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e 1. ABSTRACT

~ The effects of rapid melting and subsequent quenching on the solidifi-
gﬁg‘ cation behavior and solid state transformation structures of laser surface
% alloyed Fe-Cr, Fe-Ni, Fe-Cr-Ni and Fe-C-Cr systems were investigated as
functions of composition (0-50%Cr, 0-20%Ni, 0-20%Cr/Ni, 0-1%C) and cooling
§§; rate (103-106°C/s). The microstructures were characterized by optical,
Eg% scanning and thin foil transmission electron microscopy. The effects of
. laser parameters (laser power, beam size and scan rate) and coating varia-
ﬁé;; bles (composition, thickness and morphology) on the penetration depth and
i ﬁ melt width were also evaluated.
;;, The microstructures of Fe-Cr alloys were ferritic in nature, irrespec-
%g; tive of the composition (0-50%Cr) and cooling rate (103-106°C/s). The trans-
g;; formation structures of Fe-5%Ni and Fe-6%Cr-2%Ni alloys exhibited a mixture
;h of martensite and ferrite. The transformation structures of Fe-C-Cr alloys
ﬁ%; were studied as functions of the carbon (0.2-1.0%C) and chromium contents
%&j (0-40%Cr). The alloys containing up to 10%Cr exhibited a martensitic struc-
. ture with fine precipitates of M3C carbide and small amounts of retained
%gg austenite. The 20%Cr alloys consisted of duplex austenite/ferrite structures.
%gg The morphology and substructure of austenite were a function of the carbon
T content. Carbide precipitation was identified only in a 1.0%C alloy. The
;{~; 40%Cr alloys were ferritic and the morphology changed from equiaxed grains
}53 to regular cells with increasing carbon content. Significant amounts of

M23C6 carbide were also observed in these alloys.
The rapid solidification effects including the retention of super-

saturated austenite, lack of carbide precipitation and the morphology of

phases are discussed as functions of alloy content and cooling rate.

. W
a4




" . 2.
]
! ‘3 II. INTRODUCTION
A0
»u In recent years, significant advances have been made utilizing high
fﬁﬁé energy density focussed beams for materials processing. Among the potential
§55 applications, laser surface alloying is one of the last to be developed due |
- to the complexity of the microstructural features developed and the wide
ggs; range of solidification and solid-state transformation features produced or
gﬁg suppressed. Laser surface alloying basically consists of applying either
25 during alloying or prior to laser processing a thin coating onto the sur-
?ﬁ: face of a substrate and then scanning the surface with a laser beam to pro-
;iﬁ duce melting and alloying. This process can produce high melting efficiency,
- rapid solidification, minimum distortion, limited heat affected zones, forma-
i;ﬁ tion of metastable phases, fine grain size, and other tailored microstructural
f%; features.
e In order to exploit the potential mechanical property advantages of
gisi laser processed surfaces, it is essential to develop detailed understandings
#?? of the microstructures, solidification rates, and laser beam parameters that

collectively control the resulting microstructure as a function of process

parameters. Development of unusually fine structures increased solid solu-

£X 2 20
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bilities of nonequilibrium crystalline and amorphous phases, modified segre-

»

- -
4.4’\.

gation patterns and high defect concentrations in rapidly quenched metals

ity
et

and alloys have stimulated efforts among investigators to develop theories
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to explain various phenomena observed. While the microstructures of rapidly

el

|

solidified splat quenched alloys have been studied in detail, little atten-
tion has been directed at the allied process of laser melting at somewhat
slower solidification and cooling rates.

This present program was undertaken to study‘the effects of laser melt-

) ing and quenching on the solidification behavior and transformation
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structures of laser surface alloyed Fe-Cr and Fe-Cr-C systems as a function
of composition (5-50%Cr, 0-1%C) and cooling rate (103-10°C/s). The Fe-Cr
and Fe-Cr-C systems were selected due to the extensive literature available
and the practical significance of these systems.

The key variables were laser power, beam size, scan rate, coating com-
position, coating thickness and coating morphology. Basically, increasing
the 'aser power increases melt penetration, may or may not ensure uniform
mixing, can introduce surface rippling, increases the heat affected zone
size, may drastically alter the shape of the fusion zone, and sometimes in-
creases cracking tendencies. Focussing the laser beam ensures maximum power
density but narrows the melting width, while increasing the beam diameter
increases the width of the fusion zone but reduces intensity of the input,
and, therefore, diminishes melt penetration.

The following sections summarize briefly some of the procedures and

results that were obtained during this investigation. The information has

been published in both journals and as a thesis.
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ITII. EXPERIMENTAL METHODS

The substrate materials in this investigation range from electrolyti-
cally pure iron to commercial quality plain carbon steels with carbon con-
tents varying from .2 to 1%. Al1 materials were vacuum degassed prior to
laser processing. Standard electrodepositing conditions were utilized for
a deposition of chromium or nickel plus chromium sequentially. Samples were
again deéassed to a minimum of 10'7 torr at 400°F prior to laser processing.
Failure to do this resulted in gross porosity in the laser processed zone.

A Spectra-Physics Model 971 CO2 gas transport laser was utilized. This
laser is capable of producing up to 1500 watts of continuous infrared laser
radiation with a wavelength of 10.6u. Cooling rates in this program were
calculated based upon both heat transfer models as well as measurement of
solidification structures and predictions of the corresponding solidifica-
tion cooling rates using standard solidification practice. Both energy and
wavelength dispersive x-ray microprobe analysis were used to determine the
composition of the surface alloys produced. This produced excellent agree-
ment with the calculated results based upon dilution measurements. Micros-
copy consisted of optical, scanning and transmission electron microscopy of
laser processed zones. Standard metallographic and microscopy techniques
were employed to prepare the samples.

The bulk of the work was carried out with a fixed laser beam configura-
tion under which the workpiece was traversed at appropriate scan rates to
produce either a single pass or multiple pass with variable overlap. The
jnteraction of time, the laser power density, the total power, and the posi-

tion of the workpiece with respect to the focal point of the laser beam were

all varied as well as the substrate and the coating composition and thickness.
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During the later stages of this program, a laser rastering system was de-
signed and fabricated which would allow rapid oscillation of the laser beam.
The rastering system consisted of a polygonal 20-facet rotating mirror.

Each facet was approximately 1 inch across and the polygon was approximately
6 inches in diameter. The beam, after passing through the focussing lens,
was deflected by 90° to the substrate work surface. A 2-1/2" focal length
lens was used for all studies, which with the particular rastering system,
produced a rastered melt zone width of approximately 8mm for this investi-
gation. Thus, using this relatively simple rastering system and a 1500 watt
CO2 laser, 1/4 inch wide melt width could readily be achieved under single
pass operations. This greatly extends the applicability of what is now
intermediate size laser systems for more efficient processing of larger

surface areas.
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IV. SUMMARY OF RESULTS

As the laser beam power is increased, the penetration depth increases
linearly with power, but the melt width remains rather insensitive due to
the overall power density distribution of the highly focussed beam. Under
deep penetration conditions, keyholing develops as under electron beam con-
ditions. The influence of power density and scan rate is -~ ‘wn with respect
to the melt depth in Figure 1. Similarly, the influence interaction time
or travel speed as represented by inches per minute of tr 1 versus the
output power in watts may rarely be seen, Figure 2. A key ..ationship is
the position of the workpiece with respect to the focussed laser beam.
Figure 3 shows that by maintaining a focal point slightly into the work sur-
face, that a wider range of variation is allowed without having significant
influences on the penetration depth. While in this program the Fe-Cr sys-
tem was nearly studied in detail, some initial work was carried out using
sequentially deposited nickel and chromium coatings as opposed to either
nickel or chromium. The influence of the dual coating is shown in Fiqure
4, where for the same total coating thickness, the dual coating has a much
higher penetration melt depth than either of the single coatings. While
noted in this investigation, the program did not pursue the investigation
of this phenomenon, but it is included in order to show the unexpected vari-
ations that can occur during laser material interaction studies. Also noted
in passing was the effect of black chrome versus bright chrome and chromium-
iron co-deposition on the penetration for various scan rates. Clearly, at
relatively deep penetrations and correspondingly slow workpiece scan rates,
there is a significant influence of the chromium deposit on the resulting

melt depth. This effect is reduced at smaller penetrations produced by more

AR N

PN A R O GNP S S A TR

----------

AT R Tt PN I




o rapid scanning. This again points to the difficulty of generalizing on
particuiar laser processing data and results without a more detailed under-
standing of the specific interactions of the beam with the surfaces and the
coatings.

In order to vary the chromium concentrations in the laser process zone,

'13 both the melt depth as well as the initial plating thickness were varied.
’zﬁ In all cases, the theoretical calculation of the percent chromium as a func-
% : tion of cross sectional area agreed excellently with x-ray analysis based
'ii on the knowledge of the plating thickness, scan rate, power density and

IE; particular electrodeposited coating. The penetration depth, solidification
A

rate and resulting microstructures can be predicted as a result of this por-

.ﬁs tion of the investigation.

V_K Both one and three-dimensional heat flow models for a directed high

< energy source were studied in relationship to the observed dendritic arm

fﬁg spacing and resulting solidification calculations based upon the relation-
13% ship that the dendrite arm spacing is equivalent to (60)(r)'0'41, where r is
;\f' the cooling rate in degrees C per second. In general, the theoretical cool-
;:g ing rate models worked well when the melt depth was 500u or less. This

ﬁig corresponded to a semi-circular melt zone with very uniform composition.

L However, on a deeper penetration, which tended to produce a keyholing effect,
:i; the existing heat flow models tended to underestimate the solidification

iii rates obtained in this program. By measuring the cell spacings together

_;: with the penetration depth, the solidification will be obtained as a func-
.éj tion of melt depth. These results are summarized in Figures 7 and 8, in

‘*2 which the cell structure is shown as a function of melt depth and the cell
7'f spacings as a function of penetration depth together with the theoretical
‘25 cooling rate from heat flow models. In this program, the cell spacing

%
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obtained ranged from 1000 R to as much as 4u, depending upon melting condi-

tions. The availability of this data together with laser melting parameters
allows the solidification rate penetration depth and composition all to be
predicted based upon the laser alloying parameters and coating thicknesses.
Thus, these data act as guidelines for establishing predicted laser operat-
ing parameters for surface alloying of chromium.

An important aspect of laser alloying is the profile of the melt zone
as a function of power density and interaction time, since it can signifi-
cantly influence the overall chemical homogeneity of the melt depth. These
data are summarized in Figures 9 and 10, where it is seen that for relatively
shallow semi-circular melts, an extremely uniform melt composition is
achieved. However, the overall melt depth is shallow and as the melt depth
becomes more and more penetrating, the geometry changes and a sharp gradient
can be developed between the near surface and the near interface zones of
the melt. While the overall depth to which a relatively uniform concentra-
tion can be achieved is increased by deeper melting, the gradient can pro-
duce significantly different structures from the top to the bottom zone.
This is illustrated in Figure 10, where the bottom of the melt zone has re-
duced chromium concentration, which results in a y to a transformation,
whereas the upper portion of the melt zone with increased chromium is within
the ferritic zone of the iron-chrome binary phase diagram. This phenomena,
if taken advantage of, should result in the ability to produce a graded
chemistry, graded microstructure from the top to the bottom or at the inter-
face zone to intentionally produce compatible surface and substrate proper-
ties. However, if not taken into account, significantly different chemis-

tries and structures may be developed beyond that predicted from uniform

chemistry mixing assumptions.
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A general summary of the microstructures produced during this laser
alloying program as a function of chromium and carbon content is shown in
Table I. Generally, all structures showed retained austenite films commonly
observed in quenched martensitic structures. Shown in parenthesis in Table
I are the equilibrium phases expected for each composition. Of particular
note in the results is that for 20%Cr, there was no evidence of carbides
formed with either .2C or .5C. With only 10%Cr, it was impossible to sup-
press the formation of e-carbide under any quench rates utilized in this
investigation. For the 40%Cr alloys, the morphology of the ferrite was a
function of the carbon content. At low carbon contents, the ferrite was
equiaxed, while at the intermediate and higher carbon concentrations, a
cellular solidification morphology was observed with extensive precipitation
of chromium-carbides at intercellular boundaries. At more rapid solidifi-
cation rates than obtained in this present work, which can develop additional
undercooling, the alloy may solidify as a homogeneous solid solution rather
than a cellular solidification morphology.

For the .2C-20%Cr alloy, whose phase diagram is shown in Figure 11, a
metastable duplex ferrite/austenite structure was developed under certain
laser processing conditions that exhibited a minimum solidification and
cooling rate. Results are shown in Figure 12, where for a single scan melt
depth of 600, an acicular austenite needle structure and a ferrite matrix
was obtained. If multiple pass surface melting is carried out, the adjacent
passes will transform the retained austenite to a martensitic lath structure.
However, if the melting depth is decreased, and thus the solidification and
cooling rates increased, the multiple adjacent passes will not result in the
transformation of metastable austenite, but rather result in the entire area

consisting of duplex metastable ferritic and acicular austenitic microstructure.
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Formation of this metastable austenite phase depends strongly upon the cool-

ing rate as well as the chromium and carbon concentrations. Micrographs of
the typical retained austenite pattern as well as e-carbide in .2C-5Cr alloys
are shown in Figure 13 and the transmission microscopy analysis of a meta-
stable acicular austenite and ferritic matrix is represented in Figure 14.
Finally, for comparison, at high chromium concentrations and increasing
carbon concentrations, duplex austenite ferrite structures are obtained

which show a significantly different morphology than the thin acicular aus-
tenite developed with lower carbon concentrations.

These results show that the amount, the distribution, and the stability
of the metastable austenite in a ferritic matrix may be adjusted by laser
parameters and chemical compositions. Also, that the presence, morphology,
and extent of carbides present may also be controlled by similar parameters.
Based upon available literature shown in Figure 16, increasing the solidi-
fication rate to that approaching 107 or 108°C/s should result in a fully
austenitic microstructure at the higher carbon levels.

In order to evaluate this possibility, a laser rastering system was
designed and built during this program to allow very high laser beam sweep
rates. While this system is currently producing melt widths of over 8mm
due to the width of the raster beam, the present study has not yet been able
to optimize the laser and substrate parameters to produce exceedingly thin
surface melts. Thus, the present investigation was limited to relatively
thick 500y deep laser rastered melt zones in order to produce a controlled
surface melting interaction. Work is continuing beyond this program to re-
fine the rastered parameters, together with beam quality and substrate move-
ment to try to produce solidification rates an order of magnitude higher

than those achieved to date. This should result in secondary dendrite arm
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spacings of less than .1y and cooling rates on the order of 107°C/s while

A

allowing a relatively wide process zone to facilitate microscopy analysis.
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%g V. CONCLUSIONS
- The principal conclusions of this investigation into the effects of
3
’f rapid melting and subsequent quenching on the solidification behavior and
;; solid-state transformation structures of laser surface alloyed Fe-Cr and
" Fe-Cr-C systems are as follows:

4
3§3 1. A1l laser parameters, including variables, must be closely

N controlled in order to obtain consistent results. Devia-

i tions in some parameters can result in significant changes

i

;E in the resulting melt depth and solidification profiles.
57

7, 2. For this investigation, cooling rates obtained were between
10% and 100°c/s.

3. The overall chemical uniformity of the melted zone is a

i strong function of the melt profile. This can allow

- tailored created compositions and microstructures to be

% designed for specific applications.

g?

i 4. Unique microstructures containing metastable austenite in

) a ferritic matrix were observed, particularly in the Fe-
ﬁ{ 20%Cr-C system. The substructure and morphology of the

?; austenite in each case was a function of the carbon content
f? and chromium content together with the solidification and
" cooling rate. Extensions of this work and to higher soli-
§$ dification rates should allow the development of additional

amounts of metastable austenite phase being retained and
the further suppression of carbide precipitation.

2 A an

b -

5. This program has demonstrated that the fundamental laser
materials interactions solidification research can be

LA i

N

: carried out on a 1500 watt C0, laser system and very large
. systems are not required to generate the structures, in-
b cluding metastable phases and multiple precipitation

Q reactions.
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Y Table 1.

o Alloy System

o Cr Content Fe-0.2%C-Cr Fe-0.5%C-Cr

23

‘, s
- .

] 102 Lath martensite Lath martensite Plate martensite
+ M3C carbide + + M3C carbide + Retained
Retained Retained austenite
austenite austenite
(Ferrite + M23Cg)  (Ferrite + M;C3 + (Ferrite + M;Cj3)
M23C¢)

20% Ferrite + Ferrite + Austenite +
Austenite Austenite M,3C¢g Ferrite
(Ferrite + My3Cq¢)  (Ferrite + M;3Cg)  (Ferrite + M33Cg)

402 Equiaxed Ferrite Cellular Ferrite Cellular Ferrite

+ M23Ce
(Ferrite + M23Cg)

+ M23C¢

(Ferrite + Mz3C¢),

+ M23Ce
(Ferrite + My3C¢)
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DISTANCE FROM MELT SURFACE (x 10°4CM)

Figure 9. Composition uniformity of fusion zone as a function of fusion zone shape

Figure 10. LIGHT MICROGRAPH OF A Fe-Cr ALLOY SHOWING THE VARIATION
IN THE MORPHOLOGY OF FERRITE FROM THE BOTTOM TO THE TOP
SURFACE OF FUSION ZONE AS A FUNCTION OF CHROMIUM CONTENT.
MAGNIFICATION: 160x.
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SCANNING ELECTRON MICROGRAPHS SHOWING THE MICROSTRUCTURES

OF LASER PROCESSED Fe-0,2XC-20XCr ALLOYS

Figure 12.

THE Fe-0,22C-Cr PHASE DIAGRAM,

y zure 11,

."\.

a) SINGLE SCAN (PENETRATION DEPTH: 600um)

"=

120um)

b) MULTIPLE SCAN (PENETRATION DEPTH: 600um)
¢) MULTIPLE SCAN (PENETRATION DEPTH:
1000x

MAGNIFICATION:
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A NON-EQUILIBRIUM DIAGRAM FOR "SPLAT-COOLED" Fe-C~Cr

ALLOYS [AFTER INOUE ET AL (100)].

Figure 16.

MAGNIFICATION: 18,000x.

0.52C-20ZCr ALLOY SHOWING THE AUSTENITE/FERRITE STRUCTURES
210um) .

(PENETRATION DEPTH:

TRANSMISSION ELECTRON MICROGRAPHS OF LASER PROCESSED Fe-

Figure 15.
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