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\, ABSTRACT

\1 This note obtains the theoretical autocorrelation function of anA(ARMID
model with multiplicative seasonality. It is shown that this function can be

e
P

interpretated as the result of the interaction between the seasonal and

regular autocorrelation patterns of the ARMA model. The use of this result

L
s

makes easier the identification of the structure of the model, is helpful in

L

;ﬁg choosing between a multiplicative or additive seasonal component and leads to
h a better understanding of the properties of the estimated autocorrelation
gg function of scaiar ARMA processes.

3 m

P

s .

N .

5

YA

X

k

AMS (MOS) Subject Classifications: 62M10
Key Words: Seasonal ARIMA Models, Autocorrelation Function,
Identification, Diagnostic Checks.

Work Unit Number 4 (Statistics and Probability)

*Daniel Pena is Professor of Statistics at the Escuela Técnica Superior de
Ingenieros Industriales, University of Madrid. The author is indebted to
K 1 Arthur B. Treadway for many helpful comments on an earlier draft of this

g paper.

.:‘,

Sponsored partly by the United States Army under Contract No. DAAG29-80-C-0041
and the United States-Spanish Joint Committee for Educational and Cultural
Affairs.

s *“-.w:;-‘g-*s-;; SR,



5 g . - e gh g y Aa” i e 0 Mg Rire it it Mt gt e e Dt N g i T The- it St Ryt i Budo il it S St s S e A

SIGNIFICANCE AND EXPLANATION

i
*J In the process of building an ARIMA model for a time series, an initial
) model should be identified analyzing the patterns of the estimated
'y .
Tx autocorrelation function and partial autocorrelation function. Comparing
s these observed functions to the theoretical ones associated with different
q‘ L]
X
ARMA models an initial model can be entertained.
4 This identification stage was sometimes very difficult for seasonal
kS
fw models, because the theoretical structure of the autocorrelation function was
8
not completely known. This function is obtained in this paper. The result is
;; not only interesting from a theoretical point of view but has important
ﬁ) practical implications as shown in an example.
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F“"h‘: THE AUTOCORRELATION FUNCTION OF SEASONAL ARMA MODELS
Daniel Pena*

1. IWTRODUCTION

It has often been stressed that the most difficult task in obtaining an ARIMA model

A ;?, SRR

*
3
3

for a given time series is the identification of the order of the process. Box and
Jenkins (1970) developed broadly the theoretical properties of the autocorrelation
function (acf) and partial autocorrelation function (paf) for processes without seasonal

structure and outlined the pattern of the acf in some special seasonal processes when the

regular part is moving average of order one or two. Cleveland (1972) proposed the inverse
autocorrelation function as an alternative to the paf. Hamilton and Watts (1978) obtained

the exact paf for the simplest ARIMA models and were able to show the general pattern of |

this function, as a simple oo-pélite of the autocorrelation and partial autocorrelation
coefficients of the regular component. Finally, Cleveland and Tiao (1979) have proposed a
broad class of seasonal models in which the dependence structure among the observation is

not invariant to shifts in time, as assumed in the standard seasonal ARIMA representation.

g,
k. One important difficulty in the identification of seasonal ARIMA processes is that

the ignorance of the exact properties of the acf made this stage, according to Hamilton

-, Y
i and watts (1978), "a perplexing task because the correlation function is susceptible to
’, confusing distortion in the case of seasonal time series”. We will show in this note that
the acf of a seasonal process can be interpreted readily as the result of the interaction
o between the seasonal and regular components of the model.
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2. TEE SINPLE AUTOCORRELATION FUNCTION FOR THR SEASOMAL MNODEL
Let us write a stationary seasonal ARMA model as:
v, = v v (8°) a
where ¢ and 0. are possible infinite operators. Llet )\(B) and P.(B.) be the
autocovariance generating functions for the regular and seasonal parts of 't' Then, it
can bs shown (Box and Jenkins (1970)), that the autocovariance generating function of the
process, Y(B), is:

-»
- al 8, . i
Y(8) = o  A(B) T _(8°) = [ v,B (2.1)

-y
2
where a. is the variance of the white noise process, a,, and

-»
Am) = w(m) v ) = ] a8t
-
s s -8 T sl
T () = $,(87) ¥ (B°) = -Z T8
The autocorrelation generating function of 't is:
-1 2 -1 [
a(B) Yo v{B) 9, Yo xorop(n)p.(n ) (2.2)

where p(B) = X;'X(n) and D'(B') = r;'r.(a') are the autocorrelation generating functions
of the regular and seasonal part.
Let us call ry, Ry the theoretical autocorrelation coefficients of the regular and

seasonal part of the model. Then, we can write

a(B) = Kp(a)p'(s') (2.3)
where
-12 T -1
K=y oA Ty = (142 121 Ty Rey) - (2.4)

Calling oi the theoretical autocorrelation coefficient of order i for the overall

process, we then have that
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(B) = B =K B R_B*) = ) * .
\ a .Z o, (_Z r B _Z a® ) =K _Z -2_. rR,B (2.5)
Y so that by using the value of X and equating powers of B,
.
ry * 121 si (Fai+y ¥ Tgi-y’
pj = - . (2.6)
12 121 Tei Rsi

Pquation (2.6) displays in a readily understandable way the structure of the acf for
multiplicative seasonal models. As far as the interpretation of (2.6) is concerned, there

ﬂ;: are two different cases. The first occurs when the regular structure has autocorrelation

v coefficients, r; , that are nearly zero for i > 8/2. In this case the denominator of
(2.6) is approximately unity and:

L]
=r + ? R . (r

Py = ry * N Reylrgiy * Tany) (2.7

so that we will ohserve: (a) in low order lags (i < s8/2), the exact regular pattern; (b)

in seasonal lags, the exact seasonal structures; (c) in lags that are near multiples of

4

the seasonal periods (i = is £ h; h<s/2) the reproduction of the regqular structure,
symetrically at both sides of the seasonal periods.

When the regular autocorrelation coefficients do not vanish even approximately for
- i > 8/2, distortion can be expected in the above pattern. The problem will be especially
acute if the seasonal period is low, for example for quarterly data, and when the
autoregressive operator has one root near the unit circle.
3. AN EXANPLE

In order to illustrate the kind of information that can be obtained by the use of the

e
N
R Ty E

" properties of the interactions between the regular and seasonal structure, we will
consider the ozone data that has been widely modeled by different procedures. Box and

Tiao (1975) fitted a (0,0,1) x (0,1,1),, ARIMA model to this series. Abraham and PFox
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‘ (1978) have shown how this model could be improved through a deterministic seasonal

{ modelling. Cleveland and Tiao (1979) have presented another useful approach for these
:i’i“ data.
o
-\.‘::; Table 1 shows the estimated acf and paf for this series geasonally differenced for
¥

the period November, 1955, through November, 1969. The model fitted by Box and Tiao

4 (1975) was:
ey
s (1-8'%)z, = (1+.14m)(1-.898")a, (3.1)
oyl (.08) (.02)

8: = 0.974 Q(37) = 36.9.
Although the Ljung—-Box atatistic Q does not reject the model, the acf of the

residuals shows significant values at lags 2, 22 and 24.

Using the theoretical properties of the acf, Table 1 strongly suggests that the

is concerned, there is sowme evidence of AR structure because: (a) the values of the acf

-~ regular part is autoregressive. This fact is clear from the specific structure of signs
R Y

é of both the acf and pacf at both sides of seasonal lags. As far as the seasonal structure
AN Yy

at lag 24 is not only significant but the pattern of signs around lag 24 suggests
interactions and (b) the value of the acf at lag 36 is almost significant and at both
sides of lag 36 we f£ind the expected pattern of signs for a negative coefficient.
The simplest hypothesis for the seasonal part is then an ARMA (1,1) with negative
autoregressive parameter. The two first coefficients of the paf suggest an AR(2) for the

regular component. The estimated model is:

(1+.138'2) (1-.158-. 1582 8,2, = (1-.a7n'z)at (3.2)
(.08) (.08)(.08)

a: = 0.907 Q(34) = 23.8.

The F statistic to test the reduction of variance in model (3.2) versus model (3.1)

is 5.76 that is highly significant with a = 0,005. Furthermore the acf and pacf of the

residuals do not produce any doubts about the adequacy of model (3.2).
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