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ABSTRACT

The analytical and experimental results for traveling

bending waves in a uniform beam with tuned periodic canti-

lever ribs are presented in this report. Two analytical

models were developed: one, is for an infinite array of

-. periodic sections and the other is for a finite array of

periodic sections in an infinite beam. Several types of

periodic sections were considered. The bending moment

spectrum was measured for a traveling wave in a uniform

beam caused by impact. The insertion loss as a function

of frequency was measured for such a beam with 1,3,5,7

and 15 sets of symmetric sections. There is good agree-

ment between the computed bending moment spectra and the

measured ones for all sets of cantilevers considered. The

width of attenuation bands increased with an increasing

number of cantilever sets, and the spectrum for 15 canti-

lever sets was a close approximation to that of the

-. computed spectrum for an infinite number.

*N

Po.

.-. .



% ...

1. INTRODUCTION

The theory of wave propagation in periodic structures has

been developed by solid state physicists and electrical

engineers for some time [1,2). The application of this

theory to predicting vibration responses of periodic

engineering structures due to broad band pressure

fluctuation is relatively recent and has been applied,

primarily, to the analysis of periodic structures as band

pass filters for bending waves [3,4,5,6]. The analysis for

an infinite ribbed bar has been published with some limited

confirming evidence [7]. The objective of this study is to

get extensive quantitative results, both analytical and

experimental, for a beam with tuned periodic cantilever

ribs. Two analytical models are presented for such a

periodic structure in which the periodic sections consist

of constant cross-section rectangular beam elements. One of

the models is for an infinite array of periodic sections

and the other is for a finite array of periodic sections in

an infinite beam. The attenuation in the infinite model is

either zero or infinite; the stop and pass bands are

conveniently found by an eigenvalue technique. The actual

value of the attenuation must be found for a finite model

and so an impedance technique is used. Three types of

periodic sections are considered, symmetric (two sided

cantilevers), asymmetric ( one sided ) and antisymmetric

( alternately on each side ). The impedance model is

---
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sufficiently versatile to predict the response of ordered

as well as disordered periodic sections with no limitations

or, the number of such sections. This report gives

experimental and analytical results for an ordered periodic

beam with symmetric sections of 1, 3, 5, 7 and 15 sets of

cantilevers.

In an earlier report E8J the analytical model for the

infinite periudic beam with symmetric sections was

developed and compared with measured results. This work is

briefly reviewed in Section 2.3 of this report.

In this report, Section 2 gives the analysis, Section 3

describes the experimental method, Section 4 contains the

results and Section 5 discusses the comparison of the

experimental and analytical results.

2. ANALYSIS

2.1 GEOMETRY

Our periodic structure consists of an array of priodic

sections. Elements of the periodic section are uniform

beams of rectangular cross-section. Three section types are

considered:

a) Symmetric: Sections of this type consist of a uniform

beam element with a double cantilever element attached to

it at its right end, figure A.l.

-2-
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b) Asymmetric: Sections of this type consist of a uniform

beam element with a cantilever attached to one side at the

right end, figure A.2.

c) Antisymmetric: Sections of this type consist of a

uniform beam element with cantilever elements attached

alternately on each side, one at the center and the other

at the right end, figure A.3.

2.2 EQUATIONS OF MOTION

In first order theory, the differential equation for the

propagation of an extensional wave in a uniform beam is:

EA ati" 0(2.2.1)

and that for a bending wave ( Bernoulli-Euler ) is:

-~ (2.2.2)

If we assume a sinusoidal wave of frequency travelling to

the right

u(x,t) = u(x) exp (-jw t)

(2.2.3)

y(x,t) = v(x) exp(-jOt)

where j =-l

-3-
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the general solutions of equations (2.2.1) and (2.2.2) for

a uniform beam are

u(x) = Eicos x + E sin Yx

(2.2.4)

v(x) = A cosh x + A sinh x + A cos x + A sin x3 4

where 'Y = 00/ c.

C j~lp is the rod phase velocity

4E
= 12P 4/t

t = beam thickness for a rectangular cross-section

D = EI is the bending stiffness*.

Al, Ag, A3 , A, E1 and E2 are constants to be determined

from the end boundary conditions.

We can analyse a travelling wave in a periodic structure by

using the nodal boundary conditions at the ends of the

periodic sections.

2.3 TRANSFER MATRIX

We define a vector composed of six components of

* the anticlastic curvature restraint is not effective for a

thin rectangular cross-section at small bending strains and

2.
so the 1-1 term is ommited.

-4-
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displacements and forces at a node i

u,

z Pi/ EA
S- - ------ (2.3.1)

-ozu iv

ML/EI F

t-Fi /EI P 3g

where the components are defined in appendix E and figure

2.2.1.

The elements of the vector Zi are multiplied by suitable

factors to give each the dimension of length. We can find

the above vector at the end of a section in terms of the

that at the other (figure A.l, A.2 or A.3)"

Zv = jH] j Z1 .1  (2.3.2)

-H, is a (6x6) matrix and is the transfer matrix for the

section i, between nodes (i-1) and i of section type m

(m=1,2,3). We partition the matrix [Hm.; to get

• "" ."ZI HzM

H I

H-5-
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where H1 , (2x2) and H4 M (4x4) are due to the axial and

bending modes alone and H2 m (2x4) and H 37 (4x2) are the

matrices coupling the two modes of vibration. The transfer

matrices [Hh]Z for each type of section are given in

appendix A.

2.4 EIGENVALUE MODEL

The periodic beam is considered to have an infinite array

of identical periodic sections. If we have a wave of

frequency w traveling in an undistorted fashion, it must

attenuate by the same fraction in each section. Thus we may

write

z = 'X Zj_ (2.4.1)

where A is the ratio between successive periodic repeats.

'..~, From equation (2.3.2) we have

Z = [Hm] Zjj = Z,1 (2.4.2)

This is an eigenvalue problem where [HM] is a function of

frequency*. Since all of the sections are identical, the

• submatrices G and F of [Hm]. were incorrectly reported in

reference [8). The corrected version is given in equation

(E.2) and (E.7), appendix E.

-6-
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subscript i of the transfer matrix is dropped. There are

six roots to the eigenvalue problem which are, in general,

complex. It can be shown that the absolute values are equal

to or less than one. If the value is one, the magnitude of

the travelling wave is unattenuated; if it is less than

one, it must eventually die out. The stop and pass bands

calculated for h/L = 0.48 are shown in figure 4.1.1 and the

predicted results are compared with measured ones in figure

4.1.2 which is discussed in section 4.

2.5 IMPEDANCE MODEL

The structure is modeled in three parts. The middle part

of the structure consists of a finite array of a number of

periodic sections; the two end parts are semi-infinite

uniform beams attached to the middle part. Since the

experimental portion of this project considers the response

of the beam to the impulsive force applied transversely

near the center, the Sommerfeld condition requires us to

consider only waves travelling to the right at the right

end and to the left at the left end.

2.6 IMPEDANCE MATRIX and INSERTION LOSS

The impedance matrix Qt relates the force vector, N, at a

node to the displacement vector, Wi, at that node (figure

2.6.1). The sign used as the superscript on the impedance

matrix signifies the direction in which one looks.

-7-
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Where Mi/ I
N -Fi /EI

We now rearrange the vector Zi,, for convenience, as

Z L --- (2.6.1a)

The impedance matrix at node n which is the first node of

the right hand semi-infinite uniform beam (fiqure 2.6.1) is

* (appendix B equation (B.1)):

= -(1j) j0 ;j -1 (2.6.1b)

0 0j

- Nn, Qt 1 W,

-8-
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The transfer impedance matrix, [R,,] gives the force vector

Sat the n'th node in terms of the displacement vector at the

O'th node:

N,, =[R',h], W. (2.6.2)

R+
It is shown in appendix C that [R.A can be computed from

K.., the inverse of the transfer matrix:

[R+ =+ It'ymiL + 1KI•jj Q, -I

IIKm,.1 +[K"1 2], Qj [1K-i, +iK,..L, Q+]' (2.6.3)

A bending wave traveling to the right in a bar will split

into a reflected wave and a transmitted wave at a change of

cross section which occurs at a node. Therefore at the

zero'th node

.... : e = , / + e.,/t

or W = Wit + WT  WR + WO (2.6.4)

In the same way for the forces

-9-
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tPi P I PT

or N T = N + N( 2.6.5)

The relations between force and displacement vectors at

node 0 are
K4

(2.6.6)
+ 4-

N =Q W= Q W

where V UM

W =N = jFk/EI 3 ; (k=I,R,T)

•",U k  Pk/E

0J 0

.IQ. -31 0 0

"'[Q 4 "] - j 0 0

0 0 -j

[Q] is obtained from equation (D.5), appendix D.

,-j (+j) 0

[.].. 1-j j 0

0 0 j

-10- .-*-*.-.



is obtained from equation (C..4), Appendix C for i=O.

Since the reflected wave at node zero propagates through

'4 the uniform semi-infinite beam in negative x direction,[Q.1

is obtained in the same way as Q,is obtained in appendix B

but with opposite, sign of x.

* . Using equations (2.6.6) and (2.6.4), equation (2.6.5) can

be written

N1 t F"+R (W1  WO) + No

N [Q00 WI = tQ1Q;] N. + No

or t~I -[Q:][Q11 ILL II N, L LQ Q N

-[Q] [QTI

So that WO S N T (2.6.7)

S is a (3x3) matrix, given in appendix D. Substituting

equation (2.6.7) into equation (2.6.2) we obtain,



N n = J Ni (2.6.8)

where J, [R+J S

Since bending strains were measured in our experiment we

consider the bending moment element of N. in equation

(2.6.8):

M,/EI = J(l, 1 ) M1 /EI 2 + J(,,(,2).-F,/EI 3 + Jy( 1 ,3) Pi/f'EA

Substituting the values of M,, F, and P, in terms of the

amplitudes of the incident axial and bending waves

(equation (D.5) we find that

Mn/EIg'= [-J,,(l,l) + jJy(l,2)1 VI + jJ~,(l,3) U1  (2.6.9)

For the beam with symmetric sections, J (l,3)=O so that the

bending mode is not coupled with the axial mode.

The dB Insertion Loss (IL) due to the presence of the

periodic section is (m=1)"

IL(W) = 20 log ! =-20 log,. Jm(l,1 ) - jJ,(l,2)11 (2.6.10)

We have assumed that the damping dissipation in the uniform

beam is negligible so that the spectrum magnitude is the

-12-
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same everywhere. Spectrum measurements confirm this

assumption. Thus the transmitted spectrum, Sp, can be found

from the incident spectrum,

S (w) = S (w) - IL(t4) (2.6.11)

where S (w) is the uniform beam spectrum.

3.1 INSTRUMENTATION

With one exception, the instrumentation is the same as that

described in reference [8], figure 3.1.1. Instead of using

the HIPlot X-Y recorder to make hard copies of the signals

stored in the spectrum analyzer a HP-85 computer and a HP

7225B plotter were used. This system is more flexib'e for

getting a hard copy of any stored signal.

3.2 BEAM and CANTILEVERS

A uniform steel beam, 0.250 inch thick by 2.00 inch wide

and 36 feet long was hung in a horizontal position by 0.030

inch piano wires fastened at 4 feet intervals to the thin

edge by welding to 3/4 inch, 6-32 screws in drilled and

tapped holes; the screws were locked by locknuts. The wires

were fastened to an overhead pipe 4 feet above and adjusted

by turnbuckles to equal tension by tuning to the same note.

The impact point was 16 feet from one end. The travelling

waves were measured at point 10, 10 inches from the impact

-13-
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point and point 82, 82 inches from the impact point, both

on the 20 feet end (figure 3.2.1).

After the uniform beam measurements, 15 pairs of

cantilevers each 2.35 inch long were fastened to the beam

at 5 inch intervals starting one inch from point 10; the

measured resonances of the cantilevers mounted in a short

length of beam lay between 1332 and 1386 Hz. The resonant

frequency of a 2.35 inch cantilever calculated by using the

measured phase velocity is 1394 Hz; if we assume the length

(arbitrarily) to be 2.40 inch to account for the elasticity

of the base, we get 1340 Hz. The frequencies of waves with

wavelengths 10 and 5 inches (5 inches is the distance

between two consecutive cantilevers) are respectively 863

and 3452 Hz.

3.3 EXPERIMENTAL TECHNIQUE

3.3.1 FREQUENCY SPAN

Since the bending wave is dispersive with its phase

velocity proportional to the square root of its frequency,

the low frequency components of the wave take longer to

travel from the origin of the wave at the point of impact

to a measurement point than do those of higher frequencies.

With the finite beam that was used in our experiment, the

spectrum of an infinite beam can be obtained if the

spectrum is recorded before any reflection from the free

-14-



I Nend of the finite beam alters the spectrum; that was

achieved with signal travel times appropriate to the

frequency span settings of the spectrum analyzer. For a

frequency span of 10 kHz (12.5 msec time signal) with 6.5

msec pretrigger time, the total travel time (12.5-6.5 or

6.0 msec) to reach the measurement point 82 (figure 3.2.1)

was not enough for waves of frequency 10.4 kHz and lower to

return after reflecting from the free end A of the beam.

Also it was not enough for frequency 500 Hz and lower to

reach the point 82 directly from the impact point. So at

this frequency span setting the spectrum between 500 Hz and

10kHz was essentially the same as that of an infinite beam.

At the 5 kHz and 2.5 kHz frequency span settings with 25

and 50 msec time signals and 9 and 17.5 msec delay times,

travel time for the wave to reach point 82 was respectively

(25 - 9 or 16msec) and (50 - 17.5 or 32.5 msec). At these

two settings, using the same reasoning, the spectra were

good from 63 Hz to 1300 Hz and from 15 Hz to 350 Hz

respectively. Thus, to get the spectrum for the infinite

beam for the whole frequency range of 10 kHz, spectrum data

for frequencies 15 - 320 Hz and 320 - 1480 Hz were taken

from the 2.5 kHz and 5 kHz settings respectively and the

rest of the spectrum data were taken from the 10 kHz span

setting. These three data sets were then combined with

appropriate band width corrections.

-15-



3.3.2 UNIFORM BEAM

The uniform beam spectrum was measured at point 82. All the

measurements were taken with eight averages of the r.m.s.

spectrum with gain settings at 10 mV max., and A.C.

coupling. The bending moment spectrum is shown in figure

3.3.1.

3.3.3 BEAM WITH CANTILEVERS

The settings of the spectrum analyzer and the pretrigger

time were kept the same as in the uniform beam case. The

amplitude of the impact was also kept the same to make sure

that the incident wave was the same as for the uniform

beam. Since the spectrum measured at any point beyond the

cantilevers along the uniform (undamped) beam remains the

same, all of the measurements of the spectrum were taken at

point 82.

4.1 IMPEDANCE MODEL

Equation (2.6.10) was used to calculate the dB Insertion

Loss (IL) as a function of frequency for the symmetric

periodic case for 1, 3, 5, 7 and 15 pairs of cantilevers.

Since the incident wave was assumed to be same with and

without the cantilevers the computed spectrum for the

periodic beam was calculated from equation (2.6.11) for

each number of sets. The computed spectra are compared with

the experimental ones in figures 4.2.2a, 4.2.2b, 4.2.2c,

-16-



4.2.2d, and 4.2.2e. In some stop bands the computed

spectrum values were less than -120 dBV and were below the

bottom of the figures.

4.2 EIGENVALUE MODEL

The pass bands and stop bands for an infinite periodic beam

calculated by the eigienvalue method reported in [83 are

shown in figure 4.1.1. In this model of an infinite number

of periodic sections, no attenuation occurs in the pass

bands and no transmission occurs in the stop bands. The

spectrum computed in this way is compared with the measured

spectrum of the periodic beam with fifteen sets of

cantilevers in figure 4.1.2.

5. DISCUSSIONS

The agreement between the spectrum computed by the

impedance method and the measured spectrum is gratifying

for all five cantilever sets considered. The measured

attenuation between 6600 Hz and 7300 Hz for 15 sets of

cantilevers was much greater than the calculated values.

Some indication of this can also be seen in the other

figures. The reason for this discrepancy is not known;

material damping is much too small to account for it.

Attenuation in the stop bands and the width of the stop

bands increased with increasing numbers of cantilever sets.

-17-



At fifteen cantilever sets they approximated the computed

results for an infinite number. The values of the computed

spectrum in most of the stop bands, especially for

cantilever pairs five or more, was -250 dBV or below,

whereas the experimental attenuation was always less than

35 dBV. This is probably due in part to the 12 bit A/D

converter (72 dB full scale) of the spectrum analyzer and

in part to leakage caused by the DFT.

% J.

-18-
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APPENDIX A

Transfer Matrices

Considering the axial wave solution of equation (2.2.4) for

a uniform beam piece of length L, we obtain (appendix E)

Z = B Z 1(_1 (A.1)

where B is given by equation (E.1) and Zi is defined in

equation (2.3.1). From the bending wave solution, we get

(appendix E)

Zz = G Z2(L_,) (A.2)

where G is given by equation (E.2).

The process of getting the transfer matrices for any type

of periodic sections is similar to that given in section

2.2 of [8] with appropriate equations of equilibrium at a

node.

a) Symmetric section (m=l)

' The equations of equilibrium at node i with the sign

conventions shown in figure (A.1) are

-19-
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ML = Mfi- M 2 - MaL

F = F= i - Pzi + Pai

Pi = P, + Fz - F3a

Following the same procedure as described in section 2.2 of
[8] we obtain the transfer matrix LH,]. for this type of

section as (equation E.5):

H, I H ZI B + DI1  0
II

H3 1 H41  0 G + F

The matrices D1and F are given in equations (E.6) and

(E.7). Here because of symmetry the coupling matrices

H.1 and H3, are null matrices, since the coupling effect

due to one cantilever at one side is nullified by the

cantilever on the other side (figure A.1).

b) Asymmetric section (m=2)

The equations of equilibrium at node i are (figure A.2)

ML = MIL- M2 i (A.4)

F = Fi - P 2 i

P. = Pli + F2

-20-



and the transfer matrix [Hzj-is

H1 Iz H22  B + D2 r C2

HI-- ------- I ---

H 42 H 2  G+1/2F

matrices C2 , D.and E. are given in equations (E.8), (E.9)

and (E.10).

C) Antisymmetric section (m=3)

A section of this type can be considered to be composed of

two sections of asymmetric type where one is rotated 1800

with respect to the other about an axis along the length of

the section (figure A.3). The transfer matrix for part I
1

([H3].) is the same as that of the asymmetric section:

[H3. - [H2

and that for part II [H] )  using the equations of

equilibrium

Mi = MIL M2i

Fj = FL + Pxi (A.5)

Pi f P, L- FZ

-21-



is S B +D 21 -C2

IHJ] ----- L----

E G + 1/2F

Now, the transfer matrix for the whole section is the

* * product of the two above, i.e.,

* = !H 3 ]. H3 1L(A.6)

1 -22-



APPENDIX B

Impedance Matrix at the n'th node

In the semi-infinite uniform beam extension of the main

beam, the solution for the amplitudes of the time dependent

part of the bending and axial modes of vibration traveling

to the right are (figure B.1):

v(x) = B I exp(- x) + B 2 exp(-j x)

u(x) = B exp(-jXx)
3

oS

The above solutions are completely determined by the three

displacement boundary conditions (v. , e./P and u, ) at the

n'th node. We obtain the components of the force vector

(M,/EI , F,/EIP3 and P, /V EA) at the n'th node by

differentiating the solutions and using the constitutive

relations

M,/EI v(x)-I -F./EIP ,

* and P/ Y EA = u/(x) XO

, Since N . = QV wn

the impedance matrix, Q*, at the n'th node is

-23-
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APPENDIX C

C.1 Transfer Impedance Matrix [R.,

From equation (2.3.2):

where H A -'

[H',) is the matrix [Hy~,)rearranged in the same way as Z.J. -'

Since[H(4. )J.is the transfer matrix from the i'th node to the

(i-1)'th node, it is most easily found by changing the sign

of x which makes o(, and a( negative in the equations (E.1),

(E.2), (E.6), (E.7), (E.9) and (E.10) of appendix E.

After partitioning the matrix [K,],, into four parts

IjKm'j. tII
-, [KK, .li I
Ir - p

we have W = K W. + lKmil NZ

(C.2)

N - K W +{,<,. N
Li
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Equations (C.2) are valid for any section i. Starting with

the n'th section, we have:

=" ~K hIW + kKm Nn

N'M I = njW + IK,,, N n,

Substituting for N from equation (B.1) and inverting the

first equation to find W

-1

W, [tKmil + fK",,,~ Q+ W, (C.3)

then N 1  = "- 0 1-

awhere Q =- IIKwM3 In 14in, n~ Q +

is the impedance matrix at (n-l)'th node and can be

determined since all the terms on the right hand side are

known.I in a similar fashion for any node i we find that

[ji,,1 41+ IKM41i [{K i m3. 1+] (C.4)

and =j [[K,,J,1+ lKmz7 Q] W C_1

-26-



Applying equation (C.4) successively, we find W. in terms

of W0 . Then we find the force vector at the n'th node (the

point of measurement) in terms of the displacement vector

at the O'th node (the point of impact) from equation (B.1)

N 'n Q . + R '0 - ] , W ,,

where
-+ -1

K?.3+ I K+21Q J ,2 C5

.1.

.... + { K., :, - . . )t 1Km,' {K.a Q13-{Kmi ,Kl,0] (.5

In our case, all the sections are identical- and all of the

Km matrices are equal.

C.2 An alternative method of computing matrix [R+ ]m

Instead of having to invert the matrices at each node as

shown in equation (C.5) we could successively substitute

from the left hand side of equation (C.1) into the right

side at each node. This would give the forces and

displacements at the O'th node in terms of those at the

n'th node:

NN

-
* = ...

o--27-



= TM - (C. 6)

We can now partition T to get

TMI I TM2

TM~ T i3 T Tili

and W0  = Tn, Wn + T n  = ( T, + TP 12Q+) Wn

so that W ( TIM + TmQ ) (C.7)

which is only one inversion. Unfortunately, at large z and

the hyperbolic terms in matrices G, C2 and F

appendix E, are very large and almost equal. As a result

the elements of (T.. + TM 2 Q ) are the small differences

of large numbers and the matrix is very ill-conditioned.

Even though this is only a 2x2 matrix for the symmetric

case we lost more than 10 digits for three multiplications

at frequencies as low as 3000 Hz. As a result, the

successive inversion method was used for all cantilevers.

Even so, some care must be taken since we lose 6 digits at

10000 Hz.

-28-
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APPENDIX D

Derivation of the Matrix S

The equations for the incident waves traveling towards the right

are

V., V, exp[ j(wt- px)]

(D.1)

u1= ,exp j(W t- V(X)D

where u and v are the deflection in the positive direction of x

and y respectively (figure 2.5.2).

For the reflected wave traveling towards the left

VR =V 2 exp [j(u t+ ex)] + V3 exp [ x+ jw t]

(D.2)

UR =U 2 exp [j(Wt+ x)](

At node zero the transmitted displacements are v, ,* and u,

which are related to the internal forces at the node by

N o =Q W
0 0 0

Equation (2.6.4) written for its all components is

-29-
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V = Vz + V3  + VO

-jV = jV2 + V3 + 01 (D.3)

-. U1 = U2 + U 0

S..and that for the equations of equilibrium,

M1/EIF2 = Mr./EIp 2 + M./EIP'

F'/EIp = FR/EIp' + Fo/EI 3  (D.4)

P /- 2 = PR/YEA + Po/EA

The relations between the components of Nk and those of

"*" displacement Ware

N1  -V, M R /EI = -V,+ V,

N -F/I -;/EIFEI 3 = -jV2 + V3

l y -jUt PR/=-$EA jU2

(D.5)

and

M/EIF l)

No= -F eo = 8/ W oL L./ Uj 0.

We now solve for V. and V3 in terms of V, and vo and Ulin terms

of U1 and UOfrom equations (D.3). We then use these to find

the elements of Nkin terms of V ,O, U, and L0 in equations

-30-



(D.5). We substitute for V and U,in terms of M1 , F and P

from equations (D.5) and finally a set of linear equations

for M1, F, and P in terms ofv, 00and UL,

N = S W0

where

-4 a +"11 i13
~(D.6)

S. £Q4 3, 2.)

.

;** '-

_ _ _ **-. -.-
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APPENDIX E

Differentiating equation (2.2.4) we have

P = EA u EAJ [-EIcosyx + E 2 sinrxJ

"-2-:2

v' Av / = sinhPx + A.Pcosh x - Ae sin x + Apcos x

M = EI v = EIP [ A ,coshp x + A2 sinh p x - A cosjpx - Alsin xj

F =-EI v =-EIp 3 [Asinhpx + A2 cosh x + A sinpx - A cosp x]

Substituting x=0, solving for E,, E2 , A1 ,A 2 , A3 and A in

terms of u, v and their derivatives and then solving for

the elements of Z at x = L, we get:

Z = B Z ,C e _,-
,

z G Z

where cos Oi sin (,

B = (E.1)

-sin o(, cos ce

0071

. . - 2-
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m"A 

(1

0(2L 4

.

and CI : - o,: ' -

If we now make the change to local coordinates for the

cantilevers, and put in the boundary conditions for the

cantilever

P = F = M = 0 at x= h (figure 2.3.1)

we get P2 /YEA =tanc3 u (E.3)

2
M2i /EI uf

3 A (E.4)

S~.ib44S~e~C056164 S 4 -d(4 S4 44 COcf4'
A= j

a) Symmetric section (m = 1)

Substituting from equations (E.1), (E.2), (E.3) and (E.4)

into equation (A.3) we finally get that

-33-
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B +D 1 F 0

=--------------.4(E. 5)

0 IG+ F

where 0 0

D =_2 I ( .6

-coso( -sin

0 a a
(L .k1 4  CaI aa ao3(E. 7)

C 600%Q' So441 -f S~nkc' COS.(,+)

CO'h"" 'I - Siv lce( COSONL C' __ 3

4 Cosho(4 CkoCor4 CI.

b) Asymmetric section (m =2)

Substituting equations (E.1), (E.2), (E.3) and (E.4) into

equation (A.4) we get

B +D C
2

[H)j - - - - - - - (E.8)

z I

-34-
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I..

where 0 0

2

-C -C

0 0 0 0

o o

o o

E = d coso, d sin( (E.10)

o o
5,.

d = (sinhw4 sin ,)/A

c) Antisymmetric section (m = 3)

After substituting equations (E.1), (E.2), (E.3) and (E.4)

into equation (A.5), the transfer matrix for part II is

obtained as

B + D2  -C 2  .-

[H31 --- ----t -- ---- (E.11)
E G

12!
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