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1. Introduction

This report reviews the work of the principal investigator as published in

the following scientific papers:

1. I, Fried, Nonlinear finite element analysis of the thin shell of
revolution. Submitted for publication to CMAME (1983).

2, 1. Fried, Orthogonal trajectory accession to the nonlinear equil-
ibrium curve. Submitted for publication to CMAME (1983).

3. 1. Fried, On unconditionally stable implicit time integration
methods in elastodynamics and heat transfer. Submitted for pub-
lication to CMAME (1983).

4. 1. Fried, Reflections on the computational approximation of elastic
incompressibility. Computers & Structures 17, 161-168 (1983).

5. I. Fried, Nonlinear finite element computatiﬁn of the equilibrium
stability and motion of the extensional beam and ring. CMAME 38,
29-44 (1983).

6. 1I. Fiied, Finite element computation of large elastic deformationms.
Proceedings of the Br suel Conference on the Mathematics of Finite
Elements and Applications, MEFLAP IV, J.R. Whiteman, Editor, Academic
Press, 143-159 (1982).

7. I1.Fried, Finite element computation of large rubber membrane deform-
ations. IJNME 18, 653-660 (1982).

8. 1. Fried, Large deformation static and dynamic finite element amalysis
of extensible cables. Computers & Structures 15, 315-319 (1982).

9. 1. Fried, Stability and equilibrium of the straight and curved elas-
tica-finite element computation. CMAME 28, 49-61 (1981).
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1. Fried, Nonlinear finite element computation of the equilibrium
and stability of the circular plate. IJNME 17, 1427-1440 (1981).
I. Fried, Meaningful existance of finite element solutions to off-
limit problems. CMAME 22, 229-240 (1980).

I. Fried, Irregular finite element meshes in elastodynamics.

IJNME 15, 626-628 (1980).

I. Fried, On the optionality of the pointwise accuracy of the fin-
ite element solution. IJNME 15, 451-476 (1980).

I. Fried, Accuracy of string element mass matrix. CMAME 20,
317-321 (1979).

I. Fried and J. Metzler, SOR vs. conjugate gradients in a finite
element discretization. IJNME 12, 1329-1342 (1978).

I. Fried and J. Metzler, Conjugate gradient solution of a finite
element elastic problem with high Poisson ratio. CMAME 15, 83-84
(1978).

I. Fried and J. Metzler, Displacement, strain and stress error
nodal lines in finite elements. Computers & Structures 9, 335-339
(1978).

I. Fried and D.S. Malkus, Energy error in the elastic solution when
an incompressible solid is assumed compressible. In Formulation

and Computational Algorithms, K.J. Bathe et al., Editors, MIT Press

131-139 (1976). on Fer .
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2. Overview

This section reviews the papers listed in Section 1 in ascending order:

1. Energy error...: The computational problems arising in the finite element
simulation of incompressibility have occupied the author's attention since 1975,
The purpose of this paper is to show that, at least energetically, the exact
solution to the linear three dimensional elastic problem depends continuously
on Poisson's ratio ¥. This means that taking » close to one half theoretical-
ly guarantees a close analytic solutions to the incompressible state. This is
also the basis for the residual energy balancing technique. Computational dif-
ficulties concerning convergence and conditioning are discussed in entry 4. of

Sec. 1.

2. Displacement, strain and stress error nodal lines...: The paper shows

computationally the existance of nodal lines in two dimensional finite elements

on which the error between the computed solution and the exact one is zero.

3. (Conjugate gradient solutiom...: Iterative methods for the solution of

the large stiffness equation set up with finite elements has some distinct ad-
vantages (and admittedly disadvantages) over direct methods. Iterative methods
do not require the explicit assembly of the global stiffness matrix and can

operate on the element data and connectivity information only and are therefore

immune to the numbering of the nodes and the ordering of the elements. They may
require the minimm of data, as only one element if the elements repeat, and

naturally take advantage of symmetries and repeating eigenvalues.

The paper describes the application of the conjugate gradients method to
the solution of three dimensional elastic problem with Poisson's number that may
be close to 0.5. Scaling of the global stiffness matrix is shown to be highly

effective.
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4. SOR vs. conjugate gradients...: The method of successive over relax-

ation has achieved great popularity in mathematical circles for the iterative
solution of linear systems of equations. 1Its main drawback is that it requires
an elusive factor for its success. It is shown on a two dimensional heat con-
duction problem discretized with finite elements that even with the optimal fac-
tor w SOR does not do appreciably better than the conjugate gradient method.

A slight change in the optimal w causes SOR to lose to CG by a wide margin.

5. Accuracy of string element...: Various mass distributions are dis-

cussed for the string element mass matrix.

6. On the optimality...: The finite element method produces solutions

that are energy optimal. The paper shows that the theoretical predictions for
the pointwise optimality of the finite element solution are correct. Essen-
tially in two dimensional second order problems the asymptotic displacement

error for linear elements is

max|u - G = chzln%

where u 1s the exact solution u the computed, h the element diameter, and

¢ a constant.

The paper argues that the asymptotic error estimate is impractical since
vhen h 1s large c¢ 1s still a function of it and c(h)!.n-ll; does not behave
like !.n% . One must go up to thousands of elements to be able to numerically

discover the h(i,l') in the error estimate.

7. Irregular finite elemsent meshes...: The paper discusses some basic
problems in optimsl arrangement of finite element meshes in the simple context

of the string problem. Setting up a truly optimal mesh of finite elements is a
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very difficult task even in the simplest of problems and all one can hope is
for an adaptive, or iterative, procedure for the mesh improvement. The paper

discusses the mass matrix only and makes the following interesting conclusions:

a. The optimal mass matrix is optimal only for a uniform mesh. Small

deviation from uniformity causes drastic accuracy losses with this element.

b. With first order elements the grading of the mesh is in opposite di-
rections for the lumped and the consistent mass matrices. The consistent mass

matrix is also insensitive to mesh grading.

c. With quadratic elements and a consistent mass matrix the mesh grading
is opposite to that for the linear element, and the problem becomes more sen-

sitive to mesh variation.

8. Meaningful existance...: Considered are problems that are theoreti-
cally off limits for the finite element method such as problems with an unlimi-
ted energy, with a discontinuous solution, and with redundant boundary conditioms.

It is argued that the finite element solution in all these cases is still useful.

9. Nonlinear...circular plate...: Gauss integration of the nonquadratic
total potential energy of the circular plate is used to derive the element tan-
gent stiffness matrix and element gradient for the large deformation analysis of
the plate. Computations are made for the plate under lateral load and post crit-

ical rim thrust.

10. Stability and equilibrium...curved elastica...: A slope formulation
of the elastica is discretized with quadratic finite elements. The element tan-

gent stiffness matrix and element gradient are written in a form that is easily

prograsmable for use with the Newton-Raphson solution of the monlinear stiffness
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equation. Load and stiffness correction solution methods are also considered and
the importance of averaging the iterates is demonstrated. Very large deforma-

tions of straight and bent elasticas are computed.

11. Llarge deformation..cables...: To extend the possible boundary conditions

and to be able to include inertia loads the cable is assumed extensible. A quad-
ratic-quadratic large displacement element is formulated through discreet sampling
of the total potential emergy. Various static and dynamic cable problems are
solved and the difficulties in computing the tension from the constitutive equa-

tion is pointed out. An experiment with a falling cable shows excellent agree-

ment with the computer model.

12. Finite element...rubber membrane...: Numerical sampling of the total

potential energy is used to derive the quadratic element tangent stiffness and i
element gradient for the largely deformed axisymmetrical, Mooney, rubber membrane. ]
Computations are made for the stretched and inflated disc, the inflated torus,
and the bulging tube under int;rnal pressure. The convergence of the Newton-

Raphson method near a critical point is discussed.

13. Finite element...large elastic deformation...: Creation of the elemant

tangent stiffness matrix and element gradient for the computation of large elastic
deformation is discussed. The procedure does not require the elements to be small
in the sense of approximating an arc, and is otherwise analogous to the linear

finite element method except that the Newton-Raphson (or its modification) method

must be called to wolve the nonlinear stiffness equation.

14. Nonlinear..equilibrium...extensional beam...: The element data for the
large deformation analysis of the curved extensible rod are given. Numerical

tests are done with the element to compute the large deflection of a cantilever,
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the pressing of a ring by polar forces, the deformation of a circular ring by ex-
ternal pressure; the motion of simply supported and free beams, the vibration of

the ring, and the bending of a cantilever by a follower force.

15. Reflections on...elastic incompressibility...: Introduction of in-

compressibility into the finite element model is still of great current interest.
It is argued that the gradual increase of the bulk modulus coupled with a mesh
refinement is the most sensible thing to do both from the theoretical as well as

the practical point of view.

16. On Unconditionally stable...: Unconditionally stable explicit time in-

tegration methods are of the greatest interest in the finite element analysis of
elastodynamics and heat transfer. Several such algorithms have recently been
published. It is shown that the time and space errors become coupled and that

the space mesh reduction may cause a disasterous loss of accuracy.

17. Orthogonal trajectory...: The Riks-Wempner method for correcting the

equilibrium equation 1s modified to remove the need for an explicit load-dis-

placement constraint.

18. Nonlinear...shell of revolution...: A cubic-cubic element is developed

for the large deformation analysis of the axisymmetrical shell of revolution.
Explicit formulas are given for the element tangent stiffness matrix and element
gradient. The bending of a thin spherical shell under the combined action of

polar forces and a surface pressure is computed. The high computational price

of the Newton-Raphson method is noted.
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DlSPLACEMEl;lTS. STRAIN AND STRESS ERROR NODAL
- LINES IN FINITE ELEMENTSt

Isaac FriED
Depariment of Mathematics. Bostoa University. Boston, MA 02215. US.A.

" e e

. SNTRODUCTION

i Since the original observation by Barlow(l] that the
. fmite clement stresses computed in rectangular elements
{ ot the Gauss points are superior in accuracy, there have
i been on different such special points in
. rectangles(2] and triangles(3]. Using the best energy fit
. tchnique[4), whereby minimization of the error in the
; eaergy is casried out over a single typical element with
!'h assumed polynomial exact solution that assures a
, Gobally admissible finite element solution, it is shown
- bere that there are entire lines (surfaces in space) inside
. the element on which accuracy is superior and hence the
; vasiety of observed special points.

© These nodal lines depend on the element, original
. Woblem and eventually location, as shown theoretically

d numerically in this paper.

POLSON'S BQUATION
Here the finite element solution é is obtained from the
Sinimization of

ﬂn-%Lu.’u.’-ztmxdr m

¢ G- SOMgree “wwe prpens

|

-m-cm-%f (a0 = &) + (o, - 4,71 dx dy (@)
’ .

LI R

Scordingly the choice & = mex®+ @,Xy + @yy is made.
Meaimization of (2) yields ¢, =0, a; = 0 snd @, = @, such

Gmggtazy. Equating u,, o, with 4, 4,
. Poduces @ex =0, and asy =0, and the errors bu, =
& =4, and Su, = u, - 4, are changing signs on the lines
220 aad y=0, respectively. Choosing the free

——
Research supported by the Ofce of Naval Research ONR-
o014 7.C.0%6. .
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and

J. A. MeToLER

Department of Mathematics, Drew University. Madison, NJ 07940, U.S.A.

(Received || September \9T1. received for publication | December 1977)
Abstract—Numerical experiments show that the ervor in the computed Knite clement solution and its derivatives
vanish on typical error nodal lines inside each finite elemem. A theoretical explanation is given to this phenomenon.
which was previously discovered for distinct, special points. Systematic classification of these lines for different
clement types and problems appears to be 8 worthy undertaking.

parameter ao =0 makes the finite element solution the
interpolate to the quadratic, meaning that it is extendable
over neighboring elements. Also, since any smoolh solu-
tion is, by Taylor’s theorem. almost a polynomial inside
each element, it is expected of the errors to change signs
onxthndy-Ohm.Onei‘nlsomb
conjecture (as was done in [4]) that the best place o
compute & is at the modes. Numerical experiments,
however, refute this, st least in the bilinear case.

For the biquadratic element i-a,u.nnncu'
+eaytasy’+asly +axy’ +ax’yt,  -isxysl,’
and consequently the choice ¥ =aer’+a,x’y +@yty?
+a,y’ is made. Similar argumnets lead here to the con-
clusion that 8u, changes signs along the lines x = £1/(3/3)
and 8u, along y = £1/(3/3). For Su one is again led 0
expect the best accuracy at the nodes.

) Tommicallyobservealltlis.ndhneﬁedm

— —— — -——of aumerical integration, thesquation s ¢+, +1lmfis =

solved in a square region with « =0 on its bowndary.
Finite clement calculations are carried out with bilinear
and biquadratic elements (because of symmetry only one
quarter is considered.) The error nodal lines of Su, and
Su, for a 7x 7 mesh of bilinear clements and the shaded
element as in Fig. 1(a), are shown ia Figs. 1(b)

u

m»-%[,u'.u:.mz.-m»m; o

|
w(f)-o(a)= ( '-"- -
: d’ : ,:;(:-l‘:l,:dll; “

i

R R T R T

LY ..

———————
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3% IsaaC Faiep and J. A, METZLIR
' d = —aer’- 0y + 2001’ + 200y’ + @ix’y + ear’y?

. _ +ayy’ 0
P -u-%..(xﬂxx-l)’s*%uyﬂm-n’ [
‘ .~
lu.-zc.v(x-fllx-l) o .
, _
F A by =3ty +iy-1) o
. Su, = 357 1) ay -
k . S, = 0 3y*- 1) -
+ L with &u,, being identically 2ero. Thus the nodal ines ey -

Su, are x= -], x=0 and s = 1. Those of du,. y=oy ..
y=0and y= 1, while Ju,. and 3u,, change sign on e .~
lines that pass through the Gauss poigy ™

v I ¢ * -
s R respectively. . i 4
Figure 2(s)-(d) shows the experimental emror apdy *
) lines for 3«, Su, du,, and 8u,, in case of 2 simgly "
sllppmedF plate uniformly loaded and discretized as i ¥
R , . . 2¢). _ s
\ y )
o) o) %
Fig. 1. Fixed square membrane discretized with rectangular /
elements. Noda! lines for Su (b) and Bu, (c)imcase of amesh of -
bilincar clements as in (a). The nodal lines in (d) and (¢) are for 3
du nd $u,. vespectively. for exact and & 2x 2 Gauss scheme x m—
(broken line). and » 3x 3 mesh of biquadratic elements a3 in Fig. -2
Me). The marked points @ wre Gauss poiats. \ A
. S N
Table 1. Values of Su, = 4, - &, st the four ‘ o) : i )
Gauss poimts in Fig. I(e) for 8 biquadeatic s
element and a I X 3Imesh discretizing » oni- .
formly losded membrane. Once for exsct (3 x .
3) and once for a 2%2 Gauss imtegration S~
Scheme Ji
() - f?,
Poist 33 %2
: ' &
| 03844  -4S1d4 ;“
2 04544 0.204-3 — s -
3 -0.1244 -£.3%4.3 i'
4 08442 0254 P\,
max (bu,) 03142 0.404-2 el L 4 e ’
~‘§ '
ﬁAa
I the case of the bicwbic. rectangular clement K1
) _ 'E‘.: '
l-;u‘y‘ i<}, j<3,~Isx ys8]) ) :
Ve
and accordingly the choice for » falls upon ")
~ v
seau'+aix’y + e’y + aury’ 4 0y’ 2. Nedel lines of Su . Su, B3, O, () and Bu, (B GIS ¢ l
’ -iszysl. ® :‘-mw.—?’nh&ad.
cvoriand by » 3% 3mesh (2} of bicubic domonts (aotel valom & °

Once more the best snwrgy fit is the intespolate such thet & 8y ) The arked goinns @ sve Qoums polan.
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Table 2. Rotating sphere with biquadratic elements. Relative erroc.. - strains .t the
tweaty-five poiats in Fig. 3u). Integration wita =X 3 Gauss integration points and

-0.1264-01 ~4.1294981 -04774-00 -0.4354.02
4351402 ~44204-03 —0.492401 -0.10%¢ 00

=03
Poimt Sele, Sagles Ssales &y
[} ~-0.1024 0 -0.111402 -0.2324 81 02774
2 -0.9064-00 -2.11%4-91 ~.5544-01 0467401
3 ~2.7644-01 -8.1104-82 ~0.6604-01 -0.457401
4 -0.4344-01 0. 184-0 -0.681401 0.7404-01
s -2.3024-01 010082 -0.4104-01 0.329%4 00
¢ -.574-8 0.1004-03 -0.1%44 01 0.219%¢ 00
7 -4.1134-01 -4.1034-01 -840 ~5.44 82
L ] 0.6064-02 L1402 ~0.6604-01 4987401
9 021840 0191401 ~0.9934-01 0.18849!1
[ 0.3064-00 0.004-02 -0.3214-01 0.2704 %0
n 0.2204-91 ~0.2044-0) -0.1784 01 0.2044 00
12 020401 -4.1104-01 081401 -0.3084-01
4] 0Si6d-01 020483 ~0.5434-01 -0.125¢ 00
“ 0652491 0.1874-01 -0.71344-01 —0.0004-02
! 15 078401 151402 -2.387401 - 02554 00
1] ~4.199%4-01 ~4.717403 -0.195401 0.2554 00
”
[ ]
19 0.2064-9! 0106401 -0.1194 00 0.240401
» 0137491 4040 ~0.533401 0.3054 00
U -4 97340t 0.3064-03 -0.15%4-0t Q3454 0
. n -0.95%4-01 -4.1184-01 -0.4484-0! 0534401
: pi] 2453401 0160402 -0.5384-0) ~0.6444-01
’ b ) -0.8334-91 0.2374-01 -0.125¢ 01 0540401
» -0.1204 0 0. Med02 0459401 0.403¢ 0

(
Table 3. Same as Table 2 but with 3 x 3 Gauss integration poiats » = 0.45
Sals, Saglse © o ladey iy

-4.1124 @ -0.5194-82 0.13%4-01 0.2444 00
325401 “A.1%4491 4535402 0.4464-01
4358401 ~0.3624-02 - 448 -0.3444-01
.94 41 0.155401 W00 0713401
“4.31%-10 -0.5024-02 240 | BB
0704401 025142 02240 01974 ®
~0.374-81 ~8.1464-01 0085483 -4.222402
4415483 L3M0 -A534-02 2400 . _ - -
0258401 0219491 02402 0.2224-01
0.387491 ~0.5024 -9 0.1214 0.2444 00
-04004-01 ~4.1644-02 026640 0.1924 00
4123401 ~4.1504 01 030842 -0.1%44.01
03740 ~4.0640 600402 -0.1054 00
0.7184 81 0219491 ~0014491 (b 78]
0909401 4464402 44574 % 0.2344 0
-04534 01 ~0.159403 02740 OM34 ®
“AA134 0! ~A.157481 SR idn
21048 -Nn4a 45401
030249 0219401 -4 9 0292401

Al 0 019402 L4 0304 0
“4.104 “A.13740 (L] 04401
~A. M4 80 6.M34-02 -4.M24 81 0419481

30481
451848 “AH1d0n 09354481 03Nd
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Table 4. Same a5 Table 2 but with 2% 2 Gauss integration points and » = 0.3

Poimt e, Seolte Sadte hiy
] 0N 0 0.794-02 -0.483401 0Ndm
2 -0873491 -5.1004-91 ~4.5374-81 09140
3 -0.504 0 -0.9944-02 0.0084-01 -0.407401
4 416401 0.1574-0) -205204-01 0.2854-91
s 00844 O [ Xy "2 ) ~2.1934-01 (V: ] ]
[ WM 198402 2133491 (V"X
7 -4.3204-02 875402 -0.4524 01 -.46684-82
[ ] -8.3204 00 2d2 =0.505401 0964401
9 0.1904-01 0.19%64-01 64540 1240
w LN B 0902 -0.384-9) - 0244
n 0296401 -0.2384-92 -4.1954-82 0.1584 ®
12 0409401 -4.024-91 -0464401 457240
3 0.6454-00 0. %1402 ~£2.79%04-01 -2.1274 ®
“ 0.5534-01 0.18749) -49134-01 024401
15 0.2244-01 -0.6414-02 -0.254-01 03104 00
[ ~4.7404 80 0855403 -0.3044-81 0. %14 00
n 0.1214-91 -0.1204-01 ~0.5954-01 4. 948
| ] 0.5044 0 0870483 -0.325401 -8.1164 80
;] -0.704-82 0.1004-91 22814 00 92139
» -4.1494 0! ~2.2204-802 -2.1174 00 034 ®
2 01324 01 i ~8.1084 00 0414 8
w3 =H435481 011548 -OM401 140 —
3, [ "X ] -4.574-2 0.2754-0) -2.7Nd 8
b ] -0.1294 90 0225441 -4.1024 2 01040
b} -8.3634 0) 0216481 -0.1134 00 (b V)

Toble 5. Same o Tobble 2 bt with 2 2 Gouss integration points aad » = 0.45 . {

%
:

Points daje, Sagley Seolte iy
wsd N 0455401 =4.1244 9 0004
-2.3504-01 -4.1234-01
-4.1344 0 2287401 0124 -4.3294 01
2440 0.1954- 01 80 4.6 8
054 0 0813401 0214 8 -8.0654
Lisidn 1482 -4.135401 (8T ]

12402 -4.1084 91
L] 0313491
01001 0.2524-9)
01 9 0GR
014401 ~0.21024-0
091401 -2.12140
045149} 0175401
0430401 02348}
L o -0
2044 9 0NM-8
0en 41540
01564 & 440
0440 [ el
2404 % 4005482
4404 0
45040
(L]
-4 8
4194

4.4
~4.3904-04
050401
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Introduction

tion of the linear algebraic system that is produced by finite elements. It has been noticed however
[2] that convergence depends on the eigenvalue spread in the global stiffness matrix, and that an
ill-conditioned system leads to poor convergence. Scaling has been shown ta improve the per-
formance of the conjugate gradient method in plate problems. In the present paper this method

is applied to an elastic problem to study its functioning in the presence of high Poisson ratios that
cause a deterioration [3] in the condition of the global stiffness matrix. It is also shown here that t
scaling has a considerable beneficial effect on the convergence of conjugate gradients also in this
case.

' The conjugate gradients method has been shown [1] to be an attractive technique for the solu- {

1. The elastic problem and its discretization

We propose to use conjugate gradients to solve the problem of a rotating hollow elastic sphere
{4] discretized with finite elements. Because of symmetry only a quarter of the sphere need be .
considered, and we divide the arc and radius into N, equal parts to form a mesh with N2 “aquare” ;
finite elements. A biquadratic interpolation is adopted over each element, which is thus associated )
with nine nodal points. j

2. Numerical computations

Actual numerical computations were carried out with N, =4, 5, 6 and 7 elements per side, once

* Work supported by ONR contract No. ONR-N00014-76-C-36.
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without scaling and once with the global stiffness matrix K symmetrically scaled so that K, = 1.
The algorithm was terminated in each case when the change in the quadratic form n(x) = }x*Kx
— x*'f which is minimized reached the machine accuracy. The results of these numerical computa-
tions are listed in the tables below. Notice in these tables the substantial savings with scaling. The
following notation will be used:

v  Poisson’s ratio

N, number of elements per side

N size of the linear system

N,, number of iterations required for convergence

N,=17, N=450 N,=6, N=338
not scaled scaled not scated scaled
v Ny NN v Ni  NglN Ny  NgN v Ny NN
0.0 421 0.936 0.0 158 0.351 0.0 344 1.018 0.0 135 0.399
0.1 426 0.947 0.1 158 0.351 0.1 350 1.036 0.1 138 0.408
0.2 452 1.000 0.2 165 0.367 0.2 359 1.062 0.2 141 0417
0.3 484 1.076 0.3 183 0.407 0.3 376 1.112 0.3 157 0.464
04 587 1.304 04 225 0.500 0.4 447 1.322 04 191 0.565
04S 738 1.640 0.45 292 0.649 0.45 581 1.719 045 247 0.731
0475 964 2.142 0475 395 0.878 0.475 744 2.201 0.475 333 0.985
N,=5, N=242 N,=4, N=162
not scaled scaled not scaled scaled
0.0 272 1.124 0.0 113 0.467 0.0 194 1.198 0.0 87 0.537
0.1 269 1111 0.1 114 0471 0.1 194 1.198 0.1 90 0.556
0.2 276 1.140 0.2 119 0.492 0.2 198 1.222 0.2 94 0.580
0.3 298 1.231 0.3 128 0.529 0.3 212 1.309 0.3 103 0.636
0.4 351 1.450 0.4 156 0.645 04 242 1.494 04 122 0.753
045 440 1.818 0.45 208 0.847 0.45 296 1.827 04S 153 0.944
0478 546 2.256 0475 “264 1.091 0475 364 2.247 0478 193 1.191
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SOR 5. CONJUGATE GRADIENTS IN A
FINITE ELEMENT DISCRETIZATION
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SEAMINEARY

Successive Overzelavation and Comueate Greadients aoe used to salve the Tineas aleebraie sssteom set up
weth tite cleme nts toc the disarctization of o plane, hine v heat codbie e problems 10 numencaliy

) . shown that even with the optmg overrebanation factor SOR s hadis supenion 1o CGowhich s decisnely
ampler to progtam

% . INTRODUCHON
Even though fimite clements are bemg aceepted now as the mostiippiopriate way to diseretize
problems which can be formulated varintionally . the guestian of how 1o solve the resulting
; algebrine svstems s vet much i debate. The Laree computational packages hine almost
exchinively adopted direct mcethods ot solution based on Gauoss chimination and triangulan
factotization. The reasons for this choice are many: the need 1o solve the same ssstem with
ditterent night hand vectors, the direct method's sivall senstivity to round off errors and then

termination i a finite number of steps, Direct methods sufter. owever, trom the disadvantage

that they operate ona two-dimensional deray whinch m the cise of timite clements is sparse but
with o distinet sparseness pattern, As aresult the coftort o mabe direet methods etliaient
becomes w considerable progrmmimg exerase 1o anvoid zero operations that depend also on
the numbermyg of the nodial poimnts !

lterative methods are subtler to applyv: one has to know when to stop them and their ‘
ethcicney is o hidden tunction of the properties ot the global suftness matrix. On the other
hand their programming is considerably simpler than that ot ducct methods and the sparseness
A of the matrix can be accounted for in an uncomplicated way since they do not operate on a
two-dimensional wresy but tather teguire as a basie operation ontv the multiplication of
vector by i matnis,

Among iterative methods, Suceessive Overrelination has reecised extensive coverage' in
- 4 the context of finite difference equations. For some teason. Conjugate Gradienis never
became that prominent. Fhis method, however s technically ey well suited ™ o solve the
tiite clemen aleebraic cquations Althoueh both of these o thods sutles from truncation and
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round-off crrors, it is the author’s experience that this i+ not a scrious prgble less ghe

system is particularly ill-conditioned. In the cases where this i« a problem, aut

recommend scaling of the type described in References 3, 4. “
In this paper we apply both SOR and CG to a two-dimensional stationary heat uction4

problem diseretized with finite elements and show that ¢ven under optimal conditions, that in
fact rarcly matenalize, SOR converges only slightly faster than the more conveniently pro-
grammed CG.

SUCCESSIVE OVERRELAXATION
Letus recall the SOR algorithm. We wish to solve the lincar afpebraic svsvtem
Kx f§ (1)
and with positive definite and symmetric K. which we decompose in the form
K-D+L+L' (2)
where D is (block) dingonal and L the remaining strictly lower triangular matrix, We write now
D+wllx, | wl'+(1 @)D, t of 3)

in which w is the overrelaxation factor. The successive overrefaxation scheme in equation (3)
has the iteration matrix
L., 1Drol) ’] ‘Wl A D) 4

and the basic problem of SOR is to locate the optimal @ that minimizes the spectral radius
p(L..) of the matrix L. No sure way ¢xists to find the optimal w. which is the greatest flaw of
SOR cspecially in view of the fact that the efficiency of the method strongly depends on .

CONJUGATE GRADIENTS
Herce the algebraic system in equation (1) is solved by

=1 - Kx,, Pu T
a, =p.r/p/Kp.

X, T X, ta,p,

r., =r -aKp,
8. =r ../l

P =r.atBp

No clusive factor is needed in this algorithm and the only matrix vector multiplication that
appears in it is Kp. How to carry out this algorithm with finitc elements is discussed in
Reference 3. What we want to do here is only to compare the two algorithms on a given
realistic problem.

TEST CASE

Figure 1 shows half the cross section of a double barrelied steam pipe of which abedef is a line
of symmetry. The larger bore be carries steam at o constant temperature SO0°F while the
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b |

smiadler is designed 1o hose o thermometer and we assume the ach be insalated. Heat is lost
from the outer surface af of the manifold by radiation. The cross section is divided into 140
miangular clements with the temperature taken o be lincir over cach one of them. This
discretization gives rise to 99 unknown temperature values at the vertices of alf clements.
The iteration natric L, in equation (b was set ap and its specttal vadias (2. ) computed as
afunction of woand plotted in Fieure 200 soseen that the optinal wo is 1-69° Next the heat
conduction problem was solved tiest with CGoand then with SOR using this w.,,. To compare
the convergence in both cases the iterated temperature at point £, 7% s plotted in Figure 3
versus the number of dterations N When we is used in SOR s seen to be slightly faster

plL)
PR

()n

) a

[ RTRII T

available to DTIC doer -
y 0 [ ‘1.4, ‘ PRCLR TN "p"a"'ﬁ.:‘

Coby available 1o DTIC does mot ponzt
pomit fully legible repsoduction



AT Y,

1332 SHORE CONMNL N e A O

soptimed oo Gl cthaeney of SOR A chmes donnaticaliv relatine

thii, C O bt wath the non
1w (G

KREFVRENCEN

o e Yoo Fora e Aadoos Pooanec e boei o coead Citle N1 ol
MR Do cnd boSicted N oo ol 0 g s G eecns o sodune Imear svstais L NAS S Rewearch 49,
do dxe iy

Dot by Ao der The Conparate Coae
Compueter Metii g P D00 Doy Tohraeh Unoee s o 7y

Ko Fovard 01 Stanton “Doven prmeate v Srectaae atabvais e duedt ooy monmzation’. ARAA T 6
Lo g edans,

AL Yot e nd YU E S Hiner The soduhen o Sgebge et eom cquations by the Conpugate Grradient
method weth oo alae et pe res Toopbowe stiess anaosas 0 b Methc engne 3329 360 (197 1)

PO Ko Npphe tece o Coeg eatcd Giadh o Pooccs an bonacFloanont ciloaiation of non-Lincar Strog-
tare s Lo i e YISO NTTAN ¥ AN FUPRYY S S ISR VO KL Y

Lo thong wad dons et ats Proc Pod IMACS In: Samp

Copy available to DTIC does not
permit fully legible reproduction




" < BRI PO At = - e - s Ry 4

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING 20 (1979) 317-321
© NORTH-HOLLAND PUBLISHING COMPANY

i ACCURACY OF STRING ELEMENT MASS MATRIX

: Isaac FRIED*
! Department of Aeronautical Engineering, Technion—Israel Institute of Technology, Haifa. Israel

Received 12 February 1979
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} Various element mass matrices are considered for the two-nodal-point string element. From finite
difference arguments it is known that an optimal element mass matrix exists — equal to half the sum of
the lumped and consistent mass matrices — which causes an error of only 0(h*) in the computed natural
frequencies instead of the 0(h%) that is obtained with the consistent matrix. It is shown here that
nonuniformity in the mesh destroys this optimality and has also an adverse effect on the accuracy of the
frequencies computed with the lumped element mass matrix.

1. Uniform mesh

Let us write the element stiffness matrix k. and element mass matrix m, for the two-nodal-point
string element as

171 -1 1, [ a l-a
""I[—-l 1]’ ”'"2"[1—a a]’ 1)

where the element size & may vary from element to element. When @ =2/3 and a = 1, m, in
eq. (1) becomes the (variationally) consistent and lumped element mass matrix, respectively. ’ 1
According to the minimax principle [1] all the natural frequencies computed with the
consistent m, are above the corresponding exact ones, and the error in them is 0(h?).

We are interested in studying the effect of @ on the accuracy of the computed natural
frequencies of the fixed string with the hope of discovering an optimal a. We shall do it by
finding a closed form expression for the approximate natural frequencies of the fixed string.
‘ Assembly of two neighbouring elements produces the finite difference equation for the jth

node:

— Uit + 2“,' “Una = Xhzl(l - a)u,-_l + 20“,' + (1 - a)u,'+|], (2) o

N}

where & = VX is the approximate natural frequency, where j=1,2,... N, and h = 1/(N +1).
Eq. (2) is solved by u; = cz’, which when substituted in eq. (2) leads to the characteristic

*On leave from Department of Mathematics, Boston University, Boston, Massachusetts, USA.
Rescarch supported by the Office of Naval Research Contract No. ONR-N00014-76-C-036.
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318 I. Fried, Accuracy of string element mass matrix

equation for z:

2_ = —dmap 1o

22=2bz+1=0, b Ttald-ay ™ 2Ah, A3)
or

z=bxVh-1. 4)

Since the eigenfunctions of the fixed string are trigonometric functions, we expect the roots of
the characteristic eq. (3) to be complex. The condition for this is that b>—1<0, or

0<puQRa-1)<2, )

assuming that 2a — 1> 0. We know [1] that the eigenvalues [ of the global system Ku = X\Mu are
bonnded by the eigenvalues of the element system

k.u = X’m,u, 6)
such that

min {X$} = X =max {2} ")

where A{ and A¢ are the first (lowest) and nth (highest) eigenvalues of eq. (6). Here, with k.
and m, given in eq. (1) A =0 with the corresponding element eigenvector u; =[1, 1], and
A5 = 4/[(2a — 1)h?] with the corresponding element eigenvector u! =[1, —1]. Hence, according
to eq. (7), 0=p =2/Q2a —1). But x =2/(2a — 1) occurs only when the string is free-free for
the global eigenvector u*={1, —1, 1, —1, .. .]. Fixation of the end points reduces the maximal
natural frequency to pu <2/(2a — 1), and z in eq. (4) is indeed complex. Because the free term
in the characteristic eq. (3) equals 1, |z| = 1, and we may write the complex conjugate roots
of this equation as z=cos@=*ising. Then u =ce®+ce™, i-*-1, ar u=
c1cosj@+cysinjd, j=0,1,2,... N+ 1. The end condition u, = 0 is satisfigd with ¢, = 0, and the
end condition un., =0 with

(N+1)0=mn2m,...nm7. ®3)

The jth entry in the nth eigenvector therefore becomes

(), = sin LT ©)

From eq. (4) we have that cos 8 = b, or

1-cos @
K =T+ @-1)({-cos 0y (10)
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which (with the identity 1 — cos 8 = 2 sin® 30) simplifies into
- 2sin 30 1
[1+2(a - 1)sin*30]"* (1

VL Expansion of the right-hand side of eq. (11) in terms of @ yields the following error
expression for @:

$

& _ 1= 5 (6a~ 5)0*+ 0(6"). 12)

When o = 4/6 (i.e. when m, is consistent) and when a = 6/6 (i.e. when m, is lumped), the error
in the computed frequencies is O(h%). But when a = 5/6, the error (according to eq. (12))
decreases to 0(h*) (see [2], [3]). In view of this we shall term m, with a = 5/6 optimal. It is
interesting that the optimal element mass matrix is obtained from the physical lumping i

method [4] by considering half the element mass uniformly distributed and another half
lumped at the ends.

Fig. 1 compares the frequency errors for the different choices of a in m. in eq. (1) for the
complete spectrum 0 < ¢ = jnwh <3m.

02{d/w1

ke b

Consist (a=4/6)

Lump. (a=1)

02

AR U AT A IR Sk S e

Fig. 1. Frequency error curves for the fixed string.

2. Nonuniform mesh

Accuracy predictions obtained by finite difference arguments over a uniform mesh are
susceptible to deterioration when the mesh is not uniform. To see what happens to the




et e M b e e e e i — s e

320 I. Fried, Accuracy of string element mass matrix

accuracy of the frequencies of the fixed string computed with the various element mass
matrices m,, we numerically solve the string eigenproblem:
'+ wu=0, 0<x<j, 13)
u0)=u'G)=0
for the fundamental frequency w.

According to eq. (13) u" is proportlonal to u, suggesting a nonuniform mesh with elements
near x = ( larger than those near x = 3. We decide to grade the elements according to

h].:esin"”zim‘”:i_——l), j=1,2,N+1, (14)

where ¢ is fixed by the condition that b, + b+ - -+ hy, = 5. The graded mesh thus obtained
is shown in fig. 2 for the case of 12 elements (N, = N +1=12).

y 49 5 6 7 891IDIR

Consis
Noruniform mesh (Ng=I2)

\\ ~— Norunvform

4 h Unif

~ -=-Uniform
.
\\ rA
(a ‘\OP‘

-5 \\

loglu/Arit .

Fig. 2. Convergence of the fundamental frequency At in a fixed string that is discretized with (a) a uniform mesh
(---) and (b) a nonuniform mesh (——).

Computation of the fundamental frequency &} = A, is now carried out first with a uniform
mesh, and the error reduction with the number of elements N, is indicated in fig. 2 by a
broken line. As predicted in the previous section, the magnitudes of the error in A, computed
with the lumped and consistent mass matrices are nearly equal. The optimal m, produces a far
more accurate A, with a faster diminishing error. The erratic convergence of A, computed with
the optimal m, (as seen in fig. 2) is due to round-off errors, the calculation being carried out on
a computer with about 8 significant digits.

The nonuniform mesh, graded according to eq. (14), produces a slightly more accurate Ay
when the consistent m, is used. On the other hand, the effect of nonumformlty on the accuracy
of X, computed with the optimal m, is devastating. Superconvergence is not only wiped out,
but the error in A, is not even proportional to N, in the range N, < 12.

I
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S tad

The grading rule (14) that is based on variational error estimates produces also a less accurate A
; with the lumped m.. It is observed, however, that to improve A, with the lumped m, the mesh
! should be with smaller elements near the ends than in the middle.
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SHORT COMMUNICATIONS

ON THE OPTIMALITY OF THE POINTWISE ACCURACY OF THE
FINITE ELEMENT SOLUTION*

ISAAC FRIEDE
Department of Aeronautical Engineering. Technion-Israel Institute of Technology, Haifa, Israel

SUMMARY

Closed form finite element solutions are obtained for the uniformly loaded membrane in R", n =2,3
discretized with first-order elements. It is verified on this model that the pointwise error in the displacement
is O(h% log 1/h). Slopes converge pointwise at the optimal rate 0(h).

INTRODUCTION

Since the finite element solution is obtained by the minimization of the total potential energy,
this solution is optimal in the energy norm. If the element shape functions include a complete
polynomial of order p, then the error in the finite element solution to second-order (membrane)
problems is O(h”). Energetically, this is the best approximation achievable with piecewise
polynomials of order p. But what about the pointwise error in the finite element solution? The
best pointwise displacement error possible with elements of order p is 0(h”*'). Recently, Scott'
showed that for the two-dimeunsional membrane the pointwise error in the computed solution i
is actually

O(h’log1/h), p=1
0(h"*h), p=2
Nitsche? showed that with linear element the pointwise error is 0(h” log 1/h) also in three

dimensions.
- Here the uniformly loaded membrane problem in R", n =2, 3

max |u —d|= (1)

='Wy = 2n, O<r<l1
u'0)=u(1)=0

that is solved by u = 1 —r? is considered (see also Reference 3). With the total potential energy

(2)

1
m(u)= L Gu*=2nu)r" "t dr 3

a finite element solution &, consisting of piecewise linear elements, is obtained from equation (1)
in a closed form. It is verified from this solution that, in fact, asymptotically |lu — &l =
0(h* log1/h). Slopes converge, according to the present computational model, at the optimal
rate |lu’ — &'Jlo = O(h), both in two and three dimensions.

+ Research supported by the Office of Naval Research, Contract No. ONR-N00014-76-C-036.
$ Associate Professor, on leave from Boston University, Departmz2nt of Mathematics.
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CIRCULAR MEMBRANE

Discretization is performed with N = 1/h lincar elements. With n = 2, the total potential energy
in equation (3) provides the element stiffness matrix k. and element load vector f, as

1 —1] [3e—2]
=19, — —352
ke =3(2e 1)[_1 N O s L PO @
from which the global data
[1 -1 1 [ 1]
-1 4 -3 6
-3 8 -5 12
=1 =2j2
K=z -5 12 -7 S Aat o PP (5)

is assembled. Because of the regular structure of K and f the global system Kii = f is readily
solved to yield

s ,,’;[__73_(,._1)3 i=1,2,...,N 6)
=TTV
but
.3 . 3 .2 :
I =G-1)  3°-3j+1 s . 1 )
= = - 7
PF-G-17 251 ‘(6’ SETSY @
and consequently equation (6) becomes
N1
G =1=pl4ip?2y —
Ui=1-ri +3h i-iZ]"‘l (8)

where r, = h(i - 1). Figure 1 traces the error distribution u — i, where u = 1 - r* and 4 is linearly
interpolated inside the element from the computed nodal values i; in equation (8), over a
seven-clement mesh. The maximum pointwise error occurs at r=0 (i.e. i=1, r,=0) and

0005
U

-0005

-00/

-00i5
Figure 1. Error distribution u — & over a seven linear elements discretization of the mmnywmm
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equation (8) provides the error expression
max ju —ia|=3N"? ) —1— @
i=12j—1
As N increases, the sum in equation (9) grows like log N, and it may be written as
lle = lleo = 3 (NIN " log N (10)

where ¢(N) is graphed in Figure 2. The coefficient ¢ (N) converges to the value 3 but so slowly as
to make the asymptotic estimate |[u — &/l = 0(N "2 log N) of only remote practical usefulness.

C(NF’gI/(Zj‘I)/IogN

c(~)=,$(zj-/)/(3i= 3j+1l/logN

. N
4 8 5 3 64 28 25 512

Figure 2. Coefficients c(N) for error expressions (10) and (22)

First-order elements provide only a constant computed slope inside each element, and here

j2-3j+1

Ay - - A~ 3
@'=h '(u,“—ui)=-§h 21_1 . (11

Figure 3 traces the error distribution u’ — ii’ over the same seven-element mesh. It is seen that
the slope error changes sign inside each element so that there is a point inside each element at
which u’ - 4’ = 0. The exact slope inside the jth element may be written as

u'==2r==2h(j—1+§), O0s¢=<1 (12)

and the condition u’ = i’ yields the special points

At the centre of the gh element
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020

AL
2 VLY

015

Figure 3. Circular membrane, slope error distribution u’ - &

and when j = (N +1)/2, for instance, u' - i’ = {N ~2; superconvergence takes place. The maxi- E
mum error in «’ is at r =0, and

max |u'—&'|=3h (15)

Slopes converge pointwise at the optimal rate O(h).

SPHERICAL MEMBRANE , {

With n = 3, the total potential energy in equation (3) yields the element data for the first-order
element as

1 -1 6e’—8e+3
=1 2_ =13
« = 3h(e 3””[—1 1]‘ fo=2h [6e’—4e+1 (16)

maths grids

from which the global data

1 -1 1

-1 8 =7 14

-7 2 -19 . 50

-19 56 -37 110
: 17

-37 98 -61 124

is assembled.
) A closed-form solution to K = f is readily obtained and at the ith node
N 4_ -_l 4

g = T LU as)

i=if ‘(i‘l)
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But
-4 . 4 .3 .2 . N
F=G=1)y _4j7—-6j"+4j-1 1( o 2i-1 )
= =—-2+4j+ 19
Ty T v i A A T TS 19
and consequently, equation (18) becomes
N -
42,'=1—r,<2+%h22—,2’—1— (20)

=i377-3j+1

Figure 4 traces the error u — i, where u = 1—r? and where # is linearly interpolated from the
nodal values i; given in equation (18), over a seven-element discretization. The largest

0005y
u-u
’ " AN /\/L
0] V V \ § 1

-0005

-00t

-00i5

-0020 nere i

Figure 4. Sphere, displacement error distribution u - &

11‘ ‘ -0025 ,

pointwise error in u occurs at r =0 (i.e. i = 1), and according to equation (20)

No2-1
-4 =l 2 /
I~ dlho =37 3 35 @1

L SR

Again, equation (21) is written as
. flu = il = dc(N)N 2 log N (22)
where ¢(N) is graphed in Figure 2. As N>, c(N)->2/3, but so slowly as to make the

asymptotical error estimate [Ju — éllo = 0(N ~? log N) of theoretical interest only.
The computed slope inside each element is here

vy . 4
- =(j-1)
Bl ey — ) = —3h L 23
(yer — i) = -3 P (23)
and the error distribution u’ — 4’ is graphed in Figure 5. Change of sign of ' — &' takes place, also
here, inside each element and the error nodal points for u’'— &’ are at
16j2-4j+1
§=2676j+2 @4

e e v —— ——

l
!
|
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025
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Figure 5. Sphere, slope error distribution u'— i’

The maximum of |u’— 4’| occurs at r =0, and
max |u’' - i@'|=3h (25)

Also in three dimensions the computed slopes converge pointwise at the optimal rate 0(h).
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IRREGULAR FINITE ELEMENT MESHES
IN ELASTODYNAMICS+

ISAAC BRIEDT

Departm-nit of Aeronauiicat Fusmeenng, Leckmon-Ivael iitiae of e chnotogy, Haita, Israel

SUMMARY

et ot T e A —————

Grading rules for consistent and lumped clements are opposite. Optimial mass matrices oa finite ditference

considerations are very sensitive to mesh grading. Sepsitvity of the solution accuracy to the mesh ratio

increases with clement ordet,

. FIRST ORDFR EILLEMENT
First we shail solve the string ctgenproblem
u’ A 0, 0 -

wih with 0

vl

with an irregular mesh of first-order clements. The clement stitfness matrix &, and the clement

mass matrix . of the incar element are

1o 1] , [ w 1.]
kel e L .

When o -jand @ 1, m, becomes variationally consistent, and humped, respectively. When
s . . . .
o - ay M, becomes optimal —the accuracy of A computed with a uniform mesh of these elements

increases' from OCh™) to O™y,

Suppose we arc interested in the lirst eigenvalue Ay 7 of equation (1) with the correspond-
ing cigenfunction i = sin ma. In the consistent formulation the energy error” in the eth elementis

)

the ends of the string where 1 is small,

h, = he. e=1,2,...,INe~ 12

e ot e e e

where 2 is changed to achieve various mesh ratios g

n {MNe DY

4 distributions arc graphically shown in Figure 1.

i Research supported by the Office of Naval Rescarch Contract No, ONR-NOOGTS 760036
C Assouate Professor, on fease from Boston University, Department of Mathematies,

] f
| LB etk meoy. D

proportional to A ju”!, where A, is the element size. Hence, the optimally graded mesh is here
with small elements near the centre of the string where «” is large, and with large elements near

To observe more precisely the dependence of the discretization accuracy of Ay on the mesh
grading the string is divided into Ne finite clements symmetrically graded according to

For instance, for 5= 2, = - 0-38685 while for 7 =1 = 0-386K85. These element size

. 0029 SYK1/80/0415 0626%0].00 Received 12 August 1979
1980 by John Wiley & Sons, 1.td. Revised 6 Sepember 1979




SHORT ¢ OMMUNICATIONS 627

/3 172 o 2 3

Lo r:/: h
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| 7+1/2,2:°038685

J
{oglhi/m2 -1l

Figure 1. Accuracy of A, computed with hrst-order elements

The fundamental cigenvalue A, of the string is now computed with the consistent, lumped and
optimal m, in equation 12) for different values of the mesh ratio v, and the results of this
computation are shown in Figure 1. As predicted, with the consistent m, the optimal mesh ratio
7 is less than | and is seen to be close to one-third. It is interesting, however, that with our
grading rule (3) the accuracy of the computed A, does not change much betweenn =3and n = 1.
A computational procedure to avtomatically grade the mesh is not likely to prove profitable
here. We further note in Figure | that with the lumped m,, grading of the mesh should be donc in
the other direction, with larger elements near the centre rather than near the ends. Mesh grading
based on variational arguments will lead with a lumped mass matrix to a loss of accuracy. The
optimal element mass matrix is extremely accurate when the mesh is uniform but its accuracy
drastically drops® with departure from mesh regularity.

QUADRATIC ELEMENT

How do matters change when quadratic clements are used to discretize equation (117 To tind out
we use the clement matrices

78 |] NI 1
k, ~—-|-8 16 -8, w1 2 16 2, m'=hnl 4 (S)
6h 1s
1 8 7] 2 4 L

for quadratic elements of size 2h. In equation (5), k, denotes the clement stitfiness matrix, m, the
consistent clement mass matrix, and m, the corresponding lumped matrix.

With the consistent formulation, the crror in the eth clement is proportional to k2 ju™|. But
here [1™] - 7 '|cos mxi and hence the optimal mesh is with large consistent elements near the
centre of the string and with small clements near the ends.

Because of their high order, three of the quadratic clements are suthicient for reasonable
accuracy in A,. They are symmetrically graded, as shown in Figure 2, and the mesh ratio 5 is
agam increased from one-third to 3. Figure 2 verifics the theoretical prediction of optimal 7 > 1.
The gain in accuracy between n - vand g - 3 is greater here than with the first-order elements
but is still not so great as to justify an expensive computational procedure to locate the optimal #.
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-I‘»l/3 e 2 3
/7
20 !
25
i
-4y consisten?
S lurrped !
i
’ 25§ /\
| e
[
T B ._2’;“ ok -
| |
i
i
i
5, .i/og/\./r-’ i
Froare 7 Ac anacy of 4. compated with guadratic elements
With the lumped m.. the grading direction is once more opposite to the consistent: n > 1
causes a loss in the computed A Also, with the lumped .. the error in A, may change sign
and hence the horns on the error curve for this element.
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MEANINGFUL EXISTENCE OF FINITE ELEMENT SOLUTIONS
TO OFF-LIMIT PROBLEMS

Isaac FRIED*
Department of Aeronautical Engineering Technion - Israel Institute of Technology Haifa, Israel

Received 30 March 1979
Revised manuscript received 15 June 1979

Problems for which the variational principle of minimum potential energy breaks down, and are
therefore formally unsuitable for a finite element analysis, are shown to possess, nevertheless, a useful
discrete solution.

1. Introduction

Finite elements are at their best [1], [2] in problems that possess a true minimum or
maximum variational principle. For then the energy convergence of the finite element solution
is generally proved, and the numerical stability of the discrete algebraic system set up with
finite elements is guaranteed for general mesh layouts. There are boundary value problems of
physical significance and interest for which the variational principle breaks down because of
boundless energy in the solution or because an analytic solution does not even exist for these
problems. These problems are theoretically off-limits for the finite element method in as much
as the theoretical support of the method does not cover them. Energy convergence —even
pointwise convergence — as discussed in the literature, becomes meaningless, for how does one
measure convergence to a solution that does not exist? Nevertheless, conventional finite
element discretization of such problems produce discrete solutions that improve, in some
sense, with the refinement of the mesh, and are therefore entirely useful.

Some simple examples are solved in closed form or numerically in the following text to
demonstrate that the usefulness of finite elements is retained in these marginal areas where the
analytic solution or the variational principle totters. Hopefully, more light is shed thereby
and understanding deepen on the twin prime theoretical questions of existence and con-
vergence of the finite element solution when viewed from the discrete point of view.

2. Circular membrane under a point load

Operationally this axisymmetrical problem is formulated as:
—(ru'y =0, 0<r<i,
-n'(0)=1, u(1)=0, )

* Associate Professor, on leave from Boston University, Department of Mathematics.
Research supported by the Office of Naval Research Contract No. ONR-N00014-76-C-036.
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and
u(r) = log(1/r). )

The energy stored in a unit membrane axisymmetrically deflected is

Efu)= %I u'?rdr, 3)

[}

which is infinite for the logarithmic u in eq. (2). Let u now be any continuous function
that satisfies the condition u(1)= 0. Formally, the total potential energy of the point-loaded
membrane (1) thus deflected is

w(u)= E[u] — u(0). )]

To approximately solve problem (1) with finite elements by minimizing #(u) in eq. (4), a
uniform mesh of N linear finite clements is laid upon the membrane. From E[u] in eq. (3) an
element stifiness matrix k, is derived in the form

k=3ee-n[_; T}l e-12..N )

and the discrete total potential energy is assembled according to eq. (4). Minimization of 7(u)
with respect to the nodal variables, under the restriction that u(1) = 0, produces the algebraic
system Ki = f for the nodal unknown vector i, where the global stiffness matrix K and the
load vector f are

i
}
?

T 1 -1 ] -1}
1 4 -3
1| -3 8 -5 _
K=3 5 12 -7 : =11 ©
7 16 -9
L : R L

The closed-form solution of Kié = f yields

2

2 ,
4= 57__—1, i=1,2,...N, )]

~
-

for the ith node and fy,, =0. At the center r =0 (i = 1) of the membrane where the point
force acts

Z

2
32—

ﬁ|=

=log N. ®)

[T

-
-

[
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Even without a closed-form solution an assiduous analyst performing numerical computations
with a succession of refined finite element meshes will soon discover that i, keeps ever
increasing with N, and that correspondingly the discrete total potential energy keeps ever
dropping as N is increased.

Away from the singular point r = 0 pointwise convergence of the finite element piecewise
linear solution & to u = log(l/r) takes place with the increase of N. Consider, for example, the
point r = 1/2 (i = N/2+ 1, N even). At this point u(1/2) = log 2 and, according to eq. (7),

i(3)=2(F5rt Nt NSt P NENST) ©)

To elicit the rate of convergence of the series in eq. (9), it is helpful to notice that

1 1
1 IZ
~dp=|Sdp=1 10
f,,dp J Gy P~ loer (10)
so that .

2

~dp = log 2. 1
fm p=log ()

Numerical integration in eq. (11) produces the series of eq. (9). Indeed, if ;< p =<1 is divided
into N/2 equal intervals, then at each node thus created p, =3+ (i~ 1)/N (i=1,2,...3N +1).
Within each interval (p?) = (N + 2i — 1)/N, and the contribution of each interval to the integral
in eq. (11) is 2/(N + 2i — 1). Summation readily produces eq. (9). Numerical differentiation and
integration arguments lead to the conclusion that this sum converges O(N ?) to log 2. The same
conclusion could have been reached using the trapezoidal rule on the first integral of eq. (10).

Fig. 1 compares the computed & with the exact u = log(l/r) for N = 10. At the origin the
approximation is of course bad, but away from it agreement between the computed i and the
theoretical u rapidly becomes excellent.

Once our ideal analyst has noticed the singular behavior of @ near the origin, he knows that
he should change to a nonuniform mesh of finite elements for higher computational efficiency.
We suppose him endowed with broad knowledge and deep understanding of the method of
finite elements and its theoretical intricacies. Consequently, to decide the mesh grading, he
sets out to estimate the curvature of u. This he does by computing |#"|, where

@)= N (- — 2w + ty1y), i=23,...N. (12)

In more complex situations &7 may be computed from the computer output. Here eq. (7) leads
to the formula

4N?

u,=m, i=23,...N, (13)

indicating the sensibility of a much finer mesh nearer 7 = 0 than near r = 1.

“édo
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Fig. 1. Point-loaded circular membrane discretized with 10 linear finite elements.

When the mesh is nonuniform, then at the ith node
N Ly — I

-j 'iﬂ + ';’ (14)

4=2

where 7,=0 and 7v.; =1, and in fact as grading becomes steeper, cr 7,./r;» 1, i, ap-
proaches a growth proportional to N. The rule 7, = €(j — 1), 1 = eN*, for instance, yields for
the specific @ = 4 the computed central deflection

g (115,65, 175 39
u‘—2(1+17+97+337+881+ ) (5

instead of eq. (8).

Energy convergence of the singular membrane problem of this section, excluding the
neighborhood of the singularity, can be proved also generally by the standard finite element
arguments. Corresponding to K in eq. (6) the global flexibility matrix is given here by

K, = [2 i‘,’ ﬁ]' j=i, (16)

which means that removing the force from the origin and fixing it at node i does not change
the solution 4, for j = i, while 4, remains constant for j < i. The analytical solution u behaves
the same way since —ru’ = 1 is true not only for r = 0 but for all r. Now u is regular inside all
the finite elements, and consequently the full rate of convergence of the finite element
approximation to our original solution, excluding the singular origin, takes place.
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Table 1. Computed finite element approximation & to the
deflection of a square membrane with a central unit force

x y G,N, =20 @, N, = 60 Analytical

0.05 003 027531E-2 0.27375E-2  0.27357E-2
0.10 210 0.11015E-1 0.10956 E-1 0.10949 E-1
0.15 0.15 0.24840E-1 0.24714E-1 0.24699 E-1
020 020 0.44456E-1 0.44243 E-1 0.44217E-1
025 025 0.70505E-1 0.70177 E-1 0.70138 E-1
030 030 0.10451E0 0.10399 E0 0.10383 EO

035 035 0.14994E0 0.14810 EO 0.14890 EO

0.40 040 0.21592E0 021333 E0 0.21312 E0

045 045 0.33650E0 0.32429 EO 0.32337 EO

050 0.50 0.72346 E0 0.89016 EO ®

Such simple explicit reasoning does not apply to the square membrane problem with a point
force at (£, n)

Uy + uy, +8(&1)=0, 0<x<1,0<y<]1,
u=0 on the boundary, an

for which Green'’s function [3] is

Gx, y, & n) = _1% ,.JZ:, sin i7rx sin j%}y f;r; iwé sin jmn , (18)

including a singularity 0(log 1/r) around (¢, ).

To observe the behavior of the finite element solution to eq. (17), the square with a unit
point force at £ = 9 =} is discretized with N,, bilinear elements, and the discrete problem is
solved twice, once with 20 elements per side (N,, = 20) and then with 60 elements per side
(N,; = 60). Table 1 compares the computed results with those given by eq. (18). An addition of
about one significant digit with the mesh refinement is evident. Next the serious analyst sets
out to compute &, %, and &4, to better lay a nonuniform mesh of elements, triangular
perhaps, around the singular point, but we are not yet prepared to follow him that far.

3. Spherical membrane under point load
Eq. (1) changes here into

—(rPu’y =0, 0<r<i, (19)
-ru'®)=1, u(1)=0,
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The total potential energy corresponding to boundary value problem (19) is

1

(1) =% f u”r dr - u(0),

[

@n

where u is continuous and 4(1) = 0. From r(u) an element stiffness matrix is derived in the form

k. = 3N(3e —3e+1)[1 l]’

22)

where N denotes the number of equal finite elements in the discretization. Following the standard
finite element procedure produces the albebraic system Ki = f, where

- -

1 -1 1
-1 8 -7
_1 -7 2 -19
K=35 ~19 56 -37 @)
-37 98 —61 j
and
=3NS 5 2 24)
WENa@p—G-1y" " &3 31+1
At the center
Nz 3+1 =3915N (25)

since the sum of the infinite series = 1/j% has a limit. Again, as the mesh of finite elements is refined,
the computed central deflection 4; keeps ever increasing, and with it the energy stored in the
membrane.

Away from the origin, pointwise convergence of the computed & to the exact u=1/r—1

takes place. Consider for instance the point r =5 (i= N/2+ 1, N even) at which u = 1/G)-1=
1. At this point

u()=N g — 26)
jmifhea =G = 1)
The convergence of the sum in eq. (21) to u(3)=1 can be proved by differentiation and

integration arguments, as has been done for the circular membrane of the previous section,
from the equation

@
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or in particular from

4§=lﬁwn (28)

Division of the interval 3=r=<1 into N2 equal segments and the performance of the
numerical differentiation of r* and then a midpoint numerical integration of 3/(r’) produces
the sum in eq. (26). Convergence of #() to the value 1 occurs at the rate of N2 Fig. 2
compares the computed & and the exact ¥ =1/r—1 whea N = 10.

All the above discussion assumes a uniform mesh which is very inefficient here since

i’-1

= 18N 29
G- =] @)
A much finer mesh near r =0 is called for than near r = 1. With such a mesh
32 i1 = n=0,rmw.=1 (30)

Siriatrarn + ria’

or, when 7, = €(j — 1)* and eN® =1,

- G-l
=N :Z.] G-+ (-1 G

and for large N
i, = c(a)N*, (32)
where c¢(1) = 391, ¢(2) = 3.64, c(3) = 3.38, c(4) = 3.20 and c(5) = 3.10.

| r
0
10
« {,computed
20
node a u
1 |38.16 -
30 2 8.160 | 9.000
3 3,874 |} 4.000
) 2,295 | 2,333
s 1,484 | 1.500
40 6 0.9924 | 1.000
7 0.6627 | 0.6667
8 | 0.4265]0.4286
9 0.2489 | 0.2500
501 0 | 10 | o.107]0.1111
u!

Fig. 2. Point-loaded spherical membrane discretized with 10 linear finite elements.

ko
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4. String under point torque

Consider a string of unit length with two equal but opposite forces P acting on it at the
points 3— € and 3+ ¢, and such that 2eP = M, where M is a constant moment. When € -0, the
deflection of this string becomes

u(x)=-Mx 0=<x <%,
1 33)
u(x)=-M(x-1) 5<x$1,

and at x =5 the string deflection becomes multivalued: u(;—0)= —3M and u(+0) = ;M. The
energy needed to thus deform the string is infinite.

Our hypothetical analyst ignores this last unpleasant fact about string energy, and, being an
ardent admirer of the method of finite elements sets out to solve it numerically by this
technique.

Associated with the present string problem is the total potential energy

1

‘n-(u)=%j‘u'2 dx — Mu’ (%) (34)

o

) Because u’ is needed at the point x =3, cubic C' finite elements suggest themselves for the
discretization. What results from such a computation is graphically shown in figs. 3 and 4 for a
20-element mesh and M =1. Close to the center, where the torque enters, the computed
displacement function oscillates severely over some two or three elements (over each side) as
it tries to adapt to the discontinuity. Outside this internal boundary layer the oscillations
rapidly subside, and & and u agree excellently. Figs. 3 and 4 unmistakenly suggest a

908
80
70
60
50 ~— computed {'
40 ——-~ onalytical v/
30
20
10

X

0 h 2h 3h 4h 5h 6h 20
Fig. 3. String under central point torque discretized with 20 i
cubic C' finite elements (computed and analytical displace- Fig.4. Stringof fig. 3 (computed and analytical
ments shown for the right half of the string). slopes shown for the right half of the string). .




1. Fried, Meaningful existence of finite element solutions of off-limit problems 237

nonuniform mesh of finite elements with larger elements near the ends of the string and much
smaller elements near the singular point x = 3. A repeated computation with such a mesh will
reveal that the boundary layer is mesh-dependent, and, as the elements close to x =3 become
smaller, it shrinks. The oscillations, it is concluded, are spurious and are caused by a
discontinuity of u at x = ; with infinite slope and hence infinite energy.

5. Point displacement given to a membrane

Suppose that the unloaded axisymmetrical membrane is given a unit central displacement.
The resulting deflection u of the membrane is determined by the solution of

~(w'y =0, 0<r<li, (35)
u(0)=1,u(1)=0,
u(r) = c, log(1/r) + c,, (36)

where ¢, and c, are to be fixed by the boundary conditions 4(0) =1 and u(1)=0. But it is
impossible here to satisfy both of them. The condition u(1) =0 is met with ¢, =0, but there is
no nonzero ¢; that makes #(0)=1. According to the linear, small deflection theory of the
membrane the central displacement given to the membrane is not transmitted; the boundary
value problem (35) has no solution.
But what if one uses the total potential energy
1

()= % ] wirdr,  u@©)=1,u(1)=0, G7)

[}

to construct a finite element solution to eq. (35)? Here the problem is not infinite energy. In
fact, w(u) in eq. (37) is bounded from below by zero, and this limit can be approached as
closely as one wishes with

u=1-r°, a>0 (38)
which satisfies both end conditions 4(0)=1 and u(1) = 0. Introduction of u of eq. (38) into
m(u) of eq. (37) results in

mw)=1a, (39)

and 7(u)-0 as a - 0.
Standard finite element approximation of w(u) in eq. (37) with a uniform mesh of linear
elements produces the linear algebraic system Ki = f with

T 4 -3 ] 1]
-3 8 -5
K= -5 12 -7 , f= (40)
-7 16 -9
-9 20 -1
* * - L. J
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and

ﬂi=j—;, i=1,2,...N-1, uo=1,un =0, @1)
where

5= i2,+1 “2)

At r=3(i=N/2, N even)

a(3)- 3 S oy = a2 @)
2 i=(N+1)2 2] +1 j=0 2] +1 3 log N’

and G()—>0 as N > .
To check the need and amount of mesh grading, & in eq. (41) is used to compute

47 = N7(l-y ~ 2d; + G;..); this yields
., N2 2 . _
@ =5 AT i=12,...N-1 44)

It is inferred from &” that a more efficient finite element model is achieved with a finer mesh

close to r = 0 rather than close to r = 1.

Fig. 5 shows the computed deflection of the membrane discretized with 10 and 100 finite
elements, once uniformly distributed and then graded according to the element size formula
h; = €j*. It does not escape our vigilant analyst’s eye that the central deflection imparted to the

membrane does little to disturb the rest of it.

Fig. 5. Centrally displaced circular membrane. Curve (a) for N = 100, h; = j*; (b) for N = 10, h, = j*; and curves
(c) and (d) for a uniform mesh with N = 100 (h = 1/100) and N = 10 (h = 1/10), respectively.
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6. Overdetermined fixed string problem

A string that is fixed at its ends is discretized with cubic C' finite elements. Approximate
solution of this problem through the minimization of the total potential energy includes the
requirement that the finite element trial function satisfy the zero displacement provision at
both ends. Suppose that an additional constraint is put on the finite element trial function,
namely that also the slopes vanish at the end points. Both analytically and physically this
additional boundary condition is meaningless; the string cannot resist a torque. The addition
of the zero slope conditions merely implies a slope discontinuity at the ends. It is whatever
results from the correct boundary conditions when approached from the interior, but then
suddenly becoming zero over the end supports.

To observe the behavior of a finite element solution subject to the additional boundary
condition of zero slopes, the string is discretized with 20 cubic C' elements, and a point load is
applied to it at the center. At this point C' continuity is not enforced on the trial function to
allow it to duplicate the slope discontinuity over the point force. At the end points, however,
the finite element trial function is made to satisfy both conditions of zero displacement and
zero slope.

Figs. 6 and 7 show the results of this computation for half (for symmetry reasons) the string.
Near the end point x =0 the computed slope &’ oscillates wildly inside a boundary layer of
some 2 elements and then settles close to the exact solution u’ = 1. The computed displace-
ment, on the other hand, suffers permanent damage from &'(0) = 0, that is it is transmitted all
the way to the interior of the string.

But we have no doubt that our numerical analyst, who is by now a seasoned veteran of
many a difficult computational struggle, will soon discover that the boundary layer effect is
spurious and is due to the redundant imposition of &'(0) = 0.

\>
7

/
computed § Y, \
analytical u'

analytical u -\( /

X

X
O h 2h 3h 4h 5h 6h 7h 8h Sh 0 h 2h 3h 4h S5h

Fig. 6. Displacements of fixed string discretized with 10 Fig. 7. Slopes of string of fig. 6.
cubic C' finite elements. Overdetermined boundary
condition of zero slope at x =0.
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NONLINEAR FINITE ELEMENT COMPUTATION OF
THE EQUILIBRIUM AND STABILITY OF
THE CIRCULAR PLATE?®

ISAAC FRIEDE
Boston Umiversuy, Department of Mathematios, Boston, Mavsachisetts, US.A.

INTRODUCTION

Numerical, reduced, integration' of the total potential energy is used to derive the element
tangent vectors and matrices for the largely deflected circular plate.” All the element data is
expressed in terms of few numerical element vector and matrices, and in a form convenient
for standard assembly and use in the Newton-Raphson, or other iterative solution methods.
Actual numerical computations are carried out to study the bending of the circular plate ]
under the action of a lateral load and a rim thrust that exceeds the critical value.
A brief numcrical study is made of the discretization accuracy.

FLEMENT VECTORS AND MATRICES

Consider a unit circular plate larpely bent' under the action of a distributed lateral load f and
an edge compression p. The total potential energy of the deflected plate can be written as

Vi'py s by
T ?.J.. IAQ(W +r"’w')*(;) rdr
: x :
i *’J' (u'ﬂiwv"‘l'rdr—j fwr dr +puil) (8]
T (]

where u and w denote the inplane and lateral displacements, respectively, and where ( )’ =d/dr.
In the finite element discretization of m(w, w), we choose to interpolate w cubically with
the beam shapc functions. Because u is differentiated only once in w(u, w), we correspondingly
interpolate « quadratically, and decide to numerically integrate 7 (u, w) with two Gauss points,
that cxactly integrate w”” and v
A typical finite element isee Figure 1) extends between r = 7y and r = ry, is with three nodal
points—two end points and one central—and is associated with the nodal values vector

i wl o=y, W Miwe e e w, Yhw'h) (2)
! where h = ry—r,. To prepare for the numerical integration of the total potential energy the
' ; ot i , i —letw =l1- L1

y typical clement is mapped to the standard interval -~ = £<1 by r=31-8)r, +3(1 +£)r: s0

that dr = }h d¢. We denote differentiation with respect to £ by ( 1 and have that ( }' =2/h( V.
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For a typical interior clement we have now that
1
i o2 ! t .2 [ [
mlu, W)~ J‘ e et e et Y e et de
i

1 i
vh J Ui ¢ wrrde Sh j wr d¢ (3)
L} 1
Interpolation of 1 and w inside the typical element is formally written as
wouletd) W e (4)

where w«, is the element nodal values vector of equation (2) and where the shape functions
vectors ¢ and & are here

e e D001 £ e v Do 0) (5)
and
GUE =U0,2 BErELL € w8 002438 8" 1 £+ +EY

where, we recall -1- £+ 1.
Next we substitute « and w in cquation (3} into 7.(e w) i equation (33 and numerically
integrate it by sampling the integrand at the two Gauss points &, - ~3/3and & = +'3/3.10 have

~

) v [ T B v
a2 Y oW e e Th e 4 hr g
1

[
i

ol Cthe, v V'r, ,'Jrr,f,w,] (6)
where the subscript j - 1.2 refers to the two integration points & = ~3/3 and & =v3/3.
The values of u,, w, . w, and W, are computed from equation (4) as

" o=uly, w, culd, w ol W, o=l d, W, uld, N

with the numerical element vectors ¢.. ¢, &, ¥, and 41;,

el =i14V3,0,0,4.1333,0,0)

Gl = MFVI 0,0, +4V3, T2V, 0,00

Ui = 0,944v3, 32v3,0,0,9F4V3, 3£\ (8)

dla=a0, 3, £43,0,0,3, V3

Ul =0, FV3, -1543,0,0, £V3, 1543
where the upper sign of V3 belongs to j = 1, (£, = -V3/31, and the lower to j = 2, (£: =V3/3).

From equation (6) we obtain the clement gradient g, by differentiation with respect to «,

T T T S T S N '
g = P Y [3h CrWal, v b Cr w4 ke e,
ou, I |

+2h ki, b v hé, + 2%0,) - shrfd,] 9

since au,/du, = ¢, Au,/du, = ¢, ctc. Or

2 »e .
g =Y lag, +hdy+c +de, +ew) (10)
0
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with
2 .. ! 1 1. 1 . . 2
a, oW by ~oh ro e+ dh e U, W
ilh

¢ '

1 > . L0 1 L
2, d, 2 et s e

'

Further ditterentiation ot 7, with respect 1o «, produces the clement tangent stiffness matrix

ag. o, S ey Sy o - Ly .
o Yodagu, chidah] g el - dig g oo | 112
ate, o, ;o
with
2 k] 1, ' 1 b} 3 [N AN
a =il r boocuit e, s 120 e o3 ry,
. \ ) \ {13)
o o, d, 2 o, ¢,

Now the clement gradient g and the clement stitfness matox A, e routinely assembled
into the global ¢ and K. the essential boundary conditions are introduced into them; the thrust
p. that appears in equation (1), is added 10 g at the entry that corresponds 10 «i1); and the
nonlincar stittness equation g =0 is iteratively solved for « with the Newton-Raphson
method according to

ITER T K..'_L',. (14

where the suberipts O and 1 refer to the before and after values of o and o

When we are satisfied that the iteratise process in eguation 114 has settled on an equilibnum
confipuration i, we turn to decide it stabuity by computing the cigenvalue of K, i:f they
are all positive the equibibrium contiguriavion is stable, while if some are negative the solution
is unstable.

LATERAL LLOAD

To numerically observe the performance of the diserenization procedure that led to g, in
equation (10) and &, in equations (121, they dire taken to compute the deflection of the
uniformly loaded e, /- constir, clamped tie. wily - w’oby - 0 circular plate with an im-
minvable Goeo i ) edge. Figure | shows the improvement in the accuracy in the central
deflection wi, when £ - 10, with the number of elements Neo Curve ) of Figure 1 refers
to a lincar interpolation of «, and (hy to o quadratic. In both cases w is interpolated cubically.
Fxtrapolation to the limit leads to the conclusion that with a lincar « the relative error in
wi0)is 0-46 Ne 77, while a quadratic « drops the error in wit) to 0-068 Ne '\,

Fable | shows the convergence of the Newton- Raphson method, starting with the displace-
ment vector ¢ =0, when [ =10, Ne =7, and the displacements « and w are interpolated
quadratically and cubically, respectively.

POSTCRITICAL THRUST

For a unit circular, simply-supported plate of zero + the critical rim thrust is conveniently
written® as p_, = /12, where a = 18412 tae” = 3-991 is the smallest root of the Bessel function
quattion J ) =0,

Figure 2 describes the computed behaviour of this plate, bent by the combined action of a
lateral uniformly distributed load ¢ and @ rim thrust p that exceeds p,. When f > 0 the unstable

e it et Y e © P T Nt 7P A V=
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Table I. Convergence of the
central deflection w0)) with the
Newton-Raphson method

Cycles with

1-874962
1-394681
1-182066
1-143467
1-142294
1-142293

o R I S

113
lig
e @ LT 254
. L elpment
I
TR . . . . . Neﬁ

s 3 a4 4w 7R3

Figure 1. Uniformiy loaded of 1 clamped arcular plate wath an immovable cdee Computed central deflection
for an ncreased number of fimte clements Ve

U

Figure 2. Deflection-load curve for a simply-supported aircular plate bent by a lateral force £ and an edge thrust p.
Five guadratic -cubic clement discretization
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solution w -0 for p =p_, is absent and a zero initial guess can be chosen for the Newton—
Raphson solution. The thrust p is then increased stepwise with the last computed configuration
serving as an initial guess for the next iteration. When £ = 0 a non-zero initial guess must be
used but the computational procedure proceeds otherwise as before to produce the typical
bifurcation curve of reference S.

At the bifurcation point p - p,, K " becomes non-computable but since the present pro-
cedure is global (non-incremental) the problem of crossing such a point does not arise here.
One computes the equilibrium configuration of the plate for any loading, regardless of its
history. Extrapolating from p > p,, we find for f = 0 that near p = p.. w(0)=1-91(1-p/p.)'">.
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1. Introduction

The elastica [1, 2] is one of the humblest useful elastic systems that can realistically undergo
very large displacements with small strain and assume multiple stable and unstable equilibrium
configurations under equal loading. Its total potential energy is concise, yet irrational in the
displacements requiring approximate computations for a finite element modeling [3-6].

. We find the elastica a compelling practical example to recount the use of discrete
integration techniques [7] to derive nonlinear finite elements [8]. ﬂ

D L ]

2. Planar elastica

Consider the unit inextensional elastica of fig. 1 that obeys the Bernoulli-Euler law
M=a6', 0'=dé/ds, )
which linearly relates the bending moment M and the curvature 8’, a = IE, E being the

modulus of elasticity and I the cross sectional moment of inertia.
In its bent state 8 = 6(s) the elastica possesses a total potential energy

’ w(0)= [ 4a0”- fy + g2) ds - Py()+ Qx(1) - Mo(Q). @
1
‘!’ Or with f=f', g =3', f(1)=§(1)=0, and since x' = cos 8, y' =sin 8, x(0) = y(0) = 6(0) =0,
A (@) becomes
'4 \
(0)= L [Ba8” + sin 8(f — P) + cos 8(Q - )] ds — Me(1). 3
4

*Ressarch supported by the Office of Naval Research under contract ONR-N00014-76C-036.
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8

Fig. §. Loaded elastica.
! In this paper we shall consider only the simpler case of
1
7(0)= [ o7~ P sin 0+ Q cos 0) s, @) !
0

for which the admissable 0 is continuous and satisfies the fixed end condition 8(0) = 0.
Eq. (3) allows the expression of the total potential energy in terms of y. Indeed, since
y" = 0’ cos 0, eq. (4) may be written as

‘ 7= [ G152+ 0 -y ds- Py, ©
where y € C" and y(0) = y'(0) = 0. R

When the deflection of the elastica is known beforehand to remain moderate an inter-
mediate, simpler, theory is possible based on the approximations

(1 _ yl2)—l =1+ y'z+ yM , (1 - y'2)ll2 =1- %yﬂ_ %yu (6)

that change eq. (5) to

w(y)=1 L [y + y™) - Qy™(1 + lyD)] ds - Py(1). ™

3. Finite elements .

{
Approximate computation of the total potential energy in egs. (4), (5) and (7) with piecewise !

. polynomial interpolations and a discrete Gauss sampling of the energy density function leads |
) A to a rational, efficient and automatic procedure for the generation of high order nonlinear i
finite elements. ]
1

We shall first apply this technique to 7(0) in eq. (4) which we intend to discretize with
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three-nodal-point, quadratic elements. We have reason to believe that a two point Gauss
integration of each element, that exactly integrates 6 is most efficient here. A higher
integration scheme is costlier and contributes but little towards improving the accuracy of the
computed shape. Only raising the interpolation order of # over the element would require a
corresponding increase in the order of the integration scheme.

Interpolation of @ over the element is formally expressed by

0=20.¢. ®8)
where 0; = (0,, 6., 8,) is the element nodal values vector, and where
¢'=[BEE-1.1-£.3E+ 1), —1s£=1 ©)
is the shape functions vector.
Let the typical element be of size h (not 2h) such that ds =3h d¢, 6'= 2h~'0, where

()=d/d¢. Two point Gauss integration of 7(@) for this element produces the approximate
element total potential energy

2
w.=%h 3 4h"203~ Psin 6+ Qcos 6, (10)

i=1

in which the index j=1, 2 refers to the two Gauss points £ = -V3/3 and 0= V33
respectively. The values of 6, and 8, are computed from eq. (8) as

6,=0.6(¢). 6=0.6(). (11)
We prefer the briefer notation ¢; = ¢(&) and ¢, = $(£) and have from eq. (9) that

di=1+V3,41-V3), ¢i=41-V3,4,1+V3),

' =§-2V3-3,4V3,-2V3+3), $:=42V3-3,-4V3,2V3,2V3+3), (12

which we record once and for all.
From =, in eq. (10) we derive the element gradient

2
8‘=g%:='212h"é,¢3,—5h(}’ cos 6 + Q sin 6))¢; (13

and the clement tangent stiffness matrix (the element Hessian)

2 2
k,=%=%’z‘-=22h“$,¢7;—§h(0cos0,—l’3in 0)o, > (14)

I=1

and have here that
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S | 7 -8 1
¢|¢= + ¢ = 6 -8 16 -8|
1 -8 7

| 2+V3 2(1+V3) -1
¢‘¢:=1—8 ],

2(1+V3) 8 21-V3)
-1 21-V3) 2-V3
2-V3 A1-V3) -1
>].

¢z¢5=:—8[2(1—\/§) 8 2(1+V3
-1 20+V3) 2+V3

(15)

An entirely analogous procedure is applied to w(y) in eq. (5), except that now y is
interpolated cubically over the interval 0 < £ <1 that covers an element of size h. Once more
we write y = y.¢ with the element nodal values vector y. = (y,, ¥, y», ¥2) and with the element
shape functions vector

¢ =(1-36+28 £ -28+ £,38-28, £+ ), (16)

from which ¢ and ¢ are computed.

A two point Gauss integration that exactly evaluates the integral of y” appears to be most
efficient here too. These two points are in the interval 0=<¢=<1 at ¢ =43-V3), and
& = §(3+ V3), and with equal weights w, = w, = 3. Consequently . of eq. (5) becomes

2
m =5h 3 5h 91— k) + Q- h )2, 17)
j=1
where
y; = )’:4.’1 ’ ¥ = Y:d’;/
and

#12=(-1,2V3/6,1,7V3/6),  §i,=(F2V3,-17V3 22V3,15V3), (18
where the upper sign of V'3 belongs to j = 1 and the lower to j = 2.
From =, in eq. (17) we have that

g = dm/dy, = 3, aghy + b, (19)
f=1

with

a =5 =R, by =1 tyE0 - k)7

© e—n——
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and
_ 08 _ M. _ & o Ty ..
ke= 5= G0 = 2 a0+ bbbl + b))+ cbid),
(] e j=1

with

a=>0-hr)", b=k (- Ry

¢ = S5 (1— h™2y3) 2+ 2k Ty - h YY)

~ ORI - A7+ I~ Y.

For the intermediate theory of eq. (7) we have in the same way that

2
m =12 h7F(+ 7Y - Ok Y1+ A7),

i=1
then
2 . .
8 = z ad; + b,
=1
with
a =+ R, b= — 0Ty (1+ R 7)) - #Oh
and
2 v e . . . - - I3
k.= 21 adb;+ bj(ddi+ b)) + b,
i
with

a, =31+ k7)), b = h7%yy;.
¢ = $h 353 JOhT'(1 + th %) — 30k y] .
Notice that
12 6 -12 6

P N 1 6 4 -6 2
hZebi=k=h"1_12 -6 12 -6
! 6 2 -6 4

is the element stiffness matrix of the linear beam.

-3.3

yi.

53
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(22)

23)

24

(25)

(26)

27

(28)
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4. Computations

To locate the extremum points of the global total potential energy we routinely assemble all
the element gradients g, into the global g, delete the entries of g that correspond to the fixed
points, add the tip work terms, and set out to solve the nonlinear stiffness equation g = 0.

If we choose the Newton-Raphson method for the iterative solution of g =0, then the
tangent global stiffness matrix K is also assembled from all the element k. and the solution
proceeds with

yi=yo— Ka'go. (29)

starting with some initial guess that determines the particular solution converged upon.

We may decide that to update K~' at each step is too expensive and use instead a fixed K™'
over several steps then update it, reducing thereby the Newton-Raphson method into one of
many linear successive substitution schemes. When and precisely how to do all this is too
bewildering to contemplate now.

When we are satisfied that the iterations have converged to an equilibrium configuration y.
we decide its stability by computing the (lowest) eigenvalues of K(y.). If they are all positive
the total potential energy is minimal at y. and this solution is stable, if, however, some are
negative y. lies on a saddle point of 7(y) and this configuration is unstable.

To observe the actual behavior of the derived elements with respect to the discretization
accuracy and the performance of the Newton—-Raphson method we undertake to compute the
deflection of the elastica given in eq. (5) and egs. (18)-(21), with Q = 0. Table 1 lists the
iterative improvement in the tip deflection y(1) for a Newton-Raphson computation with
P = 1.5, that started with yo(s) = 0. Four cycles produce here a wholly acceptable solution.

When P is increased beyond 1.5 the Newton—~Raphson method suddenly ceases to converge
from a zero initial guess. A closer initial form is needed then to start the iterative procedure,
or one may reach the equilibrium states of the elastica for P > 1.5 with a stepwise increase of
P using the computed deflection under the lower load as an initial guess for the next
Newton-Raphson iteration. One is thus presented with the choice of small load increments
with fewer corrections (incremental method [9, 10]) or large load increments with more
corrections (global method). The solution reached with the incremental procedure depends on
the chosen loading history, while the solution reached with the global method depends on the
initial guess.

Fig. 2 traces the computed tip deflection y(1) of the elastica loaded with p =5, Q = 0, as it is

Table 1

Convergence of the end deflection y(1), computed with the Newton—
Raphson method, for a cantilever beam tip loaded with a force
P = 1.5 and discretized with four cubic elements

Cycles y(1) Cycles y(1) Cycles ¥(1)

1 0.5000000 3 0.4124599 5 0.4109928
2 0.4337216 4 0.4109994 6 0.4109928
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o771
076
Ne y (1)
P=5

075 1 0.7669329
2 0.7183933

074 3 0.7151829
4 0.7143314
5 0.7140374

073
6 0.7139174
7 0.7138622

7.
o2y 8 0.7138340
N 9 0.7138185
o7 ©

{ 2 3 4 5 6 7
Fig. 2. Convergence of tip deflection y(1) with number, Ne, of cubic C" finite elements.

improved in accuracy with the number of finite elements Ne used in the discretization.
Extrapolution to the limit with the data in fig. 2 discloses that |errorin y(1)] = 0.1 Ne™>",
When the same elastica problem is solved with the element g. and k. of egs. (13) and (14)
we get for Ne = 3, 4, 5, 6, 7 the corresponding tip angles 8 = 1.2149992, 1.2152510, 1.2153196,
1.2153444, 1.2153549; and interpolation to the limit has it that the | error in 8(1)| = 0.03Ne™.

9
el 15745,
———226 55
545
)
35

3

Fig. 3. Stable equilibrium states of the elastica.
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Fig. 4. Stable equilibrium states of the elastica.

A seven element discretization of the elastica with g, and k. of eqs. (13) and (14) is used to
compute the stable and unstable equilibrium configurations shown in figs. 3, 4 and 5. Fig. 6
traces the variation of A ¥, the lowest eigenvalue of the global stiffness matrix K, with the force
P for the equilibrium configurations of figs. 3, 4, and 5. The positive branches of fig. 6
correspond to stable equilibrium states, while the negative branch corresponds to unstable
states.

Fig. 5. Unstable equilibrium states of the elastica.
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091
o8
071
061
051
041

Af

Fig. 6. Lowest eigenvalue A { of the global stiffness matrix K for the elastica in: (a) fig. 3, (b) fig. 4, 6, and (c) fig. S.

5. Load c = stifiness correction

Circumstances may arise in which the nonlinearity is sufficiently small to warrant a simpler
successive substitution scheme in the form of load or matrix correction for the solution of the
nonlinear stiffness equation instead of the costlier Newton-Raphson scheme with its involved,
ever reconstructed, tangent stiffness matrix.

The intermediate theory of eq. (7) with Q = 0 illustrates this. Egs. (24), (25) and (28) allow
us to write the element stiffness equation

2
ky. = ~3h=> 3 y5i(r b + Vibi) (30)
j=1

to be assembled into the global stifiness equation, Ky = f(y), K being the linear, y free, global
stiffness matrix, and f(y) the displacement dependent load vector. Successive substitutions is
attempted for the solution of Ky = f(y) in the form of a load correction procedure

y1= K'f(yo). (31)

where K™' need be formed only once.

But in its original form (31) successive substitutions performs unsatisfactorily. To under-
stand why suppose that we start the corrections with y, = 0 and compute y, which is actuaily the
solution to the completely linearized problem. If the elastic system has the property that it
becomes stiffer with larger displacements then y, is much too large and consequently f(y,) is
drastically reduced, to produce in the next iteration a too small y,. Repeated iterations
produces then a sequence of computed yy, y;, ... that wildly oscillate about the true solution.
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We propose to dampen these oscillations with the averaging that replaces y, by (y. + yo)/2, or
change eq. (31) to

yi=5%yo+ K'fo). (32)
Fig. 7 shows the progress of the computed tip deflection Y (1) in a cantilever bent by a tip

force P =2, with successive load corrections, without (a) and with (b) averaging. Without
averaging load correction is useless.

o7

yll)

06

05

04

lprz
Nes§

_cycles
O3—235 3 5 € 7 & 8 0

Fig. 7. Load correction solution of the stiffener equation; (a) without averaging, and (b) with averaging.

6. Curved elastica

When the elastica is initially curved to the form 8, = 8,(s) Bernoulli-Euler’s law of eq. (1)
becomes M = a(0 — 6,), and as a result 7(0) of eq. (4) changes into

1
w(8) = I Ba(6’' - 05 — P sin 8 + Q cos 6] ds, (33)
0
or after integration by parts

m(0) = L. (Ga0” + 030 ~ P sin 6 + Q cos 0) ds — a05(1)6(1) . (34)

For the circular arch, in which 83 = 0, () is reduced to
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Fig. 8. Opening of a circular C-spring.

original shape
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i Fig. 9. Bending of a circular ring.

' w(0) = Li (Ga6™ — P sin 8 + Q cos 8) ds — a8i(1)6(1) 35)

as for the elastica with an end moment.

We use eq. (35), with a = 1 to compute the bending of a circular ring by two equal and
opposite forces P, and the opening of a circular C-spring by the forces Q. Figs. 8 and 9 show
the equilibrium states of the ring bent under a sequence of increasing forces. These figures
compare well with the results obtained by other means [11-14].
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7. Spatial elastica

To describe the position and twist of the neutral line of the elastica in space [1, 2] we need
three parameters (angles) 6, ¢, . and have that

x'=sin @ cos ¥, y' =sin @sin ¢, z'=cos @, (36)

where 6 = 0 corresponds to the shape of the free elastica along the z-axis.
Bernoulli-Euler’s law becomes here

Mi=ax,. M:=8x. T=nr1, (37)
where the curvatures «,. x> and the twist 7 are given in terms of 8, ¢. § as

kK\=0'sing—¢'sinfcosg,
K2=0'cos¢p+¢'sinfsing. T=¢ + ' cos o (38)

and the total potential energy of the elastica becomes
1
(0. b, ¥) = %I (axi+ Bri+ yri)ds — Px(1)- Qy(1)- Rz(1). (39)
0

where P, Q and R are end forces in the x-, y- and z-directions, respectively.
Finite element models for the space elastica are derived from (6. ¢, ¥) as before.
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Abstract—Approximate numerical integration of the clement total potential energy with polynomial interpolation of
the displacements creates high order nonlinear, extensible, cable finite clements. Successful computations of static
and dynamic large displacement cable problems are casvied out with the clement.

INTRODUCTION

Geuss integration of the clement total potential energy
routinely generates high order nonlinear extensible cable
fimite elements for any energy density function with no
aced for simplifications(1). Assembly of the element
matrices and the Newton-lhphson solution of the global
sonlinear stiffness equation follows the linear finite ele-

ment procedure.

High order elements are more efficient in static prob-
lems aad indispensible in motion[2] problems. Physical
&aunumwnhrodhnhm[!—‘]mbeexmedto
Mom well only in equilibrium problems of cables with

low curvature.

For cable dysamic mbhms with multidirectional ac-
celerations it is computationally convenient{7] to assume
independent x and y displacements that may cause
extension. Near inextensibility is achieved with a high
elastic constant.

Large axial stiffness gives rise to strong oscillations in
the computed strain within esch element. But, as in the

clements [8], also here the strain and ten-
sion computed at the Gauss samplifg points are accurate.

__TETIRED PALLOON

y P

&

Fig. 1. Eng lifted cable.

Integration of eqns (1) yields, with the boundary con-
ditions of eqn (2)

To fix ideas and make comparisons we shall first

F computionally solve the static problem of a balloon lifted

8 the end of a long inextensional ideal cable 83 in Fig. 1.
and wind drag provide the end forces P and Q
:hmu-mwmmwm

Byuilibrium of the unit length cabie is expressed by
Loimn-o

é <€) 1))
GO pg=0 .

" Whare p denotes the mass per wait length, and where

'-m)hmmmumuuua&
%s bowndary conditions prevail

twaf=MNQ
y=r+Q. @

mnuuadmmmm

p’=P+la(1-2)+QF Q)

and
ol Ci-9+0 @
where a = pg. Inextensibility relates x and y to # through
%-eound%f-siﬂ . )

and consequently, afier another integration we have that

e[ o1V -]

To prepere for a finite clement mode! we nsed the total
energy

oz y)=-a fxmhm-am ®

s e g " A O

W
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of the inextensible cable, which with &(xy)=xds + sdx
and with eqn (5) can be written in terms of # only:

'(‘)'lf(l-l)cosﬂls-f(Psin0+Qml)dx.

An inextensional cable element, with ¢ nodal values
only, can be readily derived from w(#) in eqn (9).
However, with an eye on dynamic problems and for
greater genenality we prefer to allow axial streiching and
the corresponding additional elastic energy.
In terms of x and y the tensile strain is
e=(x"+y%)'2-1 0)

where () = d/ds, and for Hook material the extra term
w(xy -%cfc’d: Qan

is added to the total potential energy in eqn (8). Addition
of the elastic energy in eqn (11) permits an axial elou-
gation of about 1/c.

x=noad y=u"¢ 12

where the nodal values vector
. 87 = (x4, 31, 32, 92 55 1) )
: where the Lagrange interpolation (shape) functions

o =JIHE-DOAI-O0HE+ DO (10

=50, 86-.020-O0.86+ 1) 09

for-1s§<1.

With f-:ﬁﬁ. dsehdt X=h7'2, and y=h'y,
where ()= d/d¢ the total potential energy of » typical
element becomes

wo-ah[ sage}e [ e e o-ne
16

A two point Gauss integration of w, in eqn (16) requires
the evalustion i

with j= 12 referring to the two Gauss points §, = —\/3p

and & =+/3/3. The values of x, y, i, and ¥ at the
points, namely %, y, %; and J, needed in eqn (17) g
computed from eqns (11)(13) as z,= u,7g), n=u'y
4= 87§, and j; = u,"¥, where gy = () and §; = ¥(¢)
efc. Actually

nae 02v3,04013v2,0

ham 3 0.1£3,0,4013V))
ha=jGII-3.0203,052v342,0)
$a=d0.32v3-3,0,20v3,0.52v3+

in which the upper sign of \/3 belongs to j=1 and the
Jowerto j=2.

The clement gradient g, and the clement: tangey
stiffness matrix &, are derived from the element toty)
potential energy =, in eqn (17) through repeated
differentiation with respect to the element nodal valye;
vector a,: ¥

4

Wt A WM g oS

Weaay

et

s0 that

:.-a‘g-mca-s;"'):.
where

&= x7+y? and 3= Xio}+ Y,
and

k= ch }; (157" N e + $¥7) - 5772

COMPUTATIONS AND COMPARIIONS

{
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Or numerically integrated ¢ here
w=- ’iEGn’Hn)- ) -.--.hﬁ.-%r’ll"u
Consequently an additional element gradient and ele- b3 oM 8) )
ment stiffness matrix
' for a time interval +. .
&=- ’52(,,'“)* (26) Ahmpedelemntmsmmmfwtbuownhg )
! arrangement in eqn (13) :
e . :
=Yg 1, 1.4.4,1,1) on
L=-p'h S oW @ 1
- "mﬁ"&’.ﬁ'ﬁ?'w‘e"m compute the free fall of -
need be taken into account. chmotmnallyﬁxedhelweenmhommlpomn: y
hnll:ail‘nm s M‘;;s:'m&omaﬂﬁ)::%gﬁ then released at one end. At rest the shpeonl\eh“ 3
:n;zsuz.' im1.0,3,....20; discretization being dope - s parsmetrically given by
seven clements.
s "'[\/[“(zr) ]- J[n )a- =2 |
With # denoting the cable’s global vector of sodal @ ;
unknowns its equation of motion is written as and

)+ Mi=0 @)

o V6]

A = 0-20)+ [|+ )(l 2:)7] o

30 that

«@)-EV6)]-]
xl)-z-fh(z—‘i)“j[n(#)']). oo_,

Our particular case is for a/2P)=1), or xum-m,\

.8
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FINITE ELEMENT COMPUTATION OF LARGE
RUBBER MEMBRANE DEFORMATIONS

ISAAC FRIEDT
Boston University, Department of Mathematics, Boston, Massachusetts, U.S.A.

INTRODUCTION

The stretched and inflated rubber membrane problem'? abounds in realistic examples of
elastic systems that may undergo extremely large deformations far beyond anything a linear
theory can handle. Geometric and material nonlinearities sufficiently complicate the situation
for the analytic answer to its equilibrium question to become impossible even for membranes
of the simplest geometry.

Rubber is conveniently charactenzed by an energy densxty function and it comes natural
to apply variational methods,>* including finite elements,”'° to the approximate computation
of its deformation.

Piecewise polynomial approximation of the displacements, coupled with an element-by-
element discrete integration of the total potential energy, promises to be the most general
and ecfficient technique for the solution of the rubber membrane problem. Being a finite
element method this solution technique is highly programmable and includes accuracy and
efficiency controls through high order elements and a finer mesh.

In this paper we derive in detail the element gradient and element tangent stiffness matrix
for the axisymmetric, Mooney, rubber membrane, including a ‘quadratic-quadratic interpola-
tion of the displacements and a two-point Gauss integration of the element total potential
énergy. Such a discretization procedure is, evidently, indifferent to the complexity of the
energy density function and may be extensively applied to other' 13 than Mooney materials.

We employ the quadratic element to compute the inflated and stretched shapes of the disc,
the torus, and the tube, for which other comparative computational and experimental results
are plentiful.'*** These numerical examples are made to check the correctness of the formula-
tion, to exhibit the versatility of the finite element technique, and to study the accuracy of
the element. The convergence of the Newton-Raphson method near a critical point is
scrutinized.

AXISYMMETRIC MEMBRANE
With reference to Figure 1, let the generating curve of the undeformed membrane be described
in the (r, z) plane through 7 = r(s) and z = z(s), where s denotes arc length. Under the action
of applied forces and prescribed displacements the point (s, z) moves 1o the deformod location
(x, ). An arc element, originally ds is stretched thereby to ds*, and the membrane thickness
¢ shrinks to ¢*. .

)
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Figure 1. Undeformed and deformed element of arc on the generating curve of an axisymmetrical membrane

The energy density function of the rubber membrane is ultimately expressed in terms of
the three principal stretch ratios

ds* 2mx t*
M—E, 255 Aa—T (1)
and if the deformation is volume preserving
AA2A3=1 (2)
Since ds* = (dx> +dy?)"'?, equations (1) and (2) become
(o2 o\1/2 _x -1
A=(x""+y"™)", Az o A3 W 3)

where ( ) =d/dx.
Here we follow the common, rather realistic, assumption of an incompressible Mooney
membrane, inflated under the pressure p, for which the total potential energy is of the form

1 1 {
wix,y)= Zwut{ L [(I,—3)+a(11—3)]rds+5 ;,P_t L xzy"ds] . “)

where 4 and o are material constants (when a =0 the material is modernistically named
neo-Hookean), and where I, and I, are the strain in variants

Li=A +A3+A3
L=ARi+aai+a0d

Henceforth we shall replace, for typographical brevity, p/ut by p, and we shail take 2wur=1.

}A3=1/A1A2 (5)

FINITE ELEMENTS

A typical three-nodal-point element is shown im Figure 1. Inside each such element x and y
are interpolated quadratically by

x=u,b, y=ul¥ ‘ ©)
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where the element nodal values vector ) = (x3, y1, X2, ¥2, X3, y3), and where the shape function
vectors ¢ and ¢ are here

" =[3¢E-1),0,1-£,0,3¢(¢+1),0] -
T =[0,4£(£-1),0,1-¢£%0,4£(6 + 1))

inwhich ~1s¢<1,

From s = s+ h¢ it follows that ds =hA d¢, or x'=h"'%, y'=h"'y, where (') =d/d¢. Two-
point Gauss integration over each element of the approximate = (x, y) is sufficient to remove
from the element all spurious mechanisms and artificial instabilities while assuring high
computational efficiency. In the interval —1 < £=1 the two Gauss points are at §; = -J3)/3
and ¢&; = V(3)/3, with the equal weights wy = w;=1.

The element total potential energy . is expressed in terms of seven element integrals

=.,|+.’2+]3+d(.’4+.’5+.’5)+%p.’7 (8)
numerically integrated as

1 2
J,=I Afrds=h_lj‘ #+y)rde=n"" .Zl ri(E; +y7)
e - =

1
Jz=IA§rds=hI rix?de= hZ:r,"Jc,2
e -1

i=1

1 2
J,=I A;’A;’rds=h’I PEHY) Il de= R T rix P D)
e -1 i=1

1 2
1 =j AAdrds=ht j A=k 3 a4 ©)

i 2
JS=I A{zrds=haj r(i2+9) 7 'de=h® T Gt +yH7!
(3 -1 =1
1
' ]6=IA§’rds=hI x2Pde=h z rix;?

.
J,=I 'x’y’dssl xlydé= Z xry?

where the subscript j =1, 2 refers to the two Gauss points ¢, = —J (3)/3 and & = V(3)/3. Also,
in equation (9) 7; = r(s)) and

X=uedy  Vi=ulty . E=lsdy | y=uid (10)
after setting ¢, = ¢(£,). Fionp equation (7) we gét the _i\uti_lcvr'iq'lzvector‘é '

$12=41£4(3),0,4,0,1%(3),0)

é1.2=4(F2V(3)-3,0, £4V(3),0, ¥2V(3)+3,0) (11

¥12= X0, ¥2V(3)- 3,0, £4V(3), 0, F2V(3) + 3)

thﬁdeB)mtoGwapomtlmdthelmrtimo(\/(:i)bdonato
Gaus point 2.
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Differentiation of #,, given by equations (8) and (9), with respect to u, produces the element
gradient
g =:—Zf=ii a;; + byl + ;9 (12)
with
a;=2rx;(1=-AifA3 )1 +ar})
by =2ryi(1=AT A1 +ard) +3px; (13)
=2hA2(1-A37A3 )1 +arl) + hpxyy)
Further differentiation of g, with respect to u, produces the element tangent stiffness matrix

g, 8* Te _

2
FIRiPw B L aid;b; +buid] +cidid]
Ue ou u, j=1

+di(tib] + b7 )+ el + ] )+ [T +dib]) (14)

k.=

where

= 2h_'r,~(l —YL;’—A%X—IZ)(I +aA3))
b; =2h“r,-(1 —%%f—f)(l +aA3)
¢j=2hr; (143277231 )(1 + @A) + hpy)
d;=4xAy(a +A1/A3Y)
e =4yjAz(a+AT Az )+ px,
fi=8h'rxlyAifAz2 (1 +ar})

(15)

The element gradient g, and the element tangent stiffness matrix k, are lmen combmauons
of the numencal vectors ®s ¢ and ¢ and the numerical matrices &6/, ¥,¥,, 4,0/, &, +
&id1, by +uid; and du) +d,é;. To compute the displacement dependent coefficients
a; b,, ¢, d;, ¢, f; of these combinations, u, is picked out from the giobal displacement vector u
and is introduced into equation (10) to yield, again with the aid of the numerical vectors ¢,
é andw,.thevaluesofx,, y,,x, and y,.'l'huevalnesmmedtooomputethemtdnmos
A”-—x, +y? and A%, =x}/r}, where x} =h"'%; and y; = h "'y, with which the coefficients
in equations (13) and (15) are finally computed.

Once g, and k, are formed the finite element assembly procedure follows for the nonlinear
case precisely as in the linear: an initial global displacement u, is made, all g, and k., are
computed for it and routinely assembied into the giobal g and K, the essential boundary
conditions are introduced into g and K, and u, is improved into u, with the Newton-Raphson
method

uy = uo— K~ (uo)g(se0) (16)

until convergence t0 Uw.
The lower eigenvalue spectrum. of K (ue) indicates the stability of the computed solution.
All positive eigenvalues mean that u,, is at a minimum point of the total potential energy and
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is therefore stable. Some negative eigenvalues mean a saddle point of #(x, y) and unstable
equilibrium.

COMPUTATIONS

Finite elements prove themselves best through hard work. We put our element to the work
of computing the deformations of a disc, a torus and a tube.

First the disc. It is originally described by r(s)=s, z2(s)=0,0=<s =<1, its edge is stretched
to x =11, y =(0), and a pressure p is applied to its face. The purpose of this initial stretching
is to endow the membrane with a linear solution and consequently an easier application of
the Newton—-Raphson method with a zero initial guess.

At the outset we assess the accuracy that our element can provide in order for the future
computations to be correct but not overly expensive. We compute the polar rise y(0) of the
disc (« =0-1) caused by a pressure p = 5. The disc is substantially deformed under this value
of p, and for a uniform mesh of Ne finite elements we have that corresponding to Ne =
1,2,3,4,10, y(0)=1-2546, 1-4278, 1-4299, 1-4304, 1:4304. Flve finite elements assure
reasonable accuracy in the displacements,

Our next concern is with the performance of the Newton-Raphson method. To form an
idea as to how this method works we compute y(0) that results from p =5, with an initial
zero guess and a ten-element discretization. Newton-Raphson’s method suwesslvely computes
y(0)=2-31875, 1-44782, 1-44302, 1-43059, 1:43040, 1-43040; and four cycles are sufficient
for a six-digit accuracy. These computations are carried out in a single precision with some
six significant digits. Double precision could have saved us one cycle.

Close to a critical point where K is singular the Newton-Raphson method slows down, as
we shall see soon.

Figure 2 shows the inflated disc for a pressure that increases at a step of one between p =1
and p = 7. Corresponding to these pressures are the polar stretch ratios Ao =1-144, 1-233,

5{Y p=7
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Loss of stability in a stretched and inflated right tube (a =0) through bulging is shown in
Figure 4. Simulation of the bulging is achieved by pulling out the central circumference of
the tube and holding it fixed. A pressure is then introduced into the tube that is left to inflate
until the slope at the central grip point becomes parallel to the y-axis.
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FINITE ELEMENT COMPUTATION OF
LARCE FELASTIC DEFORMATIONS

I'saac bFried

1. INTRODUCTION

Approxiriate Gauss quadrature of the total potential encrwavil |
is showing great promise to become a universal means for the set
- up wf nontinear finite vlements. s oin the Yinear cane also
here all the numerically intevrated tinite celuaents are espres-
sed in terms of fow nunerical vecters and matrices and in oo forn
convenient for standard assembly and use in the Sewtop=Raphson
met hod.,

Detailed derivation and actual computation is included in
this paper tor the elerent cradient and stiffness mativice. of
the Targely deformed beam, ring, circular plate and rubber moem-
brane,

2. BEAI ALD RING

ur starting point for the unit elastica 'Sty shown in iy, 1,
is jts voral potential cnerps
1
. ! vt

ni ) L e N I L N P A D) ()

e e e v — e

for which the admissible is continous and satistics the tixed
end condition (M=0,

Initial curvatare in the 1orm = ) alters the total po-
tent ial enceryy of (2.1) into
c 1 1 )
n() = IsE1C TSNy L pPain 4+ 0 cos ids 2.2)

0 .

. ‘_. .

where the end moment M {s assumed abuent,  After integration by
parts

| oduced
g:':: avu:ilo e
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N

F1G. L. Tip loaded elastica.

1 .
" 1 v 2 .
n (i) = S S KR A OF R
) R 2
0 . , N
- Psin b 0 cos Mdu=RP01) 01 (K]
ond for the cirenlar ring ™ = 0 oo that
SR Y !
m() = ’ (SEU Pgin: # 0 cos )ds = ET7 (1) (1Y (2.4)
"0
1
as for the straight clastica with an end moment M=EI- (1),

Throupgh the nse ot = cos and v' osin s we mayv write the 1o-

tal potential energy in terms of v oas

O | " 1
n(y) | 1éu1 RAN FoCl-v" Y s - pell) (009)
oo [

where the admissible v ois ¢ and satisfies the fixed end con-

ditions y(0) y'(0) = 0,

We propose a finite clement discretization ot n() in (2.1)
with a quadratic interpotation of over cach element and a two
point Causs quadrature of the total potential cnerev.  This min-
imal intcgration scheme assurces the numerical stability of the
finite element method and is sutficiently accurate,  The resul-
ting quadratic element is precise, of ficient and easily program-
mable,

Interpolation of ' oyer the threc-nodal-point ¢lement is com-
i

pactly cxpressed by gl where ag “" Ty i the ole-
ment nodal vatoaes veetor, and '
S 2. . .
1 SR b I TR S N -1 (".6)
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the shape functions vector,

Let the tvpical element be of 4

ize h such that ds = %hd’ and

“ra2hThe D where () = d/d. Two Gauss point integrat ion of

) jr (2.1) over the oth element
2

= 1. N -1 2 » H

To 5“ /) Ale . = P osin®
5=l

in which the index j=1,2 refers to
and VTJX/I. The vulvcs ol and

gompuf?d from “i = uo'ii and “i =

;i - i(’i), md from (?.h) we have

;iloJx, 4, 14411
Lo, }‘42J3-3, + 493, 4003
where the upper sipgn ot /3 belong

From 7. in (2.7) we derive the
\

results in the approximation

+0 vos“i 2.7

the Gauss points  / ==V3/3
K1 the jth Gauss point are
e b where Qi=j(ﬂi) and

t hat

(2.8)
3

s to j=1 and the lower to j=2.

clement pradicent vector

e T ST Y;‘ ?h_".f. - lh (Peos ., + Osin’ )¢, (2.9)
e e < i i 3T
j=1
and the element stiffness matrix
) 2 : 1.
b = s ST
Ty me X 11
«
lh(n cas =P sin‘,)&,!} 2.10)
N )] A |
where AT 2693 2(14Y3) -1
. ..y )
[ AR - - - ot 9 g ) -\/
Gttty T R 16 -8 REEEE 18 201+73) 8 2(1-Y3)
1 -8 7] -1 2(1-V3) 2-3 |*
203 2(1-d )
Lo |0 s 20y (2.11)
-1 2014/3) 240

e o s s

v
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Aftor so and Vooare projared the tinite element asvembly and
rolut jon procedure tollow. tor the nonlinear case pree il aa
tor the Tincar: An initial coce o ay i made tor the olabal
! slopes vector u, all oe and Fooare compuated tron it and routine-
1y ascenbled into the ¢lobad o and ¥, the eosential bonndare
condit ions and boundary work Cere are incloded incoand broand
U, s imprn\'ﬁ-d into np with the Newton-Raphon method
o= oa, - K.. A Ut converponve,
g - . . . Ve . . . N
To divervtize 705 in (P00 woe propose o piceewise enhic g €0
interpolation o v with two oo peint gnadrature of the ole-
ment total potential enerpy.
‘ how v ue oo, where g @ VTt anid
: ? 3 L } y 3 2.3
{ L T e e T R 0 1T (2
and the twe Goauasn points oare -is (o 3y 0 and S
. with canal weivhits wo = w) S . Conovquent othe T appresinat e
clement total potential envres 7 (200) beoares .
N !
H 1 .‘ | 4 . o
{ LT TRR AT AN § PR TRNITE I (2.1
b . R i :
!
¢ i1
; . . . .
: where vy, = u’ i, y, =ul | and
i ] 1 (SO |
b
[ .
, !l L VRV IV I VR YA N
i hl s
] N N N N RS
-
From 7, in (LB we pet
2
e A " . .
Be B = y a... 4 b (.1
R - e PATER B !
|
with
3. =2:2.-1 1, -9 . -2.2.~-
i a = N a - wESHT b = TN E a-nTR )T 2
j j | ] [ i
and ) 2
‘s e mg o ot
. Ky = = = mmh = [
¢ e 'J_uz it ) .
L . .
: 4o b (2.17)
i
{
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with
R PR 2
a, = Jh T-h e l . b, -
J = i ]
J —20 -
R T § B T B S (2.18)
! - o R
1
- O B -
—,'.nh '?(I—Ix VY M4 h
- )

Ta observe the hebavior of the diceretization metivd in its
computat ional realization we undertake the caleulation ot the
hent clastica using (2.1) with 0, fer a tip torce I = 1.5
the Newton-Raphson method successively computes a tip detlection
y(1)=0.5000000, 0,4337216, 04124599, 04100994 0 0, 4100028

0,41004928 having started with o zero initial say,

When o 0 is dncreased above 1,5 the Sewton-Raphson method sud-
denly fails to converye trom a zero initial yuess. A better
starting shape is needed then for the iterative solution, or
the deflection under higher loads can be reached stepwise with
the computed solution at the end of the previous step scerviag
as an initial guess for the next iteration with the higher load.
One is thus confronted with the choice ot small load increment s
with fewer itcerative corrections-an incremental method, or
larpge load increments with more corrections-a plobal method.

In the presence ol maltiple solutions to the stiftness equat ion
p(n)=0, the load history of the incremental method is what de-
termines which one ol them will be discovered, while the solu-
tivn reached with the global method is determined by the ini-
tial gucess ug,.

To disclose the diserctizat jon accuracy ot the clement  in
(2,19)-€(2,18) o varying number, Ne, of clements are eaploved in
the computation of cantilever deflected by P = 5, For
Ne = 1,2,3,...,9 we, respectively, compute y(1) = 0.7669329,
0.71839%%, 0.7143314, 0.7140%74, 0.7139174, 0.7138622, 0.7138340,
0.7138185 and «xtrupu]utjn9 to the limit provides the estimate
‘error in y(1), = 0.INe™ 3" 5.

Solving the same cantilever problem with the element piven in
(2.9) and (2,10) we get for Ne = 3,4,9,6,7 the corresponding tip
slopes (1) = 1,2149992, 1.2152510, 1.2153196, 1.2153444,
1.2153549; and with extrapolatjon go the limit we reach the es-
timate lerror in (1) | = 0.03Ne™".

A seven clement discretization of the elastica with the ele-
ment data in (2.9) and (2.10) computes the stable and unstable
equilibrium confipurations 14§ shown in Figs. 2,3 and 4. Figure

L k£ e it
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2 shows the shapes the cantilever assumes whenthe tipistorced by

P 0.5,1.0,1.5,...,9.0, All vigenvalues of the global stif(-
ness matrix are positive here and the equilibrium cont ipura-
tions shown in Fig. 2 are concluded to be stable. Figure 3 de-
picts other possible stable equilibrium states for P = 10,5,
12.0,...24.0. The elastica equilibrium configurations shown in
Fig. 4 for a tip load P = 14,15,...,2% are unstable: the Towest
cigenvalue of K being negat ive,

FIG. 2. Stable cquilibrium states of elastica,

1. Other stable equil ibrinm states of clastica.
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x
,
! .
: . FIG, 4. tnstable equilibrium states of elastica.
£
¥
iR Figures 5 and 6 show a similar computation for the circular
¥ - N - - . . .
3 ring. Figure 5 follows the opening of a C-spring [ 9] with a
] force Q4 = 1,2,...,10; whilte Fip. 6 follows the compression of a
circular ring 15! squeezed by cqual and opposite torces P
y
- " (4
.
] 3
. | .
. . IF'1G. %« Forcing of a circular C-spring.
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!
¢
; x
FIG. 6. Squeezing of a circular ring.
3. CIRCULAR PLATE
A unit circular plate ¢ 0) is hiehly hent DU ander the ac-
tion of an axisymmetrically distributed lateral load 1 and a
uniform edge compression p.  The total potential enerpy of this
plate reads
oo 2 2
2 '
r(u,w) = = ' f ,l(w""-l- >, ) + Y, lrdr +
2. 12 re r-
() .
! ) 3.1
1 Vo )
5 ' (u'+:—,w' Yordr - ' twrdr + pu(l)
0 ()
: where u and w denote the inplane and lateral displacements, res-
/ pectively, and where ( )' = d/dr,

2 We propose to discretize #(u,w) with a ¢! pivcewise cubic in-
. 4 terpolation of w, a piccewise quadratic interpolation of u, and
R a two Gauss point intepration of the total potential encrpv over

cach element, A Vincar interpolation scheme for w i noticed to
. roduce a decidedly inferior element,
. [

E 4 '

. Typically an element extends between r=r, and re=r,, has °
',i three nodal peints and s ansociated with l’u- olrnu-n[‘ noadal va-~
'] '. Tues vector [P (ul.w'.i./ (LA TR NSRS AN Tt erpolat v of n

and woinside the eloment ‘r‘. Turm;:lf-s written as u u ) and

w - u:_‘( ) with
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5's 34.6G-1),0,0,1-:2, 26.(41),0,0)
: (3.2)
.
v'= Ho,2-3047% 102003 0,0, 243723 L Be )
where -1 ; 1.

A two point Causs integration produces from (3.1) the approx-
imate

2
. 2 <1 -1.2 -1 2
T, = I—h 5r,ﬁf + lr, lh ‘QT + %hr. 1u.
oy 2 1 12 i i
] (3.3)
=3 (ha .2)2 Lo
+h u, + w,) r, - zhr f w,
j B R I S
for which the values of u,,w’,ﬁ.,ﬁ;j and 1'«',] are computed from
T D B 1 N
u, = uLl_\'_’:,, w, = ul.., U, = u ., w, =u . ,and w, =u . , with
J ) J B J i J L | J ¢ ]
the aid of the numerical vectors
S a Yawsso, 000 0003,0,0
._|':) K LI L B ) PRLEY
4] 2 = ;-’(-f'_'J'.i-'$,(l,U,i»’ﬂ"&,ﬁ»z~"'5+}.().0)
;,;‘2 = :_8(0,945/,\/3,3+J’s,n,u,9+W3,-3t\/3) (3.4)
‘1 ! . . i
'l,z = 7’((),-59:’:‘/5:”9()'5""/‘)
i 1 - - .
I :.,(0,4-\/"4,-1m,u,n,w‘,lnn
From (3.7) we produce
)
= e L N a,, . +h.. +c . +d ; +e, ! (3.5)
Be ™ Mg PR 1% R B R B Mt BN A A
il
with
2 -3 . 1, -1 -1 -3 . .2
a, = =zh r.w b, = -h r, w, 4+ 4h ‘rw (Wi, +w)
i iyt 36 S | J 3] i
(3.6)
1 -2 W2 1 -1
com =zhr f = 2h Te (WD), ¢, = shr ",
“j I R [ 1|) 200
and
b
B
e I RSP PISE, RERL IR -l e o8 s ¥ o il RPN ¢

K

P
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; ?
p) 2 s .o . . e, e e
ge démg, N t [ 1 1
ke = =2 =-—F——= > a ¥ b 4+b y d 4c(b L. +p.$.)
i € By, 92u, e e S e e B
] (3.7)
Wb o' +eyo
J=i= it
with
- 1, -1 -1 - -2 .
: a. =272 b= Nt e @ e e,
i3 i o6 ] i3 I3 (3.8
: c, = Ah—zr w, ,d, =2hr , e, = lhr,_l
J ] 2]

To assess the performance of our clement we use it to com-
pute the deflection of the uniformly loaded (i.c. f=const.),
clamped (i.c. w(l)=w'(1)=0) plate with an immovable (i.c. u(l)
=0) edge. For f = 10 we compute, with Ne=2,3,...,7, a central
. deflection w(0)=1.138993,1.140754, 1.141714, 1.142070, 1.142220,

1.142293; meaning a relative error in w(0) equal to 0.068Ne~3.3,
A Newton-Raphson solution of the nonlinear stiffness equation
for f = 10 and Ne = 7 successively comes up with w(0)=1.874962,
1.394681, 1.182066, 1.143467, 1,142294, 1.142293, having star-
ted with a zero deflection.

The critical thrust for the plate is given by Pcr='2/12 where
u2=3.39 is the first root of Bessel's function equation J,(«)=0,
Figure 7 traces the computed central deflection of a simply sup-
- ported plate bent under the combined action 13,10] of a Iateral
load f and an edge thrust p that exceeds pep. When £ -0 the
unstable trivial solution w = 0 for p -per is absent and a zero
initial deflection can be chosen for the Newton-Raphson method.
When f = 0 the Newton-Raphson method must start with a nonzero
initial gucss but procecds otherwise as betore to produce the
typical biforcation curve in Fiyg. 7.

. Close to a critical point at which K*1 is nun computable, the
O condition of K declines and the Newton-Raphson method slows down.
1 It is our experience, though, that by using higher precision
computat fons and more corrective iterations one can get as close
as it is only numerically meaningful to such a point. ‘

a 4. RUBBER MEMBRANE

' Let the generating curve of the undeformed axisymmetric mem-
" ' . brance be given in the (r,z) plane throuph r=r(s) and z=z(s), s
. being the arc length, Under the action of applied forces and

T preseribed displacements the point (r,z) moves to the deformed
'& } locat fon {(x,y). An arc clement ds fs stretehed thereby to ds

AP 2w @
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[{/p‘,

FIG. 7. Face and edge forced circular plate.

and the thickness t of the membrane is reduced to t,

The cenerpgy density function of the membrane is ultimately ex-
pressed in terms of the three principal streteh ratios
s 3 2nx ; t
8

Y T E o g7 .0

and if the deformation is incompressible M 2 Y = 1. With
ds = (dx?+dv?)": the stretch ratios become
'2)

sy , ) T o (4.2)

where ( )' = d/ds.

Assuming a membrane made of Mooney material its total poten-
tial enerpy acquires the form

.5 ‘g

n(x,y) = 2mut } i(l‘—"i)#-:(],,—”%) lrds+l’ l‘{) ’ xzy'ds; (4.7%)
0 - oo 0

where pois the pressure, b and « material constants, and where
l' and 1, are the strain invariants

y 22
= "4 S a
W= 9 ;
L L2222, 2 (4.4)
2 TN Y Y

with ).’ = 1/ X, From here on we replace p/it by p oand assume
that 270 = )

12
.
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We propose to discretize s0x,v) with a guadrat ic=quadrat ic
interpolation of x and » over the clerent and a two Causs point
quadrature of the element total potential enersr.  luside each

element x = yxl_: and v = v where uooT .-;1.‘.'].:.~:‘.".,,:-:3,‘."" and
1. 2 1
L G D IR E L L A O R
-1 1 (4.9)
1.,. .2 1
= {”:_-,'( =1),0,1- ‘“‘f ( +1):
We shall need the Gauss point values x, = u [ . v, ~u
. . . . i O R e
x, =u . and ¥v. = u .., computed from u, and
J e ! | ¢
I R .
107 43,04 0,14 7%,0:
si‘z =7 {4203-3,0,+473,0,429343 0 (4.6)
. 1 NI .ot S fagal
1,2 TR L0, 42d3-3,0,44 73 0, 400343

as before.

The element total potential encragy is written as the sum

- 1
L J]+J2+J3+'(JA+J5+JG)+§pJ7 (4.7)
of the seven approximate integrals
d
f 2 -1 = .2 .2
= 3 . = R K A
J] ‘ ]rds h o ri(-(.i + yi)
¢ j=1
N R
.12 = ’ 2r‘d.. h \ ri x.l
¢ =1 (4.8)
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“J 2] 1j
and
Nl
| b G
' '|l(. 'II"
.
with

O
ZJ)

i 7
.2
"l)(H'Z’

roowith respect tooa
L8

.)
i

R

| B
Y & —pu
] M

ety 4 ey
. L ST + hpx, v |
2j 1j PR




ey e

196 . FRIED

et d - N
il 3 ] -
nl -~ h xl(l— B Y14 3,’
REEN N
\_,:n _ ,{”,.\
= » —l‘ .1 "j -'
hl h xi(l- EARS YO+ 2])
29 1
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o, 4 O+ ! o
i i) 1y 2j
¢ Aol 00 '-f T e
i [ i 2j i
- -f. > }
{ = Hh Ir atel , (1 4 ‘; )
i [ N i

Our first application of the rubber membrane clement is to
compute the inflated shape 111 of a anit dise € = 0.1) for a
pressure p = 5 and an inplance stretcehing of the edee to
x(1) = 1.1, The dise is substantially detormed by this high
pressure, and for a uniform layout of Ne finite cloements we com-—
pute, corresponding to Ne = 1.2 04,100 0 polar pise y(0)=1.2546,
VL4278, 14299 1.,4304 0 11,4304, We reach this last value of
y(0) with the Newton-Raphson scheme that successively computes
y(0)=2_31875, 1.44782, 1.44302, 1.41059, 1,43040, 1.43040,

Fignre 8 shows inflated shapes ot the di ¢ for a pressure
p=1,2,...,7. Corresponding to these preszures are the polar
stretch ratios }, = 1,144, 1.233, 1.375, 1.648, 1,430, 4,625,
6.552. The global stiffness matrix K is found to be positive
def inite for the shapes in Fig. 8 and we conclude that the disc
fs in stable equilibrium,

Figure 9 shows a torus (6] (= 0.25), pgenerated by r = 2 4+
cos s, 2 = gin s 0 4 - #, inflated by a pressure that in-
creases in ten equal steps from p = 0 to a critical p = 2.185.
As the pressurce approaches this last value of p the lowest ei-
genvalue of the global stiffness matrix K nears zero indicating
a decline in stability,
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F16, 8. Stretcehed and intlated disce,

o FIG., 9, Inflated torus,
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Figure 10 shows buleine 61 ot a tube (= 0) ) stretched
both axially and circumferently, and inflated.  The curves
in Fig., 10 are for a pressure that increases in ten equal steps
! from p = 0 to the critical p - 0,05,
!
¢ FIG, 10, Peloing of stroetehed and intlated tube,
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Discrete Gauss integration of the element total potential energy is applied to the formation of a
cubic-cubic C' extensible completely nonlinear curved beam finite element. The versatility, accuracy,
effectiveness, and robustness of the element, and the Newton—Raphson technique used to solve the

] nonlinear algebraic stiffness equation set up with it is numerically demonstrated by computations of the
k nonlinear equilibrium stability and motion of beams and rings.

e AR, WA TPy e a2 S

1. Introduction

[T

b

. ; . A nonlinear finite element discretization technique based on the approximate Gauss
3 integration of a nonquadratic energy density function, successful in the nonlinear computation
(1] of the straight and curved inextensible elastica, the circular plate, and the axisymmetric
rubber membrane, is applied here to nonlinear equilibrium stability and motion analysis of the
| extensible curved beam.

A cubic-cubic C' element is developed in detail (a numerically integrated cubic-cubic beam
element for large displacements is available in the MARC program [2]) and is computationally
tested for accuracy and effectiveness on the particular large displacement problems of a tip
loaded straight beam, a closed ring compressed by two equal and opposite forces, a circular

ring under post critical hydrostatic pressure, and the large amplitude vibrations of free and
fixed beams and rings.

it

5~ SN bl s TS 00 T Yy WA i A

2. Finite element

With reference to Fig. 1 let a point on the deflected beam by marked by (x, y), x = x(s) and

) y = y(s), s being the distance measure along the original curved beam. Let further ¢ denote
the axial strain and x the curvature of deflected beam. Then in terms of x and y

€= (x,z+ y,z)uz__ 1 (])
and

4 P oy Pt o 3 {

_x x
<=y @

*Work supported by the Office of Naval Research with contract N00014-76-C-0036. i
1 * 0045-7825/83/$03.00 © 1983 North-Holland -4
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— Defocted
X Xz

Fig. 1. Geometry and element of a largely bent beam.

with the usual notation x’'=dx/ds and x”= d’x/ds®>. The initial curvature of the beam is
expressed in terms of the original stope @ as x, = d6/ds.

A bent and stretched elastic beam of length / that is under the action of distributed forces f
and g in the x and y direction, respectively, is in possession of a total potential energy

1 i !
m(x, y) =4 EI j (k - xo)ds + 1EA I e ds— j (fx + gy)ds G)
0 0 0
or when the beam is of thickness ¢ and unit width
] 1 !
m(x )= 5 BC[4 [ (- ofds+he [ as]- [ g+ gy)as @

where ¢ = 12/¢%. Hence forward we shall assume, for typographical briefness, that E’/12= 1.

For the approximation of #(x, y) in (4) we propose a C' cubic-cubic finite element and a
three Gauss point integration, which appears to be the minimal integration scheme to maintain
the full element accuracy inherent in the cubic interpolation, while averting spurious zero
energy modes. We shall also consider in the paper the possibility of integrating the axial strain
energy part of w(x, y) with only two Gauss points, but it appears that an all out three point
integration of 7(x, y) is preferred.

To prepare for the numerical integration the typical finite element is mapped from s to £ by
s=s5,+h¢0=<¢=1,sothatds=hdéand ( ¥ = h™'(')and ( ' = h~'("), where the dot means
d/d¢. From the element nodal values vector (see Fig. 1)

ue = (X1, X1, Y1, 1o X2, X2, Y2, ¥2) 5 &)
x and y are both cubically interpolated inside each element by

x=ul¢ and y=uly, ©)
¢ and ¢ being the shape function vectors

¢' = (¢l9 ¢23 09 0, ¢3v ¢4’ 09 0) and 4" = (09 o’ ¢1’ ¢2’ 0’ 0’ ¢3’ ¢‘) (7)

«
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L Fried, Nonlinear finite element computation of the extensional beam and ring 31
in which
G =1-38+28, :=£-28+8,  $:=38-28, =-£+8.

Since the typical element extends between ¢ =0 and £ =1, and since ds = h d£, the ap-
proximate integration of the element total potential energy #.(x, y) is of the form

3
e = h X, wild(x; — ko, + 3c€; — f; — giyil )
j=1

where here, specifically,

Wi—wy=1 W= (10)
with the three Gauss points G,, G, G; being at
£:=%(5FV15) and §&=3 an

the upper sign of V 15 referring to j = 1 and the lower sign of V15 referring to j = 3.
The integration point values of the curvature «;, the strain €, and the coordinates x; and y,
needed in . in (9) are obtained from the nodal values vector u. through
x; = ul %= uld %= uld,
’ b i 4.’1’ ”I ?i 12
Y=udn Y= udy Y= uly

where ¢; stands briefly for ¢(§), etc. Here, for the three-point Gauss integration we have
from (6), (7), (8) and (11) that
é's= (50 % 12V15, 52 V15, 0, 0, 507 12V15, -5+ V15, 0, 0),
$:=44,1,0,0,4,-1,0,0),
éi:=%(-6,2+V15,0,0, 6,25 V15,0, 0),
é:=1(-6, -1,0,0,6,-1,0,0),
bt = HF6V1S, —~523V15, 0,0, 26V15, 573V15, 0, 0),
é:=(0,-1,0,0,0,1,0,0)

(13)

and
ta=ms(0, 0, 50 12V15, 5+ V15,0, 0, 50= 12V15, -5+ V15),

¥:=4(0,0,4,1,0,0, 4, 1),

¥is=%(0,0, 6,2+ V15,0,0, 6,25 V15), 14)
¥:=10,0,-6,-1,0,0,6, ~1),

¥i3=3(0, 0, F6V15, -5£3V15, 0, 0, +6V15, ST3V15),
¥:=(0,0,0,-1,0,0,0, 1).

A
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32 L Fried, Nonlinear finite element computation of the extensional beam and ring
Differentiation of . in (9) with respect to the element vector of nodal values u. creates the
element gradient vector g.. Further differentiation of g. with respect to u. generates the

nonlinear element stiffness matrix k.. Before doing that we shall introduce some notational
abridgements. First we rewrite the axial strain € and the curvature « of the beam as

€e=h'87-1 and x=af™? 15)
with (in fact for a nearly inextensible beam we may set B8 =1 in «)
a=xj—X%y and B=x+y*. (16)

Secondly, we wish to employ in this section a prime to denote differentiation with respect to the
vector u. so that € and «’' are vectors, and €”, «”, €'€" and «'x" are matrices. Now, since
x;= ¢ and y;=

3
we=8.=h 2: w;[(k; — Ko;)icj + ceei— fib; — gy (17)
j=
in which
a)= Xy + &y — Ky — by, Bi = 20kb; + yby) » (18)
;=B (Ba;~a;B)) (19)
and
€;=zh"'8;""B;. (20

Next we find that
3
wl=ko=h T, wl(x; — xo)) + ki + clge + €le]) @y
j=1

where, in terms of a; and B},

| € =3h7'B; (B} 3B7'BIBT) 22)
an

x) = B;" Bl - 1,88 —3B/(Bja} + aiB)) + ¥ B8], 3)
both computed from

a} = i+ | — b — i) (29
and . . » e

Bi=2¢nb)+ ) (25)

which are numerical symmetric matrices of dimension 8 x 8.

Assembly of g, and k, into the global g and K is the same here as for linear finite elements
except that an iterative method, say Newton-Raphson, is needed to solve the nonlinear
discrete equation of equilibrium g = 0. With the Newton-Raphson method an initial guess u,

- A S S ————
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is improved into
u=uo—Ks'go, (26)

etc., until convergence.

3. Tests for eftectiveness

First to concern us is the accuracy of the element, occurrence of spurious modes devoid of
energy, and the performance of the Newton-Raphson method in the presence of a large axial
elastic constant c. We perform tests in this respect with two numerical integration schemes:
one that integrates the bending part of the element total potential energy with three Gauss
points, and the stretching part of . with two points (this will be referred to as the 3-2 scheme);
and another procedure that integrates the entire =, with three Gauss points (a 3-3 scheme).
To start, we compute the deflection of an originally straight unit cantilever beam with a tip
force P=35, shown in Fig. 3, and imposed boundary conditions x(0)= y(0)= y'(0)=0.
Standard assembly of all the element stiffness matrices produces a global, displacement
dependent, stiffness matrix that can be put in the form

K= K, +cK, va))

with K, and K, constituting the bending and stretching parts of K, respectively.

All subsequent computations are carried out with 7 and 14 element discretizations that give
rise to 27 and 57 degrees of freedom, correspondingly. The 3-2 integration scheme is found to
produce a K, matrix with 15 zero eigenvalues for a 7 element discretization, and 29 zero
eigenvalues for the 14 element discretization. Imposition of the boundary conditions x(0) =
y(0) = y'(0) still leaves the total global stiffness matrix K with one spurious zero eigenvalue in
its straight configuration, which disappears with bending, and which does not seem to heap any
difficulties upon the working of the Newton—Raphson method even with a straight (x =5,y =
0) initial guess. Table 1 lists the largest eigenvalue A} of the global stiffness matrix K as it
varies with the number of elements N, and the axial elastic constant c¢. Table 2 lists the tip
coordinates x(1) and y(1) computed (with some 16 significant digits) with the Newton-
Raphson method for different values of c.

Raising the integration scheme to a 3-3 level produces an element stiffness matrix k. that
assembles into a global K with a K, part that has 14 zero eigenvalues for N, = 7 and 28 zero
eigenvalues for N, = 14. No spurious zero eigenvalues occur anymore in the assembled and
constrained K, the extremal eigenvalues of which are listed in Table 3 in their dependence
upon N, and c. Table 4 lists the computed tip coordinates x(1) and y(1) of the originally
straight beam discretized with 3-3 integration elements and tip loaded with P =5, as they
become improved with the Newton-Raphson method, for different values of the axial elastic
constant ¢, and a different number of finite elements N,.

A remarkably propitious conclusion emerges from Tables 2 and 4: that the Newton-
Raphson method is only slightly affected by the large values of c.
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Table 1

Largest eigenvalue A § of K formed with 3-2 integration elements
in its dependence upon the number of elements N, and the axial
elastic constant ¢

Ne=7 N.=14
c=10° c=10* c=10° c=10°
AK 0.27 10° 0.27 10° 02710 0.5510"

Table 2
Convergence of the tip coordinates x(1) and y(1) with the Newton—Raphson (NR) iterative cycles. Straight beam tip
loaded with P = 5 and discretized with 3-2 integration elements

c=10

c=10°

x(1)

¥(1)

x(1)

y(1)

x(1)

y(1)

x(1)

y(1)

1.0000000

0.55703212
0.61384381
0.61061737
0.61180749
0.61180735
0.61180735

NN EWN -

1.6830084

0.77655095
0.72384822
0.71912615
0.71817148
0.71816995
0.71816995

1.0000000

0.55205671
0.61361089
0.60820549
0.61099979
0.61099710
0.61099714
0.61099714

1.6830084

0.77962496
0.72184756
0.71735096
0.71498461
0.71497673
0.71497671
0.71497671

1.0000000

0.55134776
0.61276418
0.60713127
0.61090756
0.61091337
0.61091606
0.61091606

1.6830084

0.78051978
0.72211633
0.71758132
0.71467798
0.71465933
0.71465766
0.71465766

1.0000000

0.54965834
0.61403859
0.60799521
0.61042256
0.61041886
0.61041902
0.61041902

1.6924615

0.78171462
0.72174536
0.71731317
0.71501707
0.71501085
0.71501073
0.71501073

Table 3

Lowest (1st) and highest (N th) cigenvalues A { and A § of the assembled global suﬁm matrix
K for the straight beam discretized with N, 3-3 integration elements

N.=17 N.=14
c=10° c=10* c=10 c=10°
At AR AF AR Af AR Af AR
1.25 0.3210° 1.25 0.3210° 1.25 032107 0.75 0.66 10’

[
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Table 4
Convergence of the tip coordinates x(1) and y(1) with the Newton—-Raphson (NR) iterative cycles. Straight beam tip
loaded with P = 5, and discretized with 3-3 integration elements

Ne=7 N.=14

c=10 c=10* c = 10° c=10°

x(1) y(1) x(1) y(1) x(1) y(1) x(1) ¥(1)

1.0000000 1.6651444  1.0000000 1.6651444 1.0000000 1.6651444  1.0000000  1.6636502
0.56022070 0.77453293 0.55526060 0.77770589 0.55452073 0.77870079 0.55478261 0.77847397
0.61529505 0.72278893 0.61557099 0.72053522 0.61541080 0.72053192 0.61594304 0.72015670
0.61221822 0.71820317 0.61007604 0.71628612 0.60969777 0.71624185 0.61019765 0.71596357
0.61335240 0.71729088 0.61260781 0.71402538 0.61297276 0.71312999 0.61251874 0.71374747
0.61335228 0.71728948 0.61260543 0.71401851 0.61296877 0.71311681 0.61261565 0.71374152
0.61335228 0.71728948 0.61260545 0.71401850 0.61296970 0.71311611 0.61251582 0.71374140
0.61260545 0.71401850 0.61296970 0.71311611 0.61251582 0.71374140
0.61237501  0.71378936

LN E W -

The (stable) equilibrium configuration computed for the tip loaded beam with the 3-2
integration scheme is shown in Fig. 2. Fig. 3 shows the computed curvature distribution x(s)
for the same beam, and Fig. 4 shows the tension p along this beam computed from equilibrium
considerations (p = Py’) and from Hook’s law (p = ce). We remark in Fig. 3 that even though
the elastically computed tension oscillates violently inside each element, at the two Gauss
points G, and G,, at which the stretching energy is sampled, the statically and elastically
computed tensions agree and are accurate to a degree that is sure to satisfy any practical
requirement.

3*\\

y =5
21 \\ ﬁ I )
oo \ 3-2 Integrotion

1 Nz
Exact «(0)=307739
X
! 0 /
Fig. 2. Deep bending of a tip loaded beam computed
with 3-2 integration clements. Fig. 3. Curvature distribution for the beam of Fig. 2.
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P
’o &
8{ 32 Integration
p=Ce .
&1 oy -
4
2<
S
0 ' VG: GV V V V \/
f ¢=I000
; : Fig. 4. Tension distribution for the beam of Fig. 2.
| " 51p
t
. 33 In,feqrarvon ﬂ’ﬁﬂ
NNy~ 4
p=ce
34 W
¢=1000
i 'r 2 .
i
11 .
| s
(0] h 2h 3h 4h 5h 6h  7h=l
G G2 Gs
Fig. 5. Tension distribution for the beam of Fig. 2.
d
3-3 Integration
———
1 4] ¢=1000 P /‘/1 .
: Ne=14
B ) // |
o .
PR 2/ |
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Fig. 6. As in Fig. 5 but with 14 clements.
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S1p
. 3-3 Integration fff
41 ¢=0000 f
. Ne=i4
< 34
3
) 21
14
- s
| oA !
: Fig. 7. As in Fig. 6 but with ¢ = 10*. ‘ ;
i
b ~
| 34
33 integration
w=(xy"-y' X' Wixssyy)
. 2.
. Iy
0

Fig. 8. Curvature distribution for the beam of Fig. 2 discretized with 3-3 integration elements.

Figs. 5,6 and 7 trace the computed tensions for the tip loaded beam discretized with 3-3
integration elements. Fig. 8 shows the, here smoother looking, computed curvature dis-
tribution for the same beam.

4. Pressed ring

The elastic deflection of a thin inextensible circular ring pressed by two equal and opposite \
forces has been previously computed [1] with quadratic C° finite elements. In this section we :
present similar results obtained with the cubic-cubic C' element. Fig. 9 shows the equilibrium
configurations that the ring “ssumes when pressed by a force P that increases in steps of 2
from 0 to 38. Fig. 10 fvllows the + sing of the gap along the diameter of the ring with the i
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101 ¢=I000
w

0 e/m

Fig. 10. Computed sinking of ring's top point with the
Fig. 9. Point pressed circular ring. top force P.

increase of P. We see in Fig. 10 that our extensible element has a slight extra flexibility to it;
contact of the pressed points is reached with a force P that is somewhat less than the
theoretical [3-5] P = 4x” for a ring of radius 1/.

5. Ring under hydrostatic pressure

To account for the action of an external uniform pressure (nonuniform is actually as easy) g
we have to add to w(x, y) in (3) the pressure’s potential

w(x,y)=q L ’ xy’ ds (28)
; or approximately, for the typical element,
Te™q :21 WXy 29)
that leads to
8=m.=q ,.i: wy(dy; + %)) (30)
and then to
ke=me=q é wib) + b)) 31

=1

which are added to g, and k. in (17) and (21).
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. 2/
w
2/m P:O\\
. w
P=1
P:=5
c=lo3
Ne=7 Quadratic
theory
Q/Qer
0 /
Fig. 11. Deformation of a circular ring under the action Fig. 12. Displacement of the ring’s top point under the
of an external pressure q. action of an external pressure ¢ and a top force P.

The critical pressure on a closed circular inextensible ring is at g, = 3/r, or in our case
where r = 1/m, g. = 3w° = 29.609. Fig. 11 shows the collapse of the rirg, discretized with seven
elements, under the action of an increasing, as listed, pressure. Fig. 12 compares the variation
of the maximal deflection w caused by the external hydrostatic pressure g and a point force P,
computed with our element, with results obtained from an analytic quadratic theory [6-9]. A
high ¢ value is chosen here to make the comparison with the inextensible theory more
meaningful.

6. Vibrating beams

If g(u) denotes, as before, the global gradient of the total potential energy and M the
beam’s global mass matrix, then its equation of motion is written as

g(u)+Mii=0 (32)

where u denotes velocity and ii acceleration, that we propose to numerically solve with the
! Newmark scheme [10]

U= o+ Tlho+ 3700, Uy = tho+ 37(bho+ th) (33)
! for a time step size 7. By virtue of (32), (33) becomes

U= U+ Tl —37°M7'g0, W= to—3TM (g + g)). (34)

In our subsequent dynamic computations we shall exclusively use the consistent [10] beam 3
mass matrix.
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We can foresee the possibility of a simply supported beam with free axial motion executing
very large amplitude vibrations even when nearly inextensional. To numerically study such
motions we impart the originally straight (x = s, y = 0) beam an initial velocity

=0, yo= %sin s 3s)

with magnitude determined by the factor a. Fig. 13 shows the appearance of the beam at time
intervals of 15 as it hurls up towards its ultimate flexed position. In Fig. 14 the beam’s central
elevation is traced against time for different values of a in (35). When the vibration amplitude
is small, say for a <2, the computed time it takes the crest of the beam to rise and fall back to
zero is close to the theoretical half period value of 1/w. A growing amplitude is predicted by
our computations to cause a hardening of the beam and a shorter period of vibration. This
does not sit well with other published resuits [11, 12], but meaningful comparisons are anyway
not easy here. First, the approximations of the analytic approaches are sensitive [11] to very
large displacements; and also, one must bear in mind that for a periodic solution to exist in the
nonlinear range, particular, not easy to come by, initial conditions must be at hand.

To study the large movements of a free-free beam we set it in motion with the initial
velocities

Xo=0 and y,= afcos As + cosh As + a(sin As + sinh As) 36)

where A = 4.7300408 and where

e 1 P |
- Sin3A —sinzA
cos3A +coshiA 1.018. 37

Ne=7
c=l03
o=8
r=0000!

SS Beam

o

0 72
Fig. 14. Movement of the beam's central point for

Fig. 13. Movement of a simply supported axially un-
constrained bcam.

different magnitudes of the initial velocity in equation
35).
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ylO)-yl1/2) 3
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—prrrr—r

0 n/4732

&,

Fig. 15. Movement of a free-free beam. Fig. 16. Progress of the total bend in a free-free beam
for different values of a in equation (36).

Fig. 15 shows a sequence of still pictures computationally taken of the beam between its first
and second rest positions for a velocity factor a = 2. Fig. 16 traces the total bend y(0)— y(@) of
the beam as it progresses with time. Again, for small amplitudes the free-free beam’s
computed half period is near m/A? predicted by the inextensible small displacements theory,
but as a, and with it the amplitude, keeps growing the beam becomes softer with longer
H. *  periods, in agreement with the computations of Takahashi [13] but opposite those of Wagner

BT TP VER WAN 7 4 L R

[14]).

7. Vibrating ring

A e o

For the circular ring it is more convenient to deal with the normal displacement w and the
tangential displacement v, that are related to x and y (see Fig. 17) by

T

!
i
!
: x=(r+wkos@—vsind and y=(r+w)sin@+vcosé, (38) 3
; 6 being an angle measured from the positive x-axis. A time dependent displacement
¥ 1 1
j w=—acos20sinwt and v=—-‘;-§asin205inwt (39)

) constitutes an inextensional (i.e. x>+ y"> = 1) deformation for any value of a, anf for all time ¢.
We choose, therefore, to send the ring moving with the initial velocities

Wo=acos20 and ®,=-31asin20 (40)
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y w(0)

rsl/r

1Ar 1

wo=acos2e

vo=-0/2sin2e
¢s1000 03
Ne=7
}
X
r=l/m 567
Fig. 17. Vibrating ring. Fig. 18. Movement of w(0) of the ring in Fig. 17.

or in terms of the Cartesian coordinates
Xo = WyCOs @ - Uosin 6, Yo = Wesin @ + tocos @ 41)

with 0 < 0 < 3m. ' i
Fig. 17 shows a train of snapshots computationally taken of the beam at w5 time intervals.  *

Fig. 18 traces w(0) with time for different magnitudes of the initial velocity. When a, and with

it the displacement amplitude, is small the ring executes half a period in a time nearly equal to

the theoretical inextensible V5/6w, but as the amplitude grows a slight softening is com- : i

putationally detected for the ring in agreement with Evensen’s [15] reporting. Fig. 19 shows

the influence of ¢ on the motion of the ring started with w, and o, in (40).

w(0) c+0° !
csl03
i oer
9
1 Rang [
a3 ¢
O‘If 1 relfr L
Ne=7
J
1
!

/6w

Fig. 19. Influence of ¢ on the movement of w(0) for the ring in Fig. 17.
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8. Nonconservative loads

Beck’s problem of a slender cantilever loaded by tip follower forces [16] is perhaps of little
practical value as its real occurrence is somewhat farfetched but it will serve as a good
example to describe the application of finite elements to problems with no potential for the
load. Fig. 20 shows the arrangement of the tip forces that consist of a tangential follower force
P and a normal follower force Q. When the load cannot be derived from a potential, as here,
we are forced to forego the addition of appropriate work terms to the total potential energy
and must introduce instead the forces directly into the gradient and consequently into the
(nonlinear) equations of equilibrium. For our present beam element this operation is
straightforward. Indeed, since the gradient entries that correspond to the x and y nodal values
express the force sums in these direction, all we have to do here is to add the negative
horizontal

H=Pcos6+Qsiné 42)
component, and the negative vertical
V=Psin6- Qcos 8 43)
component of the tip forces to the entries of g that correspond to the tip x and y, say gn-3 and
gn-1 if the tip node is the last.
When we know the beam to be nearly inextensible the substitutions

sin@=h"'"y(1) and cos@=h""xi(1) 44)

can be made, with which H and V become

H=h"'(Pun_,+Quy) and V=h"(Pun— Qun-2) 45)

Fig. 20. Cantilever bent by large follower forces. Fig. 21. Same as Fig. 20 but with P = 21,
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that we add to gn-i and gn-., respectively. To prepare for the Newton-Raphson solution of
g(u) =0 the four terms .

O8N-3_ p1 OgN-3 _ p1 I8N-1 _ O8N-1 _ p1 '
oun-2 h P’ oun h Q’ 3u~_3 h O’ Jun h™'P (46) 'y

have to be added, nonsymmetrically, to the global stiffness matrix K at the addresses (N -3,
N-3),(N—-3,N),(N-1,N-3)and (N - 1, N), respectively. Fig. 20 and 21 show computed
equilibrium configurations for the elastic column bent by the follower forces P and Q. No
nontrivial equilibrium configuration is found for Q = 0.
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Abstract—Gradual diminuation of compressibility tied with mesh refoement is shows 1 be aa cffective and

practical way to sumerically cope with aear incompressibility of elastic solids. It is remarked that
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preserving modes, the present technique does
them.

1. INCOMPRESSTRLE SPHERE
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Here, when the shear modulus equals one
- 3
e[ giagrheeite ®
@ being the internal radius and » the Poisson ratio. With
p i
z-l--Zlv' @

—Equation (1) hecomes

w(r, z) = u(r, -n;;’;,,—zr- &)

Subsequently we will use an overbar to denote values at
velfl, s d=u(rm).
A nadial gisplacement ¥ causes the elastic strains
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| Tl R e
. oad3-12), mor dors & require reduced (set to be & dlNIIION
®afsed with sumencal) intogration. It is o smmdard %
: @aummmm- emethte e+ ®
. mbm..mnuuu .
-~ produce & reasomebly ceaditioned ., Gillereatiation with respect %0 7. With
M“‘“m snd balanced discretization-com- .h.:(h“':::'"h“ respect %o .
The main purpose of this paper is 1o reconsider in 3
L ol oy 1 @
MRoearch Ofice of Naval Ressarch nd
ey Soppurted by the Ofice of trongh
) Wratosser. Ke(r,2) = Ke(r,9) = p m
i oduced from w

L'fo' available .

o~




PRy
-

e = ere o e .

Sphere
('
Node !
Lineor elements

. Exact infegrotion

== X

Fig 1. Convergence of u, with Ne for different 2 values.

K being the bulkk modulus which is equal to 2 + 2/3. Also,
the stresses

c,(r.z)-p(u-é)ma.(r.z)-p(l+2%) ®

r

are both independent of 2.
Equation (3) can be written as

u(r,2)= u(r.-)+pr(-;;-”—2,+-2%,:. ) ®)

a(r,2) = n(r, =)+ 0(z™")
in agreement with the general prediction of Ref.[1).

(109)

3 LINEAR FINITE KLEMENTS
Our sphere has stored clastic energy

!
E-L'Gu’n,’n.'n.ﬁﬂr ay

and throughout this paper we shall sssume that a = 1/2.
For » single clement that extends between ¢ = -1 and
E=l{orroraadr=r,+h)

=3[ [Jrteiv2er+iaite2nr)es an
where dot denotes differentistion with respect to £ and
where ¢ = 27/ ¢

An exsct stiflness matrix for s two nodal point element
is readily derived from oqa (12) in the form

"'E:! =3 2:}&@%}

)
avhiche=12¢r/hand po 1240 b atpel

To understand in what way this element locks whey
2=+« observe first that linear shape function produce |
dilatation

Gq .

4
80 thet ¢=0 is possible oaly with u,7;~ wy7, =0 anq §
u-8,=0, or ¥, = u;=0. On the othes hand the enery,
error in the finite element computed &, &, and &, is

c-%(-a-l.)*%(l-h-u.)

m-o-%:f«-o’r‘u
+[ ke-trr-we g
1

As 2on, the exact ¢-+0, sad becanse of the large 2
the dilatoric energy expression, ¢ is forced down 100 angd

l~§¢.i+-3

(9

displacements allows a coostant dilaty.
tion without locking but we forgo this restricted pos

E(u - 6) in eqn (15) we must also be resigned 10 a fact
2 in the displacements error, and a locking mechanisa.
Figure 1 shows the error in u, = u(a = 1/2, 2) for diffevext
values of 2, and indeed for a sumber of clements Ne
sufficiently large |8u,/n,| is proportional to Ne™>. Figure?
shows the error growth in u, as 2 is increased, fu
different values of Ne, and truly when 2 <Ne” the com
puted error in, the 2 the dependent, u, is proportional s
2 Precisely -

¢

|-‘-:-‘!| =032 Ne™? m

and we conclude that for any fixed valve of 2 any desired

P, 2 Radeced scowacy in , wih iacresned 2 for @88
onh rfissmeen.
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Refloctions oa the computational approzimation of elastic incompressibility

displacement discretization accuracy can be secured with
s suficiently large sumber of clements, but the larger z
the more clements needed for any given accuracy. A
Smit of z = 1000 can be safely assumed for the available
olastic materials. At this value of 2, »=0.4995, snd
sccording to eqa (3)

u(310) = u(3.0)+ 2310, am

# the eclastic material is practically incom-
it would be unwise to substitute a large 2 value
element stiffness matrix. It is computation-
more semsible 10 equate the relative compressibility
, which for u, is sbout 1/6z, with the discretization
error, for a smaller, mesh dependent z. Qur linear ele-
mest jmvites the choice

0.32z Ne7 2= 0.1672™"

(19)
that leads to , A

1=012Ne 0)
ead a balanced error of

I%.‘l =023 Ne™ e

y is 8 function of 7 and consequently Ne.

int many a reader will raise the objection
imal z/Ne ratio is not only element dependent
m dependent and is possible here only
id of the exact solution. This is true but we
mind that the computational apalyst is
ronted with the question of choosing dis-

gERg.
-5§§§

1

ization parameters without ever being able to-select
optimal ones. Does he ever know what aumber of

' tlements or which mesh layout is optimal? All we can

]

teric
eing positive definite o being posiive semidefiite wi

4

, for a given element, is settle for a reasonable z/Ne
and either incorporate it in a finite element com-
Poter code or instruct the user as to the proper limit on 2
Sepending on the number of elements. What is important
dere is that » constant 2/Ne ratio assures a simultaneous,
3w, k-0, energy convergence O(Ne™")
Messible solution. One order of Ne™' is lost in this
but we are for that on theoretically safe ground.
the stifiness matrix for the linear clement &
with a one point Gauss integration

lobal finite clement made escapes locking and
part of the global stiffness matrix is reduced

It
: 53
d 35'
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2
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i
;
i
7
!
"
¥

ol 2 3 4 36789012
Ne

Fig. 3. Same as Fig. 1 but for exact quadratic elements.

order of the element for better computational efficiency.
When exact quadratic elements are used to discretize the
elastic sphere the relative error in u, is, according to
Figs. 3and 4

I%l = 0,034 4z Ne™ @
1

provided that z <Ne’. The compressibility error stays
the same 1/62, and therefore incompressibility is best
spproached with

2= 22Ne? )
resulting in

o l':—"| =007 Ne™ 0

where u, is still a function of 2 or Ne.

oguy
Flg. 4 Sams us Fig. 2 but for exact quadratic sloments.
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Fig. 5. Eror in the incompressible & as depending om z for
different number of finite clements Ne in the discretization.

Figure $ clearly shows the convergence process to the
totally incompressible solution &,. For a fixed number of

calling for round-off precautions[14, 15). Our IBM com.
puter has 3 single precision relative accuracy of 0.5 10~
and a double precision relative accuracy of 10™*. On this
machine, when using single precision, all accuracy is lost,
s soon as the number of clements reaches 17. Double
precision saves the day for nearly incompressible solig
computations by banishing this unhappy episode to Ne«
4500! As Fig. 6 shows available higher computer ac.
curacy permits the achievement of any reasonsble dis.
cretization accuracy practically free of round-off errory,

6 EXTRAPOLATIONS TO THE LBET
Simultaneous extrapolation to the limits of 2 and Ne
can desist the need for their large values. Let & denote
the incompressible solution and u the finite element
computed displacement. Since the compressibility aad
discretization errors are proportional to ™' and z, res.
pectively, we may write

u-l+-:-+pz‘ (v1))

of three z values will determine o, 8,

elements as z is increased the approximation s frst
improved as the compressibility error declines. An exact
value happens to be crossed, but further increase of 2
brings only a decline in accuracy as the element stiffens
and ultimately locks. Figure S shows also the error
reduction in &, for the choice z = 4 Ne®. Notice that with
Ne = 20 we can go here as high as 2 = 1600 or v = 0.4997,
and get a relative error |5/} = 107>,

5. ROUND-OFF ERRORS
We infer from the elastic energy expression (11) that
the global stiffness matrix is with a spectral condition
number[13) proportional 10 z and Ne’. Direct com-
putations reveal that the quadratic element leads to
C«K)=6.62 Ne? 25)
or with 2= 4Ne? 1o
CxK) = 264 N¢* 26)

Mg 6. Elfoct of round ofi-error on the computed
ulhum(ﬂ)uﬂwhum
procision OP) s 9. A

and & Suppose that u,, 4, and u; are the three w values

computed for 2,, 2= 22, and 2, = 42,, then

8 == 2m, 4 Sy~ 20y )
B2, = 5 (= 3,4 20 )

and
alz =3 0= 3+ w0, o0

For example, the quadratic element of Section 4 com-

¥, =0.14234053 for z2,=512
u2=0.14176086 for z,=1024 )]
;= 0.14064927 for 2z,= 2048

with which eqn (28) yields & = 0.1428247 as compared
with the exact &=0.1428571, or a relative error of
07>+, Knowing Bz, in eqn (26) aliows for & bettes

approximation for the compressible « at 2,
"= 30n+30-20). )
Using the data in ogn (28) we with (D

compute o
(112, 512) = 0.14288837 as compared with the exact a(1/2,
$12) = 0.14290359, a relative error of 107*”". The cor
responding x; = #(1/2, 512) = 0.1423403 from eqa (28) is
with o reiative error of 10724,
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% g7, Computed pressure distrbution in exact acar slements.
: points st the oplimal integration nodes for a weight
! Erbation 1.

! : For the linear element optimal integration point is at
- the root of the equation 7 — by = 0 where by minimizes

L J

4

3

o= " (b= NP dr. 63)
(4]

Desoting Fig. 9. Convergencs of average pressure in the first clement
: m?-lnqdh-_m;&'h_m._-dq:‘ﬁu_z
Cwrvesis Of exact integration deviatoric one
. A.-%(r.’-r-‘) (1) mamm«mwmm:'u.mﬁ
; for s one point throughout intagration.

" we have that in the interval 15 ¢ = 1 this point is at
; element. To locate the optinal integration points for this
. ) g-%(-:_:-,,).q (35) clement we minimize

3
which means that in & 32 element mesh, in the first L.-[ (bo+ bur=rYrdr
slement £ =0.01025562, while in the last element ¢ = "

. 0400524924. Figure 9 describes the convergence of the mmwhﬂbnuﬂﬂhm¢

8 k¢ 3

- Gverage pressure equation bo+ byr~7*=0. Doing this we have for
* e first element, between r,= 1/2 and r, = 12+ /16,
g -Z;I" prdr ©o &1 =-0.561056 and ¢, = 0.592478

.ih@ueumemtabﬂhthecmmlmxi-m
Slegration

: _Quadratic elements are more interesting. Figure 10 3 FRPUL N -V -~/
i thows the computed pressure distribution over aa 8 . .
. Skment mesh of quadratic elements. Change of sign in
- % pressure error distribution occurs now twice ia each
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also the average pressure inside each element for the
mesh and 2 of Fig. 10. Figure 11 shows the convergence
with Ne of the average pressure in the first element of
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o
where A, is given in oqa (34). In the first cubic clement
of Fig. 12 the three optimal points are ot

& =~ 0.26076448
€= 0.03175087 )
6©=0.70637818

wheress the Gouss points are of §,5= T0.77499667, =
€. At the optimal integration peints we find, for 3 = W24,

17"
Table 1. Computed average pressure p', and the pressures st the Gauss points G, and G, as well as at the dptiral
points F) and F,, for an § clement discretization with z = 256. Exact p =0.14285714
R——— »s,) »e,) oFy)  elFy)
1 0.3 0.19356 0.10137 0.1431 | 0.14380
2 0.14340 0.16046 0.12120 0.14298 | 0.20309 -
%
3 0.14220 0.15865 0.13075 ©0.04279 | 0.242m -
a 0.24200 | 0.35068 | o.13568 | ©0.2e270 | 0.2027m2 b
ka
-
s 0.14271 0.34747 0.138% 0.20265 | o0.10266 *
3 0.14266 0.14565 0.13992 0.14263 | 0.24263

? 0.14263 0.10457 0.1408¢" 0.14261 | 0.34282 3
] 0.14262 0.343 0.1014) 0.3426) | 0.3028) :
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‘"
b Table 2. Pressure at the fnite clements of Fig. 12. Values are, from top $o bottom in each square: exact pressure at
: the center of the clement, aversge over element with 8 3 X 3 integration rule, and average over element with 8 2x2
- integration rule. Square at bottom left is for element |, while ot t0p right it is for element 36
. . 0.600032 0.403300 | ©.756038 0.3 | o.omss | -0.00
) % 0.588501 0.39025) 0.2470%0 0.12751¢ 0.017418 -0.091
- 0.5035%¢ 0.391603 0.200830 0.120064 0.016352 -0.09%0
[ 4
<
. 0.530409 0.370845 0.205%00 0.138760 0.038362 -0.060892
: 0.531703 0.36823% | 0.245)% 0.139609 0.040411 «0.057
'y 0.520062 0.36090¢ 0.29200 0.13179 0.035837 -0.062085
’ 0.420747 0.313538 0.226779 0.147942 0.070958 -0.007360
‘ 0.418307 0.311750 0.226071 0.148348 0.071935 -0.00%56
¢ 0.410049 0.306350 0.22142¢ 0.14298) 0.06814?7 -0.009103
) 0.209501 0.247827 0.204700 0.150545 0.10859 0.05445)
| t 0.288306 0.206727 0.203838 0.157902 0.108157 0.05424
. 0.281923 0.243268 0.20087 0.155269 0.105756 0.051987
14
. 0.175838 0.190920 0.185500 0.167727 0.141191 0.1079¢5
0.176042 0.190585 0.104664 0.166374 0.139496 0.105962
0.174047 0. 180652 0.183072 0.165038 0.138316 0.304871
0.110216 0.158064 0.174508 0.173028 0.360010 0.130092
0.111306 0.158218 0.173617 0.1n2n 0.15758? 0.135812
0.110619 0.1571124 0.172800 0.170876 0.157111 0.135400
; . 0\‘ y ¢ : :dmeebmmmmmr.-lnur,-m+mz,
% H
o s {e
H H h=- 0.2906565, w2=0.6892173 ()
R ] ' .
i : in the same element that is between ¢, =0 snd 6, = w/12.
; At these four integration points, sumbered as in Fig.
13, we compute p=0.6185, 0.7719, 0.4360, 0.7439, as
c compared with the exact p =0.7080, 0.7123, 0.6300,

0.6335. Computation being done with 3Ix3 Gauss in-
pgrated elements and z = 256.
As for the displacements we have at point A

Neneee = 0.1089531 (2= 256)

l...-o.lm”l (l..) (‘s)
Noomp = 0.1131709 (2X 2) error = 3.57%
Hoome = 0.1069682 (3 x 3) error = 1.52%. !

. We may attempt to approximate the pressure at point
P8 13. Mesh layout on revoiviag sphere. Also slement sodes C through a bilinial extrapolation over clements 25, 26,

et baa S A e

———— e

and integration points sumbering.
31 and 32 Lot py, ¢fc. denote the average pressure
& ol 3 elerments of the discretization, for 8 3%3 aad » mﬁmin':bhm.h;qohﬁuhu:
%2 Ganss integration rules. four center values furmishes the pressure approximation
v The maximum pressure occurs st poist C in clemest  for point C
EE nﬁ&l)p‘np’bpymudnbﬁ
 Msinizaion ~ eyl nttp-t 0
L-r,(a.n.r-r')’r‘drud
' o i
:.-L(b.u.'-ﬂ’-huo “ ’ Poome = 0.TU® (3x3) . '
, , Pouues = 0.1613 (2= 256) “n
. Wocates the optial integration points Ponan = 0.24067 (2mw)

£ = - 0.555706, £ = 0.996906 (43) which mesas a discretization ervor of sbout 3%.
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1. Introduction

Unconditionally stable (semi) explicit intepration schemes for stiff svstems
of equations as generated by finite element analysis of elastodynamics and non-
stationary heat transfer are shown to suffer from the DuFort-Frankle-Saul'ev [1]
svndrome whereby coupling between the space and time discretizations may have a

ruinous effect on the accuracy of the computations.

2. Elastodvnamics

To integrate the discrete equation of motion

MY +Ky =0 M

in which M is the global mass matrix and K the stiffness matrix, a (semi) ex-

plicit method has been introduced [2] in recent vears into the envineering liter-
K into

ature (see also Refs. [3,4]) based on the svmmetric splitting of

(2)

K=L+L

where I is lower triangular. Then for time step T

(3)
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It M is diagonal passage from time level 0 to time level 1 requires back

substitutions only and hence the appeal of scheme (3).

Tt is shown [5] that this method is energv conserving and unconditionally

stable. It is also shown in Ref. [5] that for anv fixed :, spacial mesh re-

finement, done with the hope of improving the discretization accuracy, will even-
tually sabotage the quality of the displacements computed with eqns (3) or (4).

We reconsider here the singular behavior of the computational errors.

Consider the string problem

Y4 =0 o) =Y ¢) =0
Y(x,0) = Sin 2T ¥

= sin2mxsin2mt. According to the analysis of

(5)

for which we know that u(x,t)

Ref. [4] when eqn (5) is discretized with first order elements of size h and

a lumped mass matrix, the first mode excitation causes the string to vibrate with

the computed frequency «  given by

4 - a3, (1-cosanh) yi(24-y %)

COSWT = —
° 1+ 37 (1-cosant )2 (8 + ¥*) ®)

where ¥ o= 1/h. Power serics expansion  vields

“)




or

(8)

; . . 2
This error estimate for the computed frequency includes the expected 0(h™) from l

. . . 2 . . . .
the spacial discretization, 0(t") from the time discretization, and also the

4, 2 . . .
coupled O(: /h®). Holding 1 constant and reducing h lowers 8w until a
. » * * . I3
critical ¥ = (1/h) is reached, bevond which *u increases and accuracy is
lost. This behavior of <dw is clearly seen in Fig, | directlyv computed from
eqn (6).

*
The critical v  is found from dw/dh = 0, and we find that

2
- 3 g2 (9)
i (4 B F

*
One would not want to exceed this V¥, even for the stable method. Going beyond
*
¥  does not produce the computational bang tvpical of instability but its effects

could be as insidious.

Figure 2 shows the computed motion of the central point of a string discre-
tized with linear finite e¢lements. With h = 0.05 and 7 = 0.1 the computed so-

iution can barely be distinguished from the cxact, but small elements cause a hefty

———

error In the period.




3.  Heat Transfer

For the solution of the system of first order equations
° g( )

the unconditionally stable, explicit scheme

) =t§(‘3°)
Jo = Zf(‘éo“ﬂ«)

31'2134“'32. T
,\J = Ag " 2}_@1 (3Z3>—3<3\ g:)

43
has been advanced [7,8] recently.,

To analyze the scheme in eqn (11) we consider the linear svstem

:j+\&"3 =0

(10)

(11

12)

with positive definite and symmetric K. Let v and v, be two eigenvectors

]

of K and 0 < ) - )

1 2 the corresponding eigenvalues.

t;o<= ([1’5 + E)l%i

produces the evolution

The initial value

(13)




.-f).-

«é(ﬂ =AY +bih) Y, |

g |t "')?.
ab) = 8) , b(t) = € £ (14) i

Or with t = j1, j =0,1,2,..., ¢, = }.1 and v, = X1
vy _iv
¥ R
| J':a-e ) bJ-=be (15)

Starting with v, in eqn (13) we have that

gl =~ (q"‘{’. Y + b’%_?ﬂz)
- jz - aﬂl/’ (_,4..’2_.,%)2 + b"//z.('“‘ ;ﬁ-*ﬁ)pﬁ_ (16) |
b : 3;-&'\[/‘ (H 'ITP,)?/?*EV/,_(I-‘-‘%’%)?{

and eqn (11) produces
(l-‘ _6"}\":.(“%4")4'5}?:({‘%%‘ +4’,_) Yj)
A G TSN CETS S
bia = by (1= K+ 2R) e Y, (1244 )
| b st et )

Figures 3,4,5 and 6 describe the behavior of eqn (17).

Aje1 = 4
an

Starting with a =b =1 1in eqn (13), Fig. 3 shows the error 8a in a(t)
®
at t =1 as a function of wz. It is clearly seen in Fig. 3 that wz =~ 2 con-
stitutes a critical value; below it the error in a(l) 1is nearly independent of

v

but as wz = 2 is crossed the accuracy of a(t) suffers a sudden loss. A

2




.t
e
-6-
smaller wl and more steps to reach t = 1 produces a more accurate solution
for &2 < 2, as can be seen in Fig. 4 but as soon as &2 = 2 is crossed the
same sudden loss of accuracy reoccurs.
In Figs. 5 and 6 we examine the errors in a(t = 1) and b(t = 1) as a
function of the initial b, when the initial a =1, Tt is readily concluded

from Figs. 5 and 6 that high machine accuracy is of little help in avoiding the

sudden error jump in a. Only when b = 0, s

[
- '1"'27'\0:
“jﬂ z 14‘_'_‘4/ C(j (18)
Z Ty
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Figures

Fl

Frequency error of the integration formula (3) as a function of the mesh

size h for time steps between 1 = 0.01 and 1 = 0.10,

Vibrating string solved with eqn (3). Accuracy declines as h  decreases.

Accuracy of integration formula (11) with initial value in egn (13).

Same as 3 but different wl.

Accuracy of a(t = 1) and b(t = 1) for different initial b. Initial

a=1.

Same as 5 but higher v,.
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Abstract

An alternative to the Riks-Wempner-Crisfield iterative correction céhene
is presented that does not require an explicit displacement-load accession path

to the nonlinear equilibrium curve, nor a known equilibrium point. Its symmetry

with respect to the displacement and load assures success in rounding limit

points as well as turning points.




1. Introduction

Consider the single,implicit equilibrium curve

Y(%,23) =0 1)

in which x 1s the displacement and A the load. To trace A versus x we

' shall have to compute close root pairs (x, A) to eqn (1).

Since iterative methods must invariably be used to solve the nonlinear
r(x, A) = 0, two strategy decisions concerning the solution procedure have to be
made: (1) how to advance from an established equilibrium point, say (xo, 7\0). to
a next initial 3(&(.55 say (xl, Al); and (11) what corrective method to use if

r(xl. 7«1) i8 untolerably large.

The simplest and cheapest tracking, or continuation, procedure for r(x, A) =0
congists of increasing A o tO 7\1 for a new initial guess (xl it Al) and a
(modified) Newton-Raphson iterative solution of r(x, Xl). with a constant load

11.

That a monotonic A sequence can miss sections of the equilibrium curve has

long been pointed out [1,2]. To remedy this Riks [3,5], Wempner [4], Crisfieid [6,7]

and others [8,9] suggest an iterative approach to the equilibrium curve on a var- ,?
fable A = A(x) load-displacement constraint. The difference between the different ¥
methods being that while Riks and Wempner advocate a linear (planar) comstraint, '

f Crisfield promotes a spherical ome.

-
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Continuation [10-11] of the equilibrium curve is invariably based on linear-
ization. Let (x , A ) De a point in the (x,A) plane not necessarily satisfying
the equilibrium equation, r(x n’ln) ¢ 0. Let further éx = x '+l ~ *n and
6A =) o+l An denote the displacement and load corrections. Linearization of

1:(:n + 8x, An + 61) = 0 yields

h+¥h 6% +V. d3 =0 2

wvhere r' = dr/dx and r = dr/d\A. Henceforth we shall omit the subscript n when

referring to the current nth point.

As for the prediction, that is for the move from the already computed equi-
1ibrium point (xo, Ao) to the next initial guess (xl, Al), it is commonly

agreed to supplement eqn. (2) with the elliptical constraint

o St

vhere o and B are scaling parameters and s the step gize. Combining eqns. (2)

and (3) we get

sf' _

- SC
S}o-;ﬁ'-ﬁa--.i (x ?2_+p,_r,l ) 8%,'3 xl'xo_.*(‘t‘-r‘l‘.._P‘(l“ ve (4

since r(xo, )«o) = 0. The choice of sign in eqn. (4) determines the direction of

travel.

In this note we present and experiment with a correction ptoeodm'bucd on
the Newton-Raphson method as expressed in eqn. (2), whereby the initial guess
(:1, 11) is iteratively improved on an orthogonal trajectory to the equilibrium

.




curve, but with no analytical expression for it and without the involvement of the

previously computed (xo, Ao).

2. The Riks~-Wempner method

The cleverness of this method lies in the replacement of the constant ) cor-

rection by the linear relationship

xx+pa=1 5

so that alx + B\ = 0, Adding this constraint to eqn. (2) yields

_ &« RC
8 = W ) st—pr,_q;_ (6)

or if the constraint line in eqn (5) is chosen to be orthogonal to the tangent vec-

tor (Gxo. 6)‘0), as Riks and Wempner suggest, then

-
rm-f 20

In preparation for things to come we further observe that since r; 6:0 + éo GAO = 0,

eqn. (7) may be rewritten as
|
[ ]

CYo 5 v
o %z - ——— ®
52 rlevre 'V +v Yo
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that is shown to be directly obtainable from the Newton-Raphsoh method applied to
the intersection of r = r(x,\) and A = -x/f'0 + B. Indeed,aince 6x _-rl-r' , we

bave that 6x = -r/(f - 1'), but A" = -1/f  and hence eqn (9).

For the success and failure of the Riks-Wempner method in turning a limit point

see Fig. 1.

3. The Crisfield method

Crisfield replaces the linear constraint in egn (5) by the circular (ellipti-

cal)

(%- 7‘0)14' ( 2_20)-:.‘ s* (10)

Using the linearization T + r 6x + rA = 0 and the constraint
(x + 6x - x‘,)2 + (A + 8\ - Ao)z = 52, 6\ 1is eliminated and we are left with the

quadx"atic equation [12]
S% 00+ 283 [0 ORI (-2 V(']
+7*=2(a-2)rt =0

(11)

for O8x. The qu,J increment 6\ is obtained either from r + r'éx + réA = 0 or

directly from the circular constraint.

A direct Newton-Raphson application to r = r(x'l), (x ~ x")2 + (- Ao)z - 02

produces 8x = -r/dr/dx, dr/dx = ¥’ - TdM/dx, (x - x)dx + (A = A )dA = 0, and

r 12)

or alternatively




-

-5-

52:-- - {:2 a a3
Y-y 2—=2

X-%o S

It is interesting to compare eqmns. (12), (13) with eqn. (7).

For the success and failure of the Crisfield method in rounding limit and

turning points see Fig. 2.

4. Orthogonal trajectory

What we consider now is an orthogonal trajectory approach to the equilibrium
curve without the need for an explicit constraint, and without the involvement of
an equilibrium point (xo, Ao). All ve have to do for that is apply the Newton-
Raphson method to r = r(x, A) = 0 go as to have ¢&x = -r/dr/dx, add to this

dr = r'dr + rd\, and impose the orthogonality condition

.y (' - (14)
% ¥ L
and we get
. |
ry ryY
S vt

which is symmetric in x and ). Comparing this with eqn. (8) for the Riks-Wemp-

ner method reveals hov the orthogonal constraint is updated here.

In fact, Ramm [13] bas suggested a correction method that includes updated
normals. When applied to r(x, A) = 0, Ramm's method produces the load increment

;

- 16)
SA= ey
% = %o




involving not only the previous equilibrium point (xo, Ao) but also the new ini-
tial guess (xl, Al). It is interesting to compare eqn. (16) with gqgns. (7) and

(13).

5. The vector form

Our main interest is systems of nonlinear stiffness equation as produced by
finite elements applied to elastic problems, and we turn our attention in this sec-
tion to the application of the orthogonal trajectory method to problems with many

degrees of freedom.

let w(x,A) be the total potential energy of the discretization, with x
being the displacement vector and A the scalar load. Here r(x,\) = 3n/3x is
the gradient vector of 7. 1If (xo. )«o) is, again, an equilibrium point so that

r(xo. )\o) = 0, then a linear expansion around it is written as
U ' ar
o (B-%) + g.‘;_ (2-30) =0 an

where 03r/3x 4s the stiffness matrix, say K, and where 23r/3A is the load vec-

tor, say p. For how to compute K and p see [16-19].

A prediction with step size 8 subject to the constraint ]

(% -%0) ( Xi~%o) +(2-3,) =s* (18)

oK together with the linearization

Ko (%~%,) + Ca,').)ﬁ =0

(19)

»e




Y

leads to the initial guess

%22t SUHRGNGR) T 4, =480, o

vhere 8A = ) -2 .
o 1 (.}
Newton-Raphson's correction applied to the system of linear equations

r(x,A) = 0 becomes
-K"(r+82¢) (21)

A constant load iteration with &) = 0 reduces eqn. (21) to éx = -K-lr. A lin-

ear load-displacement constraint that relates 6\ to 6x by
T
§1=a % (22)

with the given vector a produces the correction

-~ -l
§4=- aK r.'# ) Sx:—K"(('«-&f) (23)
I+aK P
For orthogonal trajectory accession we 4¢t qQ= K.}P ,w ‘ﬁqu
Y-,
$0- BXOCT a5
1+PKKP

Observe that both the Riks-Wempner method and the present ome call for the
computation of lflr and Iflp. snd othervise entail comparsble computational

effort.
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6. Midpoint correction

A Runge-Kutts type correction in the form of a midpoint reevaluation of the
stiffness matrix and load vector is also often used [20] in nonlinear coiputation-
al elasticity. In this method an initial guess is predicted along the tangent to
the equilibrium curve with eqn. (20) but then K and p are reformed at

x=x + 6x/2 and A = Ao + 6}/2, and the new dzta is resubstituted into eqn. (20).

t Each step requires in this way two assemblies and two inversioms.

An alternative of equal computational effort would be a linear prediction
with one Newton-Raphson correction. It happens that this procedure is considerably
more accurate than a midpoint correction.

It is sufficient that we analyze the methods on the parabolic stiffness equa-

2 2

tion A = axz, where a = )"/2, with the circular constraint x“ + 12 - g°,

Their exact intersection point (xe, Ae) is at

Xe = ;'(' [' i +i‘ (l+lmzs‘)tj’.'— ) Ae= {4;[-] *’(""l’“?)&_] (25)

Without correction point p 1in Fig. 3, . (x =g, A= 0) constitutes the ap~
proximation to equilibrium. Since both the exact solution (x.. A‘) and all other
approximations are at an equal distance s from the origin we prefer to use the

directional error

| | Y eCos"(Z?-;—:i‘!!-) (26)

A He
of (x, \). For point p we have that v = eol'l(:.lu), or tﬁiﬂ‘;;lnsion.

Kom S(1-4 o4 Fa'5 ) ) 2 2 (1-ols 208 30)

-
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we get that for t“auuprediction only

cp =S (28)

if s 1s small.

Midpoint correction reaches point m of Fig. 3 with

S o(.s
A= (+a’s )'—

- 29
%= 2 2 ): ) (29)
Using eqn. (27), and with similar expansions in powers of 8 of x and A in

(1+

eqn. (29) we have for small s that

3
(.f: -i— o 53 (30)

vhich is a substantial improvement over eqn. (28).

One Newton-Raphson correction with a circular constraint leads to

%
§% = —.zx.s -5 +S (H 3 6") )x=x+57f, 1 =xsz+z¢s §x v
1+ 447

and a directional error

)1 55
(.(:.;’— [} (32)

which is two orders better than eqn. (30).

7. ¥umerical examples
The ability of orthogonal trajectory accession to succeed around limit points,

bifurcation points, turning points, snap-throughs and detachments is numerically




r'—v—w—
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demonstrated on two simple structural elastic problems.

First to be considered is the two member hinged truss shown in Fig. 5 in its
original undeformed state. As the load ) 1is increased the two elastic bars shor-

ten symmetrically until a snap-through occurs and the triangle is inverted.

A displacement x causes the strain

e=|- (4+ x"—zﬂg)i (33)

in the bars. With each bar being of the stiffness k/2 the total potential energy

of the two bar system is m(x) = ke2 - Ax, and hence

. !
Y‘(“;ﬂ)‘-‘-kCG‘-ﬂ , ¥=-1,7 =k(e‘z+ee") (34)
where
A 2% ] l+e'z
[ - _ -
¢ - -¢ ) €= | —¢ (35)

The exact equilibrium curve r(x,)A) = 0 is shown in Fig. 4.

Figure 4 shows also the convergence paths of orthogonal trajectory accession
given by eqn. (15), for different ;tarting points that are far from equilibrium.
To observe the orthogonal trajectory one must look close to the end of the iterative
approach. A starting poii\t on the normal to a limit point converges in one step.

Notice also the special attraction of the limit points.

Figure 5 shows the point by point continuation of the equilibrium curve of

Fig. 4 with the predictor of eqn. (4) and the corrector of eqmn. (15), with 3 New-

ton-Raphson corrections per step. .
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The two member truss shown in Fig. 5 is flat vhen ) = 0. Its behavior under

load includes bifurcation, turning points, and detachment. Two degrees of freedom,
x and ¢, determine the configuration of the deformed system, whose total poten-

tial energy reads now

L(ﬁ;‘() -2 k:.‘fz'l' k.e-a% (36)

where kl is the stiffness of each bdar, kz the stiffness of the torsional spring

at the vertex, and e the strain in the bars:

- %
e= "' c’s"r (37)

The two stiffness equations are obtained from m(x,#) through differentiation

n — -—-
(LS. 2k L -2 =0
7 1o

1f kl = 1/2 and kz = ¢/16, then after eliminating x between the pair of

eqns. (38) we are left with

‘(( & SmZ‘( -2 %ﬁ*f")=°

When ¢ = 0 we have either A = x or

} =:2': [‘f ko (" e)il (40)

(39)

80 that for ¢ <1 two bifurcation points occur on the A-axis, and they coalesce

for €= 1. As ¢ surpasses 1 the nonlinear bifurcation curve detaches from the




A axis and a turning point (i.e. d)/dx = =) {g created. The critical ¢* and

®
A at which turning occurs are given by

Lom ¢* . .'
P * =€, 7 '-Z(os‘f* (1)

®
For a given € > 1 no nonlinear solution exists for ¢ <¢ whatever ).

Tangential prediction plus orthogonal trajectory accession has no difficulty
following the equilibrium curves past the turning points, as can be seen in Fig. 6.
*
The two values of € = 1.0235 and ¢ = 1.1027 in Fig. 6 correspond to ¢ = mw/12

and v* = 1/6, respectively.

Figure 7 uses ¢ and X from Fig. 6 to trace A res. x using
X={+cosd (Acosd -1) 2)

Finally, we compare the performance of the various continuation methods dis-
cussed in this paper in rounding a limit point (dA\/dx = 0) and a turning point
(dA/dx = =), The parabolic r = axx(1-x) - A = 0 has a limit point at x = 1/2,

A= qa/4 and is of the shape of Fig. 1. We choose a = 8, x = 0.4375 (at which

¥ = 1), and Ao = 1.96875. A tangential predictor of step size s = 0.2 lands
us at x, = 0.57892136 and Al = 2,1101714. This is approximately the situation
shown in Fig. 1(b) and Fig. 2(a). fSoth the linear constraint method and
Ranm's method fail to find an equilibrium point starting with these x, and Al.
Only the circular const./.int method and the orthogonal trajectory method converge

here - to different points, though, as can be seen in Table 1.

Reversing the roles of A and x : r = aA(l=1)-x creates an equilibrium

curve as in Fig. 2(b) with a turning point. Starting from the reversed Al = 0,57892136
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and x = 2.1101714, the circular constraint method fails, but the orthogonal tra-
jectory method, because of its inherent symmetry to x and A, converges to the

reversed values of x and A 1in Table 1.

Circular constraint s = 0.2 orthogonal trajectory
step
x A x A
¥
0 0.57892136 2.1101714 0.57892136 2,1101714
1 0.62723680 1.8891614 0.50104992 2.0485029
2 0.62287506 1.8793660 0.50023522 2.0000049
3. 0.62283738 1.8792878 0.50023520 1.9999996
4 0.62283737 1.8792878 | 0.50023%20 | 1.49199996

Table 1: Convergence of the circular constraint and orthogonal trajectory

methods upon r = 8x(l-x) - A.

CEm—— e e et o e~
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Figures

1) Success (a) and failure (b) of t;he linear constraint method.

2) Success (a) and failure (b) of the circular comstraint method.

3) Midpoint and Newton-Raphson corrections with circular constraint.

4) Orthogonal trajectory convergence to the equilibrium curve of the truss in
Fig. 5 from different starting points.

5) Pointwise tracking of the equilibrium curve with a tangential corrector and
orthogonal trajectory correctionms.

6) Computed equilibrium points for the two member truss.

7) As in Fig. 6 but x vs. A.
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Abstract

A cubic-cubic element stiffness matrix and element gradieont are derived for
the thin shell of revolution undergoing large axisymmetrical Kirchhoff deformation.
Application is made to follow the nonlinear elastic distortion of a spherical

shell under surface pressure and polar forces.
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i
l. Introduction |
|

Discrete intepration of the total potential encrgy is used to derive the stiff-
ness matrix and gradient of a cubic-cubic element for the thin shell of revolution

that may undergo large elastic deformation. This ¢lement need not be small in the

sense of approximating arc length and is routinely assembled for a Newton-Raphson

solution. The same technique has heen previously applied with success to study the

large deformation of the circular plate [1 ],the cable [2],the

elastica [3],the rubber membrane [y],and the curved extensible

rod [5].
An cxample is made whereby a thin sherical shell is deformed

under the combined action of polar forces and a surface pressure.

2. Elastic energy
Considering axisymmetric Kirchhoff deformation, shear is absent and the elastic

energy of the stressed shell reduces to

v
E =12 (0761*0'267.*—“;63)"(‘/ (1)
v

where -« (3 and o are » normal stresses, and Py L
10 72 3 Aar the norm . ¢ 1* 20ty

the corresponding

strains. By v we denote the original, undeformed, volume of the elastic solid. We

further assume that the elastic material obevs Hook's law so that stress is linearly

related to strain by

E_ P
I+v (e' AEESY, e’)

(2)
L X

a

Y
u
q
X
7~
(]
r’
N
<
®©
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s e e e .
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where E 1is the elastic modulus, v Poissen's ratio, and e = rl + £2+-f3. Fol-
lowing the common assumption that «©_ = 0 we have that

3

€3 =~ ,“—fy (e.+¢€.) (3

(8)

and
E
OT = r3 (é| +V€z)
1=
’ (4)
E
a = o (e2+V¢)
so that
_ 1 E 2 2 (5)
E=2 =\ | | (g wavee, €3 ) AV
\'%
Tn case of a rod we add the stress assumption ﬂz = 0 and have that
€,=-J¢, ) €4 =—VE, (6)
t
:} . and F% (2) reduces to 01 = E L The clastic energv (5) becomes
!
i | -
! Lo~ ' 5
| E =‘z' tffje' d.,\/ (7)
i v
t or
I
|
!
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' . g .
¢ =(reos 9, (va)z) , N =(sm+ 0059) Sing Sin 9) - Cos¢) o

where s denotes arc length and A the area of the cross section.

3. Displacements and strains

Let (x,v,z) be a point on the middle surface of the deformed shell of

revolution so that

%=v(z) tos &
4 =¥(3) 5inb )
z,:Z,CZ)

2
Obviously x2 + y2 = r", It is helpful to introduce the angle ¢ measured be-

tween r and the tangent to the generating curve, With this the position vector

- —
r and unit normal to the middle mxrf.’u't-, noare written as

-
The position vector of a point on n at a distance ¢ from the middle surface is

- _2 -y
R=vr +Sn an

and
AR = o ¥ +olg7s’+§o(ﬁ (12)

> - -
Since dr is in the tangent plane and n - = |, we have that n * dr = 0,

- -~ 2 — —
n*-dn =0, and ds” = dR « dR becomes

AF« d7- AP g AR AR+ ditap dF- AT an




where

dv < 0‘2 + de

OLV\ = ’a’t 0‘45 'f f”t o9

Because 1 and @ are orthogonal

@l!: . EZ!: =0 Gz!t-- 32::. =0
99, de > % 36
ar M _ N, C —p
% 30 SCL Sl

we are left with
AC AV = dzo(zz+ rdg
dit- A7 = & dy? 4 siieb o6
AP AR = kil v vsing 46

where prime denotes differentiation with respect to 2 and

{
T .\% o z'! v
w=(r'42)" sindeZ-, cosd =

! z"('-z’v"
c#, -

= 0(2.

Finally

al.s":(«,,_ g'd»,)?;lgz -\-((+_§'sin4>)tal. 911- AK"'

(14)

(15)

(16)

(17)

(18)
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as compared to the original

0(-51 = (0(,, +S'4>: )zol.zz-,- (((', +§5,'n+o )?;{924—0({7' (19)

Notice that no distinction is made between 7, and CO' Hence the strains are

here

Km0 (b )
Xo + by

EE\(S;) =

(20)

and

r-Vo + 3 (sind —Sind,) (21)
€, =
(S) \f,+§$iw4>o

4. Integration with respect to 1

SR

From Eq. (19) we get the element of volume

M =, (1438,) (1+5Tp) dt dy de

in which “O = ¢'0/u0 and Yo = sin¢0/r0. Substituting dv in Eq. (22) and the

' strains ﬁl(c) and EZ(C) in Egqs. (20) and (21) into the elastic energy expres-

sion in Eq. (5) we integrate it analytically with respect to ! between -t/2

and t/2, where t denotes the thickness of the shell.

In doing this we encounter integrals of the form




" .

., ;i
{
i -6~

&
< 3 2 nem )
MmN+ eXtY ML 3 AN- T, AP-GN M

ax +l | .Y ¥ 2atr a’

5 . L
a (a-}-f’)-t-mn -Mm 2 (23)
+ - ——64 AX+)
d,q ( X+> —%

or if laxl < < 1

(24)

2 3 3 s
bafax+) = ax-£ x4 5 @x% Lay' 4 0(4°)
and

(25)

/W\x3+le7'+PX+jf_t E ‘q _
B ax+1 ) %+'21(a% afm)

= 2%C
€= 57 £ [wnftleaec )

+ %I_(K\- €, ’P,}z"" (K- ezfo)‘&"' €, To (2%, - €, Po) + €2 ﬁ(z Kz.‘ezb:)

+ 7-‘)l‘<\|<'a..]}a"2

where / !
o* v . P-¢
€=ty €=, K= 0(°
©
(27)
« ___.‘Lm#-sm ) (3 +, sind,
2 > o= o Tes —
o




1f |t 80/2! and It rO/ZI are ignored relative to 1 the elastic energy of the

shell simplifies into

2
= ,}VE':. Z,f [_E (6 +2/e 6:.+€—,,)

(28)

3
+ %(K\+2VK\K1 + K-t)] dy

For the spherical shell Eq. (28) is obtained without simplification but because

i'O {0.

5. The plate and beam i 4

When the shell of revolution is a flat circular plate

+o=o) 53\1\49o =0, Zo =0, z'D:

] (29)
Y;'= 22 N Yo = ) Ko =1
and
_ 4TrE 2+
&= T—yz i‘, r,{{:(e‘ +2¢)ele,_+é:>
3 2 .2 : (30) R
t + Sin I sing ’-
(P + T w2/ 2 )24y |
where cl = (r'2 + 2'2)%-1 and Fz = r/ro - 1. fz
For the beam we set in Eq. (26) i
2= = =) =
2= Kq 'f,-;/ =0 ; 27\:f, = | (31)
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and have that

3 | | 2
- _Z"—E [663‘4-%:(4»0«#0) ]“"0"2 (32)

If the axial extension is small we may set o = ‘10 =1, and
£=LtE([ics E(d_ay
=2 [fé, +E<+-Ck’) ]o(s (33)
with
2 2 L ! |
€=(+r)% | ¢ = z'v'- 2" (34)

6. Stress resultants

These are defined as

€&
N, = 2 No= 25
4 96l ) ‘ 96‘2_

4 2& (35)

M\ B 9'(\ ) Ml N gK'l.

and from Eq. (26) we have themas

E_t)t{e\wez - g (-0 (r,- @ )]

\

N, =
(36)

N, = Ej}t &67_*))61 - t—;z{ (1-£) (Kl-éz'ﬁ)]

P




Tow. EE )[K Ve - & (B-T)]

éz £} )} - £ '6; - o)
M‘L: '2’0-\)‘) LK‘:_"’ K, 7-(' f‘ 1

7. Differentiation with respect to a vector

Let f(x) = f(xl,xz,...,x ) be a scalar function of the vector argument

n

We define the differentiation of f with respect to the vector x as

——

X, 2 Qy* 974,-3xJ-

; 14 .F': Ff g - 35"= :‘fL

3
R

. ’ . "o, . .
Notice that f is a vector and f is a symmetric matrix.

(¥+%)|:;l+3|) (CF),=C£’ )({g)/:gfl-#ﬁg/

i but

(jf')'=9f"+f3‘7

Py 2% 2

e

9 %.. ng

. is a nonsymmetric matrix. The matrix

(37)

(38)

(39

(40)

(41)

X.




(gg) - g Fn+§gu+ gugll alf'r “2)

is symmetric.

8. Cubic-Cubic shell element

Let m in Eq. (26) measure arc along the generator so that “0 =1 and
dn = ds. The finite clement extends between 8 and sy + h so that
11 - .
s =5, + h 0<& <1, and ds = hdf, ( Y, () =h 2( ) . To have a cubic~

)
cubic c element we choose the nodal values vector

T . ’ .
Mo = (G Y 20,246 V5 2., 2,) “3)
and interpolate r and z with
T T
C=MeP | Z=UVY (4%)

where ¢ and V¥ are shape functrinn vectors

(45)

‘#:(ch)cb’-)oiotg)d’w"ﬁ) ,')‘)T-’-(O:o;‘f’,‘l’ °,0 4’3 4’)
1) %5317 Ty, Ty

with

(46)

delanap ¢ 22 4 35k ¢ - ph g

We integrate the total potential energy by sampling at the three Gauss points

5= _:;(5-55)) S, 7 ‘i; 5 = 115(54"/‘?) )
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with weights

W e W = 2 _ 8 (48)
YsTE oMty
The valuesof r,z,7,%,T,Z at the three integration points ¥., j = 1,2,3
‘] ’ b ]
are given by
K =M-T¢ . T N . (1
J LF: Y. = M <. ¥
d) "d?) ) ¥ =M .
T » 'r [ ]
Z. = [ A . = i T (49)
;= e, >ZJ'M°Y'J'»Z=’”@$V'
J

where ¢j and wj shortly stand for ¢(Sj) and V¥(.), and
: J

L K L RN N N R TR R TR 5. 514 0o
L NEN G N N A R A T TR I

Pro= U2 N 00 6 27\ TS 0o,

B0 6, L0006, 1 0.0).

' by '/", e -

.1.».‘“, STONTESD ST AVIIS LG s IS0 ST AN IS 0, e,

G0, L0001 0, 0) (50)

1 - - -

P 00500 IV S e A 0 0 S0 s 12\ IS, S0\ 15
- A A N

e k(041,004 ).

:MJZLWJL'&Q‘\liHJLWHY\Wﬁ

W00 60 1o 06, 1),

o e -

Wi a0 0, ONVIS - ST3VIS 0.0, o\ 185 . 3\ 13y

W= (00,0, -1 0,0, 0, 1),

-
where the upper sign of Jlg is for Gauss point 1 and the lower

for Gauss point 3.

We choose to derive the element data from the simpler energy expression (28)

and write for the eth element
>
»
1 2 2
Eq, = I&le,nj [C (Eﬂ‘\ *‘?-’}Gq G:,J *étj)
a‘
(51)

2 x
4 (Klj +ZVKA|3 sz ¥ Kﬁ )]
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where j refers to the jth Gauss sampling point, and where

o g* 1))

—_— (52)
& ) 2TE LS E

From

] 2 %

39—:—- auc J & N 94/(6 >3
J we have that
= V‘l’r- . '. ', ’ !
&.; J °J§°[E'JG'J“/(6'JG‘J+€4j€'j)*€?j6zj}
(54)
L e % L) ! '
E 4+ 'Y Kﬁ,-&”(g‘)PQd-#l({j\(d )~$‘<1j\(zi }
. :
i kc e\'%" °J§63 EA)"‘Q éy-&})(éﬂ zj"-gye +
i e ] (55)
where () = o/aue
To shorten the notation we introduce
TS . *® I A .
fezr-2¢ [ 9=\ +2 (56)

4 so that




: (57)
£, =YY - | K, = v;"g‘iz -1
plavcd +i-vp-zd | 3 =2(rd i)
X (58)
A A SIS YA A SR )
€ =% *g‘zg/ | »<4l=€."(g"f3' él"‘f—g)
f ' (59)
€z =Y.~

TP w2y
el=Eh7(1729"- 1313) €y =0

K' ﬁl[g,g FM'*Q gng 393"3 (‘Fg' (H, )J -
W39 gy T Ly (499957 29']

which is all we need to program the element gradient and matrix.

9. Potential of pressure and point force

>3
If p denotes external pressure and F an apex ([ = 0) force then toé

we add

4 * »
=P j{j‘rzzl ds - F z (61)
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where

¥ 6(!——))2) * ¢U=V")
19 - E_é‘}_ 10 3 F = 7T E_—t’&

F (62)

and have that

= ¥ 1_ : : “ + ) 63
R PAICEL AR @
2 * 2, : T , .o
T IR RRAC e 9]
J=

which need be added to 2, and kC in Fqs. (54) and (55).

0. Bending of a spherical shell

As an example to the usefulness of the shell element we compute the large
deformation of a thin spherical shell of radius 1 and v = 0.3 acted upon
by a surface pressure p (negative is internal) and an apex foree F o (nega-
tive is inward). For typographical neatness we ignore the asterisks on p  and
F. The geometry and loads on the shell are shown in Fig. 3. Because of sym-

metry we consider only the upper half of the sphere.

Figure 1 shows the deformation of the shell discretized with 14 elements,
under a succession of polar forces F = 0, =-2.5, -5.0, ..., =30 with no inter-

nal pressurce.  Figure 2 shows the same shell under the same loading but dis-

cretized with 24 clements.
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Tables 1 and 2, referring to Figs. 1 and 2, respectively, list “g"z as
it changes with the Newton-Raphson (NR) iteration, for the different loadings.

Evidently the computation of large shell deformations can become expensive.

2 but with an internal pressure ~~1.0.

Figure 3 shows the shell of Fig.

Figures 4 and 5 show the creation of a dimple in a thinner (t = 0.001) shell.

F'=10 and F = 20 in Fig. 5 are not well convergent.

The solutions for
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NR

F

-2.5 -5.0 -7.5 -10.0 -12.5 =15.0 -i7.5 -20.0 =22.5 -25.0 -27.5 ~30.,0

to

o~

[

10

11

12

14

15

16

.25E1 (25E1 .25E1 .25K1 .25K1 .25E1 .25E1 .25E1 .25El
L62E1 J75E2 JL1E4 J13F4 L1284 J1IES .(96E4 . 13ES5 .78E4
L20EL L22E2 LT73E2 L71E2 (52E2 (67E3 (56KE3 (8713 L16ET3 .
L24F0 (20F2 .31E2 J14EK2 .38E2 (4283 (16FE3 .5613 .93E2 .
LI0E=2 L6781 JL16EY L2282 LJI5KEZ2 U5782 L2212 JT73E2 L3282
S9E-6 . 52E1 L45E0 J71EYD L49E2 (13E2 (1SKE2 L13E2 L23E3
.13E-9 . 46F0 .42E-2 .10E2 .35El1 .46E2 .44FE2 .93E1 .68El
LA45E-1 63E~-5 L T1EL .80E2 .12E0 .55E1 .11EO .7214
C39E-4 J19F=-9 (7780 L2580 J52E1 L 14K L13EO L2083
.37E-9 LTOE=2 L 19E2 L641E-3 L 10K J22E-4 . 16E3
.39E-4 13E-1 .30E-5 .24E3 .48E-8 .33E1
C34E-9 62F~1 (12E-9 ,17E1 .35E-9 . 33E2
.95F-6 LHE] . 13E0
L24E-9 .541-1 L2781
.26F-2 J4BE-4
L42E-6 .13E-5
29K=9 L1589,

Table 1: Values of the Qz norm of the global gradie

.25E1

L2481

.27E3

. 70E0

S2E-1

JoOE=-4

.82E-9

.34E4 . 30E4

.38E2 .24E2

.21E4 .57E2

.25E2 .41E1}

.34E5 .16F2

.17E4 .16EQ

. 18E4 .86E-1

.22E3 .26E-5

.70E2 .25E-9

.22E1

.51E0

Ld46-1

.25E1 .25E1l

AT7E-4

.27E-9

nt "gn

9 for different

appex force F, as they diminish with the Newton-Raphson (NR) iteration. This

table refers to Fig. 1.




NR

-2.5 ~5.0 -7.5 -10.0 -12.5 -15.0 -17.5 =-20.0 -22.5 -25.0 -27.50 -30.,0

10
1
12
13
14
15
16
17
18
19

20

21

.25E1 .25El .25E1l .25El .25El1 .25El .25El .25E1 .25El ,25E1 .25E1 .25El

.62E1 .86E2 .76E3 .15E4 .32E4 .69FE4 .14E5 .21E5 .28E5 .46E5 .67E5 .82ES

.23F1 .18E2 .63E2 .93E2 .19E3 .45E73 .91KE3 .97E3 .13E4 .22E4 .21E4 .24E4

.29E0 .27E2 .21E2 .S53E2 .16E3 .32E3 .43E3 .82E3 .16E4 .22E4 .21E4 .44E4

.33E-2 ,42E1 .86E1 .96E1 .14E2 .30E2 .45E2 .69E2 .10E3 .l14E3 .17E3 .19E3

.43E-6 .58E1 .31E1 .12E2 .26E2 .31EZ .29YE2 .21E2 .49E2 .11E3 .90E2 .17E3

.34E-9 .20E0 .53E0 .25E1 .41E1 .94E1 .26E2 .45E2 .45E2 .61EZ .10E3 .11E3

C22E-1.31E-1.27E1 L21E2 .1358E2 .13E2 .85E1 .15E2 .12E2 .54El .63E]

A2E-5 .60E-4 . 12K0 .52E0 .20E1 ,27E2 .10E3 .84E2 .18E3 .78E3 .1llE4

SSE-9 L99E-9 941-2 L 30K1 L3912 JA6ET J8BEO L27E1 J11ED L 24F1 L44E]

Table 2.

.16E-5 .10E-1.13E0 .38E2 .27E3 .45E3 .14E4  .11E4 .15E4
L44E-9 (22E~2 .36E1 .46E0 .91EQ .17E1 .66E1 .51El1 .61El
.53E-8.12E-2 ,23E2 .78FE1 .14E3 .21E2 .12E3 .22E3
.50E~-9 .341-3 .18E-1 .31E-1 . 18E0 . 13E1  .22E0 .33EO0
CS3E=9 L1410 L T0EO (19E2 L3012 J18E3 L4163

.19E-5 .59E-5 .45E-2 .54E-1 .20E0 .54E0

.13E-8 .33E-8 .31E-1 .45E1 .35E0 .31El

. 38E-9 .34E-9 65K~7 41E-3 .65E-3 .18E-1

.29E-9 .56E-3 .11E-4 .23E-1

446E-9 (T3E-4 (11E-5

.40E-9

Same as Table | but Ne = 24. Refers to Fig. 2.
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Figures
‘ 1. Thin spherical shell bent under inwardly directed forces F, Discretization

done with 14 elements. No internal pressure.

2. Same as Fig. 1 but discretization done with 24 elements.

3. Same as Fig. 2 but with unit internal pressure.

4. A dimple in a thin spherical shell.

5. Same as Fig. 4 but with a unit internal pressure.
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