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ABSTRACT

AN The analytical and experimental results for traveling
bending waves in a uniform beam with tuned periodic canti-
lever ribs are presented in this report. Two analytical

models were developed: one, is for an infinite array of

periodic sections and the other is for a finite array of

periodic sections in an infinite beam. Several types of

LA

‘:35 periodic sections were considered. The bending moment
3§i spectrum was measured for a traveling wave in a uniform
Eéﬂ beam caused by impact. The insertion loss as a function
;E} of frequency was measured for such a beam with 1,3,5,7
AN

:55 and 15 sets of symmetric sections. There is good agree-

ment between the computed bending moment spectra and the
measured ones for all sets of cantilevers considered. The
width of attenuation bands increased with an increasing
number of cantilever sets, and the spectrum for 15 canti-

lever sets was a close approximation to that of the

computed spectrum for an infinite number.
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1. INTRODUCTION

The theory of wave propagation in periodic structures has
been developed by solid state physicists and electrical
engineers for some time [1,2). The application of this
theory to predicting vibration responses of periodic
engineering structures due to broad band pressure
fluctuation is relatively recent and has been applied,
primarily, to the analysis of periodic structures as band
pass filters for bending waves [3,4,5,6]. The analysis for

an infinite ribbed bar has been published with some limited

confirming evidence [7]. The objective of this study is to

get extensive quantitative results, both analytical and
experimental, for a beam with tuned periodic cantilever
ribs. Two analytical models are presented for such a
periodic structure in which the periodic sections consist
of constant cross-section rectangular beam elements. One of
the models is for an infinite array of periodic sections
and the other is for a finite array of periodic sections in
an infinite beam. The attenuation in the infinite model is
either zero or infinite; the stop and pass bands are
conveniently found by an eigenvalue technique. The actual
value of the attenuation must be found for a finite model
and so an impedance technique 1is used. Three types of
periodic sections are considered, symmetric (two sided
cantilevers), asymmetric ( one sided ) and antisymmetric

( alternately on each side ). The impedance model is

prp——
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;ﬁ sufficiently versatile to predict the response of ordered
i: as well as disordered periodic sections with no limitations
;E on the number of such sections. This report gives
§ experimental and analytical results for an ordered periodic
S beam with symmetric sections of 1, 3, 5, 7 and 15 sets of
ﬁg cantilevers.
}\ In an earlier report [8) the analytical model for the
g; infinite periodic beam with symmetric sections was
f: developed and compared with measured results. This work is
t4 briefly reviewed in Section 2.3 of this report.
=
N In this report, Section 2 gives the analysis, Section 3
i; describes the experimental method, Section 4 contains the
;' results and Section 5 discusses the comparison of the .
f experimental and analytical results. g
% J
-1 4
: 2. ANALYSIS :
- 2.1  GEOMETRY p
ﬁ Our periodic structure consists of an array of priodic
E sections. Elements of the periodic section are uniform
3 beams of rectangular cross-section. Three section types are
g. considered:
‘E a) Symmetric: Sections of this type consist of a uniform :
o
M

beam element with a double cantilever element attached to

it at its right end, figure A.1l.




b) Asymmetric: Sections of this type consist of a uniform
beam element with a cantilever attached to one side at the
right end, figure A.2.

c) Antisymmetric: Sections of this type consist of a
uniform beam element with cantilever elements attached
alternately on each side, one at the center and the other

at the right end, figure A.3.

2.2 EQUATIONS OF MOTION
In first order theory, the differential equation for the

propagation of an extensional wave in a uniform beam is:

,O‘Lu 31-

EA S TPA 3 T© (2.2.1)

and that for a bending wave ( Bernoulli-Euler ) is:

$ 2
Y ()
D oo + PA Yy =0 (2.2.2)

If we assume a sinusoidal wave of frequency w travelling to
‘the right
u(x,t) = u(x) exp (-jwt)
(2.2.3)

y(x,t) = v(x) exp(-jwt)

where j = JTT
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the general solutions of equations (2.2.1) and (2.2.2) for

a uniform beam are

u(x)

v(x)

where Y

Cy

8

t

D

A.,

from the end boundary conditions.

We can analyse a travelling wave in a periodic structure by
using the

periodic sections.

2.3 TRANSFER MATRIX

We define

Alcoshpx + Azsinhpx + Aacost + A4smpx

= W/ Cy

=,’E/P is the rod phase velocity

AZ' A3' A‘,, E

;oS Yx + E sinyx

(2.2.4)

12 pud/ Et

beam thickness for a rectangular cross-section
EI is the bending stiffness*.

and E2 are constants to be determined

]

nodal boundary conditions at the ends of the

a vector composed of six components of

* the anticlastic curvature restraint is not effective for a

thin rectangular cross-section at small bending strains and

2
so the 1-7 term is ommited.




- -I.‘l' :‘\n".-'_.
. B ‘DV '. .'

P

(

vy
‘l.l .
]

. % '
‘,“.,_ ,-“. .‘_ l‘

I,‘.v
I

+ V]

...........

displacements and forces at a node i

u, )
2;) |pi/ 3 e
zi= ~—- FF{--~-m-- h (2.3.1)
2 ) |ve
9&/?
M, /E1g*
| -F; /EI ¢

where the components are defined in appendix E and figure

2.2.1.

The elements of the vector Z; are multiplied by suitable
factors to give each the dimension of length. We can find
the above vector at the end of a section in terms of the

that at the other (figure A.l, A.2 or A.3):

2¢ = [Hm); 2 (2.3.2)

[H,]); is a (6x6) matrix and is the transfer matrix for the
section i, between nodes (i-l1) and i of section type m

(m=1,2,3). We partition the matrix [Hm); to get

Zd Hm: Hzm zl(l'nl)
V= ___+ ..... ———
|
23 Hy!  Hyp 2249
-5




F where H,, (2x2) and H,,, (4x4) are due to the axial and

- bending modes alone and Hg, (2x4) and H,,, (4x2) are the

e matrices coupling the two modes of vibration. The transfer
matrices [H"Ji for each type of section are given in

appendix A,

2.4 EIGENVALUE MODEL

é; The periodic beam is considered to have an infinite array
- of 1identical periodic sections. If we have a wave of
Y

=i fregquency w traveling in an undistorted fashion, it must
s £

o attenuate by the same fraction in each section. Thus we may
:iﬂ write
‘:_.

':' Z, = Awm 2., (2.4.1)
TT:::

| where A, is the ratio between successive periodic repeats.
a0y From equation (2.3.2) we have

-k

\‘ Z'l = [Hm] Z,:_| = xm Zi__' (2.4.2)
:f:;

2.
_?j This is an eigenvalue problem where [H,J is a function of
= frequency*. Since all of the sections are identical, the
i& * submatrices G and F of [H"g;were incorrectly reported in
i; reference [8]. The corrected version is given in equation
Y (E.2) and (E.7), appendix E.

e
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subscript i of the transfer matrix is dropped. There are
- six roots to the eigenvalue problem which are, in general,
complex. It can be shown that the absolute values are equal
to or less than one. 1If the value is one, the magnitude of

the travelling wave is unattenuated; if it 1is 1less than

YN Y
R

0

one, it must eventually die out. The stop and pass bands

LR
N

calculated for h/L = 0.48 are shown in figure 4.1.1 a2nd the
predicted results are compared with measured ones in figure

4.1.2 which is discussed in section 4.

::'; 2.5 IMPEDANCE MODEL

o The structure is modeled in three parts, The middle part

. of the structure consists of a finite array of a number of r
¢

- periodic sections; the two end parts are semi-infinite

-ﬁ; uniform beams attached to the middle part. Since the

. experimental portion of this project considers the response
of the beam to the impulsive force applied transversely
near the center, the Sommerfeld condition requires us to
consider only waves travelling to the right at the right

end and to the left at the left end.

. ‘ 2.6 IMPEDANCE MATRIX and INSERTION LOSS

;? The impedance matrix Q§ relates the force vector, N;, at a :
;é node to the displacement vector, W;, at that node (figure

ii 2.6.1). The sign used as the superscript on the impedance

’E; matrix signifies the direction in which one looks. J
-,

LA
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Where M;/EI@2
N, = {-F, /E18°
. ¢ « /ELP
= P,/ ¥ EA

S v‘..

]
|

i =4 8/

U

R We now rearrange the vector Z;, for convenience, as

o~ A
o 2, =4{--- (2.6.1a)
L
; N;
-
..
.
- The impedance matrix at node n which is the first node of
R the right hand semi-infinite uniform beam (figure 2.6.1) is
:j (appendix B equation (B.1l)):

S,
T -3 - (1+3) 0
Q‘:, = | -(1-3) j o} : 3= -1 (2.6.1b)




.- The transfer impedance matrix, [R:,.]mgives the force vector
-'.:.;Z: at the n'th node in terms of the displacement vector at the
e 0'th node:
)]
N _ +
N Ny, = [Rg,],, W, (2.6.2)
It is shown in appendix C that [R:,,]m can be computed from
'.:ZEZ:_ Ky, » the inverse of the transfer matrix:
e . N -1 .
+ =
'.'\{.: [Ron]m = Q, I {K""L, + {K"‘t}n On ] [ {Km|},,.,+ {Km}n-.on-u tee
':..':. +_'~| + -|
:\ “ee I{KMI}2 +{sz}zQzJ [{K,m}‘ +{KM1}' QI] (2.6.3)
‘. . 13 3 - . .
NP A bending wave traveling to the right in a bar will split
\-}_ into a reflected wave and a transmitted wave at a change of
e
cross section which occurs at a node. Therefore at the
]
- zero'th node
L
-'_: vy Vg Ve
-.: or W1 = Wk + WT = WR + Wo (2.6.4)
;'::::
L In the same way for the forces
@
.-T
\'J‘-'.
e
EA
e -9-
-
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M, Mg My
Fy y={Fe {+ { F.
P, Pe Py

or N, = Ng + Np = N+ N_ (2.6.5)

The relations between force and displacement vectors at

node 0 are

) +
N1= [Qo ]IW 4 NR= [Qo ]ka
(2.6.6)
N=0 w=20"w
T‘ 6 T 0
where A Mk/Elf
- = 3 . =
W = 9“/9 » N, = {-F /EIp’ [; (k=I,R,T)
Uy Pg /YEA

7], - j o o

[Qtlxis obtained from equation (D.5), appendix D.

-3 (1+3) 0

[0e1, = |13 3 0
0 0 j
-10-
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Q: is obtained from equation (C.4), Appendix C for i=0.
Since the reflected wave at node zero propagates through
the uniform semi-infinite beam in negative x direction,[Q‘,‘]'l
is obtained in the same way as ctis obtained in appendix B

but with opposite. sign of x.

Using equations (2.6.6) and (2.6.4), egquation (2.6.5) can

be written
N, = [Q:]R(WI - W,) + N,
1
Ny - [, W = ~Te [N, + N,
+ ry ~f + + -1
or {I -[Q.]K[Qo]x }NI = {I - [Qo]R[Qo] i No

R LR RS L CARCA N A

So that W, = S N (2.6.7)

S is a (3x3) matrix, given in appendix D. Substituting

equation (2.6.7) into equation (2.6.2) we obtain,

-11-




( N,=J, N; (2.6.8) :
.: _ + -
& where Im = [R;, w S
N
_ )
N Since bending strains were measured in our experiment we g
Py
X consider the bending moment element of N in equation
(2.6.8):
R
> 2 3
2 Ma/EIf = J,(1,1) M, /EIg"+ J,(1,2).~F; /EIp + J,(1,3) Py/{EA
I
-
- Substituting the values of M;, F, and P, in terms of the
. amplitudes of the incident axial and bending waves
:“ (equation (D.5) we find that
- 2 . .
- Mp/EIf = l-om1, 1) + 33,(1,2)] v, + 33m(1,3) U, (2.6.9)
:2 For the beam with symmetric sections, Jn(1,3)=0 so that the K
)
:: bending mode is not coupled with the axial mode.
N
f The dB Insertion Loss (IL) due to the presende of the
¥ periodic section is (m=1)"
>
-

Y

(1M 1 . .
IL(W) = 20 log ot =-20 log, fomn - 5ol 2610 ;

.
.
~
-
.

We have assumed that the damping dissipation in the uniform

beam is negligible so that the spectrum magnitude is the
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same everywhere, Spectrum measurements confirm this
assumption. Thus the transmitted spectrum, SP' can be found

from the incident spectrum,
Sp(w) = s“(w) - IL(W) (2.6.11)
where su(w) is the uniform beam spectrum.

3.1 INSTRUMENTATION

With one exception, the instrumentation is the same as that
described in reference [8], figure 3.1.1. 1Instead of using
the HIPlot X-Y recorder to make hard copies of the signals
stored in the spectrum analyzer a HP-85 computer and a HP
7225B plotter were used. This system is more flexibl!e for

getting a hard copy of any stored signal.

3.2 BEAM and CANTILEVERS

A uniform steel beam, 0.250 inch thick by 2.00 inch wide

and 36 feet long was hung in a horizontal position by 0.030

inch piano wires fastened at 4 feet intervals to the thin

edge by welding to 3/4 inch, 6-32 screws in drilled and

tapped holes; the screws were locked by locknuts. The wires
were fastened to an overhead pipe 4 feet above and adjusted

by turnbuckles to equal tension by tuning to the same note.

The impact point was 16 feet from one end. The travelling

waves were measured at point 10, 10 inches from the impact

-13-
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::E‘,

t{ point and point 82, 82 inches from the impact point, both

{ﬁk on the 20 feet end (figure 3.2.1).

N

:3 After the uniform beam measurements, 15 pairs of
cantilevers each 2.35 inch long were fastened to the beam

ﬁ% at 5 inch intervals starting one inch from point 10; the

'{1 measured resonances of the cantilevers mounted in a short

,\} length of beam lay between 1332 and 1386 Hz. The resonant

é; frequency of a 2.35 inch cantilever calculated by using the

S? measured phase velocity is 1394 Hz; if we assume the length

;Ez (arbitrarily) to be 2.40 inch to account for the elasticity

;:E of the base, we get 1340 Hz. The frequencies of waves with

ot wavelengths 10 and 5 inches (5 inches is the distance

.}f between two consecutive cantilevers) are respectively 863

ié and 3452 Hz.

2

-;:; 3.3 EXPERIMENTAL TECHNIQUE

" 3.3.1 FREQUENCY SPAN

.§ Since the bending wave 1is dispersive with 1its phase

ij velocity proportional to the square root of its frequency,

‘QE the low frequency components of the wave take 1longer to

;E travel from the origin of the wave at the point of impact

i; to a measurement point than do those of higher freguencies.

i%; With the finite beam that was used in our experiment, the

‘. spectrum of an infinite beam can be obtained if the

spectrum is recorded before any reflection from the free

a 8 .l .l 'l r
a " -'.c’ -“l' D

.
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end of the finite beam alters the spectrum; that was
achieved with signal travel times appropriate to the
frequency span settings of the spectrum analyzer. For a
frequency span of 10 kHz (12.5 msec time signal) with 6.5
msec pretrigger time, the total travel time (12.5-6.5 or
6.0 msec) to reach the measurement point 82 (figure 3.2.1)
was not enough for waves of frequency 10.4 kHz and lower to
return after reflecting from the free end A of the beam.
Also it was not enough for frequency 500 Hz and lower to
reach the point 82 directly from the impact point. So at
this frequency span setting the spectrum between 500 Hz and
10kHz was essentially the same as that of an infinite beam.
At the 5 kHz and 2.5 kHz frequency span settings with 25
and 50 msec time signals and 9 and 17.5 msec delay times,
travel time for the wave to reach point 82 was respectively
(25 - 9 or lémsec) and (50 - 17.5 or 32.5 msec). At these
two settings, using the same reasoning, the spectra were
good from 63 Hz to 1300 Hz and from 15 Hz to 350 Hz
respectively. Thus, to get the spectrum for the infinite
beam for the whole frequency range of 10 kHz, spectrum data
for frequencies 15 - 320 Hz and 320 - 1480 Hz were taken
from the 2.5 kHz and 5 kHz settings respectively and the
rest of the spectrum data were taken from the 10 kHz span
setting. These three data sets were then combined with

appropriate band width corrections.

-15-
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; N 3.3.2 UNIFORM BEAM
EE The uniform beam spectrum was measured at point 82. All the
Eg measurements were taken with eight averages of the r.m.s. 3
L spectrum with gain settings at 10 mv max., and A.C. )
- coupling. The bending moment spectrum is shown in figure
R 3.3.1. 1
f“ :
, I
-\j 3.3.3 BEAM WITH CANTILEVERS '
Eg The settings of the spectrum analyzer and the pretrigger :
;5 time were kept the same as in the uniform beam case. The '
,E amplitude of the impact was also kept the same to make sure
x; that the incident wave was the same as for the uniform
‘x beam. Since the spectrum measured at any point beyond the i
ii cantilevers along the uniform (undamped) beam remains the ;
5 same, all of the measurements of the spectrum were taken at
w point 82.
:
~ 4.1 IMPEDANCE MODEL -
ii Egquation (2.6.10) was used to calculate the dB 1Insertion }
'i Loss (IL) as a functién of frequency for the symmetric :
E periodic case for 1, 3, 5, 7 and 15 pairs of cantilevers. h
L Since the incident wave was assumed to be same with and .
E; without the cantilevers the computed spectrum for the )
ig periodic beam was calculated from egquation (2.6.11) for ?
; each number of sets. The computed spectra are compared with i

the experimental ones in figures 4.2.2a, 4.2.2b, 4.2.2c,

A A ) A A S S R SRR AR L C AR




4.2.24, and 4.2.2e. In some stop bands the computed
spectrum values were less than -120 dBV and were below the

bottom of the figures.

4.2 EIGENVALUE MODEL

f] The pass bands and stop bands for an infinite periodic beam

calculated by the eiganvalue method reported in [8] are

shown in figure 4.1.1. 1In this mcdel of an infinite number
:ﬁ of periodic sections, no attenuation occurs in the pass

bands and no transmission occurs in the stop bands. The

spectrum computed in this way is compared with the measured

- spectrum of the periodic beam with fifteen sets of

cantilevers in figure 4.1.2.

5. DISCUSSIONS

The agreement between the spectrum computed by the
impedance method and the measured spectrum is gratifying
for all five cantilever sets considered. The measured
attenuation between 6600 Hz and 7300 Hz for 15 sets of
cantilevers was much greater than the calculated values.
Some indication of this can also be seen in the other
figures. The reason for this discrepancy 1is not known;

material damping is much too small to account for it.

Attenuation in the stop bands and the width of the stop

bands increased with increasing numbers of cantilever sets.
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e At fifteen cantilever sets they approximated the computed
{ L
- results for an infinite number. The values of the computed
fi spectrum in most of the stop bands, especially for
- cantilever pairs five or more, was -250 dBV or below, ]
~ . whereas the experimental attenuation was always 1less than !
~, ". J
N 35 dsv. This 1is probably due in part to the 12 bit A/D ]
- converter (72 dB full scale) of the spectrum analyzer and
; in part to leakage caused by the DFT.
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i APPENDIX A
!
\ﬂ Transfer Matrices
3
Considering the axial wave solution of equation (2.2.4) for
. a uniform beam piece of length L, we obtain (appendix E)
) Zygh = B Z‘("_') (A.1)
3 where B is given by equation (E.1l) and 2Z; is defined in
> equation (2.3.1). From the bending wave solution, we get
ES
< (appendix E)
- 2,, = G Zz(iq) (A.2)
-~
iy
. where G is given by equation (E.2).
2 The process of getting the transfer matrices for any type
i of periodic sections 1is similar to that given in section
- 2.2 of [8] with appropriate equations of equilibrium at a
. node. ?
o ) a) Symmetric section (m=1) i
X The equations of equilibrium at node i with the sign
- conventions shown in figure (A.l) are "
A
:
. -19-
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( -
. Mi= M- Mg- My
. F. = Fy - P+ Py
a P{ = P+ F - Fy
0
S |
- Following the same procedure as described in section 2.2 of 3
. [8] we obtain the transfer matrix [H] for this type of
¢

i section as (equation E.5):

AY

.r::
S

o Hy | Hy B+D ! 0

B I S S S S o

25 (), = 1 - "

|

y H, 1 Hyl. 0 e+ F|.
.-
’; The matrices D'and F are given 1in equations (E.6) and

I& (E.7). Here because of symmetry the coupling matrices

N

o H,, and H,, are null matrices, since the coupling effect
2 due to one cantilever at one side is nullified by the
N
:ﬁ cantilever on the other side (figure A.l).

N

i: b) Asymmetric section (m=2)
.':\
o

= ; The equations of equilibrium at node i are (figure A.2)

n:: [
[ My = My = My (A.4) %
.-‘\”.
' Fo = Bi{ - Py
\::.: P = Py + Fyy
O
\'l
N

.. -20-
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N and the transfer matrix [H,]; is

o

~

H\, ! H,, B + Dzll c,

S U = be————c | R

. [4,], = T i ;
= Hy, | Hyp E, le+1/2F ]
"~ L
5 matrices C,, D,and E, are given in equations (E.8), (E.9) {
v b
? and (E.10).

’

. c) Antisymmetric section (m=3)

= A section of this type can be considered to be composed of

. two sections of asymmetric type where one is rotated 180°

! , 1

) with respect to the other about an axis along the length of

\1

4

- the section (figure A.3). The transfer matrix for part I

1

- ([gﬂi) is the same as that of the asymmetric section:

o 1

"’ [Hgli = [Hz];

- T . .

$? and that for part 1II ([Hﬂi), using the equations of

J.

> equilibrium

2

o

::j My = My - My

‘o

4

: F, = F,, + Py (A.5)

ﬂh P, = P{ = Fyy

"

. : 21~
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> 1
3 (2] = [--mmm- FTTTTTT
o e, lc+1/2F

iyﬁ Now, the transfer matrix for the whole section 1is the

B product of the two above, i.e.,

[H;]i = [33]f [H;]I: (A.6)




[' APPENDIX B
Impedance Matrix at the n'th node

In the semi-infinite uniform beam extension of the main

beam, the solution for the amplitudes of the time dependent

Fi part of the bending and axial modes of vibration traveling
to the right are (figure B.l):
o
1
!g vi{x) = BI exp(-p:ﬂ + B, exp(-jp X)
N u(x) = B_ exp(-3 ¥ x)

3

The above solutions are completely determined by the three

displacement boundary conditions (v, , e"/P and u,, ) at the 1

n'th node. We obtain the components of the force vector

3
(M,,/EIp2 » -F,/EIf and P,/¥ EA) at the n'th node by

(9 & PV

differentiating the solutions and using the constitutive

i relations p
- &
" R
. 2_ 3_

- M,,/EIF = v (%) ' ~F, /EIP = v (x)

A X0 x=0

i and B,/ VEA = ul(x)]

3 X<0

. +
Sirnce N, =0Q, W,

i the impedance matrix, Q!, at the n'th node is




EafCaf oA (R LNy __V'\ _:‘_--'__ Rl .. _.?'*7\.7_.?._?"- - ‘vi—_"-f'\i \7-:.1'.*“. ‘AR P '-r':',". v -_\v;:v.*.v~.1. At W Ak A4 ﬂ

-3 - (1+3) 0
o) = [-a1-9) j 0 (B.1)
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APPENDIX C

A

C.1 Transfer Impedance Matrix [R:,,]m

2 B .‘ n.
[

From equation (2.3.2):

Wi W
and SRR LM RS (C.1)
N, Ny
A
where k., = [Hm];

Y
[ﬁm]; is the matrix [H,,,]irearranged in the same way as 2,

t >
-1

Since[H,®) is the transfer matrix from the i'th node to the

(i-1)'th node, it is most easily found by changing the sign

of x which makes «, and “z negative in the equations (E.1l),

(E.2), (E.6), (E.7), (E.9) and (E.10) of appendix E.

After partitioning the matrix [Kvn].;' into four parts

we have We, = ixmhwi + (Kl N;

(C.2)




Sl b

Equations (C.2) are valid for any section i. Starting with

the n'th section, we have:

-]
|

e Ao bt ae

naoo ixmlnwn + §»K""l]nNr\

aa

N'n-l = {K"ﬂl wn + {K"N}nN”

n

Substituting for N, from equation (B.1l) and inverting the

first equation to find W,

-1
w, = [{Kml,+ {Kml, 5] W, (C.3)
ry
then qu = an W

where Q:d = [{&ml, * {Kmils 07 ] [{RKm)n + {Rmal, Q'*,,]-|

is the impedance matrix at (n-1)'th node and can be
determined since all the terms on the right hand side are

known.

In a similar fashion for any node i we find that

Q.i.: = [iK'M}' + iK"‘“}'-n Q:M] [{K""}iﬁ‘ * {K"‘l}cu Q:“ ]‘l (C.4)

“H t

-1
and W, = [{Km};"' {K"'z}i Qt] Wi

-26-
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Applying equation (C.4) successively, we find W in terms
of Wo. Then we find the force vector at the n'th node (the
point of measurement) in terms of the displacement vector

at the 0'th node (the point of impact) from eguation (B.1l)

AR A AR, o

wn = [R:H]m wo )

where

-

R3] = 0L (Kml* {Km, @57 [{Kml * (Eml Q0] -ee.
cove TRm* {Kma, Q;]"[{x,,,,}| + (K.}, 0} ]" (C.5)

In our case, all the sections are identicalhandnall of the

K, matrices are equal.
C.2 An alternative method of computing matrix [Rgn].m
Instead of having to invert the matrices at each node as

shown in equation (C.5) we could successively substitute

from the left hand side of equation (C.l) into the right

side at each node. This would give the forces and
displacements at the 0'th node in terms of those at the

n'th node:

[Km), [Em], +oeor [Km), [Kip 4---

-27-
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> f Wy

{ = _—

.. - Tm (COG)

= L Nn

A We can now partition T, to get

T | T

. m

X ™ ;
;':: Tm i -l ----- :
o | )
: Tz +  Tmy i
< 4

= _ + ]
: and Wo = T, W, + Tman = ( Ty, + Ty Qn) W, ;
s =

) so that W_= (T, +T,Q,) W, (C.7) ?
.:* :
which is only one inversion. Unfortunately, at large «, and 1
_ o, , the hyperbolic terms in matrices G, C?_ and F ,

‘ appendix E, are very large and almost equal. As a result

-:.‘

A the elements Of (Ty, + T,y Q:) are the small differences

_ of large numbers and the matrix is very 1ill-conditioned.
{ Even though this 1is only a 2x2 matrix for the symmetric
o

- case we lost more than 10 digits for three multiplications

AR at frequencies as 1low as 3000 Hz. As a result, the

. successive inversion method was used for all cantilevers. N
- b
. Even so, some care must be taken since we lose 6 digits at :
TR !
10000 Hz. :
N :
o

\‘.

A -
e |
-.\

T 1
o R
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A




APPENDIX D

pDerivation of the Matrix S

The equations for the incident waves traveling towards the right

are

vy=V, exp[ j(wt- ﬁx)J
(D.1)

u1=thexp[ j(ub-Yxﬂ

where u and v are the deflection in the positive direction of x

and y respectively (figure 2.5.2).

For the reflected wave traveling towards the left

<
(]

v, exp [ (ut+ Px)] + V, exp [Fx+ jw t)

[N

(D.2)

c
"

U, exp [j (wt+ Y x)]

SO YN,

(PN
PSP

At node zero the transmitted displacements are v, , 6, and u,

which are related to the internal forces at the node by

Equation (2.6.4) written for its all components is

:':: -29-
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Vi= V, + V3 o+,

-3V, =3V, + V3 + 8. (D.3)

v, =0, + U

2 (]

and that for the equations of equilibrium,

M,/E1p? = M, /EIg? + M,/EI?
F, /E1p> = F, /E18® + F, /EIp’ (D.4)

gl/a'EA = Pk/'rEm + R,/i'EA

The relations between the components of N, and those of

displacement W are

M, /EIp = -V, M /EIg® = -V, + Vj
- 3_ . . - _ 3 _ _a
N, = l-F /EIg"= -3V, i Np = {-Fo/EIg® = -3V, + v,
Pg/¥ EA = -3U, P,/ ¥EA = iU,
(D.5)
and
M,/EIg?
o ’ vo
- 3 - + _ AF
N, = {-F, /EIp = Q] 6, /g% = Q. W,
P, /v EA u,

We now solve for V,and V, in terms of V, and v,ahd U,in terms
of Uland uofrom equations (D.3). We then use these to find

the elements of N _in terms of v, /% Uand W, in equations
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..............

(D.5). We substitute for V, and U, in terms of My, F, and P

from equations (D.5) and finally a set of linear equations

for My, Fyand P, in terms ofv, 6 ,and W,

where

(u,:') st +5} () ie 00 i) ('i;-'){&ﬁtu-a))

S - HQ (2, 1)~1+)} [' ")S,Q (2,2) -3} Q t(u3)
(D.6)

TN TL M| ge:(s,s)-a' }

A
PR P R

/

e

et
SAA

T -
REAEREND

.
"
-
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APPENDIX E

Differentiating equation (2.2.4) we have

P = EA u'= EA Y [-E‘cosyx + Ezsinrx]

e =v’/ = Ap sinh@ x + A ,Bcoshg x - Asﬁsin gx + A gcos gx

EI v”= EIpz[ A'coshﬁx + A

=
]

2sthx - Aacos(Qx - A“smpxj

F =-EI vM=-EIp3[A'sinhPx + Azcosh ,gx + Assinlgx - A“cos,g x]

Substituting x=0, solving for E, E,, A ,A,, A and Al& in

terms of wu, v and their derivatives and then solving for

the elements of Z;at x = L, we get:

2y =B 2,

2,0 =6 2,0

where CoSs o, sin«,
B = (E.1)
-sind«, CcOs «,
= @) = Cosha, +Cosw, a a, a, a
'T'-': ] 1 2 3 4
E‘j.-(::. A, = Sunhety +Sina, a
o y - Y Q a a
:'.-:.- Qy: Coshely - Cosxy G = é : z 3
A
e . a
Lo Qy = Sinha, -Siety 2 a4, a (E.2)
E Q, a, ay o
r\‘.:x
o
S\':‘-
LS
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Z:l"-
L
BN 2

o o, = Lt o, = BL gt = fac

- and Ve 2 ’ E1

\:::

iﬁ If we now make the change to 1local coordinates for the

ol

=

= cantilevers, and put in the boundary conditions for the
X cantilever

oS

.\‘

W~

- P=F=M=0at x, =h (figure 2.3.1)

= we get P,,/¥YEA = tan«y uy; (E.3)
.:\
4

..:.. r . 2 .

~ 1 M2 /EI@ Ui

.“ ‘

: = A (E.4)
e 3

' Smhdy Sumeay Cosha'y Sindy - Smhdy Casary
A=l ,

= 8 | - (coshey Sindy + Simhdy Cosity) ~ (sinhay sin oy )

- h

.~._ daz—z-— s 0(4 :P"i .A:(I-FCOSho(qGOqu.)

oy r

a) Symmetric section (m = 1)

Substituting from equations (E.l), (E.2), (E.3) and (E.4)

into equation (A.3) we finally get that

SRECR0 I SER

)

-33-
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(SRS RS

[H,].L = f------- Y Tadaiatataid (E.5)

where 0 0

p, =-% 1 (E.6)

o]
o
(o]

o

F = Q 0 o] o]
a.ay, a.a, aa, a 0, (E.7)
b. a, b.a, b a, b.ay

C = (eochoy simuy + sinhay wsdy )

a - Coshdy sinuy - Sinhaly CoSdy b= B ¢y +an e

- = ] —_—

1+ coshay tosory @

b) Asymmetric section ( m = 2)
Substituting equations (E.l), (E.2), (E.3) and (E.4) into

equation (A.4) we get

!
|

[, = |------—-- :T ------- (E.8)
t
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where 0 0 g

E = d cos«, d sing, (E.10)

d = (sinh oy sindy) /A

c) Antisymmetric section (m = 3)

After substituting equations (E.l1), (E.2), (E.3) and (E.4)

into equation (A.5), the transfer matrix for part 11 is

obtained as

N
-
-
-
~
~

- -,
po=y

|
|
[Hi], = |-==----- fommmm e (E.11)
l
|

At e lal A
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