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1. Introduction

This report reviews the work of the principal investigator as published in

the following scientific papers:

1. I. Fried, Nonlinear finite element analysis of the thin shell of

revolution. Submitted for publication to CMAME (1983).

2. I. Fried, Orthogonal trajectory accession to the nonlinear equil-

ibrium curve. Submitted for publication to CHANE (1983).

3. I. Fried, On unconditionally stable implicit time integration

methods in elastodynamics and heat transfer. Submitted for pub-

lication to CNAME (1983).

4. I. Fried, Reflections on the computational approximation of elastic

incompressibility. Computers & Structures 17, 161-168 (1983).

5. I. Fried, Nonlinear finite element computation of the equilibrium

stability and motion of the extensional beam and ring. CHAME 38,

29-44 (1983).

6. I. Fried, Finite element computation of large elastic deformations.

Proceedings of the B riel Conference on the Mathematics of Finite

Elements and Applications, NEFLAP IV, J.R. Whiteman, Editor, Academic

Press, 143-159 (1982).

7. I. Fried, Finite element computation of large rubber membrane deform-

ations. IJME 18, 653-660 (1982).

8. I. Fried, Large deformation static and dynamic finite element analysis

of extensible cables. Computers & Structures 15, 315-319 (1982).

9. 1. Fried, Stability and equilibrium of the straight and curved alas-

tics-finite element computation. OWIE 28, 49-61 (1981).
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10. 1. Fried, Nonlinear finite element computation of the equilibrium

and stability of the circular plate. IJUME 17, 1427-1440 (1981).

11. I. Fried, Meaningful existance of finite element solutions to off-

limit problems. CHAME 22, 229-240 (1980).

12. I. Fried, Irregular finite element meshes in elastodynamics.

IJNME 15, 626-628 (1980).

13. I. Fried, On the optionality of the pointwise accuracy of the fin-

ite element solution. IJNME 15, 451-476 (1980).

14. I. Fried, Accuracy of string element mass matrix. CHAME 20,

317-321 (1979).

15. I. Fried and J. Metzler, SOR vs. conjugate gradients in a finite

element discretization. IJNME 12, 1329-1342 (1978).

16. I. Fried and J. Metzler, Conjugate gradient solution of a finite

element elastic problem with high Poisson ratio. CMAME 15, 83-84

(1978).

17. I. Fried and J. Metzler, Displacement, strain and stress error

nodal lines in finite elements. Computers & Structures 9, 335-339

(1978).

18. I. Fried and D.S. Malkus, Energy error in the elastic solution when

an incompressible solid is assumed compressible. In Formulation

and Computational Algorithms, K.J. Bathe at al., Editors, MIT Press

131-139 (1976). For'*
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2. Overview

This section reviews the papers listed in Section 1 in ascending order:

1. Energy error... : The computational problems arising in the finite element

simulation of incompressibility have occupied the author's attention since 1975.

The purpose of this paper is to show that, at least energetically, the exact

solution to the linear three dimensional elastic problem depends continuously

on Poisson's ratio J;. This means that taking v close to one half theoretical-

ly guarantees a close analytic solutions to the incompressible state. This is

also the basis for the residual energy balancing technique. Computational dif-

ficulties concerning convergence and conditioning are discussed in entry 4. of

Sec. 1.

2. Displacement, strain and stress error nodal lines... : The paper shows

computationally the existance of nodal lines in two dimensional finite elements

on which the error between the computed solution and the exact one is zero.

3. Conjugate gradient solution... : Iterative methods for the solution of

the large stiffness equation set up with finite elements has some distinct ad-

vantages (and admittedly disadvantages) over direct methods. Iterative methods

do not require the explicit assembly of the global stiffness matrix and can

operate on the element data and connectivity information only and are therefore

imune to the numbering of the nodes and the ordering of the elements. They may

require the minimum of data, as only one element if the elements repeat, and

naturally take advantage of symmetries and repeating eigenvalues.

The paper describes the application of the conjugate gradients method to

the solution of three dimensional elastic problem with Poisson's number that may

be close to 0.5. Scaling of the global stiffness matrix is shown to be highly

effective.

". I
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4. SOR vs. conjugate gradients...: The method of successive over relax-

ation has achieved great popularity in mathematical circles for the iterative

solution of linear systems of equations. Its main drawback is that it requires

an elusive factor for its success. It is shown on a two dimensional heat con-

duction problem discretized with finite elements that even with the optimal fac-

tor w SOR does not do appreciably better than the conjugate gradient method.

A slight change in the optimal w causes SOR to lose to CG by a wide margin.

5. Accuracy of string element...: Various mass distributions are dis-

cussed for the string element mass matrix.

6. On the optimality...: The finite element method produces solutions

that are energy optimal. The paper shows that the theoretical predictions for

the pointwise optimality of the finite element solution are correct. Essen-

tially in two dimensional second order problems the asymptotic displacement

error for linear elements is

maXlu - GI - ch2 In 1hh

where u is the exact solution ui the computed, h the element diameter, and

c a constant.

The paper argues that the asymptotic error estimate is impractical since
1

when h is large c is still a function of it and c(h)Ln j does not behave
1h

like In * One must go up to thousands of elements to be able to numerically
1

discover the In(t) in the error estimate.

7. Irregular finite element meshes... : The paper discusses some basic

problems in optimal arrangement of finite element meshes in the simple context

of the string problem. getting up a truly optimal mash of finite elmnts Is a
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very difficult task even in the simplest of problems and all one can hope is

for an adaptive, or iterative, procedure for the mash improvement. The paper

discusses the mass matrix only and makes the following interesting conclusions:

a. The optimal mass matrix is optimal only for a uniform mesh. Small

deviation from uniformity causes drastic accuracy losses with this element.

b. With first order elements the grading of the mesh is in opposite di-

rections for the lumped and the consistent mass matrices. The consistent mass

matrix is also insensitive to mesh grading.

c. With quadratic elements and a consistent mass matrix the mesh grading

is opposite to that for the linear element, and the problem becomes more sen-

sitive to mash variation.

8. Meaningful existance...: Considered are problems that are theoreti-

cally off limits for the finite element method such as problems with an unlimi-

ted energy, with a discontinuous solution, and with redundant boundary conditions.

It is argued that the finite element solution in all these cases is still useful.

9. Nonlinear...circular plate...: Gauss integration of the nonquadratic

total potential energy of the circular plate is used to derive the element tan-

gent stiffness matrix and element gradient for the large deformation analysis of

the plate. Computations are mde for the plate under lateral load and post crit-

Leal rim thrust.

10. Stability and equilibrium...curved elastica...: A slope formulation

of the elastica is discretized with quadratic finite elements. The element tan-

Sent stiffness matrix and element gradient are written in a form that is easily

prorinble for use with the Nowton-haphson solution of the nonlinear stiffness
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equation. Load and stiffness correction solution methods are also considered and

the importance of averaging the iterates is demonstrated. Very large deforma-

tions of straight and bent elasticas are computed.

11. Large deformation..cables...: To extend the possible boundary conditions

and to be able to include inertia loads the cable is assumed extensible. A quad-

ratic-quadratic large displacement element is formulated through discreet sampling

of the total potential energy. Various static and dynamic cable problems are

solved and the difficulties in computing the tension from the constitutive equa-

tion is pointed out. An experiment with a falling cable shows excellent agree-

ment with the computer model.

12. Finite element...rubber membrane...: Numerical sampling of the total

potential energy is used to derive the quadratic element tangent stiffness and

element gradient for the largely deformed axisymetrical, Mooney, rubber membrane.

Computations are made for the stretched and inflated disc, the inflated torus,

and the bulging tube under internal pressure. The convergence of the Newton-

Raphson method near a critical point is discussed.

13. Finite element...large elastic deformation...: Creation of the elemant

tangent stiffness matrix and element gradient for the computation of large elastic

deformation is discussed. The procedure does not require the elements to be small

in the sense of approximating an arc, and is otherwise analogous to the linear

finite element method except that the Newton-Raphson (or its modification) method

must be called to volve the nonlinear stiffness equation.

14. Nonlinear..equilibrium...extenszonal beam... : The element data for the

large deformation analysis of the curved extensible rod are given. Numerical

tests are done with the elient to compute the large deflection of a cantilever,

Je
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the pressing of a ring by polar forces, the deformation of a circular ring by ex-

ternal pressure; the motion of simply supported and free beaus, the vibration of

the ring, and the bending of a cantilever by a follower force.

15. Reflections on... elastic incompressibility...: Introduction of in-

compressibility into the finite element model is still of great current interest.

It is argued that the gradual increase of the bulk modulus coupled with a mesh

refinement is the most sensible thing to do both from the theoretical as well as

the practical point of view.

16. On Unconditionally stable...: Unconditionally stable explicit time in-

tegration methods are of the greatest interest in the finite element analysis of

elastodynamics and heat transfer. Several such algorithms have recently been

published. It is shown that the time and space errors become coupled and that

the space mesh reduction may cause a disasterous loss of accuracy.

17. Orthosonal trajectory... : The Riks-Wempner method for correcting the

equilibrium equation is modified to remove the need for an explicit load-dis-

placement constraint.

18. Nonlinear.. shell of revolution... : A cubic-cubic element is developed

for the large deformation analysis of the axisymmetrical shell of revolution.

Explicit formulas are given for the element tangent stiffness matrix and element

gradient. The bending of a thin spherical shell under the combined action of

polar forces and a surface pressure is computed. The high computational price

of the Nevton-Raphson method is noted.

,1
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* DISPLACEMENTS, STRAIN AND STRESS ERROR NODAL
LINES IN FINITE ELEMENTSt

tSAc Fown
Dpuarse of Mathematics. Bosm Univursity. Boa. MA 0215. U.S.A.

and

3. A. Manns
Department of Mathematics. Drew University. Mailison NJZ M&4 USA.

(Recawd I I September 1977. vriped for ,ubficeii. I Dmber 1977

Asrat-Nuweical experiments show dhat the arom in the compoted bite element solution and its duaivative
vanish on typical wror nodal tin inide each Wie elemsent. A theoretical explanation in gives to this pheemeen
which was previously discovered for distinct, special points. Sysieematic classifiaion of athlimes 1wor Uerea
eletment types and problem appears to be a worthy undertaking.

m M ttr parameter a. - 0 mtakes the finite element solution the
* lac the original observation by Barlow~lJ that the interpolate to dhe quadratic, mleaning doa it is emtendable
smbile element stresses computed in rectangular elements over neighboring elements. Also. since any smoo geolu-

I U the Gauss points are superior in accuracy, there have lion is, by Taylor's theorem, almost a polynoia inside
keen reports on different such special points in echb element, it is expectedl of the esrmr to change signs

*mctangles(21 and trangles(31. Using the best energy fit on x -0 and y - 0 in general. One is also templed to
* technique 141. whereby minimization of the error in the conjecture (as was done in (41) tha dhe best place Is

emiergy is carried out over a singl typical element with compute ii is at the nodes. Nummerical exe eas
a assumed polynomial exact solution that assures a however. refute this, at least in the bilinear case.
*Wely admissible Sakie element solution, it is shown For the biqadratic eeei

bere that there aentirelies (surfaces in space) inside + sexy+ @9y2 + a~ iy a?. -I .ys
6he elemnent on which accuracy is superior and hence the and consequently the choice a at ~' a,
%mnrty of observed special points. + spy' is made. Similar argumnets lead here to the Cosn-

These nodal lines depend on the element, original clusion that I.. changes signs along the lines x - *V3l
Problem and eventually location, as shown theoretically and Su, alon y - tV(I33). For On one is spin led to
md numerically in this paper. expect the best accuracy at the nodes.

To numerically observ all this and to sethe semt
i- --- umeuical integration, do smatinm~ a I, Ai

nom~wSU@IATONsolved in a square region with atO o n its houmdal y.
Here the snite eement solution i is obaned from the iite element calculations are carie "a with bilianar

minimization of and biquadratic elements (because of symmetry enly am
Iur scniee. h mndlKelo n n

1(f)ui J.:+I,"-2A)dxdy h isixmesobln e of aitesae
21, element as; in FW. I(&), are shown in Fis. 1(b) and ftL

f Figures 1(d) and (e) show the nodal limas at As and 66.
,4ro~andyfor the biqluadratic element (3 x 3 meash and an elemn at

do -h idl of the quadrat), with exact haertiom an a
W(011 -4, (Sx . I..+(,,ISA..d (2) 2 x2 (broken lin)Gansineratioscaeme. Ifd& ord,

a.w F g Iompute at the Gauss pon tha the 2 x 2 in.
lerea an Lam~ teationaus.a as cam be seen tm Table 1. in a

a ad A wedoexat sluionandth fiite wrainhlss ofaccoacy.tam Vial huoc"m respectively.
f larthe bimiear. reacanoguar la elemn J-@* HAT& esmQ

' ty sixy, -lS Iax 61. inide each element and Here on is calem to mummutame (Pebsee'ls ratio &a%:.
,NWAOY thm choic a-o2* + es Is made. The potential y

*iztiWonof (2) ylels-.a s a 0 m and a a wuh
~t...,zjr Equatin as6 n, wit A. A,

Otearitg, and ay ., and thdo ia 0100! V a" f(1.+2 +2 o dy a)
k -4 and 8i, -a, - ,e chomjn sip, on the lIms
I's ad Y-0. sespectiwly. Cheoelg doe Iree
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CONJUGATE GRADIENT SOLUTION OF A FINITE ELEMENT
ELASTIC PROBLEM WITH HIGH POISSON RATIO*

Isaac FRIED
Boston University, Department of Mathematics.

Boston, Massachusetts 02215. USA

and

J.A. METZLER
Drew University, Madison, New Jersey 07940, 1fV

Received 6 February 1978

Introduction

The conjugate gradients method has been shown [ I I to be an attractive technique for the solu-
tion of the linear algebraic system that is produced by finite elements. It has been noticed however
[21 that convergence depends on the eigenvalue spread in the global stiffness matrix, and that an
ill-conditioned system leads to poor convergence. Scaling has been shown to improve the per-
formance of the conjugate gradient method in plate problems. In the present paper this method
is applied to an elastic problem to study its functioning in the presence of high Poisson ratios that
cause a deterioration [31 in the condition of the global stiffness matrix. It is also shown here that
scaling has a considerable beneficial effect on the convergence of conjugate gradients also in this
case.

I. The elastic problem and its discretization

We propose to use conjugate gradients to solve the problem of a rotating hollow elastic sphere
[41 discretized with finite elements. Because of symmetry only a quarter of the sphere need be
considered, and we divide the arc and radius into N, equal parts to form a mesh with N "aquare"
finite elements. A biquadratic interpolation is adopted over each element, which is thus associated
with nine nodal points.

2. Numerical computations

Actual numerical computations were carried out with N, 4, 5, 6 and 7 elements per side, once

Work supported by ONR contract No. ONR-N00014-76.C-36.
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without scaling and once with the global stiffness matrix K symmetrically scaled so that Kt = 1.
* The algorithm was terminated in each case when the change in the quadratic form 7r(x) = 'xtKx

- xtf which is minimized reached the machine accuracy. The results of these numerical computa-
tions are listed in the tables below. Notice in these tables the substantial savings with scaling. The
following notation will be used:

v Poisson's ratio
N, number of elements per side
N size of the linear system
Nit number of iterations required for convergence

Ne=7, N=450 Ne-6, N=338

not scaled scaled not scaled scaled

, Nit Nit/N , Nt Ni/N V Nit Ni/N V Nit Nj/N

0.0 421 0.936 0.0 158 0.351 0.0 344 1.018 0.0 135 0.399

0.1 426 0.947 0.1 158 0.351 0.1 350 1.036 0.1 138 0.408

* 0.2 452 1.000 0.2 165 0.367 0.2 359 1.062 0.2 141 0.417

0.3 484 1.076 0.3 183 0.407 0.3 376 1.112 0.3 157 0.464

0.4 587 1.304 0.4 225 0.500 0.4 447 1.322 0.4 191 0.565

0.45 738 1.640 0.45 292 0.649 0.45 581 1.719 0.45 247 0.731

0.475 964 2.142 0.475 395 0.878 0.475 744 2.201 0.475 333 0.985

Ne =5, N=242 N,=4, N=162

not scaled scaled not scaled scaled

, Nit Nit/N p Nit Nit/N a Nit NIt/N a Nit Nt/N

0.0 272 1.124 0.0 113 0.467 0.0 194 1.198 0.0 87 0.537

0.1 269 1.111 0.1 114 0.471 0.1 194 1.198 0.1 90 0.556

0.2 276 1.140 0.2 119 0.492 0.2 198 1.222 0.2 94 0.580

0.3 298 1.231 0.3 128 0.529 0.3 212 1.309 0.3 103 0.636

0.4 351 IASO 0.4 156 0.645 0.4 242 1.494 0.4 122 0.753
0.45 440 1.818 0.45 205 0.847 0.45 296 1.827 OAS 153 0.944

0A75 546 2.256 0.475 '264 1.091 0A75 364 2.247 0.475 193 1.191
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round-off errors, it is the author's experience that this i, not a serious pr(-icN less_, _
system is particularly ill-conditioned. In the cases where ths, ', a problcm, aut r
recommend scaling of the type described in References 3. 4. tuctl'.#,

In this paper we apply both SOR and ('G to a two-dimensional stationary heat uctloaA ,

prohlem discreti/ed with finite element,, and show that even urnder optimal conditions. that in
fact rarcl materiali/e. S()R converges 'nk, slightlh faster ihan the more conveniently pro-
grammed ('C.

SUCCISSIVE OVERREI.AXATION

e.t us recall the SOR algorithm. We wish to solc the lineai algebraic s\stem

KY 4 (I)

and with positive definitc and ,,ymmetrie K, which we decompose in the form

K - !) l. (2)

where D is (block) diagonal and I. the remaining strictl.v lower triangular matrix. We write now

1I) 4 l 1 ( - . t I. (I ,( ,)I) , f (,,, (3)

in which (o is the overrelaxation factor. l'he successive overrelaxation scheme in equation (3)
has the itleration matrix

I .. I) A. 1(,I (a)D,. I1 (4)

and the basic problem of SOR is to locate the optimal w that minimizes the spectral radius
p(L.,) of the matrix L,.,. No sure wai exists to find the optimal w,. which is the greatest flaw of
SOR especially in view of the fact that the efliciencv of the method stronglv depends on a).

(ONJIiATE GRAI)I-N[S

Here the algebraic system in equation (I) is solved by

I, -- Kx,,. p,,

=x - p' r,/p,'Kp,

r,.1 - r, - a, Kp,
P , r ,.jr, I /r~lr,

p,= r, I + p3p,

No elusive factor is needed in this algorithm and the only matrix vector multiplication that
appears in it is Kp. How to carry out this algorithm with finite elements is discussed in
Reference 3. What we want to do hcre is only to compare the two algorithms on a given
realistic problem.

TEST CASE

Figure I shows half the cross section of a double barrelled steam pipe of which abcdef is a line
of symmetry. The lurger bore b carries steam at a constant temperature 5MKIF while the
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ACCURACY OF STRING ELEMENT MASS MATRIX
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Various element mass matrices are considered for the two-nodal-point string element. From finite
difference arguments it is known that an optimal element mass matrix exists -equal to half the sum of
the lumped and consistent mass matrices- which causes an error of only 0(h") in the computed natural
frequencies instead of the 0(h 2) that is obtained with the consistent matrix. It is shown here that
nonuniformity in the mesh destroys this optimality and has also an adverse effect on the accuracy of the
frequencies computed with the lumped element mass matrix.

I. Uniform mesh

Let us write the element stiffness matrix k, and element mass matrix m, for the two-nodal-point
string element as

-, - fl, M,= h 1- ck (1)

where the element size h may vary from element to element. When a = 2/3 and a = 1, m, in
eq. (1) becomes the (variationally) consistent and lumped element mass matrix, respectively.
According to the minimax principle [11 all the natural frequencies computed with the
consistent m, are above the corresponding exact ones, and the error in them is 0(h2).

We are interested in studying the effect of a on the accuracy of the computed natural
frequencies of the fixed string with the hope of discovering an optimal a. We shall do it by
finding a closed form expression for the approximate natural frequencies of the fixed string.
Assembly of two neighbouring elements produces the finite difference equation for the jth
node:

-uj,- + 2u% - u ,+ - h2[(1-a)uj-, + 2auj + (- a)uj,+u, (2)

where N - /A is the approximate natural frequency, where j = 1, 2, . . . N, and h = I/(N + 1).
Eq. (2) is solved by u = cz', which when substituted in eq. (2) leads to the characteristic

*On leave from Department of Mathematics, Boston University, Boston, Massachusetts, USA.
Research supported by the Office of Naval Research Contract No. ONR-N00014-76-C-036.
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318 L Fried, Accuracy of string element mass matrix

equation for z:

Z'- 2bz+ 1=0, b j~la) A=Ah 2, (3)

or

z= b -t Nlb-1 (4)

Since the eigenfunctions; of the fixed string are trigonometric functions, we expect the roots of
the characteristic eq. (3) to be complex. The condition for this is that b2 - I < 0, or

assuming that 2a - 1 > 0. We know [I1] that the eigenvalues 1' of the global system Ku AMu are

bounded by the cigenvalues of the element system

k~u' = iA'u' (6)

such that

min i:5 A max {Ae~} (7)

where A, and A. are the first (lowest) and nth (highest) eigenvalues of eq. (6). Here, with k
and m, given in eq . (1) i = 0 with the corresponding element eigenvector U., = [ 1, 11, and

i2= 4/[(2a - 1)h'J with the corresponding element eigenvector u. = [I, -1]. Hence, according
to eq. (7), 0 A : 2/(2a - 1). But ;L = 2/(2et - 1) occurs only when the string is free-free for
the global eigenvector u' = [1, -1, 1, -1,.. ..1. Fixation of the end points reduces the maximal
natural frequency to IL < 2/(2a - 1), and z in eq. (4) is indeed complex. Because the free term
in the characteristic eq. (3) equals 1, IzI =I, and we may write the complex conjugate roots
of this equation as z =cosO~ +i sin 6. Then u = c~e' + c2e O, - V-1 4C M =

c1 COSj9 +C2 sin j,j =0, 1, 2,. .. N+ 1. The end condition uO 0 is satisfiij*iMl =0,and the
end condition UN+1 = 0 with

(N+1)0 = r, 2v,... n. (8)

The jth entry in the n th eigenvector therefore becomes

.= sin Nv +9)

From eq. (4) we have that cos 09= b. or

I - Cos- 9 (10)
Ll(a - )(1- COS
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which (with the identity 1 - cos 9 = 2 sin2 19) simplifies into

h- 2 sin4G (11)
[I + 2(a - 1)sin2 el "

Expansion of the right-hand side of eq. (11) in terms of O yields the following error
expression for w:

(6a - 5)0 2 + (12)

When a -- 4/6 (i.e. when m, is consistent) and when a = 6/6 (i.e. when m, is lumped), the error
in the computed frequencies is 0(h 2). But when a = 5/6, the error (according to eq. (12))
decreases to 0(h4) (see [2], [3]). In view of this we shall term m, with a = 5/6 optimal. It is
interesting that the optimal element mass matrix is obtained from the physical lumping
method [4] by considering half the element mass uniformly distributed and another half
lumped at the ends.

Fig. I compares the frequency errors for the different choices of a in m, in eq. (1) for the
complete spectrum 0 i n h :<;r.

0.t .- 4/I

0

-0I

_Q2Lump,(~I

-03

Fig. 1. Frequency error curves for the fixed string.

2. Nomuniforn mesh

Accuracy predictions obtained by finite difference arguments over a uniform mesh are
susceptible to deterioration when the mesh is not uniform. To see what happens to the

47'

................................. i,*.-
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accuracy of the frequencies of the fixed string computed with the various element mass
matrices m,, we numerically solve the string eigenproblem:

U" + WU = 0, 0< x <2i (13)

U(0) U'()= 0

for the fundamental frequency w,.
According to eq. (13) u" is proportional to u, suggesting a nonuniform mesh with elements

near x = 0 larger than those near x = 2. We decide to grade the elements according to

= 2irl j=1,2,. N+1, (14)hj= sn - /22(N + 1)'"

where e is fixed by the condition that h, + h2 +" -- + hN+i = 2. The graded mesh thus obtained
is shown in fig. 2 for the case of 12 elements (N, = N + I = 12)-

! IvI

NIorwform mesh (N.12)

- Nonform

-4 - -- Wiorm

-ogM/A,-II.

Fig. 2. Convergence of the fundamental frequency it in a fixed string that is discretized with (a) a uniform mesh
(---) and (b) a nonuniform mesh (--).

Computation of the fundamental frequency o;'= ,t is now carried out first with a uniform
mesh, and the error reduction with the number of elements N. is indicated in fig. 2 by a
broken line. As predicted in the previous section, the magnitudes of the error in A, computed
with the lumped and consistent mass matrices are nearly equal. The optimal a. produces a far
more accurate AI with a faster diminishing error. The erratic convergence of At computed with
the optimal m. (as seen in fig. 2) is due to round-off errors, the calculation being carried out on
a computer with about 8 significant digits.

j The nonuniform mesh, graded according to eq. (14), produces a slightly more accurate ,
when the consistent m, is used. On the other hand, the effect of nonuniformity on the accuracy
of At computed with the optimal in. is devastating. Superconvergence is not only wiped out,
but the error in A, is not even proportional to N.- in the range N. 5 12.

JIMM7
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The grading rule (14) that is based on variational error estimates produces also a less accurate A
with the lumped m.. It is observed, however, that to improve A with the lumped m, the mesh
should be with smaller elements near the ends than in the middle.
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SHORT COMMUNICATIONS

ON THE OPTIMALITY OF THE POINTWISE ACCURACY OF THE
FINITE ELEMENT SOLUTIONt

ISAAC FRIEDt

Department of Aeronautical Engineering. Technion-Israel Institute of Technology, Haifa, Israel

SUMMARY

Closed form finite element solutions are obtained for the uniformly loaded membrane in R', n = 2,3
discretized with first-order elements. It is verified on this model that the pointwise error in the displacement
is 0(h 2 log 1/h). Slopes converge pointwise at the optimal rate 0(h).

INTRODUCTION

Since the finite element solution is obtained by the minimization of the total potential energy,
this solution is optimal in the energy norm. If the element shape functions include a complete
polynomial of order p, then the error in the finite element solution to second-order (membrane)
problems is O(hp). Energetically, this is the best approximation achievable with piecewise
polynomials of order p. But what about the pointwise error in the finite element solution? The
best pointwise displacement error possible with elements of order p is 0(h PI). Recently, Scott'
showed that for the two-dimensional membrane the pointwise error in the computed solution 4
is actually

max u-. 4 O(h 2 logl/h), pl(
10(h"I), p 2

Nitsche2 showed that with linear element the pointwise error is 0(h 2 log 1/h) also in three
dimensions.

Here the uniformly loaded membrane problem in R", n = 2, 3
-r-(r- uT)= 2n, 0<r<l

(2)0'0) = U (1)= 0
-*

that is solved by u = 1 - P2 is considered (see also Reference 3). With the total potential energy

ir(u) = fo ( u' - 2nu)r"' dr (3)

a finite element solution 4, consisting of piecewise linear elements, is obtained from equation (1)
in a closed form. It is verified from this solution that, in fact, asymptotically Iu - a211 =

0(h 2 logl/h). Slopes converge, according to the present computational model, at the optimal
rate Ilu'- '1. - 0(h), both in two and three dimensions.
t Research supported by the Office of Naval Research, Contract No. ONR-N00014-76-C-036.
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452 SHORT COMMUNICATIONS

CIRCULAR MEMBRANE

Discretization is performed with N = I1h linear elements. With n =2, the total potential energy
in equation (3) provides the element stiffness matrix kc, and element load vector f.as

from which the global data

K.. 1 21 - 8 - f=h2F121(5-5 12 -7 181 5

is assembled. Because of the regular structure of K and f tVie global system Ka f is readily
solved to yield

3h 2,.., N(6)

but

j 3 -(j- 1) 3  3ij23 +1 I ( I+ 1 7

and consequently equation (6) becomes

4i=1I - ri + 1h 2 -1 (8)

where r, - h(U -1) . Figure I traces the error distribution u - 4, where u =1 - r 2 and a is linearly
interpolated inside the element from the computed nodal values 4i in equation (8), over a
seven-element mesh. The maximum pointwise error occurs at r =0 (i.e. i -1, ri 0) and

0005 0

0

-0005

-0015
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equation (8) provides the error expression
N 1

max - -2 2 (9)

As N increases, the sum in equation (9) grows like log N, and it may be written as

Ilu - fill. = 31c(N)N -2 log N (10)

where c(N) is graphed in Figure 2. The coefficient c(N) converges to the value 2 but so slowly as
to make the asymptotic estimate Ilu - fill. = 0(N- 2 log N) of only remote practical usefulness.

c(N)
20

c(N4I/(12j-J/kbgN

0.5 I-$.
/0.

0 N
5 4 8 16 32 64 128 256 512

Figure 2. Coefficients c(N) for error expressions (10) and (22)

First-order elements provide only a constant computed slope inside each element, and here

4'= h-'(4i+1- f) = -1h 3j2- 3i+ 
)

2j -I

Figure 3 traces the error distribution u' - u' over the same seven-element mesh. It is seen that
the slope error changes sign inside each element so that there is a point inside each element at
which u' - 4'= 0. The exact slope inside the jth element may be written as

u'=-2r=-2h(j-I+J), 0 (' 1 (12)

and the condition u' - a' yields the special points

62"161i 1 (13)

At the centre of the fkelem2 
T

6i-3

I



454 SHORT COMMUNICATIONS
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Figure 3. Circular membrane, slope error distribution u'- 4

and when j=(N + 10/2, for instance, u'- IV'= '3N-; superconvergence takes place. The maxi-

mum error in u' is at r = 0, and

max lu'- fi'l= 4h (15)

Slopes converge pointwise at the optimal rate 0(h).

SPHERICAL MEMBRANE

With n = 3, the total potential energy in equation (3) yield the element data for the first -ordier
element as

k,=3h3e- e+ )1-11, h ~I3[6 e- 8 e+3 (16)

maths grids 11 121e2-4

froin which the global data

1I 1
-1 8 -7 14

K ~ - -19 56 -61 f=h 3 10(17)

A closed-form solution to K42 f is readily obtained and at the ith node

ItI
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But

j 4 -(j-l1)" 4j3 -6j 2+4j-t 1 =j I-1+4
i3 =~l 3j2 -j+1 3j -3+ 1 (19)

and consequently, equation (18) becomes

2 N I 2j- 1
4i =I - i +-21hiy~i3j2- 3i+ 1(20)

Figure 4 traces the error u - 4, where u = 1 - r2 and where 4 is linearly interpolated from the

nodal values i given in equation (18), over a seven-element discretization. The largest

000

-0005

Figure 4. Sphere, displacement error distribution u - 4

pointwise error in u occurs at r = 0 (i.e. i = 1), and according to equation (20)

N 2j- 1

Again, equation (21) is written asI~-I~i()~oN(2

where c(N) is graphed in Figure 2. As N -* o, c(N) -+2/3, but so slowly as to make the
asymptotical error estimate flU _-j = 0(N-2 log N) of theoretical interest only.

The computed slope inside each element is here

i4 -2, -~h~ W)
h -'41+,- 4j 77(717(23)

and the error distribution u'- aW'is graphed in FigureS5. Change of sign of u'- a'takes place, also
here, inside each element and the error nodal points for u'- i2' are at

1 6j2 _4i + 1(4
~26j2-6j+2 (4

V_ _ _ _ _ _ _ _- ~~.- - 7~

* 7_
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025
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Figure S. Sphere, slope error distribution u'- u'

The maximum of I u' - a2' occurs at r = 0, and

maxlu'- 4'1=-2h (25)

Also in three dimensions the computed slopes converge pointwise at the optimal rate 0(h).
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IRREGULAR FINITE ELEMENT MESHES
IN II1ASTODYNAMICS-.
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SUMM~lARY'

(irdang rules fi r toiisea tit In laanipld cleclisare prpo~,tc. O ptaimal ma, matrices on finite differentc
considerations are %er\ sensim-e wi mesh gradi'rw Srasatw'.i of the soltain .accuracv to the mesh ratio
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1-irst we shall srtse the string cigenpra alern

*s A u 0. 0l* 1

with an irreguliar mesh of first-order lemnt.thIle clement stititiess miatrix k.. and the clement
mass mairix P11, Of the linear- cemaent are

Whe n a I an (at a , .n becomes s aiiationally consistent, and humped, respectively. When
ix h, , b ecomes optimal --the .aceuraey of A computed with a uniform mesh of these clement%
increases' from Of/) Ito 1/*' i.

Suppose we are iliterested in the first cigenvaltie A Iinr of equation t )with the correspond-
ing cigenfunctiont u sin 1T.t. In the conistent formulation the energ-, error in the t'th clement is
proportional to i,.ju"!, where h,. is the element size. Hence, the optimally graded mesh is here
with small elements near the centre of the string where is" is large, and with large elements near
the ends (if the string where is" is small.

To ohserve more precisely the dependence of the discretization accuracy of A I on the mesh
grading the sting is divided'into Vs- finite elements %ymmjetricall% graded according to

Ii.Ja~ c~1. 2. I(Ne 1112 3)

where -- is changed to achieve variouas mesh ratios Yj

For instance, for ,; - 2, z-0,38685 while for v77 ~ 0-38h95. These element size

distrihutions are graphically shown in Figure 1.
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I-igure ). AtA'urat y tf A I computed with first-order elernent%

The fundamental cigenvaluc A I o the string is no, computed with the consistent, lumped and
optimal n,. in equation 12) for different values of the mesh ratio T). and the results of this
computation are shown in Figure 1. As predicted, with the consistent fi, the optimal mesh ratio
7 is less than 1 and is seen to be close to one-third. It is interesting, however, that with our
grading rule (3) the accuracy of the computed A, does not change much between 17 = 3 and 17 i L
A computational procedure to automatically grade the mesh is not likely to prove profitable
here. We further note in Figure 1 that with the lumped in,, grading of the mesh should be done in
the other direction, with larger elements near the centre rather than near the ends. Mesh grading
based on variational arguments will lead with a lumped mass matrix to a loss of accuracy. The
optimal element mass matrix is extremely accurate when the mesh is uniform but its accuracy
drastically drops' with departure from mesh regularity.

OUAi)RATI(" ELEMENT

Ilow do matters change when quadralic clement arc used to discretime equation M i7To find out
we use the element matrices

k, - - 16 -8, ,. _ - 16 2 in: = ,1h 4 ]5)1-8 7] ' 4_

for quadratic elements of size 21r. iI equation (5), k,. denotes the element stiffness matrix, in, the
consistent element mass matrix, and n: the corresponding lumped matrix.

With the consistent formulation, the error in the eth element is proportional to h.Iu'-I. But
here ju"I -- f'lcos rxj and hence the optimal mesh is with large conmstent elements near the
centre of the string ind with small elementsinear the ends.

Ilecause of their high order, three of the quadratic elements are suilicient for reasonable
accuracy in A 1. They are symmetrically graded, as shown in Figure 2, and the mesh ratio 11 is
again increased from one-third tO 3. Figure 2 verilis the theoretical prediction of optimal r/- 1.
rhe gain in accuracy between q and P7 -- 3 is greater here than with the first-order elements
hut is still not so great as to justify an expensive computational procedure ito locate the optimal n.

-7 , t, ...
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With the lumped. in,. the grading (direction is once miore opposite to the coflsistelt 1 > I
causes a loss in th-: computed A .. Also, %% ith the lumped in_. the error in A, may change sign
and hence thv horns on the error curve for this element.
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MEANINGFUL EXISTENCE OF FINITE ELEMENT SOLUTIONS
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Problems for which the variational principle of minimum potential energy breaks down, and are
therefore formally unsuitable for a finite element analysis, are shown to possess. nevertheless, a useful
discrete solution.

1. Introduction

Finite elements are at their best [11, [21 in problems that possess a true minimum or
maximum variational principle. For then the energy convergence of the finite element solution
is generally proved, and the numerical stability of the discrete algebraic system set up with
finite elements is guaranteed for general mesh layouts. There are boundary value problems of
physical significance and interest for which the variational principle breaks down because of
boundless energy in the solution or because an analytic solution does not even exist for these
problems. These problems are theoretically off-limits for the finite element method in as much
as the theoretical support of the method does not cover them. Energy convergence- even
pointwise convergence - as discussed in the literature, becomes meaningless, for how does one
measure convergence to a solution that does not exist? Nevertheless, conventional finite
element discretization of such problems produce discrete solutions that improve, in some
sense, with the refinement of the mesh, and are therefore entirely useful.

Some simple examples are solved in closed form or numerically in the following text to
demonstrate that the usefulness of finite elements is retained in these marginal areas where the
analytic solution or the variational principle totters. Hopefully, more light is shed thereby
and understanding deepen on the twin prime theoretical questions of existence and con-
vergence of the finite element solution when viewed from the discrete point of view.

2. Circular membrane under a point load

Operationally this axisymmetrical problem is formulated as:

-(ru'y = 0, 0 < 1,

-ru'(O) = 1, u(I)=o, (1)

*Asaociate Professor, on leave from Boston University. Department of Mathematics.
Research supported by the Office of Naval Research Contract No. ONR-N00014-76-C-036.
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230 I. Fried, Meaningful existence of finite element solutions of off-limit problems

and

u(r) = log(1/r). (2)

The energy stored in a unit membrane axisymmetrically deflected is

E 1u] u '2 r dr, (3)

which is infinite for the logarithmic u in eq. (2). Let u now be any continuous function
that satisfies the condition u(1) = 0. Formally, the total potential energy of the point-loaded
membrane (1) thus deflected is

ir(u) = E[u]- u(). (4)

To approximately solve problem (1) with finite elements by minimizing 7r(u) in eq. (4), a
uniform mesh of N linear finite elements is laid upon the membrane. From E[u] in eq. (3) an
element stiffness matrix k, is derived in the form

k =(2e - 1) - e = 1,2,.... N, (5)

and the discrete total potential energy is assembled according to eq. (4). Minimization of ir(u)
with respect to the nodal variables, under the restriction that u(1) = 0, produces the algebraic
system Ki = f for the nodal unknown vector 4, where the global stiffness matrix K and the
load vector f are

1-1

-I 4 -3
1 -3 8 -5K=i -5 12 -7 ' =(6)

-7 16 -9

The closed-form solution of Ki = f yields

N2
I=1,2,(... N, (7)

for the ith node and 4N., =0. At the center r =0 (i = 1) of the membrane where the point
force acts

N 2
1, = - a log N. (8)

2j - I
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Even without a closed-form solution an assiduous analyst performing numerical computations

with a succession of refined finite element meshes will soon discover that 01 keeps ever
increasing with N, and that correspondingly the discrete total potential energy keeps ever
dropping as N is increased.

Away from the singular point r = 0 pointwise convergence of the finite element piecewise
linear solution 4 to u = log(l/r) takes place with the increase of N. Consider, for example, the
point r = 1/2 (i = N12 + 1, N even). At this point u(1/2)= log 2 and, according to eq. (7),

U =2 (N+51 + N_3_+_N+ + N+N-f (9)

To elicit the rate of convergence of the series in eq. (9), it is helpful to notice that
I I

I idp = f 2 dp = log r (10)
P

so that

,(Y- dp = log 2. (11)
, 1/2

Numerical integration in eq. (11) produces the series of eq. (9). Indeed, if 2 p -5 1 is divided
into N/2 equal intervals, then at each node thus created pi = 2+ (i - 1)/N (i 1, 2,... IN + 1).
Within each interval (p2)= (N + 2i - 1)IN, and the contribution of each interval to the integral
in eq. (11) is 2/(N + 2i - 1). Summation readily produces eq. (9). Numerical differentiation and
integration arguments lead to the conclusion that this sum converges 0(N -2) to log 2. The same
conclusion could have been reached using the trapezoidal rule on the first integral of eq. (10).

Fig. 1 compares the computed 4 with the exact u = log(lir) for N = 10. At the origin the
approximation is of course bad, but away from it agreement between the computed a and the
theoretical u rapidly becomes excellent.

Once our ideal analyst has noticed the singular behavior of zi near the origin, he knows that
he should change to a nonuniform mesh of finite elements for higher computational efficiency.
We suppose him endowed with broad knowledge and deep understanding of the method of
finite elements and its theoretical intricacies. Consequently, to decide the mesh grading, he
sets out to estimate the curvature of u. This he does by computing Iai"j, where

01 = N(t, - 2uj + %,I), i = 2,3,... N. (12)

In more complex situations 0"7 may be computed from the computer output. Here eq. (7) leads
to the formula

4N
2

(2i - 1)2i - 3)' i 2,3,... N, (13)

indicating the sensibility of a much finer mesh nearer r =0 than near r = 1.

'.2

t.
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• GL, coMWt dd

2

3 It-614

11 t .1i2 O.3i67
9 0.2229 0.1231

J In L o. , I .1054

Fig. 1. Point-loaded circular membrane discretized with 10 linear finite elements.

When the mesh is nonuniform, then at the Ath node
N r:;

L= 2 1+1 (14)Sr ,+ j'

where r, =0 and rN+j = 1, and in fact as grading becomes steeper, cr r+1/r, 1 , zt ap-
proaches a growth proportional to N. The rule r = eQ - 1)", 1 = eN', for instance, yields for
the specific a = 4 the computed central deflection

-=-2(1 15 55 175 6(15)

instead of eq. (8).
Energy convergence of the singular membrane problem of this section, excluding the

neighborhood of the singularity, can be proved also generally by the standard finite element
arguments. Corresponding to K in eq. (6) the global flexibility matrix is given here by

K.= [2 k 1  J i, (16)

which means that removing the force from the origin and fixing it at node i does not change
the solution A for j z -, while 0 remains constant for j S i. The analytical solution u behaves
the same way since -ru' = 1 is true not only for r = 0 but for all r. Now u is regular inside all
the finite elements, and consequently the full rate of convergence of the finite element
approximation to our original solution, excluding the singular origin, takes place.

r _-~

" ' "' | 1 1 II I
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Table 1. Computed finite element approximation 2 to the
deflection of a square membrane with a central unit force

x y 4iN. = 20 4, N.. = 60 Analytical

0.05 0.03 0.27531 E-2 0.27375 E-2 0.27357 E-2
0.10 ').10 0.11015E-I 0.10956E-1 0.10949E-I
0.15 0.15 0.24840 E-I 0.24714 E-I 0.24699 E-I
0.20 0.20 0.44456 E-I 0.44243 E-1 0.44217 E-1
0.25 0.25 0.70505 E-I 0.70177 E-1 0.70138 E-1
0.30 0.30 0.10451 EO 0.10399 EO 0.10383 EO
0.35 0.35 0.14994E0 0.14810E0 0.14890 E0
0.40 0.40 0.21592 E0 0.21333 E0 0.21312 E0
0.45 0.45 0.33650 E) 0.32429 EO 0.32337 E0
0.50 0.50 0.72346 E0 0.89016 EO o0

Such simple explicit reasoning does not apply to the square membrane problem with a point
force at (4, iq)

u. + u11+ (W, 7) =O, 0 < X< , 0< y<,

u = 0 on the boundary, (17)

for which Green's function [3] is

t4 - sin irx sin i 3, sin ivre sin ji-M
G(x, Y, ,) I - in P+ , (18)

including a singularity O(log lIr) around (4, ii).
To observe the behavior of the finite element solution to eq. (17), the square with a unit

point force at e = q = 2 is discretized with N,. bilinear elements, and the discrete problem is
solved twice, once with 20 elements per side (N,, = 20) and then with 60 elements per side
(N. = 60). Table 1 compares the computed results with those given by eq. (18). An addition of
about one significant digit with the mesh refinement is evident. Next the serious analyst sets
out to compute i , , and L, to better lay a nonuniform mesh of elements, triangular
perhaps, around the singular point, but we are not yet prepared to follow him that far.

3. Sphakal mmbrm under pluat 1o"d

Eq. (1) changes here into

-( 2 u'y=O, 0<r< 1, (19)

-r'u'(o) =1, u() =0,
and

tU 1. (20)
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The total potential energy corresponding to boundary value problem (19) is

S -(u) = u'2r 2 dr - u(O), (21)
0

where u is continuous and u(1) = 0. From r(u) an element stiffness matrix is derived in the form

k = -- (3e' - 3e + 1) 1 (22)

where N denotes the number of equal finite elements in the discretization. Following the standard
finite element procedure produces the albebraic system K6 = f, where

-1 -1 1
1 8 -7

1 -7 26 -19
K -N -19 56 -37 (23)

-37 98 -61

and
N N 3-N3N 7_; _ 3 (24)

At the center

f N _______ 3.15_ (25)a N3j2 - 3j +1 =3.915N

since the sum of the infinite series I 1/j2 has a limit. Again, as the mesh of finite elements is refined,
the computed central deflection A keeps ever increasing, and with it the energy stored in the
membrane.

Away from the origin, pointwise convergence of the computed 9 to the exact u = 1/r- 1
takes place. Consider for instance the point r = (i = N/2 + I, N even) at which u = 1/(j) - 1=
1. At this point

I N
U2 N 3__(-  (26)

The convergence of the sum in eq. (21) to u(d)= 1 can be proved by differentiation and
integration arguments, as has been done for the circular membrane of the previous section,
from the equation

u(r):= -I = dp = y dt, (27)
r IU(,=!~=•!dPr7,di
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or in particular from

u@% J Q3dr. (28)
1' n~ y

Division of the interval 12:s r !-.1 into N/2 equal segments and the performance of the
numerical differentiation of P3 and then a midpoint numerical integration of 31(r'y produces
the sum in eq. (26). Convergence of 2(12) to the value I occurs at the rate of N. Fig. 2
compares the computed j2 and the exact u = I1/ - 1 when N = 10.

All the above discussion assumes a uniform mesh which is very inefficient here since

fi7!18N' - (29)

A much finer mesh near r = 0 is called for than near r =1. With such a mesh

or, when rj e(j - Ir and eN0  1,
N

A =3NX 7= j-((31)

and for large N
U1 = Ca)Na,(32)

where c(1) =3.91, c(2) =3.64, c(3) =3.38, c(4) =3.20 and c(5) =3.10.

/r

OIcorrputed

20

node

301 39.16 -

302 8.160 9.000

3 M.74 '.000

4 2.295 2.333

3 1.484 150

40 6 0."924 1.000

71 0.6627 0.6667

6 0.4265 0.4286

9 0.2489 0. 2500

Fig. 2. Point-loaded spherical membrane discretized with 10 linear finite elements.
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4. String under point torque

Consider a string of unit length with two equal but opposite forces P acting on it at the
points i - e and i + e, and such that 2EP = M, where M is a constant moment. When e -, 0, the
deflection of this string becomes

u(x)=-Mx O-X< 1

1 (33)
u(x) = -M(x - 1) <x 

3,

2

and at x = 2 the string deflection becomes multivalued: u 0) and u( + 0) = !M The
energy needed to thus deform the string is infinite.

Our hypothetical analyst ignores this last unpleasant fact about string energy, and, being an
ardent admirer of the method of finite elements sets out to solve it numerically by this
technique.

Associated with the present string problem is the total potential energy

f(u)=f u2dx- Mu'(2). (34)
0

Because u' is needed at the point x 2 , cubic C' finite elements suggest themselves for the
discretization. What results from such a computation is graphically shown in figs. 3 and 4 for a
20-element mesh and M =1. Close to the center, where the torque enters, the computed
displacement function oscillates severely over some two or three elements (over each side) as
it tries to adapt to the discontinuity. Outside this internal boundary layer the oscillations
rapidly subside, and j2 and u agree excellently. Figs. 3 and 4 unmistakenly suggest a

90

80

70

U.0 60

50 corveu 50

40 -- dyticaf u

30

0 h 2 3h f Nh"201
FIg. 3. String under central point torque discretimed with 20
cubic C' finite elements (computed and analytical displace- Fg. 4. Stringof fig. 3(cotnputed and analytical
ments shown for the right half of the sting). sopes shown for the rt hl of the string).

, |*
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nonuniform mesh of finite elements with larger elements near the ends of the string and much
smaller elements near the singular point x = 2. A repeated computation with such a mesh will
reveal that the boundary layer is mesh-dependent, and, as the elements close to x = 1 become
smaller, it shrinks. The oscillations, it is concluded, are spurious and are caused by a
discontinuity of u at x = 2 with infinite slope and hence infinite energy.

5. Point displacement given to a membrane

Suppose that the unloaded axisymmetrical membrane is given a unit central displacement.

The resulting deflection u of the membrane is determined by the solution of

-(ru) = 0, 0 < r < 1, (35)

u(O) = 1, u(1) = 0,
u(r) = c, log(1/r) + c2, (36)

where c, and c2 are to be fixed by the boundary conditions u(0) = I and u(1)= 0. But it is
impossible here to satisfy both of them. The condition u(1) = 0 is met with c2= 0, but there is
no nonzero c, that makes u(0) = 1. According to the linear, small deflection theory of the
membrane the central displacement given to the membrane is not transmitted; the boundary
value problem (35) has no solution.

But what if one uses the total potential energy

Vr(u) = u'2r dr, u(O) = 1, u(1) = 0, (37)
0

to construt a finite element solution to eq. (35)? Here the problem is not infinite energy. In
fact, ir(u) in eq. (37) is bounded from below by zero, and this limit can be approached as
closely as one wishes with

u = 1 - rC, a >0 (38)

which satisfies both end conditions u(O) = 1 and u(1)= 0. Introduction of u of eq. (38) into
it(u) of eq. (37) results in

1, 
(39)

and ir(u)--,O as a-*O.
Standard finite element approximation of w'(u) in eq. (37) with a uniform mesh of linear

elements produces the linear algebraic system K6 = f with

4 -3 -

-3 8 -5 1
K= -5 12 -7 f= (40)

-7 16 -9 [
-9 20-11

L. J•~ . U "J -.
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and

i = i = 1, 2.... N - 1, uo 1, Ur= 0, (41)
so

where

Si = (42)
2., 2+ I-

At r=12(i = N/2, N even)

4 0- 1 N (43)

and ()-0 as N-oo.
To check the need and amount of mesh grading, j. in eq. (41) is used to compute

0" = N- 2
(A,_ - 2A. + f4.+ ); this yields

N - 2  2
o= Vo i=1,2,... N -1. (44)

It is inferred from 4" that a more efficient finite element model is achieved with a finer mesh
close to r = 0 rather than close to r = 1.

Fig. 5 shows the computed deflection of the membrane discretized with 10 and 100 finite
elements, once uniformly distributed and then graded according to the element size formula
h) = ej4. It does not escape our vigilant analyst's eye that the central deflection imparted to the
membrane does little to disturb the rest of it.

0 02 04 ._ 06 08 .o r

I 05

110

Fig. 5. Centrally displaced circular membrane. Curve (a) for N - 100, h, e '4; (b) for N 10, h o "; and curves
(c) and (d) for a uniform mesh with N = 100 (h , 1/100) and N = 10 (h = /10). respectively.

4. "
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6. Overdetermied fixed string problem

A string that is fixed at its ends is discretized with cubic C' finite elements. Approximate
solution of this problem through the minimization of the total potential energy includes the
requirement that the finite element trial function satisfy the zero displacement provision at
both ends. Suppose that an additional constraint is put on the finite element trial function,
namely that also the slopes vanish at the end points. Both analytically and physically this
additional boundary condition is meaningless; the string cannot resist a torque. The addition
of the zero slope conditions merely implies a slope discontinuity at the ends. It is whatever
results from the correct boundary conditions when approached from the interior, but then
suddenly becoming zero over the end supports.

To observe the behavior of a finite element solution subject to the additional boundary
condition of zero slopes, the string is discretized with 20 cubic C' elements, and a point load is
applied to it at the center. At this point C' continuity is not enforced on the trial function to
allow it to duplicate the slope discontinuity over the point force. At the end points, however,
the finite element trial function is made to satisfy both conditions of zero displacement and
zero slope.

Figs. 6 and 7 show the results of this computation for half (for symmetry reasons) the string.
Near the end point x = 0 the computed slope ' oscillates wildly inside a boundary layer of
some 2 elements and then settles close to the exact solution u'= 1. The computed displace-
ment, on the other hand, suffers permanent damage from '(0) = 0, that is it is transmitted all
the way to the interior of the string.

But we have no doubt that our numerical analyst, who is by now a seasoned veteran of
many a difficult computational struggle, will soon discover that the boundary layer effect is
spurious and is due to the redundant imposition of '(O) = 0.

U, /

LJu/ / . . .

computed 0

analytical u

0 h 2h 3h 4h 5"h 6"h 7"h S"h 9h 0 h 2h 3h 4h 5h

~Fig. 6. Dispacements of fxed string discretized with 10 Fig. 7. Slopes of string of ftg. 6.

cubic C4 fnte elements. Overdetermine boundary
.. condition of zero slope at x -0. /%
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NONLINEAR FINITE ELEMENT COMPUTATION OF
THE EQUILIBRIUM AND STABILITY OF

THE CIRCULAR PLATEt

ISAA( iRItI)f

fiDtn 17 ttierstiv, D),.partmenr if t ,. Bral igan, A ,, cit . U.S.A.

INTRODUCTION

Numerical, reduced, integration' of the total potential energy is used to derive the element
tangent vectors and matrices for the largely deflected circular plate." All the element data is
expressed in terms of few numerical element vector and matrices, and in a form convenient
for standard assembly and use in the Newton-Raphson, or other iterative solution methods.

Actual numerical computations are carried out to study the bending of the circular plate
under the action of a lateral load and a rim thrust that exceeds the critical value.

A brief numerical study is made of the discretization accuracy.

EI.-MENT VECTORS AND MATRI('ES

Consider a unit circular plate largely bent' under the action of a distributed lateral load f and
an edge compression p. 'I hc total potential energy of the deflected plate can be written as

irii Iv , i. w, + +/ lr dr
1T(U. W )

I I

4- f u'' d'4rdr- Jffwrdr+putl) (1)

where u and w denote the inplarie and lateral displacements. respectively, and where ( )' = d/dr.
In the finite element discretization of wtu. it, we choose to interpolate w cubically with

the beam shape functions. Because it is differentiated only once in tr(u, w), we correspondingly
interpolate u quadratically, and decide to numerically integrate 7r(u, w) with two Gauss points,
that exactly integrate w"? and u' .

A typical finite element Isce Figure 1) extends between r - r, and r = r;, is with three nodal
points-two end points and one central-and is associated with the nodal values vector

(t h i %., i, h ,

where h = r,- ri. To prepare for the numerical integration of the total potential energy the
typical element is mapped to the standard interval -- I -f I by r = li - )r, +111 + f r: so

that dr - ,/i d4-. We denote differentiation with respect to 4 by t )'and have that ( I' = 2/11( 1'.

McHsc-arch iupfpcrled by te Office tf Naval Rcarch under (ontract ONH N()0014 76C-13i.
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For a typical interior clement we hat.e not& that

r I

+1 , f (,li + , ?, r tr ?h / i r (it (31

Interpolation of u and w inside the typical element is formally written as
i - .t, ! ip ( I,! d,(11 (4)

where it is the element nodal values vector of equation (2) and where the shape functions
vectors € and di are here

and
0 fk ) '10 , 2 3t + I - i -e ' , 4 . .0 . 2 + 3 E - I - + + + C ]

where, we recall-I - - 1.
Next we substitute u and it in equation 14j into r..(u, wl in equation (3) and numerically

integrate it hv sampling the integrand at the t" o Gauss points t % 3'3 and 42 = %'3/3. to have

7r u, [ i ru- ,r h i ' -4-',hr, I it

- h '(II, + ; r, hr,,t , (6 )

where the subscript j I. 2 refers to the two integration points , -. 3/3 and 4? ,'3/3.
The values of u,, w,, 6i,. ti-, and ti-, are computed from equation 141 as

it, = I,., w t, - ,." 11, t1, , 64r: K" it, tb.d, I" It.n, (7)

with the numerical element vector% p,. t#,. ,, l ind ,

,.2 -,i ± .,0, 0 4. 1 ,3,0. 0)
.2 : 1 ,/ 3,(0. 0, t-.4v., ,3, 0, 0)

(A1 . , - ,n0 o, 9 ± 4 , 3 .3 -± v 3 , 0 . 0 . 9 T 4 0 ', 3 v' 1 (8 )

4/1." ="(o, 3, ±,,1 .1. -. : '3i

,' (0, T- 0 +, 1.-!vr '3. 0 , 0 . ± 0 / . IlTl v3 1

where the upper sign of %/3 belongs to 1 1, (C- -",/3). and the lower to j = 2. (fr 13/3).
From equation (6) we obtain the element gradient g, by difterentiation with respect to u,

91 hi, ' +,, h 'i , , + jhr, 'u,,r,
rDU.. ,

+2h 'r,(hti, + i Jh ,+ 2h f, ,P- ,,l (9)

since au,u = (,, ati,/au, = 0,, etc. Or

g, = h ( a,.b,+b4,,+c,,, + d, + e,,p,) (10)
I

a..... ,,, n nnnll H/
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wiI h

+ /: 'r~i Out, til 1

hr/ d, 21t r, il , h o I rr '1

I'ur ther ditlreit lit 'I of 7r, %%ith respect to to, produces the clement tangent stillness matrix

13)

4h ~ r,6-, d , ' 21 ',ii 41:h '

Now thecelemlent gradient K. and tile celeent stillness nImm!ix k. aie routinchN assembled
into thc global g anid K, the essenitial boundlarv conditions are intioduced into them; the thrust
1). that appears in equation i I I ., added ito g, at the entry that corresponds to to I 4; and the
nonlinear stitiness equation LgIt ii- () is iteratiiely sohed for it with the Newton-Raphson
method according ito

u it. K. e~1141
where the stiberipts 01 arnd I refer to thle heft tre and after %alue\,o t and L:.

VVhlen we arc satisfied that the iwvatis IN~iwvss in equation 114) has settled on an equiihrrum
configuration it We tUrn to decide it stahiJir h\ computing thle eigeni alue of Kit i. if they

ar al oitive the eq nilihriumn c untigu ran in i' s,hle. while if .,)me are niete th1olto

isnstable.

L.A IRAI. LOAD)

To numericall% obser~ e the perfornianice of tine discretivation prmocedure that led ito g, in
equation (10lb and k, in equations 01. they are taken ito compute the deflection of the
uniformlv loaded 6i.e. f const. I. clamped ( i.e. i I - it 'I i(Ii circular plate % ith an im -
mo~ able (i.e. itl ItM edlg. Figure I '.h vws tilie improt ement in the acenira"y in thle central

Sdeflctionl 10tMi whenI 1 10. \0ith tile 11innner Of elements11 (\.(*nr a) of Iligure I refters
to a linear interpolation of it, and (hi to ai quadratic. In both cases it i% interpolated cubically.
Fstrapolation to tile limit leads to the conclusion that with a linear it the relative error in

KAMI, is (046 Ne' while aI quadratic it drop% thle error in ivi' t1 o () M4iS Ne
lahile I shows the convergence of the Newton Raphson method, starting with the displace-

menit %ector it 0. when f. 10, .%c -- 7, and the displacements it and it- are interpolated
quadratically and cubically, respectivelv.

POSTCRITICAL TIIRus'r
For a unit circular. simply -suppoirted plate of zero v' the critical rim thrust is conveniently
written aspk, = o /l2, wheret a 1-8412 Or' -99, is the smallest rixotof the Bessel function

'JtonJ'j iO) =0.
*F Figure 2 descrihes the computed behaviour of this plate, bent by the combined action of a

lateral uniformly distributed load fand a rimn thrust p that exceeds 1;,,. When f >0 the unstable
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fable I. (on~crgencc of thc
central detlection w) with the

Newton-Raphson method

I 1-974962
2 1-394681
3 1 182066
4 1.143467
5 1 142294
6 1.142293

11 1 b

Figure 1. U nforrnil loaided I I Ii clainped oircular plate4 %%ha in moi.ihk cdvc C omputed central deflection
14,.rin inil Lawid pniheri oli~c.nite i lcm nt

F iq int t

*11..* 1.* .--..
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solution it- - 0 for 1)p,, is absent and a zero initial guess can he chosen for the Newton-
Raphson solution. The thrust p is then increased stepwise with the last computed configuration
serving a% an initial guess for the riext iteration. When f ) 0ai non-zero initial guess must bc
used hut the computational procedure proceed% otherwise: as before ito produce the typical
bifurcation Lurve of reference 5.

At the bifurcationi point p - p_, K 'becomes non-computable but since the present pro-
cedure is global I non-incremental the problemi of crossing such a point does not arise here.
One computes the equilibrium configuration of the plate for any loading, regardless of its
history. Extrapolating from p -- p_, we find for! f(= that near p =, P- O it 1. 9 1(1 _ P/Pr) 11

2
.
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I. Itroduction

The elastica [1, 21 is one of the humblest useful elastic systems that can realistically undergo
very large displacements with small strain and assume multiple stable and unstable equilibrium
configurations under equal loading. Its total potential energy is concise, yet irrational in the
displacements requiring approximate computations for a finite element modeling [3-61.

We find the elastica a compelling practical example to recount the use of discrete
integration techniques [71 to derive nonlinear finite elements [8].

2. Ph r elastka

Consider the unit inextensional elastica of fig. 1 that obeys the Bernoulli-Euler law

M = aO', 0'= d/ds, (1)

which linearly relates the bending moment M and the curvature 0', a- IE, E being the
modulus of elasticity and I the cross sectional moment of inertia.

In its bent state 0 = 0(s) the elastica possesses a total potential energy

Sr(o) = - fy + gx) ds - py(1) + Qx(l)- Mo(). (2)

Or with f -',g I', (1) = () = O, and since x'= cos 0, y'= sin 0, x(O) y(O) f(0) -O,
v(0) becomes

w() -f [ha9' + sin 0(f- P) + cos G(Q - §)] ds - M0(1). (3)

Ofthhfgb suppofred by the Office of Naval Research under contract ONR-N00014-76C-036.

0045-782/81/(OOO-O)0/$02.50 © 1981 North-Holland



50 1. Fried, Stability and equilibrium of curved elastica

Yli yP

f a

S

Fig. I. Loaded elastica.

In this paper we shall consider only the simpler case of

ir(O)= f (10" - P sin 0 + Q cos 0) ds, (4)

for which the admissable 0 is continuous and satisfies the fixed end condition 0(0) - 0.
Eq. (3) allows the expression of the total potential energy in terms of y. Indeed, since

y" = 0' cos 0, eq. (4) may be written as

=ry f + lo(1- yr2 )12 ]ds - Py(I). (5)

where y E C' and y(O) = y'(0) = 0.
When the deflection of the elastica is known beforehand to remain moderate an inter-

mediate, simpler, theory is possible based on the approximations

(l-y 2 )t = +y' 2 +y'4 , (1-y'2)' 1-y' 2 - y" (6)

that change eq. (5) to

V'0) = , [y"2(1 + y") - Qy'2 ' + dy'2 )J ds - Py(1). (7)

3. Thute ekets

Approximate computation of the total potential energy in eqs. (4), (5) and (7) with piecewise
polynomial interpolations and a discrete Gauss sampling of the energy density function leads
to a rational, efficient and automatic procedure for the generation of high order nonlineari finite elements.

We shall first apply this technique to '(0) in eq. (4) which we intend to discretize with

TO "-

. ,.4 ',
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three-nodal-point, quadratic elements. We have reason to believe that a two point Gauss
integration of each element, that exactly integrates 0'2 is most efficient here. A higher
integration scheme is costlier and contributes but little towards improving the accuracy of the
computed shape. Only raising the interpolation order of 0 over the element would require a
corresponding increase in the order of the integration scheme.

Interpolation of 0 over the element is formally expressed by

0 = 0'46 (8)

where 0, (01, 02, 0.) is the element nodal values vector, and where

01' [lf(f- 1), 1- f2 (f + 1)], -1f--159

is the shape functions vector.
Let the typical element be of size h (not 2h) such that ds = 0h d , 6'= 2h-O, where

(= d/df. Two point Gauss integration of rr(0) for this element produces the approximate
element total potential energy

2

1r, = h X 4h -psin 0j + Q cos 0j, (10)

in which the index j = 1, 2 refers to the two Gauss points , -- /3 and C2 V-- /3
respectively. The values of 0j and 6 are computed from eq. (8) as

, 0r~~Q = 0"4(6,), - 6j = 0,€().()

We prefer the briefer notation 0j = 4(fi) and 4, 4'( ,) and have from eq. (9) that

461 = 1 + \/j, 4, 1 - V/ ), g = 1 - V/3, 4, 1 + /j) ,

S= I(- 2\V3- 3, 4\/3, -2\/3 + 3), 2 = (2\V/3-3, -4V/, 2V, 2/3- + 3), (12)

which we record once and for all.

From ir, in eq. (10) we derive the element gradient

2

ge = 1-. = 2h-'64 - h(P cos O0 + Q sin Oj)o, (13)

and the element tangent stiffness matrix (the element Hessian)

s (14)

j and have here that

, 44,-
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7V -2 1') - 1611 -8 71

*,*l= T82(0+V3) 8 2(l-V3),
- 2(1 - V3) 2- V/

2-\j 2(1 - v') - 1
802, =T 2(1 -( 1+ (15)

- 1 2(1 + V3) 2+v'3 J

An entirely analogous procedure is applied to ir(y) in eq. (5), except that now y is
interpolated cubically over the interval 0 -< f -< 1 that covers an element of size h. Once more
we write y = y:4' with the element nodal values vector y' = (y,, y, Y2, 2) and with the element
shape functions vector

.0'= (I - 3f 2 + 2f 3, f - 2f 2 + f3, 3f2 _2f3, _f2 + f3), (16)

from which 4 and 4 are computed.
A two point Gauss integration that exactly evaluates the integral of y' appears to be most

efficient here too. These two points are in the interval 0:5 f s 1 at f, = (3 - V3), and
f2= (3+ V\3), and with equal weights Wt = = 1. Consequently v, of eq. (5) becomes

2

1r, = 1h 7 h -4y2(1 - h-22)-' + Q(1 - h )-2,)1/ (17)
i-I

where

and
and 6', =(-1, _.\/3/6, 1, XV-/6), = (;:2\/, -I: N- /3, ±2-3, 1 X- V-3, (18)

where the upper sign of N/3 belongs to j 1 and the lower to j - 2.
From ', in eq. (17) we have that

2 (9g. f =  a.. = , a ; + b, , (19)

with

b, 1 (I - h2  (20)

1 • ................ i ' i I
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and

e2 age -T = a4,4 + b 1 ( + + c,,!(21)
ay. 8Y r

with

aj = -h 3(1 - h-2 )' , - h- ( -

= 1h
5

1(I - I 2 ) 2 + 2h y7 y(l-h -y

- 1Q'(l - h- 2 1- '12 + h 2 : (1 - h-2§;)-3 21•  (22)

For the intermediate theory of eq. (7) we have in the same way that

2
4hYD (23) .

then

2

g, = Y a,4 + b,4, (24)

' with

a 1 h-3 jlh2) b,- !n y 3y

* aj =2h3S',(I + It~) b, 12h~~ !(?hh-' ,(1 + ~h~-~hy.(25)

and
2

k.7 a44+ b,(,4+ 4,*)+ C44t, (26)
i-I

with

a, -3h(1+hj) b,

, -.. 2 10h-'(l + 1h -2y2)- Q- 3y (27)

Notice that

12 6 -12 6
h k = 6 4 -62

-12 -6 12 -6 (28)
"6 2 -6 4

is the element stiffness matrix of the linear beam.

A.
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4. Computations

To locate the extremum points of the global total potential energy we routinely assemble all
the element gradients g, into the global g, delete the entries of g that correspond to the fixed
points, add the tip work terms, and set out to solve the nonlinear stiffness equation g = 0.

If we choose the Newton-Raphson method for the iterative solution of g = 0, then the
tangent global stiffness matrix K is also assembled from all the element k, and the solution
proceeds with

y = y0- Ko 'go, (29)

starting with some initial guess that determines the particular solution converged upon.
We may decide that to update K at each step is too expensive and use instead a fixed K-'

over several steps then update it, reducing thereby the Newton-Raphson method into one of
many linear successive substitution schemes. When and precisely how to do all this is too
bewildering to contemplate now.

When we are satisfied that the iterations have converged to an equilibrium configuration y-
we decide its stability by computing the (lowest) eigenvalues of K(y). If they are all positive
the total potential energy is minimal at y. and this solution is stable, if, however, some are
negative y- lies on a saddle point of 7r(y) and this configuration is unstable.

To observe the actual behavior of the derived elements with respect to the discretization
accuracy and the performance of the Newton-Raphson method we undertake to compute the
deflection of the elastica given in eq. (5) and eqs. (18)-(21), with Q = 0. Table I lists the
iterative improvement in the tip deflection y(l) for a Newton-Raphson computation with
P = 1.5, that started with yo(s) = 0. Four cycles produce here a wholly acceptable solution.

When P is increased beyond 1.5 the Newton-Raphson method suddenly ceases to converge
from a zero initial guess. A closer initial form is needed then to start the iterative procedure,
or one may reach the equilibrium states of the elastica for P > 1.5 with a stepwise increase of
P using the computed deflection under the lower load as an initial guess for the next
Newton-Raphson iteration. One is thus presented with the choice of small load increments
with fewer corrections (incremental method [9, 101) or large load increments with more
corrections (global method). The solution reached with the incremental procedure depends on
the chosen loading history, while the solution reached with the global method depends on the
initial guess.

Fig. 2 traces the computed tip deflection y(l) of the elastica loaded with p = 5, Q = 0, as it is

Table I
Convergence of the end deflection y(l), computed with the Newton-

Raphuon method, for a cantilever beam tip loaded with a force
P = 1.5 and discretized with four cubic elements

Cycles y(l) Cycles y(1) Cycles y(1)

1 0.5000000 3 0.4124599 5 0.4109928
2 0.4337216 4 0.4109994 6 0.4109928

AI

A--
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076

06Ne y (l)
P=5

075 1 0.7669329
2 0.7183933

0743 0.7151829
4 0.7143314

5 0.7140374
073

6 0.7139174

7 0.7138622
0728 0. 7138340

9 0. 7138185
1 2 3 4 5 6 Ne______

Fig. 2. Convergence of tip deflection y(1) with number. Ne, of cubic C' finite elements.

improved in accuracy with the number of finite elements Ne used in the discretization.
Extrapolution ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~3 totelmtwt h aai i.2dslssta erri () 0 e 75.

When lthen samte elstrbe sle with the eaai i.2dslemenht g.ro an k.~ of eq.13 nd14
We thre sam 3, c 4, ole 5, 67thcorsonvdi tip anleent g 1.24992 .21551 .2153an16,

1.2153444, 1.2153549; and interpolation to the limit has it that the Ierror in 6(l)1 0.03Ne 4

4..
.5

3.

2.3

* Fig. 3. Stable equilibrium states of the elastica.
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24.0
22.5
21.0
19.5
18.0

16 5

15.0

10.5

Fig. 4. Stable equilibrium states of the elastica.

A seven element discretization of the elastica with g, and k, of eqs. (13) and (14) is used to
compute the stable and unstable equilibrium configurations shown in figs. 3, 4 and 5. Fig. 6
traces the variation of Al', the lowest eigenvalue of the global stiffness matrix K, with the force
P for the equilibrium configurations of figs. 3, 4, and 5. The positive branches of fig. 6
correspond to stable equilibrium states, while the negative branch corresponds to unstable
states.

Ftg. S. Untabke equilibrium state of the glatica.

+~
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0.9.

OS

0.6-
a b

0.5 /

0.4-

03

0.2

0.1

0.

-0.2

-0.3
-Q3.

-0.5

Fig. 6. Lowest eigenvalue A' of the global stiffness matrix K for the elastica in: (a) fig. 3. (b) fig. 4, 6. and (c) fig. 5.

3. Lead c stiffness correction

Circumstances may arise in which the nonlinearity is sufficiently small to warrant a simpler
successive substitution scheme in the form of load or matrix correction for the solution of the
nonlinear stiffness equation instead of the costlier Newton-Raphson scheme with its involved,
ever reconstructed, tangent stiffness matrix.

The intermediate theory of eq. (7) with Q = 0 illustrates this. Eqs. (24), (25) and (28) allow
us to write the element stiffness equation

2kyo = h ,y, + V,) (30)

to be assembled into the global stiffness equation, Ky = f(y), K being the linear, y free, global
stiffness matrix, and f(y) the displacement dependent load vector. Successive substitutions is
attempted for the solution of Ky = f(y) in the form of a load correction procedure

y, = K-'f(yo), (31)

where K -' need be formed only once.
But in its original form (31) successive substitutions performs unsatisfactorily. To under-

stand why suppose that we start the corrections with yo = 0 and compute y, which is actually the
solution to the completely linearized problem. If the elastic system has the property that it
becomes stiffer with larger displacements then y, is much too large and consequently f(y) is
drastically reduced, to produce in the next iteration a too small y2. Repeated iterations

* produces then a sequence of computed yo, y, ... that wildly oscillate about the true solution.

IB

l ~~~ ~ .* .- '' ,.-.... - .... "- -A. "



58 1. Fried. Stability and equilibriumn of curved elastica

We propose to dampen these oscillations with the averaging that replaces yj by (y, + y0)/2, or

change eq. (31) to

Y1 (y+ K-'fo). (2

Fig. 7 shows the progress of the computed tip deflection Y(1) in a cantilever bent by a tip
force P =2, with successive load corrections, without (a) and with (b) averaging. Without
averaging load correction is useless.

0.6 (/

0 .5 .

0.4 r12

0.3 cycles
1 2 3 4 5 6 78 9 10

Fig. 7. Load correction solution of the stiffener equation; (a) without averaging, and (b) with averaging.

6. Curved eta,

When the elastica is initially curved to the form Oo = Go(s) Bernoulli-Euler's law of eq. (1)
becomes M = a(IR - Ooy, and as a result tr(9) of eq. (4) changes into

Ve) fJr,(O'- 0. - Psin 0+ Qcos 01ds, (33)

or after integration by parts

'i9) Je12 + tee P n + Q c) ds -a(1)(1). (34)

For the circular arch, in which 00 =0, ir(9) is reduced to
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2

Q 3

4

original shape 56I7

Fig. 8. Opening of a circular C-spring.

y
0
2
4 original shape
6

38

10

14
16

20

24
26

30

40

Fig. 9. Bending of a circular ring.

#(O)= (j0a' - P sin 0 + 0 cos O),ds - ao(1)0(l) (35)

as for the elastica with an end moment.
We use eq. (35), with a = 1 to compute the bending of a circular ring by two equal and

opposite forces P, and the opening of a circular C-spring by the forces Q. Figs. 8 and 9 show
the equilibrium states of the ring bent under a sequence of increasing forces. These figures
compare well with the results obtained by other means [11-141.
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7. Spatial elastica

To describe the position and twist of the neutral line of the elastica in space [1. 21 we need
three parameters (angles) 9, p, 4, and have that

x'= sin 0Ocosil0, y'= sin 0sin 41, Z' =Cos 0. (36)

where 0 = 0 corresponds to the shape of the free elastica along the z-axis.

Bernoulli-Euler's law becomes here

Mi =aCKi. M2 = K,. T =VT, (37)

where the curvatures K1. K2 and the twist r are given in terms of 9. P, tf as

K0 ' sin 46 - i'sin 0 cos 4),
K, = 'cos 4+ 4'sin 0sin 46, r = 0'+/vcos 0 (38)

and the total potential energy of the elastica becomes

2 a ,K T)d -P~)-Q~)-R~) (39)

where P, Q and R are end forces in the x-, y- and z-directions, respectively.
Finite element models for the space elastica are derived from ir(9.t# 4ket) as before.
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of the inextensible cable, which with d(zy) - zds + sdx withlu 1,2 referring to the two Gauss points f
and with eqn (S) can be writtnin terms of 0 only. and6 %W-37Twevalues of z,. A and p at the Gaft

I e points, namely 4 b. Ij and )I needed in eqa (17) we
()m4 (a-Icosoda-j(PsQQcs)dz computed from eqns (I!1)-(13) as x~, o N ,,-aYA,

() etc. Actually

An inextensional cable element, with 9 nodal values VI IV....Z 3
only, can be readily derived from w(f) in sip (9. A2'l(t30,,,;(30
However. with an eye on dynamic problems and for Al±O4 l~

Mhe corresponding additional elastic energy.
In terms of X and Y the tensile strain is #jM(M -3 .tv3 ,T .0

(10) 0, T- 3 0*4V3, 0.I2M/+3)

where (Y -dds, and for Hook material the extra term in which the upper sign of V/3 belongs to I -I anW 1W

Oxy-ic Ods(11) The element gradient &. and the element tanpUN
2 stiffhness matrix k. wre derived from the element WW

potential energy q. in equ (17) thrug rPe~d
is added to the total potential energy in eqn (11. Addition differentiation with respect to the element modal vlesu
of the elastic energy in op (11) permits an axial elba8- vector N,:
gation of about lit.

&Wtand M4 1
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values by

z'.a,'p and 1. (12) -z+?ad~='up
and

where the nodal values vector

a l,' Y X2z , h X,,p x,,S) (13) k. mCk j 1 -8 1T~ 5i z A
and where the Laguug interpolation (shApe) function
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or Sumericafly itigated here
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FINITE ELEMENT COMPUTATION OF LARGE
RUBBER MEMBRANE DEFORMATIONS

ISAKC FRIEDt
Boston University, Department of Mathematics, Boston, Massachusetts, U.S.A.

INTRODUCTON

The stretched and inflated rubber membrane problem" 2 abounds in realistic examples of
elastic systems that may undergo extremely large deformations far beyond anything a linear
theory can handle. Geometric and material nonlinearities sufficiently complicate the situation
for the analytic answer to its equilibrium qiestion to become impossible even for membranes
of the simplest geometry.

Rubber is conveniently characterized by an energy density function and it comes natural
to apply variational methods,3 " including finite elements, s -' ° to the approximate computation
of its deformation.

Piecewise polynomial approximation of the displacements, coupled with an element-by-
element discrete integration of the total potential energy, promises to be the most general
and efficient technique for the solution of the rubber membrane problem. Being a finite
element method this solution technique is highly programmable and includes accuracy and
efficiency controls through high order elements and a finer mesh.

In this paper we derive in detail the element gradient and element tangent stiffness matrix
for the axisymmetric, Mooney, rubber membrane, including a quadratic-quadratic interpola-
tion of the displacements and a two-point Gauss integration of the element total potential
energy. Such a discretization procedure is, evidently, indifferent to the complexity of the
energy density function and may be extensively applied to other' 1-13 than Mooney materials.

We employ the quadratic element to compute the inflated and stretched shapes of the disc,
the torus, and the tube, for which other comparative cdmputational and experimental results
are plentiful. 42 These numerical examples ire made to check the correctness of the formula-
tion, to exhibit the versatility of the finite element technique, and to study the accuracy of
the element. The convergence of the Newton-Raphson method near a critical point is
scrutinized.

"AXIS YMMETRIC MEMBRANE

With reference to Figure 1, lot the generating curve of the undeformed membrane be described
in the (Q, z) plane through r = r(s) and z - z(s), where s dlenotes arc length. Under the action
of applied forcs d pmr ibed diqplacsmnft he p (., z) moves to fedeformed komatio
(x, y). An arc element, originally ds is stretched thereby to ds*, and the membrane thickness
t shrinks to t*.

Pveuot Remreb .. pa~tdtby SbOe olNavU *Umnftblh OmmtOI.NO0014' .O,' S "

0029-5981/82/050653-0801.00 Received 2 October 1980
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tX h X& h X3
ds #, A Y

(r, Z)

r.X

Figure 1. Undeformed and deformed element of arc on the generating curve of an axisymmetrical membrane

The energy density function of the rubber membrane is ultimately expressed in terms of
the three principal stretch ratios

A,=-s A 2 =-r A 3 =- (1
ds' 2wr' t

and if the deformation is volume preserving

A IA2A3 = (2)

Since ds* = (dx 2 + dy2 )"f2 , equations (1) and (2) become

where ( )' = d/dx. A=('+ )12 A -, A -()
Here we follow the common, rather realistic, assumption of an incompressible Mooney

membrane, inflated under the pressure p, for which the total potential energy is of the form

iw(c, y) = 21rgt ( 3) + t(1 -3)r ds + I z2y, dS} (4)

where 1A and a are material constants (when a = 0 the material is modernistically named
neo-Hookean), and where 11 and 12 are the strain in variants

A2 + Al~ +k A
1 2= 2+2 2+3 A3 =1/A 1 A2  (5)

Henceforth we shall replace, for typographical brevity, p/pst by p, and we shall take 2*pr -I.

FINITE ELEMENTS
A typical three-nodal-point clemnt is shown in Figure 1. Inside each such elemnt x aid y
are interpolated quadratically by

x=.J~, y~u~*(6)

V ~ ml
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where the element nodal values vector u= (xI, yIP X2, Y2, x3, y3), and where the shape function
vectors 46 and # are here

.0T =Iffi _ 1), 0, 1 j 2, 0, f~j + 1). 0]
(7)2N =0, (- 1), 0. 2 0, ff(f + 1)]

in which -I -- f -- 1.
From s = s2 + hf it follows that ds -h de, or x'=h -'i, y'= h-', where (')=d/d. Two-

point Gauss integration over each element of the approximate 7r(x, y) is sufficient to remove
from the element all spurious mechanisms and artificial instabilities while assuring high
computational efficiency. In the interval -1 < Jac 1 the two Gauss points are at C, = -,/(3)/3
and J2 = ./(3)/3, with the equal weights w1  = 1.

The element total potential energy ir, is expressed in terms of seven element integrals

ir, =J +J 2+J 3 +a(J4+s+J6 )+2PJ 7  (8)

numerically integrated as

J,= Ards-- - J (h2 + 2 )rd h-' 2(+ )

J2 =J A2rds=h r- x2dfh ri X2

1i-1

-3 =J ,+2A22rds=h3 r3(i2+2)-x2d=h3 2 -2

4-h jizr ds =h -  rx 2 (i 2 + 2)d ='h - 
2~r 

- x i + )  (9)

is= IJ |=J 2rds = h3Jr(2+2) - 'de--h3 2.r( +y)2-

S2=f A y'ds=h x- )df =hx y i'
e1 

1 -2

where the subscript i -1, 2 refers to the tWO Gauss points = -4(3)/3 and %2 /(3)/3. Also,
in equation (9) r- r(s) and

j "1J. Y,-U.*h -ij= U 141, i =U'41 (10)

after setting = (). From equation (7) weget the numerical vectors

#T - * 4(3), 0,4,-0, 1 4(3), 0)

1.2 - k(*24(3) - 3, 0, *44(3), 0, *2,/(3) + 3, 0) (11)

*1.2 - 1(0, *24(3)- 3, 0, *44(3), 0, *2,1(3) + 3)

whim the uppu signef 4(3) belono,t Oaus point I anlthe lower sign o (3) bdonp to

jGauspint 2.

V,



656 1. FRIeD

Differentiation of vr, given by equations (8) and (9), with respect to u. produces the element
gradient

air, 2
au, a14 +b .b1 +c4 1  (12)

with

a1 =2rlx(1 -A-A,- 2 ,1+ aA2,)
b, =2r, y'(1 - A -'A2)(1 + aA21)+ 2 (13

+2px 2 2(13)

c,=2hA2 (1 -Al, 2 -)(1 +aA,

Further differentiation of g. with respect to u, produces the element tangent stiffness matrix
2 2

k, g-' = 'e= Y.a 4Tb~ Tc~4T

+d(, + 4i ) + e,( O,/T + 46 T) +f(4,6& + ") (14)

where

ai = 2h -ri(- -2 - 2-(1 +oaA 2

,i 2: tj 2i

-2 -4)(1  21
b,=2h-'r1 x,2.l,

ci = 2hr7i'(1 + 3A i 2)(1 +aA,) +hpy(

d, = 4x!A21(a +A A -,)
,i =-4y -4) ..

e =4yiA21(a +AiA 2)px1

The element gradient g, and the element tangent stiffness matrix k, are linear combinations
of the numerical vectors 6j, and and the numerical matrices 4T10, 01#1 - - T, 1 1 +
41,T 'T *. 1 T ~ j th ueiclmtics

i,, 010i + 0i" and 4'# + eu,. To compute the displacement dependent coefficients
ai bi, ch di, e,, fj of these combinations, u, is picked out from the global displacement vector u
and is introduced into equation (10) to yield, again with the aid of the numerical vectors 0j,
46 and Op the values of xi, yi, 11 and y1. These values are used to compute the stretch ratios

t2heY12 2=X22A 11=x:1- and A I=x /r , where x A'i, and y' = h with which the coefficients
in equations (13) and (15) are finally computed.

Once g. and k. are formed the finite element ausembly procedure follows for the nonlinear
case precisely as in the linear: an initial global displacement Uo is made, all g. and k, are
computed for it and routinely assembled into the global g and K, the essential boundary
conditions are introduced into g and K, and no is improved into ut with the Newton-Raphson

method

U I - No- K (uo)g(No) (16)

until convergence to u..
The lower eipvalue seetrum of K(") indle th !llty of the puned nolmn.

All positive eigenvalues mean that u,, is at a minimum pint of the total pami unem

"W n



LARGE RUBBER MEMBRANE DEFORMATIONS 657

is therefore stable. Some negative eigenvalues mean a saddle point of ir(x, y) and unstable
equilibrium.

COMPUTATIONS

Finite elements prove themselves best through hard work. We put our element to the work
of computing the deformations of a disc, a torus and a tube.

First the disc. It is originally described by r(s) = s, z (s)- 0, Or s 1 1, its edge is stretched
to x = 1 1, y = (0), and a pressure p is applied to its face. The purpose of this initial stretching
is to endow the membrane with a linear solution and consequently an easier application of
the Newton-Raphson method with a zero initial guess.

At the outset we assess the accuracy that our element can provide in order for the future
computations to be correct but not overly expensive. We compute the polar rise y(0) of the
disc (a = 0.1) caused by a pressure p = 5. The disc is substantially deformed under this value
of p, and for a uniform mesh of Ne finite elements we have that corresponding to Ne =
1, 2,3,4, 10, y(O) = 12546, 14278, 14299, 1.4304, 14304. Five finite elements assure
reasonable accuracy in the displacements.

Our next concern is with the performance of the Newton-Raphson method. To form an
idea as to how this method works we compute y(0) that results from p 5, with an initial
zero guess and a ten-element discretization. Newton-Raphson's method successively computes
y(0) = 231875, 1-44782, 144302, 1.43059, 143040, 143040; and four cycles are sufficient
for a six-digit accuracy. These computations are carried out in a single precision with some
six significant digits. Double precision could have saved us one cycle.

Close to a critical point where K is singular the Newton-Raphson method slows down, as
we shall see soon.

Figure 2 shows the inflated disc for a pressutre that increases at a step of one between p = 1
and p = 7. Corresponding to these pressures are the polar stretch ratios A0  1144, 1.233,

5 y p=

Disc

4

p-6

2

p-5

0 2 3

Fi~ofw 2. Sfttdmst &W WNWht~ Am

. k2.J -. .... "411b, ,F IIII-
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Loss of stability in a stretched and inflated right tube (a =0) through bulging is shown in
Figure 4. Simulation of the bulging is achieved by pulling out the central circumference of
the tube and holding it fixed. A pressure is then introduced into the tube that is left to inflate
until the slope at the central grip point becomes parallel to the y-axis.
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the I :rlm'.1 dlt'fmrric(I I( a:an, r ins, - ircl I;r pl at, and rubbeIr ms

brain...

Iolir !start po.; injt- for th illuit C1 iSt iCmi '8 ho n in 7i". 1

is ts ii!paent iai iifrs5';

f or whichl t~widiis illl un!v c. -nt i nioor anid sat jLf i v; t he I ix~vil
end condition .(II)=I.

Init ial ctirvatiro hi i the tit rrm a] tcrt tin-. totail po0-1 tentia jt energy l (21. 1) inoi

5 L (~ - ' V: ill + "o , ids (2.2)

where thIe end moment M is misr:,ed bot . Al ter integ rat in
Ilai r to

L114uce fo
belavaaam

4. A- .
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4 f

(I) .2

I's: i , ;*

;'ncl for te tirciclar ring, I) 1. hiL

771 4- 1 IC,-

lS for the straighit eI;i:;t ic-a w it ti an nd mroment M=1 I1f I)

T tighi4i tilie it!c cc %: co.;' andc ., :ill w !11.1%, wr itt t!.- I c'-

Led poctent lal enctrgy ill t rmi ofl v is

where t hei ;dm iaihi v v i !; anMd salt i-cf lea; tI ixedci ed coin-
'li t Ion" y (O) y()

We propose a f in itev tI -mcnt (I isiret izat ion (it I? C inl I21

wit-Iia i qadrat ic interpoclit ion 11i cv,,r each el icicint and at two
point ;ati.iaa pinadratUire ofi thtc totial pct tnt iaI en'rgvv Thcis ticin-1im Itti ntecgrit ion scheme ;ksciirt; I hI,- titnmcri l stabticIt v of tilt,
finit- clement- Metho an(1ci is stitff it ivint] 'c accurate. The resui -

t og cjiadlrIL ic element is. pt-cc ist- *c iiclent and easily proigramc-

* mabi .

] tevrpccat ion cIi ,Vy-i- tic. thirei-- tic cud -cc.it (1ilci' I S ar-
pai ~icti - rivi;a;c liv it,. whiri ,. I i i-

mill it dacc~ I Vi I tw! Vit.(' t 1 .11c

-- mm 1
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the shape funcLions vector.

Lt't the tvpical 'Ilteitnt be of s ize h such that dIs lid,' and2h -1 ''  wht ( ) d/d:- Two cat.us point jit egral ibn of

n( C) i" (. .1) over the teth c eneent resuils ill the approximation
2

l - -' -1 " 2 ' ai ' 4-0 (I
:;il'i .f ;os . (2.7)

j=l

in whicl tIt index i=],2 r tfr to , (;;-as points =-,f3/3

and ,110. The vile O 'and t the jth auss point are
computNl from U , i and -e !., where .=(.) and*'1 I I -- I -. !

- ( - 'I * nd from (..6) we haive t hat

4

1,2 ('2J3-3, 4 4/3, 4 '," -3

whtrvI hse l ppr :;i .1 )i /)'/ bcoO.ng! t o: I and the lower to j=2.

1'rom . i. (2.7) wi, derive the cle mnnL grad ihnt vector

52h
-  

.:- h (' os. + 0 sin 11, (2.9)

j=l

and t. el4,ment stii fnv!;s matrix

IT

71(t) c,,i .-Pi' .) (2.10)
I j 1

where I-P1 1 24-43 2(14-43)1 -i1

, + , t 1 l 1 (l ,lI) 8 2(I-J3)

-8 7[ -i 2(1-4f3) 2-J13

,I , (1 1)-I

'' 1s .'I N 8 ( , ) (0 .11)

-I 2(11") 2.."1



Ai pIt. c s ind Iv- iI v . rid -t,i it I-'. i itL td Is a AMb iV -11)(t I

lil iL iiprv-d .- ,] t ir, ol t h, N iit . I i- 'it I il,

of t Ili - I ll( if * A; I'ct.t I a

vecc u t I ru if t 1.1 "'I (' ' I T t .' V-.i i ;l(! r u if

-I < Il o .1 2:1. m F w c .clti1 .. I tr%

I mid i t 4-.1! ind -?Ilda I I (ip)il il d 11

i t ti c r iitiI i I t i ' i t I v- , 1p I!IIItIIc

!! -i t .t 'a - -1 -i i iiI c ~ ,

wh rov. if ind i,;11

,, e t , I po 4 ti I vi r /4

'I. V.!

4 2 J 3 - I + u "I

I ri ii 17* ill I. I wv 4 i 'il

= \i 4 b:(.li

with1

1 3. 2 2 -1 5. -h (.6

and

* !.ii k

4 c (2.17)

.--.-. V I;



t.. it h

a - 11 v I -)5. 1

-~ 7 2 3
CI h2. + I, 1 2 (- )(.18)

ti olw ir'a ii f hl v ikr of t Iic d i cItt iit hm m-ta 11-t ill its

lent. 1- i:t i i it ing (2 . I1) wi [i Qi 11 1')r a t ill f or c I I .5
ti ht- !!!ait (ii m-r lid !o cus ivil %, impi vs a t ip dt.? I vc t ion
(I )-ft. )oooiin~i~, 0. '. 1-372 16, 0).4 1217, 0.41 IOiW), , 0.4 1 iiiii2A

I '.hi2'; favj ' an t airt cd with i zr.- itit ial zai

''tn is- int-reastd itiovc I . 5 1. lit N*VWtMIi-lajiliI !.:(1hod sIod-
4."'' d l a f i'l. toi (-)ni r %( I ri'ti aI Yetij tili il sousa. t\ betr

t.Iart i ng alit- is jiiteittl I wi fir tilt itorit ivu .ioiit ion, or

t he def ItCt ion tunder lliiiir lo~ads CaT lie reache1Ld Still'jV-i i. With

tlit comnpttd soluit iimi at t ht ind of* the prov ious ,iLep strv iog
as an init iii I tiieas 1or L it- i)e-t it trat ion wi th theI hiightr loiad.

)Io( is; thtis cint rontud w ith tiechdoice of sia I I loiad inlcrement
with f ewer it e-rat. ive correct. lons-an 1 nc remnitnta I iet fiii1',, or
1;irg loail incremetts with it!,ire correct jolts-a gi obl met hod.
Inl tilt- il enet;v~ oh 117111t lii - !;, Iii ioii. ; to( th lic a t i t "!: eilimrt ion

gilth le load historv of the incteintal rietlsid is what dje-
term ilts wichl oil. oftil-Il iw I C Iai Seov-red , wtil Ll te solti-
1 jun reactud with it- globl imet hod is determined bv'tilie in i-
Ljul gucss, tq.

To di st Is i;t IIi d isi-ret iza i i. ii ateu rtcv -- o tiet, cliiin in
(2.1 5 -(. ;)% vary inv; iminbtr * Ne of viuiiits a re- t'mpioveti in

the utliitittiol tif CjLinti vecr def I tutet b 11 = 5. to r
Ne = I ,2 ,3,.. 9 we , rcspectL I VtVI V, c omptte y ( 1 0 .7 669 32 9
0. 718 3 93 3, 0. 714 33 14 , 0I. 7 1f03 7 4, (. 713 3917 4, 0.7 138 62 2, (0. 7138 340,

0.7138185 and extrapulato 5 oelmt provides the estimate
'rror in y(l), = (h.Ne'

Sol ving th lii ame cant !Iieve-r jirobhin with Lt-e elemclit givenl In
(2.9) and (2.10) we get fur Ne = ,4,),(),7 tlie corresponding tip
% I o1)es , (1) 1.2149992, 1 .2152510, 1.2153196, 1.2153444,

* 1 .2153549; and with extrapobat ionv to le I Im it we reach the es-
timate error in ; (I) I 0.034e . I

A st-ven i eement. dl scrvt Iaat bIo of theit elilst ica Wit th Ile cit-
Ment data in (2.9)) and (2. 101) computes thle stahl o- and unstable~
erjuil lbrium conf igurat ions 14 1 shown in r'igs. 2,3 and 4. Figiure

i-A



2 shows tile OR1IjL. th tlt i I vver .tssrmt.'s whecn tii jc t p is fircod by
117 ).5,1 (,I ' ,. .,9 . (. AllI ei gcivvtI us o t the globl tif

ness matrix areC positive here an(] t ie( c-cu i ibr loin coni igo ra-
t ions shown in Fig. 2 art, cnclu ded to be Stale). Vioe3 de-
pictIs otlier possible stable equ ii i hr imlT stjt(es for P 10h.53
12.0, . .. 24.0. The cla stica eqn ii i hr iioi eon fignirait iwi.s shown in
Fip. 4 for a t ip load(1 P 14,t5. . ... are knostile tie11 low"est
C ipeflvnt li of K hi jg ei. iv(-

y

FT G. 2. Stable v(10. iblr ium -;I lt( of elast ira.-

9. A
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r ing. Iigurv r tolIlIows t lI we op -n ing of a C-s pr it)g 19 1 w i Lii a
force Q 1,,.,1;while I-g.f follows the rumrc:ro4;ion of a
vricalar ring P'4 !squeeveed by t'za I and ")i)Iiu.-itt- Iorcv!s 1.

1'1(. 5I. Fore in,4 (it a circuslar (.-spr ing.
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1:1g(. 0. Squeez ing of ;I c'ircular rifll'.

3. CIRCU;LAR PL.ATE:

A tin it. v ico i.r p i a ( 0I) j . Ii i; Iv 1,Iii 1 the I c -
Lion oanaxi .;ymmvtricallv distrilated lateral luad Iankv.

uniform edge compression p. The total potentihal energy of this
plate rvad!;

yf(u~w) W + ' -+ > rdr 4 31

where it and w de-nat(. e he inplic. and I at era d a opIactanent s. res-
pectively, and where ( '=d/dr.

We propose to d iscret ize lt(u,w) with a piecewise ciihic In-
terpolation of w, a piecewise quadratic interpolation of ti, and
:two Cauo;: point it egrat lon of II( .owt a I polt ia 1 cnIlrv over

each eleenat . A I ica r hitti cr1.i.t, !on ;..livInc I or it I:. iiit icv(d to
produce a dec iedlIy bierior element.

Typically an element extends between r-r and r-r , has
lire. nodal 1? lvii a ;ail kn a(. tulWithI ti ecm..'it loda Va-

N va;' vie4t..r t o, hi ,w t, to liiilt tlh ofn 11

W l'., ( ) Willi
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I

t= 3 ' 3 3 2 3 (3.2){ , -3 +:3 , - -: + i ,0, ,2 3-' +- - 2+-3 1

where -1

A two point Gauss integration produces from (3.1) the approx-

imate 2

-32 1 -1-1. 1 -1 2
le -3 r w. +12r h w. + -fhr u

e 1 3 ' 2j 4(3.3)

+h-3(hi + .) rj - -hr f w
j j 2 j jj

for which the values (i f ,w wI i nd ii. are compiutcd frm

u w U . W 11 Inl wt
3j 1 J j

the aid of the numerical vcctors

(I+J3,oo,'., 1 /3,oo)

-' 1,2 1 (+2.3- 0 0 - + 2 +

'1,2 = 8 9+4/33+ ,0,0,9+43, (3.4)

1,2 (o ,-3,+J3,),o.3,+f'i)

i(o,+ , 1 f-43,0,0,4,/i. 1!
I,2

From (3.3) we prodte
2

a -h. .+c. +d (3.5)

with

1 - 3 w 1 r - 4h-3rwh .2a1 = h_" rj I.  j h- I r}C + 4h hiWIA + WY)

3 j J' 6 j jjj

(3.6)

r. - Il (I 2h r'r h  )  " hv
r .1

U l d
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... . +b. ',.+c . + *.
k u..e _32 U.e j=l -1 kk- b3-3-- -J- --3-3

(3.7)

+d. + ~, e,i--i ej i-
with 2 3. -1 -1 -3 2 -

a. = Ih rj , b = -I r. + 12h r 2i + 4h- 2r.6.
3 ; 6 .1 (3.8)

c. = 
4 h-2r.. d = 2h- r. , e = hr.

To assess the performance of our element we use it to com-
pute the deflection of the uniformly loadud (i.e. f=const.),
clamped (i.e. w(t)=w'(l)=O) platc. with at immovable (i.e. u(I)
=0) edge. For f = 10 we compute, wiLth Ne=2,3,...,7, a central
deflection w(0)=1.1 38 9 9 3,1.140754, 1.141714, 1.142070, 1.142220,
1.142293; meaning a relative error in w(O) equal to 0.068Ne - 3 "3.
A Newton-Raphson solution of the nonlinear stiffness equation
for f = 10 and Ne = 7 successively comes up with w(0)=1.874962,
1.394681, 1.182066, 1.143467, 1.142294, 1.142293, having star-
ted with a zero deflection.

2
The critical thrust for the plate is given by Pcr = 2 /12 where

(2X3.39 is the first root of Be.sel's function equation I (,(=O.
Figure 7 traces the computed central deflection of a simply sup-
ported plate bent under the combined action 13,101 of i lateral
load f and an ed).e thrust p that exceeds Per" When I -( the
unstable trivial solution w = 0 for 1p Pcr is absent and a zero
initial deflection can be chosen for the Newton-Raphson method.
When f = 0 the Newtun-Raphson method must start with a nonzero
iiuitial g'tlt;s but proceeds1; otherwi:t, ,; htore to product ,  lth
typical bifurcation curv in Fig. 7.

Close to a critical point at which K- I is nun computable, the
condition of K declines and the Newtoun-aphson method slows down.
It is our experience, though, that by using higher precision
computat Ions anl more correct lviterations one can get as close
as it is only numerically me'aninlful tu such a point.

4. RIIISBE.R MFMBRANI,

AL- the generating curve of the undeformed axlsymmetric mem-
brane be glveni in the (r,x) plane through r-r(s) and .- z(s), s
being the arc length. Under the action of applied forces and
prescrihbed d lplact-ments the point (r,z) moves to the deformed
locatilsn (x,y). Ail ar oel emeut d,; i; :Art,t-hed therthy ,to ds

I -. .... 2
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wIO)

FI. 7. Face and edge forced circular plate.

and the thickness t of the membrane is reduced to t.

The energv density function of the membrane is ultim:Itely ex-
pressed in terms of the three principal stretch ratios

I 2- _ 2 -  t (4.1)

I da ' 2 2rr * 3 t

and if the (huformation is incompressible N I. With
ds = (dx 2 +dv 2 ),i the stretch rat ios become

W 2 + v2 T (42)

where ( )' d/ds.

Assuming a memhr;jm . made of' .Moo, iv m.tt ri.l it:; It., hi Iwlt n-

il inirgy arI ire,; ti t form

y 21it .3)4(1 1) Irds4 / x2v 'dsi (4.3)

where p is tihe pressure, :j ;nI , material con:;ti;tLs, and where
I I and 1, ;are the :;train iiiwiriaints

+ 2 + 2* I I 2 t

2 2 2,2 2 2 (4.4)

W it? 2 - . o I

with ). -- I1 I I2 F.rom here un w. re.plalre p/ut lby pI ;ld ,assulme

t Ult 2#I11 
=  

.

I .*i . , , ,42 .



i I I II

We propose t., discr.t i/,. .,.) wit q.. dit i, - 1 ,.idrat i-

interpolaL inli of x and v ,vt-r t!L- w.lt and . t, (,auss point

quadratur, of th, Ier.r'nt total poti.ntil ,,n vr y. 1:side each

e1-. ntIu md It-I ,1 : , , ,(J and

-I (' I

1 2 1
jo, : ( -I)4,l 1 - (4 1)

We sIla I I I-ed tilt- (allss point val tv x = n . . - i

x = "1- 1id . i ,.. ti iipjitittd -ro:'i u and

14 J. .1 , ,4 ,.4P

1 2 - J 1 3 ), 04 ,1 -I'3 C

'1,' Is -' 1 ¢ , .4 o 1 3

*: = _ - + 2 d1 -3 , 0,+ 4h , ,+,- 2. J3 + ',f ( .6 ")

'(I "1,2 J -rt + J '

1,2 6

as before.

The element total. potential enurgy is written as the sum

e + '21+J2 + ,. 4 +. 5 +J)+1p.1 7  (4.7)

of the seven approximate intvirals

' 2 I= r 0 +

r : It r. x

e jl (4.8)

S -2.. -? - 3 -2 .2 .2 -11l3 =. ,,rd"s = h'5 " r.x. x~j

3

14 I 2l2 - 1 2 2 2

. 4  1 2 rd. .I r x

I -- 1
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0,rd. r..

rci ki im ,t I tl s w

wit 11

2rx -2)I

'-lr y 1I- )( 4 ) + v(4. 10)

C 211 1j + IIIpX

i J j

wit 11

cm ammimfna t. DTIC does Dvt
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2. It~ r + 4- +. )1,

-4 -4

(hir f [rst :11)1) ica:t iiit of il- rubhIi- fimbrano cli Ittent is~ tn
compute the inflated sloape 1 of aj itni di .c ( , h(.) f or a
preure- p) 59 and an inpl ane at ret) i n, )f t lit cd;(Ee to
X(1) -- 1.1. The d,' (I! a j; !,,I',;tallt jal1 I; dc1'ov;,-d 1, N, t )i s 1 1;

pressuire, and for a:, in form layout of Ne f ill I L ('1tiiufis we COMn-

p)111 , 1.rr)~ot log i , l - I ,, , ., p"' i'l -i at. y(I)) 1 .2 51a6,
1 .4278 , I .41,2 11), 1 .*4V4~, I .*4304 . We r,,hl Lhi, a at. valtue of
y(O) wit!h the( Newton-Raplison s~-lu;T IIi tAnuts ACCSiVelV comlputes

Y()=:!.318P5, 1 .44782, 1 .44302, I MY) 1 . 104, 1 .43040.

F igiire 8 ;low!; inflat ed ;h ot; athI.. dIi , for i, pri4stsurt.

p = ~Corttpond int, to tlic-u prv;:;trv.. arc thu polar

isIistable eillhr ium.

Fi:gtire 9 shows a tortis II5) , ),,encrat ed by r - 2 +
Cosi S, Z= Sill S~ (0 v, hif latc-d by a IlrsuIrv that in-
creases in ttin equal ati.ps from p -0 to a critical p - 2.185.
As the pressure approaclics thuis last vailue of p the lowest ei-
genvalue of the global stiffness matrix K nears zero indicating
a der I Int- Ini stabhl] i ty.



S'f. S.t rctc I wd and itd i t d d i~cw

Y

* ~FIG. 9. Inflated torus8.
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iFj. 101 are for a prcsstire that ill~;-. t1-1 Cequal st PS
rum. p t,,t tlc cr it ical 1,p

7-o'

I C P. n l, j t r t t

t1w Of f iu.- of ':avaI P-,;Irl, urldcr ,mt rat (I4-7C

I lAM, tI II ld 1 * tri.I l .. T I.h' r: 11 :1,. OvIon a Shelli

I ii I ts P . .i I h-t sr i I .,i r .1 t

Al Al . i'

11 Il I k ill(I
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NONLINEAR FINITE ELEMENT COMPUTATION OF THE
EQUILIRIUM, STABILITY AND MOTION OF THE

EXTENSIONAL BEAM AND RING*

Isaac FRIED
Boston University, Department of Mathematics, Boston, MA 02215, U.S.A,

Received 6 August 1981
Revised manuscript received 11 October 1982

Discrete Gauss integration of the element total potential energy is applied to the formation of a
cubic-cubic C' extensible completely nonlinear curved beam finite element. The versatility, accuracy,
effectiveness, and robustness of the element, and the Newton-Raphson technique used to solve the
nonlinear algebraic stiffness equation set up with it is numerically demonstrated by computations of the
nonlinear equilibrium stability and motion of beams and rings.

1. Introductio.

A nonlinear finite element discretization technique based on the approximate Gauss
integration of a nonquadratic energy density function, successful in the nonlinear computation
[1] of the straight and curved inextensible elastica, the circular plate, and the axisymmetric
rubber membrane, is applied here to nonlinear equilibrium stability and motion analysis of the
extensible curved beam.

A cubic-cubic C' element is developed in detail (a numerically integrated cubic-cubic beam
element for large displacements is available in the MARC program [2]) and is computationally
tested for accuracy and effectiveness on the particular large displacement problems of a tip
loaded straight beam, a closed ring compressed by two equal and opposite forces, a circular
ring under post critical hydrostatic pressure, and the large amplitude vibrations of free and
fixed beams and rings.

2. Flat eleuent

With reference to Fig. 1 let a point on the deflected beam by marked by (x, y), x = x(s) and
y = y(s), s being the distance measure along the original curved beam. Let further e denote
the axial strain and K the curvature of deflected beam. Then in terms of x and y

6= (x4+ y'2)' - 1 (1)

and
X Y"-y'X"
-- +(2)

*Work supported by the Office of Naval Research with contract 100014-76-C-0036.

0045-7825/83/$03.00 © 1983 North-Holland
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h xDeflected

AA

Y%- ds

0

Fig. 1. Geometry and element of a largely bent beam.

with the usual notation x'= dx/ds and x" = d2x/ds 2 . The initial curvature of the beam is
expressed in terms of the original stope 6 as Ko = dG/ds.

A bent and stretched elastic beam of length I that is under the action of distributed forces f
and g in the x and y direction, respectively, is in possession of a total potential energy

r(x, y) = I Ei (K - KoIS + JEA F2 ds - (fx + gy)ds (3)

or when the beam is of thickness t and unit width

)i(x, y)= Et (K - KYds + Ic 62 ds - (fx + gy)ds (4)

where c = 12/t2.Hence forward we shall assume, for typographical briefness, that Et3/12 = 1.
For the approximation of r(x, y) in (4) we propose a C' cubic-cubic finite element and a

three Gauss point integration, which appears to be the minimal integration scheme to maintain
the full element accuracy inherent in the cubic interpolation, while averting spurious zero
energy modes. We shall also consider in the paper the possibility of integrating the axial strain
energy part of ir(x, y) with only two Gauss points, but it appears that an all out three point
integration of w(x, y) is preferred.

To prepare for the numerical integration the typical finite element is mapped from s to f by
s= s,+hfOsf sl, so thatds = h df and ( )'= h-'(')and ( )"= h-'( ),where the dot means
d/df. From the element nodal values vector (see Fig. 1)

U = (x,, 1,, Y,, ' X2, 12, Y2, 2) ; (5)

x and y are both cubically interpolated inside each element by

x=u'# and y=u.*, (6)

* and ' being the shape function vectors

*t(0(,2,0,0,, 3,4,,OO) and 'A'=(0,0, 41',, #, , 4) (7)
t
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in which

.0= 1 - 3f2 + 2f3, 02= f -2f2+ e, 03= 3e- 23, C2 + . (8)

Since the typical element extends between = 0 and f = 1, and since ds = h df the ap-
proximate integration of the element total potential energy vr.(x, y) is of the form

37r.-= h 7.,,Wj[I (,¢-j o+) kce fj -gyi1 (9)
i-I

where here, specifically,

W- W3 = lag W2 =1- (10)

with the three Gauss points G, (2, G( being at

f,.3 = (5 i-5) and C2= (11)

the upper sign of V15 referring to j = I and the lower sign of V15 referring to j 3.
The integration point values of the curvature Kj, the strain ej, and the coordinates xj and yj

needed in ir. in (9) are obtained from the nodal values vector u. through

xutb . 4P, x=ur,(12)y, U',0j, -ij = U, " = U,
Y.= u1j, 0=L44,, Y = 4) 

(12

where 0j stands briefly for 0(fj), etc. Here, for the three-point Gauss integration we have
from (6), (7), (8) and (11) that

4', = T&(50 ± 12V15, 5 ±VT15, 0, 0, 50X 12V15, -5 ±V15, 0, 0),

02'=(4, 1, 0, 0, 4, -1, 0, 0),
A, - (-6, 2 ± V-15, 0, 0, 6, 2 X V-15, 0, 0),

4'2 =j'(-6, -1, 0,0, 6, -I00),13

, 13 =i(;6Vg, -5± 3V_5, 0, 0, ±6V'5, 5 -3V , 0, 0),

-- (0, -1, 0, 0, 0, 1, 0, 0)
and and =o(o, 0, 50± 12Vh, 5 ±V-5, 0, 0, 50 12V1-5, -5± Vi1),

4= (0, 0, 4, 1, 0, 0, 4, -1),

O,.= A(0, 0, -6, 2 ±V V15, 0, 0, 6, 2 X V15), (14)
S-;'1(o, 0, -6, -1, 0, 0, 6, - 1),

'(0, 0, T 6Vi, -5±3W-i5, 0, 0, 6VT, s 3V3),

0. (0, 0, 0,-1, 0, 0, 0, 1).

L4"
:' i 
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Differentiation of 7re in (9) with respect to the element vector of nodal values u. creates the
element gradient vector g.. Further differentiation of g. with respect to u. generates the
nonlinear element stiffness matrix k.. Before doing that we shall introduce some notational
abridgements. First we rewrite the axial strain e and the curvature K of the beam as

e=h-'3 2-  and K = aI - 3/2  (15)

with (in fact for a nearly inextensible beam we may set/3 = I in K)

a = #y -i and /3 =. 2 + 2 . (16)

Secondly, we wish to employ in this section a prime to denote differentiation with respect to the
vector u. so that e' and K' are vectors, and C", K", e'e" and K'K" are matrices. Now, since
x; = Oj and y; = 4,j

3

ge = h Wj [(Ki - Ioi)K'+ CEj--fjj - gjoij (17)
i-I

in which

cti,4;j + ,,4 s 1 -4 - i,4j-=~ j2(ix,,+ 3 .k), (18)5/ 3

K; = /'-,r,(fa;_ - oi) (19)
and

'j =-2h-'P-'2P' (20)

Next we find that
3

"= k.= h 7_ Wj[(Kj Koj)K +KjKj' "+C(E1 E + CA'") (21)

where, in terms of aj and 3j,

,= h-10-12 (/3l-t T3) (22)
and

K JS2 al C,(( + ai 1) + -a,1A3,] (23)

both computed from

C'"j 4)'+(24)
and = 2(4k,41' + 0,4)) (25)

which are numerical symmetric matrices of dimension 8 x 8.
Assembly of g. and k. into the global g and K is the same here as for linear finite elements

except that an iterative method, say Newton-Raphson, is needed to solve the nonlinear
discrete equation of equilibrium g =0. With the Newton-Raphson method an initial guess ae

I

A. ____-,_I ___ 
I________ .. . qJ "'' ' " I I I
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is improved into

u, = uo- Ko'g, (26)

etc., until convergence.

3. Tests for effectiveness

First to concern us is the accuracy of the element, occurrence of spurious modes devoid of
energy, and the performance of the Newton-Raphson method in the presence of a large axial
elastic constant c. We perform tests in this respect with two numerical integration schemes:
one that integrates the bending part of the element total potential energy with three Gauss
points, and the stretching part of w. with two points (this will be referred to as the 3-2 scheme);
and another procedure that integrates the entire 7r. with three Gauss points (a 3-3 scheme).
To start, we compute the deflection of an originally straight unit cantilever beam with a tip
force P = 5, shown in Fig. 3, and imposed boundary conditions x(O) = y(O) = y'(0) = 0.
Standard assembly of all the element stiffness matrices produces a global, displacement
dependent, stiffness matrix that can be put in the form

K = Kb + cK, (27)

with Kb and K. constituting the bending and stretching parts of K, respectively.
All subsequent computations are carried out with 7 and 14 element discretizations that giverise to 27 and 57 degrees of freedom, correspondingly. The 3-2 integration scheme is found to

• produce a K, matrix with 15 zero eigenvalues for a 7 element discretization, and 29 zero
eigenvalues for the 14 element discretization. Imposition of the boundary conditions x(0) =

y(O) = y'(0) still leaves the total global stiffness matrix K with one spurious zero eigenvalue in
its straight configuration, which disappears with bending, and which does not seem to heap any
difficulties upon the working of the Newton-Raphson method even with a straight (x = s, y =
0) initial guess. Table 1 lists the largest eigenvalue A A of the global stiffness matrix K as it
varies with the number of elements N. and the axial elastic constant c. Table 2 lists the tip
coordinates x(l) and y(l) computed (with some 16 significant digits) with the Newton-
Raphson method for different values of c.

Raising the integration scheme to a 3-3 level produces an element stiffness matrix k. that
assembles into a global K with a K. part that has 14 zero eigenvalues for N. = 7 and 28 zero
eigenvalues for N. = 14. No spurious zero eigenvalues occur anymore in the assembled and
constrained K, the extremal eigenvalues of which are listed in Table 3 in their dependence
upon N. and c. Table 4 lists the computed tip coordinates x(l) and y(I) of the originally
straight beam discretized with 3-3 integration elements and tip loaded with P = 5, as they
become improved with the Newton-Raphson method, for different values of the axial elastic
constant c, and a different number of finite elements N..

A remarkably propitious conclusion emerges from Tables 2 and 4: that the Newton-
Raphson method is only slightly affected by the large values of c.

S.........01
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Table 1
Largest eigenvalue A A of K formed with 3-2 integration elements
in its dependence upon the number of elements N. and the axial
elastic constant c

N.=7 N,= 14

C=103 C= 1W c=l0 c=I0

A 0.27 I05 0.27 106 0.27 101 0.55 I0

Table 2
Convergence of the tip coordinates x(1) and y(1) with the Newton-Raphson (NR) iterative cycles. Straight beam tip
loaded with P = 5 and discretized with 3-2 integration elements

N =7 N. = 14

c=103  c=104  c=l0W c=lo?

x(l) y() x(l) y(1) x(l) YO) x(l) y(l)

1 1.0000000 1.6830084 1.0000000 1.6830084 1.0000000 1.6830084 1.0000000 1.6924615
2 0.55703212 0.77655095 0.55205671 0.77962496 0.55134776 0.78051978 0.54965834 0.78171462
3 0.61384381 0.72384822 0.61361089 0.72184756 0.61276418 0.72211633 0.61403859 0.72174536
4 0.61061737 0.71912615 0.6080549 0.71735096 0.60713127 0.71758132 0.60799521 0.71731317
5 0.61180749 0.71817148 0.61099979 0.71498461 0.61090756 0.71467798 0.61042256 0.71501707
6 0.61180735 0.71816995 0.61099710 0.71497673 0.61091337 0.71465933 0.61041886 0.71501085
7 0.61180735 0.71816995 0.61099714 0.71497671 0.61091606 0.71465766 0.61041902 0.71501073
8 0.61099714 0.71497671 0.61091606 0.71465766 0.61041902 0.71501073

Table 3
Lowest (1st) and highest (N th) eigenvalues AK, andk § of the assembled global stiffness matrix
K for the straight beam discretized with N. 3-3 integration elements

N. =7 N.- 14

c- 103  c- 1 c- 105 c- 10

Al f A4i A f A  A§. Al f A

1.25 0.32 10' 1.25 0.32 I0 1.25 0.32 10' 0.75 0.66 10' I.
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Table 4
* Convergence of the tip coordinates x(l) and y(l) with the Newton-Raphson (NR) iterative cycles. Straight beam tip

loaded with P = 5, and discretized with 3-3 integration elements

N.= 7 N.= 14

c = 10 c=104  c =1 c 10

x(1) y(l) x(l) y(l) x(1) y() x(1) y(t)

i 1.0000000 1.6651444 1.0000000 1.6651444 1.0000000 1.6651444 1.0000000 1.6636502
2 0.56022070 0.77453293 0.55526060 0.77770589 0.55452073 0.77870079 0.55478261 0.77847397
3 0.61529505 0.72278893 0.61557099 0.72053522 0.61541080 0.72053192 0.61594304 0.72015670
4 0.61221822 0.71820317 0.61007604 0.71628612 0.60969777 0.71624185 0.61019765 0.71596357
5 0.61335240 0.71729088 0.61260781 0.71402538 0.61297276 0.71312999 0.61251874 0.71374747
6 0.61335228 0.71728948 0.61260543 0.71401851 0.61296877 0.71311681 0.61261565 0.71374152
7 0.61335228 0.71728948 0.61260545 0.71401850 0.61296970 0.71311611 0.61251582 0.71374140
8 0.61260545 0.71401850 0.61296970 0.71311611 0.61251582 0.71374140
9 0.61237501 0.71378936

The (stable) equilibrium configuration computed for the tip loaded beam with the 3-2
integration scheme is shown in Fig. 2. Fig. 3 shows the computed curvature distribution K(S)
for the same beam, and Fig. 4 shows the tension p along this beam computed from equilibrium
considerations (p = Py') and from Hook's law (p = ce). We remark in Fig. 3 that even though
the elastically computed tension oscillates violently inside each element, at the two Gauss
points G, and G2, at which the stretching energy is sampled, the statically and elastically
computed tensions agree and are accurate to a degree that is sure to satisfy any practical
requirement.

3

Nez 7 y=

2.

c4000 3-2 Integrtion'
C4000

Exact x0) :307739

/ 0

Fig. 2. Deep be ing of a tip loaded beam computed
with 3-2 integration elements. Fig. 3. Curvature distribution for the beam of Fig. 2.
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Fig. 4. Tension distribution for the beam of Fig. 2.
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* 3-3 Integ'ation
4- 10000

* 3-

Fig. 7. As in Fig. 6 but with c = 10.

3-
3-3 Integraion

4 =000

I. A1=7

S
0' i

Fig. S. Curvature distribution for the beam of Fig. 2 discretized with 3-3 integration elements.

Figs. 5,6 and 7 trace the computed tensions for the tip loaded beam discretized with 3 3
integration elements. Fig. 8 shows the, here smoother looking, computed curvature dis-

* tribution for the same beam.

4 Presed ring

The elastic deflection of a thin inextensible circular ring pressed by two equal and opposite
forces has been previously computed [1) with quadratic C' finite elements. In this section we
present similar results obtained with the cubic-cubic C' element. Fig. 9 shows the equilibrium
configurations that the ring '-mumes when pressed by a force P that increases in steps of 2
from 0to 38. Fig. 10follows the' 3sing of the gap along the diameter of the ring with the
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50 P

P=0,2,4,6,-.38

C4I000 40 'i"'

Y ANe7

30

2-Linear

/0. c=I000

0 2/v

Fig. 10. Computed sinking of ring's top point with the
Fig. 9. Point pressed circular ring, top force P.

increase of P. We see in Fig. 10 that our extensible element has a slight extra flexibility to it;
contact of the pressed points is reached with a force P that is somewhat less than the
theoretical [3-51 P = 4wr' for a ring of radius lhr.

S. Ring under hydrostatic pressure

To account for the action of an external uniform pressure (nonuniform is actually as easy) q
we have to add to ir(x, y) in (3) the pressure's potential

7r(x, y) =q xy' ds (28)

or approximately, for the typical element,
3

7e=q I wAxAy (29)

that leads to
3

and then to

k. ire= q wj(,04 + 405 (31)

which are added to g. and k. in (17) and (21).
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2/ir y

79.6 w

93.0 2/7 P=Oc\
c=10 5  

106.4 P=/
119.8 Pz5\
133.2

14 6.6 

c4/0 ' -

60.0 Ne =-7 Qadratic
theory

0 
qlqc,

Fig. 11. Deformation of a circular ring under the action Fig. 12. Displacement of the ing's top point under the
of an external pressure q. action of an external pressure q and a top force P.

The critical pressure on a closed circular inextensible ring is at q, = 3/r2 , or in our case
where r = I/r, qc, = 3wT2 = 29.609. Fig. 11 shows the collapse of the rirg, discretized with seven
elements, under the action of an increasing, as listed, pressure. Fig. 12 compares the variation
of the maximal deflection w caused by the external hydrostatic pressure q and a point force P,
computed with our element, with results obtained from an analytic quadratic theory 16-91. A
high c value is chosen here to make the comparison with the inextensible theory more

6. Vibrating beams

If g(u) denotes, as before, the global gradient of the total potential energy and M the
beam's global mass matrix, then its equation of motion is written as

g(u) + Mii = 0 (32)

where i denotes velocity and ii acceleration, that we propose to numerically solve with the
Newmark scheme 101

u, u0Uo+ o+2Tj, u,'U0+' ""U,=U + 1 D+2 1=4 r+1 ( 4o + i,) (33)

for a time step size T. By virtue of (32), (33) becomes

u, = Uo + 1% -1 -go, u, = io- IrM-'(go + g). (34)

In our subsequent dynamic computations we shall exclusively use the consistent [101 beam

mass matrix.

C . . .....
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We can foresee the possibility of a simply supported beam with free axial motion executing
very large amplitude vibrations even when nearly inextensional. To numerically study such
motions we impart the originally straight (x = s, y = 0) beam an initial velocity

a.
to = 0, yo-sinirs (35)

with magnitude determined by the factor a. Fig. 13 shows the appearance of the beam at time
intervals of i0 as it hurls up towards its ultimate flexed position. In Fig. 14 the beam's central
elevation is traced against time for different values of a in (35). When the vibration amplitude
is small, say for a < 2, the computed time it takes the crest of the beam to rise and fall back to
zero is close to the theoretical half period value of I/ir. A growing amplitude is predicted by
our computations to cause a hardening of the beam and a shorter period of vibration. This
does not sit well with other published results [11, 12], but meaningful comparisons are anyway
not easy here. First, the approximations of the analytic approaches are sensitive [11 to very
large displacements; and also, one must bear in mind that for a periodic solution to exist in the
nonlinear range, particular, not easy to come by, initial conditions must be at hand.

To study the large movements of a free-free beam we set it in motion with the initial
velocities

i 0 =O and yo=a[cosAs+coshAs+a(sinAs+sinhAs) (36)

where A = 4.7300408 and where

sin A -sin-A
cosj A+coshiA =-1.018. (37)

c0_

*e-7 Y(O) 18

_:18 
=

LAIO

5
, =0 0 0 0 1 / c tO0 0 0
r 0.0001
S e mSS Beam

t-/O

0-2

Fig. 14. Movement of the beam's central point for
Fig. 13. Movement of a simply supported axially un- different magnitudes of the initial velocity in equation
constrained beam. (35).
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y(O)-y(I/2) 3
03" v FFBearn

0.3-

0.22
y 02. -

M r~ee -Free

i Ale='?

Fig. 15. Movement of a free-free beam. Fig. 16. Progress of the total bend in a free-free beam
for different values of a in equation (36).

Fig. 15 shows a sequence of still pictures computationally taken of the beam between its first

and second rest positions for a velocity factor a = 2. Fig. 16 traces the total bend y(O) - y(d) of

the beam as it progresses with time. Again, for small amplitudes the free-free beam's
computed half period is near ir/A" predicted by the inextensible small displacements theory,
but as a, and with it the amplitude, keeps growing the beam becomes softer with longer

periods, in agreement with the computations of Takahashi [131 but opposite those of Wagner
[141.

7. Vibrating ring

For the circular ring it is more convenient to deal with the normal displacement w and the
tangential displacement v, that are related to x and y (see Fig. 17) by

x=(r+w)cos0-vsin0 and y=(r+w)sin0+vcos0, (38)

0 being an angle measured from the positive x-axis. A time dependent displacement

w !acos20sinwvt and v=--Iasn2 sinwt (39)

constitutes an inextensional (i.e. x'2 + y 2 = 1) deformation for any value of a, anf for all time t.
We choose, therefore, to send the ring moving with the initial velocities

so=acos20 and 6o=-iasin20 (40)

I.~
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y W(O)
y3v

o-a2sin2e 01,'-

Fig. 17. Vibrating ring. Fig. 18. Movement of w(O) of the ring in Fig. 17.

or in terms of the Cartesian coordinates

.io= ti~,cos 0 -- t30sin 0, V Osin 0 + v0cos 0 (41)

with 0:50 5 ;.
Fig. 17 shows a train of snapshots computationally taken of the beam at yi-'- time intervals.

Fig. 18 traces w(0) with time for different magnitudes of the initial velocity. When a, and with
it the displacement amplitude, is small the ring executes half a period in a time nearly equal to
t~e theoretical inextensible V5/6ar, but as the amplitude grows a slight softening is corn-
putationally detected for the ring in agreement with Evensen's 1151 reporting. Fig. 19 shows
the influence of c on the motion of the ring started with i'o and a3. in (40).

0.2r .

I t*=7

Fig.~~~ ~ ~ ~ 19 Inlec fco h oen f -)frtern nFg 7
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8. Nonconservative loads

Beck's problem of a slender cantilever loaded by tip follower forces (161 is perhaps of little

practical value as its real occurrence is somewhat farfetched but it will serve as a good

example to describe the application of finite elements to problems with no potential for the
load. Fig. 20 shows the arrangement of the tip forces that consist of a tangential follower force
P and a normal follower force Q. When the load cannot be derived from a potential, as here,
we are forced to forego the addition of appropriate work terms to the total potential energy
and must introduce instead the forces directly into the gradient and consequently into the
(nonlinear) equations of equilibrium. For our present beam element this operation is
straightforward. Indeed, since the gradient entries that correspond to the x and y nodal values
express the force sums in these direction, all we have to do here is to add the negative
horizontal

H = Pcos 0+ Qsin 0 (42)

component, and the negative vertical

V = P sin 0- Q cos 0 (43)

component of the tip forces to the entries of g that correspond to the tip x and y, say gv-3 and

gN-, if the tip node is the last.
When we know the beam to be nearly inextensible the substitutions

sinO=h-'y(l) and cosO=h-.(1) (44)

can be made, with which H and V become

H =h-'(PuN-2 + QuN) and V= h-'(PuN- QUN- 2) (45)

7 65 4 Or
P:3 4

P=3 P

0

Fig. 20. Cantilever bent by large follower forces. Fig. 21. Same as F'i. 20 but with P, 21.

g.-L
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that we add to 9N-and gN-I, respectively. To prepare for the Newton-Raphson solution of
g~u) = 0 the four terms

ag-= -P agN3h-IQ, agZN=h-'Q, agN1 -P (46)
al- UN alUN-3 BUN

have to be added, nonsymmetrically, to the global stiffness matrix K at the addresses (N - 3,
N - 3), (N - 3, N), (N - 1, N - 3) and (N - 1, N), respectively. Fig. 20 and 21 show computed
equilibrium configurations for the elastic column bent by the follower forces P and Q. No
nontrivial equilibrium configuration is found for Q 0.
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nw~~Vs p.094345 pOD4U5 OVJ? d.094?3
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1. Introduction

Unconditionally stable (semi) explicit integration schemes for stiff systems

of equations as generated by finite element analysis of elastodynamics and non-

stationary heat transfer are shown to suffer from the DuFort-Frankle-Saul'ev [1]

syndrome whereby coupling between the space and time discretizations may have a

ruinous effect on the accuracy of the computations.

2. Elastodvnamics

To integrate the discrete equiation of motion

in which M is the global mass matrix and K the stiffness matrix, a (semi) ex-

plicit method has been introduced [2] in recent years into the enteineering liter-

ature (see also Refs. [3,4]) based on the s,,:Ltric splitting of K into

K z-L+LT 2

where 1, Is lower triangular. Then for time step T1

4

M + Kj.-C. L

-
(

L)7



I f MI is diagonal pas:sage t from time level 0 to time level I requires back

substitutions only and hence the appeal of scheme (3).

It is shown [51 that this method is energy conservin , anod unconditionally

stable. It is aLso shown in Ref. [51 that for any fixed T., spacial mesh re-

finement, done with tile hope of improving tihe discretization accuracy, will even-

tually sabotage the qual ity of tile displacements computed with eqns (3) or (4).

We reconsider here the singular behavior (if the compi-utationlal error--.

C'onsider tihe string. lproblem

'*11

f.r which we know that e(x,t) =sn211xsin2,:t. Arcording to tie analysis of

Ref. [4] when eqn (5) s discretized with first order elements of size h and

a lumped mass matrix, the, first mode excitation cauises the string to vibrate with

tile computed frequency (.., given by

M-2L

su Cos only an 4ence e am.

+ 2 2=l - (6)

wlhe. t i/h. l'wnr series eX [ anisix , p viaaehr

fi ;=,nement ' , dn wit .te.o. of- improvn th dscetzaio acurcy illeven-
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(7)

or

z[ A- (8)

This error estimate for the computed frequency includes the expected 0(h 2 ) from

the spacial discretization, 0(0t) from the time discretization, and also the

coupled 0(1 4/h2 ). Holding 1 constant and reducing h lowers 6w until a

* critical 1 = (/h) is reached, beyond which A. increases and accuracy is

* lost. This behavior of ,w is clearly seen in Fig. I directly computed from

eqn (6).

The critical t* is found from d(w/h = 0, and we find that

3~ Fqi2 . IL(9)

One would not want to exceed this ', even for the stable method. Going beyond

S' does not produce the computational bang typical of instability but its effects

could be as insidious.

Figure 2 shows the computed motion of the central point of a string discre-J • tized with linear finite elements. With h = 0.05 and T = 0.1 the computed so-

* iution can barely be distinguished from the exact, but small elements cause a hefty

error In the period.

Mar-"!='
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3. Heat Transfer

For the solution of the system of first order equations

tile unconditionally stable, explicit scheme

N(O)

j,2. 0  2'- + ~~

has been advanced [7,8] recently.

To analyze the seheme in eqn (11) we consider tile linear system

+K (12)

with positive definite and symmetric K. Let v1  and v be two eigenvectors

1 2of !K and 0 < 1 ' 2 the corresponding eigenvalues. Tile initial value

prndces ~"' ~.b# 2.(13)
prduces the evolution



- I -

(14)

)1

Or with t = j't, j = 0,1,2,..., and '2 2
-- 2

6 (1)

$tarting with y in eqn (13) we have that

_ L

and eqn (11) produces

aj. a(1- ~ 1 4NQH±& p'
"(I+? )+ •(.- I (17)

Figures 3,4,5 and 6 describe the behavior of eqn (17).

Starting with a = b =1 in eqn (13), Fig. 3 shows the error 6a in a(t)

at t = I as a function of 02. It is clearly seen in Fig. 3 that 0'2 2 con-

stitutes a critical value; below it the error in a(1) is nearly independent of

2 but as €2 2 is crossed the accuracy of a(t) suffers a sudden loss. A

2A;2
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smaller a1 and more steps to reach t I 1 produces a more accurate solution

for .2 < 2, as can be seen in Fig. 4 but as soon as 2 = 2 is crossed the

same sudden loss of accuracy reoccurs.

In Figs. 5 and 6 we examine the errors in a(t = I) and b(t = 1) as a

function of the initial b, when the initial a = 1. It is readily concluded

from Figs. 5 and 6 that high machine accuracy is of little help in avoiding the

sudden error jump in a. Only when b = 0, is

- (18)

SI
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Figures 

F

1. Frequency error of the integration formula (3) as a function of the mesh

size h for time steps between =0.01 and -i = 0.10.

2. Vibrating string solved with cln (1) . Accuiracy declIi nes as hi decreases.

3. Accuracy of integration formula (11) with initial value in eqn (13).

4. Same as 3 but differvint

5. Accuracy of a~t = 1) and b(t =1) for different initial b. Initial

a =I

6. Same as 5 but highier ~,
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Abstract

An alternative to the Riks-Wempner-Crisfield iterative correction scheme

is presented that does not require an explicit displacement-load accession path

to the nonlinear equilibrium curve, nor a known equilibrium point. Its symmetry

with respect to the displacement and load assures success in rounding limit

points as well as turning points.
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1. introduction

Consider the single~implicit equilibrium curve

in which x is the displacement and X the load. To trace X versus x we

shall have to compute close root pairs (x, X) to eqn (1).

Since iterative methods must invariably be used to solve the nonlinear

r(x, X) - 0, two strategy decisions concerning the solution procedure have to be

made: (i) how to advance from an established equilibrium point, say (x0, X ), to

a next initial As.4 say (x, )j); and (Ii) what corrective method to use if

r(X1 , X,) is untolerably large.

The simplest and cheapest tracking, or continuation, procedure for r(x, X) = 0
consists of increasing Xo to XI for a new initial guess (xI = x0 . i) and a

(modified) Newton-Raphson iterative solution of r(x, X with a constant load

That a monotonic X sequence can miss sections of the equilibrium curve has

long been pointed out [1,2j. To remedy this Rik* [3,5], Vempner [4], Crisfield [6,7)

and others 8,9] suggest an Iterative approach to the equilibrium curve on a var-

iable A a A(z) load-displacement constraint. The difference between the different

*methods being that wile Ris and V er advocate a linear (planar) constraint,

Crsfield proeotes a spbet ical on.

I

I I 1II..
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Continuation [10-11] of the equilibrium curve is invariably based on linear-

ization. Let (xn, A) 6e a point in the (x,X) plane not necessarily satisfying

the equilibrium equation, r(x ,1n ) A I 0. Let further 6x - x n+ - xn  and

6X - A V+1 - n denote the displacement and load corrections. Linearization of

r(Zn + 6S, n + 6d 0  yields

C) (2)

where r' - dr/dx and = dr/dX. Henceforth we shall omit the subscript n when

referring to the current nth point.

As for the prediction, that is for the move from the already computed equi-

librium point (x0 , A ) to the next initial guess (xI, A1I
), it is commonly

agreed to supplement eqn. (2) with the elliptical constraint

L% 1 Sus (3)

where a and B are scaling parameters and s the step size. Combining eqns. (2)

and (3) we get

t So (4)

since r(%o, 10) - 0. The choice of sign in eqn. (4) determines the direction of

travel.

In this note we present and experiment with a correction procedure.baaed on

the lewton-Raphaon method s empressed In eq. (2), whereby the initial guess

(3l, )1) is iteratively Improved an an orthogonal trajector to the equilibrium

eq . - " V 11 1
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curve, but with no analtical expression for it and without the involvement of the

previously computed (z, o).

2. The Riks-Vempner method

The cleverness of this method lies in the replacement of the constant ) coT-

rection by the linear relationship

so that a6x + 86 - 0. Adding this constraint to eqn. (2) yields

SA) (6)

or if the constraint line in eqn (5) is chosen to be orthogonal to the tangent vec-

tor (Sxo , 00o), as Riks and Wempner suggest, then

In preparation for things to come we further observe that since 4' 6x + ;o 6) O,

eqn. (7) my be rewritten as

+r ;Y-; 8-

if r(z, X) f(x)-X, then r - f', =-1, and eqn. (8) becomes

So (9)144
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that is shown to be directly obtainable from the Newton-Raphsoh method applied to

the intersection of r - r(x,X) and X - -x/fe + 0. Indeed~since 6Z =-rr', we

have that 6x - -r/(f' -I'), but A' - -1/f and hence eqn (9).

For the success and failure of the Riks-Wempner method in turning a limit point

see Fig. 1.

3. The Crisfield method

Crisfield replaces the linear constraint in eqn (5) by the circular (ellipti-

cal)

0' %)~( - -,mS2 (10)

Using the linearization r + r 6x + r6 - 0 and the constraint

S + ax- Zo)2 + (X + 0) - .) a 2 , 6X is eliminated and we are left with the

quadratic equation [12]

(C)

for 6. The 106.4 increment A) is obtained either from r + r' 6z + i6A l 0 or

directly from the circular constraint.

A direct Newtou-Raphson application to r - r(xX), (x - X0)2 + (A - Ao)2 82

produces 8: - -r/dr/dx, dr/dz - r - dX/dx, (z - xO)dx + (' - AO)dA - j 421

_(12)

or altornatively
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(13)

It is interesting to compare eqns. (12), (13) with eqn. (7).

For the success and failure of the Crisfield method in rounding limit and

turning points see Fig. 2.

4. Orthosonal trajectory

What we consider now is an orthogonal trajectory approach to the equilibrium

curve without the need for an explicit constraint, and without the 4nvolvement of

an equilibrium point (x0, x . All we have to do for that is apply the Nevton-

Raphson method to r - r(x, X) - 0 so as to have 6x - -r/dr/dx, add to this

dr - r'dr + rdX, and impose the orthogonality condition

S4 (14)

and we get

which is ymetric in x and A. Comparing this with eqn. (8) for the Riks-Wemp-

ner method reveals how the orthogonal constraint to updated here.

In fact, UrW [13] ha suggested a correction method that includes updated

mormls. Men applied to r(z. A) - 0, ami's method produces the load increment

(16

IL
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involving not only the previous equilibrium point (z, 0 o ) but also the new ini-

tial guess (z 1 , XLI). It is interesting to compare eqn. (16) vith pqns. (7) and

(13).

5. The vector form

Our main interest is systems of nonlinear stiffness equation as produced by

finite elements applied to elastic problems, and we turn our attention in this sec-

tion to the application of the orthogonal trajectory method to problems with many

degrees of freedom.

Let 7r(x,X) be the total potential energy of the discretization, with x

being the displacement vector and X the scalar load. Here r(x,X) - Wa/x is

the gradient vector of v. If (xo, X) is, again, an equilibrium point so that

r(x 0 , ) - 0, then a linear expansion around it is written as

+  -) o 0(17)

where ar/ax is the stiffness matrix say K, and where ar/ is the load vec-

tor, say p. For bow to compute K and p see [14-19].

A prediction with step size a subject to the constraint

together with the linearization

K + --o(9
(19)

' ~ ~ ~~~~~~ ~ ~~~~~ "ZiM".... :i "'"= ' I r " 1I
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leads to the initial guess

Is K;K'P (20)

where 6X - XL x
0 1 0

Nevton-Raphson's correction applied to the system of linear equations

r(zX,) - 0 becomes

A constant load iteration with 6)-0 reduces eqn. (21) to 6z -1r. A lin-

ear load-displacement constraint that relates 6A to 6z by

CL (22)

with the given vector a produces the correction

.r~ -'
1* (23)

I+ 4K 1
For orthogonal trajectory accessionv et 9L= Kif AV 'fasv

? Jh~K v K (re+ f P) (24)

Observe that both the Piks-Vmner method and the present ome call for the

caqiutatamn of Klir and C'p. sad otherwise entail comparable coqnactatIonal

* I effort.
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6. Midpoint correction

A Runge-Kutta type correction in the form of a midpoint reevaluation of the

stiffness matrix and load vector is also often used [20] in nonlinear computation-

al elasticity. In this method an initial guess is predicted along the tangent to

the equilibrium curve with eqn. (20) but then K and p are reformed at

x - x + 6x/2 and - A o + 63/2, and the new data is resubstituted into eqn. (20).

Each step requires in this way tvo assemblies and two inversions.

An alternative of equal computational effort would be a linear prediction

with one Newton-Raphson correction. It happens that this procedure is considerably

more accurate than a midpoint correction.

It is sufficient that we analyze the methods on the parabolic stiffness equa-

tion A ax 2, where a - X"/2, with the circular constraint x2 + A2 . a2.

Their exact intersection point (xe, Xe) is at

,,-
Xe J+6 0(eC~k (25)

Without correction point p in Fig. 3, (x - s, X - 0) constitutes the ap-

proximation to equilibrium. Since both the exact solution (x. A e ) and all other

approximations are at am equal distance a from the origin we prefer to use the

directional error

~ (26)

of (X, X). For point p we have that - co- (x/s), or tb omsions

X (2L ( 27 )
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we get that for tv10Qi prediction only

0(~o.S (28)

If a is small.

Midpoint correction reaches point m of Fig. 3 with

S 2.'L

----- - (29)

Using eqn. (27), and with similar expansions in powers of a of x and X in

eqn. (29) we have for small a that

L 0( (30)

which Is a substantial improvement over eqn. (28).

One Newton-Raphson correction with a circular constraint leads to

(14 (.) 31

and a directional error

S0 (32)

which Is two orders better than eqn. (30).

The ability of orthogonal trajectory accession to succeed around limit points,

8bifurcation points,, turning points, snap-throughsaend detcmts Is wumricafly
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demonstrated on two simple structural elastic problems.

First to be considered is the two member hinged truss shown in Fig. 5 in its

original undeformed state. As the load A is increased the two elastic bars shor-

ten symmetrically until a snap-through occurs and the triangle is inverted.

A displacement x causes the strain

in the bars. With each bar being of the stiffness k/2 the total potential energy

of the two bar system is W(x) - ke2 - Ax, and hence

r(e.,) *4~e- , 1 v 1(I+ee) (34)

where

- - " - - (35 )

The exact equilibrium curve r(x,X) - 0 is shown in Fig. 4.

Figure 4 shows also the convergence paths of orthogonal trajectory accession

given by eqn. (15), for different starting points that are far from equilibrium.

To observe the orthogonal trajectory one must look close to the end of the iterative

approach. A starting point on the normal to a limit point converges in one step.

Notice also the special attraction of the limit points.

Figure 5 shows the point by point continuation of the equilibrium curve of

Fig. 4 with the predictor of eqn. (4) and the corrector of eqn. (15), with 3 ev-

ton-RAphson corrections per step.

:I:
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The two amber truss shown In Fig. 5 is flat when A = 0. Its behavior under

load Includes bifurcation, turning points, and detachment. Two degrees of freedom,

x and 0, determine the configuration of the deformed system, whose total poten-

tial energy reads now

3L(%f) s?~.f~.f4c~2A %(36)

where kI Is the stiffness of each bar, k2  the stiffness of the torsional spring

at the vertex, and e the strain in the bars:

CoSLF (37)

The two stiffness equations are obtained from ir(x.0) through differentiation

(38)

If k 1/2 and k2 = c/16, then after eliminating x between the pair of

eqns. (38) we are left with

When -0 we have either ) - x or

[4 (40)

so that for a c I two bifurcation points occur on the X-azis, and they coalesce

for - 1. As £ surpasses I the nonlinear bifurcation curve detaches from the

4'

'"" 'V ' ' 4 ' ' -.~i ': -: II
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X axis and a turning point (i.e. dX/dx - -) is created. The critical o and

A at which turning occurs are given by

4 (41)

+*

For a given c > I no nonlinear solution exists for ip c ip whatever X.

Tangential prediction plus orthogonal trajectory accession has no difficulty

following the equilibrium curves past the turning points, as can be seen in Fig. 6.

The two values of e - 1.0235 and 4 - 1.1027 in Fig. 6 correspond to P w /12

and o - w/6, respectively.

Figure 7 uses 0 and X from Fig. 6 to trace X res. x using

IX *COSf (,Cos,4 -i) (42)

Finally, we compare the performance of the various continuation methods dis-

cussed in this paper in rounding a limit point (dX/dx - 0) and a turning point

(dX/dx - -n). The parabolic r - cx(l-x) - X - 0 has a limit point at x - 1/2,

X a/4 and is of the shape of Fig. 1. We choose a - 8, x°0 - 0.4375 (at which

r' 1), and X - 1.96875. A tangential predictor of step size s - 0.2 lands
0

us at x1 * 0.57892136 and A 1 2.1101714. This is approximately the situation

shown in Fig. 1(b) and Fig. 2(a). Both the linear constraint method and

Rm's method fail to find an equilibrium point starting with these x I and A1.

Only the circular const,'nint method and the orthogonal trajectory method converge

here - to different points, though, as can be seen in Table 1.

Reversing the roles of A and x : r - Oa(1-X)-x creates an equilibrium

curve as in Fig. 2(b) with a turning point. Starting fra the reversed A1 - 0.57892136

f:
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and x- 2.1101714, the circular constraint method fails, but the orthogonal tra-

jectory method, because of its inherent symetry to x and X, converges to the

reversed values of z and X in Table 1.

Circular constraint a - 0.2 orthogonal trajectory
step

x A x

0 0.57892136 2.1101714 0.57892136 2.1101714

1 0.62723680 1.8891614 0.50104992 2.0485029

2 0.62287506 1.8793660 0.50023522 2.0000049

3. 0.62283738 1.8792878 0.50023520 1.9999996

4 0.62283737 1.8792878 O. OO23520 Iqj j'

Table 1: Convergence of the circular constraint and orthogonal trajectory

methods upon r = 8x(l-x) - X.

I!
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Figures

1) Success (a) and failure (b) of the linear constraint method.

2) Success (a) and failure (b) of the circular constraint method.

3) Midpoint and Nevton-Raphson corrections with circular constraint.

4) Orthogonal trajectory convergence to the equilibrium curve of the truss in

Fig. 5 from different starting points.

5) Pointvise tracking of the equilibrium curve with a tangential corrector and

orthogonal trajectory corrections.

6) Computed equilibrium points for the two member truss.

7) As in Fig. 6 but x vs. X.
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Abstract

A cubic-cubic element stiffness matrix and element gradient are derived for

the thin shell of revolution undergoing large axisymmetrical Kirchhoff deformation.

Application is made to follow the nonlinear elastic distortion of a spherical

shell under surface pressure and polar forces.

bes avlem
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I. Introduction

D)i sc retec i nt egrition Of the tot :11 p)ot ClIt i I Cue rgy i s uised to derive the st iff-

ness matrix and gradijent of a cubic-Cubic ('1emet for tile Ohin shell of revolution

that may undergo large elastic deformation. This element nced not be small in tile

sense of approximating arc length and is routinely assemled for a Newton-Raphson

solut ion. The same technique has been Previously applied with success to study the

large deformation of the circular plate 11 ],the cable 12],the

elastica [31,the rubber membrane [y],and the curved extensible

rod 1I
An example is made whereby a thin sherical shell is deformed

under the combined action of polar forces and a surface pressure.

2. Elastic !energy'

Considering axisymmetric Kirchhoff deformation, shear is absent and the elastic

energy of the st ressed shell redulces to

V
whe re r, 1, '12 and o i re the normal stresses, an *I 2' f3 the corresponding

strains. By v we demote the original, undeformed, volume of the elastic solid. We

further assume that the elastic material obevs hlook's law so that stress is linearly

related to strain by

e (2)
ci~ ~ +-el)

37
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where E is the elastic modulus, I Poisson's ratio, and e = + r2 +t3 ° Fol-

lowing the common assumption that 3 = 0 we have that
3

and

(4)

so that

Ill " ?-(5)

V

In case of a rod we add the stress assumption ' = 0 and have that

e2- -j' 1 3 (6)

and E (2) reduces to (I = E The elastic energy (5) becomes

15ff OLV(7)

or

(8)

SA G 
1 )
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where s denotes are length and A the area of the cross section.

3. Dlsplacements and strains

Let (x,v,z) be a point on the middle surface of the deformed shell of

revolution so that

(9)

Obviously x 2 + V = r2. It is helpful to introduce the angle 0 measured be-

tween r and the tangent to the generating curve. With this the position vector

r and unit normal to the middle turfacv) n ;1 re. writte'-n as

-. )

The position vector of a point on n at a distance C, from the middle surface is

and

Since dr is in the' tangent plane and n • n = I, we have that n dr 0,
-* -02 an ds 2  - +
n dn = 0, and = dR dR becomes

(13)

IL A w
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where

C) 
(14)

Because q and 0 are orthogonal

(15)

we are left with

. ; 2.
+ O (16)

where prime denotes differentiation with respect to 17 and

4,-O
z Z Yn$~ , (17)

Finally

i "a. 2.(18)

£v
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as compared to the original

o+.)(4+~f~)d 4.k t (19)

Notice that no distinction is made between nnd . Hence the strains are

here

(20)

and

r.2-, + V)# +V4 'e (21)

4. Integration with respect to r

From Eq. (19) we get the element of volume

4 ~ (22)

in which U0 0 F . and = S i 110 Ir Substittlting dv in Eq. (22) and theinwhch(0 0/,0.0 0O Ui~or. uttt

strains FI(',) and f-(M in Eqs. (20) and (21) into the elastic energy expres-

sion in Eq. (5) we integrate it analytically with respect to . between -t/2

and t/2, where t denotes the thickness of the shell.

In doing this we encounter Integrals of the form

71r
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+ Oun - A t(&-) (23)

or if !axl e < 1

X 2L 14qy 6'(24)

and

2,

Now

where

-,I )K

* (27)

o(o -

*~~~~7 VI___ _ ___ _
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If It P 0O/2! and It r /21 are ignored relative to 1 the elastic energy of the

shell simplifies into

3 (28)

For the spherical shell Eq. (28) is obtained without simplification but because

'0 = "O"

5. The plate and beam

When the shell of revolution is a flat circular plate

+0-' i V\ 0 Ze =- 0 z O -

1 (29)
',",, 2 , Yo -=IO~~

and

~ ~ (30)

+ T,-fr+ + 4 + Is2L2
P2 P 2

where F = (r + z) I and 2 rlr 1.

For the beam we set in Eq. (26)

QLz (31)
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and have that

)- 0 o-, (32)

If the axial extension is small we may set = 1, and

e~ (33)

with

ZY,-z y-, (34)

* 6. Stress resultants

jThese are defined as

(35

and from Eq. (26) we- have thenas

(36)

N12,- -

* u'. I ~ ~ L' '.U
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and

K 4- --x
'11 (37)

IT( I~ '~ uo) A

7. Differentiation with respect to a vector

Let f(x) = f(xl,X 2 ... ,Xn) be a scalar function of the vector argument x.

We define the differentiation of f with respect to the vector x as

=? ) - (38)

I It

Notice that f' i6 a vector and f is a symmetric matrix.

Obviously

4- 4 (39)

but

p + , (40)

where

? _ 
(41)

9 X. 9 .

is a nonsymmetric matrix. The matrix

T 7 7

'.1d

:o E , i



1)" tt 1 f+S3 1_. (42)

is symmetric.

8. Cubic-Cubic shell element

Let n in Eq. (26) measure arc along the generator so that 0 1 and

d= ds. The finite element extends between s I  and s I + l so that
" -2(

_s +ht 0 5 1, and ds, ( ) h ) To have a cubic-

cubic element we choose the nodal values vector

44 ~.(Ci Y 1"24), (43)

and interpolate r and z with

T T

where 0 and 4 are shape ftint-ti.- vectors

~F=(, 42..j)O,3 )#~Do))1"bo)O # )4~.OO~4#,) (45)

with

+ 2. 3 (46)

We integrate the total potential energy by sampling at the three Gauss points

+ 1

* ~ i~r~(47)

BV



1'I
4 -Ii-

with weights

V1-Vj 3  8 (48)

18

The valuesof r,zr,z,,z at tLe three integration points L, j = 1,2,3

are given by

-- A- . T (49),. - e Z..

where 0 and 4. shortly stand for O(j) and O(), and

0. ,,,,(. 1 'V omf,. 5, \ j5. (),50. I!\ 15. . ,. ,
(4, 1I , 0 , I,. 1. t,

1 ,9' f. 0 .(l 4. 1. O, 1). 4. 1).

S I ( . /

, (o.. o.,
. .,(I, ii, h, I., I), o, I).

!, ( , , 5 --\ is, ii. o\ I I

where the upper sign of i.- is for Gauss point 1 and the lower

for Gauss point 3.

We choose to derive the element data from the simpler energy expression (23)

and wrlte for the eth element

,*'*1 (51)

... ... ....4l l lKC, +2K K23.1

r 0-
- 1 4 N, '
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where j refers to the jth Gauss sampling point, and where

(52)

From

- dv 
(53)

9EPc.

we have that

(54)

and 3

j* p T I .

where ( )' =

. To shorten the notation we introduce

... . .. .. (56)

o h t n the ne

iA....+(56

so that



V.t

-13-

I~

(57)

and
/

(58)

Next we write

G(59)

ST

9~~~ -ZI~ 'P Tc-2  I~a~ ,T pT\
' ~ IrA 11 d 4  (60)

which is all we need to program the element gradient and matrix.

9. Potential of pressure and point force
A-

If p denotes external pressure and F an apex (r= o) force then to

we add

) z (61)
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where

-F- F(62
E

and have that

(2 - . (63)

j-

and

3 W . , +-T.

i~ = 1L Lz~jy~+ , (64)

which need be added to g and k in Eqs. (54) and (55).
e C

W). bnd ing of a spheirical sheyil

As an example to the usefulness of the shel I element we compute the large

deformation of a thin spherical shell of radius I and , = 0.3 acted upon

by a surface pressure p (negative, is internal) and an apex force F (nega-

tive is inward). For typographical neatness we ignore the asterisks on p and

F. The geometry and loads on the shell are shown in Fig. 3. Because of sym-

metry we consider only the upper half of the sphere.

Figure I shows the deformation of the shell discretized with 14 elements,

under a succession of polar forces F = 0, -2.5, -5.0, ..., -30 with no inter-

nal pressure. Figure 2 shows the same shell under th. same loading but dis-

cretLized wiLh 24 lemeints.

:17

7' &
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TablIes 1 a nd 2, re f err ing t o Figs. I a nd 2, res pvct iveIy , 1is t 11 gI11 a s

it changes wi th the Newion-Raplison (NR) i Ic ration, for t hL di [f erent loadings.

Evidently the comnputati[on of large shell cleformit ions can hecomne expensive.

Figure 3 shows the shell of Fig. 2 but with ain internal pressure p=-IO

Figures 4 and 5 show the creation of a dimple in a thinneLr (t = 0.001) shell.

The solutions for F 10 and V 2 0 in Fig. 5 aire not Wei I convergent.

V-



~F

NR -2.5 -5.0 -7.5 -10.0 -12.5 -15.0 -i7.5 -20.0 -22.5 -25.0 -27.5 -30,0

1 .25E1 .25E1 .25E1 .25E1 .25E1 .25E] .25E1 .25E1 .25E1 .25E1 .25E1 .25E1

2 .62E1 .75E2 . lIE4 . 13E4 .121:4 . lIE5 .96E4 . 13E5 .78E4 .12E5 .34E4 .30E4

3 .20El .22E2 .73E2 .71E2 .52E2 .6713 .561--3 .871:3 .16E3 .27E3 .38E2 .24E2

4 .24E0 .20E2 .31E2 .14E2 38E2 .42E3 .16E3 .56E3 .93E2 .12E3 .21E4 .57E2

5 .30E-2 .67E! . 1611 . 22.2 1512 . 57 12 . 22E2 .7512 .32E2 .24E1 .25E2 .41El

6 .59E-6 .52E1 .45EO .71 E. 49E2 .1 3E2 .1512 .1 3E2 23E3 . 27E3 .34E5 .16E2

7 .13E-9 .46EO .42E-2 .10E2 .35E1 .461E2 .44E2 .93E1 .68E1 .70EO .17E4 .16EO

8 .45Ei-1 .63E-5 .1 lE .80E2 .12EO 55E1 . IIEO 721:4 .52E-1 .18E4 .86E-1

9 .39E-4 .19E-9 . 771:0 . 25E0 .521 . 14E3 . 13D-) 201'E3 .76E-4 .22E3 .26E-5

10 .37E-9 .70 1-2 . 19E2 .641"-3 10EI .22E-4 16E.3 .82E-9 .70E2 .25E-9

11 .39E-4 .13E-I .30E-5 .24E3 .48E-8 33E1 .22EI

12 .34E-9 .621:-1 .121:-9 17E1 .35E-9 33E2 .51EO

13 .95E-6 11 El 1 3EO .14E1-I

14 .241-9 .54E-I 27EI .17E-4

15 .26E-2 .46E-4 .27E-9

16 .42E-6 .13E-5

17 .29E-9 151:-9

Table 1: Values of the 92 norm of the global gradient Igi2  for different

2

appex force F, as thev diminish with the Newton-Raplhon (NR) iteration. This

table refers to Fig. 1.

• ....



NR -2.5 -5.0 -7.5 -10.0 -12.5 -15.0 -17.5 -20.0 -22.5 -25.0 -27.50 -30.0

I .25E1 .25E1 .25E1 .25E1 .25E1 .25E1 .25E1 .251:1 .251 11 .25E1 .25E1 .25E1

2 .62E1 .86E2 .76E3 .15E4 .32E4 .69E4 .14E5 .21E5 .28E5 .46E5 .67E5 .82E5

3. .23E1 .18E2 .63E2 .93E2 .19E3 .4513 .9113 .9713 .13E4 .221 4 .21E4 .24E4

4 .29EO .27E2 .21E2 .53E2 .16E3 .32E3 .43E3 .82E3 .16E4 .221 4 .21E4 .44E4

5 .33E-2 .42E1 .86E1 .96E1 .14E2 .30E2 .45E2 .69E2 .IOE3 .14E3 .17E3 .19E3

6 .43E-6 .58E1 .31E1 .12E2 .26E2 .31E2 .29E2 .21E2 .49E2 .AIE3 .90E2 .17E3

7 .34E-9 .20EO .53EO .2511 .41E1 .9411 .26E2 .45E2 .45E2 .61E2 IOE3 .11E3

8 .22E-1 . 31E-1 .271:I .21E2 35E2 - 13I2 .85EI .15E2 . 12E2 .54E1 .63E1

9 .42E-5 .60E-4 .12E0 .52EO 20EI .27E2 . 10E3 .84E' 2 . 18E3 .78E3 . IE4

I( .551-9 .59E-9 .41-2 .'5l:A .391 2 .4011 .881:() . 271 .lI Il . 241I .44E1

11 . 16E-5 .IOE-1 . 131 10 .38E2 .271:3 .4513 .14E4 .11E4 .15E4

12 .44E-9 .22E-2 .36E1 .46E0 .91EO .17El .66E1 .51E1 .61E1

13 .53E-8 .12E-2 .23E2 . 7811 .14E3 .2 1E2 .12E3 .22E3

14 .50E-9 .341-3 181:-I .31E-I . 181:0 .13E! .22E0 .33E0

15 .531-9 141: . 101:0 .191:2 .3 01:2 . 1813 .41E3

16 .19E-5 .59E-5 .45E-2 .54E-I .20Eo .54E0

17 13E-8 .33E-8 .31E-I .45EI .35EO .31El

18 .38E-9 .34E-9 .65E-7 .41E-3 .65E-3 .18E-1

19 .29E-9 .56E-3 .IIE-4.23E-1

20 .441:-9 .73E-4 .I1E-5

21 .40E-9

Table 2. Same as Table I but Ne = 24. Refers to Iig. 2.
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Figures

1. Thin spherical shell bent under inwardly directed forces F. Discretization

done with 14 elements. No internal pressure.

2. Same as Fig. 1 but discretization done with 24 elements.

3. Same as Fig. 2 but with unit internal pressure.

4. A dimple in a thin spherical shell.

5. Same as Fig. 4 but with a unit internal pressure.
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