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Exact solutions are established for several boundary value problems in

Aoy A

the non-linear thoo:ylof elasticity. All the problems considered exhibit the
possibility of a multiplicity of solutions. Since the domain involved in all
. these problems is infinite, a stability analysis based on energy criterion is
a not readily available and thus the stability of these multiple solutions

remains an open problem.
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‘ g ) NEW EXACT SOLUTIONS IN NON-LINEAR ELASTICITY
R

W L* T

Yy K. R. Rajagopz: and A. S. Wineman

1. INTRODUCTION

Since Rivlin's pioneering work in the non-linear theory of elasticity

(cf. Green and Adkins [1]) there have been few new solutions which have been

£

exhibited. In this work we establish solutions to several boundary value

&
.

problems in the theory of non-linear elasticity. An astonishing feature in

NN

all the problems dealt with is the possibility of an infinite class of exact

solutions. The most interesting of the problems studied is that of the slabd

A

9.8

~f in pure torsion, where in addition to the classic torsion solution we exhibit
A
ng the possibility of an infinity of non-symmetric solutions. Since all the
~§T problems considered involve infinite domains, a stability analysis based on

s

energy is not readily available. We do not study the stability problems but

L

leave this to a later date. The questions of stability notwithstanding, the

exact solutions in themselves are so simple that they are worth recording.

A

Our analysis here is an outgrowth of a recent study by Rajagopal and

A Wineman [2) who considered the deformation of a non-linearly elastic material
which is sandwiched between two infinite parallel plates, a distance ‘'h'

'éi apart, rotated by the same angular displacement & about two non-coincident

Ei? axes perpendicular to the plates. The form which they assumed for the defor-

‘2 mation correspond to a shear (which is dependent on the co-ordinate normal to

oY

i
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the plates) followed by a rigid rotation. They entablisﬁed exact solutions in
the case of a neo~Hookean and Mooney-Rivlin material. They also studied the
consequence of the non-linearly elastic material being characterized by a non-
convex stored energy function. In this case they found that it is possible
that the solution possess discontinuous deformation gradients and exhibit the
phenomena of phase change.

In this work, we wish to study associated but a different class of
problems. all the problems are concerned with the deformation of a slab of
thickness ‘h' whose other dimensions are infinite, the top and the bottom
surfaces of the sandwich being bonded to rigid plates. Also, in all the
following work, the non-linearly elastic material between the plates is either
a n;OPHookean or a Mooney-Rivlin material. Pirst, it is our aim to
investigate the consequences of rotacing the top and the bottom plates by a
constant, but differing amounts, about non-coincident axes perpendicular to
the plates (cf. Figure 1). For the nonlinearly elastic materials in question,
we are in a position to establish an infinity of exact sclution. We first
exhibit an exact solution in the special case of a neo-Hookean material. It
is found that a two parameter family of solutions is possible. We investigate
in detail the solution which when the offset between the axes ‘'a' vanishes,
reduces to the classic torsion solution. However, this solution by no means
is the only solution to the problem under consideration. We also compute the
tractions on the upper and lower surface and find that they are not the

same. It is also found that the local contribution to the resultant moment is

iii different at the upper and lower surfaces for fixed values of the co-ordinates

ﬁ?ﬁ in the plane normal to the axes of the plates. !
A

5&3 In the case of a Mooney-Rivlin material, for the kind of motion under

gﬁl consideration the equations of equilibrium lead to a coupled system of linear ‘
ggg ordinary differential equations (these equations uncouple in the neo-Hookean

L/
)
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case). The problem can be easily reduced to that of solving a single linear
ordinary differential equation for a complex valued function. The problem is
straightforward and one can determine the solution with ease. Once again an
infinite class of solutions is possible.

Next, we study the problem of rotating the top and the bottom plates by
different amounts about a common axis, namely the torsion problen.' Most
interestingly, we once again exhibit an infinite one parameter family of
solutions for the problem in question. The classic torsion solution belongs
to this class. While it is the only symmetric solution to the problem, there
are infinitely many non-symmetric solutions which are arbitrarily close to the
classic torsion solution.

We also study the problem of the material being subject to finite axial
stretching followed by torsion. In the case of a Mooney-Rivlin material it
turns out that the equations of equilibrium simplify, after lengthy manipula-~
tions, to a coupled system of ordinary differential equationg which have an
amazingly simple solution. Once again, the problem exhibits the peculiar
characteristic of possessing an !nfinity of solutions. Of course, when there
is no stretching, the solutions reduce to those obtained for the pure torsion
problem.

All the solutions in the case of the common axis problem and the non-
coincident axes problem considered, except the last class of problems, corre-
spond to deformations in which any plane parallel to the plates, remains in

the same plane, but rotates by an amount (z) which depends on the coor-

We have received personal communication from Profesgsor R. T. Shield (7] that
the above problem and several other exact solutions are being studied
independently by J. M. Hill and R. T. Shield and the work is to be submitted
for publication. However, at this time we have not seen the manuscript and
hence do not know the exact nature of their work.
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dinate normal to the plates. That such deformations could possibly lead to
nonunique solutions is motivated by Berker's investigation into the classical
Newtonian fluid (3). That a similar situation obtains in more general fluids

was established by Rajagopal [4], [5] and Rajagopal and Gupta (6].

i After a brief review of the necessary kinematics in the next section, we
¢ derive the approximate form of the equations of equilibrium for the problems
under consideration in section 3. 1In section 4, we study the problem of a
neo~Hookean material sandwiched between two infinite parallel plates which are
rotated about non-coincident axes by differing amounts. The problem and

solution procedure in the case of a Mooney~Rivlin material is considered in

i L

section 5. In the next section we study the torsion problem in the case of

§§ the neo-Hookean and the Mooney-Rivlin material. In the final section we study
k.x B
; the problem of the material being subject to axial stretching followed by .
z l
B torsion. !
-
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2.

Kinematics
For the problem of rotation of the plates about differing axes and a

common axis, it would be natural to assume a motion of the form'

x = X - £(z)]cos 9(2) - [¥ - g(z)]sin R(2z) + £(2) , (2.1,
y = [X - £(Z)]1sin 8(2) + (Y - g(Z)]cos 0(2) + g(2z) , (2.1),
z=2 , (2.1)3

where X, Y, 2 and x, y, z represent the reference and the current co-
ordinates of the same material point, respectively. The above motion
represents a deformation in which material points which lie in any plane
parallel to the plates continue to remain in the plane, the plane rotating
about a point by an amount (z). The locus of these centers of rotations is
in general a curve in space passing through the centers of rotation of the top
and bottom plate, the locus being defined by

X =f£(z) and Y = g(2) . (2.2)4 ,

The representation (2-1)1.2'3 unfortunately leads to certain singular-
ities in the solution. It is easy to see the physical basis for this
difficulty when one considers that different angular displacements of the top
and bottom plate could lead to some plane parallel to these plates which has
zexo rotation in which case there are difficulties associated with the notion
of the center of rotation. To avoid such difficulties, in this work we choose

to express the motion in the form

’\Q . y ,’ Q'f
. &} L2 _uult

The above form of the motion is a generalization of the motion assumed by
Rajagopal and Wineman (2] when both the top and bottom plate rotate by the
same amount fl. The form of the motion assumed in [2] is the counterpart in
s0lid mechanics of the structure assumed by Berker [3] and Rajagopal [4] in
the case of fluids.

~J'
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33 x = X cos 2(2) - Y sin Q(2) + £(2) , (2.3),
X

Yy = X sin Q(2) + Y cos Q(2Z) + g(2) , (2.3),
e |
s — (2.3)4
“ﬁﬁ It follows from (2.3)1'2'3 that the deformation gradient F has the
%1% following matrix representation:
R
3 ¢ c -8 -XsSQ' - YCQ' + £*
Y
LA (p) = | s c XcQ' - ¥sQ' + g° (2.4)
;;g?" 0 0 1 '
o
:%s where
AN
33& C £ cos 1(2) = cos Q(z) , (2.5),
263 S = sin 2(2) = sin A(z) , (2.5),
o
2;? and the primes denote differentiation with respect to the argument. One can

now rewrite the matrix (2.4) in terms of the current co-ordinates x, y and

et

?4' N %

A z as
s‘-}'l
tley c -8 -Q'(y - g) + £
' (p) = 8 c Q'(x - £) + g* (2.6)
-
- 0 0 1 .
R
3_2 For the sake of simplicity let us introduce functions a(y,z) and B(x,z)
"o
y through
A‘.;\.f
DAY aly,2) = £' - Q'(y - g) (2.7)
~V
!
14! d
8% .,.
B(x,z) = g' +Q'(x - £) . (2.8)
{'\
,ﬁg; It follows from (2.6) - (2.8) that the left Cauchy green strain tensor B is
Ay R
B given by
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,;3 1+a af a

A . )

> (B) = (FF") = | aB 1+8 B (2.9)
25N a 8 1 .

";: A simple computation yields that the matrix representation for 2-1 is given
N3y

] by
"ﬁ 1 0 -a
B -
\ B = 0 1 -8 (2.10)
% 2, o2

SN -a -8 1+a°+8 .
q;*""f It follows from (2.9) and (2.10) that the principal invariant of B are
% - 2, a2
S IB s tr g = 3 + (a + B ) ) (2.11)
0 - o
Y and .

i) 11 =3+ (o + 8% . (2.12)
i\:@ : The Cauchy stress T in the Mooney-Rivlin theory of eiasticity is given
by (cf. Truesdell and Noll [4])
38 r=-pt+ulp +B)B-ulp -Br 7' , (2.13)
o

where u and 8 are constants and -p] denotes the indeterminate spherical

AR A 2

stress due to the constraint of incompressibility. If one requires that the

f strain-energy function in the Mooney-Rivlin theory to be positive for all B
3

g : it is both necessary and sufficient that (cf. Truesdell and Noll [4])

"y -

e u>0, K <<ty (2.14)

N When E = 1& ¢+ (2.13) reduces to the neo-Hookean case

o

TS

oot T=-pl+u . (2.15)

-F~J

2]

As we mentioned earlier, we shall first consider the neo-Hookean problem. The

;i’\ results for the general Mooney-Rivlin theory follows as a simple extension.
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3. Equations of Equilibrium

In the case of neo-Hookean material, the equation of equilibrium

N dAlvT +ph=0 , (3.1)
4 reduces to
L2 AN
59 13 da _ 3 da _
',; “H(p+p¢)+2c§;+3—y(as)+ﬁ o, (3.2)
A -1 e+ e+ 28384 2B (3.3)
'I* uay P ax ¥y ¥z ! y
~
‘
12 da . 98 _
1 ren + 32 55 o, (3.4)
i.i h by virtue of (2.9). 1In equation (3.1) div denotes the diverg e operator,
> L4
"}: p the density and )b the specific body force field. 1In deriv. -« 3,2) =
' ) (3.4) we have assumed that the body force field is conservative and hence
13N
.{ derivable from a potential, i.e., b = -grad ¢.
vg It follows from (2.7) and (2.8) that (3.2) = (3.4) simplify to
N
- 1 3 - . l‘- -
. uﬁ(p‘*pﬂ t'IB+az o , (3.5)
o
e 139 )
o P— L] ™~
“,"}_j uw(p+p¢)+na+55 o , (3.6)
: -1 (b +pe) =0 (3.7)
gk u 3_2. * *
Y
o It follows from (3.5), (3.6), (2.7) and (2.8) that
l A

2%a_ a8
dydz  9Ixdz
The equations (3.9), (2.7) and (2.8) imply that

(3.9)

-=Q'"'=Qq' ,
and thus
z) = vz + ¥y (3.10)
where ¢ and vo are constants. The conditions that
Q(=h) = 2, . (3.11)

and
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Q(h) = 92 . (3.12)

then imply that

2, +Q Q, - 8,
Vo= —3— and ¥ = S . (3.13)

Wext, equations (3.5) - (3.7) imply that

s+ ¥-o (3.14)
and
%; R'a + %5] =0 . (3.15)
It then follows from (2.7), (2.8), (3.10), (3.14) and (3.15) that*
£ + y2g =0, (3.16)
g''t +y3g' =0 . (3.17)

The boundary conditions which are appropriate for the problem of rotation

of the top and bottom plates about non-coincidents axes, are (cf. Figure 1)

£(h) = % sin 2,, £(-h) = - % sin 9, , (3.18)
g(h) = % (1 - cos 02), g(=h) = = % {1 - cos 01) . (3.19)

The above boundary conditions are however insufficient to determine the
solutions of equation (3.16) and (3.17). We now proceed to obtain the
additional boundary conditions.

Integration of (3.16) and (3.17) yields

£ s ylE=q , (3.20)

gt +¥ig=r , (3.21)
where q and r are constant. We shall proceed to seek a solution in

which q = r = 0 which when the offset between the axes tends to zero reduces

*

In our analysis we shall restrict ourselves to the case when Vy # 0.
When ¥ = 0, 91 = {l, and this case has been studied in detail for a much more
general class of materials (materials with non-convex stored energy functions)
and the Mooney material in ([2].
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LAY to the classic torsion problem. Thus
w3 £+l =0, (3.22)
~ gt +¥g=0 . (3.23)
‘+5§ Equations (3.22) and (3.23) imply that
2
£90(-h) = ¥’£(-h) = a - sina, , (3.24)

2
g'*(=h) = ~p2g(-h) = a ¥ (1-cosnp . (3.25)

N
Py s* s}..l

X0
Ly

In the next section we shall exhibit exact solutions to (3.16) and (3.17)

]

wr

subject to the boundary condition (3.18), (3.19), (3.24) and (3.25).
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4. Exact Solution for a Neo—-Hookean Material in the Case of Rotation About

Non—-Coincident Axes
For the sake of convenience .3 without loss of generality, we shall set
91 = 0 and 92 = 90. In this case it is fairly straightforward to verify

that the solution to the problem under consideration is

Q
a 0 ,z+h
£(z) 7 sin 5~ (-—1;—-)1 ’ (4.1)
and
Q Q Q
a 0 0 0
g(z) = 3 {(cosec 3 " €08 3- cot 3-lsin ¥z
Q 90 (4.2)
+ sin 5~ tan 3 cos vz} ,
ﬂ0
vhere V¢ = on "
It is interesting to note that
a n0
£(0) = 3 sin 3 (4.3)
and
Q 1]
a 0 0
g(0) 7 sin 3 tan = (4.4)

and hence the functions £(z) and g(z) do not pass through the origin. It
is also worth noting that when a = 0, the above solutions (4.1) and (4.2)
reduce to the classic torsion solution.

When q and r are non-zero, one could proceed in a similar manner to

establish exact solutions. The functions f£(z) and g(z) have the structure

f(z) = A1 sin $z + 81 cos Yz + 35 ¢ (4.3)
L4

g(z) = Az sin Yz + 32 cos $z + 53 . (4.6)
L4

where the constants Ay, Ay, By, B are determined from the boundary
conditions. Thus, there is an infinity of solutions possible, the solutions

being parametrized by q and r. The determination of the solutions is

-1t~
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straightforward and we shall not provide the details of the same.
Next, we determine the pressure field p. It follows from equations

(3.5) - (3.7), (3.20) and (3.21) and the definitions of o and 8, that

1 2
;_x (p+p¢) -‘DX"'q"O ’ (4.7)
-1 bty -¥Py+r =0 (4.8)
u 3y P b4 ' .
19
--‘I-a-;(p"'pdi) =0 . (4.9)
Thus
1 2 2 2
; {p + p$) =qgx + ry - g— (x" +y°) +c . (4.10)

Hence the pressure field p is independent of z if ¢ is independent of
z.

We now compute the tractions on the top and bottom plate associated with
the above deformation. It follows from the above solutions (4.1), (4.2) and

{(2.15), that

= - ayp
sz . = an Yuy + 2
(4.11)
Q
=ya_90 1 _vy
uhz (2 a) ’
ay
= Yux + (+ tan —)
ZY¥|z = + 1 2
(4.12)
YRz ats 2’

2 2 1
Thus, the resultant shear T = (sz + 'l.‘zy)/2 on the upper and lower surface
is given by
Q 2 Q Q1
Lda 0y 1 2.0 v _ x 0.,/
T(h) h 3 O 2 + 4 8ec” 3 (;*+ 5 tan 3} ' (4.13) .

o
B I P




Q 2 Q f 1
ra
) =y a0 1 2.0, x 9 _x,7%
! . T(-h) = u h 2 [‘2 +g8ec 3 ¢ (a tan 3 a)] . (4.14)
gi Note that the resultant ghear traction on the upper and lower plates differ.
by
- Algo, vhen a = 0
® Q
0

A 7 --WY--E——Y (4.15)
q lez =4+h 2 h
5
N Q
' -ux = £ 0, (4.16)

ZY¥|y = + h 2 h

Jorty

which corresponds to the “"regular torsion® problem. However, when q ¥ O,

2
] r ¥ 0, the problems will not reduce to the regular torsion problem (cf.
section 6).
K The local contribution to the resultant moment is
+ - - + Y
M(th) (xsz y(sz) k (y"l':z hsz)$
(4.17)
> + (¢ - .
;i . (’hsz ’a.zz)'1
;: Thus, if M_ denotes the z-component of the local moment M,
M (th) = (xT =~ yT )|
z zy zx |,
a« =h
\
n “oﬁ ;i 'y, x no (4.18)
* + e - - = —_— .
: Ll [az 2 (a S a tan o )]
= The first term on the right hand side is the term corresponding to the usual
N
: torsion problem and when a = 0, the expression reduces to the classic one.
N
2 It is also interesting to note that
ﬁ‘
= M (+ h) ¥ M (- h) when a» 0 ., (4.19)
} :
‘i
)
2
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S. Mooney-Rivlin Material

In the case of the Mooney-Rivlin material, the equations of equilibrium

reduce to
- roe) sule ~D-ae) +u 20, (5.1)
'%(P+o¢)+u(’/2-§')ﬂ'u+ug%-0 ' (5.2)
3 1 =y 0 2 2
-E(p-row-u(/z-a)-s;(u +8°) =0 |, (5.3)

by virtue of (2.9), (2.10) and (3.1). It follows from (5.1) and (5.2) that

2o 2% (5.4)
dydz 3xdz y
This in turn implies, by virtue of (2.7) and (2.8), that
Q' =90 ., (5.5)
Thus as before
(z) = ¥z + *0 ’ (5.6)
2 Q
0 ]
with to =3 O-E .
Next, requiring that
a2 a2
P (p +0$) = Py (p + pé) (5.7)
implies (from (5.1) and (5.3)) that
2
vu(/2+a)}-z-+uazz+u(2 B‘)mca +8%)y=0 . (5.8)
Thus
3 Y3 (XX} 21 T RY L
Mf - 38)g*'' + £ ~¥v(p -38)' =0 . (5.9)
Using equations (5..2) and (5.3) one can similarly estiblish that
vi- % + 30 + g0t - i, - 3Bg =0 (5.10)

Note that in the case of a Neo-Hookean material 8 = '/2 and hence (5.9) and
(5.10) reduce to (3.20) and (3.21), thus uncoupling the equations. In general

however, the equations are a coupled system of linear ordinary differential
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equations.

Introducing a complex valued function PF(z) through
F(z) = £(z2) + ig(z) , (5.11)
we can re-write the coupled system (5.9) and (5.10) as
Pt -1y - 3Ber - il 3B =0 (5.12)
The appropriate boundary conditions are

a
F(h) = 2 {8in no + 1(1 - cos ﬂo)l ’ (5.13)

F(-h) = - 2 (sin 0, + 1(1 - cos 2,)] = 0, since R, =0 . (5.14)
As before, we can determine the additional boundary conditions by integrating
(5.12). 1It follows from (5.12) that
P9 - 3mr - 9idp - P =, (5.15)
where k is a complex constant. Again, as before, we can obtain an infinite
set of solutions parameterized by k, to the above problem.

The solution to (5.15) is of the form

8.z L %
r(z)-u' +Bez -—2+_i v (5.16)
¥o(5 - 38)
vhere s, and s, are given by
- - ,_ 6
s, iy and s, =3 (1 -68) . (5.17)

The constants A and B can be obtained by using the boundary conditions

(5.13) and (S5.14).
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- 6. The Torsion Problem
-y
3" In this section we consider the classic torsion problem and show that an
additional infinite class of solutions is possible for this problem. We shall
L]
t: consider the problem of an elastic layer of a neo-Hookean material contained
~!
] between two infinite parallel plates. The top plate is rotated by an amount
: Qo, while the bottom plate is held fixed (cf. Figure 2). For the problem in
AN
"q question, we once again seek a motion of the form (2.3)1_3. The well known
» torsion solution corresponds to f£(2) = 0 and g(Z) = 0, with Q(Z) =
» 0': + '0'
Yo
B
\.
' Jot
. l ——
AN
+
)"
- |
) g n
¢, |.
X9 K\
' 9
.:_,
N
e Pigure 2
Domain of Deformation
s::
a
$ In the case of a neo~Hookean material, the equations of equilibrium once

again reduce to

f'l' + *zfl = o R (6.1)
"
t} and
(A}
o) 2
> g''' +9$°g'=0 ., (6.2)

" mcm Tt
. «f

+
A
QLR SN,




The appropriate boundary conditions for the problem under consideration are

£(h) = 0, £(-h) = 0, g(h) = 0, g(~-h) = 0 . (6.3)
As before, the above boundary conditions are not sufficient to determine the

solution to (6.1) and (6.2). The additional conditions which can be employed

iii are
G £(0) = ¢, g(0) =0 (6.4)
. )
:: While the above boundary conditions can be viewed as a kind of a normalization
V)
DN of the function £(z), the above conditions have a physical significance when
X the corresponding functions £(z) and ;(z) (cf. equation (2.2)) are

{
%$} considered as locus of rotationms.
ke

'?ﬁ It is straightforward to show that when Vh ¥ 2nw, the solution to (6.1)
N and (6.2) subject to (6.3) and (6.4) is

= L(cos ¥z ~ cos yh)

f(z) = ’

) 1 - h

33 (1 = cos ¥h) (6.5)
= g(s) 0 .

‘) When £ = 0, we obtain the classic solution for the torsion problem. W#hen
5; %h = 2n%, one can easily show that f(z) = £ sin $2, g(2) = 0 where & € R.
ﬁb Once again, wvhen 2L = 0, we once again obtain the torsion solution.

; ‘ In the case of a Mooney-Rivlin material, the equation of equilibrium

y

) governing the torsion problem is (S.15). The appropriate boundary conditions
1‘ J

‘ are

-, L]

.2

'l

t.i.l

-

ke

}’

iy :

- We can always pick the axis in such a manner that the above is possible (cf.
jd (31, (4]).
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7. The Problem of Pinite Extension and Torsion

In this section we consider the problem of a finite extension of A of
the infinite sandwich followed by a twisting of the top plate by an amount

Q. In this case, we shall study a deformation of the following kind:

x = L {X cos 8(AZ) - Y sin ﬂ(lz)] + £(A2) , (7.1)
5y
y = = (X sin 8(AZ) + Y cos QAZ) , (7.2)
"5y
z = Az . (7.3)

When A = 1, the above deformation reduces to the expressions (2.3)1’2'3
which we have already studied in detail. A simple computation yields the

deformation gradient F:

C -8
vy 'y /A(-X80' - YCQ') + £°'A
E= _8: 2_: f{(xml - YS8') + g'\ (7.4)
2 /A
0 0 A ’
where now C = cos 2{AZ) and S = gin Q1()A2). (7.5)1'2)
We can now express F in terms of the present co-ordinates as
C -8
- — £'A - Q'A(y - g)
"2 "4
E- 8 c g'A + Q'A(x - £) (7.6)
5y X
0 0 A .
As before, we shall define
a{y,z) = £' - Q'(y -qg) , (7.7,
B(x,z) 2 g' +Q'(x - £) . (7.7,

-18-
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R c -8
i = = Ao

5 4 £
$f\ ) E=| s c_ A8 (7.8)
3 7 A

&g 0 0 A .

and the left Cauchy-Green strain tensor f§ is given by

1Y

A

1 2.2 2 2
N Tt A%a A"aB A"a
K
2 1 2,2 2

B = A% x+x 8 A°g (7.9)
s A2q A%g 22 .

'..q

\'
§ and

.' A 0 -Aa

N

-1 . 0 A =8
sf' ~ (7.10)
™ -Aa A8 L+aa? s .
! A

oy

g;‘.‘

‘j' It then follows that

35

1< =2+ 4+ 8% 422, (7.11)
{S It follows from the constitutive expression (2.13) for the Mooney-Rivlin

-, material and the equation of equilibrium (3.1) that

s

< _p L. 1,422 2 1 2

* 3% * 3x (g * By +2%aT)) ¢ 5 Tuig + Batas)

-] + 3= g+ Bn%a s it - Boal =0, (7.12)
2 [} ]

3 J - J -

i ,yq;m +I)xcal+ [n( +'§)(-x-+xsn

>'“-

) 1 2 1 =

. +az iz + BB+ uz - B8y =0 , (7.13)
4!
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v
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8
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1 }
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1)
a
L]

.“‘
D]
A p . 3 1 2 1
> - 2P o_ 2 a -_— -7
:\ 3z + % [u(2 + B8)A"a + ll(z B8)\a)
&k
h 9 1 - .2 1 -
- + 3y [Il(i' + B)A"B + I-I(E - B)AB] ‘
; ‘ d 1
) -1 2 2
'5.'5: -3z [u(i - 8)(;-2- + A +A87)] =0 ., (7.14) !
,...tq'
YO It follows from (7.12) - (7.14) and the definitions (7.7)1 and (7.7)2 for
_' ‘. a(y,z) and B8(x,z), that
AN ap 1 =2 1 =2 1 = 2a
S -2 rug+ BB rulig+ BN s g-B =0, (715

+ u(% + Bnlanr + ul(% £ B2+ (% - B g—E =0 , (7.16)

s

-'-x % _ 37,0 2 2, o
w!'» 3. ~ W3 B)A 3= (a” +8%) =0 . (7.17)
s It follows from equations (7.15) and (7.16) that
2 2%a _ 2% (7.18)
,}_“ dydz  3zdx :
2¢,

v Thus, on using the definition (7.7), and (7.7), for @« and B, and (7.18) we
ay obtain that
Il

r:;:. Q'* =0 . (7.19)
" '

Thus, as before

59
QUz) = gz + Yy - (7.20)
?{3’ Note that the above expression for @ is in terms of the current co-ordinate.
‘Qj .

o~

" Next, it follows from (7.15) and (7.17) that
e ln 2
AR -uls 2,98 , lean2+ -3 da
i uiz + BNy g t Ul + NS 4 (5 - B a2
v ;‘ 2
Y 1 9 2 2
N +ulg = B g (0" +8%) =0 . (7.21)
": By virtue of (7.7), and (7.7)2, (7.21) can be expressed as

ey

"' 2
3 7 + 0 + 8% - o1erre - viia - 3 - Bea + B
e (7.22)
P ion 3 -
RO + (- 3BNyg'' =0 .
o

R

* L7
)
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Similarly, (7.16) and (7.17) imply that

2

1. 2.2, 3a 1.oz02, 1 _ = 38

H(E + B)A"Y 3 + ll[(2 + B)A" + (2 B)IA] 2 a2
(7.23)

S B SN PR
uis 323y .
Equations (7.7)4 and (7.7), now imply that
[-;- a2 +2) + 502 - Alg''' + 02[% 32 -a+802 . 2)\))g’

(7.24)

+ f"vu-%+ 38 =0 .

When A = 1, equations (7.23) and (7.24) reduce to (5.9) and (5.10) for the
simple torsion problem. Once again we introduce a complex valued function
F(z) through

F(z) = £(z) + ig(z) .

It then follows from (7.23) and (7.24) that

2
tz A2 + 0 + B - e - 9P - 2 - B0+ 200
(7.25)
c -G -3frr =0 .
The appropriate boundary conditions are
?(h) bl o' F(.h) =0 . (7.26)1'2
and PF(0) = ¢ . (7.27)

In choosing the boundary conditions (7.26)1'2 and the condition (7.27) we are
basically choosing to interpret x = f(z) and y = ;(z) as determining the
locus of the centers of rotation. However, we have indicated before, there is
no need to make such an interpretation (indeed such an interpretation leads to

difficulties if at a plane z = constant, §(z) = 0). One could in fact

replace the condition (7.27) by




b d Wa¥e (o ¥ U 0 e Wl v w. b, e m. s wt o e et FLASE Tt T I e e S A - - D e A R

s
e’
a

N

b

£
s F(0) = K = x, + iy, (7.27)"
N
"‘ where K is a complex constant and in this case one obtains a two parameter
"'.; family of solutions.

’
-y, ¢
0y It is lengthy but straightforward to determine the solution to (7.25)
™ subject to the boundary conditions (7.26; , and (7.27). The solution is of
N the form
b Sz S,z
N F(z) = Re + Be +c ,
-"{

where 81' 2 are the roots of the quadratic equation

.t 1 2 -.2 -
p 2 + 1) +Ba% - 01s? - G - 3B)s
4.1
58
- (7.28)
» 2 A2 - 2
W -wn-z—-s(x +22)] =0 .

x4
= Thus
a 3 - 2,2,3 > 2 1 .,,2 =42

X = - - 3 + - - — -
S S1,2 = 1WA (5 B) + {-9") (3= 38)" +4; A" +2) + 82 2]
By “, 2 _ 1
(- %— - 802 + 2019272
“5':: 1 ,.2
v 20 02 + ) +80% -1 (7.29)

Interestingly, the above expression for S4.2 simplifies to
14

s, = [ EALBAZ D)y, (7.30)
AT+ X+ 28(07 - Q)
and
s, = aA[ 2 =2 - 2822 N) ] (7.31)
AT+ A+ 28(07 - ))
It then follows that
£(AZ) -_!f [sin YhAM sin YAZ - sin $Ah cos YMAZ + A] , (7.32)
A
and
g()z) =:_& [sin YhAM sin YAZ - sin YAh sin YMAZ] , (7.33)
A
where
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2 2=A=28 (24}

o - - = 272-28(24)

T A = gin VhA(1 - M) , M 1AT28(A-1) ° (7.34)
:‘ and
\3 ' A = 4 sin ¥h) 9—;—& sin !’ZM sin "'2‘—"" . (7.35)
:‘\f( We conclude this work by studying the problem of the infinite sandwich
2 . being extendeld by a finite amount and then being twisted by 91 and 02

=) about non-coincident axes. For this problem, we once again seek a deformation
f';: of form (7.1) - (7.3). Thus we obtain the same equilibrium equation (7.25).
O

The only difference is in the boundary condition and for the above problem,
the boundary conditiong are (for the sake of convenience we shall set n, =0
K
:' and nz - ﬂo)
N | £O0h) = 2= ain g, = - sin @ (7.36)
3 = = ’ °

: 2/% 2 N 0
_.:: a

. £f(=\h) = - —— gin 91 =0 , (7.37)
o 2/x

gAh) = 2= (1 - cos 2,) = == (1 - cos Q) (7.38)

’ [

.-.: 2& 2 25 o

::: and

¥ a

¥ g(=Ah) = — (1 = cos 91) =0 ., (7.39)
- 2/

" Thus

2 FOM) =2 [sin 9 + 101 - cos 9)] , (7.40)
o 2/

- F(-Ah) = 0 . (7.41)
o = =

:}' Since 91 0 and 92 no, it follows that

v

L ﬂo

~ - —

o V= (7.42)
,.' Then,

v

)

{i

4
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1} Q
0 z 0
i(—=+Q ~—M)
F = ~ [e 2 h 0 2
487>
Q Q Q Q
0z 0 Zz 0
1(2—!‘—1-2—-") i(Z_ME-Z_.)
-e +e
1(?3 2 ‘-23)1
—e 2 h 2 +
Q Q
0z 0 z
QOH i;—; 90 iz—Mh
sin-z—e -sin-z—e
a1 - ¥ ] (7.43)
where
1]

§ = gin(yM\h - $Ah) = gin 2—0- M -1) . (7.44)
This then implies that
00 z 90
£(AZ) = [cos(-z— " + ﬂo -7 M)
a8/
Q Q Q Q
0z 0 0 z 0
cos(z—h--2 M) +cos(2 M;-z )
9 z Qo
- cos(z—n-ﬁ+2—)] R
QM 8 . % B
91“_2"°°92—F‘ sinz—cosz—M;
+ A3[1 - X ] (7.45)
and
Q Q ] .M
gz) = 22— [sin(= E + 9 - 5> W) - sin(z & - =)
a8
Q Q Q Y} A Q.M Q
0o, z__0 __, 0 z, 07 _ 2 2% Tog
+ sin(zm M = - 37) sin(2Hh+2)] 3 (sin == sin 3= ©
Q 90 .
- gin 2 sin 'y M ;) . (7.46)
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Note that the above yield a one parameter family of solutions in terms of the
constant A3, and this is to be expected as we have not imposed an additional
condition as before, e.g. the location where the locus of the centers of

rotations cut the 2z = 0 plane,
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