

Wright-Patterson Air Force Base, Ohio
robust multivariable controller design
VIA IMPLICIT MODEL-FOLLOWING METHODS

THESIS

AFIT/GE/EE/83D-48 | William G. Miller |
| :--- |
| Capt |

Approved for public release; distribution unlimited.
robust multivariable controller design
viA IMPLICIT MODEL-FOLLOWING METHODS

THESIS

Presented to the Faculty of the School of Engineering of the Air Force Institute of Technology
 Air University
 in Partial Fulfillment of the

 Requirements for the Degree of Master of Science

William G. Miller, B.S., M.S.S.M
Capt
Graduate Electrical Engineering
December 1983

Approved for public.release; distribution unlimited.

Preface

At the end of the week prior to the planned final typing of this thesis, a programming error was discovered by the author of the software which produced the controller designs upon which much of the report is based. Investigation revealed that the design software error had an obvious, significant impact on some of the results, observations and conclusions presented. Considering the limited time available, the most reasonable option appeared to be to document the error, and to explain its effects on the results of this study as fully as possible. Thus, except for the addition of Appendix E and the references to it in Chapters IV, V and VI, this report has been left much as it was before the error was found. The theories and formulations presented are still valid, as are the logic, tools and methodology used to pursue the design and analysis of the controllers. The controller designs developed are valid and do possess solid capabilities despite the software error; they were achievable due to the iterative nature of modern optimal control design techniques. These iterations yielded controllers with gains that produced desirable performance; in using the corrected software, different weighting matrices would be chosen (generally, as the result of easier design iterations) to produce essentially the same gains and the same closed-loop system performance.

While I am disappointed that the accuracy of the data and some of the observations presented in this report has diminished, I am glad that the discovery of the error occurred early enough to allow it to be identified and its effects addressed, albeit in a limited sense. I sincerely hope that those who may read this thesis will still find it
to contain useful information.
I wish to thank my thesis advisor, Dr. Peter S. Maybeck, for helping to make this project such a valuable learning experience. His expertise and guidance contributed a great deal to my work and to the final form of this report. I would also like to (personally) thank him for his patience with my tendency to (always) split infinitives. Thanks are also due Dr. Robert A. Calico, Jr. for his help with modelling issues and his review of the manuscript for this report.

I was also very fortunate to have the assistance of two "unofficial" thesis committee members -- Mr. Finley Barfield and Capt Rich Floyd. I would like to express my sincere appreciation for their interest in this study and for the time they spent helping me to grasp the significance of many of the analysis and design issues that arose in the course of my work.

Last, but certainly not least, I would like to thank my wife, Sue, for her constant encouragement and patient understanding throughout the course of this effort.

Contents

Page
Preface ii
List of Figures vi
List of Tables. x
Abstract xi
I. Introduction I-1
1.1 Background -1
1.2 Recent Research -4
1.3 Objective. -6
1.4 Sequence of Presentation -7
1.5 Notation -8
II. Model-Following and the CGT/PI/KF Controller II-1
2.1 Introduction -1
2.2 Model-Following Controllers -1
2.3 The CGT/PI/KF Controller -9
2.4 Summary -18
III. Robustness Analysis and Enhancement III-1
3.1 Introduction. -1
3.2 Singular Value Analysis -1
3.3 Analysis Through Simulation -10
3.4 Robustness Enhancement Methods. -11
3.5 Summary -14
IV. Design Objectives, Methods and Observations IV-1
4.1 Introduction -1
4.2 Design Models and Objectives. -1
4.3 Analysis Methods. -5
4.4 Observations for Implicit
Model-Following Design -9
4.5 Summary -15
V. Analysis of Design Results V-1
5.1 Introduction -1
5.2 The Baseline Controller. -2
5.3 Alternate Standard Designs -9
5.4 Implicit Designs with Two Model Outputs -10
5.5 Implicit Designs with Three Model Outputs. -15
5.6 Robustness Analysis. -22
5.7 Anti-Windup Compensation -31

Contents

Page
VI. Conclusions and Recommendations VI-1
6.1 Implicit Model-Following -1
6.2 Robustness Analysis -3
6.3 Recommendations for Further Study -5
Bibllography BIB-1
Appendix A: LQG Regulator Synthesis A-1
A. 1 Introduction -1
A. 2 A Simple Constant-Gain LQG Regulator. -1
A. 3 A Constant-Gain PI Regulator -6
A. 4 Quadratic Cost and Implicit Model-Following for CGTPIV -11
A. 5 Summary -15
Appendix B: CGTSVD Software Description and Instructions B-1
B. 1 Introduction -1
B. 2 Development of Loop Equations -2
B. 3 CGTSVD Program Structure -8
B. 4 Instructions for Using CGTSVD -11
B. 5 Sample Program Execution -14
B. 6 CGTSVD Source Listing. -18
Appendix C: ODEACT Software Description and Instructions C-1
C. 1 Introduction -1
C. 2 ODEACT Program Structure -2
C. 3 Instructions for Using ODEACT -5
C. 4 Sample Program Execution -6
C-5. ODEACT Source Listing. - 11
Appendix D: Modified CGT/PI/KF Design Software D-1
D. 1 Introduction -1
D. 2 Program Changes -1
D. 3 Using the Modified Software -4
D. 4 CGTPIV Source Listing. -10
D. 5 CGTPIV Segmentation Job Control -66
Appendix E: Discussion of Design Software Error E-1
E. 1 Introduction -1
E. 2 The Software Error -2
E. 2 The Impact of the Error on the Design Results -5
E. 3 The Analysis of New Design Examples -10
E. 4 Summary -16
Figure Page
II-1 Explicit Model-Follower, With Simple Feedback Regulator. II-6
II-2 The CGT/PI/KF Controller. II-10
III-1 Typical Control System. III-2
III-2 Nichols Plot Displaying Good Gain and Phase Margins, but Poor Robustness III-5
III-3 Design Boundaries for Singular Values III-8
V-1 Design SR-B, Linear Design Model Actuators, PI Regulator with Initial Condition $=1$ Degree v-45
V-2 Design SR-B, Linear Design Model Actuators, CGT Response to Step Input $=1$ Degree v-46
V-3 Design SR-B, Nonlinear Single-State Actuators, Initial Condition $=0.1$ Degree v-47
V-4 Design SR-B, Nonlinear Single-State Actuators, CGT Step Input = 1 Degree V-48
V-5 Design SR-B, Linear Three-State Actuators, Initial Condition $=1$ Degree V-49
V-6 Design SR-B, Linear Four-State Actuators, Initial Condition $=1$ Degree v-50
V-7 Design SR-B, Linear Single-State Actuators, Flight Condition $=.6$ Mach $/ 20,000$ feet, Initial Condition $=1$ Degree v-51
V-8 Design SR-B, Linear Single-State Actuators, Flight Condition $=.6$ Mach $/ 30,000$ feet, Initial Condition $=1$ Degree V-52
V-9 Design SR-B, Singular Values of Inverse Return Difference Function Over Frequency Range of $\omega=.0001$ to . 01 v-53
V-10 Design SR-B, Singular Values of Inverse Return Difference Function Over Frequency Range of $\omega=.01$ to 1.0 v-54
V-11 Design SR-B, Singular Values of Inverse Return Difference Function Over Frequency Range of $\omega=1.0$ to 100.0 v-55
Figure Page
V-12 Design SR-2, Nonlinear Single-State Actuators, Initial Condition $=0.1$ Degree v-56
V-13 Design SR-2, Monlinear Single-State Actuators, Initial Condition $=0.5$ Degree V-57
V-14 Design SR-2, Nonlinear Single-State Actuators, CGT Step Input $=3$ Degrees V-58
V-15 Design IMF2-1, Nonlinear Single-State Actuators, Initial Condition $=0.1$ Degree V-59
V-16 Design IMF2-1, Nonlinear Single-State Actuators, Initial Condition $=0.5$ Degree V-60
V-17 Design IMF2-1, Nonlinear Single-State Actuators, CGT Step Input $=3$ Degrees V-61
V-18 Design IMF2-2, Nonlinear Single-State Actuators, Initial Condition $=0.1$ Degree v-62
V-19 Design IMF2-2, Nonlinear Single-State Actuators, CGT Step Input = 1 Degree V-63
V-20 Design IMF2-3, Nonlinear Single-State Actuators, Initial Condition $=1$ Degree V-64
V-21 Design IMF2-3, Nonlinear Single-State Actuators, CGT Step Input $=3$ Degrees v-65
V-22 Design IMF2-4, Nonlinear Single-State Actuators, Initial Condition $=1$ Degree V-66
V-23 Design IMF2-4, Nonlinear Single-State Actuators, CGT Step Input $=3$ Degrees V-67
V-24 Design IMF2-5, Nonlinear Single-State Actuators, Initial Condition $=0.1$ Degree V-68
V-25 Design IMF2-5, Nonlinear Single-State Actuators, CGT Step Input $=1$ Degree v-69
V-26 Design IMF3-1, Nonlinear Single-State Actuators, Initial Condition $=1$ Degree V-70
V-27 Design IMF3-2, Nonlinear Single-State Actuators, Initial Condition $=1$ Degree v-71
V-28 Design IMF3-3, Nonlinear Single-State Actuators, Initial Condition $=1$ Degree V-72
Figure Page
V-29 Design IMF3-4, Nonlinear Single-State Actuators, Initial Condition $=1$ Degree V-73
V-30 Design IMF3-5, Nonlinear Single-State Actuators, Initial Condition = 1 Degree V-74
V-31 Hybrid Design (PI Regulator IMF3-2, CGT from IMF2-5), Nonlinear Single-State Actuators. CGT Step Input $=3$ Degrees v-75
V-32 Hybrid Design (PI Regulator IMF3-2, CGT from IMF2-2), Nonlinear Single-State Actuators, CGT Step Input = 1 Degree V-76
V-33 Design SR-2, Linear Four-State Actuators, Initial Condition = 1 Degree V-77
V-34 Design SR-3, Linear Four-State Actuators, Initial Condition = 1 Degree V-78
V-35 Design IMF2-1, Linear Four-State Actuators, Initial Condition $=1$ Degree V-79
V-36 Design IMF2-3, Linear Four-State Actuators, Initial Condition = 1 Degree V-80
V-37 Design IMF2-4, Linear Four-State Actuators, Initial Condition = 1 Degree V-81
V-38 Design IMF3-1, Linear Four-State Actuators, Initial Condition $=1$ Degree V-82
V-39 Design IMF3-2, Linear Four-State Actuators, Initial Condition $=1$ Degree V-83
V-40 Design IMF3-4, Linear Four-State Actuators, Initial Condition $=1$ Degree V-84
V-41 Design IMF3-5, Linear Four-State Actuators, Initial Condition $=1$ Degree V-85
V-42 Design IMP2-4, Linear Single-State Actuators, Flight Condition $=.6 \mathrm{Mach} / 20,000$ feet Initial Condition $=1$ Degree V-86
V-43 Design IMF3-1, Linear Single-State Actuators, Flight Condition $=.6 \mathrm{Mach} / 20,000$ feet, Initial Condition $=1$ Degree V-87
Figure Page
V-44 Design IMF3-1, Linear Single-State Actuators, Flight Condition $=.6$ Mach/30,000 feet, Initial Condition = 1 Degree V-88
V-45 Hybrid Design (PI Regulator IMF3-3, Undesignated CGT), Nonlinear Four-State Actuators, CGT Step Input = 3 Degrees V-89
V-46 Design IMF2-4, Nonlinear Four-State Actuators, Anti-Windup Compensated, Initial Condition = 10 Degrees V-90
V-47 Design IMF2-4, Nonlinear Four-State Actuators, Anti-Windup Compensated, CGT Step Input = 3 Degrees V-91V-48 Hybrid Design (PI Regulator IMF3-3, Undesignated CGT),Nonlinear Four-State Actuators, Anti-Windup Compensated,CGT Step Input = 3 DegreesV-92V-49 Hybrid Design (PI Regulator IMF3-2, CGT from IMF2-5),Nonlinear Four-State Actuators, Anti-Windup Compensated,CGT Step Input $=3$ DegreesV-93
V-1 Definition of Designs Using Standard PI Regulator Formulation. V-36
V-2 Summary of Performance Analysis for Standard PI Regulator Designs V-37
V-3 Summary of Minimum Singular Values (Inverse Return Difference) and Regulator Pole Locations for Standard PI Regulator Designs V-38
V-4 Definition of Designs Using Implicit Model-Following with a Two-State Regulator Command Model V-39
V-5 Summary of Performance Analysis for Implicit Designs with a Two-State Regulator Command Model V-40
V-6 Summary of Minimum Singular Values (Inverse Return Difference) and Regulator Pole Locations for Implicit Designs with a Two-State Regulator Command Model V-41
V-7 Definition of Designs Using Implicit Model-Following with a Three-State Regulator Command Model V-42
V-8 Summary of Performance Analysis for Implicit Designs with a Three-State Regulator Command Model V-43
V-9 Summary of Minimum Singular Values (Inverse Return Difference) and Regulator Pole Locations for Implicit Designs with a Three-State Regulator Command Model V-44
E-1 Definition of New Sample Designs (Part 1). E-19
E-2 Definition of New Sample Designs (Part 2). E-20
E-3 Summary of Performance Analysis for New Sample Designs (Part 1) E-21
E-4 Summary of Performance Analysis for New Sample Designs (Part 2). E-22
E-5 Summary of Minimum Singular Values (Inverse Return Difference) and Regulator Pole Locations for New Sample Designs (Part 1) E-23
E-6 Summary of Minimum Singular Values (Inverse Return Difference) and Regulator Pole Locations for New Sample Designs (Part 2). E-24

Abstract

This study applies the concept of implicit model-following to the design of a multivariable control system based on the Linear system model, Quadratic cost, and Gaussian noise process (LQG) assumptions of optimal control. The design objective is to achieve improved controller robustness in the face of uncertainties arising from the differences between the simplified linear model used for controller design, and a more realistic truth model representation which includes higher-order dynamics, parameter variations, and nonlinearities.

This report introduces the concept of implicit model-following and reviews the formulation of its incorporation into the design of a controller that consists of a Command Generator Tracker (CGT) employing a Proportional-plus-Integral (PI) inner-loop regulator and, if required, a Kalman Filter (KF) to provide state estimates for feedback control (CGT/PI/KF controller).

The theoretical background for the application of matrix singular value analysis to the study of controller robustness is presented, and a computer program is developed to apply this type of analysis to the general CGT/PI/KF controller configuration. Additional software is developed to analyze the performance of the specific designs achieved in this study by means of conventional simulation with respect to various realistic truth models. Both programs tre documented and listed in this report.

A variety of deterministic CGT/PI controllers for the decoupled,
pitch-pointing control of a modern fighter aircraft (the AFTI F-16) are designed through the use of software developed in the course of previous AFIT thesis efforts. These controller designs are analyzed extensively through the use of the software developed in this study. The incorporation of implicit model-following in the design process for the inner-loop regulator is shown to provide an enhanced capability to produce designs which work well despite unmodelled dynamics and system nonlinearities (specifically, control actuator saturation), when compared to design methods which do not use implicit models. The results of the singular value and simulation analyses are combined and contrasted. The type of singular value analysis employed in this study is shown, for the design problem considered, to be of limited value in predicting the robustness of controller performance. Classical analysis based on the locations of nominal closed-loop controller poles is shown to provide considerable insight and predictive capability for robustness in the face of higher-order dynamics.

robust multivariable controller design

VIA IMFiICIT MODEL-FOLLOWING METHODS

I. Introduction

1.1 Background

An important objective in control system design is to meet constraints on both the transient and the steady-state behavior of a physical system. Achieving these objectives generally requires the use of some form of feedback control, which provides the designer with an even more critical concern -- that the closed-loop system be stable at all times and under all operational conditions. Design of systems that meet these criteria is greatly complicated by unknown or unmodelled differences between the mathematical model on the drawing board and the real world. These include (1) disturbances that affect the controlled system (plant) and sensors, (2) order reduction in the design model required to simplify the design or controller implementation, (3) unmodelled or ignored nonlinearities, and (4) parameter variations between the actual system and an otherwise adequate design model representation. The effects of these "uncertainties" can cause serious performance degradation or instability if the designer does not allow for their existence. The term "robustness" is used to define the amount of design uncertainty that can be tolerated, or the amount by Which the real world can vary from the nominal design model, without destabilizing the actual physical closed-loop control system or causing it to fail to meet performance specifications $[4,11,13,30,41]$. In this
thesis "robustness" will be primarily used in reference to the stability consideration; when "performance robustness" is intended, it will be specified explicitly.

The stability robustness of single-input, single-output (SISO) control system designs is frequently characterized using the well known concepts of gain and phase margins, although these measures do not take into account the effects of simultaneous gain and phase changes that could produce instability $[30,43]$. Even these limited measures have no direct counterparts that can be applied to the case of multiple-input, multiple-output (MIMO) control systems. Attempts to analyze the robustness of MIMO designs one loop at a time using the SISO analysis methods generally provide overly optimistic robustness estimates in that they fail to identify the effects of simultaneous variations in interrelated system loops $[11,12,14,41]$. Since many of the flight control and weapons system developments currently of interest to the Air Force depend on multi-loop designs, the lack of adequate design and analysis tools has a serious impact. A means of quantifying the robustness of MIMO designs is a necessary prerequisite for developing more certain methods of synthesizing control systems that are, in fact, robust. Singular value analysis of the matrices which are used to describe the control system has been shown to provide such a capability $[4,7,11,12,14,15,18,24,27,30,35,37,38,41]$, and $i t$ will be described in some detail and used in this thesis.

One approach to modern multi-loop control system design involves the assumption of a linear system with disturbances and measurement corruptions which can be represented as Gaussian processes, and with control laws based on the mathematical optimization of a scalar
quadratic cost function (performance index). Such LQG
(Linear-Quadratic-Gaussian) design techniques can be applied to many types of complex problems, generating designs with many desirable characteristics. These techniques do not, however, directly address the robustness issue, and many designs based on LQG assumptions and methods have demonstrated a serious lack of robustness; the presence of an observer or filter in the control loop is a primary cause of the problem [10,30]. Robustness analysis is therefore imperative for the LQG designer.

One controller configuration in the LQG class consists of a Command Generator Tracker (CGT) which provides feedforward control, a Proportional-plus-Integral (PI) inner-loop controller designed by LQ deterministic optimal control methods, and a Kalman Filter (KF) to provide state estimates necesssary for control law generation (as a unit, henceforth referred to as CGT/PI/KF) $[16,31,34]$. The CGT/PI/KF controller was the subject of two recent AFIT thesis efforts by Capt R. M. Floyd and Lt A. Moseley [16,34]. These studies included the development of interactive computer software for efficient design and performance analysis of the $C G T / P I / K F$ controller. A unique aspect of this type of controller is the use of "model-following" to force the controlled plant to respond in a way which mimics the response of an Ideal system. This can be done by means of the feedforward controls of the CGT ("explicit" model-following), or by changing the control system's closed-loop characteristics by incorporating a model of an ideal response into the regulator's performance index ("implicit" model-following), or both. The complexity of this configuration makes robustness analysis somewhat difficult. At the same time, the degrees

Abstract

of design freedom created by this compexity make the CGT/PI/KF a promising vehicle for investigating means of robustess enhancement, especially through the use of implicit model-following. Refer to Chapter II for a more detailed discussion of model-following control and, in particular, the structure and design methods for the CGT/PI/KF controller.

1.2 Recent Research

In general, the scalar parameters that describe a SISO control system are replaced by matrix quantities in the MIMO case. The open-loop transfer function becomes a loop gain matrix, and the return difference function (the denominator of the control ratio) is replaced by a corresponding return difference matrix function. Analysis of functions of these matrix quantities can provide much insight into the performance and stability robustness of complicated systems, just as scalar analysis does in the SISO case $[11,14,30,37,41]$. Many of the classical "rules of thumb" that have traditionally been applied to the loop gains of SISO control systems can be generalized to apply to the "singular values" of the MIMO loop matrix [14,37,43]. Similarly, the use of the matrix singular value decomposition provides insight into the "size" of the system's return difference matrix; this quantity and the associated inverse return difference matrix are directly related to the system's overall stability $[11,14,30,47,43]$.

Matrix singular value analysis (discussed at length in Chapter III) has generated a great deal of research in the last few years $[4,7,11,12,14,15,18,24,27,30,35,37,38,41]$. A very good basic discussion of the impact and application of singular value analysis in
assessing stability robustness was presented by Doyle [11]. Expansion of these concepts to the more general analysis of both stability robustness and performance using singular value analysis of several system matrices was given by Doyle and Stein [14]; this work provided some pleasing generalizations of many classical SISO design tools to the MIMO case. In both of these sources, the robustness analyses are based on the effects of a very general class of perturbations to the design model parameters referred to as "unstructured" uncertainties. Since a subset of this class generally represents perturbations that could never physically occur, robustness estimates are often overly conservative. More recent research $[12,18,27,40]$ has centered on analysis that takes into account knowledge of what perturbations are physically possible and which will have the greatest effect on robustness and performance. This work with "structured" uncertainty leads to tighter bounds on robustness estimates.

Robustness analysis is necessary to ensure that a control system will remain stable in the face of uncertainties. If such analysis uncovers design deficiencies, then steps must be taken to robustify the system. Gilbert [19] has shown that if the eigenvectors of the closed-loop system are made as nearly orthogonal as possible, improvement in robustness results; design methods involving eigenstructure assignment therefore have the potential for robustness enhancement $[1,20,25]$. Because it depends on an internal model of the overall system to provide estimates, insertion of a Kalman filter in the loop generally degrades robustness [10,30]. Doyle and Stein [13] have shown a means of recovering some of this lost robustness by systematically injecting pseudonoise into the filter model at the control input
points; a dual approach involves a structured change in the quadratic state weightings used in the controller design [14,26,43]. The first of these methods was employed in an AFIT thesis by Capt E. D. Lloyd [28] with some success. Except for the methods cited, much of the design robustification that occurs must still be based on iterative methods, using insight gained from such tools as singular value analysis and simulation of actual system performance.

1.3 Objective

The purpose of this study was to attempt to develop synthesis techniques for the design of robust $L Q G$ controllers. In particular, an effort was to be made to develop the use of implicit model-following as a means of enhancing controller robustness in the face of a variety of uncertainties. The software developed by Floyd and Moseley was to be used to conduct the design and initial evaluation of CGT/PI controllers. A computer program was to be developed to calculate and plot the singular values of the loop gain and inverse return difference matrices of a control system in the CGT/PI/KF configuration, as a function of Erequency. An inequality (discussed in Chapter III) relating the singular values of the inverse return difference matrix and the maximum stable perturbation to the design model was to be used as one measure of stability robustness. Additional software was to be written to conduct performance analysis of the controllers operating on nonlinear truth models, models with higher-order dynamics, models with parameter variations, and combinations of such perturbations to the design model. The results of singular value and simulation analyses were to be compared and combined. Methods of improving the robustness of the
control system, primarily with implicit model-following, without excessively or unnecessarily degrading performance were to be investigated.

1.4 Sequence of Presentation

Chapter II presents a more detalled look at the structure and design of the CGT/PI/KF controller, as well as the concept of model-following. Chapter III outlines the development of the robustness analysis and enhancement methods that were to be employed. Chapter IV presents specific design models and objectives, the approach to be taken in conducting the controller design and analysis, and a summary of general observations that emerged during the study concerning the use of implicit model-following in regulator design. Chapter V discusses the specific results of the design efforts conducted, and Chapter VI offers some conclusions and recommendations for further study. Appendix A contains a brief review of the LQG problem formulation and solution, while Appendices B, C and D document the software developed and/or used in this study. Appendix E documents an error that was discovered in the CGT/PI/KF design software after the design work of this research had been completed. The error and its significance with respect to the results and conclusions presented herein are outlined, and some preliminary designs using the corrected software are presented. The reader is urged to review Sections E. 1 through E. 3 prior to any detailed study of Chapters IV, V or VI.
1.5 Notation
An attempt has been made to adhere to the notation used by Maybeck[29-31] and the AFIT theses by Floyd and Moseley [16,34]. Appendix Acontains a brief review of the LQG controller problem formulation andsolution; this includes an introduction to the notation as well as theconcepts represented. This review includes the majority of the basicnotation that is used throughout the thesis, and additional notation isdefined as it is introduced.

Abstract

2.1 Introduction

This chapter discusses the concept of model-following control in LQG designs. The CGT/PI/KF controller configuration is described [5,30], along with an outline of a design procedure as implemented in software developed by Floyd and Moseley [16,34]. The level of detail in this description is intended to be sufficient for the reader interested primarily in understanding the purpose and results of the study described in this thesis. While much of the theory discussed is applicable to a wide range of problems, the analysis software developed in this study is useful only for designs based on the formulations of, and conducted using the software of, the previous thesis efforts. For that reason, a reader interested in using the specific tools developed herein is referred to the Floyd and Moseley works for a more complete development and description of related design software and methodology.

2.2 Model-Following Controllers

The development in Appendix A demonstrates that the LQG design approach provides a systematic means of synthesizing control laws for complex, multi-loop systems. Despite the capabilities inherent in methods based on optimal estimation and control theory, classical control design and analysis methods remain the primary tools of most design engineers $[16,31,43]$. One of the reasons for the failure of modern tools to replace the classical is the fact that many design specifications are stated in terms of time-domain input/output behavior -- settling time, peak overshoot, damping ratio, steady-state error and
disturbance rejection characteristics -s which are not readily translated into quadratic weightings to be used in a performance index. The result is a considerable amount of trial-and-error-based design iteration, often without a great deal of physical insight.

The concept of model-following first arose in the 1960's as a means of implementing modern control techniques, and has proven particularly useful in aircraft control system designs where specifications consist of desired "handling qualities" expressed in terms of classical time-domain criteria [16]. Model-following provides a means of forcing the outputs of a controlled system to behave as if they were those of a model system which is known to have the desired qualities. Typically, the objective is to cause a complex, high-order system to match the characteristics of a simpler model, achieving an approximation of a first- or second-order output response that meets specifications. Another use of model-following is in causing one system to mimic the response characteristics of another system, such as one aircraft that exhibits the same handling qualities as another [16].

Within the model-following class of controllers are two subgroups: implicit and explicit model-following controllers. In implicit model-following, the description of the "model" system is incorporated into the performance index; feedback control is thus designed to penalize the system mathematically for deviations from model performance. In explicit model-following, the desired response dynamics are simulated in the controller and used to generate commands consisting of feedforward gains on model controls and states. The feedforward control, generally used in conjunction with feedback control from some form of inner-loop regulator, thus optimally drives the system to
achieve model response. Development of both concepts is quite straightforward $[6,16,34]$.

A very simple example formulation follows, which demonstrates how model-following works. The fact that this is an example formulation cannot be overemphasized. There are similarities between the controllers discussed in this section and those actually used in this study, but there are important differences as well. To avoid confusion that could result from incorrectly relating this simple example formulation to that of the PI regulator developed in Appendix A and the CGT/PI development of Section 2.3, distinct notation is used for the weighting matrices of the cost functions in this section. Reference to the equations of this section is avoided throughout the rest of the thesis, except in Appendix A, where the correct relationship between the different formulations is discussed.

Consider the linear-quadratic full-state feedback (LQSF)
regulation problem for the continuous-time system described by the state differential equation

$$
\begin{equation*}
\underline{\dot{x}}(t)=A x(t)+B u(t) \tag{II-1}
\end{equation*}
$$

While it is possible to include non-zero command inputs in the formulation, the result would be much more complicated; in this simple example, only response to initial conditions is considered. The desired control law is of the form

$$
\begin{equation*}
\underline{u}(t)=-\underline{G}_{c}(t) \underline{x}(t) \tag{II-2}
\end{equation*}
$$

A steady-state, constant gain, $\underset{-}{G}$, is often sought for practical implementation. The objective is to force the output of the system

$$
\begin{equation*}
\underline{y}(t)=C x(t) \tag{II-3}
\end{equation*}
$$

to match as closely as possible the output of a model system, described by the equation

$$
\begin{equation*}
\dot{\underline{y}}_{-\mathbb{m}}(t)={\underset{-m}{m}}_{y_{m}}(t) \tag{II-4}
\end{equation*}
$$

where y_{m} is of the same dimension as y. At this point, the use of time arguments will be dropped to simplify the notation. The appropriate scalar performance index to be minimized in determining the optimal feedback control law is

$$
\begin{align*}
J_{I} & =1 / 2 \int_{0}^{\infty}\left[\left(\underline{\dot{y}}-A_{-m} \underline{y}\right)^{T} \underline{Y}_{I}\left(\dot{\underline{y}}-A_{-m} \underline{y}\right)+\underline{u}^{T} \underline{U}_{I} \underline{u}\right] d t \tag{II-5a}\\
& =1 / 2 \int_{0}^{\infty}\left[\underline{x}^{T} \underline{\hat{Y}}_{I} \underline{x}+2 \underline{u}^{T} \underline{\underline{S}}_{I} \underline{x}+\underline{u}^{T} \underline{U}_{I} \underline{u}\right] d t \tag{II-5b}
\end{align*}
$$

where

$$
\begin{align*}
& \hat{\underline{Y}}_{I}=\left(C A-\underline{A}_{m} C\right)^{T} \underline{Y}_{I}\left(C A-\underline{A}_{m} C\right) \tag{II-6a}\\
& \hat{S}_{I}=B^{T} \underline{C}^{T} \underline{Y}_{I}\left(\underline{C A}-A_{I} C\right) \tag{II-6b}\\
& \hat{U}_{I}=\underline{U}_{I}+\underline{B}^{T} \underline{C}^{T} \underline{Y}_{I} \underline{C B} \tag{II-6c}
\end{align*}
$$

and the function is integrated over all time so as to define a steady-state, constant-gain controller.

The cross-weighting term, \hat{S}_{I}, appears in the index due to the need to track rates of change in the output. The form of the performance index shown thus allows the use of standard $L Q$ synthesis techniques to develop an optimal feedback controller that tries to force the system to meet classical performance specifications embodied in the model
output, $y_{\mathbb{G}}$. The extent to which the desired response is achievable is dependent on the degree of difference between the system's inherent dynamics, represented by A, and the desired response dynamics, represented by $\frac{A}{-m}$.

In developing, again as a very simple example formulation, an explicit model-following controller for the same system, an appropriate performance index might be of the form

$$
\begin{equation*}
J_{E}=1 / 2 \int_{0}^{\infty}\left[\left(\underline{y}-\underline{y}_{\mathbb{m}}\right)^{T} \underline{y}_{E}\left(\underline{y}-\underline{y}_{\mathbb{m}}\right)+\underline{u}^{T} \underline{U}_{\mathbb{E}} \underline{u}\right] d t \tag{II-7}
\end{equation*}
$$

In order to achieve a "standard" index $[6,30]$, define

$$
\begin{equation*}
\underline{q}=\left[\underline{x}^{T}: y_{m}^{T}\right]^{T} \tag{II-8}
\end{equation*}
$$

so that

$$
\underline{\dot{q}}=\left[\begin{array}{c}
\underline{\dot{x}} \tag{II-9}\\
\dot{y}_{m}
\end{array}\right]=\left[\begin{array}{ll}
\underline{A} & \underline{0} \\
\underline{0} & \underline{A}_{m}
\end{array}\right]\left[\begin{array}{l}
\underline{x} \\
\underline{y}_{m}
\end{array}\right]+\left[\begin{array}{l}
\underline{B} \\
\underline{0}
\end{array}\right] \underline{\underline{u}}
$$

and thus,

$$
\begin{equation*}
J_{E}=1 / 2 \int_{0}^{\infty}\left[\underline{g}^{T} \underline{X}_{T} \underline{q}+\underline{u}^{T} \underline{u}_{\underline{u}} \underline{u}\right] d t \tag{II-10}
\end{equation*}
$$

where

$$
\underline{X}_{E}=\left[\begin{array}{cc}
\underline{C}^{T} \underline{Y}_{E} \underline{C} & -\underline{C}^{T} \underline{Y}_{E} \tag{II-11}\\
-\underline{Y}_{W} \underline{C} & \underline{\underline{Y}_{E}}
\end{array}\right]
$$

Since the resulting control law is of the form

$$
\begin{equation*}
\underline{u}=-\underline{G}_{c} g=-\underline{G}_{c 1} \underline{x}-\underline{G}_{c} \underline{y}_{m} \tag{II-12}
\end{equation*}
$$

the model output must be simulated in order to generate the required feedforward control.

A very general structural diagram of such an explicit
model-follower is shown in Figure II-1. The value of $\mathrm{G}_{\mathrm{c} 1}$ is independent of the form of the explicit model to be followed and, for this simple example, is the gain determined by solution of the optimal regulator problem for the controlled system.

Figure II-1. Explicit Model-Follower, with Simple Feedback Regulator [6]

If the controlled system could be perfectly modelled and operated under ideal conditions without any unmodelled disturbances, then performance specifications could be met with either implicit or explicit model-following. Under more realistic conditions, the two types of controllers have some important differences [16].

The implicit formulation has an effect that is asymptotically (as state weightings grow large) equivalent to eigenstructure assignment
[25], and the matching of the poles of the model and controlled system can produce desirable transient response. Rejection of unmodelled zero-mean disturbances may also be better than with an explicit controller, since good disturbance rejection characteristics can be included in the model response so that the disturbance states need not be modelled in the controller. However, since the Seedback gain is directly a function of $\left(A-{\underset{m}{m}}^{A_{m}}\right.$), the implicit model-follower is particularly sensitive to parameter variations and plant modelling inaccuracies.

The explicit model-follower is the more complex formulation. Since the model dynamics must be simulated by the controller (which causes a time lag), and because no attempt is made to match the closed-loop poles of the system to the poles of the performance model, a higher feedback gain is generally required than that of the implicit model-follower in order to achieve comparable transient response. Since the actual outputs are compared instead of rates of change, steady-state operation, rejection of constant disturbances, and sensitivity of steady-state output response to parameter variations is generally better with explicit model-following [16,25].

The advantages of both model-following formulations may be achieved by combining the two, resulting in additional flexibility and degrees of design freedom, as well as a more complicated design procedure. The performance index for such a design would be a linear combination of the indices for the implicit and explicit model-followers, such as:

$$
\begin{align*}
& J_{c}=1 / 2 \int_{0}^{\infty}\left[\underline{(} \underline{y}-A_{-m} \underline{y}\right)^{T} \underline{Y}_{I}\left(\underline{y}-A_{m} \underline{y}\right) \\
&\left.+\left(\underline{y}-\underline{y}_{-m}\right)^{T} \underline{y}_{\underline{E}}\left(\underline{y}-\underline{y}_{m}\right)+\underline{u}^{T} \underline{U}_{C} \underline{u}\right] d t \tag{II-13}
\end{align*}
$$

A design method based on using the performance index of (II-13) would provide the designer the capability of optimizing the mix of desirable characteristics of the two types of model-followers by adjusting the relative values of Y_{I} and $Y_{\text {P }}$, including setting either one to zero.

When command inputs to the system are allowed, both implicit and explicit model-following formulations would require that the command input and outputs be modelled so that appropriate feedforward controls could be generated to drive the system outputs to the appropriate non-zero steady-state values. The implicit model-follower would then also require the use of feedforward control, as was originally the case only with the explicit controller. In combined implicit/explicit model-following, the feedforward controls are dictated jointly by the implicit and explicit performance index terms, but the feedback controls are affected only by the implicit model-following control which attempts to match the system's closed-loop poles with those of the model. Thus the use of implicit model-following is closely tied to the closed-loop system characteristics, including stability robustness. Feedforward control, and thus the use of explicit model-following, will have no effect on the closed-loop stability robustness of a linear system.

Abstract

2.3 The CGT/PI/KF Controller

The controller of interest in this study consists of a Command Generator Tracker (CGT), which produces the required feedforward controls to attempt to cause the system to track a model trajectory in response to command inputs, and a Proportional-plus-Integral (PI) inner-loop feedback controller to provide regulation and closed-loop stability. With full-state feedback, this configuration will be referred to as CGT/PI; a Kalman Filter (KF) may be added to provide the required state estimates, thus producing the CGT/PI/KF controller. In order to achieve a tractable implementation, both the controller and the filter often employ constant gains, and such was the case in this study. The benefits of the reduced computational burden are assumed to outweigh any degradation that would result from using the constant-gain approximation. A block diagram of the CGT/PI/KF controller is shown in Figure II-2.

This configuration provides a great deal of design flexibility. The CGT is an explicit model-follower; the command model used is the ideal performance model, and the CGT may also contain models of disturbances that the system is to reject. The PI controller may be designed simply to provide optimal "type 1 " feedback characteristics, including rejection of unknown disturbances and good transient and steady-state characteristics. The development of this type of "standard" PI regulator is outlined in Appendix A. The PI regulator may also provide implicit model-following characteristics by inclusion of an implicit model in the performance index. The Kalman filter provides state estimates needed by the PI controller as well as estimates of modelled disturbances for use by the CGT in generating

optimal feedforward control.

Figure II-2. The CGT/PI/KF Controller [31].

The CGT/PI/KF controller was the subject of recent AFIT theses by R. M. Floyd and A. Moseley [16,34]. The results of those efforts included interactive computer software for the design and performance evaluation of CGT/PI/KF controllers. The referenced works provide complete detail on the development of the design and evaluation procedure as well as guides for using the software, and are highly recommended reading. A review of the basic structure of the controller and the models used in.its design using the aforementioned software follows.

The design of the CGT/PI or CGT/PI/KF requires the definition of several different linear models. The designer defines each of these as
a continuous-time model. The computer program then converts each of the models to an equivalent discrete-time form $[16,29,30]$ for use in developing the discrete-time digital controller. The design and truth models are mathematical representations of the system to be controlled, and are identical in form. The truth model, at least in theory, embodies all that the designer knows about the system, and is used only to evaluate the performance of the controller. The design model is a purposefully simplified version which describes the system well enough to become the basis for a computationally tractable control law. Hence, the design model is used in the synthesis of the controller, and the truth model is "connected" to the controller for subsequent performance evaluation. The design model used internally by the CGT/PI/KF design software, then, consists of a linear time-invariant discrete-time stochastic vector model of the form

$$
\begin{align*}
& \underline{x}\left(t_{i+1}\right)=\underline{\Phi x}\left(t_{i}\right)+\underline{B}_{d} \underline{u}\left(t_{i}\right)+\underline{E}_{x d} \underline{n}_{d}\left(t_{i}\right)+\underline{w}_{d}\left(t_{i}\right) \tag{II-14}\\
& \underline{y}\left(t_{i}\right)=\underline{C x}\left(t_{i}\right)+\underline{D}_{y} \underline{u}\left(t_{i}\right)+E_{y} \underline{n}_{d}\left(t_{i}\right) \tag{II-15}
\end{align*}
$$

where $\underline{x}\left(t_{i}\right)$ is the system state at the sample time $t_{i}, \underline{u}\left(t_{i}\right)$ is the control applied to the system at time t_{1} and held constant until time $t_{i+1}, \underline{n}_{d}\left(t_{i}\right)$ represents the time-correlated disturbances affecting the system, ${\underset{-}{d}}_{\mathbb{d}}\left(t_{i}\right)$ is a zero-mean, discrete-time white Gaussian driving noise of covariance \underline{Q}_{d}, and $\underline{\underline{y}}\left(t_{i}\right)$ is the output vector over which control is to be exercised. Such a model could, in general, represent an actual discrete process, but in this case is an equivalent discrete-time description of an underlying continuous-time process $[16,30]$, assuming the nonsingularity of Φ. If the actual system is
nonlinear, the model may represent inearized perturbation states, as in the case of aircraft equations expanded about a trim condition.

The time-correlated disturbance vector may be generated as the output of a time-invariant linear shaping filter:

$$
\begin{equation*}
\underline{n}_{d}\left(t_{i+1}\right)=\underline{\Phi}_{n} \underline{n}_{d}\left(t_{i}\right)+\underline{W}_{n d}\left(t_{i}\right) \tag{II-16}
\end{equation*}
$$

with $W_{n d}\left(t_{i}\right)$ a zero-mean white Gaussian noise of covariance $O_{n d}$ that is independent of ${\underset{-d}{d}}\left(t_{i}\right)$ in (II-14).

The model for the system's desired dynamic response, used for explicit model-following, is called the command generator model:

$$
\begin{align*}
& x_{m}\left(t_{i+1}\right)=\underline{\Phi}_{m} x_{m}\left(t_{i}\right)+\underline{B}_{m d} \underline{u}_{m}\left(t_{i}\right) \tag{II-17}\\
& y_{m}\left(t_{i}\right)=C_{-m} x_{m}\left(t_{i}\right)+\underline{D}_{-m} u_{m}\left(t_{i}\right) \tag{II-18}
\end{align*}
$$

With Floyd and Moseley's software, the command generator model is also used as the performance model for implicit model-following; however, it is possible to use different model definitions for the two design functions. In fact, such a generalization was employed in this research. The model control, $u_{m}\left(t_{i}\right)$, is the actual command input to the controller, as from the pilot stick, and is assumed to vary slowly with time compared to the controller sampling period; with the sampling rates used in modern digital controllers, $\underline{u}_{m}\left(t_{i}\right)$ may be considered to be piecewise constant for the purpose of control law derivation [30].

In the design implementation developed by Floyd and Moseley [16,34], the use of explicit model-following requires that the dimension of y_{m} be the same as that of y; the use of implicit model-following requires that the dimension of y be the same as that of
x_{m}. The only other dimensionality restriction is that the number of control inputs equal the number of controlled outputs. Designs may be conducted which actually violate the last restriction by simply introducing a "dummy" input or output. A true solution is possible only when the number of controls equals or exceeds the number of inputs; an approximation based on a matrix pseudoinverse results otherwise $[16,30]$.

Optimal controller designs based on the LQG assumptions are said to possess the property of certainty equivalence [30]. Because of this property, the optimal stochastic controller for such a design consists of an optimal linear Kalman filter cascaded with a deterministic optimal linear controller, and the design of the filter and of the controller can be conducted separately [30]. Certainty equivalence is invoked at this point in the CGT/PI/KF development; the design of the deterministic CGT/PI follows.

In the deterministic open-loop formulation, the CGT must force the error between the model output and the system output to be zero:

$$
\begin{equation*}
\underline{e}\left(t_{i}\right)=\underline{y}\left(t_{1}\right)-y_{m}\left(t_{i}\right)=\underline{0} \tag{II-19}
\end{equation*}
$$

Ideal state and control trajectories can be defined as the time histories of system states and controls that must be followed to accomplish this objective. First, the ideal trajectory must obey the basic state model relationships of (II-14), or, in a deterministic setting,

$$
\begin{equation*}
\underline{x}_{I}\left(t_{1+1}\right)=\underline{\Phi} \underline{x}_{I}\left(t_{i}\right)+\underline{B}_{d} \underline{u}_{I}\left(t_{i}\right)+\underline{E}_{x d} \underline{n}_{d}\left(t_{1}\right) \tag{II-20}
\end{equation*}
$$

If the ideal trajectories are constrained to be linear combinations of

$$
\begin{align*}
& \underline{x}_{-m}\left(t_{i}\right), \underline{u}_{m}\left(t_{i}\right) \text {, and } \underline{n}_{d}\left(t_{i}\right) \text {, i.e.. } \\
& {\left[\begin{array}{l}
\underline{x}_{I}\left(t_{i}\right) \\
\underline{u}_{I}\left(t_{i}\right)
\end{array}\right]=\left[\begin{array}{lll}
A_{11} & \underline{A}_{12} & \underline{A}_{13} \\
\underline{A}_{21} & \underline{A}_{22} & \underline{A}_{23}
\end{array}\right]\left[\begin{array}{l}
\underline{x}_{m}\left(t_{i}\right) \\
\underline{u}_{m}\left(t_{i}\right) \\
\underline{n}_{d}\left(t_{i}\right)
\end{array}\right]} \tag{II-21}
\end{align*}
$$

then the CGT solution is achieved by solving for the constant matrix partitions in (II-21) such that (II-19) and (II-20) are also satisfied. Defining a \underline{I} matrix as

$$
\left[\begin{array}{ll}
\underline{\Pi}_{11} & \underline{\Pi}_{12} \tag{II-22}\\
\underline{\Pi}_{21} & \underline{\Pi}_{22}
\end{array}\right]=\left[\begin{array}{cc}
\underline{\Phi}-\underline{I} & \underline{B}_{d} \\
\underline{c} & \underline{D}_{y}
\end{array}\right]^{-1}
$$

it can be shown [30] that the solution is

$$
\begin{align*}
& \underline{A}_{11}=\underline{\Pi}_{11} \underline{A}_{11}\left(\underline{\Phi}_{m}-\underline{I}\right)+\underline{\Pi}_{12} \underline{G}_{m} \tag{II-23a}\\
& \underline{A}_{12}=\underline{\Pi}_{11} \underline{A}_{11}-\frac{B}{m d}+\underline{\Pi}_{12} \underline{D}_{m} \tag{II-23b}\\
& \underline{A}_{13}=\underline{\Pi}_{11} \underline{A}_{13}\left(\underline{\Phi}_{\mathrm{n}}-\underline{I}\right)-\underline{\Pi}_{11} \underline{E}_{x d}-\underline{\Pi}_{12} \underline{E}_{y} \tag{II-23c}\\
& \underline{A}_{21}=\underline{\Pi}_{21} \underline{A}_{11}\left(\underline{\Phi}_{m}-\underline{I}\right)+\underline{\Pi}_{22} \underline{C} \tag{II-23d}\\
& \underline{A}_{22}=\underline{\Pi}_{21} \underline{A}_{11} \underline{B}_{m \mathrm{~d}}+\underline{\Pi}_{22} \underline{D}_{m} \tag{II-23e}\\
& \underline{A}_{23}=\underline{\Pi}_{21} \underline{A}_{13}\left(\underline{\Phi}_{n}-\underline{I}\right)-\underline{\Pi}_{21} \underline{E}_{x d}-\underline{\Pi}_{22} \underline{E}_{y} \tag{II-23f}
\end{align*}
$$

and methods have been developed [3,23] to solve these efficiently. The ideal constant-gain feedforward control is therefore a linear combination of the command generator model states, the command generator model (command) input vector, and the disturbance states [16,30,34]. Once (II-23) is solved, the lower partition of (II-21)
yields $\underline{u}_{I}\left(t_{i}\right)$ as

$$
\begin{equation*}
\underline{u}_{I}\left(t_{i}\right)=\underline{A}_{21} \underline{x}_{m}\left(t_{i}\right)+\underline{A}_{22} \underline{u}_{m}\left(t_{i}\right)+\underline{A}_{23} \underline{n}_{d}\left(t_{i}\right) \tag{II-24}
\end{equation*}
$$

When a deterministic, constant-gain PI controller, as developed in Appendix A, is included to provide feedback control, the control law becomes [16,30]

$$
\begin{aligned}
& \underline{u}\left(t_{i}\right)=\underline{u}\left(t_{i-1}\right)-\underline{\underline{K}}_{x}\left[\underline{x}\left(t_{i}\right)-\underline{x}\left(t_{i-1}\right)\right]
\end{aligned}
$$

$$
\begin{align*}
& +\underline{K}_{x m}\left[\underline{x}_{m}\left(t_{i}\right)-\underline{x}_{m}\left(t_{i-1}\right)\right] \\
& +\underline{K}_{x u}\left[u_{m}\left(t_{i}\right)-\underline{u}_{m}\left(t_{i-1}\right)\right] \\
& +K_{-x n}\left[n_{d}\left(t_{i}\right)-n_{d}\left(t_{i-1}\right)\right] \tag{II-25}
\end{align*}
$$

where, in terms of the PI regulator development in Appendix A and (II-22) and (II-23),

$$
\begin{align*}
& \underline{K}_{x}=\underline{G}_{\mathrm{c} 1} \underline{\Pi}_{11}+\underline{G}_{\mathrm{c} 2} \underline{\Pi}_{21} \tag{iI-26a}\\
& \underline{K}_{2}=\underline{G}_{\mathrm{C} 1} \underline{\Pi}_{12}+\underline{\mathrm{G}}_{\mathrm{c} 2} \underline{\Pi}_{22} \tag{II-26b}\\
& \underline{K}_{\mathrm{xm}}=\underline{K}_{\mathrm{x}} \underline{A}_{11}+\underline{A}_{21} \tag{II-26c}\\
& \underline{K}_{\mathrm{xu}}=\underline{K}_{x} \underline{A}_{12}+\underline{A}_{22} \tag{II-26d}\\
& \underline{K}_{\mathrm{Kn}}=\underline{K}_{x} \underline{A}_{13}+\underline{A}_{23} \tag{II-26e}
\end{align*}
$$

The time argument of the ${\underset{m}{m}}^{(} t_{1}$) term in the second line of (II-25) is a consequence of the need to ensure consistency in the equations for the Ideal state trajectory (II-20 and II-21) as the system undergoes a
change in the value of the model input, $\underline{u}_{\mathrm{m}}$. Such a change requires that the time argument of the model input be advanced by one sample period in (II-17), providing direct feedthrough of ${\underset{m}{m}}$ to x_{m}. While this precludes precomputation of $x_{m}\left(t_{1}\right)$ in the background between sampling points, it also improves the initial transient performance of the system by speeding up the command model by one sampling period $[16,30]$.

The final step in the development of the overall CGT/PI/KF is the incorporation of a standard steady-state, constant-gain Kalman filter to provide estimates of the system states and disturbances. Due to the certainty equivalence property of LQG designs discussed earlier, this does not change the form of the control law; $x\left(t_{i}\right)$ and $n_{d}\left(t_{i}\right)$ are simply replaced by the filter estimates [30]. The dynamics model for the filter consists of the design model for system dynamics augmented with the time-correlated disturbance model, and the measurements are modelled as

$$
\underline{z}\left(t_{i}\right)=\left[\begin{array}{ll}
\underline{H} & \underline{H}_{n}
\end{array}\right]\left[\begin{array}{l}
\underline{x}\left(t_{i}\right) \tag{II-27}\\
\underline{n_{d}}\left(t_{i}\right)
\end{array}\right]+\underline{v}\left(t_{i}\right)
$$

where $\underline{v}\left(t_{i}\right)$ is a zero-mean, discrete-time white Gaussian noise of covariance R.

The calculation of the various gains in the final control law requires extensive matrix algebra and a degree of trial-and-error iteration with varying performance index weights, all of which is the purpose of the software developed by Floyd and Moseley. To use the software, the designer must specify the models and performance index weights; these include weights on output deviations, inputs and input
rates, plus weights on output rate deviations when implicit model-following is desired. The program CGTPIF [16,34] will solve for all of the required gains and conduct a performance analysis of each of the individual components of the controller. If a Kalman filter is designed, the program PFEVAL [34] can be run to conduct a covariance analysis of the entire controller/filter structure as a unit, as well as a statistical analysis of a controller that assumes perfect access to all states (to display the impact of the filter on performance explicitly). Both programs allow performance analysis using a linear truth model to evaluate the controller in a realistic environment. To evaluate controller robustness, a truth model which differs substantially (in dimensionality as well as coefficient values) from the design model may be used. The controller design software (CGTPIF) written by Floyd [16] and modified by Moseley [34] was used with only minor modifications in this study; the version used is documented in Appendix D.

```
2.4 Summary
In this chapter, the use of model-following was shown to provide a means of incorporating conventional time-domain specifications into controller designs achieved through the use of modern, LQ design methods. The structure of a particularly useful model-following configuration, the \(C G T / P I / K F\) controller, was outlined in some detail. The employment of implicit model-following in controller design directly affects the closed-loop characteristics of the resulting system, including stability robustness. In the chapter that follows, methods of analyzing and enhancing the stability robustness of MIMO control systems are presented.
```

```
III. Robustness Analysis and Enhancement
```


Abstract

3.1 Introduction

This chapter deals with methods for analyzing the stability robustness in MIMO control systems, as well as techniques that can help improve the robustness characteristics of LQG controllers. Singular value analysis is shown to be an intuitively pleasing multi-loop generalization of classical SISO design techniques that can be applied to both stability robustness and performance characteristics. The use of implicit model-following to affect the eigenstructure of the closed-loop control system is discussed as a means of robustness enhancement. Finally, a method for recovering a degree of the robustness lost in replacing full-state feedback with Kalman filter state estimates is introduced.

\subsection*{3.2 Singular Value Analysis} Consider the simple continuous-time, linear, time-invariant control system shown in Figure III-1. The plant is represented by the \underline{G} transfer function, \underline{K} is the controller, \underline{r} is the forcing command, \underline{Z} is the output, and \underline{n} and \underline{v} are, respectively, disturbances and measurement noise. Although the disturbances are depicted as entering the system at the plant output, it is obvious that disturbances might as well be shown entering at the control input; the choice here is merely for simplification of the presentation. Also, this structure assumes that noise corrupted measurements of all outputs are available. While a unity feedback configuration is depicted, the addition of a precompensator (\underline{P}) allows generalization to an equivalent unity

feedback representation of a non-unity feedback controller [14], including such configurations as the CGT/PI/KF.

Figure III-1. Typical Control System [14].

As stated in Chapter II, the precompensator is outside of the loop, so it will not affect the closed-loop characteristics, including robustness, of this linear system. The output of this control system 13

$$
\begin{equation*}
\underline{y}=\underline{G K}(\underline{I}+\underline{G K})^{-1}(\underline{r}-\underline{y})+(\underline{I}+\underline{G K})^{-1} \underline{n} \tag{III-1}
\end{equation*}
$$

Now consider the familiar SISO case in which all of the above quantities are scalar. The complex scalar gk is referred to as the loop gain of the system, and the complex function ($1+\mathrm{gk}$) is the system's return difference function. Classical design theory states that the system's command tracking, disturbance rejection and sensitivity to modeling errors will be good over the range of input frequencies where (the determinant) $|1+g k|$ is large, or where $|\mathrm{gk}|$
is much larger than 1 (i.e., the system bandwidth) [43]. Designing for: this consideration is limited by the response to measurement noises (the same as to commands) and stability [43]. The stability restriction on the loop gain is commonly stated in terms of the Nyquist Criterion: the number of counterclockwise encirclements of the ($-1+j 0$) point in the complex plane realized by the function $g k(j \omega)$ must be equal to the number of unstable modes (right-half-plane zeros) of the function [8]. This is the same as the requirement that the system possess positive gain and phase margins; since most physical systems can be described by transfer functions with a pole-zero excess of at least two [21], the frequency range over which the magnitude of the loop gain may exceed unity is limited by the frequency at which the phase angle exceeds 180 degrees.

At this point it is necessary to consider the existence of modelling errors and parameter uncertainty in the plant representation (g). If the actual value of g differs from the design model value by an amount up to and including Δg, then the possibility exists that the actual system's performance will be degraded. An even more serious possibility is the loss of stability due to the perturbation. Performance degradation can be assessed by reevaluating the bandwidth of the loop gain using the true (in the worst case) plant, $g^{\prime}=g+\Delta g$; stability can only be guaranteed if no value of g^{\prime} in the range specified causes the number of Nyquist encirclements to change.

In many cases, a designer will have some insight into the types and magnitudes of parameter uncertainties in the design model; they may be the result of intentionally ignored modes, nonlinearities or time variations. As might be expected, special design and analysis methods
can be applied when the structure of the modelling uncertainty is known $[12,15,18,27]$. A most general class of uncertainties (norm-bounded but otherwise unconstrained, or "unstructured") will be considered in this thesis. In most cases, the low frequency characteristics of physical systems are relatively well known and are readily expressed using linear or linearized perturbation models. At higher frequencies, system characteristics generally become more nonlinear and less predictable. The perturbations to the design model frequently exceed the magnitude of the nominal transfer function at high frequencies, and phase uncertainties may exceed ± 180 degrees [14]. The need to ensure stability in the face of such uncertainties is reflected in the phase and gain margin requirements of classical SISO design. Even in the SISO case, however, analysis of gain and phase margins does not fully reflect the true stability robustness of a control system, because it does not indicate the minimum amount of simultaneous gain and phase variation required to produce instability. The Nichols plot [8] of Figure III-2 is an example of a system with good gain and phase margin, but very poor robustness, since a very small simultaneous change in gain and phase could produce instability.

Figure III-2. Nichols Plot Displaying Good Gain and Phase Margins, but Poor Robustness.

In the case of multi-loop control systems, an analysis of stability robustness that parallels that of the SISO case is complicated further by the need to consider simultaneous phase and gain variations in all possible combinations of loops. This is due to the fact that, in most cases, the control loops are coupled, and changes in one loop will affect other loops in the system. Since such an analysis would be a monumental, if not impossible, task for systems consisting of many loops, a more powerful tool is needed. In particular, a means of assessing the "size" of the $\underset{G}{G}$ and \underline{K} matrices and their mapping effect on the system inputs and outputs (analogous to scalar gains) will be useful in generalizing the scalar concepts already discussed.

The spectral norm $\|\cdot\|$ for an n-by-n matrix A is defined by

$$
\begin{equation*}
\|\underline{A}\|=\max \|\underline{A} \underline{x}\|=\max \|\underline{A} \underline{x}\| /\|\underline{x}\| \tag{III-2}
\end{equation*}
$$

and is a measure of the "size" of the matrix and its mapping effect on the vector $x[30]$. The singular values, σ_{1} through σ_{n}, of the (possibly) complex matrix A are defined as the non-negative square roots of the eigenvalues of $A^{*} A$, where \underline{A}^{*} is the conjugate transpose of A[11]. The singular values of A and the norm $|\mid \underline{A} \|$ are related by the inequalities

$$
\begin{align*}
& \sigma_{\min }(\underline{A}) \triangleq \underline{\theta}(\underline{A})=1 /\left\|\underline{A}^{-1}\right\| \tag{III-3}\\
& \sigma_{\max }(\underline{A}) \triangleq \bar{\sigma}(\underline{A})=\|\underline{A}\| \tag{III-4}
\end{align*}
$$

so that knowledge of the minimum and maximum singular values of a matrix provides information as to the maximum "gain" effect it can have as well as its closeness to singularity [30]. This information cannot be obtained through analysis of the eigenvalues of A; although, for all eigenvalues of A,

$$
\begin{equation*}
\underline{\sigma} \leq|\lambda| \leq \bar{\sigma} \tag{III-5}
\end{equation*}
$$

the smallest eigenvalue may be much larger than $\underline{g}[11]$. It is possible to reduce any n-by-n nonsingular matrix to the form

$$
\begin{equation*}
\underline{A}=\underline{U} \underline{\Sigma} \underline{V} \tag{III-6}
\end{equation*}
$$

where \underline{U} and \underline{V} are unitary matrices and $\underline{\underline{V}}$ is a diagonal matrix whose elements are the singular values of A. The process is called singular value decomposition, and can be performed by available computer software $[9,24]$.

Now consider the MIMO case for the control system of Figure III-1. The scalar loop gain of the SISO system is replaced by a matrix
function, and now a distinction must be made as to where the loop is broken. If the loop is cut at a point between the controller and the plant, then the loop gain is KG ; if it is cut at the plant output, the loop gain is GK. In general, the two will be different. The return difference scalar function is also replaced by a return difference matrix, which also depends on the point at which the loop is cut. The role of these matrices in performance and stability analysis is analogous to that of their scalar counterparts, but due to the multivariable nature of the problem, such analysis is more complicated. In the MIMO case, the mapping effect of the loop and return difference matrices is dependent not only on the matrices themselves, but on the direction of the vector quantity that is being mapped. As a related example, the eigenvalues of a multi-loop system define the modes of the system's response to any excitation, while its eigenvectors determine the distribution of the response energy based on the relative directional orientation of the excitation and the responding loops. Singular value analysis provides insight into the minimum and maximum effects of a matrix function, so that the most pessimistic prospects for performance and robustness can be assessed. While pessimism is not necessarily a bad thing, the conservatism inherent in this measure can in some circumstances be arbitrarily large, thus rendering it somewhat useless. The degree to which this is true is a function of the problem being analyzed [12].

The minimum singular value of the system's loop gain matrix can be used to assess the minimum bandpass of any loop in the system for inputs which occur in an arbitrary direction. The magnitude of the minimum singular value is a measure of system performance; good
performance generally results when this value is large over the desired frequency range [14]. The maximum singular value is an estimate of the maximum response in any loop to an arbitrary input and, as with single-loop designs, it is important to ensure that this value is small (much less than 1) at frequencies where significant uncertainty exists. In effect, the low frequency performance specifications and high frequency stability requirements provide boundaries within which the designer attempts to restrain the loop gain matrix singular values, as shown in Figure III-3 [14]. While this concept provides some ability to evaluate limits of performance and absolute stability, a more concise measure of the amount of uncertainty which can be tolerated in the loop without causing instability is required as a true measure of stability robustness.

Figure III-3. Design Boundaries for Singular Values [14].

If the nominal system is stable and the uncertainty can be
represented as a multiplicative alteration (the type which corresponds to the classical concepts of gain and phase margins) of the form ($\underline{(}+\mathrm{L}$), so that the perturbed loop gain (with the loop cut at the control input) is

$$
\begin{equation*}
\underline{K G}^{\prime}=(\underline{I}+\underline{L}) \underline{K G} \tag{III-7}
\end{equation*}
$$

then it can be shown [11,14,30] that no perturbation \underline{L} such that $\bar{\sigma}(\underline{L})<\ell$ will change the number of Nyquist encirclements of the loop gain as it is allowed to vary from $K G$ to $K G^{\prime}$ if it is true that

$$
\begin{equation*}
\ell \leq 1 / \bar{\sigma}\left(\underline{I}-[\underline{I}+\underline{K G}]^{-1}\right) \tag{III-8}
\end{equation*}
$$

Employing the matrix inversion lemma [30] which states that, for invertible A.

$$
\begin{equation*}
\left(\underline{I}+\underline{A}^{-1}\right)^{-1}=\underline{I}-(\underline{I}+\underline{A})^{-1} \tag{III-9}
\end{equation*}
$$

as well as (III-3) and (III-4), (III-8) is equivalent to

$$
\begin{equation*}
\ell \leq \underline{\sigma}\left(I+[K G]^{-1}\right) \tag{III-10}
\end{equation*}
$$

or

$$
\begin{equation*}
\bar{\sigma}(\underline{L})<\underline{\sigma}\left(\underline{I}+[\underline{K G}]^{-1}\right) \tag{III-11}
\end{equation*}
$$

for all frequencies (in either the z - or s-domain [8,30]). The quantity $\left(\underline{I}+[\underline{K G}]^{-1}\right.$) is called the inverse return difference matrix function for the system. The maximum value of \boldsymbol{l} for which the inequality in (III-10) holds is a measure of the stability robustness of the closed-loop control system. Use of this measure will be made in the remainder of this thesis; expressions for the loop gain and inverse
return difference matrices for the $C G T / P I / K F$ are developed in Appendix B.

Analysis of the effects of such arbitrary perturbations, or "unstructured singular value analysis," has a major drawback in that it considers perturbations that might never physically occur; the robustness estimates are therefore conservative. If a designer has considerable information about the possible structure of uncertainties likely to occur, then in many cases much tighter and more realistic bounds can be place on robustness estimates through the use of more complex methods of "structured singular value analysis" $[12,15,18,27]$. These will not be pursued further in this thesis effort, but are potentially fruitful for future research.

3.3 Analysis Through Simulation

An excellent alternative method of assessing the robustness of a control system design is through actual simulation, in which the control law is allowed to operate on a truth model. The truth model can be altered to represent any number of physically feasible perturbations to the design model, including previously ignored dynamics and nonlinearities. With the use of simulation, there is no issue of conservatism, and the stability of the control system with respect to the perturbed model can be fully evaluated for any and all physically important perturbations. However, there is an infinite number of possible perturbed models to be considered, so considerable judgment is required in the conduct of such analysis. This more conventional means of robustness evaluation was used extensively in this study, both as a complement to singular value analysis and as a
means of assessing the usefulness of singular value analysis.

3.4 Robustness Enhancement Methods

The primary design tool for robustness enhancement that was to be employed in this study was the use of implicit model-following to affect the eigenstructure of the closed-loop control system. Gilbert demonstrated that the sensitivity of the characteristic roots of a matrix to variations in the matrix elements is minimized when the nominal eigenvectors of the matrix are made as nearly orthogonal as possible [19]. Since the designer has a considerable amount of freedom In assigning the eigenstructure of a multivariable system [1,33], choosing closed-loop system eigenvectors that are maximally orthogonal will, in general, produce robustness benefits in that the system will be less sensitive to parameter variations. Many techniques are available that can be used in control system eigenstructure assignment. Broussard and Berry have shown that one such method is the use of implicit model-following [6]. The minimization of an LQ performance index that is based on an implicit model, as shown in Section 2.2, has a direct effect on the closed-loop system characteristics. This is because the feedback control causes the eigenvalues and eigenvectors of the closed-loop system to tend to match those of the implicit model. With the CGT/PI/KF controller configuration as formulated by Floyd and Moseley $[16,34]$, the designer can choose not only the implicit model to be used (which need not be the same as the CGT command model), but the relative weighting in the performance index given to implicit versus explicit model-following control. By choosing an implicit model for the regulator design with desired eigenvalues and orthogonal eigen-
vectors, increasing the relative weighting on implicit model-following, and by matching a greater number of system states to a desirable implicit model, the designer should, to some extent, be able to approach an optimally robust eigenstructure in the controlled system. This method of eigenstructure assignment would be one which provides a great deal of insight for the designer in progressing through an iterative design process. It should be noted that various other methods of achieving eigenstructure assignment are discussed in current 1iterature [1,20].

Full-state $L Q$ optimal steady-state feedback laws have been shown to possess impressive guaranteed robustness characteristics. For continuous-time controllers (and in the limit, as sampling time goes to zero, for sampled-data controllers) these guarantees include infinite simultaneous gain margins and at least 60 degree phase margins in all loops [30,39]. Since they are valid only for linear systems with full-state feedback, these guarantees are largely theoretical. Real systems are not, in general, linear; nor are they finite-dimensional. Thus, the concept of linear, full-state feedback is itself somewhat fictitious. Even when large gain and phase margins can be achieved, stability under simultaneous gain and phase variations is not guaranteed, as shown in Section 3.2. Despite the preceding criticism of theoretical robustness guarantees, when the linear model of the system is adequate, full-state $L Q$ feedback controllers, based on such a model, are inherently quite robust [30].

Even when an extremely robust full-state feedback design is achievable, the introduction of an observer such as the Kalman filter into the system to provide estimates of states that are not perfectly
accessible produces a degradation in stability robustness. There are no robustness guarantees, even theoretical ones, for LQG controllers [10]. This is due to the dependence of the filter on an internal system model [12,30]. Doyle and Stein [13] have shown that the lost robustness may be asymptotically recovered in continuous-time, minimum phase control systems (at the expense of optimal filter performance under design conditions) by the systematic introduction of a pseudonoise into the model upon which the filter is based, at the entry points of the controls. An extension of this technique for discrete systems was produced by Capt Lloyd [28]. To apply this technique, the $Q_{d a}$ term, representing the strength of the noises driving an augmented system model based on (II-14) and (II-16), or

$$
\underline{Q}_{\mathrm{da}}=\left[\begin{array}{cc}
\underline{Q}_{\mathrm{d}} & \underline{0} \tag{III-12}\\
\underline{0} & \underline{Q}_{\mathrm{nd}}
\end{array}\right]
$$

which occurs in the covariance propagation equation for the Kalman filter based on the same model [29]:

$$
\begin{equation*}
\underline{P}\left(t_{i+1}^{-}\right)=\Phi_{a} \underline{P}\left(t_{i}^{+}\right) \Phi_{a}^{T}+\underline{Q}_{d a} \tag{III-13}
\end{equation*}
$$

where

$$
\underline{\Phi}_{\mathrm{a}}=\left[\begin{array}{ll}
\underline{\Phi} & \underline{0} \tag{III-14}\\
\underline{0} & \underline{\Phi}_{\mathrm{n}}
\end{array}\right]
$$

is replaced by a quantity such as [28]

$$
\begin{equation*}
Q_{d a}+q^{2} \underline{B V B^{T} \Delta t} \tag{III-15}
\end{equation*}
$$

where Δt is the controller sampling time interval, B is the continuous-time control matrix, and \underline{V} is a positive definite matrix which the designer may choose to affect the relative rates of recovery in various loops. In effect, this method causes some of the filter poles to migrate, as the value of q is increased, toward stable plant zeroes. The robustness lost due to the presence of the filter can thus be asymptotically recovered, as q is allowed to approach infinity, in a number of control system loops equal to the number of filter measurements [43]. A dual to this approach was given by Stein and Sandell [43] who credit it to Kwakernaak [26]; this method involves systematically increasing the quadratic state weightings in the regulator design in a manner analogous to (III-15), causing the regulator poles to migrate. While Kalman filter designs and robustness recovery techniques were not pursued in this study, a concurrent effort by Lt Jean Howey [22] has centered on such procedures, and should be considered as complementary required reading.

Abstract

3.5 Summary

In this chapter, methods of analyzing and enhancing the stability robustness of MIMO control systems was presented. Employment of such methods constituted a major portion of the work in this study. The next chapter outlines in more detail how this work was carried out.

IV. Design Objectives, Models and Observations

4.1 Introduction

This chapter outlines more specifically the design objectives undertaken in this study, the models used, and the analysis methods that were employed in evaluating the tentative designs. Observations that emerged during the course of the design iterations involving implicit model-following regulators, as opposed to the "standard" PI regulator formulation, are also included. It is hoped that these observations will provide some insight into the design paths subsequently chosen in this study, and that they will help the reader to understand the design results detailed in Chapter V. It was originally hoped that these observations would also be instructive for designers who might choose to atteapt implicit model-following regulator designs. However, the extent to which some of the ideas are true has been affected by the error discovered in the design software. The reader is referred to Appendix ε for more information regarding designs using the corrected software.

4.2 Design Models and Objectives

The overall objective of this study was to try to use implicit model-following in the design of a multivariable control system, as a means of enhancing controller capability and robustness in the face of a variety of realistic uncertainties. The primary design tool which was to be used was the software (CGTPIF) written by Floyd and Moseley for the interactive design and analysis of CGT/PI/KF controllers [16,34]. Minor corrections and modifications made to that software for
the purposes of this study are documented in Appendix D; the version used herein will henceforth be referred to as CGTPIV (CGT/PI design program, Variant).

A CGT/PI controller for the Advanced Fighter Technology Integration (AFTI) F-16 was chosen as the example controller to be designed. The AFTI F-16 is an aircraft which has been modified for advanced flight control research. Through the use of two independently controlled longitudinal flight control surfaces (a horizontal tail and a trailing edge wing flap), it is possible to achieve direct control of the aircraft's pitch attitude without changing its flight path angle and, hence, its flight trajectory. This capability is expected to be very useful in situations such as air-to-air gunnery, in which the attacker must match the target's trajectory while simultaneously achieving the required gun lead angle in the pitch plane. The design of a pitch-pointing controller for the AFTI F-16 was the primary design example used in previous theses involving the CGT/PI/KF controller configuration and design/evaluation software $[16,34]$. Such a design was of interest for this study, since it inherently requires the use of MIMO design methodology to achieve decoupled control of the two outputs and maintain closed-loop stability with a plant (the $\mathrm{F}-16$ aircraft) which is unstable.

The efforts of this study used the design model for the AFTI F-16 which was developed in Capt Floyd's thesis [16]. The model represents the linearized flight characteristics of the aircraft operating at . 8 mach at 10,000 feet. It is a time-invariant, five-state model in the form

$$
\begin{equation*}
\underline{x}=\underline{A x}+B \underline{u} \tag{IV-1}
\end{equation*}
$$

where the state vector x consists of

```
x(1) = pitch angle (degrees)
x(2) = angle of attack (degrees)
x(3) = pitch rate (degrees per second)
x(4) = horizontal tail deflection (degrees)
x(5) = trailing edge flap deflection (degrees)
x(1) - x(2) = flight path angle (degrees)
```

and
$\underline{A}=\left[\begin{array}{ccccc}0 & 0 & 1 & 0 & 0 \\ -1.08 E-3 & -1.7 & 0.994 & -0.179 & -0.295 \\ 0 & 5.93 & -0.668 & -25.3 & -5.88 \\ 0 & 0 & 0 & -20.0 & 0 \\ 0 & 0 & 0 & 0 & -20.0\end{array}\right]$
$\underline{B}=\left[\begin{array}{cc}0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 20.0 & 0 \\ 0 & 20.0\end{array}\right]$

Note that, in this design model, actuators are represented as having characteristics of a first-order lag response to commands. The outputs are expressed as

to be evaluated. The baseline for evaluating the relative "goodness" of the implicit designs was the CGT/PI controller, developed in Capt Floyd's thesis [16], which was based on the design model just defined. That controller design, which did not employ implicit model-following, was duplicated and extensively evaluated early in this study. Its design parameters, performance characteristics and limitations are discussed at length in Chapter V.

4.3 Analysis Methods

The controllers developed in this study were evaluated by various methods to determine their suitability, both in an absolute sense and in comparison to the example standard CGT/PI design used as the baseline.

A computer program called CGTSVD (CGT Singular Value Decomposition) was developed which calculates the minimum and maximum singular values of the loop gain and inverse return difference matrices of a CGT/PI/KF controller, as a function of frequency. The program and its capabilities are documented in Appendix B. For this study, CGTSVD was used only for the calculations involving the inverse return difference function. As shown in Section 3.2, the minimum singular value of this function is a measure of robustness with respect to a multiplicative perturbation. Analysis of this type of perturbation corresponds to classical analysis of SISO gain and phase margins [30]. Calculations were conducted with the loop broken at the control input, since those performed with the loop broken at the output required the use of a matrix pseudoinverse, and the impact on the results was not well understood. The results of the singular value analysis were then
compared to simulation results in an effort to evaluate the predictive capability of this type of singular value analysis with regard to design robustness.

Neither the LQG design methodology nor the design and evaluation software cited thus far permit any "hard" constraints or nonlinearities in the system to be considered. A computer program called ODEACT (using an integration package called ODE to simulate various ACTuator models), documented in Appendix C, was written to provide the capability to evaluate the controller designs using a variety of nonlinear and higher-order actuator models, and with varying flight parameters. The program uses a "predictor-corrector" style of numerical integration scheme, implemented in a subroutine called ODE [42], to simulate the dynamics of the controlled system in conjunction with the controller being evaluated. If only higher-order dynamics had been of interest, then the linear truth model analysis capability of CGTPIV (for deterministic controllers) or PFEVAL (for stochastic controllers) could have been used. It was the need to model the actuator nonlinearities (saturation) that actually motivated the development of ODEACT.

The analysis of the baseline design through the use of ODEACT indicated that hard constraints on actuator positions and rates severely restricted the usefulness of that controller. The limits used for the simulation included a maximum deflection of 25 degrees in either direction at a maximum rate of 60 degrees per second for the horizontal tail. Limits for the flap were +20 degrees and -23 degrees at a maximum rate of 52 degrees per second $[16,17]$. Achieving the capability to perform under these restriction was one of the main
improvements sought through the use of implicit model-following.
Addition of a higher-order model for the actuators also tended to reduce stablility in the baseline and other designs, and thus demonstrated another area in which improvement was needed. Again, the improvement was sought through the use of implicit model-following. The design model for the actuators (referred to in this thesis as the single-state actuator model) was a first-order lag with a time constant of 0.05 seconds. The transfer function between the commanded input δ_{i} and the achieved output δ_{0} was, therefore,

$$
\begin{equation*}
\frac{\delta_{0}}{\delta_{i}}=\frac{20}{s+20} \tag{IV-7}
\end{equation*}
$$

The alternate actuator truth models [17] consisted either of a third-order system (also referred to herein as the three-state actuator model) with a transfer function of

$$
\begin{equation*}
\frac{\delta_{0}}{\delta_{i}}=\frac{(20.2)(71.4)^{2}}{[s+20.2]\left[s^{2}+2(.736)(71.4) s+(71.4)^{2}\right]} \tag{IV-8}
\end{equation*}
$$

or a fourth-order system (referred to as the four-state actuator model) with a transfer function of

$$
\begin{equation*}
\frac{\delta_{0}}{\delta_{1}}=\frac{(20.2)(144.8)(71.4)^{2}}{[s+20.2][s+144.8]\left[s^{2}+2(.736)(71.4) s+(71.4)^{2}\right]} \tag{IV-9}
\end{equation*}
$$

In general, initial analyses with respect to the higher-order actuator models were conducted without applying the nonlinear actuator saturation constraints, so that the effects of each could be studied separately. Additional tests were also conducted with combined
nonlinear, higher-order actuators.
To evaluate the sensitivity of the regulator designs to parameter variations, ODEACT was again used. It should again be noted that this analysis could have been conducted by using various linear truth models with CGTPIV or PFEVAL; it was simply easier, in this case, to conduct the "after-design" analysis of a large number of controllers and conditions with ODEACT. The first truth model was developed by increasing the values of three of the stability derivatives $\left(Z_{a}, M_{a}\right.$ and M_{q}) that were used in.the design model by 20%, exactly as was done in [16] to evaluate the original baseline design. Z_{α} is the stability derivative that relates the forces acting along the aircraft body z-axis to changes in angle of attack. M_{α} relates the change in pitching moment (about the body y-axis) to changes in angle of attack, and M_{q} relates change in pitching moment to changes in pitch rate [16]. Additional truth models were developed by using data for significantly different flight conditions (. 6 mach, at 20,000 and 30,000 feet). For the case of the increased stability derivatives, the truth model dynamics matrix was

$$
A=\left[\begin{array}{ccccc}
0 & 0 & 1 & 0 & 0 \tag{IV-10}\\
-1.08 \mathrm{E}-3 & -2.1 & 0.994 & -0.179 & -0.295 \\
0 & 7.2 & -0.85 & -25.3 & -5.88 \\
0 & 0 & 0 & -20.0 & 0 \\
0 & 0 & 0 & 0 & -20.0
\end{array}\right]
$$

For the flight condition at 20,000 feet, the truth model dynamics matrix was

$$
\underline{A}=\left[\begin{array}{ccccc}
0 & 0 & 1 & 0 & 0 \tag{IV-11}\\
-2.85 \mathrm{E}-3 & -1.006 & 0.996 & -9.18 \mathrm{E}-2 & -0.1689 \\
0 & -1.218 & -0.384 & -8.95 & -0.7786 \\
0 & 0 & 0 & -20.0 & 0 \\
0 & 0 & 0 & 0 & -20.0
\end{array}\right]
$$

and for 30,000 feet,

$$
A=\left[\begin{array}{ccccc}
0 & 0 & 1 & 0 & 0 \tag{IV-12}\\
-4.43 \mathrm{E}-3 & -0.666 & 0.997 & -6.06 \mathrm{E}-2 & -0.112 \\
0 & 0.5 & -0.274 & -5.82 & -0.219 \\
0 & 0 & 0 & -20.0 & 0 \\
0 & 0 & 0 & 0 & -20.0
\end{array}\right]
$$

For these evaluations, the first-order actuator model was used, and nonlinear limits were not applied; thus, only the effect of the parameter variations from the design values was assessed.

4.4 Observations for Implicit Model-Following Design

The observations that follow emerged while working with the design model already defined, and in conjunction with the CGTPIV design software. Although some of the observed phenomena may have been a result only of the particular design problem or the design software (and certainly of the error subsequently discovered in that software, as documented in Appendix E), it is likely that much of what follows
would also be true in general.
4.4.1. The regulator designs were very sensitive to the "implicit" quadratic weights placed on the output deviation rates. These weights constituted the θ_{I} matrix of (A-43), referred to as "QI" by the CGTPIV program output. In generating the performance index of (A-44), these weights are combined with the output, dynamics and command model dynamics matrices to define an implicit state weighting matrix. In the program CGTPIV, the result is referred to as the "QIH" matrix, which is actually the $\hat{\theta}_{I}$ matrix of ($A-45 a$).

$$
\begin{equation*}
\hat{\underline{Q}}_{I}=\left(\underline{C A}-\underline{A}_{m} C\right)^{T} \underline{Q}_{I}\left(C A-A_{m} C\right) \tag{A-45a}
\end{equation*}
$$

This operation distributes weights on the system states that, for the models used in this study, were much larger than would have been achieved by using, instead, an "explicit" output weighting matrix ("Y" in CGTPIV and ($A-39$) with a magnitude similar to that of g_{I}. When the command model dynamics matrix is changed, the resulting distribution changes, and the effect of the Q_{I} weights may be altered significantly. As a result, smaller weights (an order of magnitude or more) on the output deviation rates, compared to those which would be placed directly on the outputs or states in a standard regulator, seemed to be generally appropriate.
4.4.2. Although the implicit model-following formulation is based on matching the derivatives of the actual system's outputs to those of the command model, instead of the output values themselves, the controller does provide adequate regulation of the outputs without any need for the use of added "explicit" output weights (i.e.., the \underline{Y} matrix). The first reaction of the regulator in response to non-zero
initial conditions was observed to be an effort to drive the outputs rapidly toward zero. This resulted in a short "rise time," defined, for the purposes of this thesis, as the time required for the pitch angle output to achieve or pass through a value within 10% of the initial excursion from the desired value of zero. Once some of the initial output deviation was nulled, the output response was observed to begin to follow the model dynamics more closely. The effect appeared to be amplified with large weights on the output rates (the Q_{I} matrix), and thus in the implicit state weighting matrix ($\hat{\underline{Q}}_{I}$). Thus, heavy weights on the output rates with a "slow" command model were not found to be effecive in slowing down the initial response, characterized by the rise time of the system, as might have been anticipated. In fact, quite the opposite was observed to be true.
4.4.3. Weights placed on the input magnitudes (through the "explicit" Ψ_{M} matrix of (A-39) or the "implicit" \underline{R}_{I} matrix of (A-43)), or placed directly on the actuator states (changing the values of the X matrix of ($\mathrm{A}-40$) is a CGTPIV program option), were observed to cause the initial control inputs and input rates to be increased. This resulted in increased actuator activity. The controller's strategy seemed to be to get all of the activity out of the way early, and settle down to zero values as rapidly as possible, and thus minimize the integral of the squared control/actuator magnitudes over all time. Typically, this might not be what the designer would have had in mind, nor have expected. Similarly, due to the controller structure, if the actuator states are defined as outputs of the system and modelled in the regulator command model, weights placed on the actuator output rates heavily weight the actuator states themselves. Equally important
is the addition of large weights on the inputs to the actuators by the generation of the equivalent control weighting matrix. This matrix is referred to as "RIH" by the software, and is actually the \hat{R}_{I} matrix defined in ($A-45 c$).

$$
\begin{equation*}
\underline{\hat{R}}_{I}=\underline{\underline{R}}_{I}+\underline{B}^{T} \underline{C}^{T} Q_{I} \underline{C B} \tag{A-45c}
\end{equation*}
$$

Thus, it was found that inclusion of the actuator states in the regulator implicit command model was not an effective way of controlling the speed of the regulator. Rather, a reduction in regulator speed, and therefore actuator activity, was found to be possible as a result of reducing the weights on the output rates (Q_{I}) and the inputs (\mathcal{H}_{M} or $\underline{\mathrm{H}}_{\mathrm{I}}$), and by modelling additional states (the pitch rate, in this case) as outputs in the regulator command model. An additional means of controlling regulator speed is discussed in Section 4.4.4, and the effectiveness of all of these techniques is shown in Chapter 5.
4.4.4. In the simple development shown in Section 2.2, the performance index for implicit model-following specifically includes quadratic weights only on the derivatives of the outputs and on the input magnitudes. But, as shown in Appendix A, the perturbation PI regulator quadratic cost also includes weights on the rate of change in control magnitudes, and this is appropriate regardless of whether or not implicit model-following is included in the formulation. Weights on the input rates were found to be required to prevent inappropriate (and ineffective) high frequency control input oscillations. In the designs attempted in this study, failure to apply some weight to the control input rates resulted in inputs which were large, and which
reversed sign with each sample period. Weights on input rates were, in fact, found to be effective in achieving control over the initial speed (rise time) of the regulator as well as the extent of overshoots and control oscillations.
4.4.5. The CGTPIV program provides the user with the locations of the closed-loop regulator poles during the design evaluation. In general, this information was useful and was used extensively in the analysis of the effects of actuator dynamics on the designs. The program produces a digital controller by direct digital design methods; that is, the design procedure is accomplished in the discrete-time, or z-domain, and does not make use of approximations or mappings to allow the use of s-plane, continuous-time design techniques. There is therefore nothing to preclude the resulting controller from having poles on the negative real axis of the $z-p$ lane, which cannot be mapped into the s-domain. When this situation occurs, the algorithm, used by the program to map the controller poles into the s-plane for display to the designer, generates a pole with an imaginary part equal to pi times the sampling rate, and without a complex-conjugate mate. This occurrence should not alarm the designer; the pole information should simply be disregarded. Perhaps coincidentally, however, none of the designs in this study which exhibited this characteristic appeared to be very useful.
4.4.6. As just mentioned, the locations of the closed-loop poles of the regulator are provided by CGTPIV. By observing this information, it was possible to determine that, by use of implicit model-following design techniques, the locations of these poles can be influenced by the designer to a much greater degree than by
conventional, or "explicit" regulator design. This capability was very useful, and its significance is discussed in Section 5.6.
4.4.7. The program CGTPIV assumes that, for implicit model-following, the number of inputs, outputs and command model states will all be equal. The designer may wish to increase the number of command model states in order to exercise improved control over the system. For example, in this study, the addition of the pitch rate state as a modelled output was useful in achieving control over the initial speed of the regulator. It was not possible to invent a new control to allow the dimensionality restrictions to be met, and the result was a rank deficiency in the partitioned matrix which, when inverted, produces the \underline{I} matrix of (II-22) and (A-21). The use of a pseudoinverse was therefore required.

The use of a matrix pseudoinverse in this situation is analogous to the use of the left inverse (a pseudoinverse) in achieving a "least-squares" solution to an over-determined set of inear equations. Rather than achieve an exact solution, which does not, in general, exist, the sum of the squared error terms is minimized. This resuits in a unique, minimum-norm approximation to the solution [30]. If it were desired in such a case to have the approximation be more accurate for especially critical components, a "weighted" pseudoinverse could be used in the solution [30]. The use of such a weighted pseudoinverse has not been implemented in CGTPIV, so the user has no input for specifying which elements of the resulting Π matrix will be determined most accurately. The situation does not in any way alter the design procedure. However, design of an acceptable controller, based on the unweighted pseudoinverse, may be more difficult, or even impossible.

In this study, regulator design was possible under these conditions, but CGT designs based on the pseudoinverse were unacceptable. Means of dealing with this problem are discussed in Section 5.5.

4.5 Summary

This chapter outlined the specific design objectives and analysis methods employed in this study. Basic insights gained while conducting designs through the use of implicit model-following were presented. In the chapter that follows, the use of implicit model-following, based on these insights, will be shown to provide a means of enhancing the ability of the designer to influence the characteristics and capabilities of the control system.

V. Analysis of Design Results

5.1 Introduction

This chapter presents the results of the design efforts of this study. The baseline controller design is defined and then analyzed in detail; this controller is shown to have little capability in tests using realistic truth models which include actuator rate and position limits or higher-order actuator dynamics. The primary concern during the actual progress of the design effort described was to produce a controller that would function well in spite of the actuator position and rate limits. The logic and design path followed in achieving that goal are presented as a means of introducing the various alternate designs; controllers based on the standard PI regulator formulation are discussed, followed by designs that used implicit model-following to try to improve on the baseline performance with respect to actuator limitations. The robustness of these designs with regard to higher-order actuator dynamics and design model parameter variations is then discussed. Finally, direct modification (via "anti-windup" methods) of the control law to compensate for nonlinearities is addressed as a complementary means of achieving design objectives. The discussion has been limited to 13 controller designs chosen from among the dozens of alternative potential controllers that were considered. The designs selected were chosen either because they were the best with regard to a particular design objective, or simply to demonstrate a point about the design technique or characteristics. An attempt has been made to keep the number of plots presented to the minimum necessary to provide insight into the relative capabilities and

Abstract

limitations of the different designs and the design methods used. The tables and the singular value and time-response simulation plots referred to herein have been placed together at the end of the chapter to make the text easier to read. The reader is once again referred to Appendix E for information on what aspects of the contents of this chapter were affected by the error found in the design software.

5.2 The Baseline Controller

In order to evaluate the potential of PI regulator designs developed by means of implicit model-following, a baseline, or standard for comparison, was needed. The AFTI F-16 pitch pointing CGT/PI design by Floyd [16], based on the five-state design model defined in Section 4.2, was chosen to fill this role. This design, henceforth referred to as SR-B (Standard Regulator-Baseline), was duplicated using the program CGTPIV. References [16 and 34] contain detailed explanations of this design software as well as user instructions; Appendix D documents minor changes in the program version used herein and includes a sample execution of the program. For the regulator design, quadratic weights of 200 were placed on output (pitch and flight path angle) deviations (matrix \underline{Y} of (A-39)), weights of 1 each on the inputs and input rates (matrices U_{M} and U_{R} of (A-39), respectively), and an additional weight of 50 was manually inserted as the $(3,3)$ element of the resultant state weighting matrix (\underline{x} matrix of ($A-40$)) to penalize and thus limit the pitch rate magnitude. No "implicit" weights were used. For the CGT, a two state command model was used:

$$
\begin{align*}
& {\underset{M}{M}}_{A_{M}}=\left[\begin{array}{ll}
-5 & 0 \\
0 & -5
\end{array}\right] \tag{v-1}\\
& {\underset{-m}{B}}_{B_{m}}=\left[\begin{array}{ll}
5 & 0 \\
0 & 5
\end{array}\right] \tag{v-2}\\
& {\underset{-}{m}}_{C}^{C}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \tag{v-3}
\end{align*}
$$

The command model was chosen to represent the ideal output characteristics of decoupled, first-order responses for the pitch and flight path angles, which were the system outputs, to command inputs. This command model was the standard command model for all CGT designs that are discussed in this chapter. The design weights and resulting controller gains, as defined in (II-25) and (II-26), for SR-B are summarized in Table V-1.

Figure V-1 shows the response of the regulator to an initial condition of 1 degree in the pitch angle state and, therefore, in both of the outputs, recalling (IV-5) and (IV-6). So that repeated definition will not be required, all references to initial conditions of a given magnitude in the remainder of this thesis are likewise intended as an initial condition of that magnitude, in degrees, applied to the pitch angle state; both outputs therefore begin at a value of that magnitude. The time-response plot was produced using the program ODEACT (documented in Appendix C) with the linear design model as a truth model; it is identical to the terminal plot generated by CGTPIV. On this and on subsequent time-response plots, symbol "1" represents
the pitch angle, symbol "2" the flight path angle, "3" is the position of the horizontal tail and "4" is the position of the trailing edge flap. With the plot held so that the title can be read, time (in seconds) is depicted on the horizontal axis and the values (in degrees) associated with the symbols are scaled separately on the vertical axis. This regulator was very fast, with a rise time of 0.12 seconds, and produced an overshoot of the final value of about 40% in the pitch angle and 158 in the angle of attack. Note, however, that the initial rate of movement of both control surfaces was far in excess of the actual rate limits of the actuators, and that the maximum deflection of the trailing edge flap exceeded the actuator position limit (these limits were defined in Section 4.3).

Figure V-2 shows the response of the CGT/PI for this design, with the same linear truth model, to a step input of 1 degree in piteh. Again, to avoid repetition, this and all subsequent references to CGT command inputs are to be interpreted as step input commands, in degrees, to the pitch angle output only. The model following was excellent. The pitch angle response approximated that of the CGT command model -- a first-order lag with a settling time of less than one second. The ideal flight path angle response would have been to remain at zero; the actual maximum error was about 0.07 degrees, with rapid regulation to zero. Both outputs achieved the desired model response steady-state values. However, the initial rate of movement of the horizontal tail surface exceeded the actuator rate limit.

The program ODEACT was next used to conduct a more realistic simulation analysis of the controller. Some of the results of that - analysis are included in Table V-2. The table summarizes the results
discussed in this section and also provides some data, not specifically mentioned in the text, which is useful in comparing the effects of the various perturbations on this design as well as designs to be discussed later. Figure V-3 shows the response of SR-B to an initial condition of magnitude 0.1 in both outputs, with respect to a nonlinear truth model created by adding actuator rate and position limits to the single-state (design model) actuator model. Even with this very small initial condition, the regulator showed signs of degradation due to actuator saturation; the pitch angle overshot by nearly 50\%. With an initial condition of 0.5 degrees, the regulator was unstable. Figure V-4 shows the CGT/PI response to a unit step input using the nonlinear single-state actuator model. At this level of input there was very little degradation in response, but with an input magnitude of two degrees, the controller became unstable with the nonlinear truth model.

The instability of SR-B demonstrates a common effect of actuator position or rate saturation in PI controllers, referred to as "windup" [30]. When a large change in setpoint is desired, the proportional channel of the regulator can saturate the actuators; meanwhile, the integral channel begins to integrate large errors. Eventually, the integral channel will reach a level at which it can saturate the actuators by itself; the overall PI regulator command level will remain high until after the error in the output has changed sign, allowing the integral channel to "discharge". This is unlike a pure proportional gain controller which reduces its commanded control as soon as the errors come out of the saturating region. The result of saturation in the PI regulator can be large overshoots or, as seen here, instability [30]. In the case of the CGT/PI, the problem is amplified when the
feedforward controls contribute to actuator saturation. While other means of compensating for this phenomenon are available [30] and will be discussed in Section 5.7, an attempt to design around the problem using implicit model-following was pursued initially.

An important question to be addressed at this point is "how large an initial condition must the regulator be able to manage in order to be considered satisfactory?" The answer depends in part on the method used to simulate the onset of the initial condition. Both ODEACT and CGTPIV use a very harsh method, which assumes that the system is totally relaxed (all states at zero) and that the states to which initial conditions are assigned are then instantaneously changed. The (perhaps more realistic) alternative to this method would be to apply the changes in states over a sequence of sample periods, transitioning from a steady-state condition to the new condition at a realistic rate that allows the controller to begin to respond during the transition period. Consider a 1 degree change in pitch at the design flight condition; causing this to occur in one sample period (. 02 seconds) represents a turn rate of 50 degrees per second, which is the equivalent of a level turn at about 25 g 's. Obviously, such a change in pitch through pure rotation (thus not requiring such a large translational acceleration) could occur due to gusts, or the effect duplicated by sensor errors or computer malfunction; the point is that an initial condition of 1 degree for the simulation method being used is not insignificant. The approach taken in this study was to explore the use of implicit model-following as a means to achieve regulator designs that would handle larger initial conditions than those which destabilized the baseline, SR-B; the larger the better. The goal was to
examine the capability of implicit model-following design techniques. Similarly, since current flight control systems being used in the AFTI F-16 are capable of decoupled pitch-pointing angles of up to approximately 3 degrees [2], that capablity was estabished as the design objective for the CGT/PI.

Figure V-5 shows the response of $S R-B$ to an initial condition of 1 degree with a truth model simulation employing the three-state linear actuator model described in Section 4.3; Figure V-6 shows the response using the four-state Iinear actuator model. Notice that the increased order of actuator dynamics caused the initial overshoot in both outputs to increase. Note also the oscillations in the control surfaces and outputs, and that the resulting degree of degradation was clearly unacceptable in the four-state simulation. Designing to avoid this problem, the effect of a "high frequency" perturbation, became another of the goals for implicit model-following.

The results with nonlinear (saturating) nigher-order actuator models were predictably worse; the CGT/PI was unstable, with even a unit step input, using the three-state nonlinear actuators, due to the combined effects of actuator dynamics and nonlinearities. Again, this performance was considered unacceptable, and a candidate for improvement through implicit model-following.

The SR-B regulator was also evaluated against the additional linear truth models defined in Section 4.3 which, while of the same dimension as the design model, simulated either erroneous design model parameters or large changes in flight conditions. The first such truth model was developed using selected stability derivatives $\left(Z_{a}, M_{a}\right.$ and M_{q} as described in Section 4.3) which were 20% larger than the
design model values; this perturbation produced no noticeable degradation. The next truth model represented a different flight condition -- . 6 mach at 20,000 feet. The regulator was degraded, but stable, as shown in Figure V-7. The final truth model represented flight conditions at . 6 mach and 30,000 feet; the level of degradation was much more severe, but the regulator was still stable (Figure v-8). The differences in vertical scales of these plots is significant to note in comparing the size of the overshoots.

An analysis of the minimum singular values of the inverse return difference function of this controller was conducted using the program CGTSVD (documented in Appendix B). The singular value plots are shown in Figures V-9, V-10 and V-11. Each plot covers two decades of radian frequency, labeled (when the page is turned so that the figure title can be read) across the bottom of the plot. The symbol $n{ }^{n n}$ represents the logarithm of the maximum singular value of the function at each frequency, and the symbol "2" represents the logarithm of the minimum singular value; the two values are scaled together, as indicated by the labels at the right edge of each plot. Note that the scales vary between plots. A summary of the minimum singular values (converted to actual magnitude) at various frequencies is included in Table V-3. This table also shows the smallest singular value encountered and the frequency at which it occurred ($\tilde{\sigma}_{\min }$ and $\omega_{\tilde{\sigma}_{\min }}$). As stated in Section 3.2, the magnitude of the minimum singular value of the inverse return difference function is a measure of the robustness of the controller with respect to a norm-bounded but otherwise arbitrary perturbation; in other words, we would like this number to be large, especially at high frequencies where the magnitude of uncertainty is usually large. No
absolute judgment as to whether the values for SR-B are good or bad is offered at this point; their primary significance lies in comparisons with other designs.

5.3 Alternate Standard Designs

The baseline design was considered to be deficient in terms of excessive actuator commands and sensitivity to higher-order actuator dynamics, but quite robust with regard to parameter variations. Later designs with implicit model-following were able to improve in the deficient areas through reduction of output rate weightings and increased weights on control rates. In order to conduct an impartial evaluation, attempts were made to achieve the same type of improvement using the standard regulator formulation. Two of the resulting designs, SR-2 and SR-3, are summarized along with SR-B in Tables $V-1$, V-2 and V-3. In these ciesigns, the output weightings were reduced and input rate weightings increased to the maximum extent possible without significantly degrading the response of the regulator with respect to the linear design model. Only improvement with regard to actuator saturation is discussed at this point; the other aspects are covered in Section 5.6. All of the simulation results discussed in this section are with respect to the truth model incorporating first-order nonlinear actuators.

The response of $\mathrm{SR}-2$ with respect to initial conditions of 0.1 and 0.5 is shown, respectively, in Figures $V-12$ and $V-13$. The response was somewhat degraded at the larger initial condition, but was obviously an improvement over $S R-B$, which was unstable under the same conditions. SR-2 remained stable for initial conditions of up to 0.7 degrees. For
a unit step input, the CGT/PI response was very similar to that of SR-B, which was depicted in Figure V-4. For an input of 2 degrees, there was very little degradation due to actuator saturation; with a 3 degree command input, the controller remained stable, although severely degraded (Figure V-14). Again, this was an improvement over the baseline design, which was unstable with an input of 2 degrees. The responses of SR-3 were very similar to those of SR-2, and are therefore not shown; the slight improvement in its performance with respect to nonlinear. actuators over that of SR-2 is shown in Table V-2.
5.4 Implicit Designs with Two Model Outputs

The first designs conducted using an implicit model in the performance index of the PI regulator were based on a two-state regulator command model. Since the number of actual system outputs was equal to the number of model states, this was the normal mode for the design software being used. Some liberty was taken in using different command models in the regulator design than the one used in CGT design. Three regulator command models were used for the designs discussed in this section, all of the form

$$
\begin{align*}
& A_{\mathbb{m}}=\left[\begin{array}{rr}
-P & 0 \\
0 & -P
\end{array}\right] \tag{v-4}\\
& \underline{B}_{\mathbb{m}}=\left[\begin{array}{ll}
P & 0 \\
0 & P
\end{array}\right] \tag{v-5}\\
& \underline{C}_{\mathfrak{m}}=\underline{I} \tag{v-6}
\end{align*}
$$

The diagonal form for the command model dynamics matrix was chosen
because decoupling of the pitch and flight path angle responses was desired. Also, it was hoped that this would contribute to the orthogonality of the eigenvectors of the resulting closed-loop system.

The first design used the same command model as the standard CGT command model, i.e., $P=5$. The weightings used and gains which resulted for this design, referred to as IMF2-1 (Implicit Model-Follower, 2-state command model, design number 1), and subsequent two-state command model designs are given in Table V-4. Performance results are summarized in Table $V-5$; references to rise time in this section are based on operation under design conditions, as given in that table. The singular values and regulator pole locations are given in Table V-6. Once again, the discussion in this section centers on the effort to design around the actuator saturation problem; the evaluation of these designs with respect to other criteria is reserved for Section 5.6. All of the simulations discussed in this section were conducted using the single-state nonlinear actuator model.

IMF2-1 was not a great improvement over the standard regulators. Even though the weightings on the output rate deviations were less than the corresponding weights on output deviations for the earlier standard regulator designs, these weights were transformed by ($A-45 a$) to produce very high state weightings -- greater in some cases by an order of magnitude over the standard regulator designs. The result was, again, short rise time. Figures V-15 and V-16 show the response of IMF2-1 to initial conditions of 0.1 and 0.5 degrees, respectively. As with SR-2 and 3 , there was little degradation at the smaller initial condition; the larger initial condition caused greater degradation, but not instability. The CGT/PI response to a unit step input was much the same
as the standard formulation designs. The response with a commanded input of 3 degrees was an improvement, however, as shown by comparison of Figure V-17 to Figure V-14.

IMF2-2 was an attempt to slow down the initial response of the regulator by changing the command model to $P=2$. This path was chosen to limit the rate of increase in control inputs to the actuators, and thus reduce the effects of the discrepancy between the actuator rate capability of the nonlinear actuator model and that of the linear design model. It was hoped that this would reduce the amount of degradation due to actuator rate saturation. As shown in subsequent designs, slowing down the regulator in such a manner was effective, and tended to reduce the effects of the nonlinear actuator position limits, as well. However, the quadratic weightings used in IMF2-2 were the same as for IMF2-1, so the state weightings were still quite high, and there was not a significant difference in the speed of the regulator or in the magnitude or rate of control surface movement (with a linear truth model) from that of the previous design. The response to a small initial condition (0.1) is shown in Figure $V-18$, with the regulator displaying less of a tendency to overshoot than IMF2-1, as seen by comparison with Figure V-15. The regulator remained stable for initial conditions of up to 0.9 degrees. The CGT/PI response to a unit step input was similar to previous designs, but the pitch angle did overshoot the commanded value by a small amount, as shown in Figure V-19. However, unlike the response of IMF2-1 shown in Figure V-17, there was no increase in the percentage of overshoot of the CGT/PI pitch angle when the command was increased to 3 degrees.

IMF2-3 incorporated both the slower command model and reduced
quadratic weights on the output rates, as shown in Table V-4. An increase was also made in the weights placed on the input rates. As a result, significant differences became apparent between this and previous designs. Because of the changes in quadratic weights, the initial response of the regulator was slower, with a rise time of 0.16 seconds, and produced smaller control inputs. For this reason it was able to remain stable with an initial condition of 1.1 degrees, although it was certainly degraded in performance at that level. Figure V-20 shows the response to an initial condition of 1 degree. The CGT/PI response to a unit step input was similar to that of IMF2-2 (which was shown in Figure V-19); for an input of 3 degrees, the overshoot was equal in magnitude to that of IMF2-1 (which was shown in Figure $V-17$), but subsequent recovery was slower, as shown in Figure V-21.

IMF2-4 incorporated even lower weights on the output rates and higher weights on the input rates, with a continued performance improvement relative to actuator saturation. Rise time increased to 0.18 seconds, and as shown in Figure $V-22$, the response to an initial condition of 1 degree was better than with any previous designs. The regulator remained stable with initial conditions of up to 1.5 degrees. The CGT/PI response to a unit step input was similar to the earlier designs. As shown in Figure V-23, however, the pitch angle overshoot In the CGT/PI response with a large (3 degree) input was greater, and recovery more prolonged, due to the slower regulation of errors. IMF2-5 used weights similar to those of the previous design and used an even slower command model, with $P=1.5$, as a test of how an extremely slow regulator would perform. The response of the regulator
to a small initial condition (0.1) is shown in Figure V-24; its rise time was the same as that of IMF2-4 (Table V-5) but the regulation of the pitch angle after the initial overshoot was slower. This regulator was stable with initial conditions of up to 1.7 degrees, although with an initial condition of 1 degree, the overshcot in pitch angle was greater (170% versus 130%) than for IMF2-4. The CGT/PI response to a unit step input is shown in Figure V-25. In this case, the level of input was such that actuator saturation was not yet a factor, but the overshoot was larger, and the subsequent correction.was slower, than in previous designs. With larger commands, and the onset of saturation, the effect was amplified. Since the regulator for this design represented no real improvement over IMF2-4 and the CGT/PI was degraded, IMF2-5 was felt to represent the practical limit to which the regulator could be slowed, by the use of a slow regulator command model, without creating an unacceptable design.

It was seen in this section that implicit model-following could be used to enhance the capability of the controller to perform with nonlinear actuators subject to position and rate saturation. This was accomplished by slowing down the initial response of the regulator, as characterized by rise time. The desired effect was achieved by using lower quadratic weights on the output rates in conjunction with higher weights on the input rates, as well as a slower regulator command model. As the rise time of the successive designs increased, the ability of the regulators to perform well and remain stable with larger initial conditions improved, as summarized in Table V-5. However, as the regulator speed decreased, the precision of the CGT/PI response to command inputs was degraded slightly.

5.5 Implicit Designs with Three Model Outputs

Designs using a three state command model for the regulator were undertaken in an attempt to achieve more control over the system's closed-loop characteristics. In any design, the degree to which full eigenstructure assignment can be achieved is ultimately limited by the number of outputs and controls available. If the controlled system has r independent controls and p independent outputs available for feedback, then at most max (r, p) eigenvalues may be assigned and $\min (r, p)$ entries of $\max (r, p)$ closed-loop eigenvectors may be assigned [1]. Increasing the number of outputs in the design model was not a problem in this case since all states were assumed available, but there was no way to increase the number of controls. The pitch rate was chosen as the third output to provide a means of directly controlling the speed Of' the response, and a corresponding third state was added to the regulator and CGT command models, which became

$$
\begin{align*}
& A_{\mathbb{R}}=\left[\begin{array}{ccc}
-P_{1} & 0 & 0 \\
0 & -P_{2} & 0 \\
0 & 0 & -P_{3}
\end{array}\right] \tag{V-7}\\
& {\underset{-}{\mathbb{M}}}=\left[\begin{array}{lll}
P_{1} & 0 & 0 \\
0 & P_{2} & 0 \\
0 & 0 & P_{3}
\end{array}\right] \tag{V-8}\\
& {\underset{-}{m}}_{C}^{C}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \text { (or } 0 \text { for the CGT) }
\end{array}\right] \tag{v-9}
\end{align*}
$$

Again, the diagonal form for the regulator command dynamics matrix was

Initially chosen to attempt to enhance the orthogonality of the closed-loop system eigenvectors. For the CGT command model, P_{3} was set to zero, as was the $(3,3)$ element of the model output matrix, so that the effective model was the same as for the earlier designs, but with the CGTPIV dimensionality restrictions met.

As mentioned in Section 4.4 .7 , the CGTPIV software requires that the number of controls and outputs be equal. In conducting a design when this is not really the case, either the design model control or output matrix will be rank-defective. The entire design result is thereby based on an unweighted matrix pseudoinverse (the program output announces this by stating that the II matrix is rank-defective). If the number of controls is less than the number of outputs, then a true solution will only be achieved in a least-squares sense. The designer can still exercise a great deal of control over the performance of the resulting regulator by iteratively changing the weightings used in its design; there is no corresponding means of compensation, however, to influence the design of the CGT. The result in this case was that the regulator designs were relatively successful in that they produced acceptable performance with more conservative control surface commands; but the CGT designs were all unsatisfactory in that the feedforward gains were too high, resulting in excessive commands to the actuators. All of the CGI designs conducted with the rank-defective $\underline{\Pi}$ matrix exhibited performance degradation, with even a unit step input, when evaluated using the nonlinear single-state actuator model. This was true even though the CGT command model used employed $P_{3}=0$ and $\underline{C}(3,3)=0$, thus preventing any feedforward control from being generated based on the added model state. Subsequent study showed that
the regulators discussed in this section could, however, be used in conjunction with the CGT designs of the preceding section, provided the regulator response was reasonably similar to that of the regulator upon which the CGT design was based. Controllers defined in such a manner are discussed at the end of this section.

The CGT/PI designs discussed in this section are summarized in Tables V-7, V-8 and V-9. Note that, unlike previous performance summaries, Table V-8 does not indicate the level of initial condition required to produce a 100% overshoot; this is because the onset of actuator degradation due to saturation was always within 0.5 degrees of the maximum stable initial condition. Once again, the presentation at this point will center on the attempt to alleviate the actuator saturation problem; all simulations are with respect to the single-state nonlinear actuator model.

Design IMF3-1 was based on a regulator command model with $P_{1}=P_{2}=5, P_{3}=10$, and what would seem to be a light weight on the pitch rate's rate deviations (0.1). These initial values of P_{1} and P_{2} were chosen to correspond to the regulator command model used for the first designs of the earlier IMF2 class. The larger value for P_{3} was found to be needed to achieve a response with reasonable speed characteristics. Likewise, the small weight on the pitch rate derivative was chosen as a result of trial-and-error attempts using a larger value, which produced an excessively slow regulator. This regulator's response to an initial condition of 1 degree in pitch and flight path angle is shown in Figure V-26, and demonstrates just how great an effect the additional model state had on the speed of the regulator; the rise time was 0.62 seconds, as compared to 0.18 seconds

Abstract

for the slowest regulator in the IMF2 class. There was no noticeable degradation due to actuator saturation for initial conditions up to 6 degrees; and stability was maintained for initial conditions up to 6.5 degrees. However, it was felt that the response of this regulator was too slow for adequate performance in a fighter aircraft flight control system.

IMF3-2 employed a faster command model $\left(P_{1}=P_{2}=10, P_{3}=15\right)$ and an even lower weight on the pitch rate's rate deviations (0.01) in an effort to achieve a faster response. This was achieved without any degradation due to actuator saturation, at least with an initial condition of 1 degree, as shown in Figure V-27. The rise time was reduced to 0.32 seconds; the price of the improvement was that this regulator could withstand smaller initial conditions than IMF3-1 -- a maximum of 2.5 degrees.

IMF3-3 differed from its predecessor by virtue of a regulator command dynamics matrix with an off-diagonal term (Table V-7) and a decrease in the pitch angle output rate weighting. The purpose of the non-diagonal command dynamics matrix was to investigate the effect of recognizing and allowing a degree of coupling of the pitch state with its derivative. Full recognition of the physical relationship between the pitch and pitch rate states could have been realized by additionally setting $P_{1}=0$, but this would have represented a radical departure from the stated design philosophy of attempting to orthogonalize the closed-loop system eigenvectors through the use of implicit model-following with a diagonal regulator command dynamics matrix. At this point, only a small departure was desired, since the effect on performance and robustness had not been determined. There was nothing

Inherently wrong with the response of IMF3-3, but many other structures for the command dynamics matrix were also possible, each representing different types and degrees of coupling among the outputs. Since no insight was readily available to indicate which of such structures (other than the use of the diagonal form) might produce beneficial results, further investigation with the non-diagonal regulator command dynamics matrix was felt to be beyond the scope of this study. However, such an investigation could be a fruitful area for future research.

The design using the non-diagonal command dynamics matrix was originally attempted using the same output rate weightings as had been used for IMF3-2. The pitch angle overshoot for the resulting regulator's response to initial conditions was 25%, compared to 5% for IMF3-2; and the response was poorly damped, resulting in repeated overshoots of the pitch angle steady-state value. To alleviate this condition, the weight on the pitch angle output rate was reduced, as shown in Table V-7, to produce the final IMF3-3 design. Its response to an initial condition of 1 degree is shown in Figure V-28; the response was slightly slower than that of IMF3-2, shown in Figure V-27, and the pitch angle overshoot was about 15\%. While this overshoot was greater than for the other IMF3 designs, it was less than for any of the standard regulator and IMF2 designs.

Many attempts were made to design a regulator that would work: well with a CGT design based on the rank-defective II matrix. Initially, it was thought that the CGT might be "fighting" the slower regulator response, thus causing the excessively large control inputs through the CGT; however, speeding up the regulator through faster command models
and modified weightings in the performance index had virtually no effect on the level of control input produced by the CGT/PI. Attempts were then made to slow the regulator down even further, with the aim of limiting the actuator commands. By the time any positive results were achieved by this approach, the regulator performance was considerably degraded; even then, the CGT was still unsatisfactory. Two of the "slow" regulators which resulted from these design attempts were IMF3-4 and IMF3-5. No alteration of the CGT command model was attempted. CGT control inputs could have undoubtedly been reduced by using a slower CGT command model (with smaller P values), but such a change would have also slowed the CGT/PI response to command inputs. Such a result was not desired.

IMF3-4 reverted to the slower regulator command model used for IMF3-1, and greater penalty was placed on the input rates. This slowed the regulator down, when viewed in terms of both rise and peak times, and reduced regulator control inputs considerably. The response to initial conditions is shown in Figure V-29; the shape of the pitch response was somewhat unusual due to the simultaneous reversal in motion of both control surfaces.

IMF3-5 was slowed even further by lower output rate weights and lower input weights. The results were a continuation of the trends established by the previous design. The irregular response of the pitch angle in recovering from initial conditions is shown in Figure V-30; because of this, the controller would be an unlikely candidate for final implementation.

As mentioned earlier, none of the CGT designs conducted with the rank-defective $\underline{\Pi}$ matrix were suitable, due to excessive feedforward
control magnitudes. However, several of the earlier CGT designs based on the two-state command model worked quite well with regulators discussed in this section. Since the AFTI F-16 is an unstable plant, an open-loop CGT design is not feasible. To design a CGT, a stabilizing regulator design must first be accomplished; then the CGT design can be based on the stable plant/regulator combination. Thus, a CGT based on the two-state command model is also based on a specific regulator (of the IMF2 class, in this case).

Satisfactory combinations of previous CGT designs and IMF3 regulators were identified by trial-and-error, and generally resulted when the initial response dynamics (i.e., rise time) of the IMF3 regulator were similar to those of the IMF2 regulator upon which the CGT design was based. As an example, the CGT designed for controller IMF2-5, which was the slowest regulator of its class (Table V-5), worked well with regulator IMF3-2, which was the fastest of the slower class (Table V-8). The response of this hybrid CGT/PI to a large step input of 3 degrees is shown in Figure V-31, which indicates very little degradation due to actuator saturation. An example of a mis-matched design occurred by using the CGT of IMF2-2 (which, as shown in Table V-5, was considerably faster than IMF2-5) with the same regulator, as shown in Figure V-32.

It was seen in this section that the addition of the pitch rate state as a modelled output provided a considerable increase in the degree of control over the initial response speed of the regulator. As a result, the regulators ware able to withstand much larger initial conditions than earlier designs, both in terms of stability and performance degradation due to actuator saturation. While CGT designs
conducted with a rank-defective II matrix were unsuitable, the employment of hybrid designs was shown to be feasible.

5.6 Robustness Analysis

In the preceding sections, the use of implicit model-following in PI regulator design was shown to be an effective means of limiting the magnitude and rate of controller inputs. This, in turn, helped to prevent performance degradation and instability due to actuator saturation. In this section, the robustness of the various designs previously introduced is characterized further. Each controller was evaluated against linear truth models which differed from the design model in that third- and fourth-order actuator dynamics were simulated. Each controller was also evaluated against linear truth models with design model actuators, but with other system parameters which varied from those of the design model. The results of these evaluations were compared to information obtained through singular value analysis and study of the regulator pole locations.

The baseline regulator was previously shown to be seriously degraded by the addition of higher-order actuator dynamics (Figures V-5 and V-6, and Table V-2). Since the three- and four-state actuator models had complex poles at a natural frequency of 71.4 radians per second, it was thought likely that the resulting perturbation could be characterized as having a maximum norm at relatively high frequency, say between 10 and 100 radians per second. Thus, the designs for which the minimum singular values of the inverse return difference were largest over this range were expected to perform better with these truth models. As noted in Section 3.2, however, the conservatism of
this type of analysis can vary considerably, primarily as a function of the vector direction of the perturbation. To complement the analysis of singular values with techniques of a more classical flavor, the locations of the closed-loop regulator poles for each design were noted. The higher-order actuator model poles were relatively far from the origin, and had the effect of pushing the complex poles of the design model-regulator combination closer to the imaginary axis. The destabilizing result is analogous to the addition of such poles to the open-loop transfer function of a SISO control system [8].

The singular values and pole locations for the standard regulators are summarized in Table V-3. SR-2 had slightly larger singular values than the baseline design over most of the frequency range of interest, although the difference was not large. The complex regulator poles were located slightly further from the imaginary axis than those of the baseline. The response of SR-2 to initial conditions with the linear four-state actuators was slightly better than that of the baseline, as shown in Figure V-33. SR-3 also had a small singular value advantage over SR-B. Its complex regulator poles were closer to the origin in both horizontal and vertical directions, but were also further from the added actuator poles. This regulator suffered much less degradation with the higher-order dynamics than the other two, as shown in Figure V-34. It was noted with these and with other intermediate designs that the pole locations varied with the changes in quadratic weightings used to design the regulator, but that the pattern of motion was not very consistent. With each change, some poles moved in one direction, some In another. More systematic motion occurred with implicit model-following techniques, as will be seen in subsequent paragraphs.

The singular values and pole locations for the IMF2 class of controllers are summarized in Table V-6. The singular values of IMF2-1 and IMF2-2 were nearly identical; both were slightly better than the baseline at 10 radians per second, and worse at 100 radians per second. The complex pole locations, two sets in this case, were also nearly identical. The location of the largest complex poles (nearest the added actuator poles and thus most vulnerable to their effects) was better than the baseline in that they were further from both the imaginary axis and the added actuator poles. The resulting performance with the four-state actuator model was similar for these two designs. Figure V-35 shows the response of IMF2-1, which was the more oscillatory of the two. They were better than $S R-B$ and $S R-2$, but slightly worse than SR-3 in terms of oscillation. The singular values of IMF2-3 were consistently equal to or better than the baseline over the frequency range of interest. The complex poles were much closer to the origin, and thus further from the added actuator poles. As a result, performance with the four-state actuator model was much better than earlier designs, as shown in Figure V-36. The same trends exhibited by IMF2-3 were continued to an even greater extent by IMF2-4 and IMF-5; these regulators suffered only relatively small increases in overshoot when subjected to the actuator dynamics, as shown for IMF2-4 in Figure V-37.

Refer again to Tables V-3 and V-6. Note that t te use of implicit model-following produced a greater range of high frequency singular values than did the standard regulator formulation. This indicates that the implicit method provides the designer an added degree of control over the characteristics of the design. The same conclusion is
supported by movement of the regulator poles in the implicit model-following designs. The value of P selected for the regulator command model very nearly determined the location of the regulator poles nearest the origin; the higher the weights on the output rate deviations, the more precisely this was true. As weights on the output rate deviations were decreased, the remaining poles moved consistently toward the origin (for a constant P); the same trend was followed as the weights on the input rates were increased. Both the degree and consistency of control available over the regulator pole locations is significant in providing the designer with a method of designing around a specific problem, as was the case with the higher-order actuator dynamics.

Singular values and pole locations for the IMF3 class of controllers are summarized in Table V-9. The singular values for IMF3-1 were smaller than the baseline regulator over most of the desired frequency range. The radical location of the large complex poles for this regulator was sufficient to cause it to be just unstable when tested with the four-state actuator model, as shown in Figure V-38. IMF3-2 had only slightly larger singular values than IMF3-1, but its pole locations were significantly different. The large complex poles were moved much nearer the origin by the decrease in weight on the derivative of the pitch rate. As a result, the regulator was barely affected by the dynamics of the four-state actuator model, as shown in Figure V-39. The singular values and pole locations for IMF3-3 were similar to those of IMF3-2; it was not degraded by the actuator dynamics. The singular values listed for IMF3-4 and IMF3-5, if considered alone, would have predicted excellent performance against
a high frequency perturbation. The relative proximity of the complex poles of these regulators to the imaginary axis was, however, enough to cause serious performance problems, as shown in Figures V-40 and V-41. In this case, consideration of the exact perturbation, i.e., added poles at a known location, was far more informative than the analysis of singular values.

It was concluded earlier that the baseline design was quite robust with regard to parameter variations to the design model. Each of the other controllers was evaluated by use of the same alternate linear truth models as was $S R-B$, in an attempt to assess their robustness further. It was felt that these parameter variations could be characterized as perturbations which would have an effect over a wide range of frequencies. That being the case, it was anticipated that the overall smallest value encountered as a minimum singular value for the inverse return difference function would be the best predictor of robustness, since it represented the point of greatest vulnerability. Reference should be made to the singular value summaries in Tables $V-3$, V-6 and V-9 during the discussion that follows.

The first alternate linear truth model used was the one developed by using selected stability derivative values 20% larger than in the design model. This model reprasented a fairly large modelling error, yet none of the designs were notineably degracied. This indicated that all of the designs were reasonably robust against this type of error, one of a type which might be considered reasonably likely to occur physically.

The second truth model was one representing flight dynamics at . 6 mach and 20,000 feet. For a control system which would normally employ
gain scheduling to optimize control over a wide range of flight conditions, a perturbation of this size would probably physically only occur due to a catastrophic sensor or computer error; it is a harsh test of the controller. The response of the two standard regulators, SR-2 and SR-3, with this truth model was very similar to that of SR-B, which was shown earlier in Figure $V-7$. The responses of the IMF2 class of regulators were all slightly degraded in comparison to those of the standard regulators, with somewat larger initial overshoots and oscillations. It was difficult to rank them objectively with a four-second simulation, although the performance of IMF2-4, shown in Figure V-42, was typical of the group, and the data in Table V-5 provides some insight into the rate with which the oscillations died out. The IMF3 class of regulators exhibited a wider range of performance than the other groups. IMF3-1 was hardly even degraded, as shown in Figure V-43. IMF3-2 and IMF3-3, on the other hand, were barely unstable under these conditions, while IMF3-4 and IMF3-5 were just barely stable.

The final truth model represented flight conditions at .6 mach and 30,000 feet. All of the standard regulators remained stable, with performance similar to that already shown for SR-B in Figure V-8. The IMF2 controllers all exhibited slowly divergent oscillations except for IMF2-2, which was barely stable; the performance within the group was, once again, fairly consistent. Again, a wider range of performance was seen with the IMF3 group. IMF3-1 was stable, and in fact did rather well, as shown in Figure V-44. IMF3-2 and IMF3-3 diverged very rapidly, while IMF3-4 and IMF3-5 were just unstable for this condition. The relative results of the 30,000 foot evaluation were, therefore,

the nominal dynamics, and using $\underline{K}(s)$ to represent a continuous-time control law, the norm of an equivalent multiplicative perturbation as presented in Section 3.3 could easily be calculated. Since

$$
\begin{equation*}
\underline{K G}^{\prime}=(\underline{I}+\underline{L}) \underline{K G} \tag{III-7}
\end{equation*}
$$

and here

$$
\begin{align*}
& \underline{G}(s)=(s \underline{I}-\underline{A})^{-1} \underline{B} \tag{v-10}\\
& \underline{G}^{\prime}(s)=(s \underline{I}-[\underline{A}+\Delta \underline{A}])^{-1} \underline{B} \tag{v-11}
\end{align*}
$$

we have

$$
\begin{align*}
& \underline{K}(s) \underline{G}^{\prime}(s)=[\underline{I}+\underline{L}(s)] \underline{K}(s) \underline{G}(s) \tag{v-12}\\
& \underline{X}(s)\left[s_{\underline{-}}^{\underline{I}}-(\underline{A}+\Delta \underline{A})\right]^{-1} \underline{B}=[\underline{I}+\underline{L}(s)] \underline{X}(s)[s \underline{I}-\underline{A}]^{-1} \underline{B} \tag{v-13}\\
& {[\underline{I}+\underline{L}(s)]=\left\{\underline{X}(s)[s \underline{I}-(\underline{A}+\Delta \underline{A})]^{-1} \underline{B}\right\}\left\{\underline{X}(s)[s \underline{I}-\underline{A}]^{-1} \underline{B}\right\}^{-1}} \tag{v-14}
\end{align*}
$$

Therefore,

$$
\begin{equation*}
\bar{\sigma}[\underline{I}+\underline{L}(s)]=\bar{\sigma}\left\{\underline{K}(s)[\underline{\underline{I}}-(\underline{A}+\Delta \underline{A})]^{-1} \underline{B}\right\}\left\{\underline{K}(s)[s \underline{I}-\underline{A}]^{-1} \underline{B}\right\}^{-1} \tag{V-16}
\end{equation*}
$$

In other words, in comparing two different controllers, the difference in minimum singular values could be easily overshadowed by the effect of the differing control laws on the magnitude and, perhaps more importantly, the direction of the perturbation. This may explain why a fairly radical change in the basis for the controller design, such as a different regulator command model, could make predictions of robustness
based on relative sizes of singular values less meaningful.
In general, the regulator designs which exhibited relative immunity to the effects of higher order actuator dynamics were those most vulnerable to the low frequency perturbations. The clearest example of this was within the IMF3 group of controllers. Apparentiy, a trade-off decision is required as to which type of uncertainty should be most heavily guarded against. In the case of the AFTI F-16, the "uncertainties" of nonlinearities and higher-order actuator dynamics are, in fact, a reality; the controller must work despite them. The implicit model-following designs, which fulfilled this requirement, were also robust for a reasonable and realistic level of modelling error.

In summary, singular value analysis was of only limited value in predicting the robustness and sensitivity of the designs with regard to parameter variations and higher-order dynamics. The variablity of the singular value measure's conservatism caused it to be misleading in some cases. Regulator pole analysis and actual simulation provided reliable information and a significant degree of physical insight. The ability of the implicit model-following formulation to affect the location of the regulator poles in a systematic manner was found to be very helpful in avoiding problems associated with higher-order dynamics, but this was generally at the expense of increased sensitivity to parameter variations.

5.7 Anti-Windup Compensation

It has been shown that implicit model-following can be used to alleviate the windup problems that occur in PI regulators when nonlinear, or rate- and position-limited, actuators are encountered. The regulators in the IMF3 group were especially effective in this regard; all were capable of handing at least a 2.5 degree initial condition, without performance degradation, when tested against the nonlinear single-state actuator model. The hybrid CGT/PI using the regulator from IMF3-2 and the CGT from IMF2-5 was shown to provide good pitch-pointing of up to 3 degrees with the same truth model.

When the effects of higher-order actuator dynamics were subsequently considered in addition to the rate and position limits, the capabilities of these designs were decreased somewhat, as expected. However, in additional tests it was found that IMF3-2 and IMF3-3 were still stable and performed without degradation with initial conditions of 1 and 2 degrees, respectively, using a full, nonlinear four-state actuator model. A hybrid CGT/PI was also found which was capable of good pitch-pointing control of up to 3 degrees with the full, nonlinear four-state actuator truth model, as shown in Figure v-45. This hybrid used the regulator of IMF3-3 and a CGT based on a regulator design which, while of the IMF2 class, and similar in its definition and performance characteristics to IMF2-4, was not among those chosen to be discussed in this thesis. The CGT gains for the hybrid were

$$
K_{x u}=\left[\begin{array}{ll}
-3.38 & -8.406 \tag{v-16a}\\
-1.695 & 25.24
\end{array}\right]
$$

and

$$
\underline{K}_{\mathrm{xm}}=\left[\begin{array}{rr}
2.747 & -14.05 \tag{V-16b}\\
-9.724 & 22.94
\end{array}\right]
$$

While the use of a controller that is designed specifically to remain within the linear operational range of the actuators is a worthwhile goal, it may not always be possible to implement. Even if such a design were possible, it would be wise to implement some form of a safeguard that would enhance the stability of the controller in the event that actual conditions exceeded the linear range for which the controller was designed. Since some form of additional anti-windup compensation should thus inevitably be used with any practical controller implementation of the type addressed in this study, it seemed imperative that its effect on CGT/PI designs be considered. The form of anti-windup compensation investigated in this study involved a simple modification to the control law [30], which was implemented as an additional user option in ODEACT. At each sample period, when the new control inputs are calculated, a check is made to ensure that those control inputs are not of a magnitude that would command the rate or position limits of the actuators to be exceeded. If the calculated control levels are excessive, they are reduced to the maximum allowable level. With that restriction satisfied, windup does not occur, since the actuators do not saturate. Actually, several variations in the method of checking and limiting the controls were tried; the most successful implementation is discussed here.

Consider only the horizontal tail actuator, which was position limited to ± 25 degrees, and rate limited to ± 60 degrees per second.

Even though the fourth-order actuator dynamics model is more correct, the design model, of a simple first-order lag, is a good approximation and much more tractable for the implementation of control-law compensation. The equivalent discrete-time model for the actuator dynamics is

$$
\begin{equation*}
x\left(t_{i+1}\right)=\phi\left(t_{i+1}, t_{i}\right) x\left(t_{i}\right)+\int_{t_{i}}^{t_{i+1}} \phi\left(t_{i+1}, r\right) B d r u\left(t_{i}\right) \tag{v-17}
\end{equation*}
$$

In this case, the sampling period is .02 seconds, and the first-order lag coefficient is 20.0 , so

$$
\begin{equation*}
x\left(t_{i+1}\right)=0.67 x\left(t_{i}\right)+0.33 u\left(t_{i}\right) \tag{v-18}
\end{equation*}
$$

Since $x\left(t_{i+1}\right)$ cannot exceed \mathbf{I}_{25} degrees, this yields a bound on $u\left(t_{i}\right)$, in degrees, as

$$
\begin{equation*}
u\left(t_{1}\right) \leq 75-2 x\left(t_{1}\right), \text { for } x\left(t_{1}\right) \geq 0 \tag{v-19a}
\end{equation*}
$$

or

$$
\begin{equation*}
u\left(t_{1}\right) \geq-75-2 x\left(t_{1}\right), \text { for } x\left(t_{1}\right)<0 \tag{v-19b}
\end{equation*}
$$

Since the difference between $x\left(t_{1+1}\right)$ and $x\left(t_{1}\right)$ cannot exceed 1.2 degrees (60 degrees per second times the sample period),

$$
x\left(t_{1+1}\right)-x\left(t_{1}\right)=0.67 x\left(t_{1}\right)+0.33 u\left(t_{1}\right)-x\left(t_{1}\right) \leq 1.2
$$

or

$$
\begin{equation*}
u\left(t_{i}\right) \leq 3.6+x\left(t_{i}\right), \text { for } x\left(t_{i}\right) \geq 0 \tag{V-20a}
\end{equation*}
$$

and

$$
\begin{equation*}
u\left(t_{1}\right) \geq-3.6+x\left(t_{1}\right), \text { for } x\left(t_{1}\right)<0 \tag{V-20b}
\end{equation*}
$$

An identical development was used to calculate the maximum controls for the trailing edge flap, except that the appropriate limits for that actuator were used.

With this simple modification to the control law, it was found that the IMF3-2 and IMF3-3 regulators could withstand at least an additional 1 degree of initial conditions against the full, nonlinear four-state actuator model, without instability being induced. The IMF2 regulators showed a much greater improvement with anti-windup compensation than did the IMF3 regulators. The response of IMF2-4 to an initial condition of 10 degrees using the full nonlinear four-state actuator model is shown in Figure V-46; the quality of this response was excellent.

With the same actuator model, the IMF2-4 CGT/PI response to a step input of 3 degrees is shown in Figure V-47; while the performance is acceptable, it should be compared to that of the hybrid CGT/PI's under the same conditions. The response of the hybrid controller whose response without compensation was shown in Figure V-45 is shown with anti-windup compensation in Figure V-48. Since the uncompensated response was quite good, the improvement due to compensation was minimal, primarily seen in the smaller extent of the actuator overshoots and the smaller maximum flight path angle deviation. However, compared to the IMF2-4 response of Figure V-47, this hybrid design produced better model-following in the pitch angle, plus a smaller and more rapidly corrected deviation in the flight path angle. The other
hybrid CGT/PI, constructed from the elements of IMF3-2 and IMF2-5, was improved considerably through the use of anti-windup crmpensation. Without such compensation, it was unstable with a 3 degree step input when evaluated against the nonlinear four-state actuator model; with compensation, its response is shown in Figure V-49. By all standards of comparison with Figure V-48, the hybrid based on IMF3-2 was nearly equal to or better than the one based on IMF3-3, which had performed better in the uncompensated mode.

The baseline regulator also showed significant improvement when anti-windup compensation was used; this was to be expected, since it had the most to gain from such compensation. However, as with some of the implicit designs, the controller was still not useful, since it was still degraded by the effects of the higher-order actuator dynamics.

In summary, the employment of anti-windup compensation has been shown to enhance the capabilities of the controller designs. When used With implicit model-following regulators that were immune to the effects of higher-order actuator dynamics, both stability and performance improvements were realized, resulting in potentially very useful designs.
(
Table V-2. Summary of Performance Analysis for Standard PI Regulator Designs

Condition and Measure of Performance	SR-B	SR-2	SR-3
Percentage overshoot in pitch angle (truth model=linear design model)	$\begin{gathered} 40 \\ \left(\text { Fig V }^{2}\right. \text {) } \end{gathered}$	42	55
Rise time/peak time (seconds) for pitch angle (truth model=linear design model)	$\begin{aligned} & 0.12 / 0.22 \\ & (\text { Fig } V-1) \end{aligned}$	0.10/0.20	0.12/0.22
Pitch angle initial condition (degrees) to cause 100\% overshoot (nonlinear actuators*)	0.4^{-}	$0.4{ }^{+}$	0.5
Maximum pitch angle initial condition (degrees) for stability (nonlinear actuators*)	0.5^{-}	$0.7{ }^{+}$	0.8
Maximum CGT pitch input (degrees) for stability (nonlinear actuators*)	1.5	$\begin{gathered} 3.0 \\ \left(\text { Fig }^{2} \mathrm{~V}-14\right) \end{gathered}$	3.0
Percentage overshoot in pitch angle (truth model=1inear 4th-order actuators*)	$\begin{gathered} 90^{\dagger} \\ \left(\mathrm{Fig}_{\mathrm{g}}-6\right) \end{gathered}$	$\begin{gathered} 100^{t} \\ \text { (Fig V-33) } \end{gathered}$	$\begin{gathered} 105! \\ (\text { Fig V-34) } \end{gathered}$
Percentage of initial condition still present in oscillation at 4 seconds (truth model $=.6$ mach/20,000 feet)	$\left(\text { Fig }^{5} \mathrm{~V}-7\right)$	None	None
Percentage of initial condition still present in oscillation at 4 seconds (truth model=. 6 mach $/ 30,000$ feet)	$\stackrel{15}{\left(\text { Fig V-8) }^{2}\right)}$	30	25

[^0]Table V-3. Summary of Minimum Singular Values (Inverse Return Difference) and

Design	©. 01	$\underline{Q}_{1.0}$	$\underline{-}_{10}$	$\underline{\sigma}_{100}$	$\sigma_{\text {min }}$	$\omega^{\prime} \min$	Regulator Poles*
SR-B	0.99	0.91	12.6	225	0.895	0.8	$\begin{array}{ll} -2.26 & -55.0 \\ -3.85 & -73.6 \\ -19.6 \\ -29.8 \pm j 43.0 \end{array}$
SR-2	0.99	1.0	11.2	280	0.86	0.57	$\begin{array}{lc} -1.3 & -37.7 \\ -2.4 \\ -19.9 \\ -33.8 \pm j 44.9 \end{array}$
SR-3	0.99	0.92	17.8	225	0.86	0.67	$\begin{aligned} & -2.1 \pm j 0.03 \\ & -19.9 \quad-30.3 \\ & -67.5 \quad \\ & -27.5 \pm j 36.3 \end{aligned}$

* Refer to Appendix E.
Table V-4. Definition of Designs Using Implicit Model-Following with a Two-State Regulator Command Model

Design	Quadratic Weights	Command Model	Gains (see Appendix E)						
			Regulator					CGT	
IMF2-1	$\begin{aligned} & \mathrm{Q}_{\mathrm{I}}=\operatorname{diag}(25,25) \\ & \mathrm{R}_{\mathrm{I}}=\operatorname{diag}(1,1) \\ & \underline{U}_{\mathrm{R}}=\operatorname{diag}(.5,2) \end{aligned}$	$P=5$	$\begin{array}{r}\mathrm{K}\end{array} \mathrm{x}: \begin{array}{r}-43.79 \\ 53.98\end{array}$	30.5 -56.2	$\begin{gathered} -1.994 \\ 0.3102 \end{gathered}$	$\begin{aligned} & 1.804 \\ & 2.4 \mathrm{E}-2 \end{aligned}$	$\begin{aligned} & 4.18 \mathrm{E}-2 \\ & 0.654 \end{aligned}$	$\underline{K}^{\text {xm }}: \begin{aligned} & -1.537 \\ & -12.18\end{aligned}$	-24.09 38.66
			$\mathrm{K}_{2}: \begin{aligned} & 0.1514 \\ & -1.751\end{aligned}{ }^{-1} 4$		$\begin{array}{r} 1.273 \\ 2.434 \end{array}$			$\mathrm{K}_{\mathrm{Xu}}: \begin{aligned} & -6.9 \\ & -1.376\end{aligned}$	$\begin{array}{r} -11.26 \\ 28.86 \end{array}$
IMF2-2	$\begin{aligned} & \mathrm{QI}_{\mathrm{I}}=\operatorname{diag}(25,25) \\ & \mathrm{R}_{\mathrm{I}}=\operatorname{diag}(1,1) \\ & \underline{U}_{\mathrm{R}}=\operatorname{diag}(.5,2) \end{aligned}$	$P=2$	$K_{X}=$ -41.45 52.03	30.19 -54.24	$\begin{gathered} -1.949 \\ 0.3019 \end{gathered}$	$\begin{aligned} & 1.793 \\ & 2.34 \mathrm{E}-2 \end{aligned}$	$\begin{aligned} & 4.0 \mathrm{E}-2 \\ & 0.6456 \end{aligned}$	$\underline{K}_{\text {xm }}: \begin{aligned} & 0.2665 \\ & -12.08\end{aligned}$	$\begin{array}{r} -23.79 \\ 36.81 \end{array}$
			$\mathrm{K}_{\mathbf{z}}: \begin{gathered}0.7217 \\ -1.675\end{gathered}$		$\begin{aligned} & 1.187 \\ & 1.894 \end{aligned}$			$\underline{K}_{x u}: \begin{aligned} & -6.683 \\ & -1.412\end{aligned}$	$\begin{gathered} -11.24 \\ 28.7 \end{gathered}$
IMF2-3	$\begin{aligned} & Q_{T}=\operatorname{diag}(10,10) \\ & R_{T}=\operatorname{diag}(1,1) \\ & U_{R}=\operatorname{diag}(1,2) \end{aligned}$	$\mathrm{P}=2$	$K_{X}:$ -26.77 49.16	$\begin{array}{r} 18.82 \\ -51.28 \end{array}$	$\begin{gathered} -1.296 \\ 0.2872 \end{gathered}$	$\begin{aligned} & 1.16 \\ & 2.8 \mathrm{E}-2 \end{aligned}$	$\begin{aligned} & 3.53 \mathrm{E}-2 \\ & 0.6291 \end{aligned}$	$\begin{aligned} \mathbf{K}_{\mathrm{Xm}}: & -0.1783 \\ & -11.8\end{aligned}$	$\begin{array}{r} -14.11 \\ 34.08 \end{array}$
			$\mathrm{K}_{\mathrm{Z}}: \begin{gathered}0.3942 \\ -1.696\end{gathered}$.7404			$\underline{K}_{x u}: \begin{aligned} & -4.063 \\ & -1.47\end{aligned}$	$\begin{array}{r} -8.424 \\ 28.35 \end{array}$
IMF2-4	$\begin{aligned} & Q_{I}=\operatorname{diag}(3,5) \\ & \frac{R}{U}=\operatorname{diag}(1,1) \\ & \underline{U}_{R}=\operatorname{diag}(2,3) \end{aligned}$	$\mathrm{P}=2$		$\begin{array}{r} 11.25 \\ -38.01 \end{array}$	$\begin{array}{r} -0.8446 \\ 0.2076 \end{array}$	$\begin{aligned} & 0.7241 \\ & 2.86 \mathrm{E}-2 \end{aligned}$	$\begin{aligned} & 3.24 \mathrm{E}-2 \\ & 0.4708 \end{aligned}$	$\mathrm{K}_{\mathrm{xm}}: \begin{aligned} & -0.099 \\ & -9.797\end{aligned}$	$\begin{array}{r} -7.652 \\ 22.85 \end{array}$
			$K_{Z}:$		$\begin{aligned} & .4433 \\ & .312 \end{aligned}$			$\underline{\underline{K}}_{\chi \chi}: \begin{aligned} & -2.241 \\ & -1.755\end{aligned}$	$\begin{array}{r} -6.565 \\ 25.22 \end{array}$
IMF 2-5	$\begin{aligned} & Q_{I}=\operatorname{diag}(5,5) \\ & \frac{R}{I}=\operatorname{diag}(1,1) \\ & \underline{U}_{R}=\operatorname{diag}(1,2) \end{aligned}$	$P=1.5$	$K_{x}:$ -24.06 48.28	$\begin{gathered} 18.8 \\ -50.13 \end{gathered}$	$\begin{aligned} & -1.192 \\ & 0.2959 \end{aligned}$	$\begin{aligned} & 1.124 \\ & 2.18 \mathrm{E}-2 \end{aligned}$	$\begin{aligned} & 2.7 \mathrm{E}-2 \\ & 0.6212 \end{aligned}$	$\mathrm{K}_{\mathrm{xm}}: \begin{array}{r}2.016 \\ -11.53\end{array}$	-14.08 33.01
			$\underline{K}_{Z}: \quad \begin{array}{l}0.5441 \\ -1.697\end{array}$		$\begin{aligned} & .7236 \\ & .712 \\ & \hline \end{aligned}$			$\begin{array}{ll}\mathrm{K}_{\mathrm{xu}}: & -3.573 \\ -1.427\end{array}$	$\begin{array}{r} -8.425 \\ 28.22 \end{array}$

Table V-6. Summary of Minimum Singular Values (Inverse Return Difference) and Regulator

Design	$\underline{-}_{0.1}$	$\underline{-1.0}^{1}$	$\underline{-10}_{10}$	$\underline{-}_{100}$	$\underline{-}_{\text {min }}$	$\omega_{\text {(fin }}$	Regulator Poles **
IMF2-1	0.98	0.7	15.8*	160	0.69	0.85	$-4.2 \quad-93.9$ -5.0 $-31.7 \pm \mathrm{j} 12.6$ $-32.8 \pm \mathrm{j} 37.2$
IMF2-2	0.98	0.73	14.1*	160	0.69	0.77	$\begin{aligned} & -2.0 \quad-93.9 \\ & -2.2 \\ & -31.8 \pm j 12.6 \\ & -32.9 \pm \mathrm{j} 37.0 \end{aligned}$
IMF2-3	0.99	0.85	17.8*	225^{*}	0.8	0.75	$-2.0 \quad-61.4$ $-2.3 \quad$ $-25.7 \pm \mathrm{j} 28.8$ $-30.1 \pm \mathrm{j5.7}$
IMF2-4	0.99	0.88	28.2*	400*	0.79	0.73	$\begin{aligned} & -2.0 \quad-42.5 \\ & -2.6 \\ & -19.8 \pm j 20.2 \\ & -25.6 \pm j 4.5 \end{aligned}$
IMF2-5	0.99	1.05*	24.0*	250*	0.79	0.65	-1.5 -33.5 -2.3 -58.8 $-23.2 \pm$ j 23.6 -25.2

[^1]Table V-8. Summary of Performance Analysis for Implicit Designs with a Three-State Regulator Command Model

Condition and Measure of Performance	IMF3-1	IMF 3-2	IMF3-3	IMF3-4	IMF3-5
Percentage overshoot in pitch angle (truth model=linear design model)	2	5	15	5	0
Rise time/peak time (seconds) for pitch angle (truth model=linear design model)	0.62/1.34	$0.32 / 0.44$	0.36/0.54	$\begin{gathered} 0.34 / 0.82 \\ \text { (Fig V-29) } \end{gathered}$	$\begin{aligned} & 0.88 /-- \\ & \text { (Fig V-30) } \end{aligned}$
Maximum pitch angle initial condition (degrees) for stability (nonlinear actuators*)	6.5	2.5	4.0	3.5	6.5
Maximum CGT pitch input (degrees) for stability (nonlinear actuators*)	1.5	1.0	1.5	1.5	2.5
Percentage overshoot in pitch angle (truth model=linear 4th-order actuators*)	$\begin{gathered} \text { Unstable } \\ \text { (Fig V-38) } \end{gathered}$	$\begin{gathered} \text { None }! \\ \text { (Fig V-39) } \end{gathered}$	10	$\begin{gathered} 20 \quad t \\ \text { (Fig v-40) } \end{gathered}$	$\begin{array}{cc} 10 & t \\ (\text { Fig } v-41) \end{array}$
Percentage of initial condition still present in oscillation at 4 seconds (truth model $=.6$ mach $/ 20,000$ feet)	$\begin{gathered} \text { None } \\ \text { (Fig V-43) } \end{gathered}$	140 Diverging	210 Di- verging	30	50
Percentage of initial condition still present in oscillation at 4 seconds (truth model $=.6$ mach $/ 30,000$ feet)	$\left(\text { Fig }^{2} \mathrm{~V}-44\right)$	1700 Diverging	2500 Diverging	320 Diverging	340 Diverging

[^2]

* Singular value at this frequency equals or exceeds the value
for the baseline (SR-B) design.
** Refer to Appendix E.

[^3]

Figure V-4. Design SR-B, Nonlinear Single-State Actuators, CGT Step Input $=1$ Degree

Figure V-6. Design SR-B, Linear Four-State Actuators,

Figure V-12. Design SR-2, Nonlinear Single-State Actuators,

 Initial Condition $=0.5$ Degree

[^4]

[^5] Initial Condition $=0.5$ Degree
θ

Figure V-17. Design IMF2-1, Nonlinear Single-State Actuators, CGT Step Input $=3$ Degrees

Figure V-19. Design IMF2-2, Nonlinear Single-State Actuators, CGT Step Input $=1$ Degree

Figure V-21. Design IMF2-3, Nonlinear Single-State Actuators,

Figure V-22. Design IMF2-4, Nonlinear Single-State Actuators, Initial Condition = 1 Degree
6

 Initial Condition = 1 Degree
$\$$

Figure V-27. Design IMF3-2, Nonlinear Single-State Actuators, Initial Condition $=1$ Degree

Figure V-29. Design IMF3-4, Nonlinear Single-State Actuators,

Figure V-30. Design IMF3-5, Nonlinear Single-State Actuators, Initial Condition $=1$ Degree

Figure V-31. Hybrid Design (PI Regulator IMF3-2, CGT from IMF2-5), Nonlinear Single-State Actuators, CGT Step Input $=3$ Degrees
 Figure V-32. Hybrid Design (PI Regulator IMF3-2, CGT from IMF2-2),

Figure V-33. Design SR-2, Linear Four-State Actuators, Initial Condition $=1$ Degree

N
N

Figure V-34. Design SR-3, Linear Four-State Actuators, Initial Condition $=1$ Degree

Figure V-37. Design IMF2-4, Linear Four-State Actuators,

$10+389{ }^{\circ}$	$16+3511^{\circ}$	6+3868 ${ }^{\circ}$	96+3060	69+348t'-	(0+3017 $)^{\circ}=$	\{ 37635
143319	¢ $6+3088{ }^{\circ}$	(1+31990	(6+3Atio	4 $4396{ }^{\circ}$	' 1	2 37\%3S
[6+3ast*	[4+3¢75	64+3006	U8+3054'	6+30110	¢ $+300{ }^{\circ}-$	137435

[^6] Flight Condition $=.6$ Mach $/ 20,000$ feet,
Initial Condition $=1$ Degree
lan

 $\begin{aligned} & \text { Figure V-47. Design IMF2-4, Nonlinear Four-State Actuators, } \\ & \text { Anti-Windup Compensated, CGT Step Input }=3 \text { Degrees }\end{aligned}$

VI. Conclusions and Recommendations

6.1 Implicit Model-Following

This study has demonstrated that the incorporation of an implicit model into the performance index used to define a linear-quadratic PI regulator can provide greater control over many aspects of the resulting controller design than that achievable using a "standard" PI regulator. In particular, implicit model-following was shown to be useful in controlling the speed of the initial response of the regulator, as characterized by rise time. This produced a controller which could perform acceptably, despite the constraints of harsh nonlinearities inherent in the controlled system, because it was designed so that it could perform its function without exceeding the range of linear operation. Compared to design methods using conventional PI regulator formulations, implicit model-following was shown to provide an increased ability to control the locations of the closed-loop system's poles, in a systematic and easily predictable fashion, by means of iterative changes to the quadratic weightings used in the design. This ability was found to be useful in designing to avoid the effects of higher-order dynamics inherent in the controlled system, but ignored in the design model.

The use of an "all-implicit" PI regulator, based only on the quadratic cost of (A-43), was found to be feasible. Good transient response and steady-state regulation were both achievable without the use of "explicit" weights applied directly to the output deviations.

For the designs presented in this thesis, it appeared that achieving the capability to operate well despite one type of pertur-
bation generally occurred at the expense of robustness against another type. The designs conducted with the standard regulator formulation exhibited relatively good performance with regard to parameter variations, but were degraded by higher-order dynamics and actuator nonlinearities. Implicit designs developed to improve robustness with respect to higher-order dynamics and nonlinearities were generally somewhat less robust with regard to parameter variations. This highlighted the need for some insight on the part of the designer as to the types of uncertainty prevalent in the design model.

An ability to provide a general increase in robustness by forcing the closed-loop system to have maximally orthogonal eigenvectors was not shown. The robustness benefits of such an eigenstructure have been documented [19]. However, the closed-loop PI regulator formulation is fairly complex; the number and dimension of its eigenvectors are large in comparison to the number of controls available to affect their form. Admittedly, the eigenvectors of the designs were not calculated in this study, and the design iterations were focused on achieving specific objectives other than an orthogonal eigenstructure. It is quite possible that implicit model-following might be shown to have potential general robustness benefits, at least for some problems, if an effort were made to design specifically toward achieving maximally orthogonal eigenvectors. Such a design approach could inevitably be expected to require some sort of tradeoff with other characteristics of the resulting design, such as performance capabilities.

```
        6.2 Robustness Analysis
In this study, "unstructured" singular value analysis was found to
``` be of limited value in predicting how well a system would perform with respect to off-nominal conditions. There are several factors which contributed to this observation.

The first factor is the variable conservatism of robustness estimates that are based on this type of singular value analysis. Even if the norm of a particular perturbation were known exactly, comparison to the minimum singular value of the closed-loop system's inverse return difference function could provide, at best, only positive proof that the perturbation could not be destabilizing. If such an analysis were to show the norm of the perturbation to be sufficient to cause instability, there would remain three possibilities:
- That instability would result.
-- That performance would be degraded, but the system would be stable.
-- That little or no degradation to performance or stability would result.

Some other method of analysis, such as simulation, would be required to determine the actual effect of such a perturbation.

The second, and related, factor is that this type of analysis presupposes that the designer can formulate an estimate of the norm of the uncertainties that should be guarded against. As pointed out in Section 5.6, the norm of the multiplicative perturbation that results from a change to the nominal dynamics description is, in fact, a fairly complex function of both that change and the control law. Consideration of the effects of nonlinearities presents a particularly difficult
problem. This adds to the uncertainty as to which, if any, possibly destabilizing perturbations would actually produce instability. Design iterations aimed simply at increasing minimum singular values could, in fact, result in trading off performance to guard against a perturbation which could not occur physically.

The final factor is the fact that, in many cases, simulation can readily provide the type of robustness information that the designer needs, in a form which is unambiguous and easy to interpret. While it is impossible to simulate all of the possible perturbations, judicious selection of example cases which encompass the spectrum of known areas of uncertainty is possible. Nonlinearities, shown in this study to be of significant potential impact, are easy to simulate, and the type of simulation used for the deterministic controllers in this study can easily be extended to the Monte Carlo analysis of stochastic controllers [29,36]. Sensitivity analysis can be conducted in a straightforward way, through simulation, to gain insight into the physical factors exercising the greatest influence over performance and stability.

The results of the singular value analysis conducted in this study were not, in general, inconsistent with the simulation results; they simply added little insight. In some cases, the singular value analysis results were very misleading, such as the relatively optimistic high frequency robustness predictions that could have been made for designs IMF3-4 and IMF3-5.

\subsection*{6.3 Recommendations for Further Study \\ A great deal of the design effort described in this thesis} centered on combatting an effect called "windup" which occurs in PI regulators, due to control actuator saturation. A concurrent thesis effort by Lt James McMillian [32] has produced another modification to the CGT/PI/KF design software that implements a generic formulation of the PI regulator [30]. In this implementation, the proportional and integral channels of the regulator output feedback are distinct, and need not be equal. The susceptibility of a PI regulator to the windup phenomeno should be a function of the magnitude of the integral channel feedback relative to that of the proportional channel. Anti-windup compensation through the use of the capabilities provided by Lt McMillian's program, in conjunction with implicit model-following, should be investigated. The effects of such compensation on the general robustness of the controller should also be determined.

As discussed in Section 5.5, use of a diagonal regulator command model dynamics matrix in this study represented only one of many possible command model structures. Investigation of the performance and robustness characteristics of implicit regulator designs based on different structures, i.e., with various types and numbers of off-diagonal command model dynamics matrix elements, should be conducted.

For the designs of this study, the use of unstructured singular value analysis was found to provide little predictive insight into design robustness. As mentioned in Section 3.2, a great deal of current study is underway involving the use of "structured" singular
value analysis \([12,15,18,27]\). To employ such sophisticated methods, the designer must have insight into the structure of the types of uncertainty that are likely to be present in the control system. Such insight was not in the repertoire of the author of this thesis. A study of methods of analyzing the structure of modelling error and the application of knowledge of that structure to singular value analysis is a recommended area for future research. Another concurrent thesis effort by Lt Jean Howey [22] has centered on the recovery of robustness lost due to the employment of a Kalman filter to provide state estimates for a PI regulator. The effectiveness of the methods developed in that study should be determined for control systems in which implicit model-following is employed, as in this research. A logical extension of such a study would include modelling and analyzing the complete system with a human operator in the loop.
1. Andry, A. N., Jr., E. Y. Shapiro and J. C. Chung. "On Eigenstructure Assignment for Linear Systems." Unpublished paper. Lockheed California Company, Burbank, California. Undated.
2. Barfield, A. F. Flight Control Engineer (personal conversation). Air Force Wright Aeronautical Laboratories, Flight Dynamics Laboratory, Wright-Patterson Air Force Base, Ohio. 10 July - 10 October 1983.
3. Barraud, A. Y. "A Numerical Algorithm to Solve \(A X X-X=Q, "\) IEEE Transactions on Automatic Control, AC-22 (5): 883-885 (October 1977).
4. Barrett, M. F. "Conservatism with Robustness Tests for Linear Feedback Control Systems," Proceedings of the 19th IEEE Conference on Decision and Control, Albuquerque, New Mexico. 885-890 (December 1980).
5. Broussard, J. R. "Command Generator Tracking," TASC TIM-612-3, The Analytical Sciences Corporation, Reading, Massachusetts, March 1978.
6. Broussard. J. R. and P. W. Berry. "The Relationship Between Implicit Model Following and Eigenvalue Eigenvector Placement," IEEE Transactions on Automatic Control, AC-25 (3): 591-594 (June 1980).
7. Cruz, J. B., J. S. Freudenberg and D. P. Looze. "A Relationship Between Sensitivity and Stability of Multivariable Feedback Systems," IEEE Transactions on Automatic Control, AC-26 (1): 66-74 (February 1981).
8. D'Azzo, J. J. and C. H. Houpis. Linear Control System Analysis and Design (Second Edition). New York: McGraw-Hill Book Company, 1981.
9. Dongarra, J. J., et al. LINPACK Users' Guide. Philadelphia: SIAM, 1979.
10. Doyle, J. C. "Guaranteed Margins for LQG Regulators," IEEE Transactions on Automatic Control, AC-23 (4): 756-757 (August 1978).
11. - \(-\infty\) - "Robustness of Multiloop Linear Feedback Systems," Proceedings of the 1978 IEEE Conference on Decision and Control, San Diego, California. 12-18 (January 1979).
12. -->⿱, MAnalysis of Feedback Systems with Structured Uncertainties," IEE Proceedings, 129 (D,6): 242-250 (November 1982).
13. Doyle, J. C. and G. Stein. "Robustness with Observers," IEEE Transactions on Automatic Control, AC-24 (4): 607-611 (August 1979).
14. -----, Multivariable Feedback Design: Concepts for a Classical/Modern Synthesis," IEEE Transactions on Automatic Control, AC 26 (1): 4-16 (February 1981).
15. Doyle, J. C., J. E. Wall and G. Stein. "Performance and Robustness Analysis for Structured Uncertainty," Proceedings of the 21st IEEE Conference on Decision and Control, Orlando, Florida. 629-636 (December 1982).
16. Floyd, R. M. Design of Advanced Digital Flight Control Systems Via Command Generator Tracker (CGT) Synthesis Techniques, Volumes 1 and 2. M. S. Thesis. Wright-Patterson Air Force Base, Ohio: \(\bar{A} 1 \bar{r}\) Force Institute of Technology, December 1980. (AD 115510 and AD 115 511)
17. Floyd, R. M. Doctoral Candidate (personal conversation). Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio, 10 July - 31 October 1983.
18. Freudenberg, J. S., D. P. Looze and J. B. Cruz. "Robustness Analysis Using Singular Value Sensitivities," International Journal of Control, 35 (1): 95-116 (January 1982).
19. Gilbert, E. G. "Conditions for Minimizing the Norm Sensitivity of Characteristic Roots," Conference on Information Sciences and Systems, Baltimore, Maryland. (March 1983).
20. Harvey, C. H. and G. Stein. "Quadratic Weights for Asymptotic Regulator Properties," IEEE Transactions on Automatic Control, AC-23 (3): 378-387 (June 1978).
21. Horowitz, I. M. Synthesis of Feedback Systems. New York: Academic Press, 1963.
22. Howey, J. M. Robust Flight Controllers. M. S. Thesis. Wright-Patterson Air Force Base, Ohio: Air Force Institute of Technology, December 1983.
23. Kleinman, D. L. "A Description of Computer Programs Useful in Linear Systems Studies," Tec. Rep. TR-75-4. University of Connecticut, Storrs, Connecticut, October 1975.
24. Klema, V. C. and A. J. Laub. "The Singular Value Decomposition: Its Computation and Some Applications," IEEE Transactions on Automatic Control. AC-25 (2): 164-176 (April 1980)
25. Kreindier, E. and D. Rothschild. "Model-Following in Linear-Quadratic Optimization," AIAA Journal (7): 835-842 (July 1976).
26. Kwakernaak, H. and R. Sivan. Linear Optimal Control Systems. New York: John Wiley and Sons, Inc., 1972.
27. Lehtomaki, N. A., D. Castanon, B. Levy, G. Stein, N. R. Sandell, Jr., and M. Athans. "Robustness Tests Utilizing the Structure of Modelling Error," Proceedings of the 20th IEEE Conference on Decision and Control. San Diego, California. 1173-1190 (December 1981).
28. Lloyd, E. D. Robust Control Systems. M. S. Thesis. Wright-Patterson Air Force Base, Ohio: Air Force Institute of Technology, December 1981. (AD 115 478)
29. Maybeck, P. S. Stochastic Models, Estimation, and Control, Volume 1. New York: Academic Press, 1979.
30. Maybeck, P. S. Stochastic Mödels, Estimation, and Control, Volume 3. New York: Academic Press, 1982.
31. Maybeck, P. S., R. M. Floyd and A. Moseley. "Synthesis and Performance Evaluation Tools for CGT/PI Advanced Digital Flight Control Systems," IEEE 1983 National Aerospace and Electronics Conference (NAECON 1983), Dayton, Ohio. 1259-1266 (May 1983).
32. McMillian, J. P. Command Generator Tracker Synthesis Methods Using an LQG-Derived Proportional plus Integral Controller Based on the Integral of the Regulation Error. M. S. Thesis. Wright-Patterson Air Force Base, Ohio: Air Force Institute of Technology, December 1983.
33. Moore, B. C. NOn the Flexibility Offered by State Feedback in Multivariable Systems Beyond Closed Loop Eigenvalue Assignment," IEEE Transactions on Automatic Control, AC-21 (5): 689-692 (October 1976).
34. Moseley, A. Design of Advanced Digital Flight Control Systems Via Command Generator Tracker (CGT) Synthesis Techniques, Volumes 1 and 2. M. S. Thesis. Wright-Patterson Air Force Base, Ohio: Air Force Institute of Technology, December 1982.
35. Mukhopadhyay, V. "Application of Matrix Singular Value Properties for Evaluating Gain and Phase Margins of Multiloop Systems," AIAA Guidance and Control Conference, San Diego, California. 420-428 (August 1982).
36. Musick, S. H. "SOFE: A Generalized Digital Simulation for Optimal Filter Evaluation; User's Manual," T.R. AFWAL-TR-80-1108, Air Force Wright Aeronautical Laboratories, Avionics Laboratory, Wright-Patterson Air Force Base, Ohio, 1980.
37. Safonov, M. G., A. J. Laub and G. L. Hartmann. "Feedback Properties of Multivariable Systems: The Role and Use of the Return Difference Matrix," IEEE Transactions on Automatic Control, AC-26 (1): 47-65 (February 1981).
38. Safonov, M. G. "Stability Margins of Diagonally Perturbed Multivariable Feedback Systems," IEE Proceedings, Vol 129 (D,6): 251-256 (November 1982).
39. Safonov, M. G. and M. Athans. "Gain and Phase Margins for Multiloop LQG Regulators," IEEE Transactions on Automatic Control, AC-22 (2): 173-179 (April 1977).
40. Safonov, M. G. and B. S. Chen. MMultivariable Stability-Margin Optimisation with Decoupling and Output Regulation," IEE Proceedings, Vol 129 (\(D, 6\)): 276-282 (November 1982).
41. Sandell, N. R. "Robust Stability of Systems with Application to Singular Perturbations," Automatica, 15 (4): 467-470 (July 1979).
42. Shampine, L. F. and M. K. Gordon. Computer Solution of Ordinary Differential Equations. San Francisco: W. H. Freeman and Company, 1975.
43. Stein G. and N. R. Sandell. Notes for Subject 6.291. Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, 1979.

\section*{A. 1 Introduction}

This thesis frequently refers to inner-loop controller designs based on linear system models, quadratic costs and Gaussian disturbances (the LQG assumptions). The PI regulator used in the CGT/PI/KF controller is a sampled-data optimal controller based on these LQG assumptions. Chapter II briefly outlines the overall structure of the CGT/PI/KF controller as well as the concept of the alteration of closed-loop system characteristics by means of implicit model-following. In that chapter, it is assumed that the reader understands the fundamental synthesis techniques involved in LQG designs, for both simple regulators and PI regulators.

This appendix is a very brief review of the development of those LQG synthesis techniques, intended to introduce concepts and notation used elsewhere in the thesis and in the design software that was employed in this study. Emphasis is on sampled-data controllers that are based on models representing actual discrete-time systems, or on equivalent discrete-time models for continuous-time systems. For a more complete and general development, refer to [30]; the specific formulation upon which the designs of this study are based is included in \([16,34]\).

\section*{A. 2 A Simple Constant-Gain LQG Regulator}

Consider a linear, time-invariant system which can be described by the vector state equation
\[
\begin{equation*}
\underline{x}\left(t_{i+1}\right)=\underline{\Phi x}\left(t_{i}\right)+\underline{B}_{d} \underline{u}\left(t_{i}\right)+\underline{G}_{d} \underline{W}_{d}\left(t_{i}\right) \tag{A-1}
\end{equation*}
\]

The system states at discrete sample times are represented by the vector \(\underline{x}\left(t_{i}\right)\), and \(\underline{u}\left(t_{i}\right)\) is the control applied at time \(t_{i}\), and held constant until time \(t_{i+1}\). If the model represents an actual discrete \left. process, then \({\underset{W}{d}}^{(} t_{i}\right)\) is a zero-mean, discrete-time white Gaussian driving noise of covariance \(\underline{Q}_{d}\) applied to the states through the distribution matrix \(\underline{G}_{\mathrm{d}}\). Often the model is an equivalent discrete-time description of an underlying continuous-time process [30]; in such a case, the equivalent discrete-time control matrix and driving noises can be developed from the related continuous-time quantities as
\[
\begin{align*}
& \underline{B}_{d}=\int_{t_{i}}^{t_{i+1}\left(t_{i+1}, \tau\right) \underline{B} d \tau} \tag{A-2a}\\
& \underline{G}_{d}=\underline{I} \tag{A-2b}
\end{align*}
\]
and
\[
\begin{equation*}
\left.\underline{Q}_{d}=\int_{t_{i}}^{t_{i+1}} \Phi_{i+1}, \tau\right) \operatorname{GQG}^{T} \Phi^{T}\left(t_{i+1}, \tau\right) d \tau \tag{A-2C}
\end{equation*}
\]
where \(\Phi\left(t_{i+1}, \tau\right)\) is the state transition matrix associated with \(A\) in the continuous-time model
\[
\begin{equation*}
\underline{\dot{x}}(t)=\underline{A x}(t)+\underline{B u}(t)+\underline{G w}(t) \tag{A-3a}
\end{equation*}
\]
and \(\underline{Q}\) is the strength of the white Gaussian noise \(\underline{w}(t)\) :
\[
\begin{equation*}
E\left\{\underline{w}(t) \underline{w}^{T}(t+\tau)\right\}=Q^{8(\tau)} \tag{A-3b}
\end{equation*}
\]

Note that if A, B, G, and \(\underline{Q}\) are constant and the sample period is fixed, then the matrices in (A-2) need only be evaluated once for all sample periods. Also, the \(\Phi\) of (\(A-1\)) is just \(\Phi\left(t_{i+1}, t_{i}\right)\) of (\(A-2\)) and, again, it is the same for all sample periods.

The system outputs are a linear combination of the system states
\[
\begin{equation*}
\underline{y}\left(t_{i}\right)=\underline{c x}\left(t_{i}\right) \tag{A-4}
\end{equation*}
\]

Equation (A-4) may be generalized to include direct feedthrough of the control inputs to the system outputs, but doing so will change neither the most general form of the quadratic cost function nor the form of the controller. Such a generalization is therefore unnecessary at this point in the development of a simple regulator [30]. Feedback control is based on noise corrupted sampled-data measurements of the system states in the form
\[
\begin{equation*}
\underline{z}\left(t_{i}\right)=\underline{H x}\left(t_{i}\right)+\underline{v}\left(t_{i}\right) \tag{A-5}
\end{equation*}
\]
where \(\underline{v}\left(t_{i}\right)\) is a zero-mean, discrete-time white Gaussian measurement noise of covariance \(\underline{R}\), which is independent of \({\underset{W}{d}}^{(} t_{i})\).

Under the LQG assumptions, the optimal controller for the system just described consists of an optimal (LQ) deterministic controller cascaded with an optimal linear Kalman filter, and the design of the controller and the filter can be conducted separately; this is an important property known as certainty equivalence [30]. Thus, the controller can be designed based on a simpler deterministic model consisting of (\(A-4\)) and
\[
\begin{equation*}
\underline{x}\left(t_{i+1}\right)=\underline{\Phi x}\left(t_{i}\right)+\underline{B}_{d} \underline{u}\left(t_{i}\right) \tag{A-6}
\end{equation*}
\]

The result is a linear-quadratic-state-feedback (LQSF) controller; in the final implementation, the state values used for feedback may be replaced by Kalman filter estimates to produce an LQG regulator.

The objective of the controller is to regulate all of the system outputs to zero, without expending excessive amounts of control energy. The determination of a control law, of the form
\[
\begin{equation*}
\underline{u}\left(t_{i}\right)=-\underline{G}_{c}\left(t_{i}\right) \underline{x}\left(t_{i}\right) \tag{A-7}
\end{equation*}
\]

Which meets these criteria for \(N\) sample periods can be accomplished by minimization of a quadratic cost function (performance index) of the form
\[
\begin{gather*}
J=\sum_{i=0}^{N} 1 / 2\left[\underline{y}^{T}\left(t_{i}\right) \underline{\underline{y}}_{S}\left(t_{i}\right) \underline{y}\left(t_{i}\right)+\underline{u}^{T}\left(t_{i}\right) \underline{u}_{S}\left(t_{i}\right) \underline{u}\left(t_{i}\right)\right] \\
+1 / 2\left[\underline{y}^{T}\left(t_{N+1}\right) \underline{y}_{i} \underline{y}\left(t_{N+1}\right)\right] \tag{A-8}
\end{gather*}
\]
where \(\underline{Y}_{S}\left(t_{i}\right),{\underset{Y}{f}}\) and \({\underset{W}{S}}\left(t_{i}\right)\) are symmetric, positive definite quadratic weighting matrices assigned by the designer in order to achieve the design objectives [30]. In many cases (as with the CGT/PI controller) the terminal transient can be ignored and time-invariant weighting matrices used to determine a more easily implemented constant-gain steady-state control law
\[
\begin{equation*}
\underline{u}\left(t_{1}\right)=-{\underset{G}{c}}^{\underline{G}}\left(t_{1}\right) \tag{A-9}
\end{equation*}
\]
through the minimization of
\[
\begin{equation*}
J=\sum_{i=0}^{\infty} 1 / 2\left[\underline{y}^{T}\left(t_{i}\right) \underline{Y}_{S} y\left(t_{i}\right)+\underline{u}^{T}\left(t_{i}\right) \underline{U}_{S} u\left(t_{i}\right)\right] \tag{A-10}
\end{equation*}
\]
or
\[
\begin{equation*}
J=\sum_{i=0}^{\infty} 1 / 2\left[\underline{x}^{T}\left(t_{i}\right) \underline{x}_{s} x\left(t_{i}\right)+\underline{u}^{T}\left(t_{i}\right) \underline{U}_{S} u\left(t_{i}\right)\right] \tag{A-11}
\end{equation*}
\]
where, in view of (\(\mathrm{A}-4\)),
\[
\begin{equation*}
\underline{x}_{S}=\underline{c}^{T} \underline{y}_{S} \underline{c} \tag{A-12}
\end{equation*}
\]

Although \(\underline{Y}_{S}\) is naturally positive definite, (A-12) reveals that \(\underline{X}_{S}\) may well be only positive semi-definite.

In the case of a controller based on an equivalent discrete-time model of an underlying continuous-time system, it is of ten convenient to specify the cost initially as a continuous-time function, such as those used for the example model-following development of Section 2.2. This form of cost can then be discretized [16,30] to produce a discrete-time cost similar to that in (\(A-11\)), but generalized to include cross-weighting terms between the system states and controls. Such a form generally arises when the discrete-time quadratic cost function is developed through the discretization of a continuous-time cost function, even if the continuous-time function contains no cross-weightings [30]. It would also occur if (A-4) were modified to admit direct feedthrough. This generalized cost function is
\[
J=\sum_{i=0}^{\infty} 1 / 2\left[\begin{array}{l}
\underline{x}\left(t_{i}\right) \tag{A-13}\\
\underline{u}\left(t_{i}\right)
\end{array}\right]^{T}\left[\begin{array}{ll}
\underline{x}_{S} & \underline{s} \\
\underline{S}^{T} & \underline{u}_{S}
\end{array}\right]\left[\begin{array}{l}
\underline{x}\left(t_{i}\right) \\
\underline{u}\left(t_{i}\right)
\end{array}\right]
\]
where \(\underline{S}\) is the cross-weighting matrix; \(\underline{U}_{S}\) is still assumed positive definite and the composite matrix in \((A-13)\) is assumed positive semi-definite. Based on such a generalized quadratic cost function,
the determination of the constant-gain, steady-state control law requires only the solution of the algebraic matrix Riccati equation [30]
\[
\begin{equation*}
\underline{K}_{c}=\underline{X}_{S}+\underline{\Phi}^{T} \underline{K}_{C} \Phi-\left[\underline{B}_{d}^{T} \underline{K}_{C} \Phi+\underline{S}^{T}\right]^{T} \underline{G}_{c} \tag{A-14}
\end{equation*}
\]
where
\[
\begin{equation*}
\underline{G}_{c}=\left[\underline{U}_{S}+\underline{B}_{d}^{T} \underline{K}_{c} \underline{B}_{d}\right]^{-1}\left[\underline{B}_{d}^{T} \underline{K}_{C} \underline{S}+\underline{S}^{T}\right] \tag{A-15}
\end{equation*}
\]

Software is available for the efficient solution of such equations [23]. In practice, the use of standard matrix Riccati equation solving routines of ten requires that the weighting matrix of (\(A-13\)) be transformed to a form with no cross-weighting term. Once the solution for the transformed system is found, an inverse transformation yields the optimal steady-state control law for the original system \([16,23,26,30]\).

\section*{A. 3 A Constant-Gain PI Regulator}

In many applications, the simple regulator developed in the preceding section is not suitable, because a controller is needed that will regulate the system outputs to non-zero values. Such is the case of the CGT/PI wherein the objective is to cause the system outputs to match the model outputs represented by \(y_{m}\left(t_{i}\right)\) of (II-18). An additional objective is to cause the error quantity
\[
\begin{equation*}
\underline{e}\left(t_{i}\right)=\underline{y}\left(t_{i}\right)-\underline{y}_{m}\left(t_{i}\right) \tag{II-19}
\end{equation*}
\]
to be zero in the steady state despite any unmodelled constant disturbances. A controller which can satisfy these criteria is said to have the "type-1 property" that can be achieved with a

Proportional-plus-Integral (PI) regulator [8]. Such a regulator can be designed by applying the \(L Q\) methodology introduced in the preceding section. This methodology provides a systematic synthesis procedure for a multiple-input, multiple-output controller which ensures stability under design conditions, and which includes the appropriate crossfeeds based on the system and cost descriptions. By iteratively adjusting the weights used in the quadratic cost function, the designer can trade off state and control amplitudes so as to achieve performance specifications [30].. The development of a full-state, constant-gain, LQ perturbation regulator with proportional-plus-integral characteristics follows; this deterministic optimal controller can be cascaded with a Kalman filter, based on certainty equivalence, to produce the LQG PI regulator [30].

The system of \((A-6)\) is unchanged except for the addition of a constant disturbance, \(d\), of unknown magnitude
\[
\begin{equation*}
\underline{x}\left(t_{i+1}\right)=\underline{\Phi x}\left(t_{i}\right)+\underline{B}_{-} \underline{u}\left(t_{i}\right)+\underline{d} \tag{A-16}
\end{equation*}
\]
and, in order to formulate the most general quadratic cost function, direct feedthrough of the inputs to the outputs is allowed:
\[
\begin{equation*}
\underline{y}\left(t_{1}\right)=C \underline{x}\left(t_{1}\right)+\underline{D}_{y} \underline{u}\left(t_{1}\right) \tag{A-17}
\end{equation*}
\]

If \(y_{m}\left(t_{i}\right)\) changes slowiy in comparison to the response time of the system, then the development can be made based on a constant \({\underset{y}{m}}^{\ln }\).30]. The nominal state values, \(\underline{x}_{0}\), and the nominal control, \({\underset{u}{0}}^{0}\), can be determined for the case where \(\underline{d}\) is zero, or
\[
\begin{equation*}
{\underset{0}{x}}_{\underline{x}_{0}}^{\underline{\Phi}}+\underline{-B}_{-}^{\underline{u}} \tag{A-18}
\end{equation*}
\]
\[
\begin{align*}
& \underline{y}_{\mathrm{m}}=\underline{C x_{0}}+\underline{D}_{y} \underline{u}_{0} \tag{A-19}\\
& {\left[\begin{array}{cc}
\underline{\Phi}-\underline{I} & \underline{B}_{d} \\
\underline{c} & \underline{D}_{y}
\end{array}\right]\left[\begin{array}{l}
\underline{x}_{o} \\
\underline{u}_{0}
\end{array}\right]=\left[\begin{array}{l}
\underline{0} \\
\underline{y}_{m}
\end{array}\right]} \tag{A-20}\\
& {\left[\begin{array}{cc}
\underline{\Phi}-\underline{I} & \underline{\underline{B}}_{d} \\
\underline{\mathrm{C}} & \underline{\underline{D}}_{\mathrm{y}}
\end{array}\right]^{-1}=\left[\begin{array}{ll}
\underline{\underline{\Pi}}_{11} & \underline{\mathrm{I}}_{12} \\
\underline{\underline{\Pi}}_{21} & \underline{\underline{\Pi}}_{22}
\end{array}\right]} \tag{A-21}\\
& \underline{x}_{0}=\underline{n}_{12} \underline{y}_{\mathrm{m}} \\
& \underline{u}_{0}=\underline{\underline{n}}_{22} \underline{\underline{y}}_{\mathrm{m}}
\end{align*}
\]

The case where \(d\) is non-zero requires the definition of perturbation variables that reflect deviations from the nominal conditions
\[
\begin{align*}
& \delta \underline{x}\left(t_{i}\right) \triangleq \underline{x}\left(t_{i}\right)-\underline{x}_{0}=\underline{x}\left(t_{i}\right)-\underline{\underline{m}}_{12} \underline{y}_{m} \tag{A-24}\\
& \delta \underline{u}\left(t_{i}\right) \triangleq \underline{u}\left(t_{i}\right)-\underline{u}_{0}=\underline{u}\left(t_{i}\right)-\underline{\underline{m}}_{22} \underline{y}_{m} \tag{A-25}\\
& \delta \underline{y}\left(t_{i}\right) \triangleq \underline{y}\left(t_{i}\right)-\underline{y}_{m} \tag{A-26}
\end{align*}
\]
and
\[
\begin{align*}
& \delta \underline{x}\left(t_{i+1}\right)=\underline{\Phi} \delta \underline{x}\left(t_{i}\right)+\underline{B}_{d} \delta \underline{u}\left(t_{i}\right) \tag{A-27}\\
& \delta \underline{y}\left(t_{1}\right)=\underline{C} \delta \underline{x}\left(t_{i}\right)+\underline{D}_{y} \delta \underline{u}\left(t_{i}\right) \tag{A-28}
\end{align*}
\]

Since
\[
\begin{align*}
& \delta \underline{u}\left(t_{i+1}\right)-\delta \underline{u}\left(t_{i}\right)=\left[\underline{u}\left(t_{i+1}\right)-\underline{u}_{0}\right]-\left[\underline{u}\left(t_{i}\right)-\underline{u}_{0}\right] \tag{A-29}\\
& \delta \underline{u}\left(t_{i+1}\right)=\delta \underline{u}\left(t_{i}\right)+\left[\underline{u}\left(t_{i+1}\right)-\underline{u}\left(t_{i}\right)\right] \\
&=\delta \underline{u}\left(t_{i}\right)+\Delta \underline{u}\left(t_{i}\right) \tag{A-30}
\end{align*}
\]
where \(\Delta \underline{u}\left(t_{i}\right)\) is a "pseudorate" that provides the control input to a perturbation regulator for the augmented system. Thus, the augmented perturbation state equation is
\[
\left[\begin{array}{l}
\delta \underline{x}\left(t_{i+1}\right) \tag{A-31}\\
\delta \underline{u}\left(t_{i+1}\right)
\end{array}\right]=\left[\begin{array}{ll}
\underline{\Phi} & \underline{B}_{d} \\
\underline{0} & \underline{I}
\end{array}\right]\left[\begin{array}{l}
\delta \underline{x}\left(t_{i}\right) \\
\delta \underline{u}\left(t_{i}\right)
\end{array}\right]+\left[\begin{array}{l}
\underline{0} \\
\underline{I}
\end{array}\right] \Delta \underline{u}\left(t_{i}\right)
\]
and the appropriate discrete time cost function to be minimized in defining a constant-gain control law is [30]
\[
J=\sum_{i=0}^{\infty} 1 / 2\left[\begin{array}{l}
\delta \underline{x}\left(t_{i}\right) \tag{A-33}\\
\delta \underline{u}\left(t_{i}\right) \\
\Delta \underline{u}\left(t_{i}\right)
\end{array}\right]^{T}\left[\begin{array}{ccc}
\underline{x}_{11} & \underline{x}_{12} & \underline{s}_{1} \\
\underline{x}_{12}^{T} & \underline{x}_{22} & \underline{S}_{2} \\
\underline{S}_{1}^{T} & \underline{s}_{2}^{T} & \underline{u}
\end{array}\right]\left[\begin{array}{l}
\delta \underline{x}\left(t_{i}\right) \\
\delta \underline{u}\left(t_{i}\right) \\
\Delta \underline{u}\left(t_{i}\right)
\end{array}\right]
\]

As in case of the simple regulator, the required gains are found by solution of an algebraic Riccati equation, producing an incremental control law [30]:
\[
\begin{equation*}
\delta \underline{u}\left(t_{i+1}\right)=\delta \underline{u}\left(t_{i}\right)-\underline{G}_{c 1} \delta \underline{x}\left(t_{i}\right)-\underline{G}_{c 2} \delta \underline{u}\left(t_{i}\right) \tag{A-34}
\end{equation*}
\]

In order to achieve the desired "type-1 property" a signal proportional to the pseudointegral of the regulation error of (II-19) must be added. A suitable form for the resulting control law would be
\[
\begin{equation*}
\underline{u}\left(t_{i}\right)=\underline{u}\left(t_{i-1}\right)-\underline{K}_{x}\left[\underline{x}^{(}\left(t_{i}\right)-\underline{x}\left(t_{i-1}\right)\right]+\underline{K}_{z}\left[\underline{y}_{m}-\underline{y}\left(t_{i-1}\right)\right] \tag{A-35}
\end{equation*}
\]

It can be shown [30] that both (A-34) and (A-35) are satisfied if
\[
\begin{align*}
& \underline{K}_{\mathrm{x}}=\underline{G}_{\mathrm{c} 1} \underline{\Pi}_{11}+\underline{G}_{\mathrm{c} 2} \underline{\Pi}_{21} \tag{A-36}\\
& \underline{\mathrm{~K}}_{\mathrm{z}}=\underline{G}_{\mathrm{c} 1} \underline{\Pi}_{12}+\underline{G}_{\mathrm{c} 2} \underline{\underline{\Pi}}_{22} \tag{A-37}
\end{align*}
\]

If \(y_{\text {m }}\) is permitted to change slowly, so that the system essentially reaches steady state before each subsequent change, the final PI regulator control law becomes [30]
\[
\begin{equation*}
\underline{u}\left(t_{i}\right)=\underline{u}\left(t_{i-1}\right)-\underline{K}_{x}\left[\underline{\underline{x}}\left(t_{i}\right)-\underline{x}\left(t_{i-1}\right)\right]+\underline{K}_{2}\left[\underline{y}_{\underline{m}}\left(t_{i}\right)-\underline{y}\left(t_{i-1}\right)\right] \tag{A-38}
\end{equation*}
\]
where it is appropriate that the time arguments of the last term do not match [30].

\section*{A. 4 Quadratic Cost and Implicit Model-Following for CGTPIV}

The design software used in this study implements a PI regulator, as developed in the preceding section, as the inner-loop controller required to provide stability and regulation for the overall CGT/PI. The software requires the designer to establish continuous-time models for the system to be controlled; equivalent discrete-time models are developed internally by the program [16]. Since the designer works with a continuous-time model, the software also requires the input of quadratic weights for a continuous-time quadratic cost function. In the "standard" PI regulator of the original CGT/PI/KF design software [16], which is still an option of the current version [34], implicit model-following is not used; the continuous-time cost is specified in terms of a \(\underline{Y}\) matrix which weights output deviations, a \(U_{M}\) matrix which weights the control magnitudes, and a \(\mathbb{U}_{R}\) matrix which weights control rates. The continuous-time cost function is
\[
\begin{equation*}
J=1 / 2 \int_{0}^{\infty}\left[\delta \underline{y}^{T}(t) \underline{\underline{y}} \delta \underline{y}(t)+\delta \underline{u}^{T}(t) \underline{U}_{M} \delta \underline{u}(t)+\Delta \underline{u}^{T}(t) \underline{U}_{f} \underline{\Delta} \underline{u}(t)\right] d t \tag{A-39}
\end{equation*}
\]

The \(\underset{Y}{ }\) and \(U_{M}\) matrices are then combined with the output and feedthrough matrices to develop an \(X\) matrix:
\[
\underline{\mathrm{x}}=\left[\begin{array}{ll}
\underline{\mathrm{x}}_{\mathrm{c} 11} & \underline{\mathrm{x}}_{\mathrm{c} 12} \tag{A-40}\\
\underline{\mathrm{X}}_{\mathrm{c} 12}^{T} & \underline{\mathrm{x}}_{\mathrm{c} 22}
\end{array}\right]
\]
where
\[
\begin{align*}
& \underline{X}_{c 11} \triangleq \underline{C}^{T} \underline{Y C} \tag{A-41a}\\
& \underline{X}_{c} 22 \triangleq \underline{U}_{M}+\underline{D}_{y}^{T} \underline{Y D}_{y} \tag{A-4lb}
\end{align*}
\]
\[
\begin{equation*}
\underline{\mathrm{x}}_{\mathrm{c} 12} \triangleq \underline{\mathrm{c}}^{\mathrm{T}} \underline{\mathrm{YD}}_{\mathrm{y}} \tag{A-41c}
\end{equation*}
\]

The continuous-time cost function therefore becomes
\[
J=1 / 2 \int_{0}^{\infty}\left[\begin{array}{l}
\delta \underline{x}(t) \tag{A-42}\\
\delta \underline{u}(t) \\
\Delta \underline{u}(t)
\end{array}\right]^{T}\left[\begin{array}{lll}
\underline{x}_{c 11} & \underline{x}_{c 12} & \underline{0} \\
\underline{x_{c 12}} & \underline{x}_{c 22} & \underline{0} \\
\underline{0} & \underline{0} & \underline{U}_{R}
\end{array}\right]\left[\begin{array}{l}
\delta \underline{x}(t) \\
\delta \underline{u}(t) \\
\Delta \underline{u}(t)
\end{array}\right] d t
\]

The program then discretizes the continuous-time cost function to produce the discrete-time cost function of (A-33) [16]. This process also introduces the required discrete-time cross-weightings.

The developments so far in this Appendix have not addressed the incorporation of the implicit model-following concept that was used so extensively in this study. The example development in Section 2.2 demonstrates that a continuous-time quadratic cost function incorporating an implicit model can be easily formulated. If the objective of the controller is to achieve simple regulation of outputs, then the development of Section 2.2 can be applied to the sampled-data controller, as well; discretization \([16,30]\) of (II-5b) would result in a cost function of the same form as (\(A-13\)), but with weighting matrices appropriate for an implicit model-following regulator.

The development of implicit model-following for the PI regulator is also easy to envision in the context of a continuous-time cost, such as (A-39). If the objective of the controller developed in the preceding section is changed from regulating the perturbation outputs, defined as
\[
\begin{equation*}
\delta \underline{y}(t)=\underline{y}(t)-y_{m} \tag{A-26}
\end{equation*}
\]
to zero, to that of forcing those outputs to mimic the dynamics of a model system, so that
\[
\begin{equation*}
\delta \underline{\dot{y}}(t)=\underline{A}_{-m} \delta \underline{y}(t) \tag{II-4}
\end{equation*}
\]
then the appropriate continuous-time cost function would become
\[
\begin{align*}
& J=1 / 2 \int_{0}^{\infty}\left\{\left[\delta \underline{\dot{y}}(t)-\underline{A}_{-m} \delta \underline{y}(t)\right]^{T} \underline{Q}_{I}\left[\delta \underline{\dot{y}}(t)-\underline{A}_{-m} \delta \underline{y}(t)\right]\right. \\
&\left.+\delta \underline{u}^{T}(t) \underline{R}_{I} \delta \underline{u}(t)+\Delta \underline{u}^{T}(t) \underline{U}_{R} \Delta \underline{u}(t)\right\} d t \tag{A-43}
\end{align*}
\]
or
\[
J=1 / 2 \int_{0}^{\infty}\left[\begin{array}{l}
\delta \underline{x}(t) \tag{A-44}\\
\delta \underline{u}(t) \\
\underline{\Delta} \underline{u}(t)
\end{array}\right]^{T}\left[\begin{array}{ccc}
\hat{\theta}_{\underline{I}} & \underline{\hat{S}} & \underline{0} \\
\underline{\hat{S}_{I}^{T}} & \underline{\hat{R}} & \underline{0} \\
\underline{0} & \underline{0} & \underline{u}_{R}
\end{array}\right]\left[\begin{array}{l}
\underline{\delta}(t) \\
\delta \underline{u}(t) \\
\Delta \underline{u}(t)
\end{array}\right] d t
\]
where
\[
\begin{align*}
& \hat{\underline{Q}}_{I}=\left(\underline{C A}-A_{m} C\right)^{T} \underline{Q}_{I}\left(C A-A_{-} C\right) \tag{A-45a}\\
& \hat{\underline{S}}_{I}=\underline{B}^{T} \underline{C}^{T} g_{I}\left(C A-A_{-m} C\right) \tag{A-45b}\\
& \hat{\underline{R}}_{I}=\underline{R}_{I}+\underline{B}^{T} \underline{C}^{T} \underline{Q}_{I} \underline{C B} \tag{A-45c}
\end{align*}
\]

Note that (A-45) is identical in form to (II-6), but that (\(A-43\)) through (A-45) are presented in notation consistent with CGTPIV and the discussions of Chapters IV and \(V\).

The design path in CGTPIV that permits the use of implicit model-following actually implements a "combined expilcit-implicit" regulator, based on a continuous-time cost function that results from combining (A-39) and (A-43) [34]. The designer has the freedom to
specify the implicit regulator command model as well as \(\underline{y}, \underline{U}_{M}, U_{R}, Q_{I}\), and \(\mathbb{R}_{I}\). For the " all-implicit" designs in this study, \(\Psi\) and \(\mathbb{U}_{M}\) were set to zero. For the general combined case, instead of using the \(\underline{X}\) matrix of (A-40) in the cost, as in (A-42), a combined state weighting matrix, \(X_{I F}\), is developed in CGTPIV by adding the implicit state weightings to \(\underline{X}\) prior to discretizing the cost:
\[
\underline{x}_{I E}=\underline{x}+\left[\begin{array}{cc}
\hat{\underline{\hat{g}}}_{I} & \hat{\underline{s}}_{\mathrm{I}} \tag{A-46}\\
\hat{\underline{s}}_{\mathrm{I}}^{\mathrm{T}} & \hat{\underline{\hat{R}}}_{\mathrm{I}}
\end{array}\right]
\]

The combined continuous-time cost function is, therefore

\begin{abstract}
A. 5 Summary

This appendix reviewed the formulation of basic LQG optimal regulator design methods that were used in developing the software that produced the designs of this study. The purpose was to ensure an adequate framework upon which to build an understanding of implicit model-following, and to relate the notation and terminology used in Chapters IV and \(V\), as well as that of the CGTPIV design software, to that theoretical framework. The form of the PI regulator control law of (A-35) and of the CGT/PI control law of (II-25) is independent of whether the PI regulator gains are found by minimizing the "standard" cost of (A-39), the "implicit" cost of (A-43) or a combination of the two. However, as seen in the results of this study, the incorporation of an implicit model in the design of the regulator has a substantial beneficial effect on the closed-loop characteristics of the resulting controller.
\end{abstract}

\section*{B. CGTSVD Software Description and Instructions}

\section*{B. 1 Introduction}

CGTSVD is an interactive computer program, developed for use in this study, which calculates the minimum and maximum singular values of the loop and inverse return difference matrix functions for any CGT/PI/KF or CGT/PI controller. This appendix develops the equations employed, and discusses the structure and use of CGTSVD; the information provided is intended to enhance the reader's ability not only to understand and use the software, but to modify it easily, if necessary. A short sample execution of the program is included, as is a complete listing of the source code.

CGTSVD was intentionally developed without the use of the sophisticated programming practices which made CGTPIV so efficient in terms of storage requirements and execution time [16]. Due to the comparatively small scope of the computational task, it was obvious ar 'he outset that such practices would not be required in order to achieve a load size compatible with the normal interactive memory limits (either 65,000 or 100,000 octal words of storage) established for the Aeronautical Systems Division's CYBER computer. On the other hand, a degree of structural complexity was foreseen due to the effort to make the program as general as possible, able to handle a variety of calculations for a wide range of problems. For those reasons, the simplest programing methods were selected, so as to produce a source program that, although relatively inefficient, should be easily interpreted by anyone with experience in FORTRAN programming. The program is written in ANSI standard FORTRAN 77, and the source code includes many comments
which explain what each segment of code does and, in many cases, how it is done. The program executes interactively, and prompts are sufficlient in number and detail to lead a novice user along the proper paths. Because the source code is simple and reasonably self-explanatory, the discussion of the structure and use of the program is brief.

\section*{B. 2 Development of Loop Equations}

This section develops the equations used in CGTSVD for calculating the loop gain matrix function of a closed-loop CGT/PI or CGT/PI/KF controller. The use of the loop gain and inverse return difference (a function of the loop gain) matrix functions in robustness analysis is discussed at length in Section 3.2.

The overall control law for the closed-loop CGT/PI controller is given in (II-25). Since the loop gain does not include the effects of any quantities outside of the closed feedback loop, the command model 'states and commanded control inputs of (II-25) need not be considered. Additionally, the disturbance states only become a part of the loop if a Kalman filter is included to provide disturbance state estimates to the CGT controller. Unless stated otherwise, all of the quantities in the following development are as defined previously in Section 2.3.

For the LQSF (CGT/PI) controller, calculation of the loop gain function is quite simple once the quantities outside the feedback loop have been stripped from the control law. The remaining portion of the control law relates the system inputs to the system states:
\[
\begin{align*}
\underline{u}\left(t_{i}\right)-\underline{u}\left(t_{i-1}\right)= & -\underline{K}_{x}\left[\underline{x}\left(t_{i}\right)-\underline{x}\left(t_{i-1}\right)\right] \\
& -\underline{K}_{2}\left[\underline{C x}\left(t_{i-1}\right)+\underline{D}_{y} \underline{u}\left(t_{i-1}\right)\right] \tag{B-1}
\end{align*}
\]

Transferring this difference equation to the z-domain [8],
\[
\begin{equation*}
\underline{\underline{u}}(z)-\underline{u}(z) / z=-\underline{K}_{x}[\underline{x}(z)-\underline{x}(z) / z]-\underline{K}_{z}\left[\underline{C x}(z) / z+\underline{D}_{y} \underline{u}(z) / z\right] \tag{B-2}
\end{equation*}
\]

The PI controller "gain" representing the ratio of system inputs to system states is, therefore,
\[
\begin{equation*}
\underline{K}(z)=\left[(z-1) \underline{I}+\underline{K}_{z} \underline{D}_{\underline{y}}\right]^{-1}\left[(1-z) \underline{K}_{x}-\underline{K}_{z} \underline{\underline{C}}\right] \tag{B-3}
\end{equation*}
\]

The plant "gain" representing the ratio of system states to system inputs is the \(Z\) transform [8] of the product of a zero-order hold (a device used to change the discrete control input at time \(t_{i}\) into a continuous input signal, held constant over the sample period, which drives the continuous-time plant [8]) and the s-domain representation of the continuous-time plant transfer function. In the s-domain, the zero-order hold device is represented as
\[
\begin{equation*}
\mathrm{zOH}=\left[1-\mathrm{e}^{-\mathrm{sT}}\right] / \mathrm{s} \tag{B-4}
\end{equation*}
\]
where \(T\) is the controller sampling interval. The plant transfer function is
\[
\begin{equation*}
\Phi(s) \underline{B}=[s \underline{I}-\underline{A}]^{-1} \underline{B} \tag{B-5}
\end{equation*}
\]
where \(A\) and \(\underline{B}\) are, respectively, the continuous-time dynamics and control matrices that make up the "evaluation model." The combined zero-order hold and plant is therefore
\[
\begin{equation*}
\underline{G}(z)=2 \text { transform }\left\{\left[1-e^{-s T}\right] / s[s I-\underline{A}]^{-1} \underline{B}\right\} \tag{B-6}
\end{equation*}
\]
and the loop gain, with the loop cut at the control input, is
\[
\begin{equation*}
\underset{\underline{G}}{\underline{G}}(z)=\underline{K}(z) \underline{G}(z) \tag{B-7a}
\end{equation*}
\]
and with the loop cut at the output,
\[
\begin{equation*}
\underline{G}_{\mathrm{L}}(z)=\underline{G}(z) \underline{K}(z) \tag{B-7b}
\end{equation*}
\]

In the implementation in CGTSVD, the user may specify the use of an "evaluation model" consisting of either the design model or a truth model description of the plant, which may be of higher dimension than the design model. When the truth model option is used, a transformation matrix must also be supplied which premultiplies the \(\underline{G}(z)\) function so as to reduce the truth model state vector to the same dimension as, and quantities equivalent to, the design model state vector, thus making it compatible with the control law. The actual calculation of the loop gain singular values is accomplished, for each frequency, in the frequency (\(\omega\)) domain, using the relationships [8]
\[
\begin{equation*}
\mathbf{s}=j \omega \tag{B-8}
\end{equation*}
\]
and
\[
\begin{equation*}
z=e^{j \omega T} \tag{B-9}
\end{equation*}
\]

The corresponding development for the CGT/PI/KF is more complicated due to the need to calculate a "gain" or transfer function for the Kalman filter as well as the inclusion of the disturbance state estimates in the control law. In the development that follows,
quantities that are filter estimates are depicted using a "hat" (\({ }^{\wedge}\)) notation. The portion of the control law relating the control inputs to the state estimates is
\[
\begin{align*}
\underline{u}\left(t_{i}\right)-\underline{u}\left(t_{i-1}\right)= & -\underline{K}_{x}\left[\underline{\hat{x}}\left(t_{i}\right)-\underline{\hat{x}}\left(t_{i-1}\right)\right] \\
& -\underline{K}_{z}\left[\underline{C \hat{x}}\left(t_{i-1}\right)+\underline{D}_{y} \underline{u}\left(t_{i-1}\right)\right] \\
& +\underline{K}_{x n}\left[\hat{\underline{n}}_{d}\left(t_{i}\right)-\hat{\underline{n}}_{d}\left(t_{i-1}\right)\right] \tag{B-10}
\end{align*}
\]

Transforming this difference equation to the z-domain and collecting terms yields
\[
\begin{equation*}
\left[(z-1) \underline{I}+\underline{K}_{z} \underline{D}_{y}\right] \underline{u}(z)=\left[\underline{K}_{x}(1-z)-\underline{K}_{z} \underline{C}\right] \underline{\hat{x}}(z)+\underline{K}_{x n}\left[(z-1) \hat{\underline{n}}_{d}(z)\right] \tag{B-11}
\end{equation*}
\]

Defining an augmented state vector
\[
\begin{align*}
& \hat{\underline{x}}_{\mathrm{a}}(z)=\left[\begin{array}{c}
\hat{\hat{x}}^{(z)} \\
\hdashline \hat{\hat{n}}_{\mathrm{d}}(z)
\end{array}\right] \tag{B-12}\\
& {\left[(z-1) \underline{I}+\underline{\underline{K}}_{z} \underline{D}_{y}\right] \underline{u}(z)=\left\{\left[\underline{K}_{x}(1-z)-\underline{K}_{z} \underline{C}\right]:\left[\underline{K}_{x n}(z-1)\right]\right\} \hat{\underline{x}}_{a}(z)} \tag{B-13}
\end{align*}
\]
so that the ratio of control inputs to augmented state estimates is
\[
\begin{equation*}
\left.\underline{K}_{1}(z)=\left[(z-1) \underline{I}+\underline{K}_{z} \underline{D}_{y}\right]^{-1}\left\{\left[\underline{K}_{x}(1-z)-\underline{K}_{z} \underline{c}\right]: \underline{K}_{x n}^{i}(z-1)\right]\right\} \tag{B-14}
\end{equation*}
\]

The overall "gain" or transfer function of the Kalman filter can be calculated from the propagation and update equations for the filter [29]. If a truth model state vector, \(\underline{x}_{t}\left(t_{i}\right)\), is defined so as to include the "true" system and disturbance states, then the truth model

measurement vector is
\[
\begin{equation*}
\underline{z}_{t}\left(t_{i}\right)=\underline{H}_{t} \underline{x}_{t}\left(t_{i}\right)+\underline{v}_{t}\left(t_{i}\right) \tag{B-15}
\end{equation*}
\]
and the design model measurement vector upon which the filter design is based is
\[
\begin{equation*}
\underline{z}(t)={\underset{H}{a}}^{\underline{x}_{a}}\left(t_{i}\right)+\underline{v}\left(t_{i}\right) \tag{B-16}
\end{equation*}
\]
where
\[
{\left.\underset{-a}{H}=\left[\begin{array}{l:l}
\underline{H} & \underline{H}_{n} \tag{II-27}
\end{array}\right] .\right] ~}_{\underline{-1}}
\]

Using \({\underset{X}{f}}\) to denote the Kalman filter gain,
\[
\begin{align*}
\underline{\hat{x}}_{a}\left(t_{i}^{+}\right) & =\underline{\hat{x}}_{a}\left(t_{i}^{-}\right)+\underline{K}_{f}\left[\underline{z}_{t}\left(t_{i}\right)-\underline{H}_{a} \hat{\underline{x}}_{a}\left(t_{i}^{-}\right)\right] \\
& =\left[\underline{I}-\underline{K}_{f} \underline{H}_{a}\right] \hat{\underline{x}}_{a}\left(t_{i}^{-}\right)+\underline{K}_{f}\left[\underline{H}_{t} \underline{x}_{t}\left(t_{i}\right)+\underline{\underline{y}}_{t}\left(t_{i}\right)\right] \tag{B-17}
\end{align*}
\]

Since the measurement noises are outside of the loop, they can be dropped from the loop calculations, so that
\[
\begin{equation*}
\hat{\underline{x}}_{a}\left(t_{i}^{+}\right)=\left[\underline{I}-\underline{K}_{f} \underline{H}_{a}\right] \hat{\hat{x}_{a}}\left(t_{i}^{-}\right)+\underline{K}_{f}\left[\underline{H}_{t} \underline{x}_{t}\left(t_{i}\right)\right] \tag{B-18}
\end{equation*}
\]

Also,
\[
\begin{equation*}
\underline{\hat{x}}_{a}\left(t_{i+1}^{-}\right)=\underline{\Phi}_{a} \hat{\dot{x}}_{a}\left(t_{i}^{+}\right)+\underline{B}_{d a} \underline{u}\left(t_{i}\right) \tag{B-19a}
\end{equation*}
\]
so
\[
\begin{equation*}
\underline{\hat{x}}_{a}\left(t_{i}^{+}\right)=\Phi_{a}^{-1} \hat{\hat{x}}_{a}\left(t_{i+1}^{-}\right)-\Phi_{-}^{-1}{ }_{-d a} \underline{u}_{i}\left(t_{i}\right) \tag{B-19b}
\end{equation*}
\]
where
\[
\begin{align*}
& \Phi_{a}=\Phi_{a}\left(t_{i+1}, t_{i}\right)=\left[\begin{array}{c:c}
\Phi & E_{x d} \\
\hdashline \underline{0} & \underline{\Phi}_{n}
\end{array}\right] \tag{B-20a}\\
& \underline{B}_{a}=\left[\begin{array}{c}
\underline{B} \\
\hdashline \underline{0}
\end{array}\right] \tag{B-20b}
\end{align*}
\]
and
\[
\left.\dot{B}_{d a}=\int_{t_{i}}^{t_{i+1}} \Phi_{i+1}, r\right) \underline{B}_{a} d \tau
\]

Note that in (\(B-20 c\)), \(\Phi_{a}\left(t_{i+1}, T\right)\) is not the constant \(\Phi_{a}\) as in (\(B-20 a\)), but is a variable in \(\tau\).

Z-transforming (\(B-18\)) and (\(B-19 b\)) and using (\(B-14\)) to eliminate \(\underline{u}(z)\) from the result gives a transfer function relating the augmented system state estimates to the truth model state realizations:
\[
\begin{align*}
\underline{K}_{2}(z)= & {\left[z \underline{\Phi}_{a}^{-1}+\underline{K}_{f} \underline{H}_{a}-\underline{I}-\underline{\Phi}_{a}^{-1} \underline{B}_{d a}\left\{\left[(z-1) \underline{I}+\underline{K}_{z} \underline{D}_{y}\right]^{-1}\right.\right.} \\
& \left.\left.\cdot\left(\left[\underline{K}_{x}(1-z)-\underline{K}_{z} \underline{C}\right]:\left[\underline{K}_{x n}(z-1)\right]\right)\right\}\right]^{-1} \underline{K}_{f} \underline{H}_{t} \tag{B-21}
\end{align*}
\]

The existence of the disturbance state estimates within the loop is entirely accounted for in (\(B-14\)) and (\(B-21\)). The shaping filters for the disturbance states are outside the loop, so those states need not be represented in the plant evaluation dynamics model. The plant may again, therefore, be represented by an equation of the form of (B-6) where, in this case, the \(A\) and \(B\) matrices of the "evaluation
model" represent the partitions of the model dynamics and control matrices associated with system states (i.e., excluding disturbances). For the "filter-in-the-loop" calculations, when the evaluation model state dimension exceeds that of the design model, the \(H_{t}\) matrix provides the necessary interface with the control law, and no additional transformation is required. Also, since the disturbances are not represented in the plant model, only the columns of the \(\underline{H}_{t}\) matrix associated with system states need be included in the calculations (again, the disturbance states can be dropped). The overall loop gain, with the loop cut at the control input, is therefore
\[
\begin{equation*}
\underline{G}_{L}(z)=\underline{K}_{1}(z) \underline{K}_{2}(z) \underline{G}(z) \tag{B-22a}
\end{equation*}
\]
and with the loop cut at the output,
\[
\begin{equation*}
\underline{G}_{L}(z)=\underline{G}(z) \underline{K}_{1}(z) \underline{K}_{2}(z) \tag{B-22b}
\end{equation*}
\]

Once again, the actual calculations in CGTSVD are conducted in the \(\omega\)-domain.

\section*{B. 3 CGTSVD Program Structure}

With the exception of the LINPACK [9] Iibrary routine CSVDC, which is used to find the singular values of complex matrices, the program CGTSVD is entirely self-contained. In the interest of simplicity, rather than efficiency, the majority of the calculations are conducted using complex arithmetic and with complex variable types. To allow the matrix manipulation subroutines to operate, as simply as possible, on partitions of larger arrays and on matrices of varying sizes, nearly all of the arrays in the main program and the subroutines are blocked
B-8
with a common row amension of 16. Despite the lack of effort to limit array storage requirements, the program, as listed in Section B.6, will handle problems with up to 16 augmented design model states (system states plus disturbance states, of which there may be 8), 16 truth model system states and 8 each control inputs and system outputs, while using 70,000 (octal) words of core memory.

The majority of the variable names used in the program (exclusive of work arrays) are reasonably well defined either by the comments in the source code, by the wording of the prompts that precede their definition by the user, or by their context. The flow of the program assumes that the design parameters will be read in from a previously established data file (line 780 of the source listing). If a data file is not used, the program branches to line 2600 , where the parameters are entered from the terminal (this section of code is perhaps the best place to get familiar with the variable names used for the design parameters). Regardless of the way in which the parameters are entered, the user is given the option of changing any parameters via the "change menu" at line 1300 prior to each set of singular value calculations. As noted in the source listing, the logic followed in implementing changes is probably the most difficult to follow, since it requires jumping around through the data entry sequence to pick up all of the required information, without requiring the user to reenter data that does not change. Once the design parameters have been defined, the program branches to line 3950 to calculate singular values for the CGT/PI or to line 5110 for the CGT/PI/RF, as specified by the user. The program is terminated by a menu selection at line 1300.

In its current form, the program will calculate either the loop
gain or inverse return difference function singular values, with the loop cut at either the control input or plant output. When the loop is cut at the plant output, the loop gain is generally rank deficient (the matrix is square, with dimension equal to either the design or evaluation model state dimension but with rank equal to the control input vector dimension). In such a case a pseudoinverse of the loop gain matrix is used in calculating the inverse return difference function. If an attempt is made to invert any rank deficient matrix under any other circumstances, the calculation is aborted, the user is advised, and the program returns to the "change menu" (line 1300).

The program produces printer plots, displayed at the user terminal and written to a plot file, of the logarithms of the absolute values of the minimum and maximum singular values for the selected function, versus radian frequency. Each plot includes 2 decades of frequency, or 37 points. To change the number of points per plot, it is only necessary to change the references to "37" in lines 390, 3950, 5200, 6510 and 6620 to the desired number and increase the size of the "PLTVEC" array in line 390 to 3 times the new number of points; for example, 55 (vice 37) would produce a plot covering 3 decades at the same frequency intervals. If the number of desired points exceeds 60 , lines 11310 through 11330 should be deleted or modified, as they are designed to pad the line printer output to one full page per plot. The frequency interval may also be changed to affect the number of decades covered; for example, changing the 20.0 in lines 4960 and 6400 to 10.0 will halve the number of points plotted per decade. If the actual magnitude of the singular values is desired rather than the logarithm, the "LOG10" may be deleted in lines \(4580,4600,4880,4900,6000,6020\),

6320 and 6340. The array dimensions may be altered to handle larger problems or reduce the load size, so long as the following are observed:
-- All of the arrays which are currently blocked with a row dimension of 16 in the main program and subroutines must always have the same common row dimension.
-- All of the two-dimensional "WORK" arrays should remain square.

\section*{B. 4 Instructions for Using CGTSVD}

Prior to executing CGTSVD, any data files established during previous sessions with the program should be attached, if they are to be used to define the design parameters. The program will allow repeated problem parameter redefinition through the use of multiple data files and keyboard inputs. Data files are distinguished by their file names, which are specified by the user. The data files for CGTSVD are not compatible with those of ODEACT or CGTPIV. Each time the problem is redefined, the user is given the opportunity to save the data to a new file; the program will not overwrite a previously established data file. The LINPACK subroutine library must also be attached and declared as a library prior to execution of CGTSVD.

Once program execution is begun, the user need only respond to the prompts for option selection and data input. The prompts are quite explicit as to what should be included with each entry. When a matrix is to be newly defined via keyboard input, the entire matrix must be entered, one row at a time, with the elements of the row separated by commas or spaces. When changes to a matrix are made, only the elements that are being redefined need be entered, in the format specified by

\section*{the prompt.}

The design and truth model dynamics and control matrices are entered in their continuous-time forms, as they are in CGTPIV. The continuous-time design model dynamics representation of the controlled system is [16]
\[
\begin{align*}
& \underline{\dot{x}}(t)=\underline{A x}(t)+\underline{B u}(t)+\underline{E}_{x} \underline{n}_{d}(t)+\underline{G w}(t) \tag{B-21}\\
& \underline{\underline{n}}_{d}(t)={\underset{A}{n}}^{n_{d}}(t)+\underline{G}_{n} w_{n}(t) \tag{B-22}
\end{align*}
\]
so that when the program asks for the augmented design model dynamics matrix, the appropriate entry is of the form
\[
\hat{A}_{\mathrm{a}}=\left[\begin{array}{c:c}
\underline{A} & \underline{E}_{\mathrm{x}} \tag{B-23}\\
\hdashline \underline{0} & \underline{A}_{\mathrm{n}}
\end{array}\right]
\]
and the design model control matrix is
\[
\underline{B}_{\mathrm{a}}=\left[\begin{array}{c}
\underline{B} \tag{B-18b}\\
-\overline{\underline{0}}
\end{array}\right]
\]

If a truth model is used as the "evaluation model" it is entered without any augmenting disturbance states. This means that the evaluation model dynamics, transformation, control and measurement matrices are to be stripped of all partitions relating to disturbance states. Assuming that previous prompts for model dimensions were answered correctly, the matrix entry prompts also provide reminders as to the correct dimensions for the models being entered. When the design model is used as the evaluation model, no evaluation model inputs are required.

For designs in which the number of control inputs exceeds the number of controlled outputs, the correct response to the "ENTER NUMBER OF OUTPUTS" prompt may be either the actual number of outputs or the number of control inputs. The entry that is used will defire the number of rows of \(\underline{C}\) and \({\underset{D}{y}}^{\text {(if used) as well as the number of columns }}\) of \(\mathrm{K}_{2}\) that the input routines will expect. The only reason for choosing to enter the number of controls instead of the actual number of outputs would be so that the \(\underset{C}{C}, \underline{D}_{y}\), and \(\underline{K}_{2}\) matrices would be the same as for the input/output of CGTPIV, where the number of outputs must equal the number of controls [16]. In such a case, the "extra" rows of \(\underline{C}\) and \(\underline{D}_{y}\) and columns of \(\underline{K}_{-2}\) will all be made up of zeroes, and do not affect the singular value calculations. When the actual number of outputs is entered in response to the prompt, these extra entries are not required. If the number of controlled outputs exceeds the number of control inputs (as was the case of the controllers in Section 5.5), the appropriate response to the "ENTER NUMBER OF CONTROLS" prompt is the actual number of control inputs available; in other words, no "dummy" controls, as used in CGTPIV, are required by CGTSVD. They will, in fact result in an abort of the calculations due to rank deficiency in the loop matrix.

To terminate the program, a "Y" response should be given to the "ANY CHANGES TO DATA" prompt; the "change menu" includes the option to exit the program. All of the singular value plots displayed at the terminal are automatically written to an output file, which is named by the user. This file may be saved for future reference or routed to a line printer to obtain a "hard" copy.

\section*{B. 5 Sample Program Execution}
The next few pages contain the terminal output from a short sample run of CGTSVD on the CYBER computer. The object code is contained in the file CGTSVD and the file AFTI5F contains data for the SR-B CGT/PI design defined in Section 5.2. The computer's prompts and outputs are displayed in upper case, and the non-numeric user responses in lower case type.

COMAMD- attach, aftisf
PFF IS
AFTISF
AT CY= AnI SNaAFIT
COMMAMD- attach, cgtsvd
PFM IS
cetsul
at \(\mathrm{CY}=\mathrm{GH} \mathrm{SH}=\mathrm{AFIT}\)
COMAMAB- attach, linpack, idalibrary, sneasd
PFN IS
LIMPACK:
AT CY= 999 SN=ASD
COMmAMD- Library,linpack
COMMANP- cgtsvo
ENTER MAME FOR PLOT OUTPUT FILE: plotI
DATA IMPUT FROM TAPE? Y/M: y
ENTER MAME OF LOCAL FILE: afti5f
CURREMT STATUS: MO KALLAM FILTER
evallation truth model = desigm hooel
ANY CHAMEES TO DATA? Y/K: n
ENTER SAMPLIMG THIE IMTERYAL: . 02
emter startime frequency (radians) as a pouer of 19:

\(1=\) LOOP CUT AT CONTROL IUPUT 2= LOOP CUT AT PLANT DUIPUT ENTER CHOICE E: 1
```

            EmtER tITLE FOR Pldt
    sacple plot for sr-b desiga
1 = SIMGLE PLOT, SIMGLE SCALE
2 = TMO PLOTS -- ONE SIMGLE SCALE, ONE DOUALE SCALE
3= SIMGLE PLOT, DOUSLE SCHLE
SPECIFY TYPE OF PLOT: 1

```

SAMPLE PLOT FOR SR-8 DESIGN
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 1.808 & 2 & \(1+\) & + & + & + & + \\
\hline \(1.54 \%\) & \(+2\) & +1 & + & + & + & + \\
\hline 2.085 & + 2 & \(+\) & \(1+\) & + & + & \(+\) \\
\hline 2.530 & \(+\) & \(2+\) & \(1+\) & + & + & + \\
\hline 3.64 & + & \(2+\) & \(1+\) & + & \(+\) & \(+\) \\
\hline 3.514 & + & \(2+\) & \(1+\) & \(+\) & & + \\
\hline 4.6036 & + & 2 & \(1+\) & + & + & + \\
\hline 4.5963 & + & 42 & \(1+\) & + & + & + \\
\hline 5.981 & + & \(+2\) & 1+ & + & + & \(+\) \\
\hline 5.544 & \(t:\) & : : : + : 2 & 2: : :1: : & : : : + : : : & : : + : & : : : :+ \\
\hline 6.9898 & + & + & \(2+1\) & + & \(+\) & + \\
\hline 6.5910 & + & & \(2+1\) & + & + & + \\
\hline 7.583 & + & + & \(2+1\) & + & + & \(+\) \\
\hline 7.594 & + & + & \(2+1\) & \(+\) & + & \(+\) \\
\hline 8.6889 & + & + & \(2+1\) & + & + & + \\
\hline 8.5989 & + & + & \(2+1\) & + & + & \(+\) \\
\hline 9.6831 & + & + & 2+1 & + & + & + \\
\hline 9.584 & + & + & \(2+1\) & + & + & + \\
\hline 16.8685 & + & + & 21 & + & + & + \\
\hline 15.8104 & +: : & : : :+: : & : : : +: \(:\) & 1:+: : : & : :+: & : : \({ }^{+}\) \\
\hline 26.149 & \(+\) & \(+\) & + & 21+ & + & + \\
\hline 25.6065 & + & + & + & \(2+1\) & + & + \\
\hline 31.1689 & \(+\) & + & + & +21 & + & + \\
\hline 35.6946 & + & + & \(+\) & \(+21\) & + & + \\
\hline 4.3045 & + & + & + & + 21 & \(+\) & \(+\) \\
\hline 45.9694 & + & + & + & + 21 & + & \(+\) \\
\hline 53.06\% & + & + & + & + 21 & \(1+\) & + \\
\hline 55.644 & + & + & + & + 21 & \(21+\) & + \\
\hline 65.864 & + & + & + & + 2 & \(21+\) & + \\
\hline 65.884 & +: : & : : + : : & : : :t: : & : : \(:\) : : & 21:+: & : : \({ }^{+}\) \\
\hline 71.6414 & + & + & + & + 2 & \(21+\) & + \\
\hline 75.864 & + & + & + & + & 21 & + \\
\hline 85.548 & + & \(+\) & + & + & 21 & + \\
\hline 85.8098 & + & \(+\) & + & + & \(2+1\) & + \\
\hline 97.608 & + & + & + & + & 21 & + \\
\hline 95.6098 & \(+\) & \(+\) & + & + & 21 & + \\
\hline 6, 6 H & + & + & + & + & +21 & + \\
\hline SCALE & NE +68 & .5ABE+49 & .116E+11 & .170E+11 . & .23EE +1 & 1.295E+6 \\
\hline
\end{tabular}
```

ANY CHANGES TO DATA? Y/N:
y
l= EDIT MATRICES 5= ENTER ALL NEM DATA
2= ADD/DELETE EVAL MODEL b= MEN DATA FROM TAPE
3= ADD/DELETE FILTER 7= NO CHANGES
4z SAvE DATA TO TAPE 8= EXIT PROGRAM
ENTER CHOICE: \&
END CGTSUD
6665S MAXIMUM EXECUTIOM FL.
0.678 CP SECONDS EXECUTION TIME.
COMMAND- route,plot1,dczpr,5tzesa,tidzaf,fidzuga

```

\section*{B. 5 CGTSVD Source Listing}

149-c proberan to calculate himimun and maximum simgllar values of 15FEC THE LORP AND INVERSE RETURN DIFFERENCE MATRIX FUHCTIONS FOR A 160СC CGT/PI/KF CONTROLLER. USER SLPPLIES COAPLETE DESIEN ANP TRUTH 179EC MOPEL SPECIFICATIOMS AS WELL AS COMTROLLER/FILTER GAIMS.
185=C OPTIONS IMCLUDE:

219=C 3. ADDITIOM/RENOUAL OF TRUTH MODEL
\(22 J=C\) 4. ADDITIOM/REMOVAL OF KALHAM FILTER
\(235=C\)
24J=C DATE OF LAST REVISIOM: 16 OCT 83
25J=C LIBRARTES USED: LIMPACK, 10:LIPRARY, SNFASD
26J=C

283 aC

\(315=\) COMPLEX PHIDSC(16,16), DOSC 116 , 81 ,SU(16), WORK 116\(), E(16)\)

34f= COHPLEX MAT(16, 161, XFEAIM(16, 16), KXMAT116, 16), KZMAT(16, 8)
35y= COMPLEX MMTE 16,16)
36f= IMTEGER IM, INOM, IMDIS, IR, IP, IM, IMMS, KFLAG, JFLA
370 INTEGER IIEAS,LFLAE, MFLAE, IWFD, IMST, \(1, J, X\)
38Jx INTEGER MFLAG, IWLAG, IIFLAG, I2FLAG
399= REAL WRAD, TSAMP, DELW, HIMC, RESULT(37, 3), PLTVEC(120)
46fz REAL SCRACH \((16,16)\)

42f=C
 445= \(C\)
45J=C FLAG DEFJMITIONS:
46JiC IIFLAE = MEWU CHOICE FOR CHMMES (I MEANS MONE)
47J=C I2FLAG = MENU CHOICE FOR EDITIMG MATRICES
489=C JFLAA = CHOICE OF LOOP FUMCTIOM (1) OR INWERSE RETURW DIFFEREMCE (2)
49ㅇㄷ \(\mathrm{KFLAG}=1 \mathrm{IF}\) KALMAW FILTER IM LOOP © IF LPSFI
sjgec lflag = 1 if loop cut at cowtrol input (2 if at outputi
SII \(=C\) C MFLAG a MOMZERO IF ATTEMPT MDE TO INWERT SIMGLLAR MATRIX
529sC MFLAG = 1 IF TRUTH MODEL USED (9 FOR DESIGM MODCL)
539:C IWFlag = hax munerr of bat simellar values from csvic
54fec

56 12 C
57: KFLAGaf
58fz MFLAGay
598 \(\quad\) MFLAGe9
6 \(\mathrm{CH}=\mathrm{C}\)

62JaC
bJJ=C PLOTS ARE AUTONATICALLY SAVED TO TAPE (PLOTI
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{25}{*}{} & 646-C & \\
\hline & & \\
\hline & 671: 5 & PRIMTE, 'EMTER MANE FOR PLOT OUTPUT FILE: ' \\
\hline & 689\% & READ (8,' (A)')PLOT \\
\hline & 69\% \(=\) & OPEM (4,FILE PPLOT,STATUS='MEM', FORM \(=\) ' FORMATTED', ERRE5) \\
\hline & 7 \(7 \times 10\) & \\
\hline & \(715 \times 6 \mathrm{at}+4\) \(72=\) R & \\
\hline & \(720=\mathrm{C}\)
73 C
THI & S sectiom allows proslen data entry from keyboamd dr tape (data) \\
\hline & 740 C AMD & savime proelen data to tape (save) \\
\hline & 7510¢ & \\
\hline & 760ㄷat+4 & \\
\hline & 779x \(¢\) & \\
\hline & \(78=15\) & PRINTz, 'DATA IWPUT FROM TAPE? Y/W: ' \\
\hline & 79\%z & READ (I,' (A)'IAMSM \\
\hline & \(8015=\) & \\
\hline & 819 \(=\) & 601010 \\
\hline & \(82 \mathrm{f}=\) & End If \\
\hline & 9318 & IF (ANSM.ER. \({ }^{\text {'N'I60 }}\) TO \(18{ }^{\circ}\) \\
\hline & 8440¢ & \\
\hline & 858=C SEC & IIM TO READ PROBLEN DATA FROM TAPE \\
\hline & 86\% \(=\) C & \\
\hline & 87¢ 21 & PRINTH, 'EMTER MAME OF LOCAL FILE: \({ }^{\text {a }}\) \\
\hline & 889\% & READ (\({ }^{\text {, ' }}\) (\(A\))'IDATA \\
\hline & \(89 \mathrm{f}=\) & \\
\hline & \(961=\) & READ (3) KFLAG, MFLAE, IMDH, INDIS, IMAS, IR, IP \\
\hline \multirow[t]{24}{*}{} & 91f= & \\
\hline & 9213: & \\
\hline & 931= & READ (3) (\((\mathbb{C M A T}(1, J), 1 \leq 1,(P), J=1, I\) MAS \\
\hline & 949= & READ \((3)(\) (DVMAT \((1, j), 1 \times 1, I P), j=1, I R)\) \\
\hline & 955\% & READ (3) ((KXMAT (\(1, \mathrm{~J}), 1 \leq 1,1 R 1, d=1,1\) MAS \\
\hline & 96fe & READ (3) (\((X Z M A T(1, d), 1 \leq 1, I R), d=1,[P)\) \\
\hline & 97\% \(=\) & IF (KFLAG.EP. 1 THEM \\
\hline & 989 \(=\) & READ (3) If \\
\hline & 999\% \(=\) & \\
\hline & 1643: & READ (3) ((KFEAIM (\(1, J), \mathrm{J}=1, \mathrm{INOM}), \mathrm{J}=1, \mathrm{IM})\) \\
\hline & 1015z & READ (3) ((KXMMAT (I, J), \(\mathrm{I} 1 \mathrm{l}, \mathrm{IR}), \mathrm{J}=1, \mathrm{INDIS}\)) \\
\hline & 1923= & END IF \\
\hline & 153f= 25 & IF (WFLAG.EQ, 1) THEM \\
\hline & 1944: & READ (3) IMEAS \\
\hline & 1559: & READ (3) ((AMATE (1, J), I \(=1\), INEAS) , J \(\times 1\), IMEAS \()\) \\
\hline & 156/3 & \\
\hline & 107\% & READ (3) ((TDTMAT (I, d), I 21, IMAS) , d 31 , INEAS) \\
\hline & 1089\% & IF (KFLAE.EC.1) THEX \\
\hline & 199\% & \\
\hline & 1109\% & END If \\
\hline & 111\% \(=\) & ELSE \\
\hline & 1124= & IWEASEIMAS \\
\hline & 1130 \(=\) & CALL COPYMT (AMAT, AMATE, IMAS, IMAS) \\
\hline & 114\% \(=\) & CALL COPYMT (8MAT, 異ATE, IMAS, IR) \\
\hline \multirow{3}{*}{\(\because\)} & 115\%= & IF (KFLAG.EP.1) THEN \\
\hline & 1161\% & CALL CIPYMT (MMAT, HMATE, IM, IMAS) \\
\hline & 1170 & END IF . \\
\hline
\end{tabular}

J18fe End IF
119\% REMIMA (3)
12G:3 CLDSE(3)
1215= IF (KFLAG.ER.0) PRINTE,'CURRENT STATUS: WO KALMAM FILTER'
1224= IF(KFLAG.ER.1) PRINTH,'CURRENT STATUS: KAMAM FILTER IN LDOP'
123f: IF (MFLAG.ER.5) PRIMTE,'EvALUATIOM TRUTH MODEL = DESIGM MODEL'
1249: IF (MFLAG.ER.1) PRINTt,'TRUTH MOEEL IN USE FOR EVMLUATION'
1258:C
126foc This section allows cmames to curbent prorlen ata to ae made:
127f=c THE RIDE EETS A BII Bunpy, SINCE we MILL MME TO Jump aroumd
120:3C SOMEMAT TO PICK UP ALL OF THE APPROPRIATE DATA FOA THE PROSLEM 129/5C
13M)= 31 PRIMTf,'AMY CHAMGES TO DATA? Y/N: ;
131A= READ (z,' (A)')AMSM
132fa IF (AMSU.ME.'Y'.AMD.AMSN.ME.'N') 60 TO 30
133: IF (AMSM.EE.'V') 60 TO 289
\(134 \mathrm{f}=\)
135) \(=\)

136fz
137)=

1385= 35
139/:
14! \(=\)
\(141=4\)
142f=
143 \(=\)
144)=

145fz
\(146 \%=\)
147)=

1495=
1499: 45
15ffe
151\%=
152 \(=\)
153\%=
154!z
155\% \(=\)
\(1561=\)
157) \(=\)

158\% \(=\)
1591:
1604:
1610 \(=\)
\(162 f=\)
1631:
164)=

165\%:
166/:
167)=

1689:
1691:
179)
171)=

PRINTE,'1= EDIT MATRICES 5= ENTER ALL MEM DATA'
PRINT: ' \(2=\) ADD/DELETE EVAL MOBEL \(6=\) NEN DATA FROM TAPE'
PRIMT: 'J= ADD/DELETE FILTER 7= MR CHAMGES'
PRINTE,'4= SAVE DATA TO TAPE ge EXIT PROGRAM'
PRINTt,'ENTER CHOICE: "
READt, IIFLAG
IF(IIFLAG.LT.I.OR.IIFLAG.6T.8) 60 TO 35
IF (IIFLAE.ER. I)THEN
PRIMTE, \(1=A\) (DESIEM) \(\quad \theta=K X^{\prime}\)
PRIMTE,'2 \(=\) A (EVALUATIOM) \(\quad 9=K I\),
PRINTE,' \(3=\) TRAMSFORMATION \(\quad 10=H\) (DESIGW)'
PRIMT:'f= 8 (DESIEN) \(\quad 11=\mathrm{H}\) (EVALUATION)'
PRIMTE,'g= (Evallation) \(\quad 12=\) KFEAIN'
PRINT:, \(6=1 \quad 13=\mathrm{KXN}\)
PRIMTE,'7= DY \(\quad 14=\) RETLQR TO MEMU'
PRINTt,'EMTER CNDICE: "
REAEF, I2FLAG
IF (I2FLAS.LT.1.DR.I2FLAG.8T.14) ED TO 45
IF (I2FLAG.ER.1) CALL EDIT (AMAT, IMOH, INDH, SCRACH)
IF (12FLAG.ER.2) THEN
IF (WFLAG.ER. 1) THEN
CALL EDIT (AMATE, JNEAS, INEAS, SCRACH)
ELSE
MFLAGEI
50 TO 135
END IF
END \(1 F\)
IF (I2FLAG.EQ.3) THEN
IF (MFLAG.EQ, 1)THEM
CALL EDITITMTHAT, IMAS, IKEAS, SCRACH)

\section*{ELSE}

MFLAG=!
60 TO 135
END IF
END IF
IF (12FLAB, EQ.4) CALL EDIT (BMAT, IMAS, IR, SCRACH)
IF(I2FLAG.E日.5) THEN
IF (MFLAG.EP.1) THEN

226） 5
2279 93 Primta，＇enter naye of file fir data save：＇
22月1＝READ（＊，＇（A）＇）SAVE
229\％\(=\) OPEN（2，FILE \(2 S A V E, S T A T U S='\) MEW＇，FORMz＇UMFOAMATTED＇，ERR＝96）
2310：MRITE（2）KFLAG，WFLAE，IMAM，IMDIS，IMAS，IR，IP

232＝WRITE（2）（（BMT（I，J），I 1 I，IMAS），J 1 I，IR）

2345＝WRITE（2）（（DYMAT（I，d）， \(1=1, I P), d=1\), IR \()\)
235fs Malte（2）（（KXMAT（ \(1, \mathrm{~J}),[=1,12), \mathrm{Jaj}, \mathrm{IMAS})\)
2364＝WRITE（2）（（K2MAT（I，J），I \(11, I R\) ），J＝1，IP）
237f：IF（KFLAG．EQ． 11 THEN
238j＝MAITE（2）IM

2415s
2426
WRITE（2）（（KXMMAT（I，J），I＝1，IR），J \(=1\) ，IMDIS）
END IF
2430 95 IF（NFLAG．EE．I THEN
244）：MITE（2）IMEAS
245）＝WRITE（2）（（AMATE \(\{1, J), I=1\), INEAS \(), J=1\), IMEAS

247！\(\quad\) CRITE（2）（（TDTMAI（l，J），Ial，IMAS），J \(=1\), IMEAS \()\)
248\％
249）＝
2540 \(=\)
251\％
252f＝ 98
2538＝
2544＝
（2）
253 H ＝ 607035
256f＝C
257J＝C MDAMM IMPUTS FROM KEYBOARO
25月AEC MOTE：IM DYMMICS MATRICES，EMTER DISTMRBANCE STATES LAST 25\％） C
2695－103
261f＝PRINTE，＇IS THERE A KALMAM FILTER IN THE LOOP？Y／N：＇
2626＝READ（F，＇（A）＇IANSM
\(2635=\)
264f＝
2659＝
26693
2674：
2689 \(=\)
269\％
\(2740=115\)
271．s
2729a
273！\(=\)
2749＝
275）＝
276居
277 \(=\)
2788
2791＝
IIFLAG＝

IF IAMSN．NE．＇Y＇．AND．ANSM．ME．＇\({ }^{\prime}\)＇ITHEN
60 TO 180
ELSE IF（ANSW．EP．＇V＇）THEL KFLAS＝1
ELSE
KFLAGCA
END IF
15 PRIMTA，＇UILL THE DESIGM RODEL PLANT RE THE ONE USED TO＇ PRLNTt，＇EVALLATE THE SYSTEN？Y／M：＇
READ（E，＇（A）＇）AMSM
IF IAMSM．WE．＇Y＇．AND．AMSW．NE．＇\({ }^{\prime}\)＇）THEN 80 TO 116
ELSE IF（ANSM．EQ．＇W＇）THEN MFLAG＝1
ELSE
WFLAG＝A
END IF
\(2898=\)
2916=
2924=
203: \(=\)
294/z
2855:
2969 2979 288: \(=\)
2894:
2984 \(=\)
2910=
2929=
293f:
2945
2951:
296fe
297! \(=\)
298)=1

2999:
3!99=
3616=
3520
3131:
344)=

3950 \(=\)
3069= 140
3979:
38185
3991:
3195 \(=\)
3110=
\(312=15\)
3139:
314\%
31515=
\(316 \%=16\)
3179=
3185
319\%
3224 \(=\)
321)=

322 \(=\)
323: \(=\)
3249=
32518
3265 \(=\)
327: \(=210\)
3289=
3299= 225
330\% \(=\)
\(3319=230\)
\(332 \mathrm{~g}=\)
3331×C

PRIMTE,'ENTER MUMRER OF AUGMENTED DESIGN STATES:
READS, INDM
PRINTA,'enter munber of oisturbance states in design model: '
READF, IMDIS
IMAS=IMEH-INDIS
PRINTH,'ENTER MMBER OF COMTROLS: '
READF, IR
124 IF (XFLAG.EQ. 1.OR. MFLAG.EE.8) THEN
PRIMT: 'ENTER AUCHENTED DESJEN DYMAMICS MATRIX:
CALL CREAD (AMMT, INDM, IMMM, SCRACH)
PRIMTE,'ENTER EESIEN CONTROL MATRIX: "
CALL CREAD (EMAT, IMAS, IR, SCRACH)
1F (MFLAG. ER. 3 I THEN
CALL COPYMT (AMAT, AMATE, IMAS, IMAS)
CALL COPYHT (BMAT, BMATE, IMAS, IR) IMEASIIMAS
EMD IF
END IF
13. IF (MFLAG.EP.1)THEM

PRIMTE,'ENTER MUHBER OF SYSTEM STATES IM EYALUATION'
PRIMTE,'DYMAMICS MATRIX: '
READE, IMEAS
PRIMTE,'ENTER EVALUATION DYMAMICS MATAIX: '
CALL CREAB (AMATE, IMEAS, IMEAS, SCRACH)
PRIMTE,' ENTER EVRLUATION COMTROL MATRIX: '
CALL CREAD (BMATE, INEAS, IR, SCRACH)
PRIMT:,'EWTER TRAMSFQRMATIOM MATRIX--EVALUATIOM TO' PRIMTA, 'DESIEM MODEL DIMENSIOWS (SYSTEM STATES DNY Y): ' CALL CREAD (TDTMAT, IMAS, IMEAS, SCRACH)
END IF
IF(1IFLAG.EQ.2.AMD.KFLAG.EP.1) 60 TO 250
60 TO \((44,33)\) IIFLAG
153 PRIMTE,'ENTER MMOER OF OUTPUTS: '
READE, IP
PRIMTA, 'ENTER OUTPUT MATRIX:
CALL CREAD (CMAT, IP, INAS, SCRACH)
164 PRINT:,'IS THERE DIRECT INPUT FEEDTHROUGH ? Y/M: '
READ (t, ' (A)' IAMSM
IF (AMSN. ME.'Y'.AND.AMSM. NE.'N') THEN 60 to 16s
ELSE IF (ANSN.ED.'Y')THEN
PRINTA,'EMTER FEED THMOUGH MATRIX: '
CALL CREAD (DYMAT, IP, IR,SCRACH)
ELSE
DO 2SI I=1,IP
\(00215 \mathrm{~J}=1, \mathrm{IR}\)
DYMAT(1, \()=C_{M P L}(0.6,6.6)\)
CONTIME
END IF
PRINTt,' ENTER KX MATRIX: '
CALL CREAD (KXHAT, IR, IMAS, SCRACH)
\(\therefore\)
PRINTt, 'ENTER KI MATRIX: '
CALL CREAD (KZMAT, IR, IP, SCRACH)

334/aC bata that follows is mot needed if the kalman filter is mot present 3351=C
336fe 249 IFIKFLAG.NE.1) 60 TO 30
337: \(=\) PRIMTE, 'ENTER MUHBER OF HEASUREMENTS: ;
338.j= REAOF, IM

339\% \(=\) PRIMT\#,'ENTER H MATRIX FOR DESIGN MDDEL: '
34ㅇ․ CALL CREAD (HMAT, IM, IMOH, SCRACH)
341f= PRIMT*,'EMTER KALMAM FILTER GAIMS: '
3420 \(\quad\) CALL CREAD (KFEAIM, IMBM, IM, SCRACH)
343/= PRIMTt,'ENTER KXN MATRIX: '
344f= CALL CREAD (KXMMAT, IR, INDIS, SCRACH)
345 \(=25\)
IF (MFLAG.EA.1) THEN primit, 'emper h matrix for evallatiom model: ' CALL CREAD (HATATE, IM, JMEAS, SCRACH)
END IF
60 TO (41,35,36) IIFLAG
60 TO 35
3501:
\(3510=\) C

353 \(1=\) C
354FaC END OF INPUT SECTIOM
355/=C MOU BEGIM TO CALCLLATE SIMGILAR VALUES
\(3569=\mathrm{C}\)

358 \(=\) C
359/= 299 PRIMTE,'EMTER SAMPLIMS TIME IMTERUAL: '
36ffl \(\quad\) READE, TSAMP
361fe PRIMT:,'EWTER STARTIMS FRERUEMCY (RADIAMS) AS A PDMER DF 1F: '
362 \(=\) READt, IMST

\(365 f=\quad D 035[=1,16\)
\(3665=\quad\) DO \(295 \mathrm{~J}=1,16\)
3679: \(\quad\) LIDENT \((1,3)=\operatorname{CMPL} \mathrm{X}(0,0,0.6)\)
368F2 299 COMTIME
369: \(=\) 2IEENT (I, I) \(=\) CYPLX(1. \(1,4.0)\)
3799= 389 COMTIMUS
371)= JMFLAG=1

372 \(=\) C
373 fee user may specify simeular value mmarysis of the lodp matrix or the 374/IEC INNERSE RETURN DIFFERENCE mATRIX, WITH THE LOOP CUT AT THE IMPUT 375FEC OR THE OUTPUT.
\(376 \%=6\)

379fe PRINT\#,'ENTER CHOICE E: '
3819= READF, JFLAG
381F IF (JFLAG.LT.1.OR.JFLAG.6T.2) 60 TO 339
3820= 355 PRINTS,'l= LOOP CUT AT CONTROL IWPUT'
3830 P PRINTE,'2z LOOP CUT AT PLANT OUTPUT'
3849: PRINTA,'ENTER CHOICE E: '
385f= READ\&,LFLAG
3869: IF (LFLAG.LT.1.0日.LFLAG.6T.2) 60 TO 356
387 = JF KKFLAG.EP. 11 60 TO 69\%
```

388%=6

```

```

39%4C
391G=C BRamCH TO CALCHLATE SIMGLLAR VALUES WITH NO FILTER
392%=C

```

```

3949=
395%= 4N1 B0 501 l=1,37
3%6%=C
397%=C COMTROLLER CALCLLATIONS
398%=C
399%= l=EXP (CMPLX(S.f,TSAMPYMRAD))
4CM% CLESS=1-1.5
401g= CALL CSMLR (ZLESS,ZLDENT, BNORX,IR,IR)
452%= CALL CMATMM(KInAT,DYMAT, AMDRX,IR,IP,IR)
48J\&= CALL CMATAD (AMORK,BNORK,CNORK,IR, IR)
494f= CALL CHATIM(CNORK,CNORK,IR, DNORK,MFLAG)
405%= IF (MFLAG,ME.B)THEN
466%= PRIMTA,'PRORLEH IS IN COMTROL LAM CALCULATION'
417!= PRIMTE,'N = ',MADD
4%8:= MFLA6=4
499:= 60 T0 30
41%H= END IF
411%=420 ZLESS=-2LESS
412f= CALL CSMIN(ILESS,KXMAT,AMDRK,IR,IMAS)
413%= CALL CMATM (XZMAT, CMAT, 目ORK,IR,IP,IMAS)
414%= CALL CHATSB(AMORK, BNODK,ANORK, IR, IMAS)
415%= CALL CMATML (CMORK, AMDRK, BWORK, IR, IR, IMAS)
416J= CALL COPYMT (BMORK,CMDOK,IR,IMAS)
417f=C
418%[C PLAMT CACLLATIONS AND COWVERSIOM TO DESIGM HODEL STATE DIMENSIOM
419%=C

```

```

421%= S=CuPLX(E.S,maD)
422f= CALL CSME (S,IIDENT,AMDPK,INEAS,IIEASI
423%= CALL CAATSB (AMORK, AMATE,AMORX, IMEAS, INEAS)
424%= CALL CMAIIM(AMDRK, AMORK, IMEAS, DHORK, HFLAG)
425%= IF (MFLAG.ME.S) THEN
426fz PRINTE,'PROREM IS IN PLANT MATRIX'
427:4= PRIMT4,'M = ',MRAD
428:% MFLAEsf
429% 60 TO 30
430%= END IF
431g= 446 IF (INEAS.ME.IMMS) THEN
432%= CALL CMMTMLAMDOR, DMATE,BMOPX,INEAS,IMEAS, IR)
433:= CALL CMATIL (TDTMAT, BNORK, ANDAK,IMAS,IMEAS, IR)
434%z ELSE
435F= CALL CMATML(AMDRX, BMAT,BMORK,IMAS,INAS,IR)
436J= CAML COPYHT (BNORK,ANORK,IMAS,IR)
437!= END IF
4385= CALL CSNOLI2OH, AMDOR, AMORK, IMAS,IR)
43%)=C

```

```

441%=C

```

4425=
443!=
444:3
445\%
4465z
447/:
4485=
449:
4581 \(=\)
451 \(=469\)
4524:
45316
454)=

455t=
4561=
457 =
45813=
4595:
469\% \(=\)
4615
462 \(=\)
4631:
464)=

465\%=
4664=
467: \(=\)
468: \(=\)
\(469=465\)
479\% \(=\)
471!= 475
472f=
473\% \(=\)
474\%
475\%
4769 \(=\)
477\%
478:=
479\%
4893:
\(481=48\)
4824=
483)=
484)=

485f=
4865=
487) \(=\)

489: \(=\)
489/=
49\%12
4916=

IF (LFLAG.EE. 1) THEM
CALL CHATM (CWDOK, AMORX, BMORX, IR, IMAS, IR)
CALL CMATIMIBMDRK, CMORK, IR, DWORK, MFLAG)
IF (MFLAG, NE. ©) THEM
PRIMTE, 'PROGEE IN LOOP MATRIK'
PRINTH,' \(W\) = ', MAAD
MFLAG=1
601030
EMD IF
CALL CMATAD (CNDOK, LIDEMT, AMDRK, IR, IR)
IF (JFLAG.EQ.2) TMEN
CALL CSVAC (AMDRX, 16, IR, IR, SV, E, U, 16, V, 16, MORK, I, IVFO)
E.SE

CALL CSVDC (Bunar, \(16, I R, I R, S V, E, U, 16, V, 16\), WORK, \(1, I N F O)\)
END IF
RESULT(I, 1\()=\) WiAR
RESLLT(I, 2) =L06101CA日S(SV(IMFO+1)))
IF (IWFD. 87. IWFLAG) IWFLAG=IWFO
RESULT(I, J) =LOG1 (CABS(SV(IR)I)
ELSE
CALL CMATML (AMDRX, CNOMK, BMEAX, IMAS, IR, IMAS)
CALL COPYTI (BMDRX, DMAOX, IMNS, IMAS)
CMLL CSVAC (BNOAR, 16, IMAS, IMAS, SV, E, U, 16, V, 16, MORK, 22, IMFO)
CALL CXPOSE (U, AMORK, IMAS, IR)
\(00475 \mathrm{~J}=1,18\)
\(00465 \mathrm{~K}=1\), IR
CMORX \((3, K)=\operatorname{CMPL}(0.1,9.0)\)
CONTIME
CHORX (J, J) asy (J)
COMTIME

IF (WIRAG.ME.S) THEM
PRINTH, 'PROREEH IS IN PSEUCOIWNERSE'
PRINTF,' \(\begin{gathered}\text { a ', WMAD }\end{gathered}\)
minlaget
601030
EN IF
CALL CMATM (CWORX, AMPDK, DNORK, IR,IR, IMAS)
CALL CMATM (V, DMORX, CWORK, IMAS, IR, IMAS)
CALL CMATAD (CWOAK, ZIDEMT, AMDRK, IMAS, IMAS)
IF (JFLAG.Eq.2) TMEM
CALL CSVDC (AMDRK, 16, IMAS, IMAS, SV,E, U, 16, V, 16, MORK, O, INFO)
ELSE
CALL CSUDC (EMORX, 16, IMAS, IMAS, SV, \(E, U, 16, V, 16\), MORK, 1, IMFO)
ENO IF
RESULT (I, \(t\)) = WRAD

IF(IMFO.GT.IWFLAG) IMFLAG=IWFO
RESLK (1,3) =L0618 (CABS (SV (IR)))
END IF
4929 \(=\) C
4938-C increment frequemcy and repeat sineular value calculation
49403 C
495) \(=\)

```

496f= UIMC= (EXP (LOG(1%.t) \&DELN) +1C.5/25.9
497= IF(MRAD.GE.1.5)NRAD=HRAD+WIMC
4995= IF (WAAD.LT.1. ) MRAD=WRAD WINC/1A.
499% 5N4 CONTIMME
50%H= 60 TO 9%%
501%=C

```

```

5%3%=C
584/=C BRAMCH TO CALCULATE SIMELLAR VALUES MITH KALHAN FILTER
545%ac

```

```

5179=C
588%=C
599%=C COMTROLLER CALCLLATIOWS
51M=C

```

```

512%= CALL CMATIN(PHIDSC,PHIDSC,IMBH,DWDRK,MFLAG)
513%= IF(MFLAG.NE.S)TKEM
514J= PRINT*,'PROBLEN IS IN TRAMSITIOM MATRIX'
515%= MFLAG=%
516%= 60 TO 30
517%: END IF
518%= 605 CALL CHATML (BDSC, BMAT, ANDAK,INBM,IMAS,IR)
5190= CALL COPYMT (AMORK, BASC, INDM, IR)
52f:= 610 D0 700 ]=1,37
521:= l=EXP(CMPLX(5.0, TSAMP\#NRAD))
522%: CALL CMATM(KIMAT,CHAT,AMDRK,IR,IP,IMAS)
52Jjz 2LESS=1.f-2
524%= CALL CSWULILLESS, KXMAT,BMORK, IR, INAS)
525%: CALL CMATSB(BNORK,AMDRK,AMORK,IR,IMAS)
526** ILESS=-LLESS
527!= CALL CSMLIZLESS, KXMMAT, PMODX,IR,IMDIS)
5285= DO 620 J=1,IR
529%= DO 615 K=1,IMMS
53%%= CNORK(J,K)=AWDRK(J,X)
5310= 615 CONT1ME
532f
533%
DO 62% K=IMAS+1, INDM
CNOAK(J,K) =SNOAKIN,K-IMAS)
534%= 629 CONTINUE
53SJ= CALL CSMMLIZLESS,ZIOENT, AMORK,IR,IR)
5369= CCLL CMATML (KIMAT,DYMAT, RMORK,IR,IP,IR)
537%= CALL CMATAD (AMORK, OMORK, AMORK,IR,IR)
538%= CALL CMATIN(AMDRK,DWORK,IR,DNORK,MFLAG)
539)= IF (MFLAG.ME.DITHEN
341%
541!
542%
543%
5446
545%=625 COLL CMATML(BMORK,CNORK, AMORK,IR,IR,INDM)
S46f= COLL COPYMT (MMORX, CMPMK,IR, IMOM)
547:= CALL CMATM(BDSC,CNORK,AINRK,INDH,IR,INDH)
5489: CALL CMATML(PHIDSC,AMORK,BMDRK, INDH, INDH, INDH)
5499= CALL CMATM (KFGAIM,MMAT, ANORK, INDH, IM, INDM)

```

5593: CALL CMATSB (AMORK, LIDENT, AMDRK, INDM, IMDH)
5519 CALL CMATSB (AMORK, BMORX, BMORK, INDH, IMDH)
552J= CALL CSMUL (Z, PMIDSC, AMDAK, IMDM, IMAM)
\(553=\quad\) CALL CHATAD IAMORK, BMDRK, BMORK, IMDM, JMBM)
5549:
555\%
556 \({ }^{5}\) =
557:=
558\% \(=\)
559\%:
56ff=
561)= 630

562 \(=\)
5636=
5645=
5655=
CALL CHATIN(BMORK, BMORK, INDH, DMORK, MFLAG)
IF IMFLAG. ME. \({ }^{\text {S I THEN }}\)
PRINT\#,'PROALEM IN COMTRDL lan calcilation'
PRINT: 'M \(=\) ', MAAD
MFLAS=5
601030
END IF
CALL CHATML ICMOOK, BMORX, AMORR, IR, INDM, INAMI
CALL CMATM (AWDRK, KFEAIM, INORK, IR,IMDM, IM)
CALL CMATKLIBMOBK, HAATE, ANDRK, IR, IM, IMEAS)
201F (1.9-EXP (CMPL X (9.5,-TSAMP F WPAD) I)/CNPLX (S.9, WRAD)
CALL CSMLL IZH, AMORK, AMORK, IR, IMOM)
566f=C
567:C Plant calculations
5681=C
569\%= S=CMPLX(S. S, MRAD)

571 E CALL CHATSB (BMDRK, MMATE, BMORK, IMEAS, IMEAS)
5720= CALL CHATIM(BMORK, BMDRK, INEAS, DMRRK, MFLAG)
573f= IF (MFLAG,ME, O) THEN
574 \(=\)
575)=

5760=
5774=
5789=
579:
58 \% PRINT:' PROALEM IM PLAMT CALCNLATIOW' PRINTE,'M = ', MRAD MFLAG=1 60 TO 35
End IF
CALL CMATM (DMORX, MATE, CMORX, IMEAS, INEAS, IR)
CALL COPYHT (CWORK, BMORK, IMEAS, IR)
5815-6
582f=C CUT THE LOOP AND FORM THE FUNCTIOM TO BE PLOTTED
583 \(\%=\) C
584\%
585 =
586\%
5879 \(=\)
5809
589\% \(=\)
59\%4
5910=

593f=
5944= 644
595)=

5961=
5979 \(=\)
5990 \(=\)
5999:
6891)

6810
6029:
6439 \(=\)
IF(LFLAG.E日.1) THEM
CALL CMATM (AMDRX, BWORK, CWORK, IR, IMEAS, IR)
CALL CMATIN(CWOMK, AMDRK, IA, DMORK, MFLAG)
IF (MFLAG. NE. \({ }^{(1) T H E M}\) PRIMTE,'PROBLEN IM LONP FUNCTIGN INVERSIOW' PRIMTE,' \(=\) = ', MMAD MFLAG=\{ 601030
END IF
CALL CMATAD (AMORK, ZIDENT, GWORK,IR, IR)
IF (JFLAG.EQ.2) THEK CALL CSVDC (BWOAK, 16, IR, IR, SV, E, \(V, 16, V, 16\), WORK, 1 ,INFO)
ELSE CALL CSUDC (CWDRK, 16, IR, IR, \(5 V, E, V, 16, V, 16\), MORR \(, 1, I\) IM 0)
END IF
RESULT \((1,1)=\) HRAD

IF (INFO. GT. IWFLAG) IMFLAG=INFO RESULT(I, J) =LOG1O (CABS (SV (IR)))
ELSE

```

    6589= 910 PRINT,'SPECJFY TYPE OF PLOT:
    659%= READ#,IPSC
    660IF IPSC=IPSC-2
    661%= IF(IPSC.GT.1.OR.IPSC.LT.-1) 60 T0 910
    662%= CALL PLOTLPIPLTVEC,37,2, IPSC,1,1,TITLE)
    663^=C

```

```

665%=C
666%=C REPEAT PROGRAM laNTIL USER TERMIMATION
6670=C

```

```

669%=C
6799= IF(INFLAG.NE.0) PRINTt,'POSSIBLE ERRORS...INFO FLAG = ',INFLAG
671!=998 60 TO 30
672%=999 ENDFILE(4)
6739= RENIND(4)
6749= CLOSE(4)
675%=C
676\#\#=[ END OF MAIN PRDGRAM CGTSUD----------------------------------------------
677%=C
678%= END
679%=C

```


```

682=
683%= SUBROUTIME CREAD (A,L,H,AA)
684%=C

```

```

6869=C

```

```

6889=C FROH THE KEYBOARD. THE MATRIX IS THEN CHANGED TO TYPE COMPLEX, AMD
689%=C RETURNED AS A. AA IS A DUMMY REAL ARRAY.
6981=C

```

```

6920=C
6930= COMPLEX A(16,*)
694%= REAL AA(H)
6950= INTEGER 1,N,L,M
6969= PRINT'(' ', 12,1X,"BY',1X,12)',L,M
697% DO 159 I= 1,L
698%= PRINT4,'ENTER ROM',I,': '
6999= READF,(AA(J),J=1,M)
70%= DO Led J=1,n
710= A(I,\)=CMPLX (AA(J),0,0)
7:2J= 16S CONTIME
7030= END
7049:C
765%=C EMD SUBROUTIME CREAD
7069=C
797%=C
708A= SUBROUTINE CMATIM(AA,B,M,A,MFLAG)
769:1=C

```

```

7110*C

```

712月＝C THIS ROUTIME MILL FIND THE INUERSE OF A COMPLEX SQUARE MATRIX OF 7131＝C of DIMENSIOM n．
714FEC AA \(=\) INPUT MATRIX，RETURMED UMHARMED
715J＝C B＝OUTPUT MATRIX
716f＝C A＝A DUMHY ARRAY
7179＝C malabaset io lif matrix IS algoritmmically singular
7189＝C

72419 5
7210＝COMPLEX AA（16， 7\(), A(n, H), B(16, t)\), TMAT
722J＝INTEGER 1，J，K，L，H，MAXP，WFLAG
\(7230=\quad\) MFLA \(5=1\)

725月＝DO \(40 \mathrm{~J}=1\) ，H
\(7260=\quad A(1, J)=A A(1, J)\)
\(727 \mathrm{~g}=\quad \mathrm{B}(\mathrm{I}, \mathrm{J})=\mathrm{CMPL} \times(\mathrm{g} .0,0.0)\)
7289＝ 4 CONTIMUE
729\％\(\quad \quad B(I, 1)=C M P L X(1.5,5.6)\)
739月 59 CONTIMUE

\(732 \mathrm{~F}=\quad\) MAXP＝J
\(733 \mathrm{~F}=\quad \mathrm{DO} 2 \mathrm{C}\) I＝J， M
734f＝IF（CABSIA（I，J））．6T．CABS（A（MAXP，J）））THEN
\(735=\mathrm{MAXPI}\)
7369：EWD IF
7371＝203 CONTIMUE
7389＝－IFICARS（A）MAXP，JI）．LT．1．EE－12）THEN
739：\(=\) PRIMTF，＇SIMGULAR MATRIX IN CMATIN＇
740\％\(=\) MFLAG \(=1\)
7410＝RETURM
742着 ELSE
7439＝DO 399 L \(=1, n\)
744：\(=\quad\) TMAT＝A \((J, L)\)
745月＝\(\quad A(J, L)=A(\) MAXP，L）
746）＝\(\quad A(\) MAXP，\(L)=\) TMAT
747 \(=\quad\) TMAT＝i（J，L）
7489＝
I（J，L）\(=\) B（MAXP，L）
B（HAXP，L）＝TMAT
COATIMUE
7590＝39
\(\begin{array}{ll}751 /= & \text { TMAT }=A(J, J) \\ 7521= & \text { DO } 49121, H\end{array}\)
\(7531=\quad A(J, L)=A(J, L) / T\) MAT
754）＝B（J，L）\(=\) B（J，L）／TMAT
\(7553=401\)
COMTINLE
DO 555 L＝1，H
IF（J－L）453，556，459
7565＝
757）＝
\(7589=450\)
TMATsA（L，J）
759\％：
7613：
\(761 \%=\)
\(7629=54\)
\(7631=553\)
7641：
\(7659=605\)
DO 5AM K 1 ，\(n\)
\(A(L, K)=A(L, K)-A(J, K) \approx T M A T\)
\(B(L, K)=B(L, K)-B(J, K) \& T\) MAT
CONTINUE
continue
END IF
CONTINUE

766 \(=\) END
\(7679=\mathrm{C}\)
7689=C END SUBROUTINE CMATIM
769月= \(C\)
\(7790=\) C
1719= SUBROUTIME CMATHL \((A, B, C, L, H, N)\)
772 \(=\) -

\(7749=\mathrm{C}\)
775月ㄷC THIS ROUTIME MILL MULIIPLY TWO COMPLEX MATRICES
7769=C A=AM L BY H COAPLEX MATRIX

7789=C C=THE L BY M COMPLEX PRODUCT OF A AND B
\(779 \%=\) WOTE: ACTUAL ARGLMENT C MUST DIFFER FROM A AND B
7899= C

7829=С
\(783=\quad\) COHPLEX \(A(16, *), B(16, t) ;(136 ; *)\)
784 = INTEGER I, J, K, L, \(\mathrm{H}, \mathrm{N}\)
7859 = OO 190 \(1=1, L\)
786 = \(\quad\) O \(161 \mathrm{~J}=1, \mathrm{~N}\)
7879: C(I, d) \(=\) CMPL \(X(8.9,9.0)\)
7889: 100 COMTIME
\(7899=00259121, L\)

\(7910=\quad\) DO 251 \(K=1, \mathrm{H}\)
792f= \(C(1, J)=C(1, J)+A(1, K) \in B(K, d)\)
793 \(=\) 29 CONTINUE
7949: END
7959ㄷ
796J=C EMD SUBROUTIME CHATML
797/5C
7989=C
7999: SUBROUTIME CMATAD (A, B, C, L, Hi)
898\% \(=\) C

802f= C
8E3ECC THIS ROUTINE ADOS TWO COMPLEX MATRICES OF DIMENSIOM L BY K
884]aC A AND B ARE THE IMPUTS, C IS THE SUH
895.5C

89715C
898f COMPLEX \(A(16, *), B(16,6), C(16,7)\)
859)= INTEGER I, J,L,M

8101: \(001011=1,1\)
8119= \(\quad 00105 \mathrm{~J}=1, \mathrm{H}\)
\(8129=\quad C(1, J)=A(1, J)+B(1, J)\)
8130: 198 CONTINUE
814 \(=\) END
8151=C
8160=C END SUBROUTIME CAATAD
8171=C
818f=C
8198= SUBROUTINE CMATSB \((A, B, C, L, H)\)

829f＝
821
822faC
823A＝C THIS ROUTIME SUATRACTS COMPLEX MATRIX \＆FROM COMPLEX MATRIX A
824 \(=\) C DIFFEREMCE IS RETURNED IM COMPLEX MATRIX C．
825f＝C ALL THREE MATRICES ARE OF DIMENSION L BY \(n\)
8260 \(=\mathrm{C}\)

828： C C
829\％\(=\) COMPLEX \(A(16, t), B(1 b, t), C(i b, t)\)
8394＝INTEEER I，J，L，N
831f：DO \(189 \mathrm{l}=1, \mathrm{~L}\)
832 \(=\quad\) DO \(159 \mathrm{~J}=1, n\)
\(8331=\quad(11, \mathrm{~J})=A(1, \mathrm{~J})-\mathrm{B}(\mathrm{l}, \mathrm{J})\)
834 \(=14\) CONTIMUE
8359＝
END
8369＝C
8379＝C END SUBROUTIME CMATSB
8389＝C
839 \(=\) C
849\％）SUBROUTIME CSNUL（ \(A, B, C, L, M)\)
8419 \(=\) C

843 \(=\) C
844fic ThIS ROUTIME MULTIPLIES A COMPLEX MATRIX BY A COMPLEX SCALAR
845月＝C \(A=\) THE COMPLEX SCALAR
846 \(=\)＝ \(\mathrm{B}=\) THE COHPLEX MATRIX
8478＝C CE THE COMPLEX PRDOUCT

8490＝C

851）＝C
852 \(=\) COMPLEX \(A, B(16, *), C(16, *)\)
853I＝［NTEGER I，J，L，M
8546＝DO 15［21，L
855 \(=100101 \mathrm{Jx1}, \mathrm{n}\)
8569＝\(\quad C(1, J)=A+B(1, \mathrm{~J})\)
857 \(=198\) CONTINUE
858fe EKD
85915 C
86SFOC END SUBROUTINE CSNUL
\(8619=\) C
862fac
863Iz SUBRDUTINE COPYMT（A，B，N，H）
864／ㄷㄷ

866）＝C
8671＝C THIS ROUTIME COPIES COMPLEX MATRIX A INTO COMPLEX MATRIX B．
868f：C BOTH MATRICES ARE OF DIMENSION \(N\) BY M．
869月解

87195
872 \(=\) COMPLEX A（16，\(+1, B(16, *)\)
873E \(=\) INTEGER I，N，N，M

9829=C \(\chi=\) THE PLOTTIMG VECTOR, DIMENSION MAM
983 \(=\) C

985 \(5=\) C
986本 REAL \(A(H, H), X(M+H)\)
987 = IMTEGER M, \(H, I, J\)
988) \(\quad 00\) 103 Jal,
999) \(\quad 00\) ICS IEI,N
\(994=\quad \quad X(1+(J-1)+N)=A(1, J)\)
9910: 1N COMTIME
992: END
993 \(=1 \times\)
9949-C END SUBROUTIME SETPLT
9995 \(=\) C
996 \(=\) C
9974: SUBROUTIME PLOTLP (A,M,M,IPSC, ISCL,LPTERM,TITLE)
9981-C

19304eC
1CN1OE THIS ROUTIIE MAS ADAPTED FROM R.M. FLOYD'S THESIS TO PRODUCE 1M52J=C PRIMTER PLOTS OF COMPUTED RESULTS.

16A6JOC IPSC \(=-1-->M L\) VARIABEES SCALED TBEETHER (I PLOT)
1047\% \(=\) - -->SCALED TOSETHER AMD SEPARATELY 12 PLOTS)
10cesec \(=+1->\) SCALED SEPARATELY (1 PLOT)
1509\%=C ISCL \(=\)-->PLOT OVER EXACT RMMEE OF VARIABLE

10118-C LPTERM = --PPLOT \(5 S\) CMARNCTERS WIDE

10135-C IITLE \(=\) max OF 5E CMAMACTERS, TYPE CMAMACTER
11149=C

10160aC
1017) REAL YSCA (6), YMIM(6), YPR(11), RISPAC, RMIM, RMAX, YL, YH, XPR, A(6)

1119: REM SCM
151\%
102Ms IUTEEER IL,dP,ITEMP, H1, H2, \(n, N, I C O, I\)
1021)= CYARMCTER TITLESS

1525) IPAPER=5ㄷ(1+LPTERM)

1526J: ISPAC=1 1 IAPAPER
1927) RISPAC=AEAM (ISPAC)

18289: ISPAC=ISPAC+1
1029: IPRTJ=IPAPER+1
103C5: RMIMEA(N+1)
1031S= RHAX=FMIM
1032 \(=25\) © 41 ISC=1, \(n\)
10331: M181SCan+1
10349: YLxA(HI)
10350: YMEY
\begin{tabular}{|c|c|}
\hline 1036\% & \(\mathrm{M} 2=\mathrm{N}+(\) ISC +1\()\) \\
\hline 1137\% \(=\) & DO \(49 \mathrm{~J}=\mathrm{HL}, \mathrm{H2}\) \\
\hline 1038\% & IF (AlJ).LT, YL) THEN \\
\hline 103919 & YLaf(J) \\
\hline 1940\% \(=\) & END IF \\
\hline 194195 & IF (A)(J).GT. YH) THEN \\
\hline 1842 \(=\) & \(\mathrm{YH}=\mathrm{A}(\mathrm{J})\) \\
\hline 16436= & ExD IF \\
\hline 1844) 415 & COWTIME \\
\hline 1449\% \(=\) & If (ML.LT. RUIM) THEN \\
\hline 1046\% \(=\) & Rniln=Y \\
\hline 1847\% & EXP IF \\
\hline 104893 & IF (YH. ET. RHAX) THEM \\
\hline 1849/3: & RMAX \(=\) YH \\
\hline 165\%\% & ENI IF \\
\hline 1551)= & IF (IPSC. 6 E. S) THEN \\
\hline 1052 \(=\) & CALL VARSCL (YL, YH, YSCAL (ISC), RISPAC, ISCL) \\
\hline 1553\% & END IF \\
\hline 1054\% & YHIM (ISC) \(=\mathrm{YL}\) \\
\hline 1055f: 41 & COMTIME \\
\hline 1956)= & If (IPSC.LE.f) THEN \\
\hline 1957\% \(=\) & CALL VARSCL (RMIM, RMAX,SCAL, RISPAC, ISCL) \\
\hline 15589: & END IF \\
\hline 19591: & ICx2-IAPSIIPSCI \\
\hline 1669\% & D0 42 I I \(=1\), ISPAC \\
\hline 1561/5 & OUT(IX) = PLANK \\
\hline 1962 \(=42\) & Comtinue \\
\hline 10638= & DO IR, ICOEI, IC \\
\hline 1664 \(=\) & PRINT' (\({ }^{\text {1 }}\) ', 11 X, A5S \()^{\prime}\), TITLE \\
\hline 10655 \(=\) & MITE (4,' (11X, ASS)')TITLE \\
\hline 1666\% \(=\) & URITE (4,' (AI)') PLAW \\
\hline 1667\% & PaIMT* \\
\hline 15689\% & D 61 I=1, \({ }^{\text {N }}\) \\
\hline 19699\% & \(x P 9=A 11]\) \\
\hline 19719\% & \\
\hline 19711\% & ERID \(=\) COL OM \\
\hline 1572 \({ }^{\text {f }}\) & ELSE \\
\hline 1073)= & GRIDsPLAWK \\
\hline 1674\% \(=\) & EMD IF \\
\hline 1575)= & \\
\hline 1076fe & OUT (IX) =6RID \\
\hline 1977) \(=44\) & comtime \\
\hline 16789: & D0 46 IX=1, ISPAC, 15 \\
\hline 107919 & QUT (IX)=PLUS \\
\hline 18803\% 46 & Cowtime \\
\hline 1981) \(=\) & DO \(55 \mathrm{~J}=1, \mathrm{M}\) \\
\hline 1f82\% \(=\) & IL= [+ din \\
\hline 1893) \(=\) & IF (IPSC. ER. -1) THEN \\
\hline 1684)= & \(J P=\) INT (\((A(I L)-\) PMIN / /SCAL) +1 \\
\hline 16859 \(=\) & ELSE IF (IPSC. EQ. \({ }^{\text {I THEN }}\) \\
\hline 1986/ \(=\) & IPSCT=IPSC+ICO \\
\hline 1697) & IF (IPSCT.EQ. 2) THEN \\
\hline 16889: & \\
\hline 10896 & ELSE \\
\hline
\end{tabular}

1994s
1991)= 1592 \(=\) 1093 \(=\) 15940= 1095)= 5

19969= 1597)= 55 1598)= 149\%)= 116\% \(=\) 110119 1192f: 1103)= 59 11945= 65 11959= 1196/= 1107)= 1188)= 11499: 11186=75 1111\% \(=\) 11121: 11136= 1114/= 1115f: 11160= 1117)= 11181: 1119: \(=\) 1124 \(=\) 1121!= 1122f= \(1123 f=74\) 1124 \(=\) 1125/= 1126/z 1127 \(=\) 11289= 11295=76 1134= 11319z 1132\% \(1133 f=96\) 11341= 109 CONTINUE 1135f= PRIMT'('10)' 1136 \(11=\) END 11379x C 1138fa§ END SUBROUTIME PLOTLP
\(11390=\mathrm{C}\)
\(11401=C\)
11410 SUBRDUTINE VARSCL (XMIM, KMAX, SCALE, RSPACE, ISCL)
11420 \(=\) C

```

1144/=C
IL45F=C THIS IS A SCALIMG ROUTIME THAT SUPPORTS PLOTLP
1146A=C ADAPTED FROM R.H. FLOYD'S THESIS
1147%=C

```

```

1149%=C
115%%= REAL XMIN, MMAX,SCMLE,RSPACE,EXP, MAINT,XMAXT
1151*= INTEEER ISCL,ISCM
1152f= IFIMMAX.ER.INIMOTHEN
1153f= XHIN=.9*MHIN-1S,
1154%= EM0 IF
1155%= SCALE=MAAX-IHIM
11564= IFIISCL.NE.0) TMEN
1157!= EXP=INT(1%.+LOSIO(SCMES)-1M.
1158)= FACTOR=1%.7\#(1.-EXP)
1159%= XMIMT=XMIM\&FACTOR
1169%= XMAXP=XMAX\&FACTOR
1161g= IF (XMAXT.GE.f.) YHEN
KMAXT=XMART+.9
END IF
IF (XHINT.LE.S.)THEN
XHIUT=XHINT-. }
END IF
KHINT=AINT (XHINTI
ISCAL =XHAXT-XMIMT
IF (MOD(ISCAL,5).趹.0)TMEN
ISCAL=1SCAL+5-HDD(ISCAL,5)
END IF
FACTOR=11, \&H(EXP-1.)
XHIM=XHINT\&FACTOR
SCALE=FACTOPaREAL ISCAL)
END IF
1176/= SCALESSCALE/RSPACE
1177:= END
1178%=[
1179%eC END SUBROUTIME VARSCL
1184J=C
11810=6
1182%= SURROUTINE EDIT (EDMAT,M,N,SCRACH)
1183J=C

```

```

11851=C
1186%=C THIS ROUTIME ALLONS THE USER TO EDIT AN I BY M MATRIX EDMAT
1187!=C

```

```

11891=C
119%%= COMPLEX EDMAT(16,5)
1191f= REAL EL,SCRACH(16,8)
1192f= INTEGER H,M,I,J
1193|= CHARACTER ANSU\$1
11944= 15 PRINTE,'LIST CURRENT VALUES? Y/N:'
11959: READ(t,'(A)')ANSN
11960= IF (AMSM.ME.'Y'.AND.AMSM.NE,'N') 60 TO 1%
1197|= IF(AMSM.EQ,'Y') CALL RPOUT(EDMAT,SCRACH,N,N)

```
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{27}{*}{} & 11989\% & Printt, 'enter s,g, (cr> M Wen all chamges have been made' \\
\hline & 1199\% 109 & Print' (' enter row i, coluni i, and matrix elenent- ', \\
\hline & 12604 \(=1\) & \\
\hline & 12010 \(=119\) & READE, I, J, EL \\
\hline & 1292\% & JF(I.GT.S.AMD. I.LE.M. AND.J. \(6 T . S\). AND. J.LE.NI THEN \\
\hline & 12136\% & \\
\hline & 12045: & 60 T0 116 \\
\hline & 12955 \(=\) & ELSE IF (I.EQ. S. AND. J.EQ. () THEN \\
\hline & 1286\% 159 & PRIMTA,'LIST MODIFIED MATRIX? Y/M: ' \\
\hline & 1217\% & \\
\hline & 120893 & IFIAMSM.IE. 'Y'.AND.AMSN.ME. 'W') 60 T0 155 \\
\hline & 12099\% & IF (AMSN.ED.'Y') CALL RPOUT (EDMAT, SCRACH,, ,N) \\
\hline & 121093 209 & PrINTt, 'AIVY MORE CHAMESS TO THIS MATRIX? Y/M: ' \\
\hline & 12115 \({ }^{\text {c }}\) & READ (', \(^{\prime}\) (\(A\))' IMMSM \\
\hline & 12125 & \\
\hline & 1213) \(=\) & IF (AMSU.EE.'Y')60 To 198 \\
\hline & 12148= & If (ANSW.EE. 'W') RETURM \\
\hline & 12150\% & ElSE \\
\hline & 121693 & Printa,'sugscript out of ramge' \\
\hline & 1217) \(=\) & 60 To 190 \\
\hline & 12189\% & End If \\
\hline & 12196 & END \\
\hline & 1220 BEC & \\
\hline & 12210]C Eno & Subrautive edit--- \\
\hline & 12228= \(¢\) & \\
\hline & \(12231=\) C & \\
\hline & 1224) & SUBRPUTIEE CXPOSE (\(A, B, \mathrm{M}, \mathrm{N})\) \\
\hline \multirow[t]{16}{*}{5} & 1225be¢ & \\
\hline & \[
\begin{aligned}
& 12260=c+4=1 \\
& 1227 \Leftrightarrow=C
\end{aligned}
\] & \\
\hline & 122893 C THIS & \\
\hline & 1229]FC THE & \\
\hline & 123010 C & \\
\hline & 12311 \(=\) C\%** & \\
\hline & 12320=¢ & \\
\hline & 1235\% \(=\) & \\
\hline & 123483 & INTEGER I, \(\mathrm{J}, \mathrm{n}, \mathrm{n}\) \\
\hline & 12356 & Do 190 \(1=1, n\) \\
\hline & 12369 \(=\) & D0 109 J \(=1, \mathrm{M}\) \\
\hline & 1237\% & \(B(1, \mathrm{~J})=\mathrm{A}(\mathrm{J}, 1)\) \\
\hline & 1238) \(\times 10\) & comtime \\
\hline & 12390= \(¢\) & \\
\hline & 12491) \(=\) C END & SUERCUTIME CXPOSE ---- \\
\hline & 1241\% \(=\) & ENO \\
\hline
\end{tabular}

\section*{C. ODEACT Software Description and Instructions}

\section*{C. 1 Introduction}

ODEACT is an interactive computer program that was developed to provide the capability to evaluate the controller designs of this study with respect to actuator nonlinearities (specifically saturation, for this research). The purpose of this appendix is to outline the program structure and explain its use. A sample execution and the complete source code listing are included.

ODEACT employs an integration package called "ODE" [42] to simulate the controller time response, with various system truth models, to non-zero initial conditions and command inputs. User options include the choice of one-, three-, or four-state actuator models as defined in Section 4.3; the selection of linear or rate- and position-limited nonlinear actuators; the addition of anti-windup compensation to the control law, as developed in Section 5.7; and variation of plant truth model parameters for the pitch, angle of attack and pitch rate states through redefinition of the appropriate elements of the truth model dynamics matrix.

Unlike CGTSVD, ODEACT is a special purpose program and, in its present form, is only useful for analysis of deterministic CGT/PI controller designs based on the five-state design model for the AFTI F-16 pitch-pointing system, as defined in Section 4.2. While not directly usable for analysis of other designs, ODEACT can serve as a model analysis tool which could easily be adapted to other problems. Because its purpose is so specialized, the structure of ODEACT is extremely simple. As with CGTSVD, sophisticated progamming practices
were clearly unnecessary; the load size for ODEACT is only about 42,000 octal words of memory. The program is written in ANSI standard FORTRAN 77. The source code is explained by numerous comments, and the prompts during execution are sufficient in number and detail to assist the novice user; the additional comments and clarification provided in this appendix will therefore be brief.

\section*{C. 2 ODEACT Program Structure}

ODEACT is entirely self contained except for the use of the subroutine "ODE" [42] which is maintained in the CC6600 library on the CYBER computer. Many of the utility subroutines are simply adaptations of those used in CGTSVD, but using real variables and arithmetic, rather than complex. Also, matrix partitions of larger arrays are not used in the calculations, so row dimensions are passed as arguments to the matrix manipulation routines, eliminating the need to employ the inefficient practice of blocking all matrices with a common row dimension.

The program utilizes the basic design model dynamics description of the AFTI F-16 found in Section 4.2 , except that the state dimension is expanded from 5 to 11 to allow for up to 4 states for each actuator. This means that the trailing edge flap state, which was originally state 5 , becomes state 8 . Since the actuator models and the control input matrix are "hardwired" into the program, this alteration is transparent to the user except when inputting the dynamics matrix (A), the output matrix (ㄷ) and the \(\underline{K}_{x}\) matrix, as discussed in Section C. 3. ODEACT assumes that design parameters will be read in from a previously developed data file at line 670; if this is not the case,
keyboard inputs are made at line 920. In either case, the user is permitted to change any parameters before each simulation run via the "change menu" at line 1440 , and to save each set of parameters to a data file. Once the parameters have been established, the CGT command model is discretized (line 1880), the actuator model and control law options selected (line 2000), and initial conditions and input command are specified (line 2310). In ODEACT's current form, initial conditions may be applied to any state, but command inputs are limited to step inputs to the pitch angle. This can be changed by modifying the code beginning at line 2430. The plotted outputs are the pitch angle (represented by the symbol "1"), flight path angle (symbol "2"), and actuator states (symbol "3" for the horizontal tail, symbol "4" for the trailing edge flap); this can be changed by modifying the code beginning at line 2510 .

The control input for each sample period is calculated by a call to subroutine "GCSTAR" at line 2670; "GCSTAR" propagates the command model to define the new command model states, and then calculates the controls as defined in (II-25). The control inputs are modified for anti-windup compensation, as defined in Section 5.7, if that option is selected. "ODE" is then called to propagate the system states over the ensuing sample period. There are three alternative calling statements for "ODE," differing only in the first argument, which is the argument that specifies the subroutine containing the selected actuator model. "F1" contains the single-state model, "F3" the three-state, and "F4" the four-state model. Each of these subroutines contains the set of ordinary differential equations that make up the appropriate dynamics description for overall controlled system which "ODE" calls repeatedly
during the conduct of the integration. If nonlinear actuators are specified by the user, then rate and position limits are applied to the actuators in these subroutines. For example, if the actuator position state reaches a positive position limit, then its derivative is constrained to be non-positive. If the state derivative reaches a positive rate limit, then the next derivative is constrained to be non-positive.

The plotted output for each simulation includes 51 points, regardless of the duration of the response. The time interval between the points is an integer multiple of the sample period chosen to ensure that the specified response duration is covered by the plot. When "ODE" completes the integration over a sample period, the states are stored in the "OUT" array if the current time is a plot interval, and then the next sample period is begun with a call to "GCSTAR".

When the simulation is completed, the user is given the option to change any design parameters or exit the program through the code at line 2970. When the single-state actuator model is used, 1 second of simulation uses about 0.5 seconds of processor time on the CYBER computer. When the four-state actuator model is used, 2 to 3 seconds of processor time is required for a 1 second simulation, the longer time being applicable when actuator nonlinearities are simulated. These times apply to the program as listed in Section C.5; the amount of processor time used can be reduced by increasing the values of the error tolerances specified in lines 2480 and 2490. In fact, the tolerances listed, which were the ones used for this study, were without doubt much smaller than necessary to achieve good accuracy in the simulation. Tests with both error tolerances set at 0.001 did not

\begin{abstract}
visibly affect the plotted resuits, and provided a \(50 \%\) savings in processor time with the four-state actuator model. Applicable error tolerance selection for "ODE" is a function of the problem being run, and is discussed at length in [42].
\end{abstract}

\section*{C. 3 Instructions for Using ODEACT}

Prior to executing ODEACT, any previously developed data files that are to be used must be attached. File usage by ODEACT is the same as that outlined in Appendix B for CGTSVD, with the exception that ODEACT will overwrite a previously established data file. Data files for ODEACT are not compatible with those for CGTSVD or CGTPIV. The library containing "ODE" (CC6600 for the Aeronautical Systems Division CYBER computer) must also be attached and declared as a library.

Once the program execution begins, the user need only respond to the program prompts. Only the non-zero elements of any matrix need to be entered. The only "trick" to using the program is to remember, when inputting the \(A, \underline{C}\) or \(\underset{X}{X}\) matrices (which go by the same names in the program output), that what would normally be the elements of the fifth column (elements tied to the trailing edge flap state) must be entered as the eighth column, regardless of which actuator model is selected. Only the first 3 rows of the \(A\) matrix are entered, since the rest represent actuator states already represented in program subroutines. The CGT command model is represented in the "AM", "BM" and "CM" matrices. The command model used must be of dimension 4 or less; internally, the program uses a four-state representation in any case, and unused elements of these arrays are simply set to zero and do not affect the results.

All of the time-response plots displayed at the terminal are also written to a plot file named by the user. Upon exit from the program, the plot file can be saved or routed to a printer to obtain a "hard" copy of the results.

\section*{C. 4 Sample Program Execution}

The pages that follow contain a short sample run of ODEACT on the CYBER computer. The object code is the file named ODEACT and the data file ODESRB is the data for the SR-B CGT/PI design described in Section 5.2. The computer output is displayed in upper case and the non-numeric user responses in lower case text. The message concerning a "NON-FATAL LOADER ERRORS" is not significant to ODEACT, but pertains to an unused portion of the CC6600 library.

\section*{COMMAND- attach,odesrb}

PFN 15
ODESRB
AT CY= 81 SN=AFIT
COMMAND- attach,odeact
```

PFN IS
ODEACT
AT CY= 001 SN=AFIT

```

COMARAN- attach, ce66e9, id=library, sn=asd
PFN IS
CC669
AT \(\mathrm{CY}=999 \mathrm{SN}=\mathrm{ASD}\)
COMAND- library, ce6698
COMMAND- odeact
ENTER MAME FOR PLOT OUTPUT FILE: plot2
mON-FATAL LCADER ERRORS -
NOH-EXISTENT LIBRARY GIVEN - Sysid
DATA TO BE READ FROM FILE? Y/N: y
ENTER MAME OF dATA FILE: odesrb
ANY CHANGES TO MATRICES? Y/M: n
WRITE DATA TO OUTPUT FILE? Y/N: n
ENTER SAMPLIMG TIME: . 02
PHI MATRIX FOR COMMAND MODEL:
.9448E+8S 3.
3. .9848E+10 10 .
0.
6.
\(.18005+11\)
0.
\(f\).
6.
J.
.1SNE + II
BD MATRIX FOR COMMAND MODEL:
\(.9516 E-91\) 0. \(\Leftrightarrow\). 9.
. \(.9516 E-51\) \(\xlongequal{ }\) 0.
8. \(t\). \(\dagger\) 0.
\(\theta\) \(t\). 6. 0.
I= FOUR STATE \(2=\) THEEE STATE 3z SIMELE STATEselect actuator moael: 3
APPLY ACTUATDR RATE/POSITION LIMITS? Y/K: y
EMPLDY AMII-WINDEP COMPENSATION? Y/W: y
EMTER DESIRED RESPOMSE DURATIOM: 2
ENTER IMITIAL CONDITIONS FOR STATES, IF NON-1ERO:
ENTER I AMD X(I); g, TO TERMIMATE: 1,1
B, 1
Enter step input macnitude for pitch anele:
ENTER IITLE FOR PLOT
sacple plot for sr-b design

SAMPLE PLOT FOR SR-Z DESIEN

hore tine response runs with this model? y/n: n
CHAMGE MATRICES? Y/M: n
HORE RUMS UITH MEY MODEL? Y/N: n
END DDEACT
4225 maxlmun ExECuTIOM FL. 1.198 CP SECOMDS EXECUTIOM TIME.

COMMAND- route, plot2,dczpr, stzesa,tidzaf,fidsuge

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Progran odeact} \\
\hline \multicolumn{2}{|l|}{119=C} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{130=C} \\
\hline \multicolumn{2}{|l|}{149=[SImllation progran to test a pl rebulator of cgipl Pitch-pointimg} \\
\hline \multicolumn{2}{|l|}{15\%=C COWTROLLER BASED ON A 5-STATE MODEL OF THE AFTI F-16. OPTIONS} \\
\hline \multicolumn{2}{|l|}{16fac IMClube modificailon of dymanics matrix, use of 1-, 3- OR 4-state} \\
\hline \multicolumn{2}{|l|}{176=C ACTUATDR MODELS, APPLICATION OF RATE/POSITIDN LIMITS On ACTUATOAS,} \\
\hline \multicolumn{2}{|l|}{185aC Ami Enploynent of AMTI-MINDUP COMPEMSATIDN. USER SUPPLIES DYMAMICS} \\
\hline \multicolumn{2}{|l|}{19\%=C MATRIX, OUTPUT MATRIX, CET COmmAND MODEL AND CONTROLLER GAIMS MITH} \\
\hline \multicolumn{2}{|l|}{203EC THE FOLLOMING CHANGES:} \\
\hline 2110¢ & 1. ouny the first three rous of the dymanics matrix are entered \\
\hline 220=C & 2. COLUMM 5 OF THE MORMAL DYMAHICS MATRIX IS ENTERED AS COLUnM 8 \\
\hline 23\% \(=\) C & 3. COLUm 5 Of THE MORMAL KX MATRIX IS ENTERED AS COLUM 8 \\
\hline \multicolumn{2}{|l|}{249xC THE COMmAND MODEL must be of dimension \& OR Less} \\
\hline \multicolumn{2}{|l|}{2518.} \\
\hline \multicolumn{2}{|l|}{26fsC DATE OF LAST REVISION: 6 SEP 03} \\
\hline \multicolumn{2}{|l|}{279\% LIERARIES USED: CC66JI, ID=LIRRARY, SN=ASD} \\
\hline \multicolumn{2}{|l|}{28f=6} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{30f= \(¢\)} \\
\hline \(310=\) & \\
\hline 320 \(=\) & REAL AMORK \((4,4), \operatorname{BMORK}(4,4), \operatorname{CMORK}(4,4), \operatorname{AM}(4,4), \mathrm{BH}(4,4)\) \\
\hline 33f= & REAL RELERR,ABSERR, DSIM \\
\hline 3415 & INTEGER I, J,K, IFLAG, JFLAG, JCFLAE, KFLAG, WFLAG, IMDRK (5) , IDSIM \\
\hline 356= & COMMEN/MATRIX/A 3,11\(), \mathrm{C}(4,11), \mathrm{KX}(2,11), \mathrm{KZ}(2,4), \mathrm{KXH}(2,4)\), \\
\hline 36f= & \(1 \mathrm{KXU}(2,4), \mathrm{PHI}(4,4), \mathrm{PHIMT}(4,4), \mathrm{CH}(4,4)\) \\
\hline 37)= & \\
\hline 3815 & \\
\hline 39/m & EXTERMAL F1,F3,F4 \\
\hline 4/150 & CHARACTER ANSM*!,TITLE*S3, DATAF6, SAVE*6, PLOT*6 \\
\hline \multicolumn{2}{|l|}{410x} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{431= 5} \\
\hline \multicolumn{2}{|l|}{44F=C FLAE DEFIMITIOMS:} \\
\hline 4518. & IFLAG = INSTRUCTIOMS FOR DDE INTEGRATION SUBROUTIME; INPUT MUST \\
\hline 46156 & be megative, dutput dther than 2 Sigmals integration \\
\hline 4710¢ & PRORLENS. \\
\hline 489=¢ & JFLAG = MATRIX MODIFICATION IN PROGRESS IF MON-LERO \\
\hline 4915c & JCFLAG = CURRENT COMmAND MODEL HAS BEEN DISCRETIIED IF JCFLAGz] \\
\hline 59\%=¢ & KFLAG = CHOICE OF ACTUATOR MODEL TO BE USED \\
\hline 510¢C & MFLAG = RATE/POSITIOM LIMITS APPLIED IF MFLAGz1 \\
\hline 52\%=C & MFLAG = AMTI-WINDUP COMPEMSATION EMPLOYED IF WFLAGz! \\
\hline \multicolumn{2}{|l|}{531) \(¢\)} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{551ac} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{575-¢} \\
\hline \multicolumn{2}{|l|}{58fac InPut section. dait may be read in from an 'Old' file, AND SAved} \\
\hline \multicolumn{2}{|l|}{599xC TO Any other file. only one set of data per file nane, plots are} \\
\hline \multicolumn{2}{|l|}{69f=C Automatically saved in a 'Plot file'.} \\
\hline \multicolumn{2}{|l|}{610\% \({ }^{\text {c }}\)} \\
\hline \multicolumn{2}{|l|}{} \\
\hline & \\
\hline
\end{tabular}
```

64%= IS PRINTE,'ENTER NANE FDR PLOT OUTPUT FILE: '
650= READ(*,'(A)')PLOT
66!\mp@code{OPEN(4,FILE=PLOT,STATUS='MEW',FORME'FORMATTED',ERR=10)}
67!=25 PRINTE,'DATA 1O BE READ FROM FILE? Y/N:'
685= READ(\#,' (A)')ANSM
699z IF(AMSM.NE,'Y'.AND.AMSN.NE,'N') 60 TO 20
710= IF(AMSN.EE.'W') 60 TO 35
710= JCFLAG=|
720: PRIMTz,'EMTER MAME OF DATA FILE:'
73f= READ(4,' (A)'IDATA
74|= OPEN(2,FILE=DATA,STATUS='OLD',FORM='UNFORMATTED',ERR=29)
75!= READ(2)(|A(1,J), J=1,3),Jx1,11)
764= READ (2)(1C(I, J), I=1,4),J =1,11)
77!= READ(2)(IKX(1,J), I=1,2), j=1,11)
789= READ(2)({K2(1,J), I=1,2),J=1,4)
799= READ (2)((KXU(I,N), I=1,2),J=1,4)
80f= READ(2) ((KXH(I,J), I= {,2), J=1,4)
81!= READ (2) (|AM(1, N), I= 1,4), J=1,4)
82j= READ (2) ((B\#\# (I, J), I =1,4), J=1,4)
83= READ (2) ({CM(1, J), I=1,4),J=1,4)
845= REWIMD 12)
85%= CLOSE(2)
86%= 60 TO 140
870=C
88%=C FOR KEYBOARD IMPUT, OMY MON-ZERO MATRIX ELEMENTS ARE REQUIRED.
89%=C MO MOM-IERO ENTRIES SNBLLD BE RABE FOR COLUmWS 5,6,7,9,10 OR 11
9%/=E OF A OR KX, BUT MO PROTECTIOM PRONIDED MEAINST DOINS SO.
910=C
920=30 D0 54 [x1,3
93|= D0 50 J=1,11
940= A(I,\)={.9
95%= 5% CONTIMES
96%= DO 64 [=1,11
970= 00 60 J=1,2
XX(J,J)=f.1
COHTIMUE
00 64 K=1,4
C(K,I)=$.f
102g= of CONTIMUE
103%= DO 66 Ial,2
104J= DO 66 J=1,4
105f= Kl(I,J)sm,j
1060= KXU(I,J)=$.5
107%=
150;9= 66 CONTINES
109%= DO 75 [ 1],4
11%= DO 7S J=1,4
111\#= AM(I,J)=5
112|= 晤(I,d)=|
113\&=
114%=75 CONTIME
115%= JFLAG=1
1160= 72 PRIMT*,'ENTER DYMAMICS MATAIX:
1179= CALL EDIT(A,3,11)

```

1189: IF(JFLAE.ME.j) 60 TO 145 1199: 76 PRINT\&,'ENTER OUTPUT MATRIX:
120 \(=\) CALL EDIT (C, 1,11)
1210= IF(JFLAG.WE. 1) 6010 14
122f= 78 PRIMTE,'EMTER KX MATRIX:
123j= CALL EDJTIKX,2,11)
1246= IF(JFLAG.NE.s) 60 TO 149
1250= 85 PRIMTE,'ENTER KI MATRIX: ;
126 \(=\) CALL EDIT (KZ \(2,2,41\)
127): IF(JFLAG.NE.0) 60 TO 143

1284= 82 PRINTt,'ENTER KXH MATRIX: '
12\%) CALL EDIT (KXH,2,4)
1JSH= IF(JFLAG.ME.j) ED TO 141
131J= 84 PRINTE,'ENTER KXU MATRIX: '
132 \(=\) CALL EDITIKXU, 2,4)
13J@= IF(JFLAG.ME.5) 60 TO 146
134é 86 PRINT:, 'ENTER MODEL DYMANICS MATRIX: '
1359: JCFLAG=
1361: CALL EDIT(AM,4,4)
137): IF!JFLA6.ME. 1160 TO 143

138\%= 88 PRINT:, 'guter model CONTROL hatrix: '
139) \(=\) JCFLAGE

1403: CALL EDIT(M,4,4)
1415= IF(JFLAG.WE.6) 60 TO 145
142 \(=9\) PRINT\#,'ENTER MODEL OUTPUT MATRIX: '
143f= CALL EDIT(CM,4,4)
144: 14 PRIMTf,'AMY CHANGES TO MATRICES? Y/N:
145f= READ (F,' (A)'IAMSN
1469z IF (AMSW.ME,'Y'.AND.AWSW.ME.'N') 60 TO 145
147: \(=142\) IF (ANSM.En.'Y') THEN
1489=
1499:
\(1501=\)
1519 \(=\)
1521: \(=\)
153\% \(=\)
154)=
\(1595=151\)

READE, JFLAG 60 TO \((72,76,78,88,82,84,86,88,96)\) JFLAG
ELSE
JFLAG=4
END IF
PRINTt,' WRITE DATA TO QUTPUT FILE? Y/N: ,
READ (H,' (A) ') AMSM
IF (AMSM.NE.'Y'.AMD.AMSM.NE.'N') 60 TO 150
IF (ANSW.EE.'Y') THEN
PRINTE,'ENTER MAME OF OUTPUT FILE: '
READ (t,' (A)' SAME
OPEN(J,FILE \(=\) SAVE, FDRME' MIFORMATTED', ERR=86)
MRITE (3) \((1(A(1, \sqrt{2}), 1=1,3), J=1,1!)\)
MRITE (3) ((C(1, J), \(]=1,4), J=1,11)\)
MRITE(3) (\(1 K X(1, J), 1=1,2), J=1,111\)
WRITE(3) (\((K 2(1, J), I=1,2), J=1,4)\)
WRITE (3) ((KXU(1, J), \(\{=1,2), J=1,4)\)
WRITE (3) (\((K\) Khin \((1, J),\{=1,2), j=1,4)\)
MRITE (3) ((AM(I, J), \(1=1,41, J=1,4)\)
WRITE (3) (\((B \mathrm{~B}(1, J), I=1,4), J \geq 1,4)\)
WRITE (3) ((CM(\(1, \mathrm{~J}), 1=1,4), J=1,4)\)
ENDFILE (3)
\begin{tabular}{|c|c|c|}
\hline & 172］＝ & REMIND（3） \\
\hline \multirow[t]{25}{*}{\(\because\)} & 173\％＝ & CLOSE（3） \\
\hline & 174\％\(=\) & END IF \\
\hline & 1759＝ & \\
\hline & 176介 \(=\) C6t＋4 & \\
\hline & 177） 5 C & \\
\hline & 17890¢ MOU & SET UP CONDITIONS FOR CALLING DDE．ALL IMITIAL CONDITIONS \\
\hline & 179\％＝ARE & IERO LONLESS CHAMGED BY USER INPUT．ASSUMED CGT INPUT \\
\hline & 185\％ \(\mathrm{C}^{\text {c }}\) IS & STEP COMMAMD OM PITCH STATE．PLOTTED OUTPUTS ARE： \\
\hline & 1810］\(¢\) & 1 ＝PITCH AMELE \\
\hline & 182 \(=10\) & 2 ＝FLIGHT PATH AMgle \\
\hline & 18392C & \(3 \times\) HRRIZONTAL TAIL POSITIOM \\
\hline & 1940c & 4 ＝TRAILIMG EDEE FLAP POSITIOM \\
\hline & 1850 \(=\) C & \\
\hline & 1860 \(=\) C15＋4t & \\
\hline & 187 \(=\) C & \\
\hline & 1889 \(=\) & IF（JCFLAG．EP．f）THEN \\
\hline & 189\％\(=\) & PRIMTA，＇ENTER SAMPLIMS TIME：＇ \\
\hline & 199\％ & READE，TSAFP \\
\hline & 1919\％ & CALL DSCRT（AM，4，TSAMP，PHI，PHINT，31，AMDRK，BMORK，CMORK） \\
\hline & 192\％\(=\) & CALL MATML（PHINT，Bn，AMORK，4，4，4） \\
\hline & 193）＝ & CALL COPYMT（AMORK，PHINT，4，4） \\
\hline & 1945＝ & PRINTE，PHI MATRIX FCA COnmand model：＊ \\
\hline & 1959 \(=\) & CALL PPOUT（PHI，4，4） \\
\hline & 1966＝ & PRINTE，＇昭 MATRIX FOR COMMAND MODEL：\({ }^{\text {c }}\) \\
\hline & 197）＝ & CALL RPOUT（PHINT，4，4） \\
\hline \multirow[t]{26}{*}{4} & 1989＝ & JCFLA6s 1 \\
\hline & 199\％） & END If \\
\hline & 2900 \(=152\) & PRIMTE， \(1=\) Foun State \(2=\) ThREE STATE \(3=\) SIMGLE STATE＇ \\
\hline & 2110 & PRIMT\＃，＇SELECT ACTUATOR MODEL：＇ \\
\hline & 292\％ & READE，KFLAE \\
\hline & 263\％\(=\) & IF（KFLAG．6T．3．0R．KFLAG．LT． 11 60 TO 152 \\
\hline & 2149 \(=154\) & PRIMTE，＇APPLY ACTUATOR RATE／POSITION LIMITS？Y／M：＇ \\
\hline & 205\％\(=\) & READ（\＃，＇（ \(A\) ）＇ 1 AMSM \\
\hline & 2865＝ & IF（ANSN．ME．＇Y＇．AMD．ANSW． ME ．＇N＇） 60 TO 154 \\
\hline & 2079 \(=\) & IF（AMSM．EQ．＇Y＇）MFLAG＝1 \\
\hline & 288）\(=\) & IF（ANSU．EQ，＇N＇）MFLAGE \\
\hline & \(2999=156\) & PRIMTA，＇EMPLOY AKTI－WIMDLP COMPENSATIOM？Y／N：＇ \\
\hline & 2164＝ & READ（t，＇（A）＇）ANSM \\
\hline & 2119 & IF（AMSM． ME ．＇Y＇．AND．ANSM．ME．＇W＇） 60 T0 156 \\
\hline & 212］＝ & IF（AMSN．EQ，＇Y＇）MFLAGz1 \\
\hline & \(2136=\) & IF（AMSM．EQ．＇W＇）MFLAG＝1 \\
\hline & 214才 158 & PRINTt，ENTER DESIRED RESPOMSE DURATION：＇ \\
\hline & 215\％ & READF，DSIM \\
\hline & 2165： & IF（DSIM．LT．S．1） 60 TO 529 \\
\hline & 217\％ & IDSIM IMT（DSIM／（51．4＊TSAMP）＋．99） \\
\hline & 2189 168 & 00171 1＝1，11 \\
\hline & 219\％\(=\) & \(X(1)=9.0\) \\
\hline & 2294： & YOLD（I）\(=1.0\) \\
\hline & 221\％\(=178\) & COMTIMUE \\
\hline & 222fa & 10 172 I \(=1,2\) \\
\hline & 223\％ & UQLD（1） 5 \％ 6 \\
\hline \(\because\) & 2249： 172 & comflime \\
\hline & 225\％ & D0 173 I \(=1,4\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 226\% & \\
\hline 227 \({ }^{\text {a }}\) & UCOLD (1) \(=5.9\) \\
\hline 2289 \(=\) & \(\mathrm{XH}(\mathrm{I})=\mathrm{f}_{\text {, }}\) \\
\hline 2299 \(=\) & \\
\hline
\end{tabular}

238: \(=175\) CONTIME
231f: PRIMTE, 'ENTER INITIAL CONDITIONS FOR STATES, IF MON-IERD: '
232f= 189 PRIMT: 'ENTER I AND X(I); ©, TO TERMINATE:
233F= 198 REABE,I,EL
234f= IF(I.LE,II.AND.I.GE.1) THEN
235f= \(\quad X(I)=E L\)
236\% \(=\) SO TO 199
237\% \(=\)
238\%=
2396=
240 \(=\)
2410m
2420 \(=\)
\(243=2\)
244\%
245f=
246\%
247)=

2489:
249\% \(=\)
25\%
2510z
252.13

253f=
254)=

255\% \(=\)
256\%
257/:
2589=
259)=

268/5
2610 \(=\)
2628=
2631=
264) \(=\)

265\% \(=\)
2660 \(=\)
\(2679=\)
2684=
2694=
2701: 25
2711:
272f
273f= 268
274)=
275)=

276 \(=\quad X H O L D(J)=X H(J)\)
277) 262

2799= IF (XFLAG.EQ.1) THEN
279)= CALL ODE (F4, II, X, T, TOUT, RELERR,ABSERR,IFLAG, WORK, IWORK)
\begin{tabular}{|c|c|}
\hline 28943 & ELSE IFIKFLAG.EP. 2) THEN \\
\hline 2810 & CALL ODE (FJ, \(11, X, \mathrm{~T}\), TOUT, RELERR, ABSERR, IFLAG, MORK, IWORK) \\
\hline 282\% \(=\) & ELSE \\
\hline 2830 \(=\) & CALL ODE (F1, 11, X, T, TOUT,RELERR, ABSERR, IFLAG, WORK, IMORK) \\
\hline 284\% \(=\) & END IF \\
\hline 2859 \(=\) & TsTOUT \\
\hline 286 \(=\) & IF (IFLAG. NE, 2) THEN \\
\hline 287/= & PRINT'(' IFLAG \(=\) ', 121', IFLAG \\
\hline 2889 \(=\) & ELSE \\
\hline 289\% \(=\) & 1FLA6=-2 \\
\hline 29\%\% & END IF \\
\hline 291\% \(=304\) & CONTIMUE \\
\hline 292\% \(=\) & CALL SETPLTIOUT,51,5,PLTVEC) \\
\hline 2930 \(=\) & \\
\hline 2948 \(=\) & PRINT: \\
\hline 295\% \(=\) & READ (z,' (A)')TITLE \\
\hline 2969= & CALL PLOTLP (PLTVEC, \(51,4,1,1,1\), ITTLE) \\
\hline 297\% \(=529\) & PRINT, 'MARE IIME RESPONSE RUNS WITH THIS MODEL? Y/M: ' \\
\hline 298\% \(=\) & READ (*, ' (A)')ANSW \\
\hline 2999\% & IF (ANSM. ME.'Y'.AND.AMSW. ME.'N') 60 TO 520 \\
\hline 30912 & IFIANSW.EQ.'Y') 60 TO 152 \\
\hline 31192 525 & PRINTt,' CHAMGE MATRICES? Y/M: ' \\
\hline 38219 & READ (\({ }^{\text {, ', (}}\) (\()^{\prime}\) 'IANSW \\
\hline 3136= & IF (ANSW. ME.'Y'.AMD. AMSW. NE.'N') 60 T0 525 \\
\hline 344\% & IF \AMSN.ER.'Y') 6070142 \\
\hline 3850 535 & PRINTt, 'MRRE RUNS MITH MEM HODEL? Y/M: ' \\
\hline 3969 & READ (E,' (A)')ANSM \\
\hline 3075 & \\
\hline 3089\% & IF (AMSU.EE. 'Y') 60 TO 2 (\\
\hline 3898= & EXDFILE (4) \\
\hline 3100= & REMINE (4) \\
\hline 3119 & CLOSE (4) \\
\hline 31215 & END \\
\hline \multicolumn{2}{|l|}{3138ㄷ} \\
\hline \multicolumn{2}{|l|}{} \\
\hline 3150] 6 & \\
\hline 3169 5 C & \\
\hline 3170 & SUAROUTIME F4(T, \(X\), DX) \\
\hline 3188=C & \\
\hline 319\%e6titit & \\
\hline \multicolumn{2}{|l|}{3293-C} \\
\hline \multicolumn{2}{|l|}{321)=C THIS IS THE SET OF FIRST ORDER ODE That define fhe four-state} \\
\hline \multicolumn{2}{|l|}{322¢aC ACTUATOR mODEL. RATE AND POSITION LIMITS INCLUDED IF mFlagzl.} \\
\hline \multicolumn{2}{|l|}{32390¢} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{\(325 \mathrm{f}=\mathrm{C}\)} \\
\hline 3260 & REAL \(\mathrm{T}, \mathrm{X}(11), \mathrm{DX}(11)\) \\
\hline 3279 \(=\) & COMMON/matal \(/\) /A(3, 11\(), C(4,11), \mathrm{KX}(2,11), \mathrm{Kl}(2,4), \mathrm{KXH}(2,4)\), \\
\hline 3289= 1 & 1 KXU(2,4\(),\) PHI \((4,4)\), PHINT (4,4\(),\) CM \((4,4)\) \\
\hline 3291: & COMMON/CONTRL/UNEW (2), UQLD (2), UCAD (4), UCOLD (4), XOLD (11), \\
\hline 339]= 1 & \(1 \times \mathrm{MOLD}(4), \mathrm{XH}(4)\), MFLAG \\
\hline 3319: & DX \((1)=A(1,3)+X(3)\) \\
\hline 3329 \(=\) & \(D X(2)=A(2,1)+X(1)+A(2,2) \geq X(2)+A(2,3) \pm X(3)+A(2,4)+X(4)+A(2,8) \leqslant X(8)\) \\
\hline 3339: & DX \((3)=A(3,2) \leqslant X(2)+A(3,3) \div X(3)+A(3,4) * X(4)+A(3,8) \pm X(8)\) \\
\hline
\end{tabular}

```

4421: C
443 : $=$ C
444f SUBROUTINE GCSTAR(X,MFLAG)
4451= C

```

```

447)= C
448J=C SUBROUTINE TO CALCULATE THE COMTROLS AT EACH SAMPLE TIME.

```

```

4519-C

```

```

452 $=$ =
453f: REAL X(11), DEL (11), DEL2(11)
4549: INTEEER NTLAS
455: $=$ COMOM/MATRIX/A( 3,11$), C(4,11), K X(2,11), K Z(2,4), K X H(2,4)$,
456f= $\quad(\operatorname{KXU}(2,4), \operatorname{PHI}(4,4), \operatorname{PHINT}(4,4), \mathrm{CH}(4,4)$
457/F COMNOM/COMTRL/UNEW(2), UOLD (2), UCHD (4), UCOLD (4), XOLD (11),
4581= $1 \times$ MHLD (4), XH(4), MFLAS
459\%= CALL MATML (PHI, XHELD, XH, $4,4,1$ )
4601= CALL MATM IPHIMT,UCHD, DEL, 4,4,1)
461\%= CALL MATAD (XH, DEL, XH,4,1)
462f= CALL MATSA (X, XOLD,DEL, 11, 1)
4631= CALL MATM (KX, DEL, DEL $2,2,11,1$ )
464\%= CALL MATSPIURLD, BEL2, UNEN, 2,1 )
465)= CALL MATSB (XH, XnMLD, DEL, 4, 1)
$466 \%$ CALL MATM, $1 K X A$, DEL, DEL $2,2,4,1)$
4679 CALL MATAD (UNEN, DEL2, UNEX,2,1)
4689= CALL MAISP (UCHD,UCOLD, DEL,4,1)
469/= CALL MATHL (KXU, BEL, BEL2,2,4,1)

```

```

471 $=$ CALL MATML (CH, XHOLD, DEL, 4,4,1)
4729= CALL MATM (C, XOLD, DEL $2,4,11,1$ )
473!z CALL MATSB(DEL, DEL2, DEL, 4,1)
474)= CALL MATMLKL, DEL, DEL2,2,4,1)
475)= CALL MATAD (LNEN, DEL.2,UNEM,2,1)
4769= IF (MFLAG.EQ.1) THEN
4770: IF (INEM(1).6T.75.5-2.fax(4)) UNEM(1)=75.f-2.8tX(4)

```



```

4819= IF (UNEW(1). 6T. 3.6+K(4)) UNEM(1) $=3.6+X(4)$
482g= IF (UNEW(1).LT. $-3.6+X(4))$ UNEW(1) $=-3.6+X(4)$
483 $=$ IF (UNEW(2).6T.3.12+X(8)) UNEW(2) $=3$ 3. $12+X(8)$
484f= IF (LNEM(2).LT. $-3.12+X(8))$ LINEN $(2)=-3.12+X(8)$
485f: END IF
4869= RETURN
487): END
4889=C
489/=C END SUBROUTINE GCSTAR
4919 $=$ C
4910=
492f: SURROUTIME RPOUT ( $A, N, N$ )
49350

```

``` 4959=C
```

4969=C THIS ROUTIME PRINTS OUT A REAL MATRIX A
4974xC

4991=C
5ASO= REAL A(H,N)
5010= INTEGER $1, J, N, N$
5J2F= DO 2M I $=1, H$
553j= PRIMT' (' $\cdot, 5(E 11.4,3 X))^{\prime},(A(1, N), J=1, N)$
594) PRIMT:

555\% 264 CONTIME
516f= END
5971=C
598fac End Subroutiae RPOUT
599f=
519\%ㄷ
5110= SUBROUTIME SETPLI (A, N, n, X)
512 fx [

514f=C
515\%=C THIS ROUTIME COWERTS A REAL MATRIX OF DIMEMSIOM M BY M INTO A
$5160=\mathrm{C}$ VECTOR THAT IS COMPATIBLE MITH R.H. FLOYD'S PRINTER PLOTTIMG
5179=C ROUTIME, PLOTLP. THE IMPUT MATRIX IS A.
5189x $M=$ ROM DIMENSIOM OF A, THE MMREE OF POINTS TO BE PLOTTED $519 \%=C=$ COLUM DINENSION DF A, THE NUMBER OF FUNCTIONS TO BE PLOTTED +1 52GI=C $x=$ THE PLOTTIMG VECTOR, DIMENSIOM NAH 5219= 6
$5221=$ CH2
5231=C
524f= REAL $A(M, H), X(N+H)$
525f= IMTEEER M, M, I, J
526\% $=00103 \mathrm{~J}=1, \mathrm{H}$
527) $=$ DO 10 $1 \times 1, N$ $5289=\quad X(I+(J-1)+N)=A(I, J)$
52918 105 COMTIME
5399\% END
531 $=$ =

533月ㄷ
534fer
535f= SUBROUTIME PLOTLP (A, N, H, IPSC, ISCL, LPTERM, TITLE)
536\% 5

538\%ㄷ
539fot THIS ROUTIME MAS ADAPTED FROM R.M. FLOYD'S THESIS TO PRODUCE
S4KOE PRINTER PLOTS OF COMPUTED RESUTS.
541f-C A= VECTOR OF DATA, CONUERTED FROM MATRIX FORM BY SUBROUTIME SETPLT
542AsC $N=$ MUHBER OF POIMTS (IMDEPENDENT VARIABLE) TO BE PLOTTED
543f=C he munger of fuictions (dependent variables) TO be plotted
544)=C IPSC $=-1-->A L L$ VARIABLES SCALED TOGETHER (I PLOT)

545fec = -->SCaLED TOGETHER AND SEPARATELY 12 PLOTS)
546\%=C $=+1-->S C A L E D$ SEPARATELY (I PLOTI
547f=C ISCL = -->PLOT OVER EXACT RAMGE OF VARIABLE
5489ㄷ +1-->PLOT WITH EYEM SCALIMG
549月ㄷ LPTERM $=$--XPLOT 51 CHARACTERS MIDE

559月＝C $\quad+1-->P L O T$ 103 CHARACTERS WIDE
551 © $=$ TITLE $=$ MAX OF 5 CHARACTERS，TYPE CHARACTER
552 $=$＝

554fac
555：$=$ REAL YSCAL（6），YMIN（6），YPR（11），RISPAC，RMIN，RMAX，YL，YH，XPR，A（t）
556f＝REAL SCAL
557）＝INTEEER IPLIMK（b），IPSC，ISCL，LPTERM，IPAPER，ISPAC，IPRTI，ISC，J，IC，IX

559／＝CHAMACTER IITLEBSI

$5611=$
562f＝
563f＝
564
565f＝
566）$=$
567\％＝
5689\％
5691：
5590
579月 25 DO 41 ISC＝1，M
$5710=\quad \mathrm{HI}=15 \mathrm{CN}+1$
572 $=\quad \mathrm{YLaA}(\mathrm{HI})$
573 $=\quad \mathrm{YH}=\mathrm{YL}$

5751＝
5769 $=$
577）＝
5789：
57\％）
589\％
581居
$582 \%=4$
583 $=$
5845：
595）＝
586f＝
5879：
588）＝
589\％
5945
5910：
592f：
5931： 41
5945
5959＝
5969 $=$
597）＝
5989＝
5991： 68AF＝ 42
6019：
6524：
$6031=$

DATA SYBBCL（3），SMBEL（4），SYMBCL（5），SYMBOL（6）／＇3＇；＇4＇，＇5＇；＇6＇／

ISPAC＝1GEIPAPER
RISPAC＝REAL（ISPAC）
ISPAC $=$ ISPAC +1
［PRT］$=$ IPAPER +1
RMI $N=A(H+1)$
RMAX $=$ RUIM
$Y H=Y$ Y
$H 2=N E(1 S C+1)$
$0040 \mathrm{JaH1,H2}$
IF（Ald）．LT．YL）TMEN

YLIA（S）

END IF
IF（A（J）．GT，YH）THEN
$Y H=A(J)$
END IF
CONTIME
JFIYL．LT．RMIMITMEN RMINEYL
END IF
IF（YH．GT．RMAR）THEN $\operatorname{RMAX}_{\mathrm{M}}^{2}=\mathrm{YH}$
EMD IF
IF（IPSC．BE．©）THEN CALL VARSCL（YL，YM，YSCAL（ISC），RISPAC，ISCL）
END IF
Yinin（ISC）$=Y L$
CONTIME
IF（1PSC．LE．0）THEN
CALL VARSCL（RHIM，RMAX，SCAL，RISPAC，ISCL）
END IF
1C＝2－IABS（IPSC）
DO 42 IK＝1，ISPAC
OUT（IX）＝ BL $_{\text {LANM }}$
CONTIMUE
$00104,1 C O=1, I C$
PRINT＇（＇1＂，11X，A55）＇，IITLE
GRITE（4，＇$(11 X$, ASS $)$＇）TITLE

```
6940= WRITE(4,'(A1)')BLANK
6050=
6469=
6070=
6489=
6491:
610%=
6110=
612f=
613!=
614!=
615%=44
6169=
617%=
6181= 46
619%=
62%%=
621%=
622%=
623!z
624f=
625%=
626%=
627%
6281=
629%ع
6301=
631%=
632f=
633{= 53
634/=
635f=55
636f=
637%=
638%=
639/=
6480=
6410= 59
6420= 6f
6431=
644%=
645%=
646%=
647)=
648%=75
649%=
65M%=
651%=
652J=
653%z
654%=
655%=
6564=
657%3
```

$6940=$ 6.950= 6469= 6979= 6489= 6911: 6109= 6115z 612f= 6135= 6141= 615y= 44 6169= 617: $=$ 6189= 46 6195= 626\% $=$ 621\% $=$ 622f= 623 $=$ 624f= 625)= $626 \%=$ 627)= 62818 62915 $6319=$
$6315=$ 632 $=$ $6331=55$ 634] $=$ 635f= 55 636 = 637)= 6389: 639\% $=$ 6481: $6419=59$ $6420=60$ $643 \mathrm{f}=$ 6441=
645)=

6469 $=$
647)=

6481= 75
649):

6599=
6510=
65213
653\%
6549=
$6559=$
$6564=$
657\%

```
WRITE(4,' (AI)') BLANK
PRINT:
DO 61 I \(=1, N\)
XPR=A(I)
IF (MOD (I, 10).ER.9) THEN ERIDsCOLON
ELSE
```



```
END IF
DO 44 I \(\mathrm{X}=2,15 P A C, 2\) OUT (IX) \(=\) GRID
COMTIME
DO 46 IX \(=1\), ISPAC, 15 OUT(IX) =FLUS
COWTIME
DO \(55 \mathrm{~J}=1, \mathrm{H}\)
\(I L=I+J+N\)
IF (IPSC.EP. - I) THEM
\(J P=I N T((A(I L)-R M I M) / S C A L)+1\)
ELSE IF(IPSC.EQ.j)THEN
IPSCTsIPSC+ICO
IF (IPSCT. EL. 2) THEN
\(J P=1 M 7((A)(I L)-Y H I M(J)) / Y S C A L(J))+1\)
ELSE
JPIINT( (A(IL)-RMIN)/SCAL)+1
ENI IF
ELSE
JP=INTI(A(LL)-YHIM(J)I/YSCAL(J))+1
END IF
OUT (JP)=SYMBQL(J)
IBLIK (J) \(£ . J P\)
COMTIMUE
PRINT'(' ', FI1.4, 6X, 101A1)', XPR, (OUT(IX), IX \(=1\), ISPAC
MaITE \(4, '\) (FII. \(4,6 X, 1\) IAAI)') XPR, (OUT (IXI, IX \(=1\), ISPAC)
\(0059 \mathrm{Jal}, \mathrm{M}\)
ITEMP=1期积(J)
OUT (ITEMP) =BLAMK
continue
COntIME
IFIIPSC, NE.1)THEN
IF (IPSCT. WE.2) THEM
YPR (1) \(=\) RHIM
DO 71 I \(=1\), IPAPER
YPR( \(\{+1)=Y P R(1)+19\), SSCAL
CONTIMUS
PRINT'("s SCME *,IIEIS.J)', (YPR(1),I \(=1\), IPRTI)
MRITEI4,' (AI)') BLAMX
WRITE (4,'(" SCALE \(\quad, 11 E 18.3)\) ')(YPR(I),I \(=1\), IPRTI)
MRITE 4 ,' (Al)') BLAMK
WRITE (4,' (AL)'IBLANK
END [F
END IF
IF (IPSC, ER. 1. OR. IPSCT.ER.2) THEN
0076 15Ca1, 1
```

```
658)= YPR(1)=MMIN(ISC)
6594= DO 74 I=1,IPAPER
669%=
661!= 74
662%z
663/z
664f= WRITE(4,'(A1)') BLANX
665%= MMITEI4,'(" SCALE ",A1,1X,LIEIS,3)'ISYKBOL(ISC),
666%= 1(YPR(IX),IX=1,IPRTI)
667%= 76 COMTINES
6680: EMS IF
66%%z DO 9% [SCa1,56-N
674% MaITE (4,'(AI)')BLAMK
671f= 9% CONTIME
672%= 165 CONTIMUE
673!= PMINT'('1")
674%= END
675/=C
676%=C ENO SUBROUTIME PLOTLP
677%=C
678%=C
67%% SUSROUTINE VARSCL (XHIN,XHAX,SCALE,RSPACE,ISCL)
60%%=C
```



```
682%=C
683%=C THIS IS A SCMIME ROUTIME THAT SUPPORTS PLOTLP
684%=C ADAPTED FROM R.h. FLOYD'S THSSIS
685%=C
```



```
687%=C
680%= REAL XMIN,XMAX,SCALE,RSPACE, EXP, XMINT, XMAXT
689%= INTEEER ISCL,ISCML
69%%= IFIXMAX.ER.XHIN)THEW
691J= KnIN=.9*MNIN-1%.
692%= END IF
6930= SCALE=XMAX-MMIN
694%= IFIISCL,NE.6)TMEN
6951=
696%=
697%=
698%=
6991:
79%%
711%
7621=
713:=
704%=
7054:
716%=
7470=
748%=
799%:
71%%=
7119=
    EXP=1MT(1M.+L0B19(SCME)I-1M.
    FACTOR=1N. F#(1, -EXP)
    XMIMT=XHIN*FACTOR
    XMAXT=XMAX_FACTOR
    IF (XHAXT.GE.G.) THEM
        KMAXT=\MMRT+.9
    END IF
    IF (XNINT.LE.S.ITHEM
        XHIMTsXHIMT-.9
    Em IF
    MHINT=AINT(XHSMT)
    ISCM =XMAXT-XHIMT
    IF (MOS(ISCA,5) ./E.0) THEM
        ISCAL=ISCM_+5-mOD(ISCNL,5)
    EmP IF
    FACTOR=10.*3(EXP-1.)
    MHIN=MHINT&FACTOR
```


766/ㄷC BzAM \mid | BY N MATRIX 2
7679=C C=THE L BY N PRODUCT OF A AMD B
7689=C MOTE: ACTUAL ARGUMENT C WUST DIFFER FROM A AND 8
76918 C

771 $9=$ C
772f= REAL A(L, M), B(H,N),C(L,N)
773f: INTEGER I, J, K, L, M, N
774)= DO 15 $[=1, L$
775)= \quad DO $159 \mathrm{~J}=1, \mathrm{M}$
$776{ }^{\circ}=\quad \quad$ ($\left.1, \mathrm{~d}\right)=\mathrm{f} .1$
777 $=104$ CONTIMLE

7799: DO 249 Jzi, M
7894= $\quad 00268 \mathrm{~K}=1, \mathrm{H}$
781: $\quad C(1, J)=C(I, J)+A(I, K) * B(K, J)$
782f=29 COMTINUE
783 $=$ END
$784=$ =
785E=C END SUBROUTIME MATHL
786 $=$ C
7875-C

7891: C

7919=C
792f=C THIS ROUTIME ADDS TMO REAL MATRICES OF DIMEMSIOM L EY y
793FIC A AND B ARE THE INPUTS, C IS THE SUM
7945e

$796=\mathrm{C}$
797) REAL $A(L, H), B(L, M), C(L, H)$

79月)= INTEGER $\mathrm{I}, \mathrm{J}, \mathrm{L}, \mathrm{M}$
799) $=$ DO 10 I $21, L$

8SH) \quad DO $143 \mathrm{~J}=1, \mathrm{M}$
8919: $\quad C(1, j)=A(1, J)+B(1,3)$
892 $=105$ CONTINE
803 $=$ END
894 $=$ C
855F=C ENA SUBROUTILE MATAD
B96f0
84710C
8cals SURROUTIIE MATSB(A, $B, C, L, M)$
8991=C
 8119=6
812f=C THIS ROUTINE SUBTRACTS REAL MATRIX I FRRM REAL MATRIX A
813J=C DIFFEREMCE IS RETURMED IM REAL mATRIX C.
814SaC MLL THREE MATAICES ARE OF DIMEWSIOM L OY M
8150=C

817 =C
8189: PEAL $A(L, H), B(L, H), C(L, H)$
819f= IMTEGER I,J,L,

```
8240= DO 190 I= \,L
821%= DO 160 Jx1,M
8229= C(I,J)=A(I,J)-B(I,J)
8230= 15% CONTIMUE
8249= END
825%=C
8269*C EMD SuBROUTINE MATSB
827!=C
828%=C
829)= SumOUTIME SMUL (A,B,C,L,M)
83M=5
```



```
832f=C
833%=C THIS ROUTIME mLTIPLIES A REAL HATRIX BY A REAL SCALAR
834f=C A= THE SCALAR
035|aC B= THE MATRIX
836fac C= THE PRODLCT
8370-C B AND C AME OF DIMENSION L BY H
8381=C
```



```
84%JxC
841g= REAL A,B(L,H),C(L,H)
842J= INTEGER 1,J,L,M
843= DO 1M lal,L
044%= DO 1EP Je1,n
845/= C(I,J)=A:B (I,J)
846f= 106 CONTINUE
847= ENO
8489=C
849%=C END SUBROUTIME SNUL
85%%=C
851%=C
852|= SUBRDUTIME COPYMT (A,8,N,H)
853%=C
```



```
855%*¢
856f*C THIS ROUTIME COPIES A REAL MATRIX A INTO REAL MATRIX B.
857/=C BOTH MATRICES ARE OF DIMENSIOM M BY M.
858%=C
```



```
86%1=C
861%= REAL A(M,H),B(n,N)
862f= INTEGER 1,J,N,M
863% DO 1N Isl,N
B64%= DO 1NS J&1,M
865)= \(I,J)=A(I,J)
866F= IM CONTIMUE
867%= ENO
868%=C
869%=C END SUPROUTIME COPYHT
875%aC
871%c
872)= SUDROUTIIE DSCRT (A,H, TSAMP,PHI,PHINT,M, TP,TIDENT,CMORK)
87300C
```


875 $1 \times$ C
876\%eC This ROUTIME APPROXInATES THE STATE TRANSITION MATRIX AND ITS 877 EC INTEERAL FBR A TIME INMARIANT LINEAR SYSTEM AS A MATRIX EXPOMENTIAL 878:=C DVER A SMALL SAMPLE PERIOD. RESLLTS RETURIED IN REAL MATRICES. 879 $=$ C $A=$ SYSTEY DYMAMICS MATRIX, TYPE REAL

881 $=$ C TSAMP = SAMPLING PERIOO
882foc PHIs STATE TRAMSITIOM MATRIX, TYPE REAL
883/ㄷC PHIMT= APPROXIMATE INTEERAL OF PHI, TYPE REAL-
884)=C hz MMBEER OF TERMS USED IN EXPOMENTLAL EXPAMSIOM

885joc Tp, TIDENT AMD CMORK ARE DUNYY ARRAYS
886 $=$ =

89815C
$889 \% \quad$ REAL $A(N, W)$, PHINT $(M, N), P H I(M, N), T I D E W T(M, N), T P(M, N)$
8981) R REAL CWOOX (W, W)

8918= REAL TSAMP,RIJ
8923: INTEGER I,J,H,N

8949: DO LM $\mathrm{J}=1, \mathrm{~N}$
895f: TIDEMT $(1, J)=0.6$
896f $=189$ CONTINLE
897 $=\quad$ TIDENT (I, I $)=1.9$
898) 243 COMTINE

899: $=$ CALL SMLL (TSAMP,TIDENT, PHIMT, H, N N
9HAE CALL COPYHT (PHINT, TP, H,N)
915 $=$ CALL SMLL STSAMP, $A, P H L, H, N$)

913 $=\quad$ CALL MATHL (TP, PHI, CNORK, $\mathrm{N}, \mathrm{H}, \mathrm{N}$)
984f= CALL COPMIT(CWORK, TP,N,N)
$995 f=\quad$ RIJ $=1.5 /$ REAL $(1+1)$
986/3 \quad CALL SMUL (RIJ, TP, TP, N, N)
9975 $=$ CALL MATAD(PHIMT,TP, PHIMT, M,N)
9895= 310 COMTINUE
989f= CALL MATML (A,PHINT, TP, M, M, N $)$
9101: CCALL MATAD(TIDENT,TP,PHI, M, M)
911 Cc
912A=C ENE SUBROUTIME DSCRT
$913 \mathrm{~F}=\mathrm{C}$
9145 EnO

D. Modified CGT/PI/KF Design Software

D. 1 Introduction

This appendix discusses the CGT/PI/KF design software that was used in this study. The program was originally written by Capt R. M. Floyd [16]. It was modified by Lt A. Moseley [34] to provide an interface with additional performance evaluation software and to incorporate the ability to use implicit model-following. Further modifications were made prior to and during this study to enhance the implicit model-following design capability, and to incorporate a minor correction to the original code that was suggested by Capt Floyd [17]. The resulting version has been referred to in this thesis as CGTPIV. The need for an additional correction to the code was discovered after the design work of this study had been completed [17]. Appendix E fully documents that error, how it was corrected, and its impact on the results of this study. That correction has been added, for completeness, to the source listing in Section D.4.

Extensive programming and usage guides for the earlier Floyd and Moseley versions of the program were provided in [16,34]: specifically, Volume 2 of each. Since familiarity with these works is really a prerequisite for intelligent use of the software, the information therein is not repeated here. Only changes made for this study are covered in this appendix.

D. 2 Program Changes

All of the changes made to the original program written by Capt Floyd [16] are annotated on the source listing in Section D.4. The

Abstract

first correction suggested by Capt Floyd [17] is enclosed in a dashed-line box, and includes lines 9970 through 10010. The correction deals with choice of matrix manipulation routines which could, in some circumstances, affect the correct development of the cross-weighting terms of the discrete-time state weighting matrix for the regulator. The second correction suggested by Capt Floyd is similarly annotated at lines 10435 and 10440, and is explained in Appendix E. The rest of the dashed-line boxes throughout the listing are changes made by Lt Moseley, not all of which were documented in his thesis [34]. The section of code starting at line 27050 , and proceeding through the end of the listing, was added by Lt Moseley.

The rest of the changes to the original code were made as a result of this thesis effort, and are annotated on the listing by solid-line boxes. In the version of the program developed by Lt Moseley, implicit model-following could only be used in regulator design immediately after the step during which a CGT was designed. There was apparently no reason for this other than expediency in ensuring that implicit model-following was not attempted without a command model having been established. The changes marked at line $3810,3930-4080,4860,4890$, $6450,6580,8790,9060,9320,9460-9480,10970$ and 28170 , as well as the deletions in subroutines "SCMD" and "IMPLEX" were all made to remove this restriction. The "IMPLIC" flag is initialized in line 3810 to indicate that implicit model-following has not yet been selected for the current design run. Once the regulator design option is selected, the code at line 3930 offers the implicit model-following option. Acceptance of the option sets "IMPLIC" to 1 and branches to subroutine "SETUP" to allow the definition or redefinition of the command model

for use as the implicit regulator command model. The changes to "SETUP" at lines 4860 and 4890 allow for a value of 4 for the flag "ITYPE", which is used to tell subroutine "SCMD" that changes to the command model are to be made, but that a CGT design is not being pursued, as shown at lines 6450 and 6580. Initialization of the "NEWCM" flag, for which a value of 1 signifies a change to the command model, has been moved from SCMD to line 10970 to ensure that subsequent CGT designs implement the most recently defined command model. The changes at lines 8790,9060 and 9320 add "IMPLIC" as a calling argument to the regulator design subroutines. The changes at line 9460 ensure that "IMPLEX" is only called when implicit model-following is being pursued, since the function that it would have performed under other circumstances is now being performed at line 3930 ; for the same reason, "IMPLIC" has been removed as a calling argument at line 28170, and the previously mentioned deletions to "IMPLEX" made.

The changes in subroutine "RSYS" (changes at lines 21520 and 21690-21700 as well as the deletion) correct a rather serious error in the implicit model-following code. Without the corrections, a change to the command model dynamics matrix or design model control matrix could only affect the variables used to calculate the implicit regulator weighting matrices, $\hat{\underline{Q}}_{I}, \hat{\underline{S}}_{I}$ and $\hat{\underline{R}}_{I}$ of ($A-45$), if the model that was changed had not previously been written to the SAVE file. In CGTPIV, all model dynamics and control matrices are discretized immediately after they are defined, and the continuous-time matrices are overwritten to save storage space. Development of the implicit state weighting matrix through (A-45) requires the use of the command model dynamics matrix and the continuous-time design model control

Abstract

matrix. When the program was modified to incorporate implicit model-following, storage for these matrices was allocated, but the program steps which altered the values in the arrays after model redefinition were bypassed if the model that had been redefined had already been written to the SAVE file during the current program run. When the required steps were bypassed, no indication was given the user that the changes had not had an effect on the regulator design, other than getting the wrong answer.

The changes at lines 28760-28870 simply allow the user to review the \hat{Q}_{I} matrix after the implicit quadratic weights (\underline{Q}_{I} and \underline{R}_{I} matrices) have been entered. In case the distribution of state weights is not what the designer wants, the option to change the \underline{Q}_{I} and \underline{R}_{I} matrices is offered prior to completing the regulator design.

An interactively executable load module for CGTPIV can be achieved using the segmentation job control file listed in Section D.5. With the changes made for this study, the program requires just over 65,000 octal words of memory for execution.

D. 3 Using the Modified Software

Preparation for executing CGTPIV is exactly as outlined in the instructions of $[16,34]$. The only change as far as the user is concerned is that more design flexibility is available during execution. The modified code allows the user to employ implicit model-following for all regulator designs without requiring that a CGT design be conducted. An implicit model-following regulator can thus be designed by iteratively changing either the quadratic weightings or the regulator command model, or both. There is still only one "command
model" in memory at any given time. During the CGT design and evaluation process, it functions as a CGT command model. During regulator designs, it functions as a regulator command model. Since the regulator design model is only used to define the constant gains for the regulator, the functions are distinct. At each entry into the CGT or implicit model-following regulator design path, the option is offered to change the command model, so the models used for the two design functions need not be the same.

A sample execution of the program follows. The load module is the file CGTPIV. The DATA file contains the design model for the AFTI F-16 used in this study, and a two-state command model, as in (V-4) through (V-6), in which $P=5$. The sample is short, showing only the ways in which CGTPIV differs from previous versions. The software correction in lines 10435 and 10440, documented in Appendix E, was incorporated prior to the sample run, so the results are correct.

COMMAND- attach,d52dat
PFN IS
D52dat
AT CY= SAI SN=AFIT
COMMAND- Copy,d52dat,data
COMAMD- attach, cgtpir
PFN IS
CETPIV
AT CY=001 SN=AFIT
COMMAND- cgtpiv
CGTPIF * +
PRDGRAM TO DESIGN A COMMAND GENERATOR TRACKER
USING A REGULATOR WITH PROPORTIONAL PLUS IMTEGRAL CONTROL and a kalman filier for staie estimation.

* * : CGTPIF : $\#$:

DATE : 11/52/83
TIME : 16.59.57.

ENTER SAMPLE PERIOD FOR DIGITAL CONTROLLER 7.02
READ DESIGN mODEL fROM 'data' file (Y OR w) $>y$
modify hatrix elements (Y OR M) in
MRITE DESIGN mODEL TO 'SAVE' FILE (Y OR M) in
POLES OF DESIGN MATRIX

1.3466988E-93	+d	1
1.29797blEtg	+J	1
-3.6664228E+ ${ }^{\text {d }}$	+ 11 f.	1
-2. 1sescher +1	+J 1.	$)$
-2.99H1GAESES	+31)

CONTROLLER DESIGN (Y OR N) Ny
DESIGN REE/PI (Y OR N) $>y$
IMCORPORATE IMPLICIT MODEL (Y OR N) Jy
read command model from 'data' file (y or w) jy
modify matrix elenents (y OR w) in
write command model to 'save' file (Y or m) in
poles of command matrix

```
-5.GMNHANE+99 +J1 %. )
-5. MACHME+AS +JI E. )
```

enter meights om inplicit dutput derivatives: 2 EITER I AND ©N(I, I)--(9/ MHEN COAPLETE) 1,1
2,1
$1 /$
ENTER WEIEHTS ON IMPLICIT COMTROL MAENITUDES: 2
 2,1
0
LIST QIH matrix tó terminal (y or n) iy
DIH MATRIX

55.81	-16.58	5.93\%	. 8952	1.475
-16.53	11.89	-1.9898E-62	-. 5997	-. 9735
5.939	-1.98965-52	1.101	1.9749E-83	1.77905-63
. 8952	-. 5997	1.9740E-93	3.2941E-12	5.2895E-92
1.475	-. 9735		5.2865E-92	8.7123E-62

CHAMGE IMPLICIT MEIBHTS (Y OR N) Tn
aI matrix
1.654
1.999

RI MATRIX
1.350
1.899
enter meights om dutput deviations: 2
ENTER I AND QM(I,I)--(II/ MHEN COMPLETE) >//
ENTER WEIGHTS ON COMTROL HAGMITUDES: 2
ENTER I AND DM(I, I) -(IS/ MHEN COMPLETE) M/
emter meights on control rates: 2

2,19
91

Y MATRIX
1.
f.

Un MATRIX
0.
f.

MODIFY ELEMENTS OF ' \boldsymbol{X} ' MATRIX (Y OR N) 7 I

UR MATRIX
13.01
18.80

KX MATRIX

-34.85	14.54	-1.956	1.429	.1587
53.58	-57.87	.1482	.1515	.7372

$K 2$ MATRIX

-.8226	-.7776
-2.847	2.221

COMTROLLER EVALUATIOM MRT TRUTH MODEL (Y OR W) in
PQLES OF REEPI MATRIX

-1.2512981E+61	+J (1.2946895E+\$1)
-1.2512981E+ ${ }^{\text {d }}$ (+J(-1.2946895E+31)
-2.6646129E+69	+J 1 ¢.)
-5.9448375E+49	+J1
-2.569979AE+ 11	+J1 \%. 1
-1.8573699E+91	+J $6.6542629 E-311$
-1.8173619E+61	+J(-6.6542129E-31)

ENTER STATE AND IC VALUE (IS/ TERMIMATES): 5 > $9 /$
2 PLOTS OF 5 VARIABLES MAY BE PRINTED AT THE TERMIMAL -- SPECIFY MOMBER FOR EACH (N1, H2) XII
moRE TIME RESPOWSE RUMS (Y OR W) in
CONTROLER DESIEN (Y OR N) In
filter design (y or w) in
End design runs (Y or w) >y
reg/pi gains mritten to 'save' file
PROGRAM EXECUTIOM STOP
STOP
6651e9 Maximum ExECuTIOM FL.
9.791 CP SECOMDS EXECuTJOM TJME.

	64\% $=$	$N D(1)=8$
\therefore	659=	$N D(2)=2$
\because	66\% ${ }^{\text {a }}$	$N D(3)=2$
	679=	$N D(4)=3$
	681=	$\mathrm{ND}(5)=1$
	69\% $=$	$N D(6)=1$
	74\%	MD(7) $=1$
	7192	RETURM
	721-C END	Subroutime dend
	73\%	END
	74fe	SUPROUTIME DSMM ($A, B, E X, G, Q, C, D Y, E Y, H, H M, R, A M, E M, 04)$
	7515=	DIMENSIO $A(8,8), B(8,2), C(2,8), 6(8), D Y(2,2), H(3,8), R(3,3)$
	7693	DATA ERAVTY, DEETRS,PL/32.174,.61745329,3.1415927/
	771)=	CALL ACDATAILEVEL, VT, ALT, ALPMA, IA, 2AD, 20, IU, 2DE, 2DF,
	78f= 1	1 PMA, PMAD, PME, PNU, PMDE, PMDF, XA, XAD, XI, XU, XDE, XDF,
	79\%= 2	2 TE, DLX, 日SPAN)
	$818=10$	ALPHAR=PEGTRD*ALPHA
	810	USIVT+COS (ALPHAR)
	$82 \mathrm{f}=$	W=YT4SIM (ALPMAR)
	838=	$A(1,3)=1$.
	849\%	A (2,1$)=$-6RAUTY 5 SIM(ALPHAR)/US
	850	$A(2,2)=2.4$
	86) $=$	$A(2,3)=1 .+20$
	87\% $=$	$A(3,2)=P$ M A
	889 $=$	$A(3,3)=P$ W
	89\% $=$	$A(2,7)=2 A$
-	9118	$A(2,8)=29$
(8)	919=	A 3,7$)=P$ M ${ }^{\text {a }}$
	92\% $=$	$A(3,8)=P \mathrm{ML}$
	93)=	$A(2,4)=2 \mathrm{DE}$
	949	$A(2,5)=2 \mathrm{DF}$
	9985	$A(3,4)=P$ HaE
	965 =	$A(3,5)=P$ Yi\#F
	97\%	$A(4,4)=$-TE
	98\% $=$	$A(5,5)=-T E$
	9913	$B(4,1)=$ TE
	189\%=	B(5,2) = TE
	101\%	CALL EUSTSILEVEL, ALT, SLU, SLH, SIEN, SJEW)
	1029=	$A(6,6)=-Y T / S L C .10$
	1831z	$A(7,6)=(1,-\operatorname{Sent}(3)$.$) asIGussent (-A(6,6)) /$ SLM
	10493	$A(7,7)=A(6,6)$
	155\%:	$A(8,8)=$-VT 4 PI/4./BSPAM
	196\%	$A(8,6)=-A(8,8)=A(7,6)$
	107\% $=$	$A(8,7)=-A(8,8)+A(7,7)$
	108\% $=$	6(6) $=1$.
	119\% $=$	6(7) siL [MaSCRT (3. WVT/SLV)/VT
	11018	$6(8)=-A(8,8)=6(7)$
	111\% $=$	$0=1$.
	112f=	C(1, 1) $=1$.
	1136=	C 12,1$\}=1$.
	114\%	$C(2,2)=-1$.
7	1151:	$H(1,1)=1$.
-	116)=	$H(2,2)=1$.
	1178=	$H(3,3)=1$.

118)=	$H(2,7)=1$.
119\% $=$	R(1, 1) $=4.76 E-6$
129\%\%	$R(2,2)=1.22 E-5$
1210:	$\mathrm{R}(3,3)=3.22 E-5$
122 $=$	RETUMM
1230=C ENO	SUPROUTIME DSm
124)=	END
125fs	SUEDOUTIME TRTHD (MB)
1264=	DInEMsiom Mo (1)
127)=	MD(1) ${ }^{\text {a }}$
128\% $=$	$\mathrm{M}(2)=2$
129 $=$	$\mathrm{ND}(3)=3$
13/3:	WD(4) 21
1310 $=$	RETEM
132f-C END	supanitime trtho
1331:	END
1346\%	SUBPRUTILE TRTHA (AT, BT, GT, DT, HT, RT, TDT, TKT)
135f=	
136fa	DATA ERAVTY, DEETRD,PL/32.174,.01745329,3.1415927/
137)=	
138\%	1 PMA, PMAD, PMA, PMU, PHDE, PHDF, $X A, X A D, X D, X U, ~ X D E, ~ X D F, ~$
13918	2 TE, MX, BSPAM
149\% 15	ALPHARJDEETRPAALPMA
1410 $=$	UF=VTACOS (ALPHAB)
142f=	W $=$ VT 4 SIM (ALPHAR)
143)=	RLAD $=1 . /(1 .-2 A B)$
144f:	AT $(1,3)=1$.
1455=	AT(2,1) =-6RAVTY FSIW(ALPHAR)/US
1469z	AT (2,2) $=2 \mathrm{~A}$
1479 $=$	Al $(2,3)=1 .+20$
148\%	AT $(2,4)=211$
149\%\%	AT $(3,2)=$ PM M
155\%=	AT $(3,3)=$ PM
1510 $=$	AT $(3,4)=$ PMU
152f=	
1530\%	$\operatorname{AT}(4,2)=X A$
154/z	AT $(4,3)=\times \mathrm{CL}-\mathrm{W}^{4}$
1551)	AT (4, 4) = XU
1569*	AT $(2,5)=2 D E$
1579	AT $(2,6)=2 \mathrm{PF}$
1589\%	AT $(3,5)=$ PMDE
159\%:	AT $(3,6)=$ PMDF
1696:	AT $(4,5)=Y$ DE
1618	AT $(4,6)=X D F$
162\% $=$	AT $(5,5)=-\mathrm{TE}$
163f=	AT $(6,6)=$-TE
164/3	$A T(2,8)=2 \mathrm{~A}$
165)=	AT $(2,9)=20$
166\% $=$	AT $(3,8)=P$ MA
1674=	AT $(3,9)=$ PMI
168\%=	AT $(4,8)=7 A$
169\%\%	AT(4,9) \times XE
1769:	CALL SUSTS (LEVEL, ALT, SLU, SLH, SIEU, SIEW)
1710	AT(7,7) =-VT/SLM

1729=	
1730=	$\operatorname{AT}(8,8)=A T(7,7)$
174)	
175\% $=$	AT $(9,7)=$-AT $(9,9) \pm$ AT $(8,7)$
1769z	AT (9,8) $=$-AT $(9,9)=A T(8,8)$
1770=	$6 T(7)=1$.
178\%=	GT (8) =SIEMASRRT (3. FVT/SLU1/VT
179\%	$G T(9)=-A 7(9,9)=6 T(8)$
1815*	QTE!.
1810:	0021519
182f=	$\operatorname{AT}(2,1)=\operatorname{AT}(2,1)=R 2 A D$
1831:	AT $(3, I)=A T(3, I)+P$ MABEAT $(2, I)$
1849 $=24$	$\operatorname{AT}(4,1)=A T(4,1)+$ YABEAT $(2,1)$
185\%/	BT(5,1$)=$ TE
186)x	BT(6,2) = TE
1874=	HT (1, 1) $=1$.
188f=	HT (2,2) 1 .
189f=	$\mathrm{HT}(3,3)=1$.
19893	$H T(2,8)=1$.
1919z	RT(1, $11=4.765-6$
192f=	$\operatorname{RT}(2,2)=1.22 E-5$
1935=	RT (3,3$)=3.22 E-5$
1946	$\operatorname{TDT}(1,1)=1$.
1956\%	TDT $(2,2)=1$.
1965=	TDT $(3,3)=1$.
1979 $=$	$\operatorname{TDT}(4,5)=1$.
198\%s=	$\operatorname{TDT}(5,6)=1$.
199\%	TOT $(6,7)=1$.
240\%	TDT $(7,8)=1$.
211\%	TDT 18,9$)=1$.
2:26=	RETURM
2031-C EMD	Subroutime trthin
2946	END
2951]	SUBROUTINE ACDATAILEVEL, VT, ALT, ALPHA, 2A, 2AD, 20, ZU, 2DE, 2DF,
2669 $=$	1 PMA, PMAD, PMS, PMU, PMDE, PMDF, XA, XAD, XC, XU, XDE, XDF,
2474=	2 TE, DXX, DSPAM)
2909:	CONHOW/FILES/KSAVE, KDATA, KPLOT, KLIST, KTERH
299\% $=$	DATA MENTRY/1/
215\% 5	WRITE 101
211\%	READT,LEVEL
212\% $=$	IF (LLEVEL.6T.3).0R. (LEVEL.LT. 1) 60 TO 5
2131:	WRITE 152
2146:	READt, VT, ALT, ALPHA
215\%=	MaITE 103
216f=	READH, 2A, 2AD, 20, 2U, 2DE, 2DF
217\% $=$	MRITE 164
218\%	READF, PMA, PMAD, PMI, PHN, PHDE, PHDF
219\%	MAITE 105
229\%	READT, XA, XAD, XD, XU, XDE, XDF
221\%	malfe (KLIST, 181)
222]=	miITE(KLIST, 169) LEVEL
223\%=	WRITE (KLIST, 152)
2246=	MRITE (KLIST, 110) VT, ALT, APPMA
225\%:	Malte (KLIST, 133)

2279= WRITE (KLIST, 184)
2285:
22918
2314=
23118
2329=
2331:
234! $=$
2351:
236 $1=15$
2379 =
2385
239\% $=$
240\%
2416=
242f= 101 FORMAT(${ }^{\circ}$ EMTER TURBLIEMCE LEVEL ($1,2,3$) > $>^{\circ}$)
243f= 102 FOMMAT("ENTER TRIM VELOCITY, ALIITUBE, AND ALPMA >")
2445 103 FORMAT(" ENTER ZA, LAB, 28, ZU, ZDE, 2DF >")
245J= 144 FORMAT(" ENTER MA, MAD, MI, MU, NDE, MDF >")
2460 = 155 FORMAT(' ENTER XA, XAD, XD, XU, XDE, XDF >")
247: 106 FORMAT(" ENTER IIME CONSTANT FOR ELEVATDR $)^{\circ} 1$
248\%= 107 FORMAT/"ENTER DISTAMCE FROM CE TO ACCELEROMETER >O
249: 108 FORMAT/" ENTER UING SPAM >*)
2591) 159 FORMAT(6X,11)
$2510=110$ FORMAT1616XIPE15.71)
252 $=$ RETURM
253IzC END Subroutive acoata
254
255\% SUBREUTINE EUSTS(LEVEL, ALT,SLU,SLH,SIEN,SIGW)
256f: DIMENSION ATRBI (4), ATRE2(4), ATRB3(4),SIGT1 (4),SIGT2(4),SIGT3(4)

$258 j=$ DATA ATRE2/2CH2.,2751.,1GOM1, 45ACH./

$269 \mathrm{~S}=\mathrm{DATA}$ SIGT1/4.5,5.,5.,5.1
261\% DATA SIGT2/8.5,15.,16.,9.1
262f= DATA SIGT3/12.,21.,21.,1.1
$263=$ DATA IT1,IT2,IT3/1,1,1/
$2641=$ IF (ALT-1751.) 5,15,15
2659= 5 IF (ALT-1M9.) 8,1 19,10
2665= 8 ALTTzALT
$267=\quad 60$ TO 12
268i= 16 ALTT=10M.
2698= 12 SIGU 2.5 FFLOAT(LEVEL)

271!= SLHzALTI
2729: SLUaALTTSSIGUE4S
273!= SIEU=SIGUSSIEW
2749 60 TO 104
275: 15 SLU=175S.
2765: SLM=1751.
2779 \quad IF (LEVEL-2) $17,18,16$
2789= 16 CALL TBLUPI IATROS,SIOT3,4, IT3, ALT,SIGUI
2799= 60 TO 19

2899=17 CALL TBLUPI (ATRE1,SIGT1,4,IT1,ALT,SIGU)
2810 $=60$ TO 19
2829= 18 CALL TBLUP1 (ATRE2,SIGT2,4, IT2,ALT,SIEU)
2839= 19 SI6 $=$ SIEU
$2849=19$ RETURM
2859=C END SUBROUTIME BUSTS
$2869=$ END
287:Iz SUBROUTIKE TRLUP1 (X,Y, M, IKP, XP, YP)
$2889=$ DIHENSIDM $X(1), Y(1)$
289)= [F(IXP) 15,15,1
2901) 1 IF (IXP-W) 10,10,5

2919 $=5 \quad$ IXP $=1$
292f= 60 TO 18
2933= 10 IF(XP-X(IXP)) 12,18,26
294]= 12 IXP=IXP-1
2959: \quad IF (IXP) $15,15,15$
296I= $15 \quad$ 【 \times P=1
297) $18 \quad Y P=Y(I X P)$

2980 = RETURM
299/= 2 IF (IXP-M) 21,18,5
3ASY= $21 \quad$ IXPP1 $1 \times 1 \times P+1$
$3015=22$ IF (XP-X(IXPP1)) 25,30,39
3!2I= $25 \quad Y P=Y(I X P)+(X P-X\{I X P)) /(X X(I X P P 1)-X(I X P)) \approx(Y(I X P P 1)-Y(I X P))$
3036 $=$ RETURM
344)=35 IXP=1XPP1

3555- 601025
$366=C$ END SUBROUTINE TRLUPI
3:7!
388/= SUBROUTIME CGTXE
309: COMMW/MAIM1/KDIH, MDIM1, COM1 (1)
31\% $=$ COHMOM/BAIN2/COH2(1)
311E= COMOM/IMOU/KIN, KOUT,KPYMCH
312f= COMMN/DESIEN/WCOM, TSAMP,LFLRPI, LFLCET,LFLKF,LTEVAL,LABORT
313:= COMMON/FILES/KSAVE, KAATA, KPLOT, KLIST, KTERM
314f= COMmON/SYSHTX/WUSH,SX(1)
3159= COMMON/ZHTXI/WUZn, InI (1)

317\% COMMON/MDIHD/MND, NRD, MPD, MMD, MDD, NMD, NNDD, NPLD, MNPNUD, NWPR
318= COHHOM/LOCD/LAP,LGP,LPHI,LDD,LEX,LPHD,LR,LQN,LOD,LC,LDY,LEY,LHP,LR
3195= COMMON/DSWITX/WUBM, MODY, MOEY, DM (1)

3210= COMNON/LOCC/LPMC, LPDC, LCC, LDC
3229: COMMOM/CHMTX/KUCH, WEWCH, МOAC, CH(1)
323fe COMMON/NDIMT/MNT, MRT, MMT, MUT
324\% COMman/LOCT/LPHT,LBET,LEDT,LHT,LRT,LTDT,LTNT
3258= COnnrw/TRUMTX/WUTh, TM(1)
3269= COMMOM/LCNTAL/LPII1,LP112,LP121,LPI22,LPHDL,LBDL
327: COmNON/CDNTROL/NUCTL,CTLIS
328\% COMMOM/LREBPI/LXDW, LUDM, LPHCL,LKX,LKZ
329: COMNOM/CREGPI/NVRPI,RPI (1)
33A= COMMOM/LCGT/LA11,LA13,LA21,LA23,LA12,LA22,LKXA11,LKXA12,LKXA13
331盾 COmmon/CCET/WNCBT, CET (1)
332:= COMnOM/LXF/LEADSM,LFLTAK,LFCOV
333fs COMMON/CKF/WVFLT,FLI (I)

[3348 m	$\overline{\text { COMNAM/AMC/AM(1) }}$ - $-\cdots-\cdots-\cdots-$
1 3359 $=$	COMHON/8DG/BD(1)
$1-33610$	
357\% $=$	DATA MPLTET/6,161
338\% $=$	
339\% $=$	REMIMD KLIST
346\% $=$	WRITE (KLIST, 115) DATE (DWM), TIME (DUM)
341\% $=$	MRITE (XTERH, 115) DATE (DUM), TIME (DOH)
342 $=115$	
$3431=1$	1 "Program to desigw a command generator tracker"/8x,
$3440=2$	2 "USIMf a REGHLATOR MITH Proportional plus integral control"/16x,
3450 $=3$	3 'AMD A KALMAM FILTER FOR STATE ESTIMATION. ${ }^{\text {- } / 28 X,}$
346f= 4	
347\% $=5$	5 "TIME: ',A16/II/)
3489 $=$	REMIND KSAVE
3491\%	REMIND KDATA
359月=	MRITE (KSAVE, 112) 1E01, MPLITH
$3510=$	D0 1 [1 $\mathrm{I}=1.15$
$352 \mathrm{~g}=10$	$\mathrm{ND}(1)=1$
353 $=$	DO $12 \mathrm{l}=1,15$
3540 $=12$	LD(1)=1
355\%	LFLRPI $=1$
356 $=$	LFLCGT $=1$
357\%	LFLKF=
3589 $=$	LTEVAL $=1$
359\%*	LABORT=1
36f0	IPI= ${ }^{\text {f }}$
$3610=$	ICST $=1$
362f=	ITRU=1
3635	IFLTR $=1$
36492	ICODE 4
365s=	LFAVAL $=4$
3669	LGCET 59
367\%	WUCOMEHIM (WDIM, MVIN)
3689\%	KOUT $=$ KLIST
3691:	KPUWCHIKPLLOT
3794=	
3716	WRITE 1/1, MPLTM
3726	60101 M
373f= 59	MIITE 162
374f:	READF, TSAMP
3751:	IF (TSAMP.LE.5.) 60 TO 59
3769	MRITEIXLIST, 183) TSAMP
3775 $=103$	Format 'csanfle PERIOD IS ',F5.3," SECOMDS')
37818	CALL SETUP (WD,LD, ICET, ITRU, 1)
379\%	IF (LABORT) 194, 188, 1984
38949 118	LABORTES
381) $=$	IMPLICa!
382]	MRITE 164
3839 $=144$	FORMAT ("ECOMTROLLER DESIEN (Y OR M) >")
384)=	READ 111, IAMS
3859\%	IFIIAMS.EQ.NO) 60 TO 5AS
3869	LFLXF $=1$
3879 $=$	CALL PIMTXIIPI)

3889=	IF (LABORT) 1014,125,1095
3890 $=125$	MRITE 165
3989 $=165$	FORMAT('SDESIGM REG/PI (Y OR N) >')
3919x	READ 111, IAMS
3921=	IF(IAMS.E日. MO) 60 TO 159
393)=	MRITE 4id
394\% 493	FORMAT('SINCARPORATE IMPLICIT MODEL (Y OR N))'I
395\% $=$	READ 111, IAMS
396)=	IF (IAMS.EQ.MO) 60 TO 490
3974=	IMPLICs1
398)=	CALL SETUP (ND,LD, ICGT, ITRU, 4)
3991]	IF(ICGT.ME.S) 60 T0 468
499\%=	IMPLIC=9
41193	60 T0 489
4629 $=465$	IF (MPD.EP. MMC) 60 TO 489
493\% $=$	MAITE 479
4849 $=478$	FORMAT/"¢COMmAND model state dimension hust equal sYsten
495\%=	1OUTPUT DIMENSIOM ${ }^{\text {a }}$
466\% $=$	LABORT $=-1$
497\% $=481$	IF (LABORT) 193,491 ,1993
4189 $=490$	CALL SREGPI (IMPLIC)
4891]	IF (LABORT) 1099,2\%,1015
4109 $=158$	MRITE 1sb
411\%= 116	FORMAT('gDESISN CGT (Y OR N) >')
412\% $=$	READ 111, IANS
413.3	IF (IAMS.EP. NO) 60 TO 108
414)=	CALL SETUP (ND,LD, ICGT, ITRU,2)
415f=	IF (ICGT) 155,104,155
416f= 155	IF (LABART) 166,169,198
417! = 161	CALL SCBT
418)=	IF(LABORT) 16\%,17\%,1931
$4196=179$	IF (LFLCGT.LE.S) 60 T0 125
42f\% $=20 \%$	LABORTx
4210 $=$	WRITE 197
422)= 107	FORMAT("COMTROLLER EYALUATION WRT TRUTH HODEL (Y OR N) >")
423)=	READ 111,1AMS
424)=	IF (IANS.EE.NO) 60 TO 250
425\%	CALL SETUP (ND,LD, ICET, ITRU,3)
426\%	IF (LABDRT) 293,265,1898
4279 $=259$	LTEVAL $=1$
$4289=269$	CALL CEVAL - -
4299]	IF(LFLCET. ER.1) LGCGT=!
43\%\%	IF (LFAVAL.EP. S.OR.LGCGT.EQ.f) 60 TO 198
4319= 279	MRITE 6AT
$432 \mathrm{f}=649$	format ('OMRITE PERFORMANCE EVAlUATIOM data to 'save' file iy in w)
433f=	+>')
434)=	READ 111,1AMS
435)=	IF(IANS.EQ.NO) 60 TO 100
4369\%	JCODE = JCODE +1
4376=	CALL PFDATAIICODE, ND)
43812	INUM=ICODE-4
4391:	MRITE 685, IMUH
449\% 665	format ("Operformance evaluation data, no. '12,', written to 'save
441!	+' FILE') $-\ldots-\infty$

	4420= 60	60 T0 193
\because	$4430=594$	LABDRT $=9$
8	4448\%	MRITE 168
	4455= 158	FORMAT('GFILTER DESIGN (Y OR NI >")
	4460	READ IL1, IANS
	4479 = If	If(IAMS.Ee.NO) 60 T0 909
	4489= C	CALL FLTRK (IFLTR)
	4499= İ	IF(IFLTR.ER.6) 60 T0 969
	459\%= If	IFILABORT) 19AS,516,16M
	4510 510	CALL SETUP (ND, LD, ICGT, ITRU, 3)
	4520 = If	IF (LABORT) 585,525,1949
	$\Gamma 4540=525$	CALL FEVAL IF(LABORT) $\overline{1549}, \overline{541}, \overline{1949}-\infty-$
	$\text { (} 4550=545$	LFAVAL21
	$L_{4570}^{456=}=-\frac{\text { IF }}{60}$	IF LLGCET.EQ.1) 60 ID 278 _ 60 T0 509
	458\% 999	WRITE 109
	4599= 199 F	
	4690 = \quad R	READ ILI, IAMS
	4619 e $\quad 1$	IF (IANS.EQ.NO) 60 TO 198
	462f= If	If(LFLRPI.EQ.9) 60 To 1989
	4635= N	MPWTS=NRD+4WPR
	4640 $=$ N	MD(1)=MPNTS
	4659\% Mi	MD (2) $=1 \times \mathrm{K}$
	4666\% $=$ N	MD (3) LK K I
	467\% ${ }^{\text {c }}$	CALL MFILED (4, MPNTS, MO, RPI ILXX) ${ }^{\text {a }}$
	$469 \mathrm{~F}=$	MRITE 113
(\%)	4699 ${ }^{4989}$ c	continue
	4790=	WRITE (KLIST, 119)
	4710 $=$ R	REIIID KSAVE
	4726\% \quad R	rewind kdata
	473fe R	RENIND KLIST
	474 =	WRITE 116
	4750 $=101$	FORLAT ('gIMSUFFICIEMT MEMORY /SySMTX/, MEED: ",14)
	$4769=102$	
	4779 $=110$	FORHAT('sprogran execution stopa)
	4798= 111	Format (A3)
	4799 $=112$	format (214)
	$4890=113 \quad \mathrm{~F}$	fornat (bx, rREg/PI gains milten to 'save' file')
	4819 $=$ R	RETURM
	482f=C END SLI	SUBROUIIE CGTXE
	483f= E1	END
	4840\% S	SUBROUIILE SETUP (ND,LD, ICGT, ITRU, ITYPE)
	485\% $=0$	DIMENSIOM MD(1), LD(1)
	4869\% 6	60 TO (19,15,2, 15) ITYPE
	4879 ${ }^{\text {c }} 16$ C	CALL SDSN (MD,LD)
	$4889 \mathrm{~m}=$ R	RETURM
	4999\% 15 C	CALL SCMD (NG, LD, ICAT, ITYPE)
	4990] R	RETURM
	$4919=28 \quad C$	CALL STRTH (ND,LD, ITRU)
	4929] \quad R	RETURM
	49393C EWD S	subroutime setup
	4949 $=$ E	ENO
	4959 = S	SUBROUTIME SOSN(ND,LD)

496\% COMAON/DESIGW/NUCOH, TSAMP,LFLRPI, LFLCGT, LFLXF,LTEVAL,LABORT
4979 = COMHOW/SYSNTX/WUSM, SH (1)

4999= COMmOM/LMTX2/2n2(1)

5910= DIMENSIOM MD (1),LD(1)
592f= NSILE=
533f= CALL RSYS(SN,LD,ND,1,NSIZE)
584)= IF (LABORT.GT. S) RETURN
585): MSIZEzwipR

5\#6f= IF (NPLD. 6 .MSIZE) MSIZE=NPLD
547! $=\quad$ MSILE=HSIZE+WSIZE
5989= IF(MSIIE.LE.NUCOM) 60505
509)= WRITE 1E1,NSILE

51 gle $1 / 1$ FORMAT("IIMSUFFICIENT MEWORY /MAIMI/,/MAIM2/,/IMTXI/,/IMTX2/, MEED
$5110=1: \cdot 141$
512f= LABORT=NSIIE
513! = RETURM
514)=5 IF (MRD.EQ.MPD) 60 TO 10

5159= WRITE 152

5179 \quad LABORT=-1
518:3 RETURN
519: 10 CALL DSCRTD(LD,2M1,2M2)
5299= RETURN
521A=C END SUBROUTIME SDSM
522If END
523!= SURRDUTIME DSCRTD(LD, 2M1, 2 M 2$)$
524) COMON/MAINI/NDIM,NDIM1, COMI (1)

525/= COMHOM/DESIEW/WUCOM, TSAMP,LFLRPI,LFLCGT,LFLKF,LTEVAL,LABORT
526fa COMMON/FILES/KSAVE, KDATA, KPLOT, KLIST,KTERM
\$279: COMnOM/SYSMTX/WVSM,SH(1)
S289= COMMON/NDIMD/MND, MRD, MPD, MID, NDD, MYD, MUDD, MPLD, MMPMDD, MNPR
529)= COMNDM/LOCD/LAP,LEP,LPMI, LBD, LEX, LPHD, LR, LPN, LOD, LC, LDY, LEY, LHP, LR

53OS= COMMOM/DSNHTX/NUDM, MODY, MOEY, DM (1)
$531 \%=$ COMMOM/LXF/LEADSN,LFLTRK,LFCOY
532 $=$ COMNON/CKF/WNFLT,FLT(1)
533 = DINENSIOW LD(1),2H1(1),2H2(1)
5349: NDIM=NPLD
535f= NDIMIENDIH +1
536g= CALL POLES(SH,NMD, $1,2 \mathrm{ZH}, 2 \mathrm{ZH2}$
537 $=\quad$ DO 11×1, MND
$5389=1 \quad 1 F(2 \mathrm{M}(\mathrm{f}) .6 \mathrm{~F} .1$.$) LFLCGT=-1$
539\%= CALL TFRMTX (SR, DP, MND, MND, 21
5469: LAP=!
541E= LGP=LAP +MPLDANPLD
542f= IF (mind.ER. 1) 60 TO 5
543!= CALL TFRMTX(SM(LD (4)),DM(LGP), NND, NMD, 2)
544f 5 IF(NDD.ER.6) EO TO 15
545f: $\quad L=\angle A D D R$ (MPL D, MND $+1,11$
5460 $=\quad L 2=L A D D R(N P L D, 1, M N D+1)$
5478: $\quad L 3=L A D D R$ (MPLD, NMD +1 , MND +1)
548f CALL ZPART(DM(LI),NDD,MND,MPLD)
5499= CALL TFRMTX(SM(LDIJ)), DH(L2), NAD,NDD,2)

55月g: CALL TFRMTX(SM(LD (12)), DM(L3), NDD, NDD, 2)
551g= IF(NUD.EQ.8) 60 TO 8
$552 \mathrm{~g}=\quad \quad \angle 1=L 1+L 6 P-1$
553. $=$ CALL $2 P A R T$ (DH(LI), NDD, MUD,NPLD)
$5549=8 \quad L 2=\angle A D D R(N P L D, 1$, MND +1$)+L 6 P-1$
$5559 \quad \quad L 3=L A D D R(N P L D, W M D+1, M D+1)+L E P-1$
5569= CALL IPART(DM(L2), MMD, MMDD, NPLD)
5579 $=$ CALL TFRMTX(SMILD(13)), BM(L3), NDD, MMDD, 2)
558j= 10 LPHI $=L 6 P+$ MPLDAMPNWD
559/ㄹ LEADSN=1
56ffe CALL NDSCRT (DM,NDIM,NT)
561g= CALL DSCRT (MPLD, DM, TSAMP,FLT, IMI,NT)
$5629=\quad \quad L F L T R K=L E A D S N+W P L D+N P L D$
$5639=$ CALL TFRMTX(OM(LPHI),FLT, MMD, MMD,1)

5659= CALL TFRMTX (SM, ZM1, Wind, NiND,1)

5679 $\quad L E X=\angle B D+N W D E N R D$
568f= IF (NDD.EQ.b) 60 TO 15
569\% $\quad ~ L I=L A D D R$ (NPLD 1,1, MAB +1)
579\%= CALL TFRMTX(DH(LEX),FLT(LI), MHD,NDD,1)
$571 \mathrm{~g}=\quad \angle P H D=L E X+M M D E N D D$
$5720=\quad L 1=L A D D R(M P L D, M N D+1, M M D+1)$
573 = CALL TFRMTX (DM (LPHDI,FLTILI), NDD,NDD,1)
574: $\quad L O=\angle P H D+N D D E N D D$
5759a 60 TO 20
576 = 15 LO=LEX
577)=25 IF (NMD.ED. 1) 60 TO 25

578j= CALL FTMTX (SNR(LD (5)), DM (LO), MND, MND)

589\% $\quad 60$ TO 28
$581=25$ LOANLD
582f= 28 IF (MMBD.E9.6) 60 TO 33

$5845=\quad L O D=L O N+W N D+N W D$
585) $=601035$
586)=33 LOD=LCM

587: $=$ IF (MNPMND.6T.5) 60 TO 35
588: $=\quad \angle C=10 D$
589\% $\quad 60$ TO 36
59M= 35 CALL ODSCRT(DA1LO), OH(LON), ZM1, ZH2)
5915: $\quad L C=\angle Q D+M P L D+W P L D$
592f= 36 LDY=LC+NPDENM
5935: LEYLDY + MPOAMRD
594f: LHPEEEY WPDEMDD
$5950=\quad L R \times L H P+M(10+1 P L D$
5969= LIELR+MHBEMND-LC
5979: CALL FTMTX(SH(LD (6)), DM(LC),Ll, 1)
598) \quad LI $=L E Y-1$
599): MODYz1

6909: DO 4 I $=L D Y, L 1$
6019= $\quad 1 F(D M(1) . E Q .6)$.60 TO 40
602Is MODY=1
6.3)= 60 TO 45

\because	$\begin{aligned} & 6949=44 \\ & 6459=45 \end{aligned}$	continue NOEY=1
$\because \because$	$6169=$	IFINDD.LT. 11 60 T0 55
	6878=	L12LLP-1
	6885%	DO 581 l LEY, LI
	669\%\%	IF(MM(I).EQ.S.1 60 TO 5s
	614 F	MOEY Y ¢ ${ }^{\text {a }}$
	6110 $=$	60 TO 55
	6120 $=5$	comitime
	6130: 55	CALL MATLST (DM (LPHI), MWD, MWD, 'PHI', KLIST)
	6148=	
	61598	
	6160 $=$	If (MMD, GT.E) CALL MATLST(DM(LHP), MMD, MPLD, 'MA', KLIST)
	6178 $=$	IF (MDD.EP.s) RETURM
	6185=	
	6190	CGLL MATLST (DH (LPHD), MDD, MDD, "PFW", KLIST)
	$6298=$	RETURM
	6219=[END	Subroutime dscrio
	6220 $=$	End
	6239\%	SUAROUTIME ADSCRTIQ, man, zh, zh2)
	624) $=$	COMMOW/MAIMI/WDIS, WDIM, COM (1)
	6259\%	COMHOM/DESIEM/WVCOH, TSAMP, LFLRPI, LFLCGT,LFLKF,LTEVAL,LABCRT
	6260 $=$	
	6270 $=$	COMHOM/LOCD/LAP, LEP, LPMI, LBD, LEX,LPHD, LR, LEM, LRD, LC, LOY, LEY, LHP, LR
	6289\%	
	629]=	DIMENSION Q(1), QM(1), $2 \mathrm{Mi}(1), 2 \mathrm{~m}$ (1)
	6330 $=$	IF (MuD.EQ,8) 60 T0 5
($6310=$	
	632f= 9	
	6339 F	
	634fz	
	6354-	IF (Miv. Eq.0) 60 TO 15
	$6360=$	
	6779\%	CALL IPART (2 Hi (LI), MIMD, MIDD, WPLD)
	6380 $=$	
	6394\%	
	6446 $=10$	
	6410	CALL INTEG (MPLD, DM (LAP), LM2, Om(LOD), TSAMP)
	6420:	RETURH
	6430ec END	subroutime poscrt
	644fe	END
	6459 =	SUPROUTIME SCMD(IND, LD, ICGT, ITYPE)
	64673	COMHON/DESIEM/WVCOM, TSAPP, LFLRPI, LFLCGT, LFLKF, LTEVAL, LABORT
	6478=	COHNOM/FILES/KSAUE,KDATA,KPLOT, KLIST,KTERM
	6480 $=$	COHMOM/SYSSTX/WSSN, SM(1)
	6496=	
	6599\%	CоиноW/2HTK2/2n2(1)
	6519\%	
	652]z	
	6539/2	
	$6549=$	COMHOM/LREEPI/LXDH, LUDH, LPHCL, LKX, LKZ
	655\%	COMMOU/CREGPI/MURPI,RPI (1)
\because	6964\%	DIMENSIOM MD(1),LD(1)
	657\% $=$	data Mo/ihm/

6580 $=$	IF(ITYPE.EQ.4) 60 T0 10
6590=	White (KLIST, 111)
6689	
66112	IF (LFLRPI) 1 /,5,10
6629=5	WHITE 102
6630:	READ 111, IAMS
6646 $=$	IF (IANS.ED.M0) 60 T0 8
6659:	CALL READFS (EM, ND, 4, IERR)
666\%	
6679=	LKX $=$ N(${ }^{\text {(2) }}$
668\% $=$	LX2=N(13)
669\%	CALL FTMTX (Sn, RPI (LKX), WSILE, 11
679\%=	IF(IERR.ME.S) RETURM
6710=	CALL MATLST (RPI (LKX), MRD, MND, "KX", KLIST)
6729:	CALL MATLST(RPI (LKL), MRD, MRD, ${ }^{\text {KI }}$ ", KLIST)
6731:	LFLPPIx-1
6749:	60 TO 15
675f= 8	IF(LFLCGT. 8 E .9) 60 T0 9
6769 $=$	HaITE 103
6771 $=113$	FORMAT("ASYSTEM lnstable - - open-locp cgt mot feasible")
6789:	RETURM
679\% $=9$	
683\%	LK2al
6015	MSIIE=MRD**ND
682\% $=$	CALL IPART (RPI (LKX), 1, MSIIE, 1)
683)= 15	IF(ICGT.EQ.S) 60 TO 12
6845:	MAITE 188
6851= 100	FORMAT(" MODIFY COMAMD MODEL IY OR W) >')
6865:	READ 111, IAMS
6875=	IF (IANS.ED.MO) RETHRM
688\%= 12	CALL RSYS (SN,LD, ND, 2, ICGT)
689\%	If (LABART. ME. S) RETURE
69\%1)	MEMCHx
691\% $=$	CALL POAES (SM, MmC, 2, ZM1,2H2)
6929 $=$	IF (1PC.EQ.MPD) E0 TO 15
6931:	HRITE 184
6949]	LABORTE-1
6959 $=$	RETURM
696\% $=15$	CALL DSCRTC(LD, 2ha)
6979 $=152$	FORMAT (" READ REG/PI GAIMS FROM 'Data' file (Y OR M) >')
6989 $=104$	FOAMAT('ECOMMANE AMD DESIGM MODEL OUTPUTS MOT EQUAL IM mumber')
699\% $=111$	format (a3)
7141:	RETURM
701-C END	SURROUTIME SCMD
71293	END
713! $=$	SUEROUTIME DSCRTCILD, 2 MI)
7849	COMMON/MAINI/NDIM, MDIMI, COMI (I)
7154*	COMMON/DESIGW/WYCOM, TSAMP, LFLRPI, LFLCGT, LFLKF, LTEVAL, LABDRT
78612	COMMON/FILES/KSAVE, KDATA, KPLOT, KLIST, KTERM
7976	COMmOM/SYSMTX/NUSH,SH(1)
7888=	Cannow/WDIMC/MMC, NRC, NPC
709\% $=$	COHMOM/LOCC/LPHC, LBDC, LCC, LDC
7189=	COMHON/CHDATX/NUCH, NEMCN, MODC, CM (1)

$\begin{array}{ll}7110= & \text { DIMENSION LD(1), 2MI }(1) \\ 7129= & \text { NDIM=NMC }\end{array}$
713 $=\quad$ NDIMI $=$ NDIM +1
7140= CALL MDSCRT (SM,NDIM, NTI
7150= CALL DSCRT (MDIM, SH, TSAMP, CH, 2M1, MT)
716 $=$ LPHC=1
7179 = LDACa
7185= CALL MinL (2n1,Sh(LD(2)), NDIK, MDIK, NRC, CM(LBDC))
719:= LCC=LBEC+MMC $=$ NRC
72H: LDC=LCC+NPC
721 $=\quad L I=L D C+W P C$ MAC-LCC
7225: CALL FTHTX(SM(LD(3)),CN(LCC),LL, 1)
723)= MODC $=1$

724f $\quad \quad L 1=61+L C C-1$
725 $=\quad 0016$ 1ㄹDE,L1
726fe IF(CM(I).ER.5.) 60 TO 10
$7275=\quad M O D C=$
728f= 60 T0 15
729\% $=11$ CONTINUE
7304= 15 CALL MATLST (CH, MNC, NMC, "PHH",KLIST)
7310 CALL MATLST(CH(LBOC), MAC, MRC, "BDM',KLIST)
732\% CALL MATLST (CNILCC), MPC, MNC, "CH", KLIST)
733)= CALL MATLST(CM(LDC), MPC, MAC, "DM", KLIST)

7345: RETURM
73FA=C END SUBROUTIME DSCRTC
736fe END
737: $=$ SUBROUTIUE STRTH(ND,LD,ITRU)
7389= COMnOM/DESIGN/WUCOM, TSAMP,LFLRPI,LFLCGT,LFLKF,LTEYAL,LABORT
739: $=$ COMmPN/SYSMTX/WVSN,Sn(1)
74S9= \quad COmOM/2nTX1/WV2n,2m1 (1)
741g= COman/2nTX2/2n2(1)
742f= COMMOM/MDIMD/MND, MRD, MPD, MAD, NDD, MMD, MMDD, MPLD, MMPNMD, MIPR
743\% $=$ COMOM/NDIMT/MWT, MRT, MNT, NWT
7445 DIMENSION MD(1),LD(1)
7450= DATA MO/IHM/
7469= IF(ITRU.ER.5) 60 TO 5
7479 = WRITE 153
7480 = 103 FORMAT(${ }^{\circ}$ MODIFY TRUTH MODEL (Y OR N) $)^{\circ}$)
7499= READ 141,IAMS
7503: 111 FOPMAT(A3)
7519: JFllanc.EQ.MD) 60 TO 25
752f= 5 CALL RSYS(SM,LD, MD, 3, ITRU)
753/: IF (LABDRT.6T.S) RETLRM
754F: MSIZE=NUT:MNT
7555: IF (WSIIE.LE.WUCOH) 60 TO 8
756)= MaITE 101, MSILE

757/= 151 FORMAT(*SIMSUFFICIENT MEMORY /MAIM1/,/MAIN2/,/I2NTX1/,/2nTX2/, MEED
758: $=1:{ }^{-1}$ (2)
739: $=$ LABORT=WSIIE
76EM= RETURM
7610=8 IF (OMRT.EP. NRD). AND. (NMT.ER. MHD)) 60 TO 10
762f= MRITE 152
763 = 102 forhaticiluputs and heasurements must be equal in mumber for desig
764\% = IN AND TRUTH nodels")

	8199\%	IFIIPI.EQ.1) RETURN
\because	829 $=$	WRITE (KLIST, 110)
\because	8210 $=118$	
	8229 $=$	NDIMsmPR
	823\%	MSILExNDIME (2FMDIM+MPD)
	824\% $=$	IFINSILE,LE. NVCTL) 60 TO 10
	8259 $=$	MRITE 161, MSILE
	826fa 101	FORMAT(*SINSUFFICIEMT MEMORY /COMTROL/, MEED: - 14)
	827! $=$	LABORT=NSILE
	82893	RETURN
	829\% $=15$	NDIMI $=$ NDIM +1
	8359:	LPIII=1
	8311\%	LPII2xLPIII + WNDFAND
	832fz	LP121LLP112+NWDEMRD
	8331)	LPI22=LPI21+MPD+NMD
	834f:	LPHDL $=1$ P122+NPD+MPD
	8354:	CALL TFRMTX (DM(LPHI), ZHI, MMD, MND, 2)
	8369\%	CALL SUBI(InI, MND, WDIM)
	8379:	L2 $=$ LADDR (NDLH, 1, MMD +1)
	838\% $=$	CALL TFRMTX (DM(LBD), ZM1 (L2), MND, MRD, 2)
	839\% $=$	L3sLADDR (MDIM, MND +1, 1)
	844\%	CALL TFRATX (DM(LC), 2hi (L3), NPD, MND, 2)
	8415z	L4FLAECR (MDIH, MND +1 , WMO +1)
	842\% $=$	CALL TFRMTX (DM (LDY), ZMA (L4), MPD, MRD, 2)
	8435:	Call gninv(NAIM, NOIM, $2 \mathrm{ml}, 2 \mathrm{M} 2, \mathrm{MA}, 1)$
	8445:	IF (MR.EQ.NDIM) ED TO 15
mes	8451]	WRITE 102
4	8469 =	WPITE (KLIST, 152)
	8479: 192	FORMAT("EPI MATRIX IS RAMK DEFECTIVE")
	$8485=15$	CALL MAILST (2M2, mPR, MMPR, "PI',KLIST)
	849\% $=$	CALL TFRMTX(CTL (LPI I 1), LH2, MWD, MND, 1)
	8593m	CALL TFRMTX (CTL (LPII2), 2H2 (L2), MND, MRD, 1)
	851fe	CALL TFPMTX (CTLILPI21), 2H2 (L3), MPD, MND, 1)
	852]=	CALL TFAMTX (CTL (LPI22),2H2 (L4), MPD, MRD, 1)
	853\%	Call coif
	854/3	IPIs1
	85592	RETUPN
	856f=C End	SUBROUTIME PIMTY
	8579:	END
	8589 $=$	SUBROUTINE CDIF
	8591:	COMMON/MAINL/NDIM, NDIHI, COMI (1)
	864\%	COMnDM/MDIMD/MVD, MRD, MPD, MnD, MDD, MAD, MNDD, MPLD, NMPNMD, MAPR
	8619 $=$	COMHON/LOCD/LAP, LGP, LPH1, LBD, LEX, LPHD, LQ, LRN, LDD, LC, LDY, LEY, LHP, LR
	8629	COMHOM/DSNHTX/MVDH, MODY, MOEY, DM (1)
	863]=	COMmN/LCNTRL/LPIII,LPI12,LPI21,LPI22,LPHDL,LBDL
	8643]	COMMOM/CONTROL/WUCTL, CTL (1)
	8659:	CALL TFRMTX(DH(LPHI), CTL (LPHDL), WND, MKD, 2)
	86693	
	8679 $=$	CALL TFPMTX (DM(LBDI, CTL (L1), MND, MRD, 2)
	8689\%	$L J=L A D D R(N D I M, ~ M N D+1,1)+L P H D L-1$
	8699\%	CALL IPART (CTL (LI), MRD, MND, NDIM)
$\underset{\sim}{*}$	$8789=$	LI=LAD日R (MDIM, MND +1 , MND +1) + PHDL -1
\because	87192	CALL IDNT (NRD, CTL (LI), 1.)
	8729 $=$	LBDL \times LPHDL + MDIMENDIM

-	9730: 874 $=$ 8759= 87690 877"IEC END 8780 $=$	CALL ZPARTICTL (LDDL), MND, NRD, NDIM) LI $=$ LADDR (MOIM, $\mathrm{MND}+1,1$) L BDL -1 CALL IDMT(MRD,CTL(L), 1.1 RETURN subroutime coif END
	879\%=	SUBROUTIME SREGPI (IMPLIC)
	8801 F	COMHOM/MAINI/WDIT, NDIMI, COHI (1)
	$881 / \mathrm{z}$	COHHOM/DESIEW/HVCOM, TSAMP, LFLPPI, LFLCGT, LFLXF, LTEVAL, LABCRT
	8829 $=$	COMMOM/FILES/KSAVE, XDATA, KPLOT, KLIST, KTERM
	$8838=$	COMMOM/SYSNTX/WUSM, SM (1)
	8949\%	
	8859\%	COMMOM/2MTX2/2n2(1)
	886\%	COMHOW/NDIMD/MND, MRD, MPD, MRD, NDD, MND, MMDD, MPLD, MUPNUD, MNPR
	8979 $=$	COMWOW/LCNTRL/LPIII,LPII2,LPI21,LPI22,LPHDL,LBOL
	8889\%	COMHOW/COWTROL/WUCTL, CTL (1)
	8899=	COMHOM/LREGPI/LXDU, LUDM, LPHCL,LKX,LKI
	8996=	COMmPW/CREGPI/NURPI, RPI (1)
	8910 $=$	WRITE (KLIST, 110)
	8929 $=110$	FORMAT(/I//11X,5(** '), R REG/PI DESIGW",5(" +")//I/)
	893] $=$	
	994/5	JFIMSILE.LE.WAPI) 60 TO 5
	895\%	WRITE LIL, MSILE
	8961: 111	FORMAT ('SIMSUFFICIENT MEMORY /CREGPI/, MEED: ',14)
	8978=	60 TO 8
	89850 5	MSI2E=MMPR (3 \#MMPR+MPD)
	8999 $=$	IF (MSIIE.LE.NUSH) 60 TO 10
	940\%	MRITE 162,MSILE
	$9010=152$	FORMAT ('GIMSUFFICIENT MEMORY /SYSMTX/, MEED: ',14)
	9029: 8	LABORTaMSILE
	91319	RETURM
	9840 $=10$	$L \mathrm{~L}=1$
	9195\%	$\underline{L U}=\underline{L} \times+$ M M PREmPR
	91663	
	9177)	LIIST=LUTWPREMRD
	968\%	LPHPaLUIST + WMPRTMPR
	949\%3	CALL PXUP(CTL (LPHDL), CTLLLBOL), SM (LX),SM(LU), COM1,2H2,
	910\%	1 Sn(LUIST), SM (LPHP), SM(LX), 2 HI)
	9115=	
	9129\%	
	9138\%	CALL TFRHTX (ZMI, SHILX), MRD, NDIM, 1)
	9149=	CALL FMMUL (ZMI,CTL (LPIII), MRD, MMD, MMD, RPI (LKX)
	9155\%	
	91698	CALL FMMUL (2MI (LI), CTL (LPI2I), MRD, MRD, NMD, IM2)
	9178 $=$	MDIM-MRD
	9189 $=$	NDIMI $=$ NDIM ${ }^{\text {a }}$
	9190\%	CALL MADDI (MRD, MYD, RPI (LLKX), IR2,RPI (LKX), 1.)
	928f\%	
	$921 / \mathrm{m}$	CALL FMMR (ZM1 (LI), CTL (LPI22), MRD, MPD, MRD, 2 H2)
	922f=	
	923\% $=$	CALL MATLST (RPI (LLXX), MRD, MND, 'KX', KLIST)
	9249 $=$	CALL MATLSTIRPI (LXX), MAD, MND, "KX ${ }^{\text {a }}$,KTERM
	9259\%	CALL MATLST (RPI (LK2),NRD, MRD, 'KI', KLIST)
	9260 $=$	CALL MATLST(RPI (LXI), MRD, MRD, "KI', KTERM)

\because		LFLRPI=1 LFLCGT=f RETURM SUBROUTIME SREEPI END
	932\% $=$	
	9331) $=$	COMHOM/MAILI/KDIT, MDIMI, COAI (1)
	9344:	COMMOM/DESIGN/MVCOM, TSAMP, LFLRPI, LFLCET, LFLKF,LTEVAL, LABORT
	9353=	COHMOM/FILES/KSAVE, KDATA,KPLDT, KLIST, KTERM
	936 $=$	COHNOM/SYSMTX/NUSN, SN (1)
	937\% $=$	
	938\%	COHOM/LDCD/LAP, LGP, LPHI, LDD, LEX, LPHP, LR, LOM, LDD, LC, LDY, LEY, LHP, LR
	939\%z	COMHOW/DSMETX/WNDM, WODY, WOEY, DM (1)
	94965	COMWOM/LCNTRL/LPI11,LPI12,LP121,LPI22,LPHML,LBDL
	9419=	COMHOW/COWTROL/WCTL, CTL (1)
	942\% $=$	COMMOM/LREGPI/LXDH, LUDM,LPHCL,LKX,LKZ
	9438	COMHOM/CREGPI/NVRPI, RPI(1)
	944\%	DIMENSIOM X (1), U(1),S(1), 2m1 (1),2n2(1)
	9459,	data Mo/Ine/
(3)	9469E	IF (IMPLIC.EQ, (0) 60 TO ${ }^{2}$
	$\frac{9470}{9489}=2$	
	9490 $=5$	Crows
	9595\%	
	9519=	
	9529	LKX $=$ LPHCL + HMPR + MWPR
	953)=	
	9549=	Lt $=$ LPHCL-1
	9559 $=$	CALL 2 PART(RPI, 1,L1,1)
	$9560=15$	
	957! $=$	URITE 101,NPD
	958/ 101	
	959\%	CALL ROMGTS (RPI, NPD, S)
	9695	WRITE 122, MRD
	$9619=192$	FORHATI" ENTER MEIEMTS OM CONTROL MAGNITUDES: ", 12)
	962f=	CALL ROWGTS (RPI (LUX), MRD, 1)
	96351	WRITE 193, MRD
	$9648=193$	
	9659 $=$	CALL ROMGTS (RPI (LUDM), MRD, 11
	9669\%	CALL MATLST (API, NPD, NPD, 're, KLIST)
	9679	CALL DVCTORIMPD,RPI, 2mi)
	968)	
	969\%	CALL DUCTOR(MRD,RPI (LUX), IM ${ }^{\text {I }}$)
	9794\%	CALL WATLSTIZH, MRD, 1 , "Un', KTERH)
	9710:	CALL MATLSI(RPI (LUX), MRD, MRD, "UK', KLIST)
	9720	MDIM $=$ MMPR
	9738=	NDIMIENDIM +1
	9748 F	
	9759\%	MRITE IKTERM, 194)
	9760 e 104	FORMAT ("MODIFY ELEMENTS OF 'X' Matrix (\% OR N) >')
	977\%	READ III, IAMS
	$9780=111$	fornat (A3)
\because	$979 /=$	IF(IAM5.es. MO) 60 TO 28
	9890\%	MRITE (KTERM, 105)

$9810=195$	Format(' LISt ' X ' mataix to termimal (Y OR N) >'I
982 $=$	READ 111, IAMS
983\% $=$	IFIIAMS.EQ.MO) 60 TO 12
9848=	CALL HATLST (IH2, MWPR, MMPR, ' ${ }^{\text {P }}$, KTERM)
$9851=12$	CALL IMATIM (In2, MNPR, MWPR, -1)
986023	
987\% $=$	CALL MATLST(RPI ILUAN), NRD, MRD, ${ }^{\text {® }}$ UR', KLIST)
988\% $=$	CALL DVCTOR(MRD, RPI (LUDW), InI)
9899\%	CALL MATLSTIZM, MMD, 1, "Ln", KTERM)
994\% $=$	IFIJMFLIC.EE.S) 60 T0 26s - - - - -
9911 $=$	CALL MODIFX(Zh2)
9926 ${ }^{9930}=269$	CONTI运
993 $=$	T1=.25ITSAMP
994\% $=$	CALL HSCALEIZH1,ZI2, MPIM, NDIM, T1)
9951=	CALL DIAG(MDIM, COM1, CTL (LPHDL),1., 1.)
99693	CALL MAT3ACMDIM, NDIM, COMI, IMI, XI
9974 $=$	
9989	CALL HATAACCOM1, IHI, NDIM, NDIM, NDIH, 2 H 2)
99\%\%	CALL mall (2H2, CIL (LBOL), NDIM, NDIM, MRD, S)
1096\%	CALL TFRMTX (RPI (LUDM), 2MI, MRD, MRD, 2)
19810	
1012 ${ }^{6}=$	RETUPA
1903FIFC END	SUPROUTINE MYUS
1884 $=$	END
1905\% $=$	SUBROUTIME FORMX (EY, RY, $C, D, X, 21,22)$
1096 $=$	COMHON/NDIMD/MND, MRD, MPD, MHD, MDD, MMD, MMD , MPLD, MMPMND, NMPR
18179	DIMENSIOY $\mathrm{QY}(1), \mathrm{RY}(1), C(1), D(1), \mathrm{X}(1), 21(1), 22(1)$
10989=	
19899 $=$	CALL FTMUL (C, 21, MPD, MWD, MMD, 22)
101043	CALL TFRMTX (22, $\mathrm{X}, \mathrm{MND}, \mathrm{NHD}, \mathrm{2)}$
1011\%	$L 1=L A D D R(M W P R, ~ M M D+1, ~ M D D+1)$
1012f=	CALL TFRMTX (RY, X (LI), MRD, MRD, 21
10138=	L2 LADDR (MNPR, MMD $+1,11$
1914/3	1F (MODY.EE.5) 60 T0 5
1515\%=	CALL LPART (X (L2), MRD, NND, MNPR)
1016\% $=$	601015
1017 $=5$	
1018)=	CALL TFRMTX ($22, \mathrm{X}$ (L2), MRD, MND, 2)
10199\%	
1924\%	CALL FTMEL (D, 21, MPD, MRD, NRD, 22)
18219 $=$	L2=1
1822f=	D0 12 I $=1$, MRD
1523: $=$	LI $=$ LADDR (NWPR, MMD +1 , MND + I $)$
1824]	DO $12 \mathrm{~J}=1$, MRD
1925)	$L \mathrm{~L}=\mathrm{L}+1$
1026)=	L2 $2 \mathrm{~L} 2+1$
15274 $=$	$x(L)=X(L 1)+22(L 2)$
1828J= 12	LI $=\mathrm{LI}+1$
1529\% 15	
133\%\%	LI $=$ LADDR (MMPR, MND $+1,1$)
10315	
1832\% $=$	DO 20 Jal, MRD
10338=	$x(L 2)=x(L)$
1034\% $=$	LI $=1.1+1$

\because	19359 $=29$	$L 2=L 2+1$ MPP
	1936 ${ }^{\text {d }}$ =	RETURM
	19376=C END	SUBROUTIUE FORNX
	19389=	END
	19390 $=$	SUPROUTIWE PXUP (PHIDL, BDEL, X , U, S, BUIBT, UIST, PHIP, XP, LHI)
	19449=	COMMOM/MAIMI/NDIM, MDIM, COnI (1)
	19415=	COMHOM/KDIMD/MND, MPD, MPD, MID , NDD, MIID, MUDD, MPLD, MIPMID, MMPR
	10420=	DIMENSIDM PHIDL (1), BEEL (1), X(1), U(1), 5 (1), BUIBT(1), UIST(1),
	$\Gamma_{10438}^{10} 5$	
	F10435 $=$	CALL ERUATE (PHIP, U, MRP, MRDI
	$\frac{\operatorname{ld}_{19459} 949}{}=$	CALL GHIN (NRD, NRD, PHIP, LHL, MR, I) CALL MATS (MDIN, MRD, BDEL, IM1, QUIBT)
	1046\% $=$	CALL MATS (ZMI, S, NRD, MRD, NDIM, UIST)
	1947)=	CALL Mmel (bicl, UIST, MDIh, Mrd, NDIM, zhi)
	$10480=$	CALL MADDI (NDIM, MDIM, PHIDL, IMI, PHIP, -1.)
	19499 $=$	CALL MULL (S, UIST, MDIM, MRD, MDIL, 2 IHI)
	19599=	
	$19519=$	RETURM
	1952f=C END	subroutime pxup
	19538=	END
	1954fe	SUBROUTIME GCSTAR(PHIP,BDEL,U,RK,UIST,GCS,2nI)
	1955\% $=$	COMHOM/HAIM1/MDIM, MDIH, COMI (1)
	19560 $=$	COMHOM/FILES/KSAVE, KDATA, KPLOT,KLIST,KTERH
	15578	
	11589\%	DIMENSIOM PHIP (1), BDEL (1), U($11, \mathrm{RK}(1), \mathrm{UIST}(1), G C S(1), 2 \mathrm{~L}(1)$
	1959\%	CALL MATSA M M , MDIM, BDEL, RK, ZMII
	19699=	CALL MADDI (MRD, MRD, $2 \mathrm{ZLI}, \mathrm{U}, 2 \mathrm{ZLI}, 1$.
0	16619x	CALL GHINY(WRD, MRD, 2 IMI, U, MR, 11
	1062\% $=$	CALL MATS (U, BDEL, MPR, MRD, MDI In, ImI)
	1963) $=$	CALL MATL (ZM, RK, MRD, NDIM, NDIM, GCS)
	10648\%	CALL MMWL (GCS, PHIP, WRD, NDIM, NDIM, IMS)
	1065\%	CALL MADDI (NRD, NDIM, ZMI, UIST,GCS, I.)
	19660	WRITE IKLIST, 191)
	1967 10 101	FORMAT('sREE/PI GAIM Matrix--6CS"/)
	15685=	CALL MATIOIGCS, MRD, MDIM, 3)
	1969\% $=$	RETURM
		SUPROUTIE ECSTAR
	10715=	END
	1972 =	SUBROUTIME SCGT
	1073F=	COMMOM/DESIGM/WUCOH, TSAMP,LFLRPI,LFLCGT,LFLKF,LTEVAL,LABORT
	16749=	COMMOM/FILES/KSAVE, XDATA, XPLOT, KLIST,KTERM
	167513	
	19760 $=$	COMHOW/2HTX2/2H2(1)
	1677 $=$	COMHOM/MDIMD/MND, MRD, MPD, MRD, MDD, MND, MUDD, MPLD, MUPNMD, MMPR
	10789\%	COHHOM/NDIMC/MWC, NRC, MPC
	1679\%	CONHOW/CHDHTX/NUCH, MEMCM, MODC, CH (1)
	18860	COMHOM/LREEPI/LXDW, LUDW, LPHCL,LKX,LXI
	16819 $=$	COMPON/CREGPI/NURPI,RPI (1)
	19829\%	COMHON/LCGT/LAII,LAIS,LA21,LA23,LAL2,LA22,LKXAII,LKXAI2,LKXAI3
	18839 $=$	СОННОМ/ССGT//WCGT, СGT(1)
	1984f=	IF (MEMCC) $28,28,15$
	$16859=15$	
	10869\%	IF (MSILE.LE.NUCGT) 60 T0 16
\because	16879 $=$	MITTE IG6, MSILE

19889 $=$	LABCRT=NSILE
1989\% $=$	RETURN
$18980=16$	IF (NND. GE. MNC) 60 TO 17
1991\% $=$	MRITE 197
1892\%=	60 T0 18
19939 $=17$	IF (NWD. GE.NDD) 60 TO 19
19949 $=$	HRITE 108
$19959=18$	LABORTx-1
1596/3	RETURM
10979: 19	NEWCH=5
19989 $=$	Lalls]
1099\% $=$	LA13 $=1.411+$ MMDFMMC
11898\%	LA21 $=$ LA13 + WND ${ }^{\text {a }}$ HDD
11910=	
11828=	LAL2 $=1423+$ NPDENDD
11039=	LA22=LA12+MMDEMRC
11049=	
1105 $=$	LKXA12=LKXA11+NPDamMC
11869=	$L K X A 13=L K X A 12+M P D+N R C$
11079 $=$	CALL CGTAICGT (LAI1), CGT (LA13), CGT (LA21), CGT (LA23), CGT(LA12),
11889 $=$	1 C6T (LA22), Inl, 2 H 2$)$
$11899=29$	Call CGTKX (CGT (LAII), CGT (LA13), CGT (LA21), CGT (LA23), CGT(LAI2),
1118**	1 CGT (LA22), CGT (LKXA11), CGT(LKXA12), CGT (LKXA13), RPI (LKX))
1111/f=	LFLCGT=1
$11125=106$	FORMAT("SIMSUFFICIEMT HEMORY /CCGT/, NEED: ", 14)
$11130=107$	FORMAT(*gFEMER DESIGN MODEL THAN COMAAND MODEL STATES")
$11149=168$	FORMAT('FEMER DESIGN MODEL THAN DISTURBAMCE MODEL STATES")
11159\%	RETURM
11169\%C END	SUBROUTIME SCGT
11179z	END
$11189=$	SUBROUTIME CGTA(A11,A13, A21, A23, A12, A22, 2m1, 2 n 2$)$
1119\% $=$	COMMOM/MAINI/NDIH, NDIMI, COM1 (1)
1124\% $=$	COMmOM/FILES/KSAVE, KDATA, KPLOT, KLIST, KTERM
1121/\%	COMMOM/SYSHTX/WVSH,SH(t)
11220 $=$	
1123 ${ }^{\text {a }}=$	COMMOM/LOCD/LAP, LGP, LPHI, LPD, LEX,LPHD, LQ, LQM, LQD, LC, LDY, LEY, LAP, LR
11249=	COMMOM/DSNHTX/KUDH, MODY, NOEY, DA (1)
11259]	COMHOM/NDIMC/WHC, MRC, MPC
1126 $=$	COMMOW/LOCC/LPHC,LBDC, LCC, LDC
11279 $=$	COMHON/CHDHTX/NVCH, MEWCH, NODC, CH (1)
1128)	COMHON/LCNTRL/LPII1,LPI12,LPI21,LPI22,LPHDL,LBDL
1129\% $=$	COMMOM/CONTROL/NUCTL, CTL (1)
1139\% $=$	
11319=	NDIMENND
1132\% $=$	WDIMI $=$ NDIM +1
11339 $=$	CALL TFRMTX ${ }^{\text {CH, }}$, 2 ML, MMC, MNC, 2)
11340=	
11359=	
11369	CALL MSCALE (2h2, ZM2, mad , MNC, -1.)
11379 $=$	NAEMAX (NDD, MHC)
1138) $=$	L2al+MNDHND
1139\% $=$	$L J=L 2+N N D F N B$
1149\%\%	L4-L3+MMDaMS
1141\% $=$	L5EL4thndanal

11420=	L6=L.5+NMDEMND
$11439=$	NSIIE $=16+$ MPD + NMC-1
11440 $=$	IF (NSILE.LE.NUSM) 60 TO
11459 $=$	WRITE 162, MSILE
1146)= 192	FORMAT/"IIMSUFFICIENT MEHORY /SYSMTX/, NEED: ",14)
11479 $=$	LABORT=NSIZE
11489 $=$	RETUR
$11499=1$	
115/4=	(SH(L2), SM(L3), Sn(L4), Sn(L5))
11519 $=$	CALL MHUL (A11, 2H1, NND, NMC, MNC, 2H2)
11529=	
$1153 \%=$	CALL FMnHL (CTL (LP122), CR(LCC), MPD, MRD, MNC, Sn(L6))
1154 $=$	CALL FMmuL (All, CH (LBDC) , NND, \#AC, MRC, SN)
11559=	CALL FMAHL (CTL (LPIII), SH, MND, MMD, MRC, A12)
1156)=	CALL FMMUL (CTL (LPI21), Sn, MPD, MAD, NRC, A22)
1157\% $=$	IF (HODC. EQ. 1) 60102
11589 $=$	
11599=	
11609 $=$	CALL Fhatl (CTL (LPI22), CH (LDC), MPD, MRD, MRC, SN(L2))
11610 $=$	CALL FMADD (A22,Sn(L2), MPD, NRC, A22)
11620 $=2$	IF (NDD.EP. 5) 60 TO 15
1163 =	CALL MML (CTL (LPIII), DH(LEXI, NND, MND, NOD, 2M2)
11649 $=$	IF(MOEY.EE.1) 60 TO 5
1165)	CALL FYMLL (CTL (LPII2), DH(LEY), MND, MRD, NDD, IMI)
11660 $=$	
1167 $=5$	CALL TFRHTX (DA (LPHD), 2H1, NDD, NDD , 2)
11689 $=$	CALL SUBI(IMI, NDD, NOIM)
1169\% $=$	
117\% $=$	1 Sn(L2), Sn(L3), Sn(L4), Sn(L5))
11716=	CALL MMLL (AL3, IMI, MAD, MDD, MED, IM2)
1172 ${ }^{\text {d }}$	
11738=	CALL FMNLL (CTL (LP121), 2H2, NPD, NND, NDD, A23)
11749= 15	MDIMENPD
1175 $=$	NDIHI $=$ NDIM +1
11761\%	
11776	IF MOEY.EQ.1) 80 TO 20
11789=	CALL MMUL (CTL (LPI22), DM (LEY), MPD, MAD, MDD, 2 HI)
1179\% $=$	CALL MADD1 (NPD, NDD, A23, $2 \mathrm{H1,A23,-1}, \mathrm{)}$
11899 $=25$	CALL MATLST (A11, MND, MNC, "A11',KLIST)
11810 $=$	CALL MATLST (A21, MPD, \#WC\%, "A21", KLIST)
11829 $=$	CALL MATLST (A12, MMD, NRC, "A12",KLIST)
1183 $=$	CALL MATLST (A22, MPD, MAC, "A22", KLIST)
11849\%	
11859 $=$	WRITE (XLIST, 161)
11869= 161	FORMAT("matrices al3 and az3 are leroa)
11879 $=$	RETUPW
11889= 25	CALL MATLST (AI3, MND,NDD, 'A13', KLIST)
1189\% $=$	CALL MATLST (A23, MPD, NDD, "A23", KLIIT)
11990 $=$	RETURM
11915aC EMD	Subroutime cGia
11929\%	END
1193\% $=$	SUBROUTINE AXBMXC(A,NA, B, NB, C, $X, A \cup, B U, R, 21,22)$
11949=	COMMON/KAINI/NDIM, MDIH1, COMI (1)
1195is=	COMMON/FILES/KSAVE, KDATA, KPLOT, KLIST,KTERM

11969= DIMENSION $A(1), B(1), C(1), X(1), A U(1), B U(1), R(1), 21(1), 22(1)$
11970 = DATA EMAX,ITMAX/1.E-6,3/
11989= CALL TRANSI (NA, A, 21)
11998= CALL EIGEN(NA,21,22,22(NDIMI),AU,1)
12980 = CALL TRANSI (NA,COM1,21)
12019= CALL EIGEN(NB, B, 22,22(NDIMI),BU,1)
1292f= CALL EQUATE(R,C,MA, HA)
$1293 I=\quad \quad I T=\$$
12045= 15 CALL MAT4A(AU, R, MA, MA, MB, 22)
1295f= CALL MATI $(22, B U, N A, N B, N B, R)$
1296s= CALL SLUSHR(21, MA,COH1, MB, R, NDIM)
1207f= CALL MAT4(R, BU,MA,MB, NB,22)
1208J= CALL KAT1 (AU, 22, MA, NA, NB, R $)$
1259)= \quad IF(IT.6T.9) 60 TO 15

1219f: CALL EQUATE (X,R,MA,NB)
1211ر= 60 TO 36
12129= 15 CALL MADDI (NA, MB, $X, R, X, 1$.
12130= CALL ENORM(R,NA,MB, EN)
12149= [F(EN.LE.EMAX) RETURN
12150= IF(IT.LT.ITMAX) 60 TO 30
12169 = WRITE(KLIST, 101) EN
1217)= UMITE (KTERM, 101) EM
1218)= It1 FORMAT/"gSOLUTIOM ERROR FOR 'A' (CGT) AFTER 3 ITERATIONS = ", IPEIS.

12199= 171
1229)= RETURK

1221g= 35 CALL MATI (A, $\mathrm{X}, \mathrm{MA}, \mathrm{MA}, \mathrm{MB}, 12$)
1222s= CALL MATI (22, B, MA, NB, NB,R)
1223)= CALL MADD1 (M, , NB, $X, R, R,-1.1$
$1224!=$ CALL MADDI (MA, MB, R,C,R,I.)
12259 = \quad T $=1 \mathrm{~T}+1$
1226等 $\quad 60$ TO 15
12279aC EMD subroutime axbuxc
1228fe END
1229)= SUBROUTLIE SLVSNB (A,MA,B,MB, C, WA)

1230\%= COWHOMAIMI/MDIM, NDIM, COM1 (1)
1231F= COmn/IMOU/KIM,KOUT, KPMCH
1232s: DInENSIOM $A(M D, 1), B(N D, 1), C(N D, 1), V(16), W(4)$
1233f: Lx
1234日 5 LMI $=1-1$
1235)= DL21

12360 \quad [F(L.ED.HB) 60 T0 8
1237)= [F(8 $1 \mathrm{~L}+1, L$).ME. $5.1 \quad \mathrm{CL}=2$

12389=8 LL=LHL+DL
1239)= $K=1$

1249: $19 \quad K H I=K-1$
12410= DK=1
1242f= IF(K.ED.MA) 60 TO 12
1243:= $\quad[F(A(K, K+1) . M E . S) \quad 0 K=2$.
1244)= $12 \quad K K=K H 1+D K$
1245)= \quad AKK $=A(K, K)$

12465 \quad BLL $=1(L, L)$
1247) \quad IFID.EQ.2) EO TO 35

12489: IF(DK.EQ.2) 60 TO 29
12499: IF(L.EQ.1) 60 TO 13

1384f= 58	IF(L.ER.1) 60 TO 55
1395\% $=$	$V(1)=0073(L H 1, C(K, 1), B(1, L))$
138698	$V(2)=00 T 3(L H 1, C(K K, 1), 8(1, L) 1$
1397\% $=$	$V(3)=0073(L H 1,[(K, 1), 8(1, L L))$
1388)=	
136\% ${ }^{\text {\% }}$	$C(K, L)=C(K, L)-A K K=V(1)-A(K, K K)=V(2)$
13191)	$C(K X, L)=C(K X, L)-A(K X, K)+V(1)-A(K K, K K) \pm V(2)$
13119=	$C(K, L L)=C(X, L L)-A K K \geq V(3)-A(K, K K)=V(4)$
1312 $=$	$C(K X, L L)=C(K X, L 6)-A(K X, K) \equiv V(3)-A(K X, K X) \neq V(4)$
1313)=55	1F(K.ER.1) 60 T0 65
1314\% $=$	$00651 \times 1, \mathrm{KHI}$
1315\% $=$	$V(1)=0013(L L, C 11,1), B(1, L))$
1316\% $=$	$V(2)=0013(L L, C(1,1), 8(1, L L))$
1317\% $=$	$C(K, L)=C(K, L)-A(K, 1) * V(1)$
13180 $=$	$C(K X, L)=C(K K, L)-A(K X, I)+Y(1)$
1319\% $=$	$C(K, L L) \times C(K, L L)-A(K, I)+V(2)$
132 $6=69$	$C(K K, L L)=C(K K, L L)-A(K X, I) * V(2)$
$13219=65$	
1322f=	
1323\% $=$	$V(3)=A K K \pm B(L, L 6)$
1324f:	$V(4)=A(K K, K) \pm B(L, L L)$
1325/a	V(S) $=A(K, K K) * B L L$
1326f=	$V(6)=A(X X, X K)=8 L L-1$.
1327) $=$	$V(7)=A(K, K X)=8(L, L L)$
13289 $=$	$V(8)=A(K K, K K)=8(L, L L)$
1329\% $=$	$V(9)=A K \mathrm{~K}=1$ (LL,L)
133815	$V(10)=A(X X, K)=B(L L, L)$
13316=	$V(11)=A X K=B(L L, L L)-1$.
1332\% $=$	$V(12)=A(K K, K)+B(L L, L L)$
13331:	$\left.V(13)=A(K, K K)=B^{(L L}, L\right)$
1334\%	$V(14)=A(K K, K K)=B(L L, L)$
1335\% $=$	$V(15)=A(K, K K) * B(L L, L L)$
1336\%	$V(16)=A(K X, K K)=8(L L, L L)-1$.
13370 $=$	$W(1)=C(X, L)$
13385 $=$	W(2)=C(KK,L)
13391\%	$H(3)=\mathbb{C}(\mathrm{X}, \mathrm{LL})$
1341/:	$H(4)=C(K K, L L)$
1341\%	MOS AnPIM
1342 $=$	Welme 4
13431:	WDIMI $=$ WDIM +1
1344\%	CALL DOCLIT ($4, V, W, 1, I S 6)$
1345\% $=$	NDIM $=$ NDS
13469 $=$	WDIMI $=$ WDIM +1
13470 99	$\mathrm{K}=\mathrm{K}+\mathrm{OK}$
1348/8	IF (K.LE.MA) 601010
13491/	LaL+ $\mathrm{L}_{\text {L }}$
1351\%2	IFIL.LE.M ${ }^{\text {P }}$ 60 TO 5
13510=	RETURM
1352)=99	WRITE (XOUT, 101)
1353/:	RETURM
13541/ 181	FORMAT("F\% E ERROR IN CGT SOLUTION: AIL->A23")
1355 $=$ C END	gUaroutive Slushe
1336) $=$	END
1357\% $=$	SUBRONTIE EMARM(A,NR,MC,ENRH)

13589:
1359\%= 13690 13619= 1362 $=$ 1363:

1365\%

13665: 1367\%=C END SUBROUTIIE EWOAH
13681: END
1369\% SUMROUTIKE CSTKX(A11,A13,A21,A23,A12,A22,RKXA11, RKXA12, RKXA13,RKX)

13718= CDHwM/FILES/KSANE,KDATA,KPLDT,KLIST,KTERM

1373/= COm日: =
1374f Blicksill All(1),A13(1),A21(1),A23(1),A12(1),A22(1),
1375)= $\quad 1$ RKXA11(1), RKXA12(1), RKXA13(1), RKX (1)

1376f= MDIn=tiD
1377) $\quad \mathrm{MD} \cdot \mathrm{HI}=1 \mathrm{D}[\mathrm{M}+1$

13:Ms CML MATLST(RKXAI1,MPD, MNC, "KXI",KLIST)
1381\% CALL MMTST (RKXAI1, MRB, MMC, "KXM", KTERN)

13R3f= CALL MADI (NMD, MSC,RKXA12,A22, RKXA12,1.)
1384F: CML MATLST(RKXA12, MAD, MAC, "KXU",KLISTI

138GK: IF (NDD.LT.LI RETURM
13874= CAL Fmil(RKX,A13, NRA, WMD,NDA, RKXAI3)
1389\% CALL MADP1 (MAD, NDP, RKZA13, A23, RKXA13, 1.)

1391F RETUN:
1392-AC END SUEROUTIME CGTKX
13935= ENI
1394J SUBROUTIME CEVAL
13956 COWnOW/MAIMI/MDIM, MDIM, COML (1)
1396fe COmMIIWNU/KIN,KOUT, KPUNCH
13975: COMmpildESIEN/WNCDM, TSAMP,LFLRPI,LFLCET,LFLKF,LTEYAL,LABORT
1399\% COwnam/FILES/KSANE, KDATA, KPLDT, KLIST, KTERM
1399\% COmw/SYESTY/NVSN,SN(1)

1411= COmav/IMT12/2M2(1)

1403fe comam/nime/minc, mac, wre
14445 COMNON/LREEPI/LXDM,LUBM,LPMCL,LKX,LKZ
14F5)= COmmW/CRESPI/WMRPI,RPI(I)
14665 DIMENSIOM MLOT(2),WVLOTI15),NS(6),LSCL(2),ITITLE(5)
1497) OATA M0/LIN/

14180 MiltE (KLIST,110)

141219 $=$	IF (LFLCGT) 17, 17, 15
1413f= 15	WRITE 1/6
1414\% $=$	
1415\% $=$	IFIUM.LT.1) 60 7075
1416f=	1F(IUM. GT. MRC) 60 TO 15
1417) $=$	WWOUTEWVOUT+MPC
1418)=	MPs:MC
1419\% $=$	601018
14293: 17	IF (JPOLE.ER.1) CALL POLES(RPI (LPHCL), NMPR, 4, InI, In2)
1421)=	Mpa
1422\% $=18$	CALL VEATIC (SM, WPPLOT, MPLOT, NYOUT,LSCL)
1423)=	IF (WMOUT.EL. 5) 60 TO 75
1424* 26	WIITE 190
1425fa	READE, TEND
14269\%	[F(TEND) 25,25,25
14270 25	
1429\% $=$	LXeLVXEHNOUTT
14290:	
1439\% $=$	
1431/:	
1432fa	
14331:	D0 26 I $=$ LVXS, NP
1434: $=26$	$5 \mathrm{Sn}(1)=$ ¢
143519	
1436) $=$	1 2m, MNOUT, TEND, IUn, VUH, MST)
14375:	WAITE (KTERM, 191)
1438\% $=$	READ(KIM, 122) ITITLE
1439\% $=$	H=53HET
144917	D0 4 1 [$\times 1,2$
1441/z	MS(1) $=1$
1442] $=$	$0028 \mathrm{Jz2,6}$
1443 $=28$	MS(J) $=$ WS $(J-1)+51$
14445=	MP=MPLOT(1)
1445/z	IF (MP.EQ.0) 60 TO 40
1446)=	MPP1 \times NP +1
14476 $=$	REMIND KPLOT
1448) $=$	MSV=531-4
1449\% $=$	CALL RPLOTF (ZH1,NOUT, IERR)
1451\% $=$	CALL STRPLTISM, Int, MS, WUPLOT (MSU), WP, WUOUT)
1451/18	DO 35 3 31,1
14520 $=$	CALL RPLOTF (2M1, MYOUT, IERR)
14531:	1FIIERR.ED.1) 60 TO 4\%
1454/ $=$	[F(m0l (d,MST).ME.S) 60 TO 35
1455\% $=$	$0030 \mathrm{~K}=1$, MPP1
14569 $=31$	
1457\%	CALL STRPLT (SN, 2m1, MS, WUPLOT (MSV), MP, MYOUT)
14589 $=35$	CONTIME
1459\%	
1464t: 46	CONTIME
1461名	WWHzNWOUT-1
1462 $=$	ManNM/5
1463) $=$	
1464 $=$	[F(M.EP.5) 60 T0 36
1465/z	DO 55 [al, NE, 5

```
1467%= 00 42 J=2,6
14689= 42 NS(J) aNS(J-j)+101
1469/z REMIN: XPLOT
147M= NWS=1-1
1471%= 00 45 Jal,5
14724= 45 MPPLOT(J)=NUS+J
1473%= DO 55 Jx1,151
1474%= CALL APLOTF (2MH,MOUT,IERR)
1475%= IFILERR.ED.1) 60 TO 55
1476T= CALL STPPLTISM,2M1,N5,NUPLOT,S,NMOUT)
1477%= D0 48 K=1,6
1478j= 48 MS(K)=*)(K)+1
1479= 5S COMTIME
1489)= CALL PLOTLP(101,5,Sn,1,1,1,KLIST, ITJTLE)
1481%=55 CONTINLE
1482= 56 WN==WH-NE
1483%= IF(NM.LT.1) 60 T0 74
1484/5 NPPI=WNH+1
1485/= WS(1)=1
1486)= DO 57 {=2,b
1487看 57 WS(1)=NS(I-1)+101
1488%= 00 58 \=1,NWM
1499%= 58 MWPLOT (I)=NE+I
149%%= RENIND KPLOT
14915= DO 65 I 1,101
1492I= CALL RPLOTF(2M1,NMOUT, IERR)
1493: IFIIERR.EQ.1) 60 70 7%
1494#= CALL STRPLT(Sn, ZH1,MS,MUPLOT,NH,NUOUT)
1495/= DO 65 J=1,WPP1
14969= 64 NS(J)=NS(J)+1
1497%= 65 CONTIME
14989= CALL PLOILP(1S1,WM,SN,1,1,1,KLIST,ITITLE)
1499% 7% MPITE IS4
15MM采 READ 111, LANS
15510= IF(IAMS.ER.MO) RETURW
1512%= PPOLE=4
1553%=60 T0 15
15A4%= 101 FORMAT(" +",15(*-*),* ENTER TITLE IN GIVEN FIELD ",10("-"),*+"/)
15SSJ= 102 FORMAT(5A1C)
```



```
15979: 1%6 FORMAT/'gENTER MODEL IMPUT AND STEP VALUE: 1 >0')
15%%/= 1%P FORMAT(* ENTER TIME DURATION FOR RESPONSE, IN SECONDS >')
15f9/= 111 F0RMAT(AS)
151G1=C END SUBROUTIIKE CEVAL
1511!= END
1512f= SUPROUTIME VOUTIC(VIC,NUPLOT,MPLOT,NOOUT,LSCL)
15135: COmON/DESIEW/NWCOM, TSAMP,LFLRPI,LFLCGT,LFLKF,LTEVAL,LABORT
1514/e COMmOM/FILES/KSAVE,KDATA, KPLOT,KLIST,KTERM
1515J= COMON/NDIND/NMD,MRD,NPD,MMD,NDD,NMD,MMDS,MPLD,NWPNMD,MMPR
1516f= COMON/NDIMC/NNC,NRC,MPC
1517%= COmMOW/NDIMT/MNT,NRT,MMT,MUT
1518f= DINENSIOM NPLOT(1),NPLOT(1),VIC(1),IOUT(5),LSCL(2)
1519:= DATA IOUT/IHX,IHY,IIN,IHM,1HO/
```

1466 $=\quad \operatorname{MS}(1)=1$

152993:	IF (LTEVAL) 2,2,5
1521f= 2	WVS $=$ ND
1522\% $=$	NVINPLD
1523)=	60 T0 8
1524\% $=5$	WVENTT
15259	WVS $=$ W
1526f= 8	WOUTS WVOUT+NW
1527):	B0 9 [$\times 1$, WVOUT
15289=9	VIC $(1)=0$.
1529\% $=$	WHENT
1539\%:	
15319 $=11$	MRITE 101, MVS
1532f= 101	
1533)= 12	REASE, IV,V
1534\% $=$	IF(IV.LT.1) 60 TO 15
1535\% $=$	IF(IV.GT.WVS) 60 T0 15
1536\% $=$	VIC(IV) $=1$
1537) $=$	60 TO 12
1538\% 15	
1539	$L \mathrm{O}=1$
1541/) 18	Milte 122, WBD
1541f= 102	
1542 $=24$	REABE, IV, V
1543/=	JF(IV.LT.1) 60 TO 26
1544\%	IF(IV.6T.NDD) 60 T0 18
1545\% $=$	VIC ($\mathrm{mND}+\mathrm{IV}$) $=V$
1546\% $=$	601020
1547 $=25$	LDas
15489 $=26$	MaITE 103
1549\%= 183	flomatic 2 Plots of 5 Varlames may be priwted at the ternimal --
155\%)=	1SPECIFY MMABER FER EACH (M1, NL 2) >*)
1551\% $=$	READz, MPLOT (1), MrLOT (2)
1552/=	1F (10LOT(1).6T.5) MrLOT(1) =5
1553):	IF (MPLOT (2) , 6T.5) MPLOT (2) =5
1554\% $=$	
1555]=	WOOUT ${ }^{\text {F }}$
1556fz	RETUAM
1557fe 27	MIITE 104
15589= 164	Fbamatl* EMTER OUTPUTS BY TYPE AND IMDEX In 2 Entries--TYPES are"/
155\% $=$	
156\% ${ }^{\text {a }}$	IF (LFLCGT) 31,36,28
15611: 28	Malfe 105
1562\% $=15$	FORMAT(" MODEL : 'H'*)
15636	IF (LD.EQ.1) MIITE IT6
1564\%= 106	format(' DISTuRzance : 'd'e)
1565f $=38$	D0 49 [$=1,2$
1566\% $=$	MCsINPLOT (I)
1567)	IF (MC.LT.1) 60 T0 48
15689	LSCL (1) $=1$
15691:	MSass (1-1)
157\%\%	MRITE 157,1
1571f= 187	FDamat('cplot ', 12)
1572\%	DO 39 Js1, MC
15731=	MSPaMStJ

15749= 31 MRITE 199, J
15758= 188 FORMAT(OUTPUT ", I2," >0)
1576f= READ 111, [V
1577: M MITE 113

1579\% R READF, 10
15855= IFIIV.NE.IOUT(I)) SO TO 32
15815= If(IO.6T.NWS) 60 T0 38

15835= $\quad 60$ TO 39
1594) 32 IFIIV.ME.IOUT(2)) 60 TO 321
1585)= [F(1].6T.WPD) 60 T0 38

158SE= WPLDT (MSP) $=W+10$
15975 60 TO 39
15889= 321 IF(IV.ME.IOUT(3)) 60 TO 33
1589)= [F(ID. GT.MRD) 60 T0 38

159M= WPLOT (MSP) $=$ NVU +10
$15919=60$ T0 39
15921= 33 IF(LFLCGT.LT.1) 60 T0 31
1593Jz IF(IV.ME. IOUT(4)) 60 TO 34
$15944=\quad$ IF (IO.6T.NPC) 60 T0 38
15955: WPLOT (MSP) $=$ WNH +10
15965: LSCL(1) $=-1$
1597\% $=60$ TO 39
15989= 34 IF(LD.ME.1) 60 TO 31
15999 \quad IF(IV.ME.IOUT(5)) 60 TO 31
16954: IF(10.6T. MOD 60 TO 38
16015 \quad MPL LOT (MSP) $=N W S+10$
$16520=60$ TO 39
16935: 38 WITE 199
1604f: 169 FDRMAT(' IMPEX TOO LARGE')
1695F 60 TO 31
1606J= 39 CONTIME
16975: 45 CONTIME
$16509=\quad$ WHI $=$ WNOUT-1
16990 \quad PPaf
1610)= DO $56[=1$, WMI
1611)= $\quad \mathrm{H}=\mathrm{HOD}((1-1), 5)+1$

1612d= IF (M.6T.1) 60 TO 41
16136= Mexip+1
1614) MRITEIKLIST,116) Mp

1615f= 116 FORMT('SPLOT ${ }^{\circ}, 12$)
16165= 41 IF(I.67.WSS) 60 TO 42
16175= [VE]0UT(1)
1618\% $\quad 10=1$
1619\% 60 TO 45
$162 \mathrm{Cy}=42$ If(I. $6 \mathrm{~T} . \mathrm{NV}$ 60 TO 43
1621- $\quad \mathrm{IV}=1007(5)$
1622J= [0:I-WM
16230= 60 TO 45
1624J= 43 IF(I.GT.NWU) 6O TO 441
16250= IV=10UT(2)
1626J: $\quad 10=1-W$
1627) $\quad 60$ T0 45

16289 $=441$	IF(1.6T.NWW) 60 T0 44
1629\%\%	IV $=$ IOUT (3)
163193	10=1-NW
$16315=$	801045
$1632 \mathrm{~S}=44$	$\mathrm{IV}=$ [0uT(4)
1633\% $=$	$10=1-\mathrm{WM}$
16345 59	WIITE (KLIST, 112) M, IV, IO
$16359=51$	contime
1636) $=$	RETLRW
16379 $=111$	Farmat (al)
16389 112	
163919C EMD	SURROUTIME VWUTIC
1649193	END
1641\% $=$	
16429*	1 MST)
16431) $=$	COMMOM/BESIEW/WUCOM, TSAMP, LFLAPI, LFLCGT, LFLKF, LTEYAL, LABCRT
1644\%	COMnON/FILES/KSAVE, KDATA, KPLOT, KLIST, KTERM
1645 ${ }^{\text {a }}$	
1646fa	
16479 $=$	COMMEW/DSNHTX/NUDH, WOAY, MOEY, DH (1)
1648\% $=$	COMMOM/NDIMC/ MAC, MRC, MPC
1649\% $=$	COMMOM/LOCC/LPMC,LBDC,LCL,LDC
1658\% $=$	COMMOM/CHAMTX/WNCN, WEMCH, WODC, CH (1)
16510=	COMMM/LOCT/LPMT, LBDT, LODT, LHT,LRT,LTDT,LTNT
1652f=	COmom/TRUMTX/WNTM, Th(1)
1653\% $=$	COMMOM/LREEPI/LXDH, LUBM, LPHCL,LKX,LKZ
1654J3	COMMPN/CRESPI/MUPPI, RPI (1)
1655\% $=$	
16565:	
1657)	MST=2
1658fe	IF (WSTPO.6E.1) 60 TO 1
1659\%	USTPOE1
1664 $=$	MST=1
16619=1	MSTEPS $=1$ MFWSTPO
1662\%s	IF (LFLCET.EP.j) 60 TO 2
16631\%	LUMENUOUT-MPC
16641)	IF (MDD. Eq. ${ }^{\text {S }}$) 60 TO 4
1665/5	LDC6Tal
$16669=$	60 TO 5
$16675=2$	Lnownout
$16681=4$	LDCET $=$ \%
1669\% $=5$	LUELMM-Nid
167918	LSOELU-MPD
16719	WYyLSO-1
1672\% $=$	[F(LTEVM) $6,6,18$
1673) 6	DO 7 [$=1$, WVX
1674)=7	71(1) $=$ VXI(1)
167596	608012
1676fle 10	CALL XFDT (VI1, X1,LDCGT)
1677) $=12$	MNDP1 \times mind 1
16789\%	REUIME KPLOT
167\% $=$	
1689\% $=$	IF (LFLCET.EQ.1) CALL YCHD (Xh1, Ith, YM, CH(LCC), CHILDC),
16810 1	[VXI (LMO))

```
16828= CALL MPLOTF (VXI,NVOUT)
1603&= DO 10 IT=1,NSTEPS
1684%= CALL URPI (RPI (LKX),RPI (LKI), DM(LC), DM(LDY),XI,XI,VXEILUI,VXI(LU))
1685%= . JF(LFLCGT) 25,25,15
1686= 15 CALL UCGT(VXS(LU),VXI(LU),XHS,XH1,XS(NNDP1),2H1,IUM,VUM,IT)
16879= CALL CUPDAT(XHS,XH1,ILM,WUN)
1688%=29 CALL FTMTX(VXI (LU),VYS(LU), WRD,11
1689: CALL FTMTX (XI,X\,MPLD,1)
169M1= IF(LTEVAL) 25,25,35
1691:=25 CALL DUPDAT(DH(LPHI),MM(LDD),DM(LPHD),DH(LEX),XS,X1,
1692f= \ VX1,VYS(LU),LDCET,MMP1)
1693%= 60 50 35
1694=3: CALL TUPPAT(TH(LPHT),MM(LBDT),VKI,VX1,VKE(LU))
1695%= CALL XFDT(VX1,X1,LDCGT)
1696)= 35 IF(mOD(IT,NSTPO).ME.5) 60 T0 199
```



```
1698|= CALL YDSN(X1,VX!(LU),䬱(LC),DM(LDY),LDCGT,VY1(LSO))
1699%= IF(LFLCGT.EQ.1) CALL YCHO(XH1,ILA,VUN,CH(LCC),CH(LOC),
176C%= 1 VXI(LMO))
17!1% CALL MPLOTFIVY!,WOUT)
17020= 1M COMTIME
1793!= ENDFILE KPLOT
1794%= RETURM
17%J=C END SUBROUTIME CTRESP
1716f= END
17:7%= SUBROUTIME DLPPAT (PHI,BD,PHID,EX,XI,M1,VI1,U1,LDCGT,MNDP1)
1708%= COmMN/MAIN1/MDIM,NDIM1,COM1(1)
```



```
1719:= DIMENSIOM PHI(1),BD(1),PHID(1),EX(1),XI(1),X1(1),VX1(1),UI(1)
1711/s= WDIM=NDD
1712f= NDIM!aNPIM+1
1713:= CALL FMMUL(BD,U1,MND,MRD,1,X1)
17140= CALL MmLS(PHI,XS,MDD,NND,1,XI)
1715%= IF(LDCGT.EL.5) 60 T0 15
1716f= CALL FMMR (PNID,XS(%MDP1),NDD,NDD,1,X1(MDDP1))
1717%= CALL MMLS(EX,X1 (NMDP1),NWO,NDD,1,XI)
1718%= 10 CALL FTMTX(X1,VX1,NPLD,1)
1719g= RETURM
172GFaC EMD SUBROUTINE DUPDAT
1721%= END
1722G: SUBROUTIME CLPDATIXMS,XH1,IUN,WOH)
1723f= COmNM/MAIM1/MDIM,NDIML,CDH1(1)
1724.3 COmMON/MDIMC/NMC,NRE,NPC
1725f= COmMON/LOCC/LPHC,LBDC,LCC,LAC
1726%= COMmON/CHATTX/NVCH,NENCH, WONC,CH(1)
1727!= DINEMSIOM XMS(I),XM1(I)
1728%= NDIM=WMC
1729% NDIMI=NDIN+1
1739%= CMLL FTMTX(XHL,MM, nic,1)
17310= LI=LADBR (NMC,1, IUN) +LBEC-1
1732f= CALL USCAEE(XH1,CM(LI),MMC,VLN)
&'3A CALL malS(CNILPMC),XMS,MMC,NMC,1, XHI)
:i34%= RETURM
1735/aC END SUBROUTIME CUPDAT
```

1736: END
17378= SUBROUTIME TUPDAT (PHI, 8D, VXI, VX1,U日)
17389= COMMOM/HAIMI/KDIM, WDIMI, CON1 (1)
1739:

1741I= NDIMzWII
1742f= NDIMI $=N 1$ IN +1
1743:= CALL FTMTX(VII,VY, MiT, 1)
1744)= CALL FMMLL (BD, U5, mat, MRT, 1, VXI)

1746) RETURM

17478=C END SUBROUTIME TUPDAT
1748F= END
1749/= SUBROUTIME XFDT(V,X,LDCGT)

17510= COMnOM/NDINT/NMT,MRT, MMT,NMT
1752f= COMOM/LOCT/LPHT,LBDT,LLDT,LHT,LRT,LTDT,LTWT
1753 = COMmOM/TRUMTX/NVTM, TM(1)
1754 = DIMENSIOM V(1), X(1)
1755\% CALL FMMLL (TM(LTDT), V, WMD, wit $1, \chi$)
17560 = IF(LOCGT.EQ.0) RETURM
1757 $=$ CALL FMMNL (TM(LTNT), V,NDD, MNT, $1, X$ (NMD +11)
1758\% RETURM
1759:=C END SUBROUTINE XFDT
1769y= END
1761 = SURROUTIME URPI (RKX,RKL,C,DY, XI, XI, US,UI)
1762 $=$ COMMOM/MAIM1/NDIM, NDIM1, COH1 (1)

17649: DIMENSIOM RKX(1), RKZ(1),C(1), DY(1),X(1),XI(1),US(1),U1(1)
1765\%= CALL YDSM (XI, US, C, DY, 1 ,U1)
1766f= 15 CALL VSCALE (UI,U1, MRD, -1.)
1767= CALL MMLS (RK1,U1, MRD,NRD,1,UH)
1768)= DO 12 [z1, MPLD

17699=12 \quad ($1(\mathrm{I})=\mathrm{x}(\mathrm{I}(\mathrm{I})-\mathrm{XI}(\mathrm{I})$
1779)= CALL FMmLL(RKX, 1), MRD, MND, 1, U1)
$17710=$ CALL YADD (MRD $1.1 ., U 1, U 5)$
17720= RETURM
1773E=C END SUBROUTIME URPI
17740 END
1775: SURAOUTIME UCGT(US,U1, XHS, XMI, DDIF,2H1,IUn,VUH,IT)
1776f= COMMOM/MAIMI/NDIM,NDIML, COMI (I)

1778: $=$ COMBM/NDIMC/MMC, NRC, MPC
1779)= COMMM/LOCC/LPHC,LDDC,LCC,LDC

17899= COnnaM/CHDMTX/NVCH, MEMCH, NODC, CM(1)
1781: COMMON/LREGPI/LXDH,LUDM,LPHCL,LKX,LK2
17829: COMMON/CREEP1/WVRPI,RPI (1)
1783)= COMON/LCET/LA11,LA13,LA21,LA23,LA12,LA22,LKXA11,LKXA12,LKXA13
1784)= COMOM/CCGT/WCGT,CGT(1)

1786) CALL YCHD (XM, ITM, VUH,CHILCC), CH(LOC), USI

17979 = IF(IT.6T.1) 60 TO 10
17889= I 2 LKXA12+LADDR(MPD, 1,1UN)-1
1789) CALL HADDI (WPD, 1,U1,CGT(I),U1, UUA)

17906= 15 CALL MMLS(RPI (LKI), US,NDIM, NDIM,1,UI)
17919= 0012 I 51 , NMC

17935= CALL FMALL (CET (LXXA11), XMS, MPD, MME, 1, UB)
1794= CALL VADD (NDIM, L.,UI,US)
17959= IF (NDD.E9.6) RETURN
1796f= DO 14 I $=1$, MDD
1797)= $14 \operatorname{DDIF}(I)=-\operatorname{DDIF}(I)$

1798: CALL mull $\operatorname{sicGT(LKXA13),~DDIF,MPD,NDD,~1,U1)~}$
1799\% $=$ RETURM
189FO=C END SUBROUTIME UCET
1891/= END
18920 = SUBROUTIE YDSM (X,U,C,D,LDCGT,Y)
1893I= COMMOW/MAIMI/MDIM, NDIMI, COMI (1)

1895f= COMMOW/LOCD/LAP,LGP,LPHI,LBD,LEX,LPHD,LQ,LEN,LOD,LC,LDY,LEY,LHP,LR

1897)= DIHENSIOM $X(1), U(1), C(1), D(1), Y(1)$

18986= NDIK=NPD
1899\% $=$ NDIM $[=N D[M+1$

18119= JF(MODY.ER.1) 60 TO 18
1812: CALL Minls (D, U, MPD, MRD, $1, Y$)

18150= RETURM
1816\%=C END SUPROUTIME YDSN
18176= END
18189= SUBROUTIME YCHD $(X, 1 U, W U, C, D, Y)$
18:98= COMMOM/MAIMI/NDIK,NDIMI,COMI (1)
182出 $=$ COMHOM/NDINC/MMC, MRC, NPC
1821\%= COMMOW/CHOHTX/NYCH, MENCH, NODC, CH(1)
1822f= DIMENSION X(1),C(1),D(1),Y(1)
1823\% \quad NDIM $=$ WPC
1824 $=\quad$ NDIMI $=$ NDI $M+1$
1825 $=\quad$ CALL Fmanl (C, x, NPC, MMC, $1, y$)
18269= IF (MODC.ES. 1) RETURM
1827 = $\quad L I=L A D D R(M P C, 1, I U)$
18289= CALL MADD1 (WWC, 1, Y, D(LI), Y, UU)
1929)= RETUMM

183GS=C END SURROUTIME YCHD
18310 = END
1832f= SUBROUTIME FLTRK(IFLTR)
1033 = COMOM/MAIMI/MDIM,NDIMI,COM1 (1)
1834f= COMMON/MALN2/CON2 1 1)
1835f= COMMOM/DESICN/NUCOM, TSAMP,LFLAPI,LFLCET,LFLKF,LTEYAL,LABORT
183603 COMMON/FILES/KSAVE, KDATA, KPLOT, KLIST, KTERM
1857 $=$ CONHON/SYSMTX/NUSM, SH(1)
18389= COMHOM/2nTXI/NWIH,2M1(1)
1839)= COMmON/IMTX2/2H2(1)

1841f= COHMON/LOCD/LAP,LEP,LPHI,LBD,LEX,LPHD,LQ,LQN,LQD,LC,LDY,LEY,LHP,LR
1842f= COMMON/DSNMTX/NVDH, WODY,NOEY,DM(1)
1843: COMMON/LKF/LEADSW,LFLTRK,LFCOV

1844 $=$	COMMMM/CKF/MNFLT,FLT(I)
1845f=	
1846) $=$	URITE (KTERM, 109)
1847 $=108$	FORMAT("ONO DRIVIMG MOISES - - FILTER dESIEN ABORT")
18489 $=$	RETURM
1849\% $=1$	IF (MDD.ET.O) 60 TO 2
1854. $=$	MaITE (KTERM, 109)
18510 $=199$	FORMAT(*EMO MEASUREMENTS - FILTER DESIEN ABORT')
1852f=	RETURM
1853\% $=2$	valte (KLIST,11\%)
18541: 110	
1855)=	
1856/5:	IF (NSILE.LE.NWFLT) 60 TO 3
1857 $=$	WIITE 101, MSI2E
$18581=101$	FORMAT("SIMSUFFICIENT MEMORY /CKF/, MEED: © 14 (
1859\% $=$	LABCRTEMSILE
186017 $=$	RETURM
1861\% $=3$	NDIM $=$ NPLD
1862J=	NDIM ${ }^{\text {NDDIM }+1}$
18639 $=5$	1F (Num.ER.5) 60 TO 12
18644=	IFIFLTR.LE.S) 60 TO 6
1865 $=$	WRITE 155, MND
1966 $=185$	FORMAT(' ENTER STATE NOISE STREMGTHS: - I2)
1867\% $=$	CALL RRMGTS(DM(LO), MWD, ${ }^{\text {S }}$)
1868\% $=6$	CALL DUCTOR(MUD, DM(LE), 2m1)
1869\% $=$	CALL HATLST(ZML, MWD, 1, "Q",KTEAM)
18794= 10	CALL MARLST (DM(LD), MID, MND, "@", KLIST)
1871 $=12$]F(M1明, EP.5) 60 T0 18
1872 $=$	IF(IFLTR.LE. 1) 60 TO 13
1873 $=$	MRITE 166, Mid
1874\% 16	Ftamat(" EMter disturbamce moise strengthis ',12)
1875/:	
18769 $=13$	CALL DVCTOR (mmD, PM(LOM), IMI)
1877) $=$	
18789= 15	
1879 $=18$	
1889\% $=$	IF(IFLTR.LE.S) 601019
18819=	MRITE 107, Mid
18929 $=107$	FORMAT(' EMTER MEASUREMENT MOISE STREMGTHS: ',12)
1883)=	
1884) 19	CALL PVCTAR (MMD, DM(LR), IMI)
1885) ${ }^{\text {\% }}$	CALL MATLST (2MI, MRD, $1, ~ " R ", K$ PERM
18869 $=29$	CALL MATLST (DM(LR), WMD, MHID, "R', XLISI)
1887) $=25$	CALL TFRHTX (OM(LHP), SH, MMD, MDIM, 2)
18889 $=$	CALL TRAMS2 (MMD, NDIH, SH, 2 HI 1$)$
189918	LFCON=LFLTRX +NDIM+NHD
1894f\%	CALL DVCTOR(M1D, DM(LR),FLT (LFCOV))
18910	CALL KFLTR (NDIM, WID, FLT, 2 M 1 , OM (LDD), FLT(LFCOV), 2 H 2 ,
1892] $=$	1 FLT(LFLTRK), Sn)
18931]	CALL TFAMTX (Sn, COM2, NDIM, NDIM, 2)
18948:	$1 A^{1}$!
1895 \%	00301×1, MPL ${ }^{1}$
18969 $=$	FLT (LFCOV-1+I)=SRRT $32 \mathrm{H} 2(1 \mathrm{~A})$)
18979 $=3$	IA $=$ IA +NDIMI

\therefore	$\begin{aligned} & 1898= \\ & 18999= \end{aligned}$	CALL MARLST(FLTILFLTRK), NDIM, MAD, 'KF', KLISTI CALL MALLST(FLTILFLTRK),NDIM,NDD, "KF",KTERM)
\because	190015	IFLTRE!
	191192	LFLKF=1
	19820 $=111$	format (A3)
		RETURU SUBROUTIE FLITK
	1965\%)	End
	19967e	Suaroutile feval
	1997\%	
	1998)	
	1999\%	COMMOM/IWOU/KIM, KOUT, KPUWCH
	1910\%	COMMOM/DESIEM/NWCOM, TSAMP, LFLRPI, LFLCGT, LFLKF, LTEVAL, LABOPT
	19115\%	COMMOM/FILES/KSAVE,KDAPA,KPLOT, KLIST,KTERM
	1912\%	COMMOW/SYSNTX/WUSN, SHI (1)
	1913)=	
	1914*	Cомmow/InTx 2 /LH2 (1)
	1915)	COMWOM/MDIMD/MMD, MPD, MPD, WMD, MDD, MUD, MIDD , MPL
	1916)	COMMOM/LOCD/LAP, LEP, LPMI, LBD, LEX, LPHD, LO, LOM, LOD, LC, LOY, LEY, LHP, LR
	1917\%	COMOM/DSMIT/WNDM, MODY, MOEY, DM (1)
	19188\%	COMOMOM MDIMT/MMT, MRT, WHT, MUT
	1919\%	COMOW/LDCT/LPHT,LBDT,LDDT,LHT,LRT,LTDT,LTNT
	19204\%	
	19219 $=$	COMmOM/LKF/LEADSN, LFLTRK, LFCOV
	1922f=	COMMOM/CKF/WFLT, FLICII)
	19238 $=$	DIMENSION ITITLE (5), MS (3), WVPLOT(2)
	1924):	IF (MU1.6T.0) 60 TO 1
	1925\%	maIte (KTEPM, 100)
	192693 168	formatiomo truth model drivimg moise - filier evaluation aborte
	19278=	1091
	19289-	return
	1929) 1	URITE (KLIST, 119)
	193060 1110	
	19316 $=$	
	193250	CALL POLES (SN, WPLL, $5,2 \mathrm{ml}, 2 \mathrm{~m}$)
	19336	
	19345	MSIIE = Matha
	19359\%	IF (MSILE.LE.NWSH) 60 T0 日
	1936\%	Malte 1il,MSILE ${ }^{\text {a }}$
	1937) $=101$	
	19389 $=$	60 109
	19390 $=8$	If MSIIE,LE.NWZH) 60 To is
	1944\% $=$	WRITE 1B3, MSILE
	19416e 163	
	19420 $=9$	LABORTIMSLIE
	19430 $=$	RETURM
	1944) 19	CALL LPARTISN, 1, MSIIE, 11
	1945J\%	NDIM WMPLIS
	19465	
	19478=	CALL TFRMTX (TMLLRTI, IML, MMO, MMO, 2)
	19489 $=$	CALL MAT3 (MPLD, MIT, FLTILFLTRK), 2m1, COMS
	19499\%	
	19595e	REVIND KPLOT
	1951\%	
		D-46

19520: DO 25 [T=1,55
1953ge TIME =TSAMP\&FLOAT(IT)
1954: CALL ACOVUD(Sn, TM(LEDI),COH1, TM(LPHT),FLT(LEADSN),
1955)= 1 COH2, ZH1,2H2)
1956)= CALL DACOV (SN, FLT (LFCOVI, ZMI, 2H2, MA, NVOUT, TIME)

1957f= 25 COMTIMUE
1958/: EXDFILE KPLOT
1959): MITE (KTERH, 1S4)

19691: READ (XIN, 1E2) ITITLE
19615 $0053 \mathrm{I}=1$, MPLD
1962\% REWIW KPLOT
1963f= \quad KS (1) $=1$
1964) NS (2) $=52$
1965) $\quad \mathrm{NS}(3)=103$

1966f= NWLOT(1) $=1+1-1$
19674= WPLOT (2) $=1+1$
19689 $=0041 \mathrm{~J} \times 1,51$
1969\%: CALL RPLOTF (ZH1, WONT, IERR)
1976) IF(IERR.EQ.1) 60 TO 5S

1971/= CALL STRPLT(SH, ZH1, MS, NPPLOT,2,NYOUT)
19729= $\quad 0035 \mathrm{~K}=1,3$
1973f= $35 \quad$ WS $(K)=15(K)+1$
1974)= 45 COMTIME

1976f= 107 FORMAT("AFIMAL RMS ERRORS: TRUE $=$ ", IPE15.7/" (STATE", IJ,

19789= CALL PLOTLP (51,2,Sn,-1,1, 1, KLIST, ITITLE)
1979/z WRITE(KLIST,196) I
1989:3 166 FORMAT/"S STATE : ",12//4X,"SYBBOL 1 : TRUE ERROR"/
19815 1 4X, "SYHBOL 2 : COMPUTED ERROR "/1
19829: 55 CONTIME
1993: RETURU

19859= 102 FORMAT(5A10)
1986\% $=$ C END SURROUTIIE FEVAL
19879 $=$ END
1988f= SUBRDUTINE DACDV(PCA,PC, ZH1,2H2, MA; NOOUT,TIME)
19899: COMMON/MAIMI/MDIH,NDIM1,COMI (1)
1998\%= COMMOMFILES/KSAVE,KDATA,KPLOT,KLIST,KTERM

1992f= COMMON/NDIMT/NMT, NRT, MMT, MWT
1993今= COMMON/LOCT/LPHT,LBDT,LDDT,LHT,LRT,LTDT,LTMT
19948: COmON/TRUMTX/NUTH, TH(1)
1995)= DIMENSION PCA(1),PC(1),2N1(1),2H2(1)
1996) $=\quad$ NDIN $=14$ A

19979 \quad WDIMI $=$ WIIIH+1
1998: CAL TFRMTX(TM(LTDT),2H1, MND,NNT,2)
1999: IF (NDD.LT.1) 60 TO 5
2GMA)= JA=LADDR (MA, NND $+1,1$)
2681)= CALL TFRMTX(TMILTNTI,IMI(IA),NDD, NNT, 2)

2032t= 5 CALL HSCALE(2H1,2M1,NPLD,MNT,-1.)
2903f= IALADDR(MA, 1 , MUT +1)
26A4) CALL IDNT (NPLD, InI (IA), 1.)
2095f: CALL MAT3(NPLD,MA,2H1,PCA, 2H2)

2066fz mRITE (KLIST, 161) TIME
2097e lat FORHAT('S'TRUE' DESIEN ERROR COVARIAMCE AT TIME = ',F6.4)
2480\%= CALL MATIOCZH2, NWLD,NPLD,3)
2019\% 1 IA=1
2010fe DO 16 [x1, WPLD
2011f MSEI+1

$20135=\quad 2 \mathrm{ml}(15)=\mathrm{PC}(11$

$20150=\quad 2 \mathrm{HI}(\mathrm{NVOUT})=\mathrm{T}$ IME
2916f= CALL IPLOTF (2MI,NOUT)
2017\% R RETURM
2918j=C END SUBROUTIME DACOU
28196= EKD

29219z COMMOM/MAIM1/MDIM, NDIIL, COM1 (1)

$2624=$ COMOW/LDCT/LPMT,LBDT,LDDT,LHT,LRT,LTDT,LTNT
25259= COMmOM/TRUNTX/NTM,TM(1)
2526f= COMMOM/LKF/LEADSN,LFLIRX,LFCOV
2927e \quad COmon/CXF/WNFLT,FLI(1)
2028G= DIMENSID PC(1), DD (1), RKKKT(1), PHIT(1), PHI (1), RIMKH(1),
25299: $12 \mathrm{ml}(1), 2 \mathrm{M} 2(1)$

29316= CALL ZPARTIZM2(LI), MWT, MPLD, MOIM)
2032f= CALL TFRMTX (PHIT, 2M2, NMT, MUT,2)

2034f: CAL TFRHTX(PHI,2M2(LI), MPLD,NPLD,2)

2037)= CALL MATS IMDIN, NDIH, 2M2,PC,2H1)

213865 CALL FPADD (2H1,NDIH, 00 , MNT, MNT, 1, PC)
26390 CMLL IDNT (MWT,2M2,1.)

20419= CALL TFRHTX (ZNL, IM2 (L2), MPLD, MNT,2)
20420 = CALL TFRHTX (RIMKH,2M2(LI), MPLD, MPLD, 2)

2944) CALL FPADD(ZMI,MDIH,RKRKT, WPLD, WPLD,LL,PC)

2045F $=$ RETUPM
2646F=C ENO SUBROUTIIE ACOWUD
2447: END

24496: DImension X(1), Z(1), Y(MRY, MCY)
26540 CCALL FTMTX (X, L, MX, MX
25910= LAMIELADDP-1
2052f= DO $15 \mathrm{I}=1$, NCY
2653)= LAIzLAMI + NXI (I -11

2954Fe DO $18 \mathrm{~J}=1$, MRY
2555f: LAIELAL+1

26570: RETURM
20588=C END SUBROUTIILE FPADD
2659\% END

2668\%	SUPROUTIME RSYS (A, L, ND, ITYPE, IURT)
2,61/ $=$	COMMOM/DESIG\#/WYCOM, TSAMP, LFLAPI, LFLCGT, LFLKF, LTEVAL, LABORT
2662\%	COMMOM/FILES/KSAUE, KDATA, XPLOT,KLIST, KTERM
25635 $=$	COMMOM/SYSMTX/NWSH, Sn (1)
2464\%	COMmon/AMC/An(1)
2665\%	COmman/806/BD (1)
206653	DIMENSIOM $\mathrm{A}(1), \mathrm{L}(1), \mathrm{ND}(1), \mathrm{MAD}(14,2), \mathrm{IMD}(7,3), \mathrm{MTYP}(2,3), \mathrm{MTITLE}(3)$,
2667\%	
2648\%	DATA UTYP/7, 14, 3, 4, 4,8/
24694=	Mata mo/ILm/
267\% $=$	
20716	
2472\%	DATA MTITLE/GHDESIEM, 7 HCOMMAMD, 5HTRUTH/
2973)	
20749	
247585	2 2HRT, ЗHTPT, ЗHTNT, (1H)/ $^{\prime}$
2576f:	MDM WNTYP (1, ITYPE)
2477\%	MAR=NTYP (2, ITYPE)
2478)	MTaNTITLE (ITYPE)
297\% $=$	WRITE (KLIST, 115) WT
268, $=110$	
26810 $=5$	MRITE 151, WT
2482\% $=191$	FORMAT('smead ", A7, madEl froh 'datal file (Y 0R N) >'
2683 ${ }^{\text {2 }}$ =	READ 111, IANS
2684\% $=$	IF (IAMS.EP. Wo) 60 TO 10
2185\% $=$	[Fs]
2386/	CALL READFS (A, MD, ITYPE, IERR)
26979=	
2188)= 10	WRITE 152, WT
24999= 152	
2499\%3	READ 111, IANS
21915	IFIIAMS.EP.MO) 60 TO 15
2992f=	IFs2
29939\%	DO 12 [$=1, \mathrm{NDM}$
29941:	WRITE 112, IND (1, ITYPE)
24956= 112	Fornat(* ENTEA ",A2, " >')
29965 $=12$	READF, MD (I)
2997)=	60 T0 231
25999 $=15$	[F5]
2999\% $=$	IF (ITYPE-2) 16, 17,18
21910 $=16$	CALL DSAD (MD)
21010=	601029
21:23) 17	CALL CHidP(MD)
21:33: $=$	601020
219419 18	CALL TRTHD (MD)
2155is 24	1F(MD(1).6T.5) 60 TO 251
2106t=	MRITE 114, WT
2167f= 114	
2108f=	60505
2109\% $=211$	IF (ITYPE-2) 21,22,23
211019 21	CALL DSNDH (ND, MAD)
2111\% $=$	80 TO 25
2112 $=22$	COLL CHDOM (WD, MAD)
2113\%	601025

2114 $=23$	CALL TRTHEM(1\%, MAD)
$21.51=25$	IF (LABORT. ER.S) 60 TO 26
2116 ${ }^{\text {2 }}$	URITE 1S3, WT, LABCRT
2117 1010	FORMAT('SIMSUFFICIENT MEMORY FOR ',A7, " MODEL, WEED: ', [4)
2118\%	RETUAM
211\% $=26$	L(1) $=1$
2120\% $=$	$0035[=2, \mathrm{man}$
2121) 31	$L(1)=\{(I-1)+$ WAD ($[-1,1)$ +NAD $(1-1,2)$
2122]=	
2123/=	IF (IPNTS.LE.WSSH) 60 TO 34
21249 $=$	WIITE 104, WPITS
21259 194	FGRMAT(*SIMSUFFICIENT MEMDRY /SYSNTY/, WEED: ${ }^{\text {e, 14) }}$
2126 $=$	LABCRT=*PNTS
2127 $=$	RETUPM
21289 $=34$	IF (IF-2) 75, 35, 59
2129\% 35	12=1
2130 ${ }^{2}$	0045 Ix 1 , MAR
213118	Mi $=$ Malil (1,1$)$
2132 $=$	M2=MAB(1,2)
21331:	1F ((M1.ER.5).0R. (W2.ER.5)) 60 TO 40
2134F	WIITE II3, MMAT(I, ITYPE)
2135\% 113	
213615	CALL InATIM(A)
2137 = 41	Cantime
2136\%	60 T0 75
2139\% 59	CALL $\operatorname{IPART}(A, 1$, MPMTS, 1$)$
2140\%	IF (ITYPE-2) 55,6J,65
2141\% 55	
2142 $=$	
2143)=	601075
2144 $=64$	CALL CMan(AlL(1)), A(L (2)), A(L (3)), A(L (4)))
2145\%	607075
2146F $=65$	CALL TRTMn(A)
2147\%	1 All (7) , A (L) 81$)$)
21489 $=75$	12=1
21491) 77	MIITE 1/5
2159\%= 155	FGomat ("modify mataik Elements (Y or n) >")
2151/f	READ 111, IAMS
2152\%	IF (IANS.E0, ${ }^{(10)} 60$ 10 88
2153/=	MAITE 1\%, (MAAT(I, ITYPE), Iz 1 , MAR)
21546 116	FORMAT(1X, 14(2x,A3))
215511 78	MRITE 107
2156f= 197	FORMAT(' ENTER MATRIX MAME ${ }^{\circ}{ }^{\circ}$)
21570 $=$	READ Ill, IAMS
21589=	D0 $85151, \mathrm{MAR}$
2159)=	IF (IAMS.EQ. MnAT (1, ITYPE)) 60 TO 81
2160f\% 88	CONTIME
21616=	60 10 78
$21629=81$	MaITE 116
2163 $=116$	FORMAT(' LIST MATRIX TO TERMINAL (Y OR M) > $>^{\circ}$ (
2164f:	READ 111, IANS
21655 $=$	IFIIAMS.EP.NO) 60 TO 83
2166)	CALL MATST (A) (LII)), MAD (1, 1), MAD (1, 2), MMAT (1, ITYPE), KTERM)
2167f: 93	Call zmarin(AlL (1)), mad (1,1), MAD (1,21,12)

2168f= 60 TO 77	
2169\% $=88$	IF(ITYPE.ER.2) CALL FTMTX (A)
2174\%	IF (IFYPE.ES.1) CALL FTMTX $(1)(2) 1,80, \mathrm{MD}(1), \mathrm{ND}(2) 1$
21719 9 9	IF(IWRT) 93,92,93
2172]=92	IMRTal
2173f: $=93$	WRITE 115, MT
21749 $=115$	
2175)	REAP 111, IAMS
2176f=	IF (IAMS.ED. WT) 60 TO \%
2177)	CALL WILED (ITYPE, MPMTS, MD, A)
21789\%	IMRT=-1
2179\%	MIITE 199, WT
2184ty 159	FORMAT(6x, A7, " MOBEL WRITTEW TO 'SAVE' FILE')
21910 95	DO 109 [$=1$, MAR
2182f=	$\mathrm{N}_{1}=$ MAD $(1,1)$
2183)=	N2xNAD (1,2)
2184) $=$	
2185/3	
2186)= 1×1	Comilme
2187\% $=111$	FORMAT (AJ)
2188\%	RETUAM
21895-C END	SUBROUTIIE RSYS
2196\% $=$	END
21915=	SUBROUTIME OSMD (ma)
2192\% $=$	DIMENSIOM We(1)
2193) $=$	MD (1) = ${ }^{\text {a }}$
2194\%	RETUPM
21951mC ENB	SUmROUTILE DSETS
2196)	END
21979	Suspoutime Cmodinal
2198\%	DIMEMSIOM MD(1)
219\%/ $=$	WD (1) $=$ ¢
22913:	RETURM
22011-c. End	SUBROUTINE CMDD
22929 $=$	Enid
2203) $=$	SUBROUTINE TRTHD (HDI
2294\% $=$	DIMEMSIOM We(1)
22\%5\% $=$	HD(1) $\times 1$
2296/ $=$	RETUR
22576-C End	SURROUTIME TRTHD
2258/3	END
2299\% $=$	SUBRDUTIIE DSMM ($A, B, E X, G, D, C, D Y, E Y, H, H D, R, A D, 6 D, O D)$
22193s	RETURN
22116-C END	SUEROUTIME DSIM
22120	END
2213\% $=$	
2214\%	AETURM
2215\% ${ }^{\text {C }}$ E ND	subroutime chan
22169	END
2217 $=$	SUBROUTIME TRTHM (AT, BT, GT, QT, HT,RT, TDT, TNT)
22189:	RETURN
2219\%ac END	SUBROUTIME TRTM
222M3:	END

\therefore	22213 5	SUERPUITIE DSMEM LMD, MADI
	2222F- ${ }^{\text {c }}$	COMMOM/DESIEW/WVCON, TSAMP, LFLPIPI, LFLCGT, LFLKF, LTEVAL, LABERT
	22235 CO	
	2224J= CO	
	22256e ${ }^{\text {d }}$	DIMEXSIOM MD(1), MAD (14,2)
	2226J	MDDEND (1)
	22276	MrDax ${ }^{\text {(2) }}$
	22280	MPD $=10$ (3)
	22298	Max $=10$ (4)
	22340	MDD $=10$ (5)
	22316	WD**016)
	2232f=	MODDEMD 7 (
	2233\% $=$	WPLDenwideb
	2234才	WPMTD $=1$ MD + WMD
	2235)	
	22360 =	MAD (1,1$)=$ mind
	22375 $=$,	MAD $(2,1)=$ M ${ }^{\text {d }}$
	22380 $=$	$\operatorname{MAD}(3,1)=$ mm
	2239\%	$\operatorname{MAD}(4,1)=$ INTD
	22403	MAD $15,11= \pm 10$
	22416	MAD $16,11=$ \#PP
	22420	MAD $(7,1)=$ NPD
	22436	MAD (8,1) $=1$ PD
	22449	MAD (9, 1) = Hm
	22455\%	MAD $(16,1)=$ Mib
	2246J=	MAD (11,1$)=$ M ${ }^{\text {a }}$
(rior	22476	$\operatorname{Mab}(12,1)=1000$
	2248\%	$\operatorname{MAD}(13,1)=1000$
	2249\% $=$	$\operatorname{Map}(14,1)=\mathrm{MMDD}$
	22506	MAD(1, $212 \times 1 \times$
	22516	MAD $12,21=$ mal
	22525=	MAD(3, 2) $=$ \#190
	2253)=	MAD (4, 2) $=$ WID
	22549	
	2255j=	
	22569	MAD 17,2$)=$ \#RPD
	2257\%	$\operatorname{MAD}(8,2)=$ and
	2258j=	MAD(9, 2) = W
	2259\%	MAD (16, 2) $=10 \mathrm{DD}$
	22609\%	$\operatorname{MAD}(11,2)=$ mid
	22610	MAP(12,2$)=$ NDO
	22620 $=$	MAD (13,2) =MWDD
	22636	MAD (14,2) =AMDD
	2264fe	
	2265j\%	
	2266)=	IF (MSILE.GT. WDDH) LABORT*NSILE
	2267) $=$	RETURM
	2268J=C Eno	SUBROUTIME DSNAM
	2269\% $=$	END
	227015	SUBROUTIME CHDDH (ND, MAD)
	22710	COMHOM/NDIMC/ MMC, MRC, MPC
8	22728=	
	2273)	COMMOM/DESIEH/WUCOM, TSAIP, LFLRPI, LFLCGT, LFLKF, LTEVA, LABORT
	22740	OIMENSION MD(1), MAD (14,2)


```
2383F= END
2384%= SUBRONTIME TFRMTX(X1,X2,MR,WC,ITX)
2385f= COHHOW/MAIM1/NDIM
23865= DIMENSION X1(1),X2(1)
2387!= IF(ITX.ER.2) 60 TO 2G
2388%= J=ANCNDIM
2389%= KK=\
239%%= DO 15 \=1,J,NDIM
2391f= L=I+MN-1
2392f= DE 1S JJ=1,L
2393f= KK=KK+1
2394)= 1f \1( (KX)=x2(JJ)
23%5%= RETURM
23969=25 KK=2NPEMC+1
2397!= DO 30 I =1,MC
2398%= La(MC-I) miNIM+1
2399%= M0 30 J=1,㫙
249M: KK=3KK-1
2411f= JJ=[+NR-J
2402s= 3! X2(JJ)=11(XK)
2403/= RETVM
2494:= END
24F5%= SUBMOUTIME MATLST(A,MM,MC,MT,KDEV)
2406%= DIMEMSION A(MR,MC)
24%7%= WRITE(KEEV,101) NT
2488%= 00 1% I=1,mR
2499%= 11 MRITE(KPEY,102) (A(1, J),J=1,NC)
```



```
2412f= RETUNM
2413&=C EMD SUBROUTIME MATLST
24149= END
2415S= SUBROUTIME MDSCRT (A,N,NTERMS)
24169: COWWOM/DESIEN/WVCOM,TSAMP,LFLRPI,LFLC5T,LFLKF,LTEYAL,LABORT
2417/= DINEMSIOM A(!)
```



```
2419%= JF(NTERMS.GT.3J) MTERMS=3!
242%)= RETMOM
24210-C END SHPROUTIME MDSCRT
2422%= END
2423%= SUBRONTIME RONGTS(U,ND,NP)
2424f= DIKENSION M(1)
2425%= 10 WITE 10!
```



```
2427!= 15 READ4,I,V
2428F= IF(I.EP.0) RETURM
2429f= IF(I.LE.ND) 60 TO 20
243EF= MOITE 102
2431)= 102 FORmAT(" ERROC IM ARRGY INDEX")
2432%= 60 TO 10
2433)=24 IF(V) 25,30,46
2434%=25 WIITE 1:3
2435f= 103 FORMAT(" ELEMEWTS MUST RE MON-mEEATIVE')
24365= 60 T0 15
```

2437) 31	IF (NP) 35,49,35
24381= 35	WRITE 104
2439\% 184	FORMAT(${ }^{(4}$ ELENENTS MUST BE POSITIVE")
244\% $=$	601015
2441\% 41	LII LADDA (ND, I, ${ }^{\text {d }}$)
2442f=	M(LI) ${ }^{4}$
2443)=	60 T0 15
2444J=C EnO	Subroutime rousts
24451:	EMP
244653	Subroutilie ducton (h, $A, V)$
2447! $=$	DIMENSIO\# $A(1), V(1)$
24489	$\mathrm{MPl}=1 \mathrm{l}$
2449\% $=$	R2=n策
245\%)	J $=1$
2451\% $=$	D0 15 [al, M2, MPI
2452]=	Jaj+1
2453\% $=15$	$V(J)=A(1)$
24543:	RETURM
2455\% ${ }^{\text {ch End }}$	Subroutile ductar
24565 $=$	END
2457\% $=$	SUBROUTIME PDLES (A,N, ITYPE, ZHI, In2)
2458\%	COMMOM/HALNS/WDIH, NBIML, COM1 (1)
2459 =	COWMW/DESIGX/WCOM, TSAMP, LFLRPI, LFLCGT, LFLKF, LTEVAL, LABORT
2464)=	COMHAN/FILES/KSAVE, KDATA, KPLOT, KLIST, KTERM
24610 $=$	DIMENSIOM MTYP (5), A (1), 2mill), IM2(1)
2462J=	DATA NTYP/GHEESIEN, THCOMMAND, 5HTRUTH, 5HAEEPI, 6HFILTER/
24631 $=$	MDS $=10$ IM
2464/3=	NDIM $=$ W
2465fe	WDIMI $=$ NDIM +1
2466) $=$	CALL EIGEN(MDIM, A, IM, 2M1 (NDIMI), In2, ©)
2467 $=$	IF(ITYPE.LT.4) 60 T0 15
2468\% $=$	CALL HAPOLE (K, ZAL, IMA (WHIMI), TSAMP)
2469\% $=11$	MIITE (KLIST, 152) MTYP(ITYPE)
247\% $=$	WRITE (KTERM, 102) WTYP (ITYPE)
24710	
24720	
2473)=	WDIM ${ }^{\text {W }}$ WS
2474 $=$	NDIMI $=$ NDIM +1
2475f= 111	
2476 $=102$	FORMAT("EPOLES OF ", A7, MATRIX"/)
2477\%	RETURM
24789=C END	Subroutime poles
2479\%	EMO
2484\%	SNanoutive mapole ($\mathrm{M}, 2 \mathrm{R}, 21, T$)
24010 $=$	DIMENSIOM 2R(1), $21(\mathrm{l})$
2482f=	RTsI./T
2483/ $=$	0015 [1 , ${ }^{\text {N }}$
2484\% $=$	2hasart $2 \mathrm{LR}(1)+2+21(1)+2)$
2485fe	SIGMarrtamlag (IM)
2486 $=$	
2487\% $=10$	2R(l) S SIEMA
24889	RETURM
2489/aC. END	SUBROUTIME MAPOLE
2499\%	END

	24919: Fl	FUNCTIOM LADDR (MR, L, J)
\because	24929	LADDR $=1+\mathrm{MnB}$ ($\mathrm{J}-1)$
$\because \because$	24930 $=$ RE	RETURN
	24940=C EMD Fu	FUuCTIOM LADDR
	2495)	END
	24960 $=$ S	Subrautilie FTMTX (X,Y, MR, MC)
	2497\% $=$ D	DIMENSIOM $\mathrm{X}(1), \mathrm{Y}(1)$
	24985 $=$ WE	WE=MEMMC
	2499\% $=$ DC	DO 13 IEI, ME
	2514, $15 \quad Y$	$Y(1)=1(1)$
	2510\% R	RETURM
	25129ㄷC End	subaputilie fintx
	25930 $=$ E	END
	25146 $=$ S	
	2555\%	DIMEMSIOM X(mm1, MC1), Y(MC1, MC2), 7 ($\mathrm{NR1}$, MC2)
	25164\%	DOUBLE PRECISION TD
	25:7)= DI	D0 1f 1:1, NR1
	2518 $=$ -	DO 10 Jx , MC2
	259\%)	TDay, DEA
	2515\% = D	D0 $5 \mathrm{~K}=1$, MC1
	25110 5 -	
	2512 $=15$	2(1,d)=10
	2513) $=$ R	RETURA
	2514 $=¢$ EMD	SuRROUTIME FTMUL
	2515 $=$ -	EMD
	2516\%	SUBROUTIME FTMEL ($X, Y, \mathrm{MPL}, \mathrm{NCL}, \mathrm{NC} 2, Z$)
	2517] $=$	DIMENSIOM X(MR1, MC1), Y(MA1, MC2), 2 (MC1, MC2)
3	2518\% $=$	DOURLE PRECISIOH TD
	2519\% $=$	DO 10 IFl , MCI
	2524\% $=$	D0 16 dal, MC2
	25210 $=$	
	2522\% $=$	D0 $5 \mathrm{~K}=1$, 酔1
	2523f= 5	TD $=10+X(K, 1)=Y(K, d)$
	2524y= 15	211, $11 \times 7 \mathrm{D}$
	25251/	RETLIM
	25260ㄷ. END	SUBROUTIME FTMLS
	25279*	END
	2528) $=$	
	2529\% $=$	Olmensim $\mathrm{X}(1), Y(1), 1(1)$
	253M:	NExMaric
	2531\%	10 (1) [s], ME
	2532) $=11$	2(I) $\mathrm{x}(\mathrm{l})+\mathrm{Y}(\mathrm{l})$
	25331:	RETUAM
	2534\% $20 \cdot \mathrm{END}$	SURROITIE FMADD
	2535\%	END
	2536/3	SUBROUTILE 2PART (A, 质, MC,MD)
	2537)	DIMEMSIOM All)
	2538\%	MExHCang
	2539\% $=$	
	2549\%	DO 10 Jal, ME, M
	25416 15	$\mathrm{A}(\mathrm{J})=5$.
\cdots	25425	RETURN
\because	25430*C END	SUEROUTIE LPART
	2544)=	END

2545月＝SUBROUTIME SUBI（A，NR，NB）
2546f＝DIMENSIOM $A(1)$
2547 $=\quad N D I=W_{D}+1$
25489＝ME＝MREND
2549：$=$ DD 18 $[=1$ ，ME，NDI
255A $=10 \quad A(I)=A(1)-1$ ．
25519＝RETURM
2552f＝C END SUBROUTIIE SUBI
2553：END
2554：SUBROUTIME YPLOTF（V，N）
2555／＝COMMON／FJLES／KSAUE，KDATA，XPLOT，KLIST，KTERM
25560＝DIHENSION VIM）
2557：WPITE（KPLOT，151）（ $\mathrm{V}(\mathrm{I}), \mathrm{I}=1, \mathrm{~N})$
25589：RETURN
2559\％ 191 FORMAT（E29．15）
2560f＝C END SUBROUTINE MPLOTF
$25610=$ END
2562香 SUBROUTIME RPLOTF（V，N，IERR）
2563J＝COMMON／FILES／KSAVE，KDATA，KPLOT，KLIST，KTERM
2564）：DIMEMSION V（N）
2565j＝READ（KPLOT，101）（V（1），I $21, N$ ）
25669＝IF（EOF（KPLOT））5，19
2567 $=5 \quad$ IERR $=1$
2568＝RETURN
$2569=10 \quad$ LERR＝1
25790 $=$ RETURM
$25710=101$ FORMAT（E23．16）
2572f＝C END SUBROUTIME RPLOTF
2573：END
2574\％：SUEROUTIKE STRPLT（A，V，MS，NV，MP，MVO）
25750：DIMENSION A（1），NS（1），NV（1），V（1）
2576 $=\quad A(W S(1))=V(N V O)$
2577）：DO $5[=!$ ，MP
25789＝ $5 \quad A(M S(I+1))=V(N V(1))$
25796 $=$ RETURM
2580j＝C END SURROUTIME STRPLT
25815＝END
25820＝SUBROUTIWE PLOTLP（M， H_{1} A，IPSC，ISCL，LPTERM，MDEV，ITITLE

2584fac ：$\%$ a NUHEER OF POINTS TO BE PLDTTED
2585JㄷC \＆$H=$ MUMBER OF OUTPUTS TO BE PLOTTED
2586／＊C ：A＝VECTOR OF SAMPLE POIMTS FOR PLOTTIMS ：DIMENSION＝Nan
25970＝C \＆ELENENTS 1 TO 1 ARE THE INDEPENDENT VARIABLE

259912C \＃THE DEPENDENT VARIABLES－－EACH VARIABLE IS IN CONSECUTIVE
2599fec \＆STORAGE HITH CORRESPGNDING SAMPLE POINTS FDR EACH
2591f＝C ：SEPARATED BY MULTIPLSS OF M
2592f＝c＋IPSC＝－1 \Rightarrow SCALE ALL VARIABLES TOGETHER（1 PLOT）
25938＝C ：\Rightarrow SCALE TOGETHER AND SEPARATELY（2 PLOTS）
2594f＝C ：$\quad 2+1 \Rightarrow$ SCALE SEPAMATELY（1 PLOT）
2595）$=$ C ：ISCL $=\$$ PLOT OVER EXACT RAMGE OF VARIABLE
2596介ㄷ․ ： $1 \Rightarrow$ PLOT USING EVEN SCALIMG
25979 $=$ \＆LPTERM $=\Rightarrow$ PLOT IS TO TERMINAL（59 CHARACTERS MIDE）
2598＝C ：$\quad 1 \Rightarrow$ PLOT IS TO LINE PRINTER（IG）CHARACTERS WIDE）

25999＝C＋NDEV＝DEVICE NMMEER FOR PLOT OUTPUT

26919＝C
26829＝DIMENSION YSCAL（6），YMIN（6），IBLKK（6），YPR（11），A（1）
2693＝IMTEGER OUT（101），SYMBOL（6），BLANK，PLUS，ERID，ITITLE（5）

2695J＝ 1 FORMATIIH ）
26月6／＝ 2 FORHAT（IH1，11X，5A13／）
2697e 15 FORMAT（1H ，F11．2，6X，151A1）
$26589=12$ FORMAT（1IHS SCALE，A1，1X，11F15．4）
2659）＝IPAPER＝54（1＋LPTERM）
26149＝ISPAC＝1J\＆IPAPER
$26110=$ RISPAC＝FLOAT（ISPAC）
2612f＝\quad ISPAC＝ISPAC＋1
$2613\}=\quad$ IPRTI $=1$ PAPER +1
$26149=\quad$ RMIM $=A(3+1)$
2615 $=$ RMAX $=$ RMIN
2616025 D0 41 ISCz1，M
$26179=\quad \mathrm{M}=[$ SCI $\mathrm{N}+1$
$2618 \mathrm{~J}=\quad \mathrm{YL}=\mathrm{A}(\mathrm{HI})$
$26199=\quad \mathrm{YH}=\mathrm{YL}$
$2629 \mathrm{~g}=\quad \mathrm{H} 2=\mathrm{N}=($ ISC＋1）
$26219=\quad 0041 \mathrm{~J}=\mathrm{H1}, \mathrm{H} 2$
26220＝IF（A（J）．LT．YL）60 T0 30
2623g＝IF（A（d）．6T．YH）YHzA（d）
2624）＝ 60 TO 46
2625f＝36 YL＝A（J）
2626j＝ 4 CONTINUE
26279：IF（YL．LT．RMIN）RNIN＝YL
26299＝IF（YH．6T．RMAX）RMAX＝YH
2629）＝IF（IPSC．6E．J）CALL VARSCL（YL，YH，YSCAL（ISL），RISPAC，ISCL）
2639\％＝ 41 YHIN（ISC）＝YL
$2631=$ IF（IPSC．LE． 5 ）CALL VARSCL（RMIN，RMAX，SCAL，RISPAC，ISCL）
2632I＝IC＝2－IABS（IPSC）
$2633=\quad$ DO $45 \mathrm{I} X=1$, ISPAC
2634）＝ 45 OUT（IX）＝ELANK

2636J＝MRITE（MDEV，2）（ITITLE（1），1a1，5）
2637）$=0065$ I 1 ，N
26389＝$\quad X P R=A(1)$
2639）＝IF（MOD（I，15）．EP．6）GOTO 458
2646f：GRID＝BLAMK
2641 $=60$ TO 465
2642 $=458$ ERID＝COLOM
$2643 \mathrm{~J}=469$ 时 $461 \mathrm{~J} \mathrm{I}=2$, ISPAC， 2
2644 ＝ 461 OUT（IX）$=6$ RID
2645 $=1046$ IK $=1$, ISPAC， 16
2646）： 46 DUT（IX） 2 PLUS
2647： $0055 \mathrm{Jz1,n}$
$26499=\quad \|=\left[+J 6{ }^{2} \mid\right.$
2649\％\quad IF（IPSC） $40,47,49$
$26559=47$［PSCT＝IPSC＋ICO
2651才＝IF（IPSCT．EQ．2）60 TO 49
2652f＝ $48 \mathrm{JP}=1 F I X(1(A(I L)-R M I M) / S C A L)+1$

2653 $=$	60 T0 50
$26549=49$	
26559 $=59$	OUT(JP) =5YHBOL (J)
$26569=55$	IBLNK(J) $=$ JP
26579 $=$	URITE (NDEV, 19) XPR, (OUT (IX), IX $=1$, ISPAC)
2658] $=$	D0 $59 \mathrm{~J}=1$, ${ }^{\text {H }}$
2659\% $=$	ITEMP I IBLIK (d)
26699\% 59	OUT(ITEMP) = BLAMK
2661) 69	CONTIMUE
26629 $=$	IF (IPSC) 68,67,72
2663f= 67	IF(IPSCT.EQ,2) 60 TO 72
2664 $=68$	YPR (1) $=$ RMIM
2665 $=$	D0 $75 \mathrm{I}=1, \mathrm{IPAPER}$
26669 $=78$	YPR $(1+1)=Y$ PR $(1)+10.4 S C A L$
2667\% $=$	WRITE (NDEV, 12) BLANK, (YPR(I), 1=1,IPRT1)
26689 $=$	60 T0 186
26691= 72	D0 76 ISC=1, 1
267913	YPR(1) = YMIM(ISC)
2671 $=$	D0 74 I=1, $1 P A P E R$
26729 $=74$	YPR(1+1) $=$ YPR (1) +10.7 FYSCAL (1SC)
$26739=76$	WRITE (NDEV, 12) SYMAQLIISC), (YPR(IX), $1 \mathrm{X}=1,1 \mathrm{PRTI}$)
$26749=108$	WPITE (MDEV, 1)
2675)=	RETURM
2676 $=$ C EMD	SUBRDUTINE PLDTLP
2677) $=$	EMD
26789 $=$	SUBROUTIEE VARSCL (XHIN, XMAX, SCALE, RSPACE, ISCL)
2679\% $=$	
26894\%	SCALExXHAX-XHIM
26810 $=$	IF(ISCL.EQ.j) 60 TO 25
2682\% $=$	
2683f=	FACTOR=10, w+ (1. -EXP)
2684)=	XHINT=XHIN\#FACTOR
2685\% $=$	
26869\%	
26878=	IF(XHINT.LE.S.) XHIMTEXHINT-. 9
26889 $=$	XHINT=AINT (XHINT)
26899 $=$	1SCAL $=$ MMAXT-XHINT
2698)=	IF (MOD (ISCAL, 5). ME. 3) ISCAL =1SCAL+5-MOD (ISCAL,5)
26919 $=$	FACTOR=15, $\#(E X P-1$.
26929=	KHIM=XHINT\&FACTAR
2693] $=$	SCALExFACTUR FL LOAT(ISCAL)
26949= 25	SCALESSCALE/RSPACE
26959 $=$	RETURM
26969] ${ }^{\text {cha }}$	SURROUTIME YARSCL
2697] $=$	END
26989=C	
26999=C**tut	
2793s=	
27010-C CODE	E FROM THIS POINT ON MAS AdDED BY LT MOSELEY (1982)
27029aC	
2744]=	
2795\% $=$	SURROUTIME PFDATA(ICDDE, ND)
27e6f=	COMMON/MAINI/MDIM, NDIM1, COM (1)

	27179=	COMMON/MAIM2/COH2 ${ }^{\text {(J) }}$
	27888=	COHFOM/LMOU/KIN, KOUT, KPUMCH
	27999\%	COHMON/DESIGM/NVCOM, TSAMP, LFLRPI, LFLCGT,LFLKF, LTEVAL, LABBRT
	27180	COMMOM/FILES/KSAVE,KDATA,KPLOT, KLLST,KTERM
	27119\%	COnHOM/SYSNTX/WUSH, Sn(1)
	27129	
	2713\%	COM\%ON/LITX2/2H2(1)
	27146=	
	2715\% $=$	COHWOMLLOCD/LAP,LEP, LPHI, LBD, LEX, LPHD, LR, LQN, LDD, LC, LDY, LEY, LHP,LR
	27160 $=$	COMMOM/DSMHTX/NVDH, WODY, WOEY, DM (1)
	2717 $=$	COHEOM/NDIMC/MMC, WRC, MPC
	27189 $=$	COWMOM/LOCC/LPHC,LBDC,LCC,LDC
	2719\%	
	27208=	COMMOM/NDIMT/MUT, MRT, MMT, MIT
	27219x	COMHOW/LOCT/LPHT, LDDT, LRDT, LHT, LRT, LTDT,LTMT
	2722f=	сомном/TRUMTX/МVТИ, TM(1)
	27231 $=$	COMHOM/LCNTRL/LPI11,LPI12,LPI21,LPI22,LPHDL,LBDL
	27248=	COMWOM/COWTROL/NUCTL, CTL (1)
	2725f=	COMMON/LREEPI/LXDU, LUDN, LPHCL,LKX,LKZ
	2726\% $=$	COHMOM/CREEPI/MVRPI,RPI (1)
	27275 $=$	COMMPM/LCGT/LA11,LA13,LA21,LA23,LA12,LA22,LXXA11,LKXA12,LKXA13
	27288=	COMNOM/CCGT/WCGT, CGT (1)
	2729] $=$	COMWOM/LKF/LEADSM, LFLTRK, LFCOV
	273010	COMNOH/CXF/WFFLT, FLTII)
	27319 $=$	DIMENSIOM ND(1)
	2732F=	W0 (1) =MND
	2733\% $=$	ND (2) =MRD
(2734/f	MD (3) = MPD
	2735\% $=$	ND(4) MWD
	27369 $=$	
	2737) $=$	HD (6) $=$ NPLD
	2i38f=	ND(7) = WMC
	2739\%	$N D(8)=$ MRC
	274093	MD(9) $=1$ PPC
	27411\%	$\mathrm{MD}(1)=$ (mT
	2742f=	ND(11) $=$ MRT
	2743]=	$\mathrm{ND}(12)=\mathrm{mT}$
	27445	ND(13) $=100 \mathrm{Y}$
	2745)=	ND (14) =NOEY
	2746f=	NYZHS=NUZH
	2747 $=$	CALL FTMTX (DM (LPHI), SM, MMD, MND)
	27489	
	27499\%	CALL FTHTX (DH(LBD), SM(LL), MND, MRD)
	2750\%	LL=MNDIMRD $+L L$
	27519 $=$	If (NDD.EP.S) 60 T0 109
	27528=	
	2753/f	
	2754/:	CALL FTMTX (DA (LPHD), SH(LL), MDD, MDD)
	2755\%	LL=WDDEHDD LL L
	2736te	1F(NOPY.E0.1) 60 T0 98
	275710	CALL FTMTX(DH(LDY),SH(LL), MPD,NRD)
	27588:	LLENPDMMRD+LL
S00	27590 99	IF (MOEY.EQ. 11) 60 TO 95
	27699	CALL FTMTX(DM(LEY),SM(LL),MPD,NDD)

D-62

29151aC END	SUEROUTIME PFDATA
2816/4	END
2917\% $=$	SURRQUTINE ITHLEX(A)
28189=	COMWON/RAIM1/WDIM, MDIMI, COMs (1)
2819/3	COMMON/DESIEW/WVCOM, TSAMP, LFLRPI, LFLCGT,LFLKF, LTEVAL, LABORT
28249	COMMOM/FILES/KSAVE, KDATA, KPLOT, KLIST, KTERM
2821f=	COMMOM/SYSNTX/WSM, SM (1)
2922f:	COnmow/2n7X1/NVIM, 2nl (1)
28238=	
2824\%	COHmPM/LOCD/LAP, LEP, LPHI, LBD, LEX, LPHD, LQ, LRA, LDD, LC, LDY, LEY, LMP, LR
29251:	
2826f=	COMMOM/NDIMC/MMC, WRC, NPC
2927 $=$	COMnON/AMC/AM (1)
2828\% $=$	COMman/BDE/BD (1)
2829\%=	DIMENSION A(1)
283\% $=$	DATA M0/1明/
28319\% 215	MAITE (KLIST, 126)
2832f= 126	
2833/=	Llial
2834]	LRII $=101+$ MPDAMPD
28350=	LRRI=LRII+MRDEMRD
2836\% $=$	NPDNMD $=1 P \mathrm{P}+\mathrm{WND}$
2837 $=129$	CALL IPART (A, MPDMRD, MPDMRD, WPOMRD)
2938f=	WRITE 122,NPD
2839 $=122$	FORMAT(${ }^{(}$EMTER WEIGHTS ON IMPLICIT OUTPUT DERIVATIVES: ', I2)
2849\% $=$	CALL ROUGTSIA, MPD, ${ }^{\text {(}}$)
28411]	MRITE 124, MRD
2842f= 124	FORMAT(' ENTER WEIGHTS OH IMPLICIT CONTROL HAGNITUDES: ', I2)
2843)=	CALL ROMGTS (A (LRII), MRD, 1)
28449=	Li=1
2845\% $=$	
2846)=	LJ $=$ L2+MPD*WMD
28479 $=$	$L 4=L 3+M P D+N W D$
28489=	$L S=L 4+N P D+N M D$
2849/3	$L 6=L 5+$ MDD + NPD
2859\% $=$	$L 7=L 6+M P D \pm$ MND
29510=	IF (NDD. EQ. 51 60 TO 5
2852 $=$	WDIM NPL D
2853/=	NDIMI $=$ NDIM +1
2854/=	60 T0 10
28554= 5	NoIn=MND
2856\% $=$	Whint $=1 N D I M+1$
2857) $=15$	
2858f=	CALL FMnML (DH(LC), SM (LI), MPD, MND, NWD, SH (L2))
2859\% $=$	CALL FMMUL (AM, DM(LC), MPD, MPD, MND, SH (LJ))
286919	MDIMEIPD
28619 $=$	WDIMI $=$ W $\mathrm{I}_{\text {M }}+1$
2862 $=$	CALL MADDI (MPD, MND, SM(L2), Sn(L3), SH(L4), -1.)
2863\% $=$	CALL FTRMSP (MPD, MMD, Sn (L4), SH (LS))
2864/=	CALL FMMHL (A, SH (L4), MPD, MPD, MUD, SM (L6))
2865f=	CALL FMMUL (Sn(LS), SN(L6), NND, MPD, MND, SM (LI)
28669=	CALL FTRMSP (MND, MRD, 8D, Sn(L2)

2921 $0=\quad$ CALL FTRNSP (NRD, MND, SN(L5), SM(L6))
$2922=\quad \quad L L L=L A D D R$ (NDIH, 1, wind +1)
$29230=$ CALL TFRMTX (SR (L6), A(LLL), NMD, MRD, 2)
29249= LLL $=\angle A D D R$ (NDIM, MND +1 , MND +1)
2929f= CALL TFRMTX (SHIL4), A(LLL), MRD, MRD,11
29265: CALL FMADD(SN(L4),SH(L3),MRD, MRD,SM(L5))
29279 $=$ CALL TFRMTX(SM(L5), A(LLL), NRD, MRD, 21
29285= CALL MATLST (A, MMPR, MMPR, ${ }^{\circ}$ YIE', KLIST)
2929\%: RETURU
29343 $=$ C END SUBROUTIME mODIFX
29319= END
2932I= SUBROUTIME FTRUSP (MR,MC, A, B)
2933f= DIMENSIOM A(1),8(1)
29345 $=0011$ I 21 , MR
2935 = DO $25 \mathrm{Jz1}$, MC
$29369=\quad \quad((1-1)+M C+J)=A(1 J-1)+M(1)+1)$
29371: 23 COMTINUE
29389= 15 CONTIME
2939 $=$ RETURM
294950C END SUBROUTIME FTRNSP
29410 $=$ END

D. 5 CGTPIV Segmentation Job Control

```
CGTPIB = Binary object code
CGTPIV = Executable load module
DLKLIB = Library routines [16,23]
```

```
19A=M6n. T833283,HILLER
110=nAP,FuLL.
12I=ATTACH, CGTPID.
13|=ATTACH, DLKLIB, ID=T8293!3.
146=LIBRARY, OLKLI8.
15&=RERUEST,CETPIV,EPF.
165aSEELDAD(D=CGTPIV)
17/=20AD (CGTPIB)
185=M060.
19/=REUIND,CETPIV.
260=CATMLDG,CGTPIV,CGTPIV,RP=185.
210xEER
22f=SETUP IMCLUDE DSCRT
23%=SREGP1 IMCLUDE RONGTS,HLINEP,SYWFCT
24J=FLTRK IMCLUDE ROUGTS,KFLTR,HLIMEQ,SYMFCT,INTEG
25f=STRTH IMCLUDE DSCRTT,IMTEG
26F=SDSN IMCLUDE RDSCRT
27fCEVAL INCLUDE PLOTLP,VARSCL,RPLOTF,WPLOTF,STRPLT
2BA=FEVAL IMCLUDE PLOTLP,VARSCL,RPLOTF,MPLOTF,STRPLT, BACOV
29%=81 TREE SETLP-(SDSM,SCMD,STRTH)
3M=82 TREE PIMTX
31:a33 TREE SREEPI
32f=84 TREE SCGT
33*=85 TREE CEVAL
34F=06 TREE FLTRK
35%=17 TREE FEVAL
36|=08 TREE PFDATA
37f=A TREE CGTXP-(B1,B2,83,94,㫙,86,87,88)
38%=RDOT TREE MAIN-A
399= GLOBAL MAINL,HAIN2, INOU, DESIEM,FILES,SYSNTX,ZMTXI,ZNTX2,
40%=,NDIND,LOCD, DSNMTX,NDIMC, LOCC, CHDMTX, NOIMT, LOCT, TRUMTX, LCNTRL,CONTROL,
41%=,LREGP I, CREGPI, LCGT, CCET,LKF, CXF,AMC,BD6
425= END
```


E. Discussion of Design Software Error

E. 1 Introduction

After the designs for this study had been developed and analyzed and, in fact, after this report had been written, an error was found in the original CGT/PI/KF design software. This error, in turn, had become a part of the program version (CGTPIV) which was used for the designs in this research. The impact of that error on the results and conclusions presented in this report was evaluated by using the corrected software to reaccomplish a cross-section of the design work. While the impact was assessed to be significant, it did not invalidate the main findings presented in this thesis. The time available to complete this project was far less than that which would have been required to reaccomplish all of its original objectives in a thorough manner, using the corrected software. Under the circumstances, it was felt that documentation of the error and its impact, within this report, would be more practical and more beneficial than attempting to rewrite the report in its entirety without adequate data. The bulk of this thesis was therefore left intact, in order to avoid discarding the good (i.e., the theoretical development, the design approach and the use of analysis tools) with the bad (primarily, incorrect observations concerning the type and extent of the differences between designs achievable through the standard PI regulator design method as compared to the implicit model-following formulation). Clearly, the designs presented in Chapter V of this report are "good" designs, as was demonstrated by performance analysis. Appropriate gains were found despite the software error. The significance of the error was that it made the design
process more difficult, and restricted the choice of design paths which were fruitful.

This appendix discusses the error that was found and its impact on the designs and conclusions presented in the body of this report. Revised insights as to the differences between the standard and implicit model-following regulator formulations are provided. A few sample regulator designs are presented to demonstrate the use of the corrected software. These designs are preliminary in nature, and have not been refined to the extent that those presented in Chapter V were. They do, however, point out the differences observed due to the software correction and demonstrate the validity of the work previously presented.

E. 2 The Software Error

Appendix A reviewed the formulation of a constant-gain, $L Q$, optimal PI regulator, and related the development to the CGT/PI/KF design software. In using that software, the designer specifies a number of continuous-time quadratic weighting factors which become a part of a cost function that is mathematically minimized to determine the optimal gains for the controller. As one might imagine, a great deal of mathematical manipulation takes place between the entry of the quadratic weights at the terminal and the final revelation of the desired gains. The process is explained in detail in Volume 2 of [16]. It includes discretization of the continuous-time cost function, transformation to remove cross-weighting terms so that a standard Riccati equation solver can be used, solution of the matrix Riccati equation, and retransformation of the resulting gains for use in the original system coordinates. During this complex process, the array containing
the discretized weighting factors for the control rates was used, in the original program, as the input argument of "GMINV," a library subroutine [23] which calculates a matrix inverse:

10440=
CALL GMINV (NRD,NRD,U,ZM1,MR,1)

The above line of code calls "GMINV" to find the inverse (or pseudoinverse, if appropriate) of the "NRD" by "NRD" matrix "U," returning the result as matrix "ZM1." "MR" is the calculated rank of the inverse, and the "1" is an input flag to enable the printing of error messages. The matrix "U" is, however, destroyed in the computation of "ZM1." In the original program, the destroyed matrix was inadvertently used in a subsequent calculation, thus producing the incorrect controller gains.

To correct the problem, line 10440, above, was replaced by
$10435=$
CALL EQUATE (PHIP, U, NRD,NRD)
$10440=$ CALL GMINV (NRD,NRD, PHIP, ZM1,MR, 1)

The first line calls "EQUATE" to copy the "NRD" by "NRD" matrix "U" into the array "PHIP." "PHIP" is then used as the calling argument for "GMINV," thus preserving "U". This change has been incorporated into the source listing given in Section $D .4$, and, in fact, the given line reference numbers apply to that listing.

Because of the complexity of the calculations just described, the error was well disguised to the novice LQ designer. As long as the values of the weights on the control rates were kept small in relation to the weights placed on the control magnitudes and on the outputs (or output rates), the effect of the invalid matrix on the computed gain
did not generally prevent iteratively converging on a design with good performance. Several erroneous impressions arose early in the study because of the relationship just described. Very small increases in the weights on the control rates were seen to be effective in slowing down the initial response of the regulator (which was an objective in the design due to the rate-limited actuators). But larger increases (to more than about 3, given the values of the other weights being used at the time) had been found to cause overshoots and oscillations in the actuators and outputs. Also, only a limited amount of regulator speed control had been readily achievable with the standard regulator. Therefore, the extensive further efforts at slowing the regulator were directed to the design path using implicit model-following, with various regulator command models and varying weights on the output rates.

The locations of the closed-loop regulator poles were calculated independently, and not affected by the error; they were correct for the quadratic weights assigned but, unfortunately, wrong with respect to the actual gains which defined the controllers. Thus, the prediction of robustness with respect to higher-order dynamics models in Section 5.6, while based on sound theory and, in fact, effective due to the relative pole locations for the designs, was actually conducted on the basis of the wrong absolute pole locations. This condition gave rise to an additional misconception -- that the use of implicit model-following could provide much greater and more systematic control over the locations of the closed-loop system poles than could the standard formulation. This appeared to be the case because the erroneous software seemingly allowed a greater range of quadratic
weights to be placed on the implicit model-following output rates than on the outputs of the standard regulator. The differences in the reported pole locations were greater than the amount of change actually occurring in the true system poles due to the difference in gain.

The gains that were calculated were incorrect only with respect to the quadratic weights assigned by the designer. The designs produced were valid, since the controller is defined by its gains and the control law in which the gains are used. The gains were "good" because they were shown to produce good performance in simulation analysis. Very similar designs were achieved with the corrected software, and simply occurred with different quadratic weights, which were the result of design iteration.

E. 3 The Impact of the Error on the Design Results

To demonstrate the effect of the correction to the software on the design process, consider the baseline standard PI regulator (SR-B) discussed in Chapter V. The quadratic weights used in conducting the design with the original software are listed in Table V-1, as are the gains calculated by the program. Using the same quadratic weights with the corrected program produced the following regulator gains:

$$
\underline{K}_{x}=\left[\begin{array}{rrrrr}
-181.5 & 36.97 & -6.79 & 3.147 & 0.3260 \tag{E-1a}\\
124.8 & -153.2 & -4.25 E-2 & 0.3115 & 1.795
\end{array}\right]
$$

and

$$
K_{z}=\left[\begin{array}{lr}
-4.699 & -2.86 \tag{E-1b}\\
-4.272 & 9.92
\end{array}\right]
$$

These gains differed significantly from those given for SR-B in Table $V-1$, and so did the performance of the controller. The reported closed-loop pole locations were, however, the same as given for SR-B in Table V-3. Compared to that of SR-B, summarized in Table V-2 and shown in Figure V-1, the transient response for this regulator using the linear single-state actuator model was extremely fast, with a rise time of 0.06 seconds, but with better damping (an overshoot of only 20% in the pitch angle). Accordingly, the horizontal tail and trailing edge flap control actuators were driven to well over twice their true position limits and at initial rates of about 50 and 20 times their respective rate limits (given in Section 4.3). Considering the poor results with much slower regulators discussed in Chapter V, there was not much point in simulating the performance of this regulator with the nonlinear actuator model which included rate and position limits. When the regulator's response to initial conditions was evaluated with respect to the linear three- and four-state actuator models, the design was grossly unstable, with state magnitudes reaching values on the order of 10^{18} within 2 seconds of the start of the simulation, whereas ST-B had been oscillatory, but stable, under the same conditions.

By decreasing the weights on the outputs (the "Y" matrix of CGTPIV) from 200 to 5 each, the value of $\underline{X}(3,3)$ in the state weighting matrix from 50 to 2 , and also increasing the weights on the control rates (the "UR" matrix) from 1 to 10 each, a design with gains and performance much more like the original baseline regulator was achieved. The pole locations for such a design should, therefore, be reasonably similar to the true pole locations for SR-B. For the design just described, the poles were located at:

$$
\begin{aligned}
& -13.6 \pm j 15.5 \\
& -1.87 \pm j 0.07 \\
& -27.8 \\
& -15.9 \\
& -20.0
\end{aligned}
$$

which were considerably different from the erroneous poles listed for SR-B in Table V-3. With the corrected software, the values of the output weightings could be reduced even further relative to the input rate weightings, producing designs very similar to those achieved through implicit model-following with a two state command model; it is important to note that this had not been possible with the uncorrected software. At the same time, the greater range of changes in the quadratic weightings in the standard regulator designs also permitted systematic control of the location of the closed-loop regulator poles, as had earlier been thought possible only when implicit model-following was employed. Examples of these observation will follow in the next section.

The effect on the design process with implicit-model following paralleled that just outlined for the standard regulator. Use of the quadratic weightings of the designs from Chapter V resulted in high gains, large actuator commands, and gross instability with respect to higher-order dynamics. Designs with gains and performance characteristics similar to those evaluated in Chapter V where achievable through reduction of the output rate weightings (the "QI" matrix of CGTPIV) and by increasing the weights on the control rates (the "UR" matrix). With the corrected software, representing the actuator states as outputs of the implicit regulator command model appeared to present an additional feasible design option; the excessive initial actuator commands which
had occurred when this was attempted prior to the software change were found to be countered by using increased control rate weightings.

In both standard and implicit designs, increasing the weight on the control magnitudes ("UM" or "RI" matrices) did not yield a reduction in initial control surface actuation; it generally still caused the initial control inputs to be increased, as had been observed in Section 4.4.3.

In summary, the primary impact of the software error on the design results of this study was as follows:

1. The designs presented in the main body of the thesis were valid, as were the analyses conducted using simulation and singular values. Achieving the designs with the incorrect software resulted from the use of quadratic weightings which would have been inappropriate when used with the corrected software. The quadratic weightings used in the research were the result of a systematic, iterative design process which would have, in fact, been easier had the design software functioned properly.
2. With the corrected software, the standard regulator formulation was capable of producing designs similar to those based on implicit model-following with a two-state command model. Use of the standard formulation still required designer insight for the manual alteration of the (3,3) element of the state weighting matrix ("X") to improve the output damping [16]; the implicit model-following formulation provided the proper weighting automatically for a wide range of designs. This, in fact, was the primary difference between the design of the standard regulator versus that of the implicit regulator based on the two-state command model. With the corrected
software, the use of higher-order regulator command models still appeared to provide a relatively greater degree of designer control over some aspects of the design characteristics; specifically, the use of a three-state command model allowed the regulator to be slowed to a much greater extent without loss of proper damping, alleviating the need for designer insight to modify the structure of the state weighting matrix.
3. The locations for the closed-loop regulator poles given by the erroneous software did not correspond to the correct locations associated with the actual controller gains. However, the relative motion of the poles given, in response to changes in the quadratic weightings, was correct. The example analyses in the sequel will demonstrate that the use of the correct regulator pole locations in predicting the robustness of the designs in the face of neglected higher-order dynamics provides an even greater degree of insight than had been proposed using the erroneous absolute pole locations in Chapter V.
4. The calculation of the CGT gains was not affected by the error in the software, nor were any aspects of the singular value robustness analysis for the PI regulator designs.

With these facts in mind, the reader who has not yet conducted an in-depth coverage of Chapters IV, V and VI is encouraged to do so prior to reading the next section.

E. 4 Analysis of New Example Designs

Several example preliminary designs which support the conclusions of the preceding section were assembled and analyzed in a manner similar to that of Chapter V. Time was not available to explore the possibilities for improving on these initial designs by further experimentation with quadratic weights or different regulator command models, but the designs presented do provide an indication of the characteristics of the designs achievable with the corrected software, and allow the analysis methods previously applied to be exercised and validated. From this point on, it is assumed that the reader is thoroughly familiar with the design results and analysis methodology of Chapter V. The presentation here is brief, and the analysis results are reviewed only in enough depth to characterize the performance and robustness of the "new" designs. Most of the controllers discussed are very similar to those presented in the main body of this thesis; they were simply achieved using different quadratic weights. Refer to Tables E-1 through E-6 at the end of this appendix. These tables present data in a format similar to that used in Chapter V; this data will be used to summarize the controller characteristics. Time response plots are not included, as they were deemed to provide little additional information or insight. The names given the new regulators parallel those in Chapter V, with a "C" added to indicate "Corrected software." CGT designs are not discussed, as the CGT gain calculation, given a set of applicable regulator gains, was not effected by the software change.

Designs SR-1C and SR-2C were based on the standard PI regulator formulation. As seen in Table E-1, lower weights on the outputs and
greater weights on input rates were used than had been employed for the standard regulator designs of Chapter V (referring to Table V-1). SR-1C exhibited transient performance similar to that of SR-B (Table V-2) in response to initial conditions, as outlined in Table E-3; it was slightly faster, as characterized by rise and peak times, but more heavily damped. The initial inputs to the actuators were also similar to those of $S R-B$, and the maximum stable initial condition with respect to the nonlinear actuators was therefore nearly the same. When tested against the four-state linear actuators, SR-1C was highly unstable (output values on the order of 10^{6} in 2 seconds), whereas SR-B had been stable, but oscillatory. When tested at the .6 mach $/ 20,000$ feet flight condition, its performance was similar to that of $S R-B$, which was quite good. The minimum singular values for the inverse return difference function as well as closed-loop regulator pole locations are given in Table E-5, and will be referred to in subsequent comparisons. Design SR-2C was based on even lower output weights and higher input rate weights, and thus provided a slower transient response than the previous design; similar, in fact, to the IMF2 class regulators of Section 5.4. Thus, it displayed a predictably larger tolerance than did SR-1C for initial conditions using nonlinear actuators. It also performed well against the linear four-state actuator model. This might have been predicted by its relatively larger minimum singular values over the range of 10 to 100 radians per second, and by the location of the complex regulator poles -- closer to the origin and much further from the perturbing actuator poles. Because it had a larger overall minimum singular value than did $S R-1 C$, its somewhat worse performance at . 6 mach and 20,000 feet would not have been
predicted by singular value analysis.
Referring again to the tables, IMF2-1C was the first "new" implicit model-follower, with performance similar to that of the old IMF2-1. Comparison of Tables V-4 and E-1 thus provides insight as to the amount of adjustment required in the quadratic weights due to the software change. IMF2-1C's stable, but oscillatory, performance against the linear four-state actuator model could have been predicted by either singular value or pole-location analysis, in comparison to the values and performance of the standard regulators just reviewed. Singular value analysis once again would have provided little insight into the performance of IMF2-1C at .6 mach and 20,000 feet; its minimum singular value was about the same as that of $S R-2 C$, but its performance was worse than that of either of the two previous designs.

IMF2-2C was based on a slower regulator command model and larger input rate weights, partially offset by larger output rate weights than in the previous design. These weights were not purposefully chosen by comparison to those of the previous design, but resulted from a series of iterations about a different design point. The design had a slower rise time, better damping, and a better capability with respect to nonlinear (saturating) actuators, in comparison to IMF2-1C. Note, from Table E-5, that the only poles that moved significantly (compared to IMF2-1C) were the two nearest the origin, which generally track the command model poles. Since the complex poles did not move appreciably, and in consideration of the similarity of their minimum singular values, it is not surprising that the performance of the two implicit model-followers with respect to the higher-order actuators was nearly the same. Again, singular value analysis provided little insight
regarding performance at .6 mach and 20,000 feet.
IMP2-3C differed from the previous design only because of reduced weights on the output rates. Its rise time therefore increased and so did its capability with regard to actuator saturation. Pole-location and singular value analyais would have predicted the nearly identical performance with the linear four-state actuators to that of SR-2C. Note, in fact, that all of the entries in each of the tables are nearly the same for ithe two designs -- including the regulator gains. Nearly identical designs were produced with the two different regulator design formulations; the primary difference between the two methods, so far as the deaigner is concerned, would have been the insight required to modify the $(3,3)$ element of the standard formulation's "X" matrix to provide the same damping as that provided automatically by the implicit formulation (the actual value of $\underline{X}_{I E}(3,3)$ in the combined state weighting matrices for both designs was precisely 1.0).

IMF3-1C used the "slow" three-state regulator command model. As was the case with the IMF3 designs of Section 5.5 , this resulted in very slow transient response, but very good damping. However, the capability with respect to actuator saturation was less than might have been expected for such a slow regulator, and additional iterations would have been necessary to resolve that problem. A more serious problem with the design was the vulnerable position of its complex poles which, in conjunction with the poor singular values shown in Table E-6, adequately predicted that the controller would be unstable when tested with the linear four-state actuators. As usual, singular value analysis would not have predicted this controller's relatively good performance at . 6 mach and 20,000 feet.

IMF3-2C was designed with the specific goal of "safely" placing the complex regulator poles. The faster command model was used, since it had been observed to affect primarily only the poles nearest the origin on the real axis, so as to avoid slowing the transient response unnecessarily. As shown in Table E-2, however, radical adjustments were made in the output rate and input rate weightings to drive the complex poles toward the origin. The effort was successful, as shown in Table E-6; both pole locations and singular values predicted the excellent performance achieved with the four state actuators. Although probably somewhat slow for use in a fighter flight control system (indicating the need for additional design iteration), this regulator was also capable of handling a 7 degree initial condition with nonlinear actuators and performed reasonably well at .6 mach and 20,000 feet. Although the results are not shown in any of the tables, a hybrid CGT/PI using this regulator in conjunction with the CGT gains of IMF2-5 also provided reasonably good performance in following a step command input.

The final design shown in the tables was somewhat experimental. A four-state regulator command model was used, with outputs to be tracked by the pitch angle, flight path angle, and the two actuator states. This had been tried with the uncorrected software and, although the rise time had been slow, the initial commands to the actuators had always been excessive due to the distribution of weights in the "RIH" matrix, as discussed in Section 4.4.3. With the corrected software, this problem was overcome by the small output rate weightings and the large input rate weightings, producing a transient response similar to that achieved by earlier IMF3 designs. Note, in Table E-6, the pole
location given at $-254.4 \pm j 157.1$; this is the condition noted in Section 4.4.5, wherein a pole lies on the negative real axis of the z-plane and cannot correctly be mapped into the s-plane. The value 157.1 is pi times the controller sampling rate. The effect of this pole on the controller characteristics was not known until it was tested against the linear four-state actuator model and found to be highly unstable, with output magnitudes on the order of 10^{3} after 2 seconds. Again, this would have been predicted by the small high frequency singular values for the controller. On the other hand, the large overall minimum singular value for this design predicted possible good robustness features with respect to parameter variations. When evaluated at .6 mach and 20,000 feet, IMF4-1C exhibited a much slower rise time (0.72 seconds) than at design conditions and very low frequency oscillations, with an apparent settling time of about 3 seconds. This change in response rate was unique among all of the designs presented. Although not without problems, the design has some interesting characteristics, and merits further research. Very little work was done in this study with such a four-state command model due to problems generated by the design software error. The analysis of this design was presented only to show that the correction of the software provided even more avenues for exploration regarding implicit model-following design.

E. 5 Summary

This appendix documented the error discovered in the design software subsequent to the completion of the research work presented in the rest of this report. The primary direct impact of the error on the validity of the results presented in this thesis was shown to be the incorrect correlation between the values used for design quadratic weights and the gains of the PI regulators. A lack of correspondence also occurred between the given closed-loop regulator pole locations and the calculated gains. The two effects combined to produce misconceptions about the design process and appropriate design strategies. The limitations imposed by the error resulted in a large portion of the design effort being directed at finding ways to control the speed of the initial regulator response.

With the corrected software, the speed of the regulator response could be controlled effectively by changing the relative values of the output (or output rate) weightings and those of the control rates. With the standard regulator formulation, the designer was required to modify the structure of the state weighting matrix to increase the response damping. This was not required, when using implicit model-following with a two-state command model, until the weights on the control rates exceeded those on the output rates by several orders of magnitude. When good damping was required with even slower response, it could easily be achieved through the use of the three-state command model.

If the design problem discussed in this report were to be reconsidered in the light of the above insights, an appropriate design approach using the corrected software would be similar to the one that
was rollowed in this study. With the software providing more logical and predictable results due to the correction, the design process should produce the desired performance with fewer iterations. The systematic design process, using implicit model-following, could be summarized as follows:

1. Develop alternative regulator designs of the IMF2 and IMF3 (and, perhaps, IMF4 and IMF5) classes, basing the initial design iterations on the need to achieve adequate transient response to initial conditions despite the nonlinear (saturating) actuators. The primary means of reducing the speed of the initial response of the regulator would be by increasing the magnitude of the weights on the control rates (the "UR" matrix) relative to the magnitude of the weights on the output rates (the "QI" matrix). Since only the relative sizes of the various weights are of significance, the simplest policy would be to keep the weights on the control magnitudes (the "RI" matrix) constant, such as an identity matrix, and vary only "UR" and "QI." Designs based on several different regulator command models of each class should be included to provide a variety of different closed-loop characteristics for further analysis.
2. Analyze the alternative designs with respect to higher-order actuator dynamics models. Use pole-location and singular value analysis in conjunction with simulation results to identify favorable robustness trends that result from varied quadratic weighting and command model combinations.
3. Test the designs which perform adequately with both nonlinear and higher-order actuator dynamics models for robustness with respect to parameter variations, through simulation with perturbed dynamics
models.
4. Design CGT/PI controllers based on the regulators which, in the light of the previous tests, are best suited for implementation. For regulators based on command models of dimension greater than the number of control inputs (2 in this case), the use of a hybrid CGT/PI (as discussed in Section 5.5) would probably be required. This is due to the inadequacy of the CGT design formulation when faced with a rank defective $\underline{I I}$ matrix, as discussed in Section 4.4.7. Analyze the CGT/PI designs for acceptable tracking of command inputs, and to ensure that the CGT control inputs do not destablize the overall system when operating on nonlinear (saturating) actuators.
5. At any point in this process, trend information that arises from the analysis results can be used to "retune" a regulator design, or series of designs, in an effort to improve controller performance. In the final implementation, the use of anti-windup compensation, as discussed in Section 5.7, should be considered as a means of enhancing stability characteristics without unnecessarily degrading performance.

The validity of the design approach and use of analysis tools presented in the body of this report was not adversely affected by the software error. The same approach and tools worked just as well, if not better, with the initial designs based on the corrected software. Had this study been conducted using the corrected software, a great deal more about the true capabilities and characteristics of implicit model-following might have been learned; it now remains a topic for future research. However, except as already noted, the conclusions reached in this research effort remain basically unchanged.

				5				-	
Table E-1. Definition of New Sample Designs (Part 1)									
Design	Quadratic Weights	Command Model	Regulator Gains						
				$\underline{\mathrm{K}} \mathrm{x}$					
SR-1C	$\begin{aligned} & \underline{Y}=\operatorname{diag}(10,10) \\ & \bar{U}_{M}=\operatorname{diag}(1,1) \\ & {\underset{U}{R}}_{=}^{=}=\operatorname{diag}(5,5) \\ & \underline{X}(3,3)=5 \end{aligned}$	N/A	$\begin{array}{r} -53.15 \\ 65.47 \end{array}$	$\begin{array}{r} 17.51 \\ -74.42 \end{array}$	$\begin{aligned} & -2.872 \\ & 6.68 \mathrm{E}-2 \end{aligned}$	$\begin{aligned} & 1.867 \\ & 0.2148 \end{aligned}$	$\begin{aligned} & 0.2185 \\ & 0.9678 \end{aligned}$	$\begin{aligned} & -0.4564 \\ & -2.659 \end{aligned}$	$\begin{gathered} -0.7983 \\ 2.723 \end{gathered}$
SR-2C	$\begin{aligned} & \underline{Y}=\operatorname{diag}(5,5) \\ & \underline{U}_{M}=\operatorname{diag}(1,1) \\ & \underline{U}_{R}^{M}=\operatorname{diag}(20,20) \\ & \underline{X}(3,3)=1 \end{aligned}$	N/A	$\begin{array}{r} -21.77 \\ 37.43 \end{array}$	$\begin{array}{r} 9.646 \\ -40.75 \end{array}$	$\begin{aligned} & -1.437 \\ & 6.9 \mathrm{E}-2 \end{aligned}$	$\begin{aligned} & 1.142 \\ & 0.1438 \end{aligned}$	$\begin{aligned} & 0.1458 \\ & 0.5381 \end{aligned}$	$\begin{aligned} & -0.1162 \\ & -1.47 \end{aligned}$	$\begin{gathered} -0.4258 \\ 1.436 \end{gathered}$
IMF2-1C	$\mathbf{Q}_{\mathrm{I}}=\operatorname{diag}(1,1)$ $\mathrm{R}_{\mathrm{I}}=\operatorname{diag}(1,1)$ $\mathbf{U}_{\mathrm{R}}=\operatorname{diag}(10,10)$	$\mathrm{P}=5$	$\begin{array}{r} -34.85 \\ 53.58 \end{array}$	$\begin{array}{r} 14.51 \\ -57.87 \end{array}$	$\begin{aligned} & -1.956 \\ & 0.1482 \end{aligned}$	$\begin{aligned} & 1.429 \\ & 0.1515 \end{aligned}$	$\begin{aligned} & 0.1587 \\ & 0.7372 \end{aligned}$	$\begin{aligned} & -0.8226 \\ & -2.047 \end{aligned}$	$\begin{gathered} -0.7776 \\ 2.221 \end{gathered}$
IMF2-2C	$\mathrm{Q}_{\mathrm{I}}=\operatorname{diag}(3,3)$ $\mathrm{R}_{\mathrm{I}}=\operatorname{diag}(1,1)$ $\underline{U}_{\mathrm{R}}=\operatorname{diag}(20,20)$	$\mathrm{P}=2$	-29.27 40.06	$\begin{array}{r} 10.35 \\ -43.81 \end{array}$	$\begin{aligned} & -1.852 \\ & 3.5 \mathrm{E}-2 \end{aligned}$	$\begin{aligned} & 1.357 \\ & 0.1767 \end{aligned}$	$\begin{aligned} & 0.1849 \\ & 0.5705 \end{aligned}$	$\begin{aligned} & -0.4 \\ & -1.442 \end{aligned}$	$\begin{gathered} -0.3998 \\ 1.529 \end{gathered}$

Table E-3. Summary of Performance Analysis for New Sample Designs (Part 1)

Condition and Measure of Performance	SR-1C	SR-2C	IMF2-1C	IMF2-2C
Percentage of overshoot in pitch angle (truth model=linear design model)	20	35	46	30
Rise time/Peak time (seconds) for pitch angle (truth model=linear design model)	$0.10 / 0.20$	$0.16 / 0.30$	$0.12 / 0.24$	$0.14 / 0.24$
Maximum pitch angle initial condition (degrees) for stability (nonlinear actuators*)	0.4	1.1	0.5	0.7
Percentage of overshoot in pitch angle (truth model=linear 4th-order actuators*)	Unstable	50	90	70
Percentage of initial condition present in oscillation at 2 seconds (truth model=1inear 4th-order actuators*)	Unstable	None	30	20
Percentage of overshoot in pitch angle (truth model=.6 mach/20,000 feet)	90	110	120	100
Percent of initial condition present in oscillation at 2 seconds (truth model= 6 mach/20,000 feet)	None	3	20	2

[^7]Table E-4. Summary of Performance Analysis for New Sample Designs (Part 2)

Condition and Measure of Performance	IMF2-3C	IMF3-1C	IMF3-2C	IMF4-1C
Percentage of overshoot in pitch angle (truth model=linear design model)	30	None	10	20
Rise time/Peak time (seconds) for pitch angle (truth model=linear design model)	0.16/0.30	0.32/--	$0.4 / 0.8$	$0.28 / 0.56$
Maximum pitch angle initial condition (degrees) for stability (nonlinear actuators*)	1.1	1.1	7.0	2.0
Percentage of overshoot in pitch angle (truth model=linear 4th-order actuators*)	45	Unstable	10	Unstable
Percentage of initial condition present in oscillation at 2 seconds (truth model=1inear 4th-order actuators*)	None	Unstable	None	Unstable
Percentage of overshoot in pitch angle (truth model= . 6 mach $/ 20,000$ feet)	100	35	50	10
Percent of initial condition present in oscillation at 2 seconds (truth model= . 6 mach $/ 20,000$ feet)	None	5	15	10

* Truth model is otherwise identical to linear design model

Table E.6 Sumary of Minimum Singular values (Inverse Return Difference)
and Regulator Pole Locations for New Sample Designs (Part 2)

Abstract

W1lliam Gilbert Miller was born on 1 May 1950 in Corry, Pennsylvania, and graduated from Corry Area High School in 1968. In 1972 he received the degree of Bachelor of Science, Summa Cum Laude, from Grove City College, and obtained a commission in the USAF through the ROTC program. He completed pilot training at Sheppard AFB, Texas, in August 1973. From then until September 1976, he was assigned to the 5041st Tactical Operations Squadron at Elmendorf AFB, Alaska, as a T-33 pilot, instructor pilot and flight examiner. From 1976 to 1980, he served first as a T-33 instructor pilot, and then as an F-106 pilot and Weapons Instructor with the 87 th Fighter Interceptor Squadron at K. I. Sawyer AFB, Michigan. In January 1980 he was assigned to the USAF Interceptor Weapons School at Tyndall AFB, Florida, as an F-106 Weapons Instructor. In May 1982 he received the degree of Master of Science in Systems Management from the University of Southern California. In June 1982 he entered the School of Engineering, Air Force Institute of Technology.

Permanent address: c/o Dr. Allan Serviss \quad| Box 418 |
| :--- |
| |
| |
| Chester Springs, PA 19425 |

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Dete Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPOAT NUMBER AFIT/GE/EE/B3D-48 GOVT ACCESSION NO.	
$\begin{aligned} & \text { 4. TiTLE (and Subttla) } \\ & \text { ROBUST MULTIVARIABLE CONTROLLER DESIGN VIA } \\ & \text { IMPLICIT MODEL-FOLJOWING METHODS } \end{aligned}$	5. TYPE OF REPORT A PERIOD COVERED MS Thesis
	6. VERFORMING ORG. REPORT NUMBER
	8. CONTRACT ORGRANT NUMBER(A)
9. PFRFORMING ORGANIIATION NAME AND ADORESS Air Force Institute of Technology (AFIT-EN) Wright-Patterson AFB, Ohio 45433	10. PROGRAMELEMENT.PROJECT. TASK AREA A WORK UNTT NUMBERS
11. Controlling office name and adoress	12. REPORT DATE December, 1983
	13 NUMAEER OF PAGES 349
14. MONITORING AGENCY NAME A ADORESS(II diftorent trom Controlline Office)	is. secuurity class. (of thia report) Inclassified
	-15. nectassification/oomagrading--

Approved for public release; distribution unlimited

DD, FOAM 731473 EDITION OF i NOV SS IS OESOLETE

SECURITY CLASSIFICATION OF THIS PAGE(Whm Date Entered)
fighter aircraft (the AFTI F-16). The designs are achieved using software that resulted from previous AFIT thesis efforts. Design robustness is analyzed by means of matrix singular value analysis and actual simulation with realistic truth models; the specific analysis software used was developed for this study, and is documented in the report. Implicit model-following is discussed and shown to provide a means of achieving the stated design objective. Singular value analysis appeared to be of limited value in predicting the relative robustness of controller designs for the problem considered.

$$
4
$$

[^0]: * Truth model is otherwise identical to linear design model. t Oscillatory.
 t Non-oscillatory.

[^1]: * Singular values at this frequency equals or exceeds the value ** Refer to Appendix E.

[^2]: * Truth model is otherwise identical to linear design model. \dagger Oscillatory.

 I Non-oscillatory .

[^3]: 's,

[^4]: Design SR-2, Nonlinear Single-State Actuators,
 -ht-n ennits

[^5]:

[^6]: Figure V-43. Design IMF3-1, Linear Single-State Actuators,

[^7]: *Truth model is otherwise identical to linear design model

