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ABSTRACT

Let Xlt) - t ) 0) be a real-valued stochastic process and set

a -0 X(t) G(dt), where G is a (non-random) distribution function. If the

support of G is large, standard Monte Carlo techniques for estimating a

are inefficient, since X must be simulated over the entire support of G.

To avoid this difficulty, randomization schemes are derived that require

simulation of X over random subsets of the support of G. Large-sample

behavior of randomized estimators is studied in detail. Some variance

reduction techniques are also presented.
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SIGNIFICANCE AND ZXPLANATION

Considerna stochastic system for which one needs an estimate of the

expected discounted cost over the infinite horizon. Standard Monte Carlo

procedures do not apply since the parameter to be estimated involves values of

the process over an infinitely long time interval 1  In ti-ais paper, we present
."ft

Monte Carlo estimation techniques, based on randomization, that can be used in

"- the above setting. The techniques developed turn out to be more efficient

than the standard approach, even when the parameter to be estimated cumulates

costs over a finite time interval.
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RANDOMIZED ESTIMATORS FOR TIME INTEGRALS

Peter W. Glynn

1. Introduction

Let {X(t) : t ) 01 be a real-valued stochastic process representing the

output of a simulation, and consider a time integral of the form

(1.1) I - J'0 X(t) G(dt) ,

where G is a (deterministic) non-decreasing function. Our objective, in

this paper, is to study Monte Carlo techniques for estimating the parameter

S - EI.

The time integral (1.1) includes several commonly studied performance

criteria.

(1.2). Example. If G(t) - 1 - e-t( >O), then I corresponds to

discounting X(t) at rate a over an infinite horizon. Such time integrals

occur frequently in inventory models.

(1.3). Example. If G(t) - min(t/T, 1), then I is the average of X(t)

over the interval [0,T]. Such averages are often of interest, in a queueing

context.

(1.4). Example. Let (Y(t) : t ) 01 be a stochastic process and f(t,y) be

a real-valued performance measure which may depend explicitly on t. By

setting X(t) - f(t,Y(.t)), criteria of the form

I -; f(t,Y(t)) G(dt)

can be incorporated as a special case of (1.1).

(1.5). Example. Grassman (1982) has recently developed a Monte Carlo

technique for estimating Ef(Z(t)), where Z(t) is a uniformizable Markov

jump process. The idea is to represent Z(t) as Y(N(t)), where N(t) is a

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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Poisson process with rate A (say), and (Y(k) : k ) 0) is an independent

discrete-time Markov chain. Thus,

.t k
(1.6) Ef(Z(t)) - f(Y(k))e (Xt) /1

k-0

Setting X(t) - f(Y([t])) (ft] - greatest integer less than or equal to t),

and G(dt) - Poisson measure, we see that the representation (1.6) is a

special case of (1.1).

In Section 2, we shall briefly discuss the direct method for estimating

a; this involves generation of independent variates Ill 12 ..., each having

the distribution of I. The parameter a is then estimated by I(n), where

T (n) n

The difficulty with the direct method is that if T - sup{t : G(t) < G(-))

(G(-) - lim. G(t)) is large, then generation of variates is expensive. Thus,
t."

in Section 3, a general framework for randomized estimation of a - EI is

1 presented.

.* (1.7). Definition. R(n) is a randomized I(n) - estimator if there exists a

o-field G such that

Ai E(i(n) I G} = 1(n)

The definition of conditional expectation implies that ER(n) = EI(n) -

a, justifying the description of R(n) as an 1(n) - estimator. Some

authors refer to methods based on randomized estimation as conditional Monte

Carlo procedures (see, for example, Rubinstein (1981), p. 141). However, we

prefer to reserve the term "conditional Monte Carlo" for the "converse" to a

randomized estimator.

(1.8). Definition. 1(n) is a conditional Monte Carlo R(n) - estimator if

and only if R(n) is a randomized I(n) - estimator.

-2-
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The definition (1.8) of the term "conditional Monte Carlo" is consistent

with its usage in several recent booksi see, for example, Bratley, Fox, and

Schrage (1983) or Law and Kelton (1982). The following proposition is a well-

known property of conditional expectation (Burrill (1972), p. 392).

(1.9). Proposition. Suppose that ElR(n)I < - and that R(n) is a

randomized I(n) - estimator. Then,

var(R(n)) ) var(I(n))

Proposition 1.9 states that a randomized I(n) - estimator has larger mean

square error (MSE) than T(n). For this reason, the conditional Monte Carlo

estimator I(n) is to be preferred in the case that generating 1(n)

requires the same effort as simulating !(n). However, it turns out that in

our time integral setting, the time required to generate a randomized T(n) -

estimator will often be smaller than that required to simulate T(n); this

property can offset the MSE advantage of 1(n). This is the theme of Sections

3 through 6. After developing a genernl framework for randomized estimation

in Section 3, three specific randomized estimation algorithms are studied in

Section 4 through 6.

2. The Direct Method

Development of estimation theory for the parameter a requires some

assumptions on the simulation. Let (2,F,P) be the probability space which

supports our simulation. We assume that:

Al. there exists a family of processes {(Xk, Sk) : k ) I} such that

Xk  + x 0 * 3 and Sk : f+ x 0 + O + , where R = [0,)

A2. the processes Xk(e,w) possess left limits and are right continuous,

for each w 0

P.,.
'°
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A3. the processes Sk(- ,w) are non-decreasing and right continuous for

each (a e 01 also PS k(t) > 01 > 0 for t > 0

A4. ((X k'Sk ) : k ) 1) is a sequence of independent and identically

distributed (i.i.d.) random elements

tGG A5. G : R + (0, 1] is a non-decreasing right continuous function such

* that GO0-) - 0, G(0) < 1, and G(-m) = 1 (G(x-)=

sup(G(t) : t < xl).
A6. 10 Ej (t)j G(dt) <m

Assumption A2 guarantees that X is product measurable (see Dellacherie

and Meyer (1978), p. 89). Fubini's theorem applied to A6 therefore asserts

that if {0 Xk(t ,W)G(dt); J0 
1 Xklt5W)l G(dt)

k 0 ; else ,

S.

then Ik  is F-measurable (i.e. a random variable) and satisfies44 -
- = J0 Xk(t) G(dt) a.s.

The goal is to estimate a A El The process Sk(t) will be interpreted asE k.

the amount of "effort" required to simulate Xk(e ) up to time t.

(2.1). Example. Suppose that Xk(t) = t + Yk(Nk(t)), where

t{Yk(J) : j , 01 is a Markov chain and Nk(t) is a Poisson process. Assuming

that the simulation effort is measured by the number of random variables

(r.v's) generated, Sk(t) = 2Nk(t) + 2(Nk(t) + 1 for Yk(O),...,Yk(Nk(t))

and Nk(t) + I for the exponential variates).

n
Let I(n) I Ik/n with 1(0) = 0; I(n) will be referred to as the~k=1

direct estimator of a. Set T = sup{t : G(t) < 1) and put N(t)

max(k : SI(T) +...+ Sk(T) 4 t}, N(t) is the number of Ik's generated by

t units of effort. Then, I(t) A I(N(t)) is an estimator for 1, which can

be constructed from t units of effort.

-4-
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(2.2). Theorem. Assume Al - A6. Then, I(t) + a a.s. as t + m if

P(Sk(T) < -) - 1. 
1

Proof. The strong law of large numbers guarantees that i(n) + a a.s. By A3

and AS, P{Sk(T) > 0) > 0 so W(t) < - a.s. for all t. Furthermore, the

assumption P(Sk(T) - -) - 0 assures that N(t) + a.s. (see ginlar

(1975), p. 290), from which the result follows. II

It is worth observing that if PfSk(T) - -) > 0, then I(t) does not,

in general, converge to a (see Example 1.2). We will also be interested in

rates of convergence for our estimators. For such results, we require a

further moment assumption.
A7. O2
A7.2. E(Ik - a) 2<

(2.3). Theorem. Assume Al - A7. If P{Sk( T) ) = 1, then

(2.4) lim a(t) ait) - al - a(ESk(T))/2 a.s.

where a(t) A (t/2 log log t) and 0.- A 0.

Proof. The Hartman-Wintner form of the law of the iterated logarithm implies

that

(2.5) lim a(n) Ir(n) - al a a a.s.

n-)"

Since N(t) + - a.s., (2.5) yields

(2.6) lim a(N(t))II(t) - al = a a.s.

But N(t)/t + 1/ESk(T) a.s. (see [6], p. 290), which in turn implies that

(2.7) a(N(t))/alt) 1/(ES k(T))! a.s.

Relation (2.4) follows immediately from (2.6) and (2.7). II

Confidence intervals for a can also be constructed from the direct

estimator I(t). The key tool is a central limit theorem (CLT), which is

valid under slightly stronger assumptions than Theorem 2.3.

(2.8). Theorem. Assume Al - A7. If ESk(T) < S, then

-5-



(2.9) t" (M(t) - a) -- > O(ESk (T))/2 N(0,1)

as t + -, where N(0,1) is a mean zero unit variance r.v. and => denotes

weak convergence.

Proof. From the CLT for i.i.d.r.v.'s,

n% (I(n) - a) > N(0, 1)

as n + a. Let tk be an arbitrary sequence converging to infinity. Since

N(tk)/tk + I/ESk(T) a.s., one can apply Theorem 7.3.2 of Chung (1974) to

conclude that

N(tk 12 (I(tk) - ) => a N(0,1)

as k + m. The converging-together lemma (Billingsley (1968), p. 25) then

yields

tk/2 (l(tk) - a) ==> a(ESk(T))!/2N(0,1)

as k + . Since {tk} was arbitrary, we obtain (2.9) ([2], p. 16). II

If z8 solves P{N(0,1) ( z,) = 1 - 6/2, Theorem 2.8 proves that the

random interval

S., [I (t) - z ?I/ 2 (t/t /2  Ix)+ ~t/

is an approximate 100(1-8)% confidence for a, where v(t) is a con-

sistent estimator for 2ES k(T).

Before concluding this section, we consider a special case of Example

1.4. Suppose that the process Y(t) considered there is a stationary process

on state space S. Then,

(2.10) a EX = J0 Ef(t,Y(t)) G(dt)

= J; IS f(t,y)P{Y(t) e dyl G(dt)

= IS J7 f(t,y) G(dt)i(dy)

where w(e) = P(Y(0) e o}. In general, if the process Y(t) can be

-6-
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simulated, then the distribution I is known explicitly so that a can be

calculated analytically from (2.10). Thus, the interest in Monte Carlo

estimation of a occurs when Y(o) is non-stationary. In the simulation

literature, such non-stationary estimation problems are referred to as

transient simulations.

3. A General Framework for Randomized Estimation of Time Integrals.

In this section, we assume that:

AS. there exists a sequence of processes {Hk : k ) 1) such that

,k S R X * R and which satisfy:

i.) H.(e,w) is non-decreasing and right continuous, for each w e 11

ii.) {Hk : k ) I} is a sequence of i.i.d. random elements, which is

independent of the collection {(,XkSk) : k ) 1)

iii.) EHk(t) - G(t) for all t 6 R.

(3.1). Lema. Under AS and AS, Hk(O-) - 0 a.s. and EHk(ft) = 1.

Proof. For t < 0, Hk(t) is non-negative and satisfies EHk(t) = Gk(t) = 0,

- so that Hk(t) = 0 a.s., proving that Hk(0-) - 0 a.s. For the finiteness of

B(), observe that Hk(n) increases to Hk(m). Hence, by monotone

convergence,

EHk() - lim EHk (n) - lim G(n) = 1 , H
n.4 n f

Our randomized I(n) - estimator will be based on

." ]0 Xk(tw)Hk(dt'w); w0 Ak

(3.2) Rk(W) = 0 A

where Ak = {jOlXk(t)lHk(dt) -. Observe that for each -, ROW) is well-

defined by formula (3.2), since Xk is product measurable, and Hk satisfies

AS i.). Several later arguments will require the following approximation

.; .- 7- ,
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result. Iet

XkmCt)- min{Xk(t),m}

SXn (t) = min(X 12"n(j+1)),m}
km k

for J < 2nt 4 j+l.

(3.3). Proposition. Assume Al - A6, AS, and suppose that X is non-

negative. Then

Jo "
.( (3.4) lim lim X (t)H Cdt) a.s.

M f n+M

Proof. First, it is easily seen that Xm(.,w) is right continuous. The

right continuity of Xkm implies that

li X n (t) - X (t)
n M km

* for all t ) 0. Now, H k(-) < - a.s., so that we can apply a.s. the

bounded convergence theorem to conclude that

lim 0 Xnk(t)H (dt) = J X (t)H (dt) a.s.
km k km k~n

Now, apply the monotone convergence theorem to complete the proof.

Since the integrals on the left-hand side of (3.4) are discrete sums, it

is clear the the right-hand side of (3.4) is a r.v. and that Ak e F. Observe

now that if Xk(t) is right continuous with left limits, then the same

property holds for

, + [ Xk(t)l Xk(t) ) 0,,w Xklt) =
k 0 ; else

II Thus, by splitting Xk into its positive and negative parts, and using (3.4),

we see that Rk  is a r.v.
I't n

We will use Proposition 3.3 to prove that Rln) I Rk/n is a
k=1

randomized I(n) - estimator. Let G = a(X: j ) 1) (the a-field generated

*1*% -8-
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by the Xj's).

(3.5). Theorem. Assume Al - A6 and A8. Then E(Rk I G Ik .

Proof. Let f : RP + R be a non-negative bounded continuous function with

compact support. Fix an arbitrary selection of time indices t1 ,...,tp, and

write f(Xk) for f(Xkltl),...,Xk(tp)). Assume, for the moment that Xk is

non-negative. Then,

(3.6) Eff(Xn X n (t)H ( d t))
km '0 km k

n n-n ) -% I-)-n)
- E~f (Xn )Xn (J2 -) (H (j2 -) H H((J-1)2 -))1
JO km km kk

- E{f(Xnm)Xnm(J2-n)(G(j2-n) - G((j-1) 2 -n)))

= E(f(Xn) I Xn(t)G(dt))
km '0 km

where the second equality follows from independence of Xk and Hk . Since

Xl is right continuous, f(XIm) + f(Xkm) as n + a by continuity of f,

so that Proposition 3.3 implies that

(3.7) 1im j(X X~ n 'a) t) =f (X) 100Xk(t)H (dt) a.s.
n m 0 km k km Ok k

-n4

Now, Xm is bounded by m and Hk(-) is integrable (Lemma 3.1) so

evidently the left-hand side of (3.7) is dominated by an integrable r.v.

Hence, one can apply dominated convergence to (3.6), yielding

Eff(Xm) J Xkm(t)Hk(dt)}
km 0k

(3.8)

E{f(Xkm) J0 Xkm(t) G(dt)}

Since f has compact support, f(Xkm) = f(XkM) for all m greater than

some M. Then, the non-negativity of f implies that the r.v.'s on both

-9-
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sides of (3.8) are increasing in m, for m > M. Hence, monotone convergence

can be applied to (3.8), yielding

E(f(Xk) 0 Xk(t)Hk(dt))

" E(f(Xk) JO Xk(t) G(dt))
4'*

By appealing to the montone class theorem ([7], p.14 ) and using the fact that

the functions f(Xk) generate a(Xk), one obtains

E(Z J; Xk(t)Hk (dt)) - E{Z j0 Xk(t)G(dt))

for all bounded Z C o(Xk). Hence, by definition of conditional expectation,

-'; E(J0 Xk(t)Hk(dt) I Xk } " i0 Xklt)G(dt)

In particular, E(j Xk (t)(Hkdt)) I J0 EXk(t)IG(dt) 
<  (see A6), so

P(Ak) - 0 for k ) 1. Thus,

Jo Xk(t)Hk(dt) - Rk a.s.

so that E{Rk I Xk } - Ik a.s. Since Rk C O(Xk,Hk), Rk is independent of

O(X j 0 k) and hence ([6], p. 308)

E{Rk I G) = E{R k I X.) - Ik a.s.

completing the proof of the theorem in the case that Xk ) 0. For the general

situation, split Xk into its positive and negative parts, repeat the above

argument, and recombine using the fact that P(Ak) = 0. II

(3.9). Corollary. Under Al - A6 and A8, ERk =

We wish to prove limit theorems in terms of the parameter t, where t

corresponds to an index of effort. In the applications we will be considering

in Sections 4 through 6, the effort required to generate Hk will be

S-10-
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negligible compared to the effort necessary to simulate Ik . Then, Sk(Tk)

is the effort required to generate Rk , where Tk  sup(t : Hk(t) < Hk( ).

Note that Tk and Sk(Tk) are F-measurable, due to right continuity of Hk

and Sk .

(3.10). Proposition. Assume Al - A6 and AS. Then

(3.11) E{Sk (Tk); t k < )1 " j0 ESk(t)F(dt)

where F(t) = P(Tk C t(E{Sk(Tk); Al A ESk(Tk)IA, where IA(W) is I or

0 depending on whether or not w £ A).

Proof. Let Skm(t) - ,m} and set Tk - 2 on

(j J < 2n Tk  j+l. Then,

(3.12) E{S (Tn); T < 40}kmn k k

T) p 2 -nj < T -n

kmEf~~ k k
j 0

= j ES km(2 -n(j+1))P{2 -nj < Tk  2-n (j+1)

where the second inequality is due to independence of Sk and Tk. Applying

bounded convergence and then monotone convergence to (3.12) yields (3.11). II

Let M(t) - max{k :SI( 1 ) +...+ Sk(T k ) k t); then M(t) is the number

of Rk's generated with effort t. The next lemma shows that M(t) is no

smaller than the number of Ik'S generated.

(3.13). Lemma. Assume Al - A6 and AS. Then M(t) ) N(t) a.s. for t ) 0.

Proof. We need to show Sk(Tk) S (T) a.s.; this inequality is trivial if

T = -. By monotone convergence,

E{He(-) - H(T) = lim E{H(T+n) -H(T)) lim G(T+n) -G(T) 0
.,,n+" n~cD

i The non-negativity of Hk1-) HO T) implies that Hk1-1 HO T) a-s.,

i proving that T k 4 T. i

-- N
. . . . . . . . . . .
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Let R(t) & RM(t)) R(t) is a randomized estimator constructable from

t units of effort.

(3.14). Theorem. Assume Al - A6 and A8. If P{Tk < 1, then

R(t) + a a.s. as t +

Proof. Since EHk(m) - 1 a.s. (Lemma 3.1), P{Hk(-) > 0) > 0, so that

P(T k > 0) > 0. Hence, P{S (T ) > 0) > 0 by Proposition 3.10 and A3. This,
k %k k

in turn, implies that M(t) < - a.s. The fact that Tk < a.s. forces

Sk(Tk) to be finite a.s. (see Al), which assures that M(t) + - a.s. as

t * • The theorem then follows from the strong law for W(n) and Corollary

3. II

To obtain analogs of Theorems 2.3 and 2.8, we need to analyze

2E(Rk - 0) . Our expression will involve the function K(s,t), where K(s,t) =

ZHk(s)Hk(t).

.2A9. 2 ;(t)< for t e

(3.15). Lemma. Under A8 - A9, K(s,t) is the distribution function of a

a-finite measure on R.

Proof. Note that

H k(s)H kt) - H 2 t)

for s 4 t. Hence, K(s,t) 4 K(t,t) < - so K(s,t) is real-valued. Let sn ,

t. decrease to s, t respectively. Since H(sk)H(tk) 4 H(s1 )H(tI), the

finiteness of K(sl,t I) allows application of dominated convergence to prove

that K(sn 'tn) + K(s,t); K is therefore continuous from above. Also, for

81 < 82 , ti < t2 ,

H(s 2 ,t 2 ) - H(s 1 ,t 2 ) - H(s 2 ,t I ) + H(s 1,t1) ; 0

so that

K(s2,t2 ) - K(sl,t 2) - K(s 2 ,t1 ) + K(sl,t1) 0

The lemma then follows from Theorem 12.5 of Billingsley (1979). II

-12-
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'"; J;Jo
-:A10. J;J' lXk(slXk(t)l K(ds,dt) < .

(3.16). Theorem. Under Al - A6 and AS - A10,

(3.17) ER; = JO JO EXk(s)Xk(t) K(ds,dt) <

Proof. For Xk non-negative, observe that for any integer T,

(31)Tj )Xn (X j~~(~Hk(dsL n))

j=O =0

2nT 2nTI ' E{Xn (J2 n)X n (12 -n)Hk (j,n))

- T jT Z~ ,X (t)Kds,dt)
0O 0 km [m

where

AHk(jtn) (Hk( 2 ) - Hk(( J- 1)2- n )(Hk (12 -  - Hk((1-1) 2 - n ))

AK(jt n) - K(j2 n,1 2
-n) - K((J-1) 2 -n,t 2

- n) - K(j 2 n,(1-1) 2 n)

+ K((J-1)2n, (it-1)2
-n

Letting n, m, and T tend to infinity in (3.18) (in that order), bounded and

monotone convergence proves (3.17) for Xq non-negative. For Xk of mixed

sign, split Xk into its positive and negative parts and recombine

using A10. II

2 - 2 2
Let R - J0 Jo EXk(S)Xk(t)K(dsdt) - E(Rk a) and set s(t) =

ESk(t). The proof of the following theorem is identical to those of Theorems 2.3

and 2.8.

(3.19). Theorem. Assume Al - A6 and AS - A10. If P(Sk(Tk) < 1} - 1, then

2.._ 1/2
" (3.20) lim a(t) o IR(t) - (a 2 ( ]0 s(t)F(dt)) a.s.

I, -13-
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where (2 < -. If, in addition, ES(rk) < , then

(3.21) t (R(t) - a) -- > 0Rl0o s(t)F(dt)) N(0,1)

as t .

On the basis of the CLT (3.21), it is natural to interpret U ES (T )/t as
akk

the asymptotic variance of the estimator R(t).

In addition to the estimator R(t), one can construct a second estimator

n

based on the framework described thus far. Let h(n) = Hk.(-)/n and set
k-i

R(n) - R(n) h(n); h(n) > 0(0 ; h(n) -0 .
The estimator R(n) is merely R(n) normalized by the random total mass of the

first n Hk's; we therefore refer to 1(n) as a normalized randomized

I(n) - estimator, and set R(t) = R(M(t)).

The following result has an identical proof to that of Theorem 3.14 (recall

that EHk() - 1 by Lemma 3.1 so that h(n) + 1 a.s.).

(3.22). Theorem. Assume Al - A6 and A8. If P{Tk < 1} - 1, then

R(t) + Q a.s. as t +.

An analog to Theorem 3.19 is also available, under a certain moment

condition.

All. , Ek(s)Xk(t)IK(ds,dt) <

where Xks) - Xk (s) - a

(3.23). Theorem. Assume Al -A6, AS, A9, and All. If P{Sk(Tk) < e} = 1, then

(3.24) im a(t) I R(t) - -I 2 s(t)F(dt)) a.s.
t-W

a2  ^ 2
where % J0 0  k lS) klt)Klds,dt) - E < - I R -uk)• If, in

addition, ESk(Tk) < m, then

1/ t ~ t !I/28

(3.25) t (R(t) - a) ==> (0 s(t)Ft) N(0,1)

-14-
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as t .

" Proof. Note that if Xk(t) satisfiesAl - A7, then Xk (t) also does. Under

All, one can therefore apply Theorem 3.19 to the process X to obtain the

relation
(3.26) li a(t) 21 t A2 -

t-0 (7 k. 14o Xk( s)H k(ds)l R J( s(t)F(dt)) 2a.s.

But observe that

"-:'. Hi(t) Mt
t ,'. J Xk(s)Hlds) 3t) (Xk(s) - k)HkdS)"3;"t) k- 1 0 (t) k-ik1

- h(Mt))lR(t) - a)

Since h(M(t)) + I a.s. as t + a, (3.24) follows from (3.26). A similar proof

is valid for (3.25). II

We wish to emphasize that AlO and All are not equivalent moment

hypotheses. Consider a case in which Xk(t) - 1 for 0 4 t 4 1 and vanishes

elsewhere, with 0 < G(M) < 1. Then, A10 is always satisfied but All is valid

only if K(,) < -. On the other hand, suppose that Xk(t) - I for t > 0.

Then, All always holds but AlO is valid only if K(-,-) < m.

As in the case of R(t), relation (3.25) suggests that ;2 ESk(Tk)/t may

be interpreted as the asymptotic variance of the estimator R(t). The goal, in

Sections 4 through 6, will be to determine randomization schemes that make

2 E£ k) ado R12

and/or ; ES(T ) as small as possible.
kR R k

Cerai bund fr 2 £n 2
Certain bounds for 2and R are available. The lower boundRR

2 >o02
aR 2can be obtained from Proposition 1.9, under Al - AS. Theorem 3.5

asserts that

E(J0 Xk(t)Hk(dt) G} = Ik -

£2 2
from which it follows, by Proposition 1.9, that R  0 Note that the lower

bounds are attained for Hk - G a.s. Upper bounds are also available, under

certain conditions.

-15-

M.............................................................................** ." . ""'..". .;'.,

%.. 9 - 9 * ~ . .9* . 9 . .. . . . . .. . . . . . . . . . . . . . . . . 9 .'



3
(3.27). Proposition. Assume Al - A6 and AS. Then, if EH (CD) < i,

(3.28) C2 • -C F k EH k  a

(3.29) R (C EX (t)G(dt) - 2 EH ()

The upper bounds are attained.

Proof. By Cauchy-Schwartz,

2 OJD Xt)H (dt) )2 C (J X2(t)H (dt))H (Mn)
N (k Ok( k Ok kc k

Replicating the approximation argument of Theorem 3.16 proves that

(3.30) EZ - J0 EX(t)K(dt,-)

Let f be a bounded continuous function with compact support. Then, the

definition of K implies that

X f(j2-n){K(j2-n,_) - K((j-1)2-n,_),

v.' j-O
-El 7* f(J2 -n ){H (J2 -n) H H((J-1)2-n )Hki)

Letting n + -, we obtain

(3.31) J0 f(t)K(dt,) - E{j f(t)Hk(dt)Hk())

The monotone class theorem extends (3.31) to include all bounded Borel

measurable f. But, by Cauchy-Schwartz,

AE H H(cdt) H = EfJA H(dt))'h • A H (dt) H ) 2)/1}

-C E{HA H(dt)} - E{jA Hk(dt) . H (2)2
A k Ak

J ]A G(dt) • EH ()

• .. so that we may conclude that Kldt,- ) IC G(dt)EH (I*). Applying this inequality to

%°.%

%Ic
*4.f -*-
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(3.30) yields (3.28). Inequality (3.29) is obtained by letting X k(t) play the

role of Xk(t) in (3.28).

The upper bounds are attained by taking Hk(t) - 0 for t < 14k  and 1 for

t ) M , where { E} is an i.i.d. sequence of r.v.'s having common

distribution G. I I

The inequalities (3.28) and (3.29) may be easily adapted to provide bounds

on the moments entering hypotheses AlO and All, respectively.

(3.32). Proposition. Assume Al - A5 and A8. Then, A6 - A7 and A9 - All are

satisfied if EH (-) < - and EX(t)Gldt) < .
kk

ft' Proof. First, observe that EIX() 2 W2 t so A6 is satisfied. Also,

. -) < - implies that K(-,) = 1") < , yielding A9. As for A10, the

argument of Proposition 3.27 is easily adapted to show that

(.33). j0 .0E~~)ktIX(ds,dt) 0 EXk( t)G;(dt) - EH~ 3() <M

For All, substitute X for X in (3.33), and observe that

Ex k t ) G ( dt) = EX2(t)G(dt) -a

2 2
As for A7, a is a lower bound on aR

We turn now to a variance reduction technique that is sometimes applicable

to the randomized estimators developed above. Let 0

. 0 < t I < 1...<t1 < tL I and set
iQi ( . ) -(. P{ k C ti_ < Tk < ti}

for i = 1,...,t. Suppose that one can generate independent deviates from th/e

measures QV,...l,Q (see Sections 5 and 6 for examples) and that pi

P{t O Tk < t ) is known, for 1 4 i 1C . These assumptions will allow us to
i-l k i

stratify our sampling scheme.

Let m k 11 be a sequence of integers taking values in

'(I,...,t; the mk's define a sampling order for the Qi's. If mk 1, one

generates from Qi (independently of the (Xklsk)'s), and sets

-17-
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T.. .9

ic Ok t)Hk*(dt)
if %i- (j 4 n : m - 1 1 4 i ), and k i the cardinalit of

ni one note

r(n) - pi Elk.e , n ni

Let T k

ROW) - p ~i H'()An

ni

.. v...
Lot Ta [t :H(t) < H5k(a)), and set N5 (t)

max(n : s lT 1  S (1 ( t); N(t) is the number of s generated in

t units of effort. We wish to study the stratified estimators

R(t) - iN(t)) and Rt) - R(Nslt))/h (NS(t)).

A12. lni/n-ci > 0 as n , for 1 i t.

Let di-E(Sk (Tk) I t_ k < t ), ai 2 = t_1  < t -

IEP(R k t i I 4 Tk < ti2) -{ t_ I < Tk < ti,

(E(Rk ti_1  Tk < ti) ). The following theorem is a stratified analog of the

CLT'. (3.21) and (3.25).

(3.32). Theorem. Assume Al - A6 and AS - A12. If ZSk(T k) < * then

(333 t!2 8 t
13.3(R lRWt - a) R' IS( cidi  N10, 1).

!/21
(3.34) t'(R(t) - a) ar( c idi) 2N(O, 1)i-1

4.. i-1as t + " where a2 ;2 < and 02 2 a 2-C1,4

%

-18-
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Proof. Assumptions A10 and All, together with ESklrk) ( m, clearly
2 ^2

guarantee the finiteness of ORST QRS, and ci d i . Under A12,,"- i=1

n I I
.,(3.35)1i Sk(T)/n S C i Sj ni) (kni /n) cidi a.s.

,'k=l i=1- nJCi i=1

as n . But

Ns W Ns(t)+l
(3.36) S ( T ) / N ( t )  t/(t) < I S ( T ) N W(t)

k k=  S k1

on {Ns(t) < "'}. However, as in the proof of Theorem 2.2, it is easily argued

*that Na(t) < m a.s. and NO(t) + a a.s. as t + 4. Using this fact in

(3.36), (3.35) implies that t/NS(t) is "squeezed" between two terms converg-

ing to I cidi. Hence,

i=1
t

(3.37) N (t)/t + ( i cid,)- a.s.
i=1

The central limit theorem and the converging-together lemma ([2], p. 25) imply

that

(3.38) n'( R ER5 )/kni =-> (0 /ci )N(0,1)

Jew ni

as n + 4. Since the r.v.'s ) S are independent,
Je ni

2 2 1/
(3.39) 1/2 7 (n) - C) > 2 2 1i/ci, N(0,1)

as n .. Arguing as in Theorem 2.8, we see that (3.39) and (3.37) together

yield (3.33); a similar proof works for (3.34). II

We now turn to the question of determining the ci's.

2*2A13. p iOia i > ,

+ 2

(3.40). Proposition. Under A13, the minimum of g(c) A 2 cidi) over
i-1

-19-
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c i~ >0o) is ( I. piodi ) and is achieved at
i-I

C Q D/d 2
i Pia ii

(3.41) 1,
=- I. Pji./ad/

i= 1
/2p /

Similarly, the minimum of h(c) & S ii' over C. > 0) is
RS i di ovr{+ c 1i

SPiidi and is achieved at

i-I

= aP~a 1/2

(3.42) - A 1/2
il l i /  "
i=,I

The proof involves a simple application of Lagrange multipliers; see Theorem

3 of Glynn (1983) for a similar argument. We shall now show that stratification

always provides a variance reduction.

(3.43). Proposition. Assume Al - A6, A8 - A12, and ESk(Tk) < *. Then,

(3.44) iPirid 2 )2 C aR ES(Tki=1/

A 24
(35 i- R k k(3.45) p d/i~2 )2 4 02 ES (Tk

Proof. By Cauchy-Schwartz

a p iodi1) ia)
i=1 i=1

(3.46)

41 piai)ESk(Tk )  •

-20-
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. ~ Using Cauchy-Schwartz again yields2 2 2
(3.47) Pi2- ZR - pi(fR k' ti_1 t < t)/pi)

P 2 iti~ )2

- PiE(Rk t i_ 1  Tk < ti}/pi2

2 2 2

proving (3.44)1 (3.45) is proved similarly. I

Utilization of the constants ij' c, specified by (3.41) and (3.42)

requires a "trial run*, in order to obtain estimates for aiLf ;,# and di. If

one wishes to dispense with a "trial run" and is willing to accept a sub-optimal

choice of the cils, consider using ci - Pi. Observe that if ci - pi, then

.12 2
a iii-1 PiCi-,i1

2
a R ES k ) ;R k

a'.,

the inequality derives from (3.46) and (3.47). Hence, the suboptimal choice c i

= i yields a variance reduction over a nonstratified sampling plan.

One final remark is in order. Suppose that there exists T such that G(t)

- 0 for t < T and 1 for t 0 T. Then, an argument similar to that used in

Lemma 3.13 proves that k  G a.s., in which case Rk  'k a.s. Hence, our

randomized framework yields no new estimators when I " EX(T) for some non-

irandom T.
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4. Poisson Process Randomization

In this section, we consider a class of randomized time integral estimators

for which the Hk's previously defined are non-homogeneous Poisson processes.

Specifically, we shall assume that

(4.1) Hk(t) - -Nk(XG(t))

for some X > 0, where (N k 1k is a sequence of i.i.d. Poisson processes

for which ENk(t) = t; of course, the family {N k ) 1) is assumed to be

independent of ((Xk,Sk) k ) 11 satisfying Al - A5. The following proposition

is an immediate consequence of standard properties of the Poisson process.

(4.2). Proposition. The sequence {Hk : k ) 1), as defined through (4.1),

satisfies A8 and A9. Furthermore, EH (-) < - for n > 1.

Calculation of the distribution K is easy.

(4.3). Proposition. For 0 4 s 4 t,

K(s,t) = G(s) + G(s)G(t)

Proof. The independent increments property of the Poisson process implies that

for s 4 t,

K(s,t) = E(N(AG(s))N(AG(t))

= E(N(XG(s))(N(AG(s)) + N(AG(t)) - NIXG(s)))

1 EN (AG(s)) + - (AG(s)(XGlt) - XG(s))

A 2
2

= j G(s) + G(s)G(t). II

Theorems 3.19 and 3.23 require moment hypotheses on the process Xk .

B. J0 EXk(t)G(dt) < -

Propositions 3.32 and 4.2 prove that B is sufficient to guarantee A6 - A7 and

AlO - All.

(4.4). Theorem. Under Al - A5 and Bl,

-22-
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2 02 1 2.
(4.5) = + " j0 EX (t)G(dt)

2 .,- + J EX (t)U~dt) -2)
(4.6) a2 2 - 0( k~

-*.. Proof. Note that

2 E, 'E Xk(S)Xk t)G(ds)G(dt)} - a

A.O a = E0 Ok (Xk 2Gd)~t

= J0 0 EX (s)Xk (t)G(ds)G(dt) - a2

Xkk
= i, it0 EX.I~s)X(t)G(ds)Gldt)•

Hence, the result follows from Proposition 4.3 and the fact that the

distribution K1(s,t) = G(min(s,t)) induces a measure on R which has support

on the diagonal s = t. II

Theorem 4.4 suggests that the normalized estimator R(t) has better large

sample properties than R(t); consequently, we shall consider only

R(t) for the remainder of this section. We shall now calculate F.

(4.7). Proposition. The distribution F(x) - PfTk < x} is given by

F(x) exp(-A(1 - G(x)))

Proof. Evidently,

(4.8) k = sup{t : Hk(t) < Hk())

- inf(t : Hk(t) ; Hk(-)}

= inf{t : Nk(XG(t)) ;NklA)}

= inf{t : G(t) 0 Tk(Nk(A))/XI

where Tk() = inf(t : Nk(t) ) J). Let A(t) = P{t - Tk(Nk(t)) > ul. Then

A(t) solves the renewal equation

(4.9) A(t) a(t) + It A(t-s)e-Sds

where

a(t) = ( t u

-23-
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Since the renewal function M(t) = ENk(t) = t is known, (4.9) can be solved

*explicitly (see [6], p. 294):

( 0 ;t 4 u

(4.10) A(t) = u
e t > u

Now, (4.8) implies that {Tk < x) = {Tk(Nk(X))/X > G(x)} so (4.10) yields

*FWx = P{X - Tk(N k()) > X(1 (x)

= exp(-X(1 - G(x). I

. We shall now assume that:

B2. s(t) = ESk(t) is strictly increasing.

(4.11). Proposition. Under B2,

ES (k  = 1 - exp(-)(1 - G(s- (x))))}dx

The proof is immediate from Propositions 3.10 and 4.5.

Theorem 4.4 and Proposition 4.11 can be used to optimize the value of X so

as to minimize the asymptotic variance of R(t). For example, suppose that

G(t) = t/T for t 4 T and 1 for t > T, and let s(t) = t. Then the goal is

* "to find X* to minimize (see Theorem 3.23)

(02 + .)1J (1 - exp(-X(1 - x/T))Idx)

where = E (t)G(dt); differentiation leads to a non-linear equation which

Smust solve.

In any case, the inequality exp(-)u) > 1 - )u for Xu ) 0 leads to the

bound

ESk(T k )  X ; (0 - Gls -1(x)))dx.

Hence, Poisson randomization with intensity X is more efficient than I(n) if

-€2 + B/X)CX J (1 -G(s-1(x)))dx) C 2 s(T)

-24-
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5. Point Mass Randomization

Suppose that ((XkSk) k ; 1) is a family of processes satisfying Al -

A5 and

Cl. J0 EN (t)G(dt) <

Let h be a non-negative function for which:

C2. ft : h(t) > 0) Eym), J0 h(t)G(dt) 1 1

C3. 0 1 [ u)(2)/h2(u)G(du) <
C0 I[,)

The family {k : k ) 1) of point mass randomized estimates will be defined

through the rule

') (5.1) Hk(t) = n G

kG(y-) + 1/h(Mk); t )

where {Mk : k ) 1) is a sequence of i.i.d. r.v.'s, independent of the

(Xk,Sk)hs, having common distribution P(Mk C dt} - h(t)G(dt). With the

Hk'S defined through (5.1),

Rk  0 1 [0,T)(u)Xk(u)G(du) + X(Mk)/h(Mk )

(5.2). Proposition. Under Cl - C3, A6 - All hold.

Proof. First, observe that Hk(t) = G(t) for t < Y. For t ) Y, Cl proves

that

1.. EHk(t) - G(T-) + E(l/h(Mk); 14k < t)

- G(Y-) + I; I[',t] (u)/hu) * h(u)G(du)

- G(t)

so that Hk satisfies AS. For A6 - A7 and A9 - All, we apply Proposition

3.32. It is evident that Hk(i) G(y-) + l/h(Mk) so that it suffices to

prove that E(l/h(Mk)) 3 < . But

-25-
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Eh(Mk)- l, )(u)h(u) "  h(u)G(du)

which is finite by C3. II

It should be clear that the moment assumptions Cl and C3 are considerably

stronger than is necessary to obtain AlO and All.

(5.3). Theorem. Under Cl - C3,

G(s)G(t) min(s,t) < y

(5.4) K(s,t) = G(Y-)(G(s) + G(t) - G(y-)) + ]0 I[y,min(s,t)](u)/h(u)G(du);

min(s,t) ) y

(5.5) G2 = (Xk ) + 2(X a 2
R 1k 2k

.42

(5.6) a2 GR 1(xk ) + 8 2(Xk)

(5.7) ESk(Tk ) = j0 s(t)h(t)G(dt)

where

81(Y) = 0 (s)I[ (t)EY(s)Y(t)G(ds)G(dt)1 '0 0 [1,y) (O1,Y)

+ 2 J J0 (I[oy)(s)l[, (t)EY(s)Y(t)G(ds)G(dt)

02(x) I [Y,-) (t)EY2 (t)/h(t)G(dt)

Proof. Relation (5.7) is immediate from the definition of lk. For (5.4),

observe that if s < y 4 t,

EHk(S)Hk(t) G(s) * EHk(t) = G(s)G(t)

If y 4 s s t, then

EH(S)Hk(t)

= E{(G(Y-) + X(Nk)/h(Mk)[0,8] (Mk))Hk(t)}

= G(T-)EHk(t) + E(Xk)/h 2 (Mk)I[0,s (Mk)1

-26-
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+. Z(X( Nk)/h(Mk)I10's (1 ))(

-2
GIY-)G(t) + J 0 I ME (u)/hlulGldu)

+ G(Y-)(G(s) - G(Y-))

which I (5.4). The expressions for a 2 and ;2 are obtained from Theorems

3.16 and 3.23 by appropriately integrating against K(ds,dt) as defined by

(5.4), and by using the fact that the integrands are symmetric in (s,t).

A certain amount of analytical optimization can be performed in our

current setting. Specifically, one can determine the function h which

minimizes the asymptotic variance of R(t) over all point mass estimators in

which y - 0. Note that if y - 0, the asymptotic variance is vI(h)/t,

where

- (5.8) v (h) { {;2(t)/h(t)G(dt))(J s(t)h(t)G(dt))

a . *2lh/2Gdt 2"

(5.9). Proposition. ; (h) ) (Jo(s(t)E(t)t) G~dt)) The minimui is

attained by

(5.10) h(t) - (X 2 (t)/s(t))1/ , a > 0
k

Proof. Observe that

^2 2 GdA 2
* Il(J" (s(t)ErXk(t))'Gd)(Jo

I (J (Z; 2 (t)/h(t) * s(t)h(t))1/2G(dt)) 2

k

;2 E(t)/h(t)G(dt) - J s(t)h(t)G(dt)

by the Cauchy-Schwartz inequality. To check that h(t), as defined by

(5.10), attains the minimum, it is only necessary to observe that h(t) is

undefined only on a set of zero measure with respect to s(t)G(dt)i

similarly, 1/h(t) is undefined on a set of zero measure with respect to

)X2(t)G(dt). II
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2
Hence, if )0 (ZX (t)/s(t))1G(dt) < *, the density h defined by

( (51)h2)- (t C t ) - ^2

minimizes the asymptotic variance of R(t) over all point mass estimators

with y - 0. Strictly speaking, (5.11) may not be in the class of randomized

estimators discussed thus far, since the equality

I{1/h(M.lk )u Ik 4 t) - G(t)

* may not hold due to the possibility of EX2 (t) vanishing on the support of
k

G. If that occurs, set G(t) I A(t)G( dt)/JA G(dt), where A -

{t : (t) > 0). Note that satisfies A6 and All if and only if G does;

, furthermore,

* E~fl/("sk); Mk 4 t) Gt

a"- ]"0 EXk(t)G(dt)

Thus, h always gives rise to a randomized estimator if G is allowed to

play the role of G.

One interesting property of the optimal density h is that (5.11) is

independent of G, modulo the normalization constant. Furthermore, although

h(t) can be estimated via a trial run, that may be undesirable. In such a
*2

case, it may be reasonable to assume that Z ;k t) is approximately constant

and s(t) linear, leading to the approximately optimal density

Analytical information about the optimal density h is available also in

the case that Y is positive. The idea is to define the functionals

I (h) =a (h)(]j th(t)G(dt))
R 0

J2(h) 10 h(t)G(dt)

where (h) is given by formula (5.6). We wish to minimize J1 (h) subject

to the constraint J2(h) I over functions h having support [y,-).
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Necessary conditions for a minimizing h may be obtained using variational

arguments (see Smith [121). Formal analysis shows that a minimizing

should be of the form

;(t) - C(E ;2(t)/(s(t) + d))/2 ,k

for some constants a and d, when y > 0.

Before concluding this section, we offer an extended version of the point

mass estimator studied thus far. For a density h having support [y,-) and

satisfying C3, let (Mik : i ) 1, k ) I be a family of i.i.d.r.v.'s for

which P{Mi c dt) - h(t)G(dt). Set

f min{G(t), G(Y-))' t ( Mik
(5.12) Hik(t) = G-) + 1/h(M)A t ) KG(4) 1hlik; t ik

n
and let Hk(t) - [ Hik(t)/n. In the presence of Cl, A6 - All then hold.iI

4.42 '%2 2 A2
Let a(n), Vi(n) be the corresponding values of 0R' 0R for the current

randomization scheme.

(5.13). Proposition. Under the assumptions of the above paragraph,

2 2 2
(5.14) a R(n) - Oi/n + (n-l)a n

;2 M -~ 2 /
(5.15) IR(n) a OR/n + (n-1)O2/n

where a2, ;2 are defined by (5.5) and (5.6).

n

Proof. Let ik - J0 Xk(t)Hik(dt) and observe that Pk =  ) Rik/n. Then,i- 
k

the exchangeability of (R i ) 1} proves that
Rik

n22VER~ (I ER A+ I Ri Rj /

=.LRk/n + (n-l)ERlR /n
1k lk 2k/
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But Rik has the same distribution as the randomized estimator defined

through (5.1)1 hence ER - 2. To calculate the expectation of the product~1k R

term, note that

....-.'. '( TxR R Xk  (RlkZ[Rk Xk, Hlk
kR 2k NO Rk 2k 1k 1h Ixk

(5.16) - Z(R1kE(R 2 Xk) Xk}

-. E(Rlk I Xk)E(Rk I X } 2

the second equality follows from the conditional independence of o(XkHlk)

and a(Xk,H 2k) given O(Xk) ([6], p. 308)1 the final equality was actually

proven during the argument of Theorem 3.5. Relation (5.16) yields ER1kR 2k =

2EIk , which proves (5.14)1 (5.15) is obtained from (5.14) by substituting X

for X. II

The final ingredient in calculating the asymptotic variance of estimators

based on (5.12) is the value of ZSk(Tk). But k - max(Mi 1 i n), so

that

P{T 'C x} - (J I (t)h(t)G(dt))n

k 0,ox]

thus, if s(t) is strictly increasing,

E-S." ks(T k -J0(Jo I a ()- (t~h(t)(;(dt) )ndx
(s- (x) ,m)

It should be clear that point mass randomization is amenable to variance

reduction via stratification. Observe that if 0 = to < T < t1 < t2 ... <

t m, then simulating Mk from the conditional distribution
i..n ti

h(u)I (u)G(du)/Jt h(u)G(du) and defining Hk via the rule (5.1)
[t ii1ti ) -

yields a deviate from Qi*

.5
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6. Integrals with Random Endpoints

Assume that {(Xksk) : k ) 1} is a family of processes satisfying Al -

AS and

D2
D1. °".4(t)G(dt) <

Lot L be a probability distribution function satisfying:

D2. L(O-) - 0, sup(t : L(t) < 1) T

03. J0 G(du)/L(u-) < -, where L(t) - - L(t)

We define {H : k ) 1) by the rule

J0 [0, Ot] (u)GlduliEu--)i t < N k

(6.1) Hk(t) -

S0 I[0NkCU)Gldu/Lu-) k

where the sequence (Nk  k ) 11 is a family of i.i.d.r.v.'s, independent of

the (XkSk)'s, such that P{N C dt) = L(dt). With the Hk's defined

through (6.1),

R ]0 1 [0,Nk ](U)Xk(u)/(u-)G(du)

(6.2). Proposition. Under DI - D3, A6 - All hold.

Proof. It is evident that

EHk(t) = J-0 aI (,t](U)Ilt, )(s)Il(u-)G(du)L(ds)

+ J0 0 110,] (u)I[0 ,t) (s)/(u-)G(du)L(ds)

. JO I [Olt] (ulE(t)/i;(u-)G(du)

+ J0 I[Olt] (u) (llu-) - L(t))/E(u-)G(du)

* G(t) ;

the second equality is Fubini's theorem, whereas the third uses the fact that

L(t-) > 0 on (0,T]. Hence, Hk satisfies AS. For A6 - A7 and A9 - All, we

apply Proposition 3.32 - it will suffice to prove that E <() ( . But
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zaH 3* E(J I (U)/L(U-)G(du)l 3

(ek]

j"jj'O ft4 I(' U Cu )/L(u i-)G (du )LWds)

$ - ;;~~~; L(max(u1 uu 3  ) /L(u -)G(du)

ft'j" 1/L(U i-)G(du

I;/L(u-)G(du)) 2 <

(6.3). Theorem. Assume Dl -D3. Then,

(6.4) K(ds,dt) -L(max(s,t)-)/L(s-)L(t-)G(ds)G(dt)

(6.5) =r 2 a(X )Lt)G(dt) - 2

^2 o A

*(6.6) V 1 a (Xklt)/L(t- )G(dt)

(6.7) ES (T ) ' 8 (t)L(dt)
k k

where

0(~) (O)EY )Y(t)G(ds) + EY 2(t)(G(t) -G(t-))

Proof. For 01Cs 1Ct,

ic~a~) - Z " I (u)I (u)/E(u-)G(du) ;ION]v[Ot()iv-GdI
0Os [0, k[ N 10Io,8v)L1-G~v

J.' - jo 110,x] (u)I[Ox (v)I[OS (u)I[Ot (v)/L (u-)L;(v-)G(du)G(dv)L(dx)

1- O 10's] o(1) O'ti ()~(u,v))/L(u)()G(du)G(dv)

proving (6.4). For (6.5), we use the symmetry of EXk(s)Xk(t) in (B,t) to

write

ERk - JOi 0 EX k(s)Xk (t)L:(max(e,t)-)/:(s-)L(t-)G(ds)G(dt)

= 2 J'j'( I t.(S)EXk (B)Xk (t)/L(t-)G(ds)G(dt)

-32-
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+ 2 -

- Jo a(Xkut)'fl(t)G(dt)

proving (6.5)1 for (6.6), apply (6.5) to . Since L(m) - 1, T < a.s.

1so
RSk (Tk J' s(t)F(dt) J' 6()P- k dt)

J'- s(t)L(dt) • II

As in Section 5, one can try to analytically optimize the choice of L.

We shall require several additional assumptions.

D4. s(t) < - for t ) 0

- . DS. there exists a non-negative function u(t) such that

alXkt)/u(t)G(dt) - s(dt) (by D4 and A3, s(t) is a finite non-

decreasing function).

The asymptotic variance associated with R(t), for a fixed L, is given by

v2 (L)/t vhere

v (L) - o a(lkit)/L(t-)G(dt))(jo t(t l,

, (6.8). Proposition. Under D1 - D5,
A .Al 2v ;2(L ) ) (]; a (Xklt)/u (tG(dt) .- 1)

Proof. Observe that
ij lkt)/u !/ (ldt)) 2

1/2 laa t/2 2
- k t-)al)k tI/u ltlGldtl

C ] a(Xkit)/L(t-)G(dt) * O(t-)a(Xk;t)/ut)G(dt)

by Cauchy-Schwartz. But'('0
-.2

'C, -33-

-i4n *.A A",'5 ,- .*-" ."*,-" .-. . ..-.,'....-. .... . ..,.,. ..-,'. .-- ,..- -.- ,',". - .- - .-.-.- -. . -. . .,,, , -

,'b " " " ".". .'- ," "-'-'-' '-'-'.. . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . .- ".".. .-.-. .".".".... .- I



71)67.

S L(t-)a(X it)/u(t)G(dt) 0 0 1 ' ,-) <(x ,<, ik ;t )Lcdx)G dt

- Jo]o 1 [O)x] (t)a(Xkit)/u(t)G(dt)L(dx)

- Jo s(x)L(dx)

where the second equality is by Fubini, and the final equality uses D5.

Assumption D5 requires absolute continuity of s(dt) with respect to

G(dt) on (0,T] and non-negativity of a(X kit). The non-negativity ofAk

a(X k;t) clearly arises when Xk has non-negative correlations in time.

However it also holds under other conditions.

D6. {Xk(t) : t ) 01 is a stationary process.

(6.9). Proposition. Suppose DI and D6 hold for G(t) -1 - exp(-At),

A > 0. Then a(Xk ;t) is non-negative and decreasing to zero.

Proof. By stationarity,

a(X k<it) -2 It "<k (o ink (a-t)Xe- do

(6.10)

- 2 A 1j Ek(O)k(u) eXudu e -At
'4k

By DI and Cauchy-Schwartz,

E.(A 01Xkls) le-Asds)2  0 EXk(s)2 Xe - Xsds <

Hence, Fubini proves that

0 - E(Jo Xk(s)Ae- ds) e Joio Ek(s)Xk(t)A -X(s+t)ddt

2- _jtE 9O~ #YflVf-t.eX"a Ae-At dt

i~- 9,/° O X0 ) u e -Xu du ,

from which it follows, using (6.10), that a(X kt) is non-negative and

decreasing to zero. II

1%
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Assume that G(t) = e and that s(t) st. Proposition 6.9 can be

used to find a distribution L which is approximately optimal, provided that

Xk is reasonably close to stationarity. Substituting the expression for

a(X it) derived in the proof of Proposition 6.9 into the defining relation
k

for u(t), one gets
SA -u -2Xt
SJ' EX (O)X (t)e -  du) =e dt u(t)s dt :
0 k k

. 2Xt
hence u(t) Oe for some B. The following property holds in our

current setting.

D7. u(t) is a continuous function which decreases to zero as t + m.

(6.11). Proposition. Under DI - D5 and D7, L1(t) = I - (u(t)/u(O)) 2 is a

distribution function which minimizes v (L).

2

Proof. The continuity of u implies that L has the required right

continuity, so that L is a distribution function. From Proposition 6.8,

Iv 2(L) > (0 X;t)/u 2 (t)G(dt))=.-.* aXa

a(aCXkdt)/lt)G~dt))(JO a(Xklt)L (t)/u(t)G(dt))(]GOD a (Xk~t/l )~t) O k -

(J0 a(Xkt)/L1(t)G(dt))(JOJO I[0,u] (t)a( ;t)/u(t)G(dt)Ll (du))

maA

= (J a(X it)/'L (t)G(dt))(j 0 s(u)Ll(du)) = v 2 (L 1 )

where the second equality is by Fubini, and the third follows from the

defining relation for u. II

As a consequence of Proposition 6.11, we see that L(dt) )e-Atdt is

approximately optimal for a simulation problem in which X is approximately

stationary and G(dt) = Ae-Atdt.

We now turn to an application of antithetic variance reduction to

integral estimators with random endpoints. Let L Cx) inf(u L(u) ) x}

and assume that there exists a sequence of i.i.d.r.v.'s {Uk  k > 1),

-35-

- - . . ,-.. . . . -- .% , . . * . . . . . .. ' .. % .-- ' *_.'. 4-4 ..". ',".. . . .",-...,. . .. .' ... ,.. ,. ", - . ,'.'- '., ,'. .. ... ,..'..,,'. .. . ,. ...-. .
: ..,-,-< . .. ,..,.,, .- .. , , ,. -, .. ... -...:....-..* , ,-.. .. . ... .-. - -. ..... . ...



independent of {(Xk,Sk) : k )1. Set Nkl = L-(Uk), Nk2 1 (1 -k+ 1 )

for k odd; Nkl L(1 - Uk_ 1 ), Nk2 L(U k ) for k even. Let

'i
Rki = J0  Xk(s)/L(s_)G(ds)

for i - 1,2; the pairs (Rkl,Rk+,1 ) and (Rk 2,R+1,2 ) (k odd) are said to

n

be antithetic. Let RI(n) = R 1I/n. The following theorem involves a
k=1

proof similar to that of Theorem 3.19.

(6.12). Theorem. Assume DI - D4. If 1; s(t)L(dt) < 0, then

(6.13) t/2 (R (M (t)) - ) ==> 2(R + R1 s(t)L(dt)/2

as t * -, where M1(t) = max{2n : N11 +...+ N 2n , 1 t}.

Based on Theorem 6.3, the antithetic estimator RI (M l (t)) is more
O2(l 2 = 2(1)

efficient than R(t) if a (R + R2 1 )/2 o 2 2 ( 1

DS. Xk(t) ) 0 -.s.

(6.14). Proposition. Assume D1 - D4 and D8. Then, a2(R + R 4 2 a

Proof. Clearly, it is sufficient to prove that cov(R1 1 ,R2 1) 4 0. By D8,

-1 -1
L (uI ) L (u2)

R - R2 2 = J0  X1 (s)/L(s-)G(ds) - J0  X1 (s)/(s-)G(ds)

has the same sign as

4-1 -1
L (1-u2) L (1-u )

R12- R21 = X 2(s)/L(s-)G(ds) - 10X2 (s)/i:(s-)G(ds)

Hence,

0 4 E 1 1 - R2 2 )(R 12 - R2 1) = -2 cov(R 1 1 ,R2 1 ) . II

Variance reduction for integrals with random endpoints can also be

accomplished via stratification. Note that if 0 = to < t <...< tn = , the

simulation of Nk from the conditional distribution L(du)/(L(ti-) -L(ti_-))

t_ ( u < ti) and definition of via (6.1) yields a deviate from Qi.
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