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1. INTRODUCTION

Experimental studies involving a large number of factors can re-

quire a prohibitively large and costly research program. Often it is

anticipated that only a small subset of the factors is important in

explaining the response. Accordingly, we may want to conduct a pre-

liminary screening experiment to determine the subset of "most impor-

tant" factors. Such experiments are not an end in themselves but are

performed as an initial phase of experimentation. Once the most influ-

ential factors have been isolated, future experimentation can then in-

vestigate these factors in detail. By reducing the size of the experi-

mental problem at the screening stage, we are able to conserve resources

and more efficiently and effectively study the factors of interest.

Screening experiments have potential application in many research areas

such as manufacturing, engineering, product development, and simulation.

The factor screening problem has been considered by a number of

authors; see, for instance, Anscombe (1963), Booth and Cox (1962),

Budne (1959b), Kleijnen (1975), and Satterthwaite (1959). However,

there has been no objective evaluation and comparison of the available

screening methods. Kleijnen (1975) and Smith and Mauro (1984) have

divided the screening problem into two general situations. These are

the unsaturated/saturated and supersaturated situations. In the unsatu-

rated/saturated situation, one can afford to invest more runs than there

are factors. Designs that have been generally recommended for use in

this situation include Plackett-Burman designs (Plackett and Burman 1946)

and resolution IV foldover designs (Box, Hunter, and Hunter 1978).
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These designs have been extensively studied and their properties are

well known.

In the supersaturated situation, the number of factors equals or

exceeds the number of runs available for screening. Designs satisfying

this limitation which have been suggested include group screening de-

signs (Li 1962; Patel 1962; Watson 1961), random designs (Satterthwaite

1959), and systematic supersaturated designs (Booth and Cox 1962).

The performance characteristics of these designs are largely unknown.

Furthermore, there are few examples of supersaturated screening experi-

ments in the literature. For the researcher contemplating a supersatu-

rated experiment, it is therefore difficult to find practical guidelines

' for either design or analysis.

In this paper we compare the performance of random balance (RB)

and two-stage group screening (GS) designs in a case study in which

K-100 factors are screened in N-20,42,62, and 84 runs. In addition, we

discuss the relative merits and demerits of each approach. This dis-

cussion should provide some practical insight into the selection and

use of these designs. We have not included systematic supersaturated

designs in our study since these designs have not been tabulated for

K>36 and there is no efficient algorithm for their general construction.

Booth and Cox (1962) have shown that these designs are in general more

efficient than RB designs.

As an underlying screening model, we will assume the model defined

in Section 2. In Sections 3 and 4 we describe and discuss the RB

and GS strategies which we consider. In Section 5 we present and discuss

the results of our case study. A brief summary follows in Section 6.

-2-



2. A SCREENING MODEL

It generally suffices in screening problems to employ two levels

of each factor; see, for example, Montgomery (1979; p. 5) and Box,

Hunter, and Hunter (1978; pp. 306-307). Furthermore, for the purpose

of detecting the factors which have a major effect it is usually rea-

sonable to assume the first-order model

K
Y = 0 + E ax. + E1  (2.1)

j=l1

where yi is the i-h observation, a0 is a constant component common to

all observations, K is the number of factors, j is the linear effect

th th
of the jt- factor, xJ is the level (coded ±1) of the j- factor in

iith 2

the run, and the c are i.i.d. N(Oo ) error terms, °2 unknown. Or-

dinarily, we would use model (2.1) over a relatively small region of the

factor space.

In this paper we restrict our comparisons of screening strategies

to model (2.1). Moreover, we will use this model as a basis for perfor-

mance assessment and data generation in our case study.

-3-



3. RANDOM BALANCE DESIGNS

In a two-level (±1) RB design, each column of the design matrix

consists of N/2 +1's and N/2 -l's where N, an even number, denotes the

total number of runs to be made. The +1's and -l's in each column are

assigned randomly, making all possible combinations of N/2 +1's and

N/2 -l's equally likely, with each column receiving an independent

randomization.

The principal advantages of RB sampling for use in screening prob-

lems are its flexibility and the ease with which we can prepare these

designs. The number of runs N can be selected independently of the num-

ber of factors K; no mathematical restriction or relationship (except

that N be even) need exist between N and K.

There are two primary disadvantages to RB sampling. The first of

tthese is that confounding is random. Anscombe (1959; p. 201) has written,

"The fact that the degree of nonorthogonality or unbalance is random can

be made the basis for an objection to the whole notion of random balance

designs. Such designs may work well on the average, but should I trust

to one on this occasion?" The second disadvantage, which is closely re-

lated to the first, is that there is no generally accepted method of

analysis for RB designs. The simplest approach, and the one adopted in

this paper, is to consider each factor separately, ignoring all other

factors, and apply a standard F-test. More sophisticated analysis methods

which have been used include least squares stepwise and stagewise regres-

sion. We refer the reader to Youden, et.al. (1959) for a more complete

discussion of RB experimentation.
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As we have already indicated, we consider a standard F-test applied

separately to each factor as the method of analysis for RB designs. We

assume for simplicity that each F-test is conducted at the same level of

significance, say a r We denote such a strategy by RB(N, a r). Further-

more, for screening purposes, we classify a factor as important only if

its associated F-ratio is significant, i.e., equals or exceeds the upper

100(1--a ) percentage point of an F-distribution with (1,N-2) degrees of
r

freedom.

The simple least squares estimator of j obtained by ignoring all

other factors is given by

8j = (y+j - _j)/2 (3.1)

where Y+j(Y-j) is the average value of the response over the N/2 runs

at the +1(-I) level of the jth factor. To simplify notation, we let

denote the Nxl vector (y1,y2,..',yN)' of responses and xj denote the

NxI vector (x ijx 2 j, .. ,xN J ,. In an RB experiment, the NxK design ma-

trix X-[x i 2 ,...,xK] is, by construction, stochastic. Assuming that X

and the ci are independent, it is easily shown that conditional on X,

E(8aiX) a. + E a 8ix j)/N (3.2)
i#J

and

V( x) - o/N. (3.3)

The conditional mean square error (MSE) of 8j is then
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MSE(% IX) =  /N + ( i_ I)2/N2  (3.4)
i~j

Unconditionally, Mauro and Smith (1984) have shown, see also Box (1959),

that

E = 8, (3.5)

and V(g ) t2 /(N-1) + O2/N (3.6)

K
where T2 = B2.

j m m

As Box (1959) points out, equations (3.2) and (3.3) refer to the

behavior of the estimates for repetitions of a particular RB design.

Equations (3.5) and (3.6), on the other hand, refer to the behavior of

the estimates if we average over the random choice of RB designs. Box

(1959) comments further that although is unconditionally unbiased,

the effect of the conditional bias term in (3.2) is transferred to the

(unconditional) variance of 13 which now contains terms from every other

factor present.
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4. TWO-STAGE GROUP SCREENING DESIGNS

In the two-stage group screening method, introduced by Watson (1961),

the individual factors (each at two levels) are partitioned into groups.

By assigning the same level to all component factors, the groups are

tested (in a first-stage experiment) as if they were single factors.

Those factors within significant groups are subsequently tested individ-

ually in a follow-up second-stage experiment. The basic idea behind

this method is that factors within a group are completely confounded.

Thus, after the first stage, we can eliminate from further consideration

all factors within non-significant groups. The fewer the important fac-

tors, the more effective is the technique.

To study the group-factors in the first stage and the individual

factors which reach the second stage, we will use the resolution III

multifactorial designs of Plackett and Burman (PB). These designs are

specially constructed two-level orthogonal designs for studying up to

(4m-1) factors in 4m runs. Mathematically, the number of runs required

by the snallest PB design to study S factors (or group-factors) is given

by

B(S) = S+4 - S(mod 4).

However, in order to insure at least one degree of freedom for error,

we shall employ the PB design in B(S+I) runs. Since we are assuming an

underlying first-order screening model, the use of PB designs would seem

reasonable. We analyze these designs with the usual analysis of variance

procedures for factorial experiments.

-7-
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We make the additional assumption that the K factors are partitioned

randomly into G groups of size g; if K is not a multiple of g, we will

assume that the group sizes are taken as "evenly" as possible. The assump-

tions of equal group sizes and random allocation to groups are appropriate

if there is no prior knowledge about the effects. Of course, if the ex-

perimenter has prior information indicating that some effects are larger

than others, then it is better to group those effects together. Moreover,

the experimenter is not limited in practice to a constant group size.

Watson (1961) has discussed the device of using different grout Lzes

when prior probabilities differ.

An important advantage of GS designs is that we can to so, ent

control the confounding pattern. There are two disadvantages to GS designs.

The first of these is that the total number of runs required in a group

screening experiment is random. Specifically, the number of second-stage

runs depends on the number of significant groups, which is subject to

testing and grouping variation. Thus, unlike in an RB design, the total

number of runs required in a GS design is not fixed prior to experimenta-

tion. The second disadvantage is that effects may cancel within a group.

As a simple example, consider two factors which have effects that are

negatives or near-negatives of each other. If these two factors are the

only important factors in a given group, their effects will cancel or

their combined effect may be masked by experimental error. It is desir-

able, then, to have prior knowledge of the directions of all suspected

effects. With this information, factor levels can be assigned so that

all potential effects are in the same direction.

-8-



In practice, the direction will most likely be known for some sus-

pected effects and unknown for others. Kleijnen (1975; p. 489) has

pointed out that "unequal groups sizes make it possible to test a fac-

tor individually when we do not know the direction of its effect."

However, it would seem feasible to treat only a few suspected effects in

this manner. It seems certain that in some applications cancellation

may not be avoided. The effect of cancellation has been studied under

"worst-case" assumptions by Mauro and Smith (1982) and Mauro (1983a).

Finally, we let x1 and a2 denote the levels of the significance

tests performed at the end of the first and second stages, respectively.

Since we assume a constant group size g in addition to random allocation,

our GS strategy is completely specified by g, al, and a2. We denote

such a strategy by GS(g, a1 a2).

' .j
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5. A CASE STUDY

This section describes a case study in which we compare RB(N,t )

strategies for testing K-100 factors in N-20,42,62, and 84 runs with

corresponding GS(g, a I, a2
) strategies in as many expected runs. In

addition, for each N, we consider type I error rates of 5% and 10%.

Power curves are used as a basis of comparison.

In our case study, we assume model (2.1) together with the re-

gression coefficients given in Table 1. The absolute magnitudes of

the effects listed in Table I correspond to the expected order statis-

tics (rounded to two decimal places) of a sample of size 100 from a

gamma distribution with mean .50 and standard deviation 1.50%, see

Figure 1. These particular effects seem reasonable as an illustrative

screening example and are in accordance with the "mal-distribution"

* . assumption discussed by Budne (1959a). Furthermore, since it is unlikely

that all effect directions will be known a priori, we have allowed some

factors to have negative effects. The proportion of negative effects

has been made a decreasing function of their absolute magnitudes, since

that scenario seems most likely to occur in practice.

5.1 RB Power Curves

In order to evaluate the power of an RB(N, r ) strategy, we adopt

the method of averaging over the set of possible RB(N,cr ) designs.

(Dempster 1960 has discussed the ramifications of this approach.) In

the appendix, we show that the RB model can be related to the exchangeable

-10-



No. alc No. No.

48 0.00 1 0.14 1 -0.82
4 -0.01 1 -0.15 1 0.92
2 0.01 1 0.17 1 -1.04
1 -0.02 1 -0.20 1 1.18
3 0.02 1 -0.22 1 -1.34
2 -0.03 1 -0.25 1 1.52
2 0.04 1 -0.28 1 1.74
1 -0.05 1 0.32 1 -2.00
1 0.05 1 -0.36 1 2.31
1 0.06 1 0.40 1 2.71
1 -0.07 1 -0.45 1 3.20
1 -0.08 1 -0.51 1 -3.85
1 0.09 1 0.57 1 4.79
1 0.11 1 -0.64 1 6.28
1 0.12 1 0.72 1 9.57

Table 1. Regression Coefficients Used in Case Study.

tp
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linear model, as discussed by Arnold (1979, 1981). Using results derived

for the exchangeable linear model, we obtain expressions which can be

used to determine power probabilities in an RB(N,ar ) strategy. The power

approximations outlined in the appendix are an improvement over those

given in Mauro and Smith (1984). It is our experience that these ap-

proximations are very good even for small values of N. We make the addi-

tional observation that the type I error rate in an RB(N, r ) strategy is

very closely approximated by ar .

Figures 2a-2d contain the power curves corresponding to the eight

RB(N,t r ) strategies specified by N=20,42,62, and 84 runs with a r -0.05

and 0.10. On each of these plots, the solid curve corresponds to a r-O.05

and the dashed curve corresponds to r -0.10.

5.2 GS Power Curves

Mauro (1983a) has developed formulas to determine power probabilities

in a GS(g, cI' cr2 ) strategy for the special case in which each individual

factor has an effect of size +' o , -o E , or 0. Unfortunately, the more

general case of arbitrary effects is too complex to analyze mathematically.

For our case study, therefore, it was necessary that we use a Monte Carlo

simulation program to estimate power probabilities in a GS(g, all a 2 )

strategy. Using this program we determined, by trial and error, the par-

ticular GS(g, al ' c2 ) strategies which maximized power subject to the

specified constraints on the expected number of runs, E(N), and type I

error.

The "optimal" GS(g, all a 2 strategies that we selected are re-
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ported in Table 2. In this table we also have given the sample mean

and standard deviation SN associated with each GS strategy. The results

are based on 10,000 simulations (except for one case noted in the table).

It is important to note that in a GS(g, Ip a 2 ) strategy, the ex-

pected number of runs depends only on g and a,. Furthermore, given g

and a1, type I error can be expressed as

Type I Error - C(g,a 1)*a2.

Thus, type I error is directly proportional to a2 and bounded by the con-

stant C(g,a1).

Figures 3a-3d contain the empirical power curves corresponding to

the selected GS(g, al, a2 ) strategies with 5% type I error. In these

*' plots, the solid curve is the power associated with the positive effects.

Since the power associated with a negative effect is generally less than

that for a positive effect of the same magnitude, we have marked the neg-

ative effects separately. This phenomenon is due to cancellation and

will be discussed later.

We do not present the GS power curves for 10% type I error since

these curves were virtually identical, except for effects of small mag-

nitude (less than .50 ), with the curves plotted in Figure 3. Apparently,

the levels of a2 in the GS(g, a lt a2) strategies reported in Table 2

were sufficiently large to permit detection of even moderately sized

effects for both 5% and 10% type I errors.

-13-
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5.3 Discussion

It is convenient to define relative testing cost (RTC) as the

ratio of the number (or expected number) of runs required by a

screening strategy to B(K+l), which is the number of runs required by

a PB design for K factors. A quick calculation will show that for

K=100 factors, run numbers of 20,42,62, and 84 correspond roughly to

relative testing costs of 20%, 40%, 60%, and 80%, respectively.

A comparison of Figures 2a-2d with 3a-3d shows that the GS power

curves are clearly superior to the corresponding RB power curves for

60% and 80% RTC. At 40% RTC, the GS and RB power curves are fairly

comparable, although the RB strategy has slightly greater power for

large effects while the GS strategy has more power to detect small

effects. For 5% type I error, the curves cross at about 4.3a , ati E

which power is roughly 50%. A comparison of the 20% RTC power curves

shows that RB is the superior method here. In this case, the selected

GS strategy has only a 25% chance to detect the largest effect (9.570 )

in the model. On the other hand, the RB(20,0.05) strategy has roughly

a 25% chance to detect an effect of size 4.50£, a 50% chance to detect

an effect of size 6a , and a 95% chance to detect the largest effect.

As indicated by the uniformly low power attained at 20% RTC,

group screening designs are not well suited for use when there are

severe limitations on the number of runs. To screen 100 factors in 20

runs, for example, we note that group sizes less than seven cannot be

used since the number of first stage runs must necessarily exceed 20 runs.

For group sizes of seven or larger, the total number of runs required

-15-



by both stages of screening will exceed 20 if even one group is carried

over to the second stage. Consequently, in order to have E(N)(20 runs,

L must be extremely small, ensuring that the expected number of signi-

ficant groups is less than one. This results in very low power, no

matter how large an effect might be.

As mentioned previously, we have purposely included less negative

effects in our case study than positive effects, with the proportion of

negative effects being a decreasing function of magnitude. For very

small effects, this proportion is nearly 50%, and the GS power curves

show that small positive and negative effects have nearly the same prob-

ability of being detected. For larger effects, however, a smaller pro-

portion of factor effects are negative. Thus, negative effects have a

greater chance of being grouped together with positive effects, resulting

* in cancellation. Positive effects, on the other hand, are more likely

to be grouped together, precluding cancellation. As a result, negative

effects are detected less frequently than positive effects of the same

magnitude. However, as can be seen from Figure 3, the effect of can-

cellation is minimal in this case study.

An important practical consideration which we have not yet addressed

is that our determination of the "optimal" GS(g, alt a2) strategies listed

in Table 2 required prior knowledge of the effects. Of course, if one's

prior knowledge is perfect, there is no need for a screening experiment.

More realistically, though, one's prior knowledge is never perfect and

some speculation is required. In any event, it is hard to see how one

might reasonably go about choosing a GS(g, ctIs a2 strategy in the absence

of such prior information or speculation.

-16-



To indicate the potential effects of imprecise prior knowledge,

consider a GS(g, a V a2 ) strategy chosen with a specific distribution

of effects in mind. If this set of effects does not closely approxi-

mate the true situation, the chosen group size may not be optimum.

Furthermore, aI and a2 may be misspecified, so that RTC and type I

error deviate from their desired values. We refer to Mauro (1983b)

for a study of this problem in the special case where each individual

factor has an effect of -Ao , AG or 0.

An additional consideration in the use of a GS strategy is that

the number of test runs is a random variable. In this paper we have

restricted ourselves, somewhat arbitrarily, to looking at the expected

number of runs. From a practical standpoint, however, this can be

rather disconcerting to the researcher contemplating a group screening

experiment. In order to evaluate the severity of this problem, we have

estimated the standard deviation of the number of runs for each of the
four cases considered. These quantities (SN) are given in Table 2 and

can be seen to be very large compared with RTC. In Figure 4 we present

a histogram of the number of runs needed in each of the 10,000 simu-

lations of the GS(5, 0.002, 0.1667) strategy (60% RTC and 5% type I

error). Inspection of this histogram shows that in 10% of the simu-

lations the number of runs was 84 or greater.

Since an experimenter might be reluctant to use a strategy which

does not allow him to predetermine his testing cost, we have considered

a modified version of group screening, where the number of runs is

fixed. The experimenter decides beforehand the number of groups, say

m, he is willing to carry over to the second stage. After the first-

-17-
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stage experiment, the m groups with the largest estimated effects are

chosen and their component factors tested individually in a second-stage

experiment. This of course implies a random first-stage significance

level. However, the overall type I error can be controlled by suitably

adjusting the second-stage significance level. We have done some pre-

liminary investigation of this type of strategy and our results indicate

that its performance is comparable to that of standard group screening.

However, further work needs to be done, including the investigation of

hybrid strategies where only the maximum number of runs is specified,

allowing a smaller experiment if such seems justified by the first-stage

results.

-18-
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6. SUMMARY

In this paper we have focused on the problem of supersaturated

screening experiments. We have restricted our ttention to two basic

screening methods: random balance and two-stage group screening. Our

primary observations are illustrated by means of a case study in

which K-100 factors are screened in N-20,42,62, and 84 runs. A com-

parison of power curves showed that group screening had much greater

power in N-62 and 84 runs. Random balance had slightly greater power

for detecting large effects in N=42 runs. When N-20 runs, group

screening had only a 25% chance of detecting the largest effect (9 .5 7 0 )

in the model while random balance had a 95% chance of detecting that

effect.

In addition to a comparison of power, we discuss the relative

merits and demerits of each strategy. Our findings indicate that

unless there is a severe limitation on the number of runs group screening

appears to be the better strategy. However, there are two primary draw-

backs to the use of group screening. First, the total number of runs

is a random variable. Second, one needs a certain amount of prior in-

formation to choose an appropriate group screening strategy.

-19-
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APPENDIX

The random variables el, e2, .. , e r are said to be exchangeably

distributed if the joint distribution of e7r, ew2, 7 .T , e r is the

same as the joint distribution of e1, e2, ... , er for all permutations

r of (1, 2, ..., r).

In the ordinary linear model (OLM) we assume that the error terms

are i.i.d. normal random variables. In the exchangeable linear model

(ELM) we assume exchangeably normally distributed errors. Following

Arnold (1981; pp. 232-238), the ELM is equivalently the model in which

we observe Y - N (V,02 A(p)), where P is an rxl mean vector and A(p)

has the following form

Pp ... I .

A key result derived by Arnold (1981) is that in an ELM one-way

analysis of variance, equality of level means can be validly tested with

the same F-tests customarily used in the OLM. As an aside, we note that

4the ELM is simply a repeated measures model with only one individual.

We now proceed to show that the RB model when analyzed with separate

F-tests has the same covariance structure as the ELM. In matrix nota-

tion, model (2.1) can be written compactly as X-6 + XB + c where I

is an Nxl vector of +I's and e is an NxI vector (EI, 2 '...% EN), of

i.i.d. N(0,02) error terms. We wish to test the hypothesis H 0 versus
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HI :a 0 with a simple F-test (or, equivalently, a two-sample t-test)

applied to the observations at the high (+I) and low (-1) levels of

th
the j-h factor. Without loss of generality, we assume that the ob-

servations are indexed so that {Yi i < N/2) have xii S +1 and

{yi; i > N/2} have xjj - -1.

Thus, for i < N/2 we have yi "KaO + 8j + ei, and for i > N/2 we

have i 0 j + ei where ei E a m x m +% i It can readily be

shown that yY' Y2y y ... YN has mean vector P and variance-co-

variance matrix Z given by

" ( 0 + 
8 j, ... , a0 + aj a0 - a 1 8''.. 0 - a

and (T2 + 02)A(P),
j E:

K
where T 2 Z B2 and p = 2/ -1)(_[2+02

J m~j M ijE

We see, then, that the RB model has the same covariance structure

as the ELM defined earlier, setting a
2 . T 2 + 02. The only difference

j E

between the two models is that the errors (ei) in the RB model are not

precisely joint normal. We suspect, however, that this violation has

little effect on the F-test for two reasons: (1) Arnold (1983) has

demonstrated asymptotic validity against nonnormality for tests of this

type for the repeated measures model, of which the ELM is a special

case. (2) Nonnormality generally has a small effect on tests about

means in the presence of balanced sampling, zero skewness, and zero

kurtosis. In the RB model, each e i has zero skewness and kurtosis given

K
by -2 Z 64/(T2 + o2)! which is clearly dominated by the term in the

M C

-27-
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denominator.

Using results derived by Arnold (1981) for the ELM, it can be shown

that the appropriate noncentrality parameter for our testing problem is

6 - 2 + o)(1- p, where P is as defined previously. Accordingly,

an approximation to the power of an RB(N,cr) strategy for detecting the

thj- factor is given by the expression:

Power - P{F*>F(I-r ;1,N-2)}
r

where F* has a noncentral F-distribution with (1,N-2) degrees of freedom

and noncentrality parameter 6.

-28-
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