ered
pressure is raquired.

The Doubly Asymptotic Approximation (DAA) imparts upon
the structural model a surface 1loaling composed of incident
and scattered waves.

In the high freguency limit, it can be shown that the
scattered nodal force vector (Fq} is related to the wave
par+ticle velocities normal to tha s*ructure's surface by
(Ref. 3] :

{(Fg) = [AJ(0,) (2.4)

Where [A]) is the diagonal matrix of nodal areas (areas asso-
ciated with each node) and (Us} is the vector of nodal scat-
tered normal velocities. Therefor2, in this high frequency
case the shock wave is simply a plane wave and eguation
(2.4) states that the pressure is proportional to the £luid
velocity.

16




In the low frequency limi¢ th2 fluid structure in<erac-
tion is governed by the relation:

[PS} & (uv](US} (2’5)

Rhare {U;‘}=§zﬁos} is the nodal normal acceleration vector
and [(N,] is the added mass matrix computed ia an incompres-
sible fluid.

Thus, in the low frequency cas:s, the loading is due 4o
th2 motionm of +the =-igid sztructure in an incompressible
fluid, a problem typically found in hydrodynamics.

When a broader range 2f£ frequeaciss is considered, one
can combine the two previsous equations with ¢he differential
equation governing the scattered pr2ssure {Ref. 3], giving:

(AR B ¢+ o8, 1 {F} = pc(W} (2.6)

whare (B} = £ )
Defining the vector cf nodal scatitared pressures (ps} by:

[ps} = [a]“ [’S}
ve get:

(M, 1} + pclAI{Ps} = pclly](Us} (2.7

which is the set of equations that jives the scattered pres-
sure at 2ach node of the wetted surface of the shell.

Equation (2.7) gives exact results in both the high and low
fraquency limits. Thus, DAA allows the modelling of the
fluid-structure interaction via a coupled set of differen-
tlal equations at the wettad nodes of the structure instead
of modelling <+the whole fluid with a finite element grid.
The use of DAA will free some memory space in the computer

17
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for a better modelling of structural behavior while at zhe
same time giving some reasorably accurate results fo:- the
loading of the structure.

Therefore, the equations for the study of urnderwater
shocks will coasist of a coupl2d set of structural equations
that come from the Principle of Virzual Work and of fluid
equations at the wetted nodes that zoms from DAA equations.

D. PINITE ELEMENT PROCEDURE

1. Discretization

The principle of virtual work is rewrittsnr for the

structure introduc=d4 in section B [Ref. 4]

I(S}T {s€} 4R ‘f eF (Su}dr *LD[";)T[MNR =0 (2.8)
R R

The surface of the region is covered by a quadrilat-
eral mesh c¢f N elements, each having an area A, . The
previous integral can than be replacad by 2 summation of
integrals over A; .:

[(S}T {Se}dR = i (SIT; (Se]i dR (2.9)

i=1 Ai

The integrations over A, are then pe-formed by dividing the
. k
element into four regions A; (figure 2.2) We have then:

k
[ {s)'f [Ge}i drR = i (s}iT {Seyl}; 4 (2. 10)
Ai k=1

and therefore equation (2.9) becomes :

[(s]T (se}dr = i i (s} (3o} A" (2.11)
R 1

i=1 k=
Using the same procedure, it can also be derived :

18
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T 2 T k T
f{p}(su} ar= iz (o} (Sul A; = (P} (8q) (2.12)
R i=1 k=1
ae N 4 ob T .
Lo{u}T[Gu} dRr= Z Z{u}i {Su) ff (41(q) (Sq} (2.13)
i=1 k=1
Whare (4] is the mass matrix , {°} is the vector of exter-

nally applied forces, and {q) is the vsctor of nodal normal
displacements for the structure.

Pigqure 2.2 Grid Points in EPSA.

By definiticn, finite elament discretizaticn can
express the displacement {u) at any point of an 2lement as a
function of <+the displacements at the corner points of <the
element, defined by {q} .

(u} = (4] {g} (2. 14)

Where [(H] is a 6x12 matrix of interpolation functions.

Combining the derivatives of {u} will give the strain vector
{e}. In matrix form, equation (2.14) gives :

19
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{e} = ([B) {9} . (2. 15)

Where [B] is a 6x12 matrix function of the geometry of the
element as well as a function of the previous deforma+icns
in the case of large displacemants.

Using the previous result, equation (2.9) is rewritten in
the following way :

? T T
f{s} {§e} dRr= i i (s}, [By ) (8a} i‘i= {P} {8q} (2.16)
R i=1k=1
Where (F} is the internal force vector.

Combining the previous equations in equation (2. 8) . the

principle of vir+tual work becones:

(1] @ = i( )y - F) ) (2. 17)

i=1

Therefore, the principle of virtual work has been tranformed
into a system of ordinary differential equations which are
much more amenable to numarical treatment.

In EPSA, each arbitrarily shaped guadrilatsral
element is defined by four corner aodes, each having three
translational and no rotational degree of freedcm. In order
*0 represent the behavior in bending eight nodes not contig-
uous with ths element are also usad (figqure 2.3). Every
element accesses twelve nodes and has twenty deqrees of
fresdom: three +translaticnal degrees at the corner nodes
and one corresponding to the displacement normal to the
surface for each o0f the eight extarior nodes. The bending
behavior (second derivative term) is expressed in terms of
the nodal displacements via a finite difference technique
(Ref. 4].
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Then the nodal displacement vactor of 2lement i is
simply:

{q} = (01,42,113,04,\71,...V4,U1,...W4 ,95,...‘112)1‘ (2.18)

Conventional finite element codes wu<ilize <hree
translational and two rotational dejress of €freedom a* each
rods (each elzment has 5 4=20 d.0.f. as in EPSA ). However
the masses associated with rotationil degrees of freedom aras
very small, 1leading to numerical instability. The use of
the aforementioned formulation allsviates this problem since
only translations are coansidsred ang, in addition, the
number of unkaowns is reduced, leading to simpler ard mors
efficient ccmputations.

It must be pointed out that in order to model the
bending behavior at the edges of th2 shell, a set of artifi-
cial nodes has to be creategd. The finite element grid will
then consist of +he nodes 3efined in the input file plus the
artificial nodes along *the boundary of the sheet
{figure 2.3).

2. Strain Displacement Relation

The principle of virtual work desals only with
strains. Since the finite element approximation gives the
displacement at each point, th2 equations relating the
strains to th2 displacements are neaded. In <his study, the
Donnell-Vlasov nonlinear kinematic 2quations of shell *heory
ara employed, and the strain-displacemen%t relations are
described in table I.

Using equation (2.15) in the equations detailed in
the previous section will give the finite element approxima-
tion of strains in terms of nodal 3displacements.
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1 Elfz are local coordinates
h; sh, are scaling coefficients.

3. shell Constitutive Relatjons

The shell constitutive relations relate the stress

k4 resultant rate vector ¢to the shell strair rTate vector. 1In
4] matrix *erms:




(s} = (D]} (2. 19)

Where (D] is the Elasto-Plastic *anjent stiffness matrix.

Piqure 2.3 Nodal Points Organization.

The stress-strain relation us2d in EPSA differs frona
the classical Elasto-Plastic theory in that the formulation
involves shell stress tTesultants rather than stresses at
points throughout the <thicknass of <he shell. 1In other
words, EPSA uses relation 2.19 integrated over the thickness
of the shell. Thus, there is ro ne2i 4o compute the stresses
throughout the shell, which results in a significant savings
in storage space and procassing +ime. However, <*the siress
resultan+s Nijand Hijcf the shell theory are not sufficient
o describe the state of stress, 2and certain higher order
morents mus+ be combined with +the stress resultants to form
the dynamic variables of the problam. The coefficients for
the integrated «constitutive equation have been determined
using experimantal results [Ref. S]).
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E These constitutive equations consist of a yi2ld zondizion, 2
strain hardzning law and a flow rula:

-The yield condition indica tes whether part of the shell has
4 started to yield. (figure 2.4)

-The strain hardening law gives th2 evolution of stresses ir
the shell aftar plasticity is reachzd.

-The flow rule gives the plastic strain rate ia +the shell

r/2 4

I after plasticity.
; Oyield
l

v

Oyield h2

L e e —

Figure 2.4 Yield Situation in the Shell.

4. Solution Procedurs

EPSA uses an explicit central difference scheme to
solve the virtual work and £fluid loading equations detailed
in section B. As iadicated ir appesndix B, the explicit time
integration procedure requires a smill time step and is only i
conditionally stable. However when stable, it always
converges to +the exact solution, as opposed to implicit
schemes that are urconditionally stable bu* may lead to
unrealistic rasults. PFurthermore,in problems involving the
treatment of shocks, accuracy requiramen<s preclude the use
of large time staps. The central difference scheme seens,
therefore, particularly optimal.
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Assuming we know the solution a* tim2 t ,2he central differ-
ence scheme applied to equa+tion (2.17) gives th2 solution at
time t+At :

tt t 4
(v}, = O} + At ({B}; - ¥ (Fh) (2.20)
Mo k=1

Mi

Where M; is the mass of ntode 1, (P} are the externally
appied forces and {P}k are summed ovar all ths elements k
framing node i.

The formulaticn of the equations is ip <the in
configuzaticn and all equations ars solved in the Znaiti
geometry in accordance with the total Lagrangian foramulation
{Rref. 6].

E. EPSA CAPABILITIES

The structure to be analyzed is conceptually divided
irto constitutive parts called *"shaets." Each sheet 1is 2
curved section of a shell with an arbitrary number of nodes
and elements (figqure 2.5) 1Its shaps is limited to a surface
that <can be described by a smooth continuous function
without discontinuities in its slope. The elzments within
the sheet are limited to a rectangular organisation (figure
2.5) .

Thus, 2 cylinder with end caps would consist of *hree
sheets: a cylindrical sheet aad a sheet for each end
(figure 2.5). Three sheets are required because of the
slope discontinuity at the edge between the cylinder and the
end caps.

Dividing the structure into shaets isolates the diffi-
culties associated with the boundaries into a set of artifi-
cial nodes along the perimeter of the sheet. When severail
sheets are required ,EPSA takes car2 of the compatibilities
of displacements, rotations and moments along the edges.
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A SMEET A CYLWSER W TH END CaP$

Fiqure 2.5 Sheet Organization.

Thus, any arbitrarily-shaped structure can be analyzed
using EPSA by dividing it into a number of sheets.

Two options for choosing elements are available in EPSA.
The first option exists to employ a3 generalizszd gquadrilat-
eral element. The second option 2xists to employ a rectan-
gular element and uses a specializad formulation for this
type of element.

The coordinates which can be =2ither cartesian or cylin-
drical always 1lie within the plane of the sheet. The =z
direction lies in a positively outward direction normal to
the sheet. Each sheet contains its own local coordinate
system, there 1is no global coordinate system when multi
sheets are merged (figure 2.6).

Prior to generating a finite 2lement mesh for a sheet
one must establish the side numbers of the sheet. The side
nuabering scheme is acbitrary as to the choice of sheet
number one. Hcwever the specification of sides 1 to 4 must
proceed in a counterclockwise direction when the sheet .5
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viawed from the positive z direction. At the intersection
of side 1 and side 4, element 1 is first defined. Then the
rode/element number is incrementsd by one until it reaches
side 2. Then it returns to side 4 and continues the coun:
for the next row of nodes/elements.

Thanks to the exclusive use 0f quadrilataral elements
and to the specific numbering procedure, <the table of
connectivity is implicitly defined #hen generating the nodal
points, thus simplifying considerably <the input <require-
ments.

The inclusion of structures internal to the cylindrical
sheet is enacted in EPSA “hrough the use of internal sheets.
Structures intermal to a cylinder are therefors modelled as
individual sheets having the same capabilities as any
general BPSA sheot.

Tvo types of internal structures are available:

-Sheets (beams, plates or shells) whose connection to the
cylindrical shell lies parallel to the axis of the cylinder.
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-Shsets (beams, frlates, shells) whose connection lies in the
circumferential direction of the cylinder.

Furthermore, in crder to moial internal equipment
{machinery, etc) which do0es not ieform but contributes to
the ‘nertia of the syst:m, cocncentrated masses can be input
at ..dal points.

The user aus* be aware that the previously discussed DAA
is only implemented for cylindrical stuctures. Prior %o the
finite element analysis the user must compute the added wmass
{(virtual mass) matrix defined in 2quation (2.4). This is
dore by using *h2 ACCESION program, which creates a virtual
mass file that EPSA reads when compating <he fluid-structure
interaction.

Finally, EPSA in its latest version takes local cavita-
tion in%to account. When the total pressure computed by EPSA
is found to be negative, it is simply set t> zero since
watar canno* withstand any tensicr.

P. USING EDPSA

The 4input file for EPSA can be g=2nerated either
directly, or via the interactive program PREPSA that prompts
the user to give the input data . When the 4input file is
created, all the data are in free format.

The nodal points can be gensratad semi-automatically
(see the user's manual), and this option is very helpful and
time saving when generating big ad>dels. EPSA can be run
interactively for small models or o5n batch for bigger jobs.
Por instance, a cylindrical shell with 1440 =2lements and
1517 nodal points takes 0.0129 sec. of VAX CPU per time step
per element. The whole model woull take about half an hour
for 100 steps.

EPSA creates an output file in which all input data is
echoed, and outputs the pressures, stresses, strains, veloc-
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itiss, displacements at the nodal points requested by <*he
user in the input deck.

The value of the time increment A: should be selected so
that :

st € 17268 . (E)] (2.21)

min
HhereGminis the smallest distance between the midpoiats of
opposite sides of an element, for all elzments of the shee*
(figure 2.5), and 1/2 is a2 safety facror. In other words,
the time step increment has to be less than the time %taken
by a wave to propagate from an elems3nt to anothsr. In equa-
tion 2.21, (EA;? is simply th=2 wave speed in “he ma+srial,

The virtual mass array (VMA) is created on unit 20,
therefore one should not use this unit for any other purpose
than READ operations.

Because of the simple organization of its input file,
EPSA has been found fairly easy to use. The user can perform
major changes in the model very quickly and efficiently. The
ACESION modulz has been foarnd to work well except for cylin-
ders of large dimensions (L=1400", D=2u40") for which the
size of +he virtual mass array grows unexpaectedely from a
reasonable 4 blocks to 190 blocks >f VAX memory size.

However, EPSA has been design2l for some specific types
of fluid-stucture interaction analysis and its limitatioms
should be pcinted out:

- Only beam type stiffeners can be considered

- The fluid structure interaction is only enac*ted for a
circular cylindrical sheet, which takes away much of the
fleaxibility the prograna.
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III. ERSA/ PATRAN-G INTERFACE

A. INTRODUCTION TO COLOR GRAPHICS SYSTEAS

In dealing with the responsz 2f a structure to 2a
loading, gquantities such as stressss, s*rains, velocities
and displaceaments must be analyz23 at a number of nodal
points, which makes the interpretation of computer outputs
very tedious. Cdlor graphics systems offar an effective
solution to this problem by providing a global represanta-
tion of a quanti*ty distribution cvar a stucture rather than
a discrete representation given by a computer output. A
color graphics system consists of an interface between the
computer, the user and the coloc tarminal. A typical system
would be a software package that allows the user to create
models on the scr2en as well as to iisplay any data in terams
of color intensity. I+ is kaown that a picture is worth
sevaral hundreds of wecrds. Therafore, merging a finite
element program with a color graphics system would be a
major improvement in engineering analysis.

PATRAN-G [Ref. 7] is a <color jraphics system specifi-
cally designed for finite elements, it permits the engineer
and the computer to work together towards the creation of a
modal. The designer creates an image on the screen and
PATRAN automatically translates th2 physical mddel irto a
standard finite element input deck. Another important
feature of PATRAN-G is its ability to assist the user in the
interpratatioan of results through its post~-processing facil-
ities which include: the deformed geometry with magnified
deformations,the c¢olor coding of slements based upon any
rasponse parameters such as displacements, stresses and
strains. In particular, the contour levels of the
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aforementioned gquantities can be superimposed on E
3-dimensicnal image of the model, thus allowing for a global
analysis of a complex structurs.

B. MERGING EPSA AND PATRAK-G

% As described in chapter I , <the structures under s*udy

have fairly short EPSA input files. Purthermsre, in this
study dealing with fluid-structure dinteractions on a
circular cylinder, only structures that consist of one gheet
are considerei. Therefore, because of the siamplicity of
both the input file and the stucturz under study, there was
ro need to design a module converting a PATRAN-G model tha¢
is created cn the screen into an EPSA input fils.

The remainirg tasks were the following:

-Display the original f£irite elem2at model defined in the
EPSA input file on the screen (origiral geometry).

-Display the nodal points and =2l2ment results +that are
computed from EPSA on the screen (postprocessing).

1. Oziginal Geometry

The input of a finite el2azaent model 3into PATRAN-G

! can be done by creating a '“neutral" file, as described in
PATRAN-G terainology. The neutral f£ile! is intended to

provide a simple 1link between PATRAN-G and the outside

world. It is writter entirely in 80 character card images

and all the data is organized in szall "packets"™ of two or

mora card images, Each packet <contains the data for a

fundamental unit of the model such as node cosrdinates or

elaments definition. Since our only purpose was tc display

the origiral geometry of the structure, a limited number of

- P e > -

1Additional information about nautral files can be found
in the PATRAN-G user's manual {Ref. 7]
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r ' data packets (4) was to be created:

§ -Pile <itle (packet 25) : tweo cards ccentaining the user
title.

E

h -Summary data (packet 26) : two cards containing the number

of nodes, elements and the date and time at which the

neutral file was created.

-Node data (packet 1): contains all informaticn concerning
nodes: nocde number and coordinates in a glcbal coordinate
frame.

-Element data (packet 2) : contains the connectivity table
for the finits element model.

-End of file (packet 99) ¢ end-of-file cards.

We have seen in +the presentation of EPSA in chapter I *+hat
tha nodes are defined in a local, sheet-attached coordinate
system, that artificial nodes are cr2ated along the edges of
the sheet to 10del the bending behavior, and tha* nc connec-
tivity table wa$ input. Therefore, the +translator module
that would be created had to:

~skip the set of artificial nodes ind properly renumber the
grid

~perform a change of coordinates for all local data
-generate the connectivity table.

It was decided <to employ a modular design in which
each routine would perform a specific task. A modular design
vould allow further changes to be mad2 quickly and effi-
ciantly by moiifying only the relevant routines. The imple-
mentation in BEPSA was made using a series of "calls", <+hus
minimizing the risk of interfereance with the finite element
computations.

The translater wmodule cra2ated was made of four
routines:
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-PRELINM : computes the number of nodal points, the number
of elements and displays the first two data packe<s (25,26)

-SHEETF : scans through the 120d2s, skips artificial
nodes, renumbars the grid, performs the required changes of
coordinates and displays the node data packet (J1)

-SHCONN : scans through the nodss, connecting each node
to the elements it belongs to and displays the element data
packet (02) oa the neutral fila.

-ENDNEU : displays the 2nd-of-file packet (99)

2. Using the Translator Moduls

The translator calls were iaplemented in the rouzine
REPORT of EPSA. Any run of EPSA creates a neutral file on
unit 19. The aeutral file name is therefore FOR019.DAT if no
"ASSIGN" statement bas baen issu2l pricr to the computer
run. The finite element a>del might *then be displayed on the
graphic terminal (Ranmtek, Tektronix) via the neutral input
mcde of EPSA (see [Ref. 7] for more details). An example of
finite element model output on T2k4ronix 401 is given on
figure 3.1 .

3. 1Implemantaticn of Bostprocsssing Capabilities

Postprocessing capabilities exist to assist the user
in the interpretation of computer results. It is simply 2
process of generating displays and reports based upon a
combinaction of geometry and the results of an analysis.

The results c¢f analyses ar2 transmitted to PATRAN-G
for postprocessing via "nsutral rasults files" as decribed
in PATRAN-G teraminology. Unlike the mcdel neutral £file
described in the previous section, results files are in
binary rather than in card image form.
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Pigure 3.1 Example of Pinite Element Bodel Display.

One can distinguish between two major kinds of post-
processing displays: deformed geom2trizs and elsment
quantities.

a. Deformed Geom2try

A displacement results data file required by
PATRAN-G had to be created. Again, the module created had to
skip the artificial nodes, perform changes of coordinates as
vell as to write the nodal diplacsments in the neutral
results £file. The displacement results data €£ile was
created in module NEUDISP. Its organization is given on 1
table II,

A small module PLOTDISP that decides at which
time steps the results should be output was created. The
"call"™ to PLOTDISP vas implementad in module COMPOUTE of
EPSA. The >Sverall structure of ¢the translator module is
presented on table IV at the end of the chapter.
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TABLE II ‘
organisation of Displacemant Results Pile

Column Content
1 X displacemant in global coordinates
2 Y displacement in global coordinates
3 Z " " 1"
4 Displacement normal to the shell without

rigid body aode.
5 Velocity normal to the shell

A sample of deformed geometry output on Tek<ronix 4014 is
given in figure 3.2.

b. Element Quantities Postprocessing

Any element related quantity can be the targe*
of postprocessing. In general thes2 ¢ypes of quantities are
the results of finite 2lement computations supplied ¢o
PATRAN-G through the neautral element results file. The
neutral element results file is different from the nautral
displacements results file detailed in the previous section,

however it shares a similar format [ Ref. 7]). Element quan-
tities such as stresses in 1local and global coordinates and
von Mises stresses are computed in module NEUSTRE whose
overall structure is similar to NEUDISP described earlier.




—arsasy

i

Pigure 3.2 Deformed Gaometry Output.
Tha organisation of <the neutral =212men*t rCesults file is
given on table III.

As described in chapter I, EPSA does not compute
+ha stresses through the thickness >f the shell. Instead one
uses the integrated quantities of the shell theory [Ref. 8]

w2 /2
Nij=‘£cij dt and Hij=LUij tdt
2

One can expect the strasses on the shell to be
maximum at +the extreme fibers. NEUSTRE computes the von
Mises stresses at the top and bottom fibers and writes the
maximum value in the neutral file. At the surface of *he
shell no shear stresses are iavolved. Assuming a 1linear
distribu<ion of bending stresses and a3 unifora distibution
of membrane stresses, one can 2asily derive :
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O35 = N5 /h ¢ M5 6/h2 (3.1)

The first =erm »o>f the previous esyuation is the membrane
force contribution, the second is the bending moment contri-
bution. The von Mises stresses ars then computed using the
well-known relation:

2 2
O¢m "\ﬁ"l =105 3y ey (3.2)

In a similar way <+o <he displacements results
file, a module PLOTSTRE that d2ciles whecther or noz 4o
output +*he elemen* results wvwas cr2ated and called from
COMPUTE. The overall structure of *tae traaslator is given on
table IV.

1

TABLE III
Organisation of the Neutral Blement Results Pile
Column Coptentr Description
22 stre, 1 Elament local stress, direction i
23 stre,2 G tr 0 " 3
25 stre, 4 Element global stress, direction x
26 stre,S " &y " " Y
27 stre, 6 Eleament global shear, direction xy
Ry von von Mises stress
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¢. Displaying the Resylts Quantities on “he Screen.

The EPSA input deck has been modified so as to
create the results files (displacemants, slements) required
by PATRAN~G. At the end 5f the s2cond input card the user
specifies the number of displacement r2sults and the number
of element ra2sults files +o be :qeated {(at least on9).
Obviously, +those two inputs are 1ilso in frs2 format. The
neutral results files (elements, displacem=nts) will be
generated at equal +ima intervals as th2 computation
proceeds. The results corresponding to tha last time step
are always output.

The element rasults £file is created on uait 16
and the displacement resnlts file 5n unict 18, thus corre-
spondirg *to files FOKO16.DAT and FIORO18.DAT raspectively. A
nevw version of those files is creat2d each time an output is
requested,

Exaample: -

If five (5) aeutral element results fileé are requested on
the inpu* card of a run of 20 steps, five files FOR016.DAT;1
*o0 FORO16.DAT;S will be created, corrasponding to time steps
4 to 20 respectively.

Por the displaying of =21l2ment and nodal points
results, the user will cefer to [Ref. 7] section 240. The
title of <the rumn (first card of EPSA input deck) will be
displayed on +he screen along with the time at which the

results have been requesta4.
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TABLE IV
Structure of the Translator
CALL PLDTDISPL%P——-Output requested—y—CALL NEUDISP?
4 o cutput scans through 1|}
! c requested the grid- |
: o] changdes coor- ||
8 dinafes-find ||
P ! ) node with max
U|CALL FLOTSTREp—outpu* requested defsrma<ion-
T | dlsglay fizst
¢ 2 no output i e e card-
requested CALL NEUSTRE
f scans +through
: scans_throujh the grid-
fv ) | the elemencts- display nodal
i computation change coord_ results
i proceeds inatés- = Tf @ [eeserocccceo--
O N b e e s csapute Voa-
8 Mises stress
] -display RETU ’N
i element
1 results
§ et Pl
1 (e e P e =P
3 5 CALL PRELIMX RETURN
; E|CALL SHEET?
R | g CALL SHCONN
; T{CALL ENDNEU
4
y
e
e
3
|
K -
[ 1 ]
1 ;
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A. PRESENTATIOHN

An explosion is a chamical or nuclear r2action in a
substance (water) that converts an original ma%terial iato
other products plus a significant amount of 2nergy. The
process of tha explosion produces vary high temperazures and
rressures and occurs with extreme rapidity. As the resul:t of
the explosicn, the initial mass of explosive becomes a very
het mass of gas at tremendous pressuras; it is then obvious
that these conditions will affect the surrounding medium.

The fact that the water is co>mpressible leads *o the
conclusion that the pressure appliel at some location in the
liguid will propagate through it as a wave disturbance
[(Ref. 9]. It must be pointed »out that the pressures
involved in an underwater explosisn are usuzlly so laige
that the wave velocity cannot be assumed independent of
pressure. Thus, the small amplitudz wave theory detailed in
[Ref. 9] does not avply and this will be the source of many
complications in describing the behavior of the shock wave.

The first cause cf disturbancs to the water in an under-
vater explosion 1is the occurrence of the pressure step a*
the water boundary. Immediately upon its arzival, +he pres-
sure begins t> be relieved by an intense pressure wave and
outvard motion of the watar. PFor e2xplosives like TNT or for
nuclear explosions, the pressure rise can be considered as a
discontinuous step, and is then fsllowed by a roughly expo-
nential decay. The duration of the phenomanon &s of the
order of a fav milliseconds (more for nuclear explosions).
Once initiated, the pressure disturbance is propagated radi-
ally outward as a compression wave, 2lso called a shock wvave
because of the steep pressure step at its front.
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Close to the sxplosion, the velocity of the wave is several
+times the 1"acoustic" speed of ths small amplitude <thaory
(c=5000 £t/sez); but approaches 4this limit very zapidly as
the wave advances outward.

The pressure lavel in the wave falls more rapidly with th2
radial distance than what is predicted withk the small ampli-~-
+tuds theory, but approaches this behavior at large
distances.

B. BUBBLE EFFECT

As a result of the explosion, the initial mass of explo-
sives becomes a hot mass of gas 2t tremendous pressures.
Aftar the principal part of tha shock wave has been emitted,
the gas pressure is considerably dscr=ased bu+ is still much
higher than the egquilibrium pressura. The water in the imme-
diate region of the sphere or ‘"bubble" of gas has a large
outward velocity and the diameter of the bubble increases
rapidly. The expansion continues aad the internal gas pres-
suce decreases gradually, but the motion persists because of
the inertia 5f the cutward flowiny water. When the gas
pressure falls belowv the -equilibriuam value, the pressure
defect brings the outward flow to a stop and *he boundary of
the bubble begins to contract at in increasing rate. The
invard motion continues until the sompressibility of the gas
reverses the motion. Thus, the inertia of the water
together with the elastic properties of “he gas provide the
necessary conditions for an oscillatory system. The oscilla-
tions of the gas sphere may persist a number of cycles, ten
or more oscillations having been datected in favorable
cases.
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C. SURFACE EPFECTS

In “he case of explosions occurring at+ shallow depths,
surface effects will complicate <th2 aforementioned sequerce
of events. When the shock wave hits the surface,the azmos-
phere cannot supply appreciable rssistance by coampression.
As a result, a reflected wave with a negative pressure
satisfying the zero-pressure condition at the surface is
formed (figure 4.1). Thus, the rasultant prassure obsarved
is the sum of the direct and reflected pressures. Therafore,
the reflected wave arriving a* point A will cr2ate a sudder
drop of the pressure to 2 smaller valus. This is known as
the "cut-off" phenomenon, typical of free surface effects
(figure 4.2).

explosion

bottonm

Pigure 4.1 Surface Effect on a Shock Have.

D. PRESSURE DETERMINATION

As detailad in a previous section, the pressure decay at
any point is roughly exponential so that it can be written:

P, A) = B (N e (4.1
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It has been found <that the fundamental descriptors «cf an
undervater sxplosion attack are ths charge size (equivalent
weight of TN and the chazge standoff (shortest dis*tance
between charge and target). Theorz2tical developments about
the spherical wave detailad in [Ref. 10] have shown +tha+ the
peak pressure Pp at any point can bz reasonably approximated
by:

3
B, = K (W /R)! (4.2)
whare W is the charge size in pounds of TNT and R 1is the

standoff distance in feet.
It has been shown as well:

m wm
8 = K W (W /R)2 (6.3)
Kl,Kz,Al '52 are empirically detecminad factors +hat depend

on the <type of explosives used. Their values for several
types of explosives are given on tables V. ’

piP. 0

»
%
DIRECT WAVE

BUAFACE REFLECTION

1 PMUTTOM REFLECTION

,

Pigure 4.2 Cit-0ff Phenomenon.

43




-

:'-‘7""”

_

=
TABLE V
Explosion Parama2ters
H8X-1 ™"t PENT NUKE
Pmax K | 22347 22305 24589 3,310
Ay 1.134 1.18 1.194 .13
D2cay Constant Kz .056 .059 .032 2,274
s |- 247 |- .185 | - 257 |- e

E. THE EXPLOSION IN EPSA

EPSA features two different way of describing underwa<‘er
explosions:
~A discrete form in which the user inputs the pressurs

history at a finite number of times.
-A functional form that uses equations 4.2 2and 4.3 .The
program requests then the various coefficients and paranme-

ters describing the explosien.

ICHRG = |

PRESSURE

TCur ¢

TIME (MSEC)

Pigure 4.3 1Incident Prassure Decay.




The presence of fres-surface affects can also be
accounted for with +he input of a cut-off time after which

the inciden* pressure is set to zers> (figure 4.3).
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V. ANALYSIS AND RESULIS

A. HODELS STUDIED

In order to compare the results of <+he numzrical anal-
ysis with the experimental daza, all attention was focused
on the Explosive Power Moter (EPM) model for which €ield
tests had bee2n <conducted. The EPM model 1is a stiffened
cylinder with end caps whose dimensions are given In figurs
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Rather than modelling <the end <caps with additicnal
sheets , it was found to be mor: efficient &5 *taks iato
account the behavior of the end caps using two <rigid end.
blocks (figure 5.1). The effects of the explosion on <%he
daformation of tha 2nd blocks is negligible compared *o the
deforma<ion of points located outside of <the end blocks.
Tharefore, it was assumed that the motions of the end blocks
were pure rigid body displacements.

In order to qgain some insight iato the influence exerted
ty the stiffeners and the end blocks, a preliminary analysis
was conducted on a ring s*iffenzd cylinder without end
blocks as well as on an unstiffenad cylinder .

In addition *5 the study of the EPM model, <he influence
that the location of the stiffeners had on the deforma“ions
throughout the shell was evaluated. By perforaing a compara-
tive analysis of the deforma%*ions, it was intended to mini-
mize and control the damage caused to the structure.

The cylinders tested were subjected to an explosion
occurring at the distance R= 200" from <the cylinderc. The
location of the explosion was symmetrical with respect to
the longitudinal and transverse axis of the cylinder (figur2
5.2) . A spherical type TNT explosion of in*tensity W=50 1lb
vas selected for the study. It was therefore determined by
the following parameters (chapter IV)

A, = 1.18 A, = -.185
Ky = 22505 K = .058

The symmetry with respect to the xy and yz plane has
been taken aldvantage of by modelling one quarter of the
model., After a certain amount of sensitivity analysis was
performed on simple grids, a finite element grid consisting
of 1517 nodes and 1440 elements was selected (figure 5.3) .
Por each of the cylinders studied, the time step chosen was
equal to p* = 3.10% s . The explosion process was studied
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over a time interval of 800 <+time steps, that allowed for 2
shock and after-shock analysis.

1 The displacements computed by EPSA consist of a combina-
' tion of rigid body displacements ani pure deformations. The

deformation modes are of significant interest since they may
induce buckling and even lead to the destruction of <he
structure. As mentioned ecarlier, the very stiff 2nd blocks
have pure rigid body displacements. The displacement of
each node of the end block was subtracted from the displace-
ment of each node c¢f ths corresponding row, giving the
conponent of the iisplacement que ¢> pure deformatiorn.

For each of the aforamentioned cylinders, the deformed
geome*try and the colcr-filled contour plots of von Mises
stresses as well as normal displacement were displayed.
Using identical color assignments, the prograssive gross
evolution of the previous gquantities were evaluated so as to
allow for a comparative analysis of the evolution of phys-
ical parameters throughout the shell.

Color-filled contour plots allow for a global rapresentation
of a quantity distribution and have been found extremely
valuable in the interpretation of the results.

Por printing and processing reasons, it was not possible
+0 include color pictures in this document. Instead, the
contour plo+s of the physical quantities under study have
been included.

Be ABALYSIS OF BING STIFPENRED CYLINDERS WITH END BLOCKS

1. ERH Model

The <contour plots of von MNises stresses at +ime
steps 20, 60, 100, 140, 180, 200 are provided or figure A.1
to A.6 . As the shock wave hits the structure, it appears
as 1f +he stresses propagate through the shell and reach
their maximum value fairly quickly 4in 50 time steps. After
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100 time steps, when the structure is fully envalop=d by the
shock wave, the region close to> tha end block beconmes
beavily stressed (figure A.4). 1In 23dition, som2 ccncentra-
tion of stresses at the locations of the stiffeners carn be
seen (figure A;S). At later time staps, the pressure beconmes
decreased and there 1is a relaxatioan of stresses. However,
*hea region close to the end block as well as some spots
located around the stiffeners remain hesavily stressed, which
may indicate local buckling (figur2 1.6).

2. Contzolled Deformations

Ir crder to obtain a more uniform distributicn of
displacements, the stiffeners have been shifted towards the
end blocks. The time history avolution of the displacements
vas studied over an interval of 8J3) time steps <for the EPM
model as well as for the model with shifted stifferers
called EPM2. The ccntour plots of normal displacements a*
tiame steps 200, 400, 600, 800 for both models are provided
ot figure A.7 to A.14

The BEPM aodel shows a significant concentratiocn of
deformations occuring, =ven at late time steps (figure
A.10), indicating a possibility of buckling. Although unex-
pec+-ed, the fact *hat the region <close to th2 erd blocks
undergoas the most severe leformatisns has been confirmed by
experimantal data. A possible explagation to *his phenomenon
is that *he iner+ia of the <cross-saction of thes cylinder is
relatively uniform along the cyliader, except at <*he end
blocks where it jumps to 2 much higher value. This disconti-
nuity in the inertia results in concen*raticns of stresses
that cause the aforementioned phenomenon.

The =cross-section inertia of the EPM2 model
increases more smoothly because of the distribution of stif-
feners along its axis. Thus, the concentration of stresses
has a lowver magnitude and the region clocse to the end block
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suffers less damage than ino the EPM case. 1I%f can also be
seen that +the deformations are more wuniforamly distribuzed
along the axis of the cylinder. Above all, the deformations
at the late time steps are not as large, indicating that *he
chances of buckling are significantly lower for the EPN2
model (figure A.1W).

' Therefore, by per forming an optimization of the
location of the stiff2ners, the designer can counterac+t %he
concentrations of stresses and tha buckling phenomena that
occur in the region close to the enl blocks. It is believed
that controlled defcrmations can have a ve:r significan=
influence on the survivability of a structure subamitted %o a
shock vave.

C. ANALYSIS OF ONSTIFPENED AND RING-STIFFPENED CYLINDER

It was decided to study the progressive gross responses
of an unstiffened «cylinder as well as that of a ring-
stif fened cylinder without end-blocks. Both cylinders have
the same external dimensions as th=2 2P¥ model. The ring-
stiffened cylinder is similar to the EPM model except for
the fact that the end-block has been replaced by a standard
stif fener. The evclution of von Mises stresses at time
steps 40, 80, 100 is provided in figures A.15 thrcugh A.17
for the unstiffened «cylinder. Tha avolution of von Mises
stressas at time steps 40, 80, 100, 150 is provided in
figures A.18 <through A.21 for thea ring-stiffened cylinder
without end-blocks.

Por *he unstiffened cylinder it is observed that the
stresses propagate quickly throughout the shell and <hat
within a hundred time steps an instibility phenoamenon occurs
showing the existence of local buckling (figure A.17). At
later time steps the buckling spreals over the entire stiff-
ened shell.
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The evolution of von Mises stresses in figures 1.18
through A.21 shows that the ring-stiffened cylinder «can
vithstand much higher s*ress levels than the wunstiffened
shell. This rasult wvas expected since the stiffeners provide
the stiffness required to withstand higher loads. A+t time
step 100 the unstiffened shell is al-eady subjected tc local
instability characterized by a "hard spot" in the middle of
the model (figure A.17). On the other hand, th2 stresses in
tha stiffeneid cylinder are auch more evenly distributzad
throughout the model, with high amd>unts of strssses concen-
trated around the locatioas of the stiffeners (figure A.21).

It car also be observed that z significant concentra<zio:n
of stresses occurs at the extremitiss of the stiffened shell
(figure 4.21). Recalling that the end-block has been
replaced by a standard stif fen-r, tha cross-s2ction of the
shell has a greater inertia at +h2 oxtramities due <+tc the
fact that the two stiffenars 1locat2d at the extremities are
close to each other. Therefore this phenomenon is similac to
the one encountered when studying the EPM model. However
tha concertration of stresses €for the ring~stiffened cylin-
drical shell is less significant than for the EPM model, due
to a smaller discontinuity in cross-saction inertia.




VI. CONCLUSION

A FORTRAN module that merges the finit=2 element code
EPSA wvwith ¢the colcx graphics system PATRAN-G has been
designed and succaesfully completed. The non-linear elasto-

plastic responses of various types of submerged cylindrical
shells have been evaluated using th2 EPSA/PATRAN-G System.

The analysis of *he prograssive gross responses cf a
ring-stiffened cyliazdrical shell with 2nd-blocks is believed
to provide useful information regarding the behavior of a
submerced structure subjected *+o an underwater explosion.
The dinfluence of the 1location of the stiffeners on the
deforma*ions has been studied and is also believed to be of
significant h2lp in <the determination of an optimal design
that will minimize the damage due to an underwater
explosion.

The wutilization of the color graphics system in the
interpretation of the results of analysis has been found %o
be an extremely valuable tg¢ol. It is the author's belief
that the use >f color graphics systeas will become incraas-
ingly important in the analysis of complex phenomena such as
undervater explosions on submerged structures.
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APPENDIX B
REVIEW OF NONLINEAR PINITE ELEMERTS

A. INTRODUCTION

This appendix is irtended to give the reader some
insights int> nonlinear £finita elements. The reader is
assumed to have some previous knowledge of finite element
theory. The basic principles of the theory will be quickly
reviewed, but the study will focus or the problems that
occur when dzaling with nonlinear th=zory. Most ¢of the
information has been takan from [Ref. 6] as w=2ll as froa
the course *he author had at M.I.T. with K.J. Bathe in 1982.

B. THE NEED FOR A NEW THEORY

Considering a coordinate frame defined by (i,j.k)., a

body of volume V in which point A(x;,X3,X3) 1is subjected to
the displacements (u;,u, P U3) , corresponding to a strain
vector (e} (figure B.1).
In the following sections, the superscripts 0 and ¢ will
refer to the body at time 0 2aad t rcespectively, the
subscripts 0 and t will refer “o the configuration at time 0
and ¢t respectively. This chaptar, for the purpose of
simplicity, will first deal with the static nonlinear apal-
ysis of the material.

In the linear theory of finit2 slements, one uses the

vell known Cauchy stress temsor T associated with the
engineering strain tensor e;y =1fdy ¢+ %)(_.\;] .
2&&j 1

Then, the principle of virtual work is written:
vhare 'R represents the virtual work of externally applied
forces and e is a virtual strain.
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Figure B.1 Geometric Conventions.

t
Lrgfm = R (B.1)

Equation (B.1) is then discretized over the body arnd beconmes

a set of integrations over each of th2 finite elz2ments. In
the case of a large displacenmant, the volume of the body
over which thes integration is perf>rmad aight have signifi-
chntly changed. Also notice that 2quation (B.1) is written
in the original coordinatas frame (iefined at t=)) and that

Tan 3P4 emn refer to the current configuration of the body.
The Cauchy stresses at time t+ At cannot be obtained by
adding an increment due to the striining of ths material to
the stresses at time t . The =r£ijgid body cotation of the
material has to be taken into account since the Cauchy
stresses vary under rigid body motidns. Therefore, we must
perform the integration of equation (B.1) over the unknown
current volume with respect to th2 original g2o0ometry that
could be significantly different from the current one.

The above discussion omphasizas the need for a new set
of stress and strain tensors that would alleviate the afore-
mentioned problems and enable the integration of the prin-
ciple of virtual work to be performad.
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DEFINING BEW STRESS AND STRAIN TENSORS

3 1. Greep-Lagrange strain Ieasor

The structure introduced earlier is coasidered and
F two points A and B at t=0, of coordinatesOA(°x‘_) r °B(°x)
: are defined . At time t, the body has been dsformed and A
and B have moved to tA(tx‘) and "B(tx(,) (figure B.2).

2
W

FPigure B.2 Displacements Conventions.

A Taylor expansion is used to exprass the coordinates of B
as a function of the coordinates c¢f A.

t!i = t‘.- + a_tx} (olj-y (B.z)
3 X
or with dtxi= txi > txi and d°xi= °x; - °x,-_ ¢ Gives :
@ %) = (%)@ %) (B.3)
3 Xy
j
(a%x} = (&1 @°x (B.4)

vhere [GX] = ‘gt-:ji’ e ah) = Aty ., @% = @%)

In other words, equation (B.4) expresses hov a small fiber
defined by the vector {d ox} at t=0 has rotated and
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extended betwaen time 0 and time t when it becomes {dtx}
The matrix [S$X] is called the "deformation gradienz" .
The new length tds of the fiber will be :

(tdS)Z = (dtx}T {dtx} ( T ra2fars to the transposed
matrix)
and therefore
o_.T 0

(8s)z2 = ((Ex1@ x}) ((5X1@°x})

t 0 t 0

((ds)z = (dx} (,C] {d°x) (8.5)
t t,.T _t . :
{o€]1 = ([0X) (oX] 4is called the ™"Cauchy-Green deformation
tensoz".

Notice that if the Cauchy-Green deformation tensor is iden-
tity, equation (B.5) indicates that the leng+h 29f any fiber
will not vary. In other words, whenever rigid body motions
are considered, the Cauchy Green deformation tersor is iden-
tity since “he fibers do not stretch.

The principles of the finite element method will now
be guickly recalled. Assume that the displacamznt (4 ) of
any point of the body can be written as a combination of the
displacements of N selected points callzad "nodes" :

() = i by (9 )" (B.6)
k=1

Where the h are interpolation €functions that depend only on
tha geometry 9f *he body. 1In addizion, the nodes are chosen
so as to dget a division into quadrilateral elements and it
is assumed that the displacement 2f any point is only 12
function of the displacements of tha corner nades of the
element it belongs to. Thean equatisn (B.6) becomes

4

(i) =Y b @p* (B.7)
k=1

Recalling that (u;) 4is simply (txi) = (Oxi) gives:
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4
t 0 k
(x}) = ( x? +kzl hk(ui) (B.8)

The deforma+ion matrix [g X] can be expressed very simply
using the previcus equation :

534 * 2 dhy (g I (B.9)
= ij'

Define row the "Green Lagrange" strain tensor by :

(531 = G %)
3

(6e] = 172 ([5C€)- (LD (B. 10)

Where {I] is the identity matrix.

Prom the previous deorivations, it «can be observed that the
Grtean Lagrang? strain tensor is J for rigid body motions.
The Green-lagrange strain tensor rafers to the body at Zime
t with respect to the ini*ial confijyuration. This is why it
vill be so usaful in dealing with large deformations.

Recall that the ultimate goal is to apply the prin-
ciple of virtual work %o the structure under study. In
particular, having defined a new strain tensor, the relation
giving +the virtual Green-Lagrangs strain +t2nsor corre-
sponding to a virtual displacement (§u} must be known. In
the case of a linear problem, the virtual zngins2ring strain
tensor would be:

§o,. = 172 ( 3ﬁ+ auy )

1 %y PR
In the case of large displacem2nts, the Grzen-Lagrange
strain tensor should be used. It is shown in [Ref. 6] that

th2 virtual G3reen Lagrange strain tensor corresponding to

virtual engineering strains is:
568% = 8% ¥x seem (B. 11)
R X5
or:
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Seey = °xp  Oxj Soeij (8. 12)
Xm Xn

Having definzd a strain tensor which <Is invariant  under
rigid body motions, a stress tensor corresponding <to the
Green-lagrange strain tensor needs to be defigel. )

2. Stress Measures

Stazting with <the Cauchy strass tensor . *he

Piola-Kirchoff stress tensor is defined :

t
05ij =%% & tTmn?‘_xjn (B.13)

Whare % ,33 are the densities .of the material at <time 0 and
t raspectively and ( %xti = [QX]I is <+he inverse of the
deforma+ion tensor defined previously.

Equation B.13 can be easily rewrittsn in equivalent form:

T =-;§ 6% im 551585 n . (B. 14)

It can also be shown by using the priaciple of mass conser-
vation that :

Op = to det[ §X] (B. 15)

D. PRINCIPLE OF VIRTUAL WORK

The principle of wvirtual work of -equation (B.1) S
rewritten using the strain and stress tensors da2fined previ-
ously in equations (B.12) and (B.14) :

tp t t t
CRo= g2 0% oSy ok Oxim Bxfbes av (B. 16)
S
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2 t t
R o= 2 oSifeiAv (B.17)

v
and using equation (B.15) :

t t
R = 051360ei1dV (B. 18)

Thus, the principle of wvirtual work has beea simply

expressed in terms of a new set of stress and strain

0

tensors, integrated over the original volume "V .

E. THE INCRERENTAL CONTINUUM MECHANICS EQUATIONS

In =“his section, the principle of virtual work will be
applied to the structurs and +he incremeatal formulation
using the Piola-Kirchcff and Greean-Ligrange *2asors will be
daveloped . Non linear terms will arise from the rather
complicated definiticn of the straia t2ansor, but it must be
pointed out thac¢ the rew formulatisn provide the means for
the modellirng of large deformations.

Assume that the configuration of ¢the body at +ime % is
known, the configuration at time t+At aust be determined.
Writing the principle of virtual work a* time t+d % gives :

o5y SlAr =« R (B. 19)

t4R : external work at time t+At
(2914
ggeﬁ virtual incremert in G.L. strain

$8%, : stress state at time t+it

Separating between the known terms that ra2fer to the config-
uration at time t and the wunknown terms that are the incre-
ments of st*ress and strain betwean time t 2nd time t+bt
gives :
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t+ At t tihat B
Aos = Si * 0Siy and g = 0€ij*+0€ij € (B. 20)

0Sij andocij are simply the incremsnts in stress and strair
raspectively.

It is derived in [Ref. 6] that the increment in
Green-Lagrange strain o€ij is made of a linear part oeijand a
nonlinear oneqliy - The term linear refers to the increment

in displacemen*t u; .
0€H = o&y*toNy ©OF S ofiy = & ( o0eg ¥ny ) (B. 21)
Using equation (B.21) in =quation (B.19) gives :

f(ésij + Si9 ( 6 (0eij *onij)) av = AR . 4B.22)
O‘J B

Again, separating between the known and unknown terms gives

t S t £
f 0Sif €ijdv t{ oSSonij = st -[SSijGOeij (B.23) .
Q v %

Por small increments in displacenmants, equatior (B.23)
written at time t indicates that S oeij= Soejy . This signi-
fies that in equation (B.21) the aon linear tecrm is negli-
gible

Then the constitutive law of the material detailed in
chapter II allows to relate stressa2s and strairns:

055 = 0Gas€ij =~ Cixs 0°4 (B. 24)

and B.23 becomes:

fsoelj CigsRsdV ’[ 35550“13-&% b -[osij ®iv (B. 25)
Oy v v
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The right hand side terms of th2 previous equation are
¢ known: '

k &Pij is the linear increment in virtial strain involving only
3 known <¢erms

{ BSﬁ is known from the previous time st2p

uﬁt is the vork of external prescribed virtual forces

The 1left hand side of B.25 is unknown since 0&iand §j

involve the displacement from time & to time t+At .

P. PINITE ELEMENT DISCRETIZATION

Equation (B.25) will be discretiza2d over thk2 s<truc+ure,
using the finite element approximation defined in section
B.9 . Let N be the number of aodes, the principle of
virtual work will be invoked N times, setting a uni:
displacement at each node in *urn:

6uk=1 r Guj= o Ik*j

A system of ejuations-whose unknowns are the nodal displace-
ments 1i1s <cbtained Let "{A u} be the vector of wunknown
displacements, {F} be the vector of nodal p>int forces
equivalent to ¢the internal stresses.

Then equation (B.25) can b2 rewrittan in matrix form :

( SRy 100u) + [l = PRy - By (B. 26)

[SKIJ and [SKMJ are known from the material characteristics
at time *+ and corresgond respectively to a linear and nonli-
near contribution. It is therefors possible to solve equa-
tion (B.25) for (8fu). However, because of the assumption in
equation (B.24), the exact solution wmight not be reached
inmediately. Furthermore, depending Sn the “ime step size,
the solution process might even be unstable! In any case,
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an iteration for solving 2quation (B.26) must be performed
until the exact solution is reached .

A wvidely used scheme is the "modified Newton iteration®
dafined by the following equation and boundary conditions :

. i1
( (oKLl + [oKwd ) (Auf = %4 - P (B. 27)
and Péﬁi= Tai}r% [%;i , Wwith tha initial conditions :
k.o . t 0 _ t
u}’ = {"u} and {(FY = (F}

LAuf'is the vector of incremental a1odal point displacements
a* iteration i.

%mﬁ} is the vector of applied loads (cons<ant in the itera-
tion

?P} is the vector of nodal point forces equivalent to the
strasses at time t¢At, iteration i-1 .

At *he first iteration, equation (B.27) reduces to equa-
tion (B.26) giving an incremert of displacement [Auf’. Then
a better approximaticn of cex ,8gy; is obtainad . %gﬁ is
updated to the new state of strassas and becomesﬁggﬁ c
Equation (B.27) 1is then used %o determine the nev increment
in displacement {Au}2 » and so on untll the increment in

= W\ 4 it i
{ R}

displacement is small enough, so that = { P} in

equation (B.27)

G. INCLUSION OF DYNANIC FPORCES

If the loads are applied rapidly, inertia forces need to
be considered and a truly dynamic problem has to be solved.
Using d*Alembart's principle, the element inertia forces are
simply included as part of the body forces. Let (u} be the
vector of nodal accelerations and [4] be the mass matrix of
the system. Then the principle of virtual work is writ<en in
the follcwing vay :
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(oK)t} + [pKJ{aw} = R =[H4} {pu} - F (8.28)

Equation (B.28) represents a syste2m of differ2ntial equa-
tions of second order. If the non linear tecm @?KL] were
negligible, the solution could be ob%tained by standard
procedures for solving differential aquations with constant
coefficients. However, the procedur2s proposed for the solu-
tion of general systems of differential equations can become
very expensive if the order of <th2 matrices 1is large.
Therefore, whenever the system is linear or nonlinear, scnme
effective methods for sclving +he equations governing the
equilibrium are required.

1. Dirasct Integration Methods

The essence of direct intagration methods is based
on two ideas. Pirst, it is aims3l to satisfy B.28 only a*
caertain time intervals apart. Second, a variation of accel-
eration velccities and displacements is assumed within each
time step. The form of the assumption determines the accu-
racy, stability and cost of each m=2thoi. '

In ths following, assume that the initial conditions
(displacements, accelerations, velocities) at time O,

) By . ,
u ) are known. In the solution, the time

denoted ( % ,oﬁ I
span under consideration, T , is subdivided 4into n equal
time intervals At. Assuming that th2 sclution is known at
time t , the methods of getting the solution at <+ime t+A:

will be investigated.

2. central Difference Method

In the Central Difference method, a firnite differ-

ence approximation will give the acceleration at time t 2
5 € t
5 = 12(LhAtu -2 +mu) (B. 29)
At
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Writing the principle of wvirtual work at ¢time <« arnd
substituting into equation (B.30) gives then:

rnicdy + (58 1¢Cy = () (8. 30)

k& t t S 0t
lgu][ u} = { R} - ((0K] = 2{(4)/A¢) { u} %u][ a} (B.31)
At

The pravious equation gives the da2formation at tipe <t+it
from the characteristics of th2 syst2m at time ¢ .

When [M] is diagonal, which is f£requsntly the case
for mass matrices, the solution at +time t+ At does nozt
involve any +*riangular factorization of the amatrix [M] ,
thus leadinrg to more efficient compatations.

The shortcoaming in the use 5f the central differance
method lies in the time step restriction: for stabili<y, the
time step siza2 ¢t must be simaller than a critical +ime step
. phici is equal to T /r , where T is +the sma2llest paeriod
of the finite element systen.

The central difference schame is fairly easy %o
implement for the integration of a system of non linear
differential equations. However, bzcause of the limitations
of the +“ime step , it might not b2 suitable for cases when
loads are varying at a slovw pace.

3. 1Implicit Inteqration Sghemss

Since the interest of this study lies in central
difference schemes, this section will be limited to a shor*
description of the fundamentals of implicit time integration
schenes.
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Inplicit time integration schemes use the princigle
of virtual work wri+tten at tipme t+ At and not at +ime t as
for the central difference method :

it it tdt it
(4] (4 « K] {u} = { R} (3.32)

Again, wusing a finite dif ference approximation of u?;} and
replacing intd equation (B.32) enables to solve fg&ziﬂﬁ}.
Since the formulation involves the rigidity matz-ix [p X] and
tha external work f’ﬁi which are both unknown, +*he systenm
has to be solved in a similar way to the Modified Newton
iteration that was detailed previously.

Inplicit time intagration sche2mes ars stable regard-
less of the size of %he time step used. However, if the time
step size is too large, sigrnificant errors can be accumu-
lated a~ each time step, leading to unrzrealistic resul:s.

The reader will find mora details on the various
implicit method in (Ref. 6]. Yet, it can pointed out that
implicit methods are more tedious to iamplement. On the other
hand, a larger time step can be usad in “he solution proce-
dure, wvhich can be of extreme importance when studying
phepomena over a significant peciod of time.
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APPENDIX C
HOW TO OSE THE TRANSLATOR EPSA-PATRAN-G

This appendix is intended to 2xplaim in d=2tail the use
of EPSA/PATRAN-G post-processing facilities. It is divided
in +three sections that will deal successively with 1) the
displaying of the original model ; 2)zhe deforamed geometry;
3) the cortour plots of el2ment and nodal points quantitiss,

A. DISPLAYING THE ORBIGINAL MODEL

When making an initial EPSA analysis on a particular
structure, the geometry of the moi=l has to ba irput inte
PATRAN-G. As explained in chapter III, all *thz geometzical
information is contained in a £ile FORO19.DAT that is
created each +time an EPSA run is zade. The input of the
original geom2try must be made via the neutral input mode of
EPSA. The procedure, starting froa the "logon" to PATRAN-G
is the £cllowing : '

- Salect the 30 option

Select the new data file option (option 1)

Select the neutral system (option 4)

Select the input mocde (option 4)
Input the neutal file name : FORO19,.DAT

Tha original jeometry will then be displayed on the scresr
It is often found convenient t> have a psrpective view

of the model under study. In that case, the user should :
- Issue the VIEW command
- S2lect the rotation about the absolute axes (option 1)
- Input an angle of rotation

(23 ,-34,0 will give a very rnice view but any angle can be
input)
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- Issue a PLOT command to have th2 model displayed ir the
new azxes.

An example of the procedur2 is provijed on table VI.

TABLE VI
Pinite Element Model Input Procedure

MODE? 1.GEOMETRY MODEL 2.ANALYSIS MODEL 3.DISPLAY 4.NEUTRAL SYS. S.END
>4

NEUTRAL FILE? 1.CREATE OUTPUT 2.INPUT MODEL 3.POST-PROCESSING 4.END
e

INPUT NEUTRAL FILE NAME

>FOR@19.DAT

DO YOU WISH TO OFFSET ANY NEUTRAL INPUT IDS? (Y/N)

N

EPM 200 STEPS ,NO STIFFENERS W=30.

SHALL WE PROCEED WITH THE READING OF THIS FILE? (Y/N)

>

The PLOT command can be issued anytime to display the o-ig-
inal geometry on the screen.

When studying ccaplex models, one does nd5t want the
element and node numbers 9 be printed along with “he geom-
etry of the structure. The commarnd SET, LABS3, OFP followed
by a PLOT will display the original geometry without any
labels printeld.

When a model has been input ipnto PATRAN-G, a data file
PATRAN.DAT is <created on the user's directory. When
connecting with PATRAN-G at a later time, the user can
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select the option "last data file " (option3) to have the
original geomstry displayed on the screen without having to
input the model again.

B. DEFORHNED GEOMETRY

On “he second card of the PATRAN-G input deck, the usar
specifies the number of PATRAN-G displacement data file and
+he number of element Zesults data fil2. Two noa-zero iate-
gers in free forma*t must be placed a+ the end of the second
card (secticn II in the us2r's manual) rTequesting the number
of displacements and of ela2ments files respectively.

Assuming that the user has mads a 200 s<eps rzun with 10
output requests for PATRAN-G displacament files, ten (10)
files FORO18.DAT will then be created at equal time intec-
vals, The deformed geometry corresponding to time step 100
vill therefore be contained in FORO18.DAT;S.

To display the deformed geometry corresponding to <ime
step 100, the user should issue the following comme-4s:

- RUN,DEF : requests deformed jzometry option

~ Input the name of the displacemeats f£ile :FORJ18.DAT 5

- Select the PLOT option (option 3)

~ Select +he undefcrmed gecme*ry (2) followed by the
deformed geometry (3). An sxample o0f the procedure is
provided on table VII. The undef>rmed geometry superposed
vith the deformed gecmetry will taen be displayed on %he
screen.

C. POST~PROCEBSSING OF ANALYIS RESULTS.

Element-relatsd quantities 1lik2 von Mises stresses are
contained in PORO16.DAT files, 1n23al point gquantities are
stored in FORO18.DAT files. As described in chapter IIIX,
each <column of <those files contains a specific quantity
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TABLE VII
Deformed Geometry Procedure

>
MODE? 1.GEOMETRY MODEL 2.ANALYSIS MODEL 3.DISPLAY 4.NEUTRAL SYS. 5.END
>RUN,CON,COL, 4

CURRENT FILE FOR NODAL RESULTS IS  FOR@18.DAT
NEUTRAL RESULTS FILE? 1.NEU FILE 2.CURRENT FILE

>1

INPUT THE RESULTS FILE NAME:

YFORO18.DAT;S

DATA UIDTH = 5

FILE TITLE =EPM 800 STEPS

7.5000129E-94

DATA VALUES RANGE FROM -Qd.585E+08 TO 0.134E+00

ASSIGNMENT? 1,AUTO <2.MANUAL 3.SEMI-AUTO 4.USE CURRENT LEVELS GS.END
>4

PREVIOUS CONTOUR LEVELS USED.

MODE? 1.GEOMETRY MODEL 2.ANALYSIS MODEL 3.DISPLAY 4.NEUTRAL SYS. S.END
>RUN,HI,C

(i.e. column 31 .of FOR0O16.DAT contains +he von Mises
stressas). The reader 'will refer to chapter III for the
detailed organization of those files.

Again, assume a 200 time steps analysis, with 10 output
requests for slement results files. The user might want to
display the contour plots of von Mises stresses at time step
100 . 1In this case the following commands should be input :

~ RON, CON, cCOL, 31: tells PATRAN~G to look at column 31
that contains the von Mises stresses.

~ Input the file name POR016.DAT 5

~ PATRAN-G will then ask £for a color assignaent (automatic,
manual, semi~automatic, current levels used) that the user
will select according to his needs.

Tha contour plots are then ready to be displayed :

~ RUN, HI, FR would display the color-filled contour plots

-~ RUN, HI, CON would display “he contour plots (color lines)

92




The von Mises stresses are the zost useful element gquan-
tities to be displayed, but other slza2nt-relatsd quantities
detailed in chap%er III like the x and y stresses in local
or glokal ccordinates could be displayed as w2ll by looking
at their <corresponding co>lumn in the element rCesults data
file.

Dealing with onodal point quantitiss, the displacement
normal and the velocity normal to the shell are very mean-
ingful quantities in an analysis. They aze respectively
stored in column 4 and S of the displacement results files
FOR0O18.DAT .

A contour plot of the normal displacement at time step 100
would *hen be obtained via the following commands:

RON, CON, COL, 4 (look at column 4)
FPORO18.DAT 5 (name of the fils)
Color assignment chcsen

RON, HI, C or RON, HI , FR

Notice When th2 fluid-structure interaction 1is ON, the
normal displacem2nt contained in cclumn U4 correspoads to
pure deformations, the rigid body contribution having been
taken out.

All the element resul“s processing is iamplemented in the
routine NEUSTRE, all the nodal points processing is imple-
mented in routine NEUDISP. It shoull be pointed out that anay
modification to the capabilities 2f£ the translator (i.a.
being able to5 display other types of quaantities) can b2
made by modifying thcecse routines only.
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ARRENDIX D
LISTINGS

This appendix contains the various files that constituts
the translator module. The submodul2 that displays the orig-
inal geometry is listed on “he first four pages. It 1is
inbedded in file PRANK.FOR. The subaodule tha< takes care of
the post-processing facili*ties is imbeddsd in £ile DISP.FOR
and is listed in the remaining pages. It has been mentiorned
previously that EPSA had been sligh*tly modifisd +o accomo-
data color graphics capabilities. The only interaction of
EPSA with the translator occurs via subroutins calls. 1All
tha "calls" occur in COMPUTE (f>r post-processing) and
REPORT (for the original geometry). A labelled COMHMON
called FRANK has been created and is defined in the routine
AAA as requirad by EPSA. The requasts for PATRAN-G outputs
are echoed in the EPSA output £ile, all the modifications
for that purpase having been made in <rcutine READIN. The
user must be awara that the size of blank COMMON array A has
been increased to store the deflectioas in x, y, 2z direc-
tions instead of only the z direction previously.
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subroutine orelim

dimension A(1)

common iall)

eauivalence (i1a{l),a(1)) .

common/ssize/ ibq(l).,ngj,neltot,nlbd,nload,nbrect.,

1 noguad, isheet, nprofs, nsots, nst;ots, nvots, nhpts,

2 nsstyos, nnj, nntot, lgdso, liaqut, Ibcalc

common /cpara/ nsteos, Nb23, nend, nsheet

common /stab / ibt{l),jss12e,jspar,jveln,jstre,jxmas,jielm, jbmat,
1 jliod, jlocosjoret,jlhis,istrn,jforc, jxloc,jinai,jnni,jnabeg,
2 jlsine

common/érank/nfntot,1lu
COMMON/TITRE/NTITLE(R0)
CHARACTER*9 3UFF
CHARACTER*S TITLE
CHARACTER#A TIM
CHARACTER#*9 VER

this routine comoutes new number of nodal points
for any given sheet

KJ=JNGBEG=JNNI
nfntot=antot=IA(INNI)=TA(JNQBEG=1)=2+(KJ=2)
11tvoez=2S

1lke=1

11iv=0

11ig=0

11n1=0

11n2=20

1tn3=0

11nu=0

11nS=0

write(11u,10) 1itype,1lid,11iv,10ke,11n1,11n2,11A3,1104,11nS
format(i2,9i8)

writel{11u,11) (NTITLEC(I),I=1,80)

format (80 A1)

taking care of second oacvet

Tityoe=26

Tike=1

11nlz2nfntos

11n22neltot

write(11u,10) 1ltyoe,1Vid,1liv,11kec,11n1,11n2,11n3,110n4,11nS
call TSate(BUFF)

write(1ly,12) BUFF

format(A,3X,"'17:12:09’,5%,°'1.4"')

return

end

subroutine shconn

dimension A(1)

common iall)

equivalence (ja(1),a(l))

common/ssize/ iba(l),najrsneltot,nibd,nload,norect,

1 nogquad, isheet, nornts, NnsSOts, nstrots, nvots, nhots,
2 nsstvo, nnij, nntot, l3rdso, 1iaud, Ibcale
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o000

o000

common /cdara’/ nsteps, nbe3y, nend, nsheet

common /stab / ibt(l),jssize, jspoar,jvelo,jstre,jxmas,jielm,jbmac,
1 jlledsjlocosjoret,jlhis, jsern,iforc,jxloc,jnqi,jnni, jnooeq,

2 jlside

common/frank/nfntor,1lu

this routine will write the element corner nodes of each
element on neutral file

1types2
Tikes=2
11noa=4
1iv=4
LLN1=0
LLiN2=0
LLN3=0
LLN4=0
LLNS=0
LLCONF=9
LLPID=0
LLCEI=0
THET1=0,
THET2=0.
THET3=0,

INITIALIZATION DONE

norev=0
1lelzjnni=jnoi

do 200 k=1, lle!
llrow=lA(jnajte=1)

nunber of elts in each row

do 100 j=1,V1row
1e1z2IA(jnabegtK=~1) ¢+j=1
nlellzjenorev
nlel22j+lenprev
nlell3zjel+norevelirowsl]
nleldzj+norevetiirowtl]

ready to disolay oacket

80
81
82
100

200

11§d=LEL

write(11y,80) "tYDel"id:"iV"lkClLLNl'LLNZ'LLNsoLLNalLLNS
format(§i2,84§8)

weite(11u,s81) 11nod, LLCONF,LLPID,LLCEI,THETL,THET2, THETS
formact(i8,3i8,3e16.9)

weite(11u,82) nlell,niel2,nlel3,nleld
format(10in)

continue

norevanorev+llrowt!l
continue

return

end

subroutine sheetf
dimension A(1)

common ia(l)

equivalence (ia(l),a(1))




common/ssize/ ipg(l),najsneltot,nlb1,nload,nbrece,
1 nDQuad, isheet, norats, NSOtS, nstrotsS, nNnvots, nhpts,
2 nsstyd, nnj, nntot, |3dso, liqud, lbcalc

[ common /coara/ nsteos, nbel, nend, nsneet
common /stah / itet(l).jssize,jsoar,jvelo,jstre, jxmas,jielm, jbmat,
1 jllod, jlodo,joret,jlnis,jstern,jtorc,jxloc,jnai,jnni,jnooceq.,
2 ilsise
c

common/frank/nfntot,1lu
character*] gtyoe

()

renumbers the npodes, chanae coordinates, disolay oacket 1

n

1ltyoe=1 0

neouns0
11dot=6
Vict=1
qtyoe=‘'G*
1lecont=0
licio=0
LSPC1=0
LSPC2=0
LSPC3=0
LSPC4=0
LSPCS=0
LSPC&=0

INITIALIZATION DONE

oon

kjSjnobeq=jnni
krowskj=2
do 200 j={,krow
¢ 1000 on new nb. of row

ncaunzncountiA(jnnitj=1)
1ot=lA(janitj=1)=2
do 100 1=1,110¢
11id=11idel
xlloe=A(ncounr2¢tjxlioce+2r)
vlloc=A(ncounz2¢tjxloc+2r1¢1)
skio tirst node of row

()

zlloc=0.

it (A(jvelo=2).ne.0.) then
recourost./4(jvelo=2)
thetazxlloe/rcouro
xlloec=rcourbrsin(theta)
zlloc=rcourbecos(theta)=rcourd
endi f

it (aljvelo=l).ne.0,) then

rcournzl,/aljvelo~-1)
theta=vlloc/rcouro
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vilocsrcourorsin(theta)
z1loc=rcournrcos(thets)=rcourd
endif

it((a(jvelo=1).ne.0.).and.(a(jvelo=2).ne.0.)) then
write(11u,70)

E 70 tormat('error,two curvatures are non rero’')
3 endit
c
c ready to disolay oacket
c
write(11y,30) 11tyoe,11id,V1iv,.llke,11n1,11n2,11n3,11n4,11nS
80 tornat(i2,818)
write(11u,811 xlloc,vilocrzlloc
81 format(3els.?)
write(11u,82) 1lictf,qetyoce,11dot,l11¢conf,V1cig,LSPC1,LSPC2,
1 LSPC3 LSPC4,LSPCS,LSPCS
82 formnat([!,a1,3i8,2x,6i1)
100 continue
200 continue
return
end
c
c

subroutine endneu

common/franc/nfntot,1lu

1ltype=99

111920

MNNivsy

Tlke=1

write(11u,80) lltyoe,11lig,1Vliy,11ke
80 format(i2,3i9)
. return

end
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SUBROUTINE NEUOISP(OEFL,VELO) REPORT

OIMENSION a(1) BLANC 2

COMMON 1A(1) BLANC 3
EQUIVALENCE (IA(1)., A(1) ) BLANC 4

DIMENSION DEFL(1),VELO(1)

COMMON /CPARA/ NSTEPS , NBEG , NEND , NSHEET , N28D , N38D1 , CPARA 2
1 N3802, INTRVL, DELT, NHTOT, NJOIN, NRELAX, ALPHA CpPapa 3
$ LEN S8«x MSPARA 3

COMMON / SSIZE / I8G(1),NQJ,NELTOT,N18D,NLOAO,NBRECT, S§SIZE 2
1 NBQUAO, ISHEET, NPRPTS, NSPTS, NSTRPTS, NVPTS, NHPTS, SSI1ZE 3
2 NSSTvYP, NNJ, NNTOT, LGOSP, LIQUD, LBCALC SSIZE 4

c REPORT 8

COMMQON ,STAB / IBT(1),JSSIZE,JSPAR,JVELO,JSTRE,JXMAS,JIELM,JBMAT, STAB 2
1 JL180,JLOOP,JPRET,JLHIS,JSTRN,JFORC, JXLOC,INQI, JNNT, IJNRBEG, STAB 3
$ JLSIDE,JIELMCL,JSTIF,JOEFL, JFORLG, STA8 4
2 JIFPaAR,JFLPAR,JXCOORO,JYCOORO, JOELTAX,JOELTAY, JVMA,JSEFX, 3TAa8 5
3 JFLUFR, JPRINC, JVELRAD, JGENFR,JPRES,JCSEP STAB 6

COMMON/CIO/ NIN,NOUT,NTHIST,NCORT,MCORT,NTPLOT,NVMA,ITITLE(20)
COMMON/FRANK/NFNTOT, LLU,LLN,LLS,NDPLTS,NSPLTS
COMMON/TITRE/NTITLE(80)

COMMON/COELT/ISTEP, TIME

anon

INTEGER NSUBT1(80),NSUBT2(80)

KJ2JINGBEG=JNNI
NFNTOTSNNTOT=IA(INNI)~TA(JINQBEG=1)=2*(KJ-2)
LLy=19
LLN=18
LiM=17
DEFMAXz3O,
MAXNOO=sNFNTOT
F NwlOTH=S
s NOMAX =20
LLlo=0
i NCOUN=0
3 KRONEXJ=2
00 10 J=1,80
NSuUBT1(J)=0
10 NSuaT2(J)=0

c
C PUT THE TIME STEP OM FIRST SUBTITLE:

CLOSE(UNIT=zLLM)

OPEN(UNIT=LLM,STATUSS'MEN')

WRITE(LLM,#) TIVE

CLOSE (UNIT=LLM)

REAO(LLM™,99) (NSUBTI1(J),J=1,580)
CLOSE(UNIT=LLW)

OPEN(UNIT=LLM,STATUSZ'0LD")
OPEN(UNIT=LULN,FORM="UNFORMATTED®,STATUS= NEN")

KROW IS THE NEW NUMB, OF ROWS ,xJ [S THE 0OLO
NCOUN COUNTS NOOAL PTS IN EPSA, LLID COUNTS FOR ACTUAL MOOEL
NUMR COUNTS NODAL PTS IN EPSA

FIRST LOOP TO GET MAX, OEFORMATION AND NODE NUMBER

oOooOnNOO0O

00 200 Js1,KROW




NCOUNZNCOUN+IA(JNNI+J=1)
LLPT=IA(JINNI+J)=2

LLPT IS NUMB, DF PDINTS (FDR PATRAN) IN EACH RDw L
nE TAKE THE RIGID 800Y MDTION DUT 8Y SUBRTRACTING THE V AND # j
DISPLACEMENTS AT ENDBLDCK AT EACH NDODAL PDINT
NCOUN+2 IS THE POINT NB., (EPSA) FDR ENDSLOCK

s NaXasNaNalal

RBY=DEFL (32 (NCDUN+2)~1)
RBZ=DEFL(3*2(NCOUN+2))
IF (LIQUDO.ER.O0) THEN
RBY=0.
RBZ=0,
ENDIF
0D 100 L=1,LLPT
LLIO=LLID+! , i
NUMR=NCDUN+L +1
DX=DEFL (32NUMR=2) }
DY=DEFL (3#NUMR=1)=RBY
DZ=DEFL (3xNUMR)=-RBZ 1

IS SHELL CURVED,CHANGE CODRODINATES

[aNalal

IF(CACJVELD=1).NE.0,).OR,(A(JVELD=2).NE.0.)) THEN
CALL CHCDDRD(NUMR,Dx,DY,0Z)
ENDIF
! - DD=AMAX{(ABS(DX),ABS(DY),ABS(0Z))
IF(ABS(DEFMAX),LT.DD) THEN
NOMAX=ZLLID
DEF“aX=DD
. IF (ABS (AMIN1(DX,DY,02)).EU.D0) THEN
: DEFMAX==DEFMAX
ENDIF

wE CHECKED IF DEFMAX #AS NEG.

(s NaNal

ENOIF
100 CONTINUE
[ 200 CONTINUE
c DK FDR FIRST CARO
WRITE(LLN) (NTITLE(I),I=1,80),NFNTDT,MAXNDO,DEFMAX,NDMAX,
1 NWIDTH
i write(LLM,90) TITLE,NFMTOT,MAXNDD,DEFMAX, NDMAX,NWIDTH
90 FORMAT(A,218,E16.9,218)
9s FORMAT(20A1,218,E16.9,218)
WRITEC(LLN) (NSUBTI1(I),I=1,80)
WRITE(LLN) (NSUBT2(I),I=1,R0)
ARITE(LLM,91)
91 FORMAT(*PINE*)
99 FORMAT(80A1)

LLID=0
NCOUN=0
c
! c SECOND LODP TO PICX UP DEFLECTION AT EACH NDDE (DF PATRAN MOOEL)
3 c
| D0 400 J=1,KROW
" . NCODYNSNCOUN+IA(JNNI+J=1)
] LLPT=IA(JINNI¢+J) =2
'.} c
Cc TAKE OUT RIGIO 80DY MDTIONON, RBX,RRZ DISPLACEMENTS AT END BLOCKS
c ASUYED TD REPRESENT RIGID RDOY “DTIDNS




Gem omec b0 o e

RRY=0EFL (3* (NCIOUN®2)=1)
RBZ=DEFL (32 (NCOUN+2))
IF (LIJUO.ER.N) THEN
RBY=0,

RBZ=0,

ENOIF

C IF NO FLUIO OPTION 00 NOT SUBTACT RIGIO 300Y COMTRIBUTION

300
400
C CLOSE FILE OPENEO ON UNIT LLN

92

ao0on

c
C
c
c
C
o
c

10

1
3

1
2

1
]
2
3

D0 300 L=1,LLPT

LLIO=LLIO+1

NUMR=NCOUN L +1

OX=DEFL (3~#NUMR=2)

OY=DEFL (3*NUMR=1)=-3BY

0Z=0EFL (3I+NUMR)=-RAZ

0ZL0C=02Z

VELZ=VELO(3+NUMR)
IFCC(A(JVELO=1).NE.O.).OR.(ACJVELO=2).NE.O0.)) THEN
CALL CHCOORO(NUMR,DX,0Y,D2)
ENOIF

ARITE(LLN) LLIO,O0Xx,0Y,02,02L0C,VELZ

ARITE(LLM,92) LLIO,0X,DY,DZ,0ZLO0C,VELZ

CONTINUE

CONTINUE

CALL CLOSE(LLY)
FORMAT(18,5€16.9)
RETURN

ENO

SUBROUTINE CHCOORO(N,X,Y,2)

OIMENSION a(1) °

COMMON TA(1)

EQUIVALENCE (IA(C1), A(1) )

COMMON /CPARA/ NSTEPS , NBEG , NENO , NSHEET , N2BO , N3BO1 ,
N3B0O2, INTRVL, DELT, NHTOT, NJOIN, NRELAX, ALPHA

LEN SBx

COMMON / SSIZE / IBG(1).,NQJ,NELTOT,N1BO,NLOAO,NBRECT,
NBQUAO, ISHEET, NPRPTS, NSPTS, NSTRPTS, NVPTS, NHPTS,
NSSTYP, NNJ, NNTOT, LGOSP, LIQUD, LBCALC

COMMON /8TAB / IBT(1),JSSIZE,JSPAR,JVELO,JSTRE,JXMAS,JIELM,JBMAT,
JL180,JLAOP,JPRET,JLHIS,JSTRN,JFORC,JXLOC,JIJNQI,JNNI,JNGBEG,
JLSIOE,JIELMCL,JSTIF,JOEFL,JFORLG,
JIFPAR,JFLPAR,JXCOORO,JYCOORND,JOELTAX,JOELTAY,JVMA,JSEFX,
JFLUFR, JPRINC, JVELRAO, JGENVFR,JPRES,JCSEP

COMMON/CIO/ NIN,NOUT,NTHIST ,NCORT,¥CORT ,NTPLOT ,NVMA,ITITLE(20)

COMMON/FRANK/NFNTOT,LLU,LLN,LLS,NOPLTS, NSPLTS

OIMENSION XMAT(3,3)

00 10 I=1,3

00 10 J=1,3

XvMaT(I,J)=0.

CONTINUE

THIS ROQUTINE CHANGES THE OISPL. OF NOOAL PT. N(FOR EPSA)
IN A GLOBAL RECTANGULAR SYSTEM

IF CURVATURE IN Y QIR, IS NON ZERO ,CALCULATE
THE ROTATION MATRIX AT EACH POINT

REPORT
BLANC
BLANC
BLANC
CPARA
CPARA
MSPARA
SSIZE
SSIZE
SSIZE
REPORT
STAB
STAB
STAB
ST48
$Tag
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[F (ACIVELO~-1) . NE,0.1 THEN

ACJURY=1, /74 (JVELU=1)
THETAL1ZA(JALOCo2eN=11/9CCURY
XMAT (L, 1)=1,
AMAT(2,2)=2COS(THETS )
AMAT (2, 3)=SIN(THETAL)
AMAT(3,3)=aMAT(2,2)
XMAT(3,21=~1.e AT (2,31
CALL PROD(xMAT,X,Y,2)

ENDIF

If CURVATURE IN x DIRECTIOM IS NVON ZERD:

(aRp¥al

IF (A(JVELD=2) .NE.O,) THEN
00 20 I=1,3
00 20 J=1,3
XMAY (I,J)=0,

20 CONT INVE
RCOURX=1,/A(JVELO~2)
THETA2SA(JXLOC+2eN=21/RCOURX
XMAT(2,2)=1,
XMAT(1,1)=COS(THETA2]
XMAT(3,3)2xMAT(1,1)
XMAT(3,1)==1,+SIN(THETAZ)
XMAT(1,3)=SIN(THETAR)
CALL PROD(XMAT,X,Y,2)

ENDIF
RETURN
A END

SUBRDUTINE ,PROD(XMAT,X,Y,2)
DIMENSION xMAT(3,3)

THIS ROUTINE DOES THE MATRIX PROOUCT XMATa(X,Y,2)

(aXaNal

X1zx

~ Yisy
2122
XIXMAT (1, 1) X1 ¢XMAT(],2)2Y1¢XMAT(1,3)~21
YSAMAT (2,0 ) X1 #XMAT(2,2) Y1 ¢XMAT(2,3)»71
ZXMAT (3,1)aX1¢XMAT(3,2)aY1¢XMAT(3,3)21
RE TURN
END

SUBRQUTINE PLOTDISP(DEFL,VELO)

DIMENSION DEFL(1),VELD(1)

COMMON/COELT/ISTEP, TIME

COMMON /CPARA/ NSTEPS , NBEG , NEND , NSHEET , N2BO , N3BODY , CPARA

1 N3BD2, INTARVL, DELT, NHTOT, NJOIN, NRELAX, ALPHA CPARA
: $ LEN SBX MSPARA
: COMMDN/FRANK/NFNTOT ,LLU,LLN,LLS,NOPLYS,NSPLTS

[V RV

CHECKS IF OUTPUT FOR PATRAN IS REQUESTED BY USER IF YES CALL
NEUDISP

[aX¥eXa¥al

; IF (TIME.EG.DELT) KOISP=1
: TIMEI=FLOAT(NSTEPS) /FLDAT (NDPLTS)
} TIMEC=KDISPaTIMEL

' ITIME=JNINT (T IMEC)

BISEFCTETI RPN S
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aooa

TIMECSTIME/(ITIMESNELT)
ENOTIMNSTEPSA0ELT

TESTZABS(TIMEC~JININT(TIMEC))
IF((TEST.LE.0.00001).0R.(TIE.EQ.ENOTIM}) THEN

CALL NEUDISP(DEFL,VELO)
KOISP=KQISP+}

ENOIF

RETURN

ENO

SUBROUYINE PLOTSTRE(STRE)

OIMENSION STRE(1)
COMMON/COELT/ISTEP,TIME
COMMON /CPARA/ NSTEPS ,

N3BD2, INTRVL, OELT,
$ LEN S8x

COMMON/FRANK/NFNTOT,LLU,LLN,LLS,NOPLTS,NSPLTS

CHECKXS IF OUTPUT FOR PATRAN IS REQUESTEO BY USER 1F YES CaLtl

NEUD1SP

IF (TIME.EQ.OELT) KSTRE=]
TIMEIZFLDAT(NSTEPS)/FLOAT(NSPLTS)

TIMEC=KSTRE«TIME]
ITIME=JNINT (TIMEC)
TIMECSTIME/(ITIVE=OELT)
ENOTIM=NSTEPSOELT

TEST=ABS(TIMEC=-JNINT(TIMEC))
IF((TEST.LE,.0.00001),0R.(TIME EQ.ENOTIM)) THEN

CALL NEUSTRE(STRE)
KSTRE=KSTRE+1
ENOIF

RETURN

ENO

SUBROUTINE NEUSTRE(STRE)

OIMENSION A(1)
COMMON TA(1)

EQUIVALENCE (Ia(1), a(1) )
OIMENSION OISP(10),STRA(10),0STRE(10),0S(S),VEL(2)

OIMENSION STRE(1)

COMMON /CPARA/ NSTEPS , NBEG , NENO ,
NJOIN, NRELAX,

N3802, INTRVL, OELT,
$ LEN S8X

COMMON / SSIZE 7/ 18G(1),NQJ,NELTOT,N1BO,NLDAD,NBRECT,
NSPTS, MSTRPTS, NVPTS, NKPTS,
LGOSP, LIQUO, LBCALC

1
2 NSSTYP, NNJ, NNTOT,

NBQUAODO, ISHEET, NPRPTS,

COMMON /8TAB / 187(1),JSSIZE,JSPAR,JVELO,JSTRE, JXMAS,JIELM, JBMAT,
JL1IBD,JLOOP, JPRET, JLHIS,JSTRN,JFORC,JXLOC,JINQT,INNI, JNQBEG,
JLSTIOE,JIELMCL,JSTIF,JOEFL,JFORLG,

JIFPAR, JFLPAR,JXCOORO,JYCOORD,JOELTAX, JOELTAY,JVMA, JSEFX,
JFLUFR, JPRINC, JVELRAD,

COMMON/CIO/ NIN,NOUT,NYNIST,NCORT,MCORY , NTPLOT,NVMA,ITITLE(20)

COMMON/FRANK/NFNTOY,LLU,LLN,LLS,NOPLTS,NSPLTS

COMMON/TITRE/NTITLE(RO)

COMMON/COELT/ISTEP, TIME

1
H
2
3

NEND
NJO1IN,

JGENFR,JPRES, JCSEP
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N2B0 , N3801

+ N2BO , N3801

CPARA
CPARA
MSPARA 3

REPORT 2

8LANC
8L ANC
8L ANC

CPARA
CPARA

MSPARA 3
§$S12E 2

SSIZE
SSIZE

REPORT 8

STAB
STAS8
STAB
STAB
ST74a8

owmeEewi
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COMMON/SPARA/HBEG(1),E,GNU,RHO,SGYLO, THICK,CURV (2)
INTEGER NSUBT1(80),NSUBT2(80)
NwIOTH=31
LLS=16
LLZ=1S
00 10 J=1,80
10 NSUBT2(J)=0
C TAXKE CARE OF THE 2NO TITLE , INOICAT. TIME STEP
c

CLOSE (UNIT=LL2)
OPEN(UNIT=LLZ,STATUS="NEW')
WRITE(LLZ,*) TIME
CLOSE(UNIT=LLZ)
READ(LLZ,801) (NSUBT1(1),1=1,80)
CLOSE(UNIT=LLZ)
OPEN(UNIT=LLZ,STATUS='0LD")
801 FORMAT(80A1)
OPEN(UNIT=LLS,FORM="UNFORMATTED',STATUSZ NEW")

WE ARE GOING TO OISPLAY THE FIRST THREE RECORDOS (TITLES)

(2 Xz XsXz]

WRITE(LLS) (NTITLE(I),1=1,80),NWIOTH
WRITE(LLS) (NSUBTI(I),I=1,80)
WRITE(LLS) (NSUBT2(I),I1=1,80)

WE ARE GOING TO SCAN ALL ELEMENTS AS IN SHCONN,
GET THE STRESSES PERFORM ROTATION I[F NECESSARY
LLEL: NUM, OF ROAS ELTS: LLIO:ELT NUMBER 3
NPREV: NODE NUM,(FOR EPSA) OF LAST PODINT OF ROW JUST
8ELOA THE ELEMENT ROA X7 LLROW: NUM, OF ELTS IN €ACH ROW 1

NPREVZO

(2] 0O00O0OONO

IA ELTS ¢1(FOR NDOES) ¢2 ARTIFICIAL NDOES FOR NPREV
NSHAPE =4
LLEL=JNNI=JNOT
00 200 X=t,LLEL E:
c 9
LLROW=IA(JNOI+K=1) !
NPREVZNPREVeLLROWS3
00 100 J=1,LLROW 3
LLIO=IA(JNOBEGeK=1) +J=1 3
OS(1)=STRE(9e(LLID=1)+1)
0S(2)=STRE(9+(LLID=1)+2)
0S8(3)=0.
C 0S(4,5) WILL € THE STRESSES IN LOCAL COORO.
08(a)=08(1)
05(5)=208(2)
C VON MISES AT TOP AND BOTTOM OF SHMELL:
TOXYISTRE(9e(LLID~1)¢3)
0SX=STRE(9~(LLID=1)+4)
0SY=STRE(I*(LLID=1)+5)
0Sx208Xe6,./THICK
08Y=08Yeb./THICK
08X1208(1)+08X
08SY1208(2) +0SY
05X23208(1)=05X
08Y2208(2)=0SY

[
C VON MISES CALCULATIONS MODIFIED AFTERWAROS FOR MEMB.+BENDING STRESS
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.C NO SHEAR AT TOP OF SMELL,GET STRESSES AT TQP ANO BOTTOM ANO TAKE
C Max, VALUE
c
[ TQP:
SIGM1=0S5X1
SIGM2=08Y1
VONM13S3QRT(SIGM1+SIGM1=SIGM1+SIGM2+SIGM2+SIGM2)
c 30TTOM:
SIGM1=DSX2
SIGM2=0SY2
VONM2=3QRT(SIGM]1 *SIGM1 «SIGM1 «SIGM2+SIGM2«SIGM2)

VONM=AMAX1 (VONM1, VONM2)
0.X. FOR VvON MISES (VONM)
IS THE SHELL CURVEQ, NLELI'S ARE “NOOES SURROUNOING ELT. (EPSA)

[z X2 Kzl (g}

IF(CA(JVELO=1).NE.0.).JR.(A(JVELO=2) .NE.O0.)) THEN
NLEL13SJ+¢NPREV+1

NLEL23SJ+NPREV+2

NLEL3=J+1+NPREVILLROWS | ¢2
NLELU4=J+NPREV+LLRON® 1 #2

XS (A(JXLOC*+2eNLEL1=2) +A(JXLOC+2+4NLEL2=2)) /4,
XeXe(A(IJXLOC*2oNLEL3=2) A (JXLQC*2*NLELUY=2) /4,
YS(A(JIXLOC+2oNLEL1=1)+A(JIXLOC+2eNLEL2~1))/4.
YSY+(A(JXLOC+2«NLEL3I=1)+A(SXLOC+2eNLELY=1))/4,
CaLL CHELEM(X,Y,08)

ENQIF

(o REAQY TO OISPLAY RECORO

ARITE(LLS) LLIO,NSHAPE,(QISP(I),I=1,10),
(STRA(I),I1=1,10),0STRE(1),05(5),0Q8(6),
QSTRE(4),(0S(1).,1=1,3),

(OSTRE(I), I=8,10),VONM
[ WRITE(15,80) LLIO,NSHAPE, (0S(I),1=1,5),VONM
100 CONTINUE
200 CONTINUE
CALL CLOSE(LLS)
a0 FORMAT(214,6E15.8)

[N VS

RETURN
ENO
SUBROUTINE CHELEM(X,Y,08) REPORT 2
DIMENSION A(1) BLANC 2
COMMON TAC(1) BLANC 3
EQUIVALENCE (IAC1), AC1) ) BLANC &
COMMON /CPARA/ NSTEPS , N3EG , NENO , NSHEET , N2BO , N3B801 , CPARA 2
1 N3B02, INTRVL, QELT, NNTOT, NJOIN, NRELAX, ALPHA CPaRA 3
$ LEN SBX . MSPARA 3
COMMON / SSIZE / 18G(1),NQJ,NELTOT,N180,NLOAQ,NBRECT, SSIZE 2
1 NBGUAQ, ISHEET, NPRPTS, NSPTS, NSTRPTS, NVPTS, NNPTS, SSI1ZE 3
2 NSSTYP, NNJ, NNTOT, LGOSP, LIQUO, LBCALC $SIZE 4
c REPORT 8
COMMON /STAB / IBT(3),JSSIZE,JSPAR,JVELO,JSTRE,JXMAS,JIELM, JBMAT, STAB 2
1 JL180,JL00P,JPRET, JLHIS,JSTRN, JFORC, JXLOC,JNGT,JNNI, JNQBEG, STAB 3
3 JLSIQE,JIELMCL,JSTIF,JOEFL,JFORLG, STAB 4
: 2 JIFPAR, JFLPAR,JXCOQRO,JYCOORD,JNELTAX,JOELTAY,JUMA,JSEFX, STAB S
3 JFLUFR, JPRINC, JVELRAO, JGENFR,JPRES,JCSEP STAS 6

OIMENSION XMAT(3,3)
OIMENSION 0S(3)
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c

00
0o

to I=1,3
10 J=1,3

XMAT(I,J)=0.
COMTINUE

THIS ROUTINE CHANGES THE STRESSE [N AN ELEMENMT INTO A
IN A& GLOBAL QECTANGULAR SYSTEM
CENTROIO x,v

+GIVEN LOCAL CO0RO. OF

IF CURVATURE IN Y OIR. IS NOM ZERO ,CALCULATE

THE ROTATION MATRIX AT EACH POINT

IF (AGJVELO=1).NE.O.) THEN

RCOURY=1,/8(JVELD=~1)
THETA1=Y/QCOURY

XMAT(1,1)=1,

XMAT (2,2)=COS(THETA1)

XMAT (2,3)=SIN(THETAL)

XMAT (3,3)=XMAT(2,2)
XMAT(3,2)==1.*XMAT(2,3)

CALL PROO(XMAT,DS(1),0S8(2),0S(3))

ENOIF

C IF CURVATURE IN x OIRECTION IS NON ZERQ:
IF (A(JVELO-2).NE.O.) THEN

20

00 20 I=1,3
00 20 J=1,3
XMAT (I,J)=0,

COMTINUE

RCOURX=j.sA(JVELD-2)
THETA2=X/RCOURX

XMAT (2,2)=1,
XMAT(1,1)=COS(THETA2)

XMAT (3,3)=XMAT(1,1)
XMAT(3,1)==1.4SIN(THETA2)
XMAT(1,3)=SIN(THETA2)

CALL PROO(XMAT,0S(1),05(2),05(3))

ENOIF
RETURN
ENO
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