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ABSTRACT

Since Rivlines pioneering work in the non-linear theory of elasticity

there have been feow new solutions which have been exhibited. ') , this vork-ws 30

establiuh'~exact solutions to several boundary value problems in the theory of

non-linear elasticity. A remarkable feature in all the problems dealt with is

the possibility of an infinity of exact solutions.
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SIGNIFICANCE AND EXPLANATION

Exact solutions are established for several boundary value problems in

the non-linear theory of elasticity. All the problems considered exhibit the

possibility of a multiplicity of solutions. Since the domain involved in all

these problems iu infinite, a stability analysis based on energy criterion is

not readily available and thus the stability of these multiple solutions

remains an open problem.
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NEW EXACT SOLUTIONS IN NON-LINEAR ELASTICITY
* Q*

K. R. Rajagopal and A. S. Wineman

1. INTRODUCTION

Since Rivlin's pioneering work in the non-linear theory of elasticity

(cf. Green and Adkins [1]) there have been few new solutions which have been

exhibited. In this work we establish solutions to several boundary value

problems in the theory of non-linear elasticity. An astonishing feature in

all the problems dealt with is the possibility of an infinite class of exact

solutions. The most interesting of the problems studied is that of the slab

in pure torsion, where in addition to the classic torsion solution we exhibit

the possibility of an infinity of non-symmetric solutions. Since all the

problems considered involve infinite domains, a stability analysis based on

energy is not readily available. We do not study the stability problems but

leave this to a later date. The questions of stability notwithstanding, the

exact solutions in themselves are so simple that they are worth recording.

Our analysis here is an outgrowth of a recent study by Rajagopal and

Wineman (2) who considered the deformation of a non-linearly elastic material

which is sandwiched between two infinite parallel plates, a distance 'h'

apart, rotated by the same angular displacement Q about two non-coincident

axes perpendicular to the plates. The form which they assumed for the defor-

mation correspond to a shear (which is dependent on the co-ordinate normal to

.*
Department of Mechanical Engineering, University of Pittsburgh, Pittsburgh,

PA 15261.

Department of Mechanical Engineering and Applied Mechanics, University of
Michigan, Ann Arbor, MI 48109.
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* 44the plates) followed by a rigid rotation. They established exact solutions in

the case of a neo-Hookean and Mooney-Rivlin material. They also studied the

consequence of the non-linearly elastic material being characterized by a non-

convex stored energy function. In this case they found that it is possible

that the solution possess discontinuous deformation gradients and exhibit the

phenomena of phase change.

'.'. In this work, we wish to study associated but a different class of
4..,

4. problems. All the problems are concerned with the deformation of a slab of

thickness Ohl whose other dimensions are infinite, the top and the bottom

surfaces of the sandwich being bonded to rigid plates. Also, in all the

following work, the non-linearly elastic material between the plates is either

a neo-Hookean or a Kooney-Nivlin material. First, it is our aim to

investigate the consequences of rotating the top and the bottom plates by a

constant, but differing amounts, about non-coincident axes perpendicular to

the plates (cf. Figure 1). For the nonlinearly elastic materials in question,

we are in a position to establish an infinity of exact solution. We first

exhibit an exact solution in the special case of a neo-Hookean material. It

is found that a two parameter family of solutions is possible. We investigate

in detail the solution which when the offset between the axes 'a' vanishes,

reduces to the classic torsion solution. However, this solution by no means

is the only solution to the problem under consideration. We also compute the

tractions on the upper and lower surface and find that they are not the

-C.. same. It is also found that the local contribution 
to the resultant moment is

different at the upper and lower surfaces for fixed values of the co-ordinates

.'..'. in the plane normal to the axes of the plates.

'4" In the case of a Mooney-Rivlin material, for the kind of motion under

consideration the equations of equilibrium lead to a coupled system of linear

ordinary differential equations (these equations uncouple in the neo-Hookean

-2-
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case).* The problem can be easily reduced to that of solving a single linear

ordinary differential equation f or a complex valued function.* The problem is

straightforward and one can determine the solution with ease. Once again an

infinite class of solutions is possible.

Next, we study the problem of rotating the top and the bottom plates by

different amounts about a common axis, namely the torsion problem. *most

interestingly, we once again exhibit an infinite one parameter family of

solutions for the problem in question. The classic torsion solution belongs

to this class. While it is the only symmetric solution to the problem, there

are infinitely many non-symetric solutions which are arbitrarily close to the

classic torsion solution.

We also study the problem of the material being subject to finite axial

stretching followed by torsion. In the case of a Mooney-Rivlin material it

turns out that the equations of equilibrium simplify, after lengthy manipula-

tions, to a coupled system of ordinary differential equations which have an

amazingly simple solution. Once again, the problem exhibits the peculiar

characteristic of possessing an infinity of solutions. of course, when there

is no stretching, the solutions reduce to those obtained for the pure torsion

4 problem.

All the solutions in the case of the common axis problem and the non-

coincident axes problm considered, except the last class of problems, corre-

* spond to deformations in which any plane parallel to the plates, remains in

the same plane, but rotates by an amount A)(z) which depends on the coor-

we have received personal commuication from Professor R. T. Shield [7] that
the above problem and several other exact solutions are being studied
independently by J7. N. Hill and R. T. Shield and the work is to be submitted
for publication. However, at this time we have not seen the manuscript and
hence do not know the exact nature of their work.
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dinate normal to the plates. That such deformations could possibly lead to

nonunique solutions is motivated by Berker's investigation into the classical

Newtonian fluid (3]. That a similar situation obtains in more general fluids

was established by Rajagopal [4), (51 and Rajagopal and Gupta (6].

After a brief review of the necessary kinematics in the next section, we

derive the approximate form of the equations of equilibrium for the problems

under consideration in section 3. In section 4, we study the problem of a

neo-Hookean material sandwiched between two infinite parallel plates which are

rotated about non-coincident axes by differing amounts. The problem and

solution procedure in the case of a looney-Rivlin material is considered in

section 5. In the next section we study the torsion problem in the case of

the neo-Hookean and the Mooney-Rivlin material. In the final section we study

the problem of the material being subject to axial stretching followed by

torsion.

i

-4-
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2. Kinematics

For the problem of rotation of the plates about differing axes and a

common axis, it would be natural to assume a motion of the form

x - M - f(Z)]cos O(z) - [ - g(Z)]sin fl(Z) + (z) , (2.1)i

y - (X - f(Z)]sin Q(Z) + [Y - g(Z)]cos £Q(Z) + g(Z) , (2.1)2

z-Z , (2.1)3

where X, Y, Z and x, y, z represent the reference and the current co-

ordinates of the same material point, respectively. The above motion

represents a deformation in which material points which lie in any plane

parallel to the plates continue to remain in the plane, the plane rotating

about a point by an amount 11(z). The locus of these centers of rotations is

in general a curve in space passing through the centers of rotation of the top

and bottom plate, the locus being defined by

X - f(Z) and Y - g(Z) . (2.2)1,2

The representation (2.1)1,2,3 unfortunately leads to certain singular-

ities in the solution. It is easy to see the physical basis for this

difficulty when one considers that different angular displacements of the top

and bottom plate could lead to some plane parallel to these plates which has

zero rotation in which case there are difficulties associated with the notion

of the center of rotation. To avoid such difficulties, in this work we choose

to express the motion in the form

The above form of the motion is a generalization of the motion assumed by
Rajagopal and Wineman (2] when both the top and bottom plate rotate by the
same amount 1. The form of the motion assumed in [2] is the counterpart in
solid mechanics of the structure assumed by Berker [3] and Rajagopal [4] in
the case of fluids.

I'; -5-
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x - X cox 0(Z) - Y sin Q(Z) + f(Z) , (2.3)1

y - X sin 0(Z) + Y coo 0(Z) + g(Z) , (2.3)2

zinZ . (2.3)3

It follows from (2.3)1,2,3 that the deformation gradient F has the

following matrix representation:

,C -s -XSQ - YC' + f,

S() 8 C XCO'- YSOI + g (2.4)

00 1

where

C coo (Z) = cos (z) , (2.5)

S sin 0(Z) - sin a (z) , (2.5)2

and the primes denote differentiation with respect to the argument. One can

now reowrite the matrix (2.4) in terms of the current co-ordinates x, y and

z as

C -S -01(y g) +

( C 0'(x f) + g (2.6)

0(1 )

For the sake of simplicity let us introduce functions a(y,z) and O(x,z)

through

a(y,z) f' - 0'(y - g) (2.7)

and

B(x.z) " g' + 0'(x - f) • (2.8)

It follows from (2.6) - (2.8) that the left Cauchy green strain tensor B is

given by

-6-
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1 + a 2

(B) = (FFT ) + 1+02 0 (2.9)

-1
A simple computation yields that the matrix representation for B is given

by

B 1 - (2.10)

\ -a -0 + a2 + 02 )

It follows from (2.9) and (2.10) that the principal invariant of are

I B tr B 2 3 + (a(2 + 02 (2.11)

and

'= 3 + (a2 + 02) . (2.12)

The Cauchy stress T in the Mooney-Rivlin theory of elasticity is given

by (cf. Truesdell and Noll [4])

- -p2 + (12 )3 - (/2 (2.13)

where U and W are constants and -pl denotes the indeterminate spherical

stress due to the constraint of incompressibility. If one requires that the

strain-energy function in the Mooney-Rivlin theory to be positive for all

it is both necessary and sufficient that (cf. Truesdell and Noll (4])

U > 0, /2 C '1/2 • (2.14)

When j -1/2, (2.13) reduces to the neo-Hookean case

''T - -P! + uB ( 2.15)

As we mentioned earlier, we shall first consider the neo-Hookean problem. The

results for the general Mooney-Rivlin theory follows as a simple extension.

.4 -7-
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3. Equations of Equilibrium

In the case of neo-Hookean material, the equation of equilibrium

div +p= , (3.1)

reduces to

- j (p + p#) + 2a + (sO) + - 0 ( (3.2)

- (p + P#) + (caB) + 2$ + - " 0 , (3.3)

~1 a as- (p + p#) +r- + ; fi 0 , (3.4)

by virtue of (2.9). In equation (3.1) div denotes the diverg e operator,

p the density and the specific body force field. In deriv. ,* 3.2) -

(3.4) we have assumed that the body force field is conservative and hence

derivable from a potential, i.e., - -grad *.

It follows from (2.7) and (2.8) that (3.2) - (3.4) simplify to

-. p +PO - '+0 , (3.5)

1I- - (p + P) + 0la + m- 0 (3.6)

3- - 13.7)

It follows from (3.5), (3.6), (2.7) and (2.8) that

a -a -0 (3.9)
ayaz axaz

The equations (3.9), (2.7) and (2.8) imply that

- "1 = gt"

and thus

*(z) -  (z + *0 (3.10)

where * and *0 are constants. The conditions that

0(-h) 0 01 , (3.11)

and

-8-
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V *-*f1(h) -fl2  ( (3.12)

then imply that
I + a2 2 1

*0 2 and * 2h " (3.13)

Next, equations (3.5) - (3.7) imply that

a-d ' + 2- )  0 , (3.14)

:"-and 

3

-o + 0 (3.15)

It then follows from (2.7), (2.8), (3.10), (3.14) and (3.15) that*

fill + *2 f, - 0 , (3.16)

g'ot + * 2 g - 0 . (3.17)

The boundary conditions which are appropriate for the problem of rotation

of the top and bottom plateb about non-coincidents axes, are (cf. Figure 1)

f(h) sin f(-h) - - a sin f, (3.18)

g(h) (I cos 02), g(-h) - -11 - coo 1 (3,19)
2 2' 21

The above boundary conditions are however insulficient to determine the

solutions of equation (3.16) and (3.17). We now proceed to obtain the

additional boundary conditions.

Integration of (3.16) and (3.17) yields

fog + 2f = q ,(3.20)

gI + 22g = r , (3.21)

where q and r are constant. We shall proceed to seek a solution in

vhich q - r 0 which when the offset between the axes tends to zero reduces

In our analysis we shall restrict ourselves to the case when 1 E 0.
When * - 0, f1  a 2 and this case has been studied in detail for a much more
general class of materials (materials with non-convex stored energy functions)
and the Mooney material in (2].

-9-
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to the classic torsion problem. Thus

f, + 2l f 0 (3.22)!2
g,, + *2 gi . (3.23)

Equations (3.22) and (3.23) imply that_2 1_2

f''(-h) -* 2f(-h) a sin 91, (3.24)

22

g'(-h) " - (-h) - a -- (1 - cos ) (3.25)

In the next section we shall exhibit exact solutions to (3.16) and (3.17)

subject to the boundary condition (3.18), (3.19), (3.24) and (3.25).

Domain of Deformation

II

-10-
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4. Exact Solution for a Neo-Hookean Material in the Case of Rotation About

Non-Coincident Axes

For the sake of convenience .LJ without loss of generality, we shall set

a I - 0 and r2 = o* In this case it is fairly straightforward to verify

that the solution to the problem under consideration is

f(z) - a sin [0 ( h)] , (4.1)

2 ~2 h

and

0 0
g(z) - (Ecosec - - cos - cot 0sin *Z

2 _ 2 2

oo a 0 (4.2)

+ sin -tan :-- coo z}

where "2
p 2h

It is interesting to note that

f(0) - sin (- , (4.3)

and
0 a

g(o) -. sin -tan- (4.4)
2 2

and hence the functions f(z) and g(z) do not pass through the origin. It

is also worth noting that when a - 0, the above solutions (4.1) and (4.2)

reduce to the classic torsion solution.

When q and r are non-zero, one could proceed in a similar manner to

establish exact solutions. The functions f(z) and g(z) have the structure

f(z) - A sin #z + B cos z + 9L (4.5)

g(z) - A2 sin *z + B2 cos *z + 2 (4.6)

where the constants A1, A2, B1, B2  are determined from the boundary

conditions. Thus, there is an infinity of solutions possible, the solutions

4 being parametrized by q and r. The determination of the solutions is

- -1 1-
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straightforward and we shall not provide the details of the same.

Next, we determine the pressure field p. It follows from equations

(3.5) - (3.7), (3.20) and (3.21) and the definitions of a and B, that

-- x(p + P) - *x+ q = 0, (4.7)

(p + PO) - * 2y + r -M 0 ,(4.8)3 3y

ia (p + P) - 0 (4.9)
-3S

Thus

(p- +P#) qx+ry (x + y) + c (4.10)

Hence the pressure field p is independent of z if * is independent of

3.

We now compute the tractions on the top and bottom plate associated with

the above deformation. It follows from the above solutions (4.1), (4.2) and

(2.15), that

Tz = - + 2"z.lz 2

(4.11)
a 0l 1 Y)

T l - O_ h aix + (+tan--1
±th 2 2

M U 1 n2 tan!(4.12)

h " 2 a 2 2

Thus, the resultant shear T (T + T ) on the upper and lower surfacezx ZY

is given by

T(h) - 2 + sec2  _ _ (y + Atan L . -- 2 (4.13)

h 2 2 4 2 a a 2

a

I -12-
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e4

and

fl 2 -
3(h 0 2 + 4 sec ~* 2  + (1tan 110 X)112 .(4.14)

T(hm~T 2a a 2 a

Note that the resultant shear traction on the upper and lower plates differ.

Also, when a - 0

T zx -*UYno .-Ty " h ("- 4.15)

1z- h m 2 h

T i - x 2 h'-- x (4.16)

zs - h

which corresponds to the "regular torsion" problem. However, when q y' 0,

r 0 0, the problems will not reduce to the regular torsion problem (cf.

section 6).

The local contribution to the resultant moment in

N(+h) -( - y(T k + (yT T hT )i
zy zx zz zy-

(4.17)
+ (hT x- XTrzz

Thus, if N denotes the z-component of the local moment M,

M z + h ) -( x T z y - y Tr z x t h

O 2 2 (4.18)

h2 2 2a a 2a

The first term on the right hand side is the term corresponding to the usual

torsion problem and when a - 0, the expression reduces to the classic one.

It is also interesting to note that

Nz(+ h) Mz(- h) when a 0 . (4.19)

4J

-13-
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y 5. Noone)-Rivlin material

In the case of the Mooney-Rivlin material, the equations of equilibrium

reduce to

- (p + 4p) +, 1/ -V' - 0 , (5.2)

a (p + P#) + P0/2 -gl'O + U 0 (5.2)

- (p + P#) -
1 2 - (a 2 + B2 ) - 0 , (5.3)

by virtue of (2.9), (2.10) and (3.1). It follova from (5.1) and (5.2) that

a a - 2 (5.4)
ayaz axaz

This in turn implies, by virtue of (2.7) and (2.8), that

9'' - 0 . (5.5)

*. Thus as before

.5.

b- L-" (Z) - *z + #0 (5.6)

, ": with #0o "Y' * 2h

Next, requiring that
;)2 :2

(p + P4) V - (p + 04) (5.7)

implies (from (5.1) and (5.3)) that

P ,2
S.'j~l, iao fct a 2 ~~ 2 2

(1/2 +P a+ U !L 2 P r(a +p~ . (5.8)

Thus

fl!- 37)" + floe *21 / 3)f.. 0 . (5.9)

I Using equations (5..2) and (5.3) one can similarly eatiblish that

(- - + 370)f'' + g,'' 2112 - 3B)g - 0 . (5.10)

.. 2
Note that in the case of a Neo-Hookean material W -I/2 and hence (5.9) and

.

(5.10) reduce to (3.20) and (3.21), thus uncoupling the equations. in general

however, the equations are a coupled system of linear ordinary differential

-14-
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equations.

Introducing a complex valued function F(z) through

F(z) - f(z) + ig(z) , (5.11)

we can re-write the coupled system (5.9) and (5.10) as

Fl'" - i, - 30)7' - v (/ -3),- 0 *(5.12)

2 ~ .(12 -37o)F'

The appropriate boundary conditions are

F(h) - [sin $I + i(1 - cos a)] , (5.13)

F(-h) - [ sin a + i(1 - cos 1 )] - 0, since a, 0 . (5.14)

As before, we can determine the additional boundary conditions by integrating

(5.12). It follows from (5.12) that

- 3 - 37), _ #2 (/2 - 30)F - k , (5.15)

where k is a complex constant. Again, as before, we can obtain an infinite

set of solutions parameterized by k, to the above problem.

The solution to (5.15) is of the form

F(z) = a + Be " 21 , (5.16)

where a, and 82 are given by

1I - i# and is -(l- 60 ) . (5.17)

The constants A and B can be obtained by using the boundary conditions

(5.13) and (5.14).

• ---- 15-
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-* 6. The Torsion Problem

In this section we consider the classic torsion problem and show that an

additional infinite class of solutions is possible for this problem. We shall

, consider the problem of an elastic layer of a neo-Hookean material contained

between two infinite parallel plates. The top plate is rotated by an amount

U., while the bottom plate is held fixed (cf. Figure 2). For the problem in

question, we once again seek a motion of the form (2.3)1-3. The well known

torsion solution corresponds to f() = 0 and g(Z) - 0, with O(Z) -

#1Z + *0.

.4S

~Figure 2

Domain of Deformation

i' In the case of a neo-Hookesn material, the equations of equilibrium once

" ' ' again reduce to

4.J*

f o g @ + * 2 f , M 0( 6 1

! and

9 fit' + 2, 91 0 .(6.2)

,-16-
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The appropriate boundary conditions for the problem under consideration are

f(h) - 0, f(-h) - 0, g(h) - 0, g(-h) - 0 . (6.3)

As before, the above boundary conditions are not sufficient to determine the

solution to (6.1) and (6.2). The additional conditions which can be employed

are

f(O) - 1, g(O) - 0 * (6.4)

While the above boundary conditions can be viewed as a kind of a normalization

of the function f(z), the above conditions have a physical significance when

the corresponding functions f(Z) and g(Z) (cf. equation (2.2)) are

considered as locus of rotations.

It is straightforward to show that when *h p 2nw, the solution to (6.1)

and (6.2) subject to (6.3) and (6.4) is

f(z) = A(cos #z - cos #h)
(I - coo#h) '(6.5)

g(s) 0

When I - 0, we obtain the classic solution for the torsion problem. When

#h - 2nw, one can easily show that f(s) - A sin #z, g(z) i 0 where I C R.

Once again, when I - 0, we once again obtain the torsion solution.

In the case of a Nooney-Rivlin material, the equation of equilibrium

governing the torsion problem is (5.15). The appropriate boundary conditions

are

F(h) - 0, F(-h) - 0 and F(0) 1 A . (6.6)':

We can always pick the axis in such a manner that the above is possible (cf.
[31, [4)).

-17-
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7. The Problem of Finite Extension and Torsion

In this section we consider the problem of a finite extension of A of

the infinite sandwich followed by a twisting of the top plate by an amount

. Zn this case, we shall study a deformation of the following kinds

x - [ cos .Z) - Y sin Q(Z)J + f(AZ) , (7.1)

y - IX sin (XZ) + Y cos QlZ) , (7.2)

fik

z -Z (7.3)

When A - 1, the above deformation reduces to the expressions (2.3)1,2,3

which we have already studied in detail. A simple computation yields the

deformation gradient 1:

C -S

A 6rx(Xso C- ) + f'A

F- C ' - YS') + g'X (7.4)

0 0

where now C - cos (AZ) and S - sin Q(Xz). (7.511,2)

I We can now express in terms of the present co-ordinates as

C -Sf'X - QIA(y -g)

- C g'A + 'A(x f) (7.6)

0 0 A

As before, we shall define

a(y,z) - f' - 0'(y - g) (7.7),

0(x,z) I g''+ '(x - f) (7.7)2

UhU

-18-
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c -8 c

~- SC 15 (7.8)

(0 0 A

and the left Cauchy-Green strain tensor A is given by

1 22 2 2

and

OW 2(7 .10 )
a - 1 + A2 + A02

1 2

it then follows that
in 2 + 12162 + 022 + 2

it follows from the constitutive expression (2.13) for the Mooney-Rivlin

! ~mteri~al and the equatilon of equli:brium (3.1) that

S+ a [(i' W)A 26 + V( - W)AG, _ 0 ,(7.12)

+. a ( 1 + ' 2 0 ( , -. 0 (7.13)

2 2) (710
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3z ax 2 2

1 2 1

rj 1a( * 0)1 2a il( -0)]

3 1 -1_ 2

a [u(1 - j)(- + AQ2 + A02 )] 0 (7.14)

It follows from (7.12) - (7.14) and the definitions (7.7), and (7.7)2 for

a(y,z) and 0(x,z), that
-3 p+ 1  - 1 -C( ( ;.

S )I( I + W 0 1 ) +)(] - 0 , (7.15)

-E + 1 + _)2 an' + U1E + 2) + I- ) 0 , (7.16)

1( .- (') l 2  + 02 ) _ 0 2 (7.17)

It follows from equations (7.15) and (7.16) that

. (7.18)
ay3z azax

Thus, on using the definition (7.7), and (7.7) 2 for a and 0, and (7.18) we

obtain that

III, - 0 . (7.19)

Thus, as before

O(z) - *z + * 0  (7.20)

Note that the above expression for 0 is in terms of the current co-ordinate.

Next, it follows from (7.15) and (7.17) that

P i(. + 2,) 2 # 0 + U( 2 + X)X2 + (1 2 )1]
2 Oz 2 2 z2

+ U(-- W )
1 32 

(a2 + ) 0 . (7.21)

By virtue of (7.7), and (7.7)21 (7.21) can be expressed as

2 2+2
( )2+ 1 ) +0 (1 - )]f,,, _ *2[(1 _ -) _ 0(21 + )f

(7.22)

+ 1 - 30)*g" -0

-20-
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Similarly, (7.16) and (7.17) imply that

1 2 a 1I - 1 )21

S(1 + 1)2 + i((I + ) + ( - )
2_3z 2 2a z2

,. (7.23)

-- a--') 2 C*2 + B2 1

. Equations (7.7), and (7.7)2 now imply that

(.1 [(A)2 + A)1 + W1(X2 E ) +  [2 1 2 _ + W1)X2 + 2A) 19 17242,1. - 22

(7.24)
+ f"'[--+ 37] - o

A2

When X - 1, equations (7.23) and (7.24) reduce to (5.9) and (5.10) for the

simple torsion problem. Once again we introduce a complex valued function

F(z) through

F(z) - f(z) + ig(z)

It then follows from (7.23) and (7.24) that

2 2
,.1 .2 A 2*2 A -,, [ (A + 0 (A - A)]F''' - [A() .- - B(A + 2)JF'

(7.25)

0~ 3 -
#)(i - 30)P'

l - 0

The appropriate boundary conditions are

F(h) - 0, F(-h) -0 . (7.26)1,2

and F() - 1 (7.27)

In choosing the boundary conditions (7.26)1,2 and the condition (7.27) we are

basically choosing to interpret x - f(z) and y - g(z) as determining the

locus of the centers of rotation. However, we have indicated before, there is

no need to make such an interpretation (indeed such an interpretation leads to

difficulties if at a plane z - constant, 2W(z) 0). One could in fact

replace the condition (7.27) by

-21-
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F(O) = K = x0 + iy0  (7.27)'

where K is a complex constant and in this case one obtains a two parameter

family of solutions.

-: IIt is lengthy but straightforward to determine the solution to (7.25)

* subject to the boundary conditions (7.26; ,2 and (7.27). The solution is of

the form

Siz S2z
F(z) = Ae + Be + C

where S1,2 are the roots of the quadratic equation

2 ( + X) + T(X2- - *( O-)S

(7.28)

- (A X2  - - 2 + 2X)] = 0

,., Thus

.5,2
3- 223 -2 1- - s2 2,I 2 -S 1 ,2 =i$(- 30) t {-*2A ( - 3B0)2 + 4[- (X2 + X) + (X2 X )]

2 2 2
(A 2 +2X)J42

22(A [ I, + A,) + O1CA _ )] 1 7.29)

Interestingly, the above expression for S1,2 simplifies to

S = itxA[ 1 + X + 20(X - 1) 1 * (7.30)
A 2 + A + 20-A2 X )

and

S =iA[ + A (7.31)
A, + + 2(a - )

It then follows that

f(AZ) - -[ sin *hAM sin *AZ - sin * h cos *MAZ + A] (7.32)

and

g(AZ) = - [sin *hAM sin $Az - sin 4.Ah sin *4AZ] (7.33)

where

-22- •%
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" ~2-A-2i(2 A), ( .
A sin *hX(1 - M) ,14 ,, 1+),(7.34)

and

A- 4 sin *h• s (7.35)

We conclude this work by studying the problem of the infinite sandwich

being extended by a finite amount and then being twisted by n 1 and n 2

about non-coincident axes. For this problem, we once again seek a deformation

of form (7.1) - (7.3). Thus we obtain the same equilibrium equation (7.25).

" The only difference is in the boundary condition and for the above problem,

the boundary conditions are (for the sake of convenience we shall set A = 0

and 0 2 O )

f(h) a sin 12 2 sin 20 (7.36)
2J3 2A~

f(-Xh) - sin l - 0 , (7.37)

g(Ah) -- (1 - cos ) -- (1 - cos a) , (7.38)
24 ~ 2A

and

ag(-Xh) 26 1 - coo 0 1 )  0 •(7.39)
2/i"

Thus

FP(h) - [sin 0  (1 - coo o ) ] o (7.40)
2/i?

F(-Xh) - 0 ( (7.41)

Since 1 - 0 and 92 no, it follows that

40 - (7.42)

2Xh

Then,

-23-
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i(- z 0
a [e 2h 0 2

44.

2 h 2 2 h 2-e + e

Si(, -- M + n -)]
-e h 2 +

0 2 h 0 2 h

sin e - sin-7A311 - 6 2"-j (7.43)

where

6 - sin(*MAh - *Xh) - sin 2- (M - 1) (7.44)

This then implies that

f(AZ) a [cos(- E o - :- )

- Cos(-- + Cos(- 0

'-" ~- cos( - F + T-)] ,

... nlM nl nl fl0 Cos 0 0

sin cos- sin - cosn- -
+2 2h 2 2 h] (7.45)

and

a O0 0 z 11 0 M
gtAZ) [sin(-- h + lO - M) sin(-- --)

48rX in h 2 h+2

+ sin(- M 0) sn(20- M + 10-)] -A (sin ! sin !-

-sin - sin 1- - ) . (7.46)
2 2 h

No

4' -24-
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Note that the above yield a one parameter family of solutions in terms of the

constant A3, and this is to be expected as we have not imposed an additional

condition as before, e.g. the location where the locus of the centers of

* rotations cut the z - 0 plane.
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