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¥ Y ABSTRACT
3 Ths  dacunsc
.A “We conaider’fhe flow of two immiscible fluids lying between concentric
v cylinders when the outer cylinder is fixed and the inner one rotates. The
interface is assumed to _be corexcentric with the cylinders and gravitational
~ N e owthr
5 effects are neglected. -We-present a numerical study of the effect of
$
\ different viscosities, different densities and surface tension on the linear
Therv
\4 stability of the Couette flow. Our results indicate that with surface
tension, a thin layer of the less viscous fluid next to either cylinder is
.':" linearly stable and that it is possible to hHave stability with the less dense
,3‘ . fluid lying outside. The stable configuration with the less viscous fluid
x next to the inner cylinder is more stable than the one with the less viscous
. fluid next to the outer cylinder. The onset of Taylor instability for one-
"
sy fluid flow may be delayed by the addition of a thin layer of less viscous
[Pl
}«G fluid on the inner wall and promoted by a layer of more viscous fluid on the
(B
¥ inner wall.
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SIGNIFICARCE AND EXPLANATION

Steady two-fluid flows of immigcible density-matched fluids with

553,22 ’ different viscosities arise in applications such as the pipeline transport of
»g . 0il with the addition of water, the formation of bicomponent fibers such as

Fy

&‘?r nylons and modelling of the Earth's mantle. Such flows are typically

"'. nonunique, even when the speeds involved are slow. However, experiments
usually result in very stable unigque arrangements. In order to get an idea of
A A

which interface positions are allowed for the 'Taylor Problem' we study the

linear stability of the concentric arrangement. We find that, in the absence

*5 of gravity, a thin lubrication layer of the less viscous fluid, lying next to
iy

- either cylinder, is linearly stable. This aqrees with the experimental

’-i’:;; observations. The fact that the less viscous liquid tends to shield the more
::’: . viscous fluid from shearing suggests that the use of two such fluids in

lubrication may be economical. We also study numerically the effect of

different densities and surface tension and find that the stabilizing effect

s: of this viscosity stratification can even overcome a destabilizing density

)

|

difference: the arrangement with the less dense fluid outside can be stable
‘ if it is also the less viscous fluid and if this outer layer is thin.
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Z,\ TWO-PLUID COUETTE FLOW BETWEEN CONCENTRIC CYLINDERS

Yuriko Renardy and Daniel D. Joseph*
Introduction
-247 We consider linear stability of the flow of two immiscible fluids separated by an
interface, lying between concentric rotating cylinders. In each fluid, the Navier-Stokes
equations for steady flow are assumed to hold. 1If we prescribe the ratio of the total

volume occupied by each fluid, then the interface is an unknown, across which the velocity

#

R
P

and normal and shear stresses are to be continuous. If the fluids have equal or nearly

v

Kn¥el

equal densities, then a continuum of interface positions are allowed (Joseph, Renardy and
Renardy, 1983). However, this non-uniqueness is not borne out by the experiments of

Joseph, Nguyen and Beavers (1983) who use water and various oils as the two fluids in an

J s

apparatus with the outer cylinder fixed. When the inner cylinder is rotated at even
moderate speeds, gravity effects appear negligible and a pattern consisting of two types
of cells is usually cobserved. One type consists mostly of oil rollers stuck to the innex

. cylinder and rotating almost like a solid body, lubricated by a thin layer of water at the

B A Ay

outer cylinder. The second type consists mainly of water cells undergoing Taylor vortex
motions. These cells extend from the inner to the outer cylindexr but, in some

experiments, are covered by a thin layer of oil at the outer cylinder. The two types of

Ty

cells alternate along the length of the cylinder. This flow is one of many steady

Ly

bicomponent flows where a study of the selection mechanism for the arrangement of the

is-

fluids must be made. One way to study selection is to study stability and in this paper

we study stability by computing eigenvalues for the spectral problem associated with the

oo BG G R

linear theory.
The equations for our numerical computations are given in Part I. Some asymptotic

results for short waves are presented in Part II following the ideas of Hooper and Boyd

. *Department of Asrospace Engineering, 107 Akerman Hall, 110 Union Street, S.E.,
! University of Minnesota, MN 55455

‘ Sponsored by the United States Army under Contract No. DAAG29-80-C~0041.
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{1983). They consider unbounded Couette flow but their method of analysis applies locally
at any interface with a viscosity jump. Hooper and Boyd showed that in the absence of
surface tension, the flow is unstable to sufficiently short waves which have wave~vectors
parallel to the basic flow. The growth rates of thess disturbances, however, tend to zero
as the waves get shorter. They found that these short-wave instabilities are not
suppressed by viscosity as they are in one-fluid flows, but by surface tension. A density
difference can stabilize or destabilize them but not as effectively as surface tension.

In Part IX, we have given a similar analysis for disturbances whose wave-vectors are
perpendicular to the basic flow. Our results include surface tension, density differences
and centrifugal effects. We have correlated our numerical results with the asymptotic
formulas.

When surface tension is effective, the longer waves can cause instability and if
periodic boundary conditions are imposed, then this yields a familiar type of instability
in which the interaction of a finite number of modes determines what type of solutions
bifurcate from the unstable one (M. Renardy and Jeseph, 1983). However, when surface
tension is not effective, then we have an unusual instability in which the flow is
unstable to all short waves below a certain critical size. This type of instability may
play a role in the formation of emulsions.

In Part 1IX, we give numerical results for two situations: 1low Reynolds numbers and
Taylor numbers near a critical one. We find that in the preferred configurations, a thin
layer of the less viscous fluid may lie next to either cylinder. Our results contradict
the selection principle based on minimizing the viscous dissipation in the restricted
class of annular layers of two fluids which do not vary along the axis of the cylinder.
The solution of this minimization problem (Joseph, Nguyen and Beavers, 1983) consists of
the less viscous fluid lying on the inner cylinder, no matter which cylinder rotates. In
fact, our numerical results indicate that a narrow stable layer of the less viscous fluid
on the inner cylinder is "more” stable than that on the outer cylinder. It is also of

interest that the instability leading to Taylor vortices in one-fluid flows may be
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nullified by adding a lubrication layer of the less viscous f£luid at the inner cylinder
and that instability may be created by adding a thin layer of more viscous fluid at the

inner cylinder.

Part I. Stability equations and numerical solution.

We use cylindrical coordinates (r,9,z) where the z-axis is the axis of cylinders of
radii Ry and Ry. We consider the stability of a circular Couette flow of two fluids,
lying between the cylinders. The azimuthal velocity field is given by V,(r) = Ar +
By/r, 1 = 1,2, where i = 1 refers to the 'inner’ fluid, occupying Ry < r ¢ D and { = 2
refers to the 'outer' fluid, occupying D < r ¢ Rye  The unperturbed interface is at

radius D. The angular velocities of the cylinder are 01, the viscosities are i and

the densities are Py

™
[ ]

g = Ay, (—5 —)’“2(7 —5))/q
Y Ry

w
-
L}

@, - 2,)u,/q

8, 9
A, = ("2‘7'7’ + ﬂ (D—--i))/q

2

B, = (0, - Q,)u/q

a=uz -y eudz-1n
p° R

o’ 1

We superimpose an infinitesimal disturbance
(u{r),vir),w(z)ip(r)) exp(=i ot + iaz + ind)

80 that in each fluid, the Navier-stokes equations yield:

1= 0+ By a2, g Ay By L 3w M
r p r rz
vn 2w . _p 3 - (241 8. o o2, - 2inv
i(- o + r—)u - = ;L + v(r(ru')' (n +1)r2 a“u —:i-) (2)
-3-
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i ¢ +—)v+m--—l’-+v(-(rv-)' - (n? sz - o¥v o 2109, (3)
!' r
where V = u/p. Incompressibility yields
(ru)* + inv + riaw = 0 (4) T

The interface is also perturbed and the following conditions hold at r = D (see Nguyen and
- Joeeph, 1963). [.) denotes the difference ., - ., across r = D.
N (1) Comtinuity of velocity: [u] = 0, (w] =0, i(-c +3%) (v] « 2B,
| (11) Continuity of stresses: °

" iau (u] + (u—l =0

meh') + 288 1) = o

“r D2

N n2 -

: 1(-o+—)([p) - 2{pu'l) + ulP') - P> + a2 ) =0

¢ where T is the surface tension and P' = D'v—-m)- Boundary conditions at the solid are:
Y .

e u=0, v=0,w=0 at r = Ry and Ry.

= We now describe our Adiscretigzation scheme. Equations (1) and (4) are used to

eliminate v and p from equations (2) and (3). A Chebyschev polynomial expansion (Orszag, .
{ 1971) is used for u,v,wv and p. If n+! and n Chebyschev polynomialg are used for u and v
i,. respectively, then the total number of unknowns is 4n+2. Equation (2) can then be
h truncated after the n~4th degree because of the presence of rul’ ana rdvrer, Equation
;E (3) should be truncated after the n-3rd degree because of the presence of r3u''' ana

riv'', The resulting system of linear equations for ¢ were solved with an IMSL routine
on VAX/VMS 11/780 in complex double precision. The computations were checked against
Table 2 in Kruvsger, Gross and DiPrima (1966), Hooper and Boyd's asymptotics for large n
and the asymptotics in Part II for large o .

When the two fluids are identical, the presence of the interface introduces a

neutrally stable eigenvalus for each n and a (called the ‘interfacial' eigenvalue by Yih

(1967)) in addition to the eigenvalues for one-fluid flow (called ‘Taylor' eigenvalues in

4
',
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Part III). In Part III, we track the behavior of the interfacial and Taylor eigenvalues

T Lt
2308

as the viscosities, densities, surface tension and volume ratio are changed.

; Part II. Asymptotic analysis for short wave disturbances.

i . Hooper and Boyd (1983) restrict their asymptotic analysis to two dimensions with

coordinates (x,y) where x is the direction of the stream. They consider disturbances in

normal modes proportional to exp (iax) for large a or short waves, and expand the stream

function and the interfacial eigenvalue in powers of 1/02. The perturbation problems

‘;. which arise from this procedure are uniquely solvable. Since our stream is in the
azimuthal direction, we must replace a by n/r. The results of Hooper and Boyd apply

# i vhen n is large and centrifugal effects are neglected. Centrifugal effects considered

N here, however, play the same role as gravity in their analysis. (We note that a factor

a should multiply the gravity term below (16) in their paper). For large n, we find

that 2
2 v(D)n 251 m (1-m) ‘2
0~ ——— (e (-1 + ]

: + 1{——) -
: D D | n22(14m) (1+m)

1

o DF(x-1) _ n
where £ = (b) s

-

'§ 281,
B= U Uy TP/, .
We can also do short-wave asymptotics for disturbances perpendicular to the (r,9)

plane. We consider axisymmetric (n = 0) disturbances proportional to exp(iaz) and

y 4 introduce the following dimensionless variables: R=a(x-D), T = 2311:/1:)2, 2 = bz/D.

¢ Assuming now that the disturbance is proportional to exp(m1 CT + 1012) where
x
{t . 5=
&
*
»,
"
|1’
y
b
N
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c,b/b = a , this transformation yields the following six conditions at R = 0 as

01".3

() fu) =0; (2) [u/3R] = 0; (3) -ia,Clv] = ul(1-m)

&,JW 4 PN

(4) ulpl + 3%0/9R%] = 0; (5) [WIV/AR] = 0;

5
w a,b0’ v(p) Ta3p®
v (6) [u(a ulaﬂ = 3 3u/9R)] + m vy \l]( lp) - Dz ) =0
It
T
vhere L 5 32/3R%-1 .
:;1 The equations of motion and continuity with 3/368 = 0 are now expanded about R = 0
. for large a, and, as in the analysis of Hooper and Boyd, ?
: u
r;: u~u + —1 * ene
f 0 2
a
1
. ¢,
a,C~ ey +;—5+ cee
; 1
3 where the uroth-ordu velocity satisfies Lsuo = 0 in each fluid. We find that cq is
“ determined by ug where
%)
\ 2
efta +ar+apr’) forrco
o = o 1 2
" ° e-n(bo +bR+ bznz) for R> 0 .
) czbz\mz\lo 2B ia,C 3u
N o —— ~ -— - + .
,' To leading order, v 2ViD)D and [p} u(d u/GR 3u/3R] —Dab 3R ()] Five
) of the cosfficients in uy can be found in terms of the sixth by using the interface
; conditions (1), (2), (4), (5) and (6). Condition (3) yields cg = 0 and an equation for
C1t
T cte, mPo (vita ] = u (1-m) .
o 1 2V(DID % 0
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From this we find that

- 1(1-:; v(p)p ,r-n)u 2fn
- ¢4 4+n[281 Mr+zi-5]

A 1t

A
-

' ' hare T a F(x-1) - o

vy, n I

g3

o Part III. Numerical results.

,‘L We compute the growth and decay rates, im(o), for the stability of Couette flow of

% two fluids. We consider two flow reqimes. The first, treated under (a) and (b) below, is
‘ flow at small Reynolds nusbers. Here, if either fluid filled the flow, the one-fluid flow

&’ would be linearly stable. The only mode which can become linearly unstable for the two-
g fluid flow is the interfacial mode. The second, treated under (c) below, is flow at

{,_ higher Reynolds numbers where, if the outer fluid filled the flow, the one-fluid flow

x would be at a critical Taylor number where linear stability is lost. Here, in addition to

:5 the interfacial eigenvalues, the eigenvalues associated with the one~fluid flows can

éz i become unstable. This type of loss of stability leads to bifurcation and, finally, to the

ks tesselation of stable (highly viscous) and unstable (Taylor cells in the low-viscosity

,?\ ) 1iquid) regions observed in the experiments of Joseph, Nguyen and Beavers. For each flow

7 regime, we determine which arrangement of the components is stable and the volume ratios

W

of the stable configurations.

(a) Stability of Couette flow of two fluids for low Reynolds numbers neglecting

o surface tension and density difference.
We compute the growth rates for the following range of variables:

oy o

P

9

~

A 01- 1, 02-0, "2- 1, m= 0,2 to 6, R,- 1, R2-2, Py =Py = 1, the Reynolds number
Re = V(R,) (R, = R,)/V, ranges from 0.5 to 5, a ranges from 0.01 to 50 and n from 0 to
&

A S0. Under these conditions, we find that the configuration with a sufficiently thin layer

of the less viscous fluid, situated next to either cylinder, is stable.

The response to long waves (small a and low n) is as follows. The axisymmetric

Ny

mode becomes insignificant as a + 0 since in that limit, there is no disturbance. For

<
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a < 0.1 and small Reynolds numbers, the growth rate im(¢) is proportional to azlto when

n=0and to Re vhen n # 0 . The growth rates in this asymptotic range are shown in
figures | and 2. In figure 1, the less viscous fluid is situated next to the inner
cylinder and hence the modes displayed are stable (im (0) < 0) if the interface is close
enough to Ry = 1. The situation is reversed in figure 2. In both figures, modes 10 and
20 show the short-wave asymptotic behavior in which the stable range of interface
positions, as well as the maximum growth rates, diminish with n (ox a ). Disturbances of
the stable configurations with the less viscous fluid inside ha M) larger decay rates
than that with less viscous fluid outside.

Trends similar to those exhibited in figures 1 and 2 are « ited in figures 3 and 4
for a= 1.0, The stable range of interface radii is slightly, - .ot greatly,
reduced. Figure 4 clearly shows that, for m = 2, the dependence of im(0) on n at modes
20 and 40 scales with 1/n? over most of the interface positions. In both figures, the
relative errors of the asymptotic values at D = 1.5 fall from about 50% at mode 9 to 8% at
mode 20.

Pigures 5 and 6 give growth rates for a = 10. Por fixed small values of n and large

a, we £find that

2 2
€y~ ﬁﬂ_‘ﬂz n2(1 --D—z) and
8 (14m) Rz

2
2B c
im{g) ~ (—}) —1-1-5 + 0(a 4) .
D II1 a

In fiqures 5 and 6, modes n = 1 to 3 lie in between modes 0 and 4 and the growth
rates of all the modes between 0 and 4 are numerically close. Thege figures display some
qualitative features of large a asymptotics, but a = 10 is not high enough to be in
the short-wave asymptotic range for m = 0.4 or 2. In addition, the lar e~ the viscosity
difference m, the lower is the value of @ at which this asymptotic range is attained.
Por example, at m = 6, the relative errors range from 30% at a = 10, 16% at a = 20

and 8% at a = 40, wvhereas at m = 2 (figure 6), these errors are doubled and at m = 0.4

-8-
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(figure 5), they are guadrupled. As noted by Hooper and Boyd, the short-wave asymptotics
breaks down when the interface is too close to Ry or R,.

From our computations, we conclude that the largest growth and decay rates arise in
the order-one range of a for medium n and for small m. For example, mode 9 at a = 1,
m = 0,2, attains triple the growth rate attained at m = 0.4 (figure 3) and, in turn, that
mode at m = 0.4 attains a larger magnitude than at m = 2 (figure 4). We may also conclude
from a comparison of decay rates that the stable flows with thin fluid inside are ‘'more’

stable than those with thin fluid outside.

(b) Stability of Couette flow of two fluids for low Reynolds numbers. The influence
of surface tension and density differences.

Surface tencion stabilizes short wave interfacial disturbances and destabilizes
longer waves. Centrifugal forces, in the absence of surface tension, will produce
stability if the more dense fluid is outside. However, with surface tension, it is
possible to achieve stability when the denser fluid is inside. This can, of course, only
happen if the centrifugal force is not too large and gravity is neglected. Under these
conditions, if surface tension is large enough to stabilize the short waves but not so
large that the long waves are unstable, then stability is possible at all & and n with
the denser fluid inside. One example is T =1, r=2, m=2, D= 1.9, uy, =1, p, = 1.
Pigure 7 shows a graph of -im(0) versus a, showing stability. Pigure 8 shows a graph
of im(0) versus a at zero surface tension, showing that modes become unstable for large

a .

(c) Stability of Couette flow of two fluids near a critical Taylor number. 2Zero

surface tension and density difference.

We study the onset of Taylor instsl-'lity associated with modes n = 0 and 1. We also
study the higher modes (n > 1) for which the Taylor modes are stable. In the classicial
Taylor problem for one fluid, the most unstable mode is the axisymmetric (n = 0) one.

The Taylor number is defined as T,k = 4m1(R2 - n1)4/v where
2

A (ﬂ’n1 02R2 )/(R1 R2 )e When 92 0, 01 1, R, 1, R2 = 2, P, P, 1, the

aQa
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':'2 axisymmetric mode becomes unstable for T, close to T,  where T“(R,/Rz)z = 1549.59 and
a = 3,16 (Krueger, Gross and DiPrima, 1966). We fix v, = 0.014; and vary v, so that if
”E.:' the outer fluid occupied the whole annulus, (i.e. D = Rq) the growth rate for the
:,: axisymmetric Taylor mode is near criticality. We note that this choice of vy implies
i) that the im(0) for the axisymmetric mode passes through zero when D = Ry as in figures
; 9-12. With this choice of parameters, we study how the growth rates vary with D.
\;; We consider two situations: the less viscous fluid is at the inner (m < 1, figures 9
fé and 10) or at the outer (m > 1, figures 11 and 12) cylinder. Intuition would suggest that
when m > 1, the flow will become more and more stable as D increases because of the
presence of increasingly larger amounts of more viscous (stable) fluid. This expectation
% is not realized. Figures 11 and 12 show that various modes become unstable as thick fluid
’% is added. Similarly, intuition would suggest that when m < 1, we should have instability
for increasing D because more and more thin fluid replaces thick fluid. Pigures 9 and 10
: Ef show that we actually stabilize the flow by adding lesa viscous fluid near the inner
71 wall. This stabilization near D = 1 is associated with the stability of narrow layers
‘::‘ near the inner cylinder and could be called 'lubrication' stabilization associated with
N the layer of thin fluid on the inner cylinder.
T A new feature close to or above a critical Taylor number is that the im(c) for the
A\J interfacial eigenvalue need not be single-valued. That is, the graph of im(c) versus D
o for an interfacial eigenvalue which begins at D = Ry with im(¢) = 0 can proceed to match
., to a Taylor eigenvalue at D = Ry and a second branch satisfying im{(c) = 0 at D = Ry can
‘:§ match to a Taylor eigenvalue at D = Rq. PFigures 10 and 11 show mode 1 to have such
\4'1 branches. In figure 10, the Taylor eigenvalue for mode 1 is unstable at D = Ry and in
figure 11, it is stable at D = Ry. The behavior of the higher {n > 1) modes, for which
::a the Taylor modes are very stable, is as described in part (a).
Ea: For n = 0, the equations yield a real-valued problem for ic¢, ip, iu, iv and iw.
’ Hence, i0 is either a real number or appears in complex conjugate pairs. In the latter
v case, the two eigenvalues have equal imaginary parts. This behavior is shown in figures 9
o ~10-
%
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to 12. TFor example, in figure 9, for Ry € D< 1.3, the n = 0 eigenvalues are in
conjugate pairs. WNear D = 1.3, the im(0) splits. One branch becomes increasingly
unstable and at D = R; is the unstable Taylor eigenvalue for one-fluid flow with

Vv = 0,0132. The second branch becomes stable for 1.3 < D < R, and since

im(c) = 0 at D = Rz this branch is the interfacial eigenvalue.
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;?,' Growth rate versus interface position with azimuthal wave number (n) as a parameter.
T =0, r=1 m=0,4; The less viscous fluid is on the inner cylinder. Negative
o . .
bad im (0) corresponds to stability. When surface tension is absent, the flow is unstable
- at any D ( # R1 or R, ) 1f n is large enough. Mode 0 is insignificant under graph .
"PS' scales.
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pes rigure 2

ot Growth rate versus interface position when the less viscous fluid is on the outer
::,‘Lé cyun'dor. T=0, r=1, m=2, The stable modes near the outer cylinder have less
. stability than the stable modes near the inner cylinder (cf figure 1) because the decay

' rates of stable disturbances are much gmaller.
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Growth rate curves when the less viscous fluid is inside. T =0, r= 1, m = 0.4.
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Growth rate curves when the less visocous fluid is outside. T =0, r = 1, m = 2. The ‘

7 decay rates of stable disturbances are an order of magnitude smaller than in figure 3.
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Growth rates when less viscous fluid is inside. T =0, r = 1, m = 0.4,
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. . Growth rates when less.viscous fluid is outside. T =0, r = {, m = 2,
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Decay rates for the situation with the more dense fluid in the region between Ry and

D=19, T= 1, =2, a2=2, All modes are stable.
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Growth rates for flows.shown in figure 7 when surface tension is zero. T = 0, r = 2,

m = 2. All modes are unstable to sufficiently small (large a) disturbances.
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p; Growth rates for various modes when the parameters are close to critical for Taylor
! .
L instability. T =0, r = 1, m = 0.9. Thick fluid lies next to the outer cylinder. The
N\

addition of thin fluid at the inner cylinder surprisingly stabilizes the flow.
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el

Growth rates with thick fluid outside. T =0, r = 1, m = 0.4. Note the stabilization by
: a ‘lubrication' effect associated with putting a thin layer of less viscous fluid on the

. inner cylinder. At D = Ry, mode 0 is at a critical Taylor number and mode 1 is elightly

; below.

*

2]

{

v

V

{

B C el N A Lo P 4T Lo o e e : e T T T T T X A T

N \"'sg-.k,s( A G RRDATADE DSOS : ) . S
AW e ) N ‘-..-..- Y YA ‘.a.‘- . . AR .

R IR R, © e Uiy 1" p



A

5!

L4

M

' 0.04

-‘i‘ 0.02

A 0.00

';' o~

Y é ,

5—0.02
g: | !
> -0.04
-0.06 - \‘;

. .
’ - L 3 1 L ' ! 3 1 [

! °‘°a1.o 114 1.2 13 14 15 168 1.7 18 19 20

INTERFACE RADIUS (D)

ol

s
e Va® T ala

77

o

Figure 11 ‘1
i
|

P

: Growth rates when the less viscous fluid lies next to the outer cylinder. T =0, r = 1, |

P . |

N m = 1,08. The amount of less viscous fluid decreases as D increases but various modes are I
unstable excapt when most of the gap is occupied by the more viscous fluid. At D = Ry, .

= mode 0 is at a critical Taylor number and mode 1 is slightly below.
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Growth rates when the thin fluid is outside. T =0, r = 1, m = 2. The flow is stable
wvhen fhc thick fluid fills the annulus (D = Ry = 2) and is at criticality when thin fluid
- fills it (D = Ry = 1). However, the addition of thick fluid at the inner cylinder can

i) actually destabilize the flow unless the thick fluid occupies most of the annulus.
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