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ABSTRACT

let {X(t) : t » 0} be a real-valued stochastic process and set
a= ]; X(t) G(dt), where G is a (non~-random) distribution function. If the
support of G 1s large, standard Monte Carlo techniques for estimating a
are inefficient, since X must be simulated over the entire support of G.
To avoid this difficulty, randomization schemes are derived that require
simulation of X over random subsets of the support of G. Large-sample
behavior of randomized estimators is studied in detail. Some variance

reduction techniques are also presented.

AMS (MOS) Subject Classifications: 60G57, 68305
Key Words: Simulation, vaT"iance reduction, random measures
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. gonsiders'“a stochastic system for which one needs an estimate of the
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expected discounted cost over the infinite horizon. Standard Monte Carlo
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_ procedures do not apply since the parameter to be estimated involves values of
) ™ Ve T
the process over an infinitely long time 1nterva1./ In ‘Ehis paper, we \present:,
-_":1 - Y
w2 Monte Carlo estimation techniques, based on randomization, that can be used in
the above setting. The techniques developed turn out to be more efficient
)
) than the standard approach, even when the parameter to be estimated cumulates
9
) costs over a finite time interval.
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RANDOMIZED ESTIMATORS FOR TIME INTEGRALS

i

Peter W. Glynn
1. Introduction
Let {X(t) : t > 0} be a real-valued stochastic process representing the
. output of a simulation, and consider a time integral of the form
(1.1) I =[5 X(t) elae)
where G is a (deterministic) non-decreasing function. Our objective, in

this paper, is to study Monte Carlo techniques for estimating the parameter

LR

NG
05 BRGNS,

a = EI.
4 The time integral (1.1) includes several commonly studied performance
»"‘1 criteria.
5 -at
(1.2). Example. If G(t) =1 -e “(a>0), then I corresponds to
: discounting X(t) at rate a over an infinite horizon. Such time integrals
) : occur frequently in inventory models.
(1.3). Example. If G(t) = min(t/T, 1), then I is the average of X(t)
1, over the interval [0,T]. Such averages are often of interest, in a queueing
:,‘: context.
AN
‘ (1.4). Example. Let {¥(t) : t > 0} be a stochastic process and f(t,y) be
i; a real-valued performance measure which may depend explicitly on t. By
4] .
j: setting X(t) = £(t,¥(t)), criteria of the form
- I= }; £(t,¥(t)) G(at)
'
:j can be incorporated as a special case of (1.1).
N
{% ' (1.5). Example. Grassman (1982) has recently developed a Monte Carlo
= . technique for estimating Ef(2(t)), where Z(t) is a uniformizable Markov
:..: jump process. The idea is to represent 2(t) as Y(N(t)), where N(t) 1is a
]
)
3 Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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Poisson process with rate ) (say), and {¥(k) : k » 0} is an independent

discrete-time Markov chain. Thus,

[
(1.6) E£(Z(t)) = ] Ef(Y(X))e
k=0

‘oo k.

Setting X(t) = £(Y([t])) ([t] = greatest integer less than or equal to t),
and G(dt) = Poisson measure, we see that the representarion (1.6) is a
special case of (1.1).

In Section 2, we shall briefly discuss the direct method for estimating
a; this involves generation of independent variates I4, I5,++., each having

the distribution of I. The parameter a is then estimated by I(n), where
n
- 1
i(n) =~ X Ik .
k=1

The difficulty with the direct method is that if T = sup{t : G(t) < G(=)}

(G(e) = 1im G(t)) is large, then generation of variates is expensive. Thus,
t+o

in Section 3, a general framework for randomized estimation of a = EI is
presented.
(1.7). Definition. R(n) is a randomized I(n) - estimator if there exists a
o-field G such that
E{R(n) | G} = I(n) .

The definition of conditional expectation implies that ER(n) = E;(n) =
a, 3justifying the description of ;(n) as an ;(n) - estimator. Some
authors refer to methods based on randomized estimation as conditional Monte
Carlo procedures (see, for example, Rubinstein (1981), p. 141). However, we
prefer to reserve the term "conditional Monte Carlo" for the "converse" to a
randomized estimator.

(1.8). Definition. ;(n) is a conditional Monte Carlo E(n) - estimator if

and only if ;(n) is a randomized ;(n) - estimator.
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The definition (1.8) of the term "conditional Monte Carlo" is consistent
with its usage in several recent books; see, for example, Bratley, Fox, and
Schrage (1983) or Law and Kelton (1982). The following proposition is a well-
known property of conditional expectation (Burrill (1972), p. 392).

(1.9). Proposition. Suppose that Eli(n)l <® and that R(n) is a
randomized I(n) - estimator. Then,

var(R(n)) > var(I(n)) .
Proposition 1.9 states that a randomized I(n) - estimator has larger mean
square error (MSE) than I(n). For this reason, the conditional Monte Carlo
estimator I(n) is to be ptefefred in the case that generating K(n)
requires the same effort as simulating JY(n). However, it turns out that in
our time integral setting, the time required to generate a randomized I(n) -
estimator will often be smaller than that required to simulate ¥(n); this
property can offset the MSE advantage of I(n). This is the theme of Sections
3 through 6. After developing a generzl framework for randomized estimation
in Section 3, three specific randomized estimation algorithms are studied in

Section 4 through 6.

2., The Direct Method

Development of estimation theory for the parameter a requires some
assumptions on the simulation. Let (f,F,P) be the probability space which
supports our simulation. We assume that:

Al. there exists a family of processes {(Xk,sk) : k » 1} such that
xk : l+ x 2 +R and sk : i+ x Q + i+, where R+ = [0,=)

A2. the processes xk(°,m) possess left limits and are right continuous,

for each ®w € 9

., w,w, W R, W & ® ¢ & "¥ @ & 7
LI R N I e e A
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A3. the processes Sk(',m) are non-decreasing and right continuous for
each w € Q; also P{sk(t) >0} >0 for t >0
Ad. {(xk,sk) : k » 1} is a sequence of independent and identically
distributed (i.i.d.) random elements
A5. G : R+ [0,1] is a non-decreasing right continuous function such
that G(0-) =0, G(0) <1, and G(®») = 1 (G(x~) =
sup{G(t) : t < x}).
a6, [, EIX_(£)] G(dt) <= .
Assumption A2 guarantees that X, is product measurable (see Dellacherie
and Meyer (1978), p. 89). Fubini's theorem applied to A6 therefore asserts
that if

[ ] [}
Jo X (t,0)G(dt); Jo 1%, (t,w)] G(at) < =

I (w) )
k 0 ; else ,

then I, is F-measurable (i.e. a random variable) and satisfies

L = J; X, () G(at) a.s.

The goal is to estimate a A EI The process S, (t) will be interpreted as

X’
the amount of "effort” required to simulate xk(-) up to time t.
(2.1).  Example. Suppose that X, (t) =t + Y, (N (t)), where
{Yk(j) : j > 0} is a Markov chain and N, (t) is a Poisson process. Assuming
that the simulation effort is measured by the number of random variables
(r.v's) generated, S§,(t) = 2N, (t) + 2(Np(t) + 1 for Y, (0),...,Y, (N (t))
and N (t) + 1 for the exponential variates).

n

Let I(n) = { 1 /n with I(0) = 0; I(n) will be referred to as the
k=1

direct estimator of a. Set T = sup{t : G(t) < 1} and put N(t) =
max{k : S4(T) +...+ S, (T) < t}; N(t) is the number of I, 's generated by
t wunits of effort. Then, 1I(t) 4 ;(N(t)) is an estimator for a, which can

be constructed from t units of effort.
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(2.2). Theorem. Assume A1 - A6. Then, I(t) +a a.s. as t + o if
P{S (T) < =} = 1.
Proof. The strong law of large numbers guarantees that I(n) + a a.s. By A3
and AS, P{sk(T) >0} >0 s0 N(t) < ®a.s. for all t. PFurthermore, the
assumption P{sk(T) = o} = 0 assures that N(t) + ® a.s. (see ¢inlar
(1975), p. 290), from which the result follows. K

It is worth observing that if P{sk(T) = ®} > 0, then I(t) does not,
in general, converge to a (see Example 1.2)., We will also be interested in
rates of convergence for our estimators. For such results, we require a
further moment assumption.

a7, o= -w?ce

(2.3). Theorem. Assume Al ~ A7. If P{Sk(T) < @} = 1, then

— 1
(2.4) lim a(t) ¢ |I{t) - a] = O(ESk(']'.'))/2 a.8.
o

1
where a(t) 4 (t/2 log log t:)/2 and 0.» A 0.
Proof. The Hartman-Wintner form of the law of the iterated logarithm implies
that

(2.5) 1im a(n)l?(n) -al =0 a.s.
n-ooe

Since N(t) + @ a.,s., (2.5) yielas

(2.6) 1im a(N(£))|I(t) - a|l = 0 a.s.
tro0

But N(t)/t * 1/Esk(T) a.s. (see [6], p. 290), which in turn implies that
(2.7) a(N(t))/a(t) » 1/(Esk('r>)1"~’a.s.
Relation (2.4) follows immediately from (2.6) and (2.7). |1

Confidence intervals for @ can also be constructed from the direct
estimator 1I(t). The key tool is a central limit theorem (CLT), which is

valid under slightly stronger assumptions than Theorem 2.3.

(2.8). Theorem. Assume A1 - A7, 1If Esk(T) < ®», then




v §

ave

1 1
}ﬁ (2.9) t/2 (I(t) - a) ==> u(ESk(T))/ZN(O,‘I)

“"
‘?4 as t * », where N(0,1) is a mean zero unit variance r.v. and ==> denotes
B> d
’ weak convergence.

I,

}} Proof. From the CLT for i.i.d.r.v.'s,

e 1 -

g n2 (T(n) - a) ==> g N(0,1)

_ as n + @, Let ¢t, be an arbitrary sequence converging to infinity. Since
-&‘

A N(tk)/tk + 1/ES, (T) a.s., one can apply Theorem 7.3.2 of Chung (1974) to
:;{ conclude that

"

o
N(tk) (I(tk) - a) ==> g N(0,1)

‘;'

-*3 as k + ®, The converging-together lemma (Billingsley (1968), p. 25) then
»,
N

:H yields 1

- v .

2 - —_— 2

1 tk (I(tk) a) > o(Esk(T)) N(0,1)

jL as k + =, Since {tk} was arbitrary, we obtain (2.9) ([2], p. 16). I
A

;Q If zg solves P{N(0,1) < zs} =1 - §/2, Theorem 2.8 proves that the

random interval

& Yo oy Vo Vo oy s

] [I(e) - z,v2 (e)/e2, 1(e) + zv'4e)/t]
Xd

- is an approximate 100(1-8)% confidence for a, where v(t) is a con-

sistent estimator for ozzsk(T)-
Before concluding this section, we consider a special case of Example
- 1.4. Suppose that the process Y(t) considered there is a stationary process

on state space S. Then,

;\‘ (]
‘ (2.10) a = EI = [§ EE(t,¥(t)) G(at)
\J
&
- = 1: Js £(t,y)P{¥(t) € day} G(at)
':1 i
¥ = Jg g £(t.y) Glat)n(ay)
" where w®(¢) = P{Y(0) € *}. 1In general, if the process Y(t) can be
:
A
<
9 -6-
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simulated, then the distribution #® is known explicitly so that a can be

calculated analytically from (2.10). Thus, the interest in Monte Carlo

‘}:f o o
AR

egstimation of & occurs when Y(¢) is non-stationary. 1In the simulation

%{. literature, such non-stationary estimation problems are referred to as
?Qﬁ N transient simulations.
2N
;uﬁ 3. A _General Framework for Randomized Estimation of Time Integrals.
2
;'. In this section, we assume that:
N
- AB. there exists a sequence of processes {Hk : k » 1} such that
oy H :RxQ+ R" and which satisfy:
Oy
SN i.) Hk(°,m) is non-decreasing and right continuous, for each w ¢ R
€
) ii.) {Hk : k » 1} is a sequence of i.i.d. random elements, which is
v
o independent of the collection {(X,,S.) : k > 1}
vy )
N iii.) EH(t) = G(t) for all t e R
R
(3.1). Lemma. Under A5 and A8, H,(0-) =0 a.s. and Eﬂk(O) =1,
.{ﬂ Proof. For t < O, Hk(t) is non-negative and satisfies EHk(t) = Gk(t) = 0,
. \_‘
/uj so that H,(t) = 0 a.s., proving that H,(0-) = 0 a.s. For the finiteness of
2
S
. !Hk(-), observe that Hy(n) increases to Hk(w). Hence, by monotone
‘yhh
\ convergence
:}\j gence,
s X
4 EH () = 1lim EH (n) = 1im G(n) = 1 . 1
""'T"‘ Hk nhee Hk nbe
A Our randomized Y(n) - estimator will be based on
N
S
< ®
:;.\,; ]0 X (t,0)H (dt,0); © £ A
R (3.2) R (w) =
ti~ . 0 ; we Ak
R N at) = =) £ w, R (w) is well
-t - = . -
s where A, Jolxk(t)lﬂk( t) Observe that for each w, R is we
9.5 3
L defined by formula (3.2), since X, is product measurable, and H, satisfies
&}_ A8 i.). Several later arguments will require the following approximation
-.(Q
o
1’!
- e

"o

. T '-'.‘.‘4 ,-.', - .;‘.".". ..' .'.- "-'..'-'--‘/‘.-‘..'..
. .t.~.ll'.- -“.' .- "c . '.‘ : K '.- "-.' - - .Ql '( " "'."'->'.-“.-A'.~.'..
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result. Let

X (t) = min{xk(t).m}

n

ka

(t) = min{xk(z'“(j+1)),m}

for 3 < 2%t < 3+1.
(3.3). Proposition. Assume A1 - A6, A8, and suppose that X, is non-

negative. Then

(3.4) lim 1lim
mye nie

Jo k_(t)u (dt) = Jo X, (t)H (dt) a.s.

Proof. First, it is easily seen that ka(',w) is right continuous. The

right continuity of X, implies that

lim x (t) = X (¢)

nH»>oe

km

for all t > 0. Now, Hk(’) <®a,s., 8o that we can apply a.s. the

bounded convergence theorem to conclude that

lim
n-+e

Jo wm ©VH, (dE) = Jo X p(t)H (dt) a.s.

Now, apply the monotone convergence theorem to complete the proof. 11

Since the integrals on the left-hand side of (3.4) are discrete sums, it
is clear the the right-hand side of (3.4) is a r.v. and that A, e F. Observe
now that if xk(t) is right continuous with left limits, then the same

property holds for

(t); (t) »0
x;(t)== { L *x

0 ; else .
Thus, by splitting X, into its positive and negative parts, and using (3.4),

we see that Ry is a r.v.

n
We will use Proposition 3.3 to prove that R(n) = 2 Rk/n is a
k=1

randomized ;(n) - estimator. Let G = o(xj : J 1) (the o-field generated
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by the xj's).

(3.5). Theorem. Assume A1 - A6 and A8. Then E{Rk | G} = I.

Proof. let f : RP. + R be a non-negative bounded continuous function with

compact support. Fix an arbitrary selection of time indices t1,...,tp, and
write f(X,) for f(xk(t1),...,xk(tp)). Assume, for the moment that X, is

non-negative. Then,

n @ .n
(3.6) E{f(ka) Jo ka(t)Hk(dt)}

. n -n AN - - -n

= j{o E{f(x Xy 32 )|, (32°7) H ((3-1)2 N}

= ) E{f(x :m(jz'“)(e(jz'") - G((§=1)2"")))
j=0

= E{£(x" )Jo km(t)G(dt)}

where the second equality follows from independence of X  and Hy. Since
Xym 1is right continuous, f(x ) » f(X ) as n *+ ® by continuity of f£,

so that Proposition 3.3 implies that

(3.7) lim f(x (t)H (atv) = f(x

n+®

D 1o X ) [ X (t)H, (at) a.s.

Now, X:m is bounded by m and Hk(w) is integrable (Lemma 3.1) so
evidently the left-hand side of (3.7) is dominated by an integrable r.v.

Hence, one can apply dominated convergence to (3.6), yielding

e{f(x (t)Hk(dt)}

®x
km) J0 km
(3.8)

= E{£(X (t) g(at)} .

a’ 1o Fum

Since f has compact support, f(X,,) = f(X, ) for all m greater than

some M. Then, the non-negativity of f implies that the r.v.'s on both

S & e
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sides of (3.8) are increasing in m, for m > M. Hence, monotone convergence

can be applied to (3.8), yielding

o«
E(£(X ) [, X (£)H (dat)}

= E(£(x ) |5 X (&) 6av)} .

By appealing to the montone class theorem ((7], p.14) and using the fact that

the functions f(X,) generate o(xk), one obtains
e{z |5 at)} = e{z | X (t)G(dt)}
0 xk(t)Hk( t) o X«
for all bounded 2 € G(Xk). Hence, by definition of conditional expectation,
o [_J
E{Jo X, (£ (at) | xk} = X, (t)G(ae) .

In particular, E{];ka(t)lﬂk(dt)} - ]; Elxk(t)lG(dt) < ® (gee A6), so

P(Ak) =0 for k » 1. Thus,

«»
Jo Xk(t)Hk(dt) = R a.s.

so that E{Rk ] xk} = I, a.s. Since R € o(X ,H ), R is independent of

k

o(X, : j # k) and hence ([6], p. 308)

E{Rk | G} = z(nk | xk} =1 a.s. ,

3

completing the proof of.the theorem in the case that Xy ?» 0. For the general
situation, split xk into its positive and negative parts, repeat the above
argument, and recombine using the fact that P(A,) = 0. (K]
(3.9). Corollary. Under A1 - A6 and A8, ER, = a.

We wish to prove limit theorems in terms of the parameter t, where ¢t

corresponds to an index of effort. In the applications we will be considering

in Sections 4 through 6, the effort required to generate Hy will be
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negligible compared to the effort necessary to simulate Ix. Then, Sk(Tk)
is the effort required to generate R,, where W " sup{t : Hk(t) < Hk(.)}.
Note that T and Sk(rk) are F-measurable, due to right continuity of H

and sk.

(3.10). Propogsition. Assume A1 - A6 and A8. Then
o0
(3.11) E{Sk(Tk)z T, < “} = |, ES, (t)F(dt)

where F(t) = P{Tk < t}(E{Sk(Tk): al A Esk(tk)IA, where IA(m) is 1 or
0 depending on whether or not ® € A).
Proof. Let Sy, (t) = min{sk(t).m} and set t: = 27%(j+1) on

{j < 2“rk < j+1}. Then,

n -
(3.12) z{skm(rk), T, < w}

(-]
n -n -n
jzo E{s, (t,)1 273 <1< 2 (3+1)}

L]
= J Eskm(z'“(j+1))p{2'“j <t €2 7 (3+1))

3=0 N
where the second inequality is due to independence of S, and Ty Applying
bounded convergence and then monotone convergence to (3.12) yields (3.11). ||
Let M(t) = max{k : S,(7,) +...+ S (1) < t}; then M(t) is the number
of Ry's generated with effort t. The next lemma shows that M(t) is no
smaller than the number of 1I,'s generated.
(3.13). Lemma. Assume A1 - A6 and A8. Then M(t) > N(t) a.s. for t > 0.
Proof. We need to show S, (7,) < § (T) a.s.; this inequality is trivial if

T = », By monotone convergence,

z{nk(w) - Hk(T)} = lim E{Hk(T+n) - Hk(T)} = lim G(T+n) - G(T) = 0 .
n-eo

n+w

The non-negativity of Hk(O) - Hk(T) implies that Hk(w) = Hk(T) a.s.,

proving that 1, < T. |
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Let R(t) § R(M(t))7 R(t) is a randomized estimator constructable from !
t units of effort.
(3.14). Theorem. Assume A1 - A6 and A8. If P{rk < w} = 1, then
R(t) *a a.s. as t + o,
Proof. Since Eﬂk(ﬂ) = {1 a.s. (Lemma 3.1), P{Hk(-) > 0} > 0, so that
P{tk > 0} > 0. Hence, P(Sk(tk) > 0} > 0 by Proposition 3.10 and A3. This,

in turn, implies that M(t) < ® a.s. The fact that T, < ®» a.s. forces

k
sk(tk) to be finite a.s. (see A1), which assures that M(t) + » a.s. as
t + ®», The theorem then follows from the strong law for R(n) and Corollary
3. I

To obtain analogs of Theorems 2.3 and 2.8, we need to analyze

E(Rk - 0)2- Our expression will involve the function K(s,t), where K(s,t) =

EH, (8)H, (t).

9. EH:(t) < for teR .
(3.15). lemma. Under A8 ~ A9, K(s,t) is the distribution function of a
o~-finite measure on .
Proof. Note that
H (8)8,_(£) € B2(t)
for s < t. Hence, K(s,t) € K(t,t) <® so K(s,t) is real-valued. Let s,

t, decrease to s, t respectively. Since H(s,)H(t,) < H(sy)H(ty), the

n
finiteness of K(s1,§1) allows application of dominated convergence to prove
that K(sn,tn) + K(s,t); K is therefore continuous from above. Also, for
89 < 85, tg <ty

H(s,,t,) - H(s,,t,) - H(s,,t,) + H(s,,t;) >0
so that

K(Szltz) - K(S1lt2) - K(821t1) + K(s1lt1) >0 .

The lemma then follows from Theorem 12.5 of Billingsley (1979). h
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A10. Jo Jo EIX _(s)X (t)] K(ds,dt) <= .
(3.16). Theorem. Under A1 - A6 and A8 - A10,
2 @ ,m
(3.17) ER_ = Jo 1o EX (s)X (t) K(ds,dt) <= .
Proof. For X, non-negative, observe that for any integer T,

(3.18) (7 JT X (X2 (£)R (de)H, (at))

2n'r 2nT n -“n.n -n

T s
2220

- jzo zzo B (327N (127MaK(d,2,m)

T T
= Jo Jp EXpp (80X, (£)K(ds,at)
where

- -n, _ _qyo~N -n, _ —q3yo=D
H, (3,%,n) (H, (32 ) H ((3=1)2 ))(H (22 ) Hk((l N2 7))

AR(j,2,n) = X(327™,227") - K((3=-1)277,227") - K(3277,(2-1)27")
+ K((§=1)277, (2-1)2"") .

Letting n, m, and T tend to infinity in (3.18) (in that order), bounded and
monotone convergence proves (3.17) for X, non-negative. For X, of mixed
sign, split X, into its positive and negative parts and recombine

using A10. i

2

Let 02 - J: J; E)S‘(s)xl'((t)x(da,dt) - = E(Rk‘a)z and set s(t) =

R
ES (t). The proof of the following theorem is identical to those of Theorems 2.3
and 2.8.

(3.19). Theorem. Assume A7l - A6 and A8 - A10. 1If p{sk(rk) ¢ ®} = 1, then

— 1
(3.20) 1im a(t) * |R(t) ~a] = (ai ]; a(t:)l-‘(dt:))/2 a.8.
t o
-13=
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- where 02 < ®. If, in addition, ES (T,) <*, then

. R k

:1} 1 » 1

N (3.21) 2 (R(t) = @) ==> o (] s(t)F(at))2N(0,1)

"-f, as t + =,

G On the basis of the CLT (3.21), it is natural to interpret azzsk(rk)/t as

.,g the asymptotic variance of the estimator R(t).

o In addition to the estimator R(t), one can construct a second estimator
n

based on the framework described thus far. Let h(n) = 2 H (®)/n and set

k=1

o

~ R(n)/h(n); h(n) >0
R(n) =

Zx

0 ; h(in) =0 .

The estimator R(n) is merely R(n) normalized by the random total mass of the

s ~tet
2 B B. s &

e
o'

first n Hk'sr we therefore refer to 'ﬁ(n) as a normalized randomized

K .
L I(n) - estimator, and set R(t) = R(M(t)).

A~

:; The following result has an identical proof to that of Theorem 3.14 (recall
* that EH, (®) = 1 by Lemma 3.1 so that h(n) + 1 a.s.).

v
3 (3.22). Theorem. Assume A1 - A6 and A8. If P{‘l’k < ®} = 1, then

(N R(t) *+ a a.s. as t + o,

~

;.: An analog to Theorem 3.19 is also available, under a certain moment

"

condition.

P Py ~ "~

3] A1, Jo Jo EIX_(s)X, (t)|K(ds,dt) <= ,
N X
jfj where X (s) = X (s) ~a .

) (3.23). Theorem. Assume A1 - A6, A8, A9, and Al11. If P{sk(‘l’k) < ®} =1, then
.'-' — ~ 2 @ 1&
- (3.24) lim a(t) ¢ IR(t) - al = (g [, s(£)F(dL))™ a.s.

*) t o

-3

<2

where 02 = Jo g EX_(8)X (t)K(ds,dt) ~ ER_ <= (R 4 R -aH ). If, in

addition, Esk(rk) < ®», then

xa. i)

. S

‘
< 1 r'S a 1
L (3.25) t 2 (R(t) - a) ==> OR(]; s(t)F(dt))/ZN(O,‘l)
<3
2 -14-
O
S
LY
p

<
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I\.
zi: as t * =,

*

o Proof. Note that if X, (t) satisfies Al - A7, then X (t) also does. Under |
»7( A11, one can therefore apply Theorem 3.19 to the process xk to obtain the

T

e relation

Rl M(t) 1

30 ) - S
SO S bt . (2 = %

(3.26) lim a(t) * o= I X, (8)H (ds)| = (op [, s(t)F(at))Za.s.

> tie k=1
{;, But observe that
.{3;: —'—"it)f"() (d)=—Mi‘t)J'(x()- )H_(ds)

o M(t) o X (88 (d8) = G 0 "Mx'8) T @, lds

2 k=1 k=1
" = h(M(t))(R(t) - a) .

_2- Since ;(M(t)) + 1 a.8. as t + o, (3.24) follows from (3.26). A similar proof

is valid for (3.25). 11
":: We wish to emphasize that A10 and A11 are not equivalent moment

Y
'jg hypotheses. Consider a case in which X,(t) = 1 for 0 < t < 1 and vanishes
AN
'~ elsewhere, with 0 < G(1) < 1. Then, A10 is always satisfied but A11 is valid
XN ' only if K(»,») < », On the other hand, suppose that X, (t) =1 for t > 0.
'.I'\

0.
~f\ Then, A11 always holds but A10 is valid only if K(w,®) < o,

Y N -

Q)

! As in the case of R(t), relation (3.25) suggests that 0: ESk(Tk)/t may
\;: be interpreted as the asymptotic variance of the estimator R(t). The goal, in
"

. Sections 4 through 6, will be to determine randomization schemes that make
{':: 2 Az
: % Bsk(tk) and/or % Esk(tk) as small as possible.

'.j Certain bounds for d: and ai are available. The lower bound

}3 di > 02 can be obtained from Proposition 1.9, under A1 - A8. Theorem 3.5

:;? asserts that
. ’ » *

3 E{Jo X (£)H, (dt) | G} I -a
- “

k} from which it follows, by Proposition 1.9, that a; b4 02- Note that the lower
;: . bounds are attained for H, = G a.s. Upper bounds are also available, under
:} certain conditions.

N
...::

t‘;" =15~

i,

-

N
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(3.27). Proposition. Assume A1 - A6 and AS8. Then, if Eﬂi(w) < w,

2 e .2 3 2
(3.28) og < J§ FX,(£)G(dt) « EH (=) - a

.2 *® 2 - 2 [ 3 (-]
(3.29) g < (jo FX, (£)G(dt) - a®) « EH (=) .

The upper bounds are attained.
Proof. By Cauchy-Schwartz,
2 o 2 o 2
R =, X (O (a£)% < (J o X (£)H (at))H, (=) .
Replicating the approximation argument of Theorem 3.16 proves that

(3.30) m{ </ Ex:(t)l((dt,") .

Let f be a bounded continuous function with compact support. Then, the

definition of KX implies that

T £0327™)(x(327%,2) - K((3-1)27",@))
=0

- B{jzo €327, (327 - B (-2 @)} .

letting n + », we obtain
L} o
(3.31) Jo £(t)K(at,») = E{[ £(£)H (at)H (=)} .
The monotone class theorem extends (3.31) to include all bounded Borel

measurable f. But, by Cauchy-Schwartz,

1/2 2 1/2
E{J, B (at) * Hk(")} = E{/, H (dt))™ U, H (dt) « H (=)") }
< El), B (av)} « Bl B (36) « B (=)?)

< ], Glat) - EH:(")

so that we may conclude that K(dt,=) < G(dt)EHi(ﬂ)- Applying this inequality to

-16=
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Ezﬁ (3.30) yields (3.28). Inequality (3.29) is obtained by letting X, (t) play the
\ )
{tl role of X, (t) in (3.28).
P
; The upper bounds are attained by taking Hk(t) =0 for t <M and 1 for
.‘
*:ﬁ t > M, where {Hk} is an i.i.d. sequence of r.v.'s having common
"~
soRA
1f. distribution G. R
N
" The inequalities (3.28) and (3.29) may be easily adapted to provide bounds
on the moments entering hypotheses A10 and A11, respectively.
(3.32). Proposition. Assume A1 ~ AS and A8. Then, A6 - A7 and A9 - A1l are
3 o 2
satisfied if EH (%) <= and o EX, (£)G(dt) < =,
~{: Proof. First, observe that Elxk(t)l < Exi(t) 80 A6 is satisfied. Also,
e
{ES EH:(O) < ® jmplies that K(»,») = EH:(ﬂ) < =», yielding A9. As for A10, the
2‘"
. arqgqument of Proposition 3.27 is easily adapted to show that
AN o o @ 2 3
3 (3.33) Jo 1o EIX (8)X (£)|K(ds,dt) € [ EX (£)G(dt) * EH (=) <= .
E?f For A11, substitute X for X in (3.33), and observe that
AR
b - - © 2 2
Jq EX _(£)G(AL) = [ EX (£)G(dE) - a” .
:iﬁ As for A7, 02 is a lower bound on ci. I
'n:;\
o We turn now to a variance reduction technique that is sometimes applicable
. to the randomized estimators developed above. let 0 =
A
) t, € t, Caual t < t, = and set
‘.*v: 0 1 LI N ) 2-1 t
'
.' " = L ]
.;3_'_: Q () =pPlH €| t,_, <1 <t}
: for i =1,...,%. Suppose that one can generate independent deviates from tue
ti? measures Q1,...,Qz (see Sections 5 and 6 for examples) and that Py 4
1'.‘-'
EAG
o P{t1-1 <t < ti} is known, for 1< i < £. These assumptions will allow us to
4
A
T stratify our sampling scheme.
QI‘\
Y let {mk : k > 11 be a sequence of integers taking values in
Y
i;i {1,...,2)};: the mk's define a sampling order for the Qi's. If m = 1, one
Tﬁf generates H: from Q; (independently of the (xk,sk)‘s), and gets
PR
A
e
A
e -17-
‘s
N R I S I I M L e e

AN J S T T IR PRl R

!’ '. 1- . . '¢- ‘... .~ -
5 S S S S
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:.' It o, ~{3¢<n: m, = 1} (1€1<2), and k,; is the cardinality of

. ® ,, one sets .
Q"._OZ.
o D .

j‘_\.'}.-: R(n) = ) Py ) Rj/kni R
f.':.. 1-1 jCﬂni

o oy ] : . 8
o Am = ) p 1 Hjmk .

\; =1 " jew

0
K

Let T, = {t : HM(t) <H})(=®)}, and set N%(t) =

A
:.:. max{n : S1(t:) +eaot sn(‘t:) < t}; N%(t) is the number of R:'s generated in
;\':
e t units of effort. We wish to study the stratified estimators

‘ RE(t) = RO(N®(t)) and R%(t) = RE(N2(£)) /R (N%(v)).

s{ A12, kpy/n+c, >0 as n+ e, for 1<4< 8.

o : 2 . g2 -
¥ Let 4y =E{s (r) | & _ <t <t} o =elR |t _,<1 <t}

2, f2 %2 -

- (R, | £, , St <.}, 0 =R | t,_, <1 <t} ‘
'f::'-; (E{Pk (I A ti}z). The following theorem is a stratified analog of the
i CLT's (3.21) and (3.25).
‘..;- (3.32). Theorem. Assume A1 - A6 and A8 - A12, If ES, (T,) < =, then
‘ 4
3 ﬁg‘ 1 [ 1
1N (3.33) t2(R%(t) - a) ==> o ()Y ca )’2N(o,1) .
3 RS 16
>3 1=1

- 1 - -~ 2 1

< (3.34) t2 (R%(t) - @) ==> ¢ () ca Y2ne0,1) .

2 RS F R §

3 i=1
N >,

> 2

2 2 2 2 - 22 -2

as t + », yhere GRS' GRS < » and °ns = 121 pioi/ci' °ns =

N ) .

“‘E“ Y by ai/c,.

:.‘:: =1 i i i

S

2l

1

N2

g

e

:5‘ -18-
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Proof. Assumptions A10 and A11, together with Esk(tk) < ®», clearly
L

guarantee the finiteness of 02 v 02 , and l c,d

RS RS k3 194 Under A12,

L

W ) ok /m) > ] ocd a.s.

n 2
(3.35) ) s (2 ym=Y( ) s,
k=1 © K i=1 jew i3 i=1

as n + o, But

N2(e) N2 (e)+1
. 8 S s . 8 S
(3.36) ) S, (TN (£) € e (£) < ) S, (TIN(t)
k=1 k=1

on {Ns(t) < =}, However, as in the proof of Theorem 2.2, it is easily argued
that N®(t) < ® a.s. and N°(t) + » a.s. as t + ®. Using this fact in

(3.36), (3.35) implies that t/N%(t) is "squeezed" between two terms converg-

L
ing to X c;4,. Hence,
1=1 i"i

L
(3.37) Neyve s () cidi)-1 a.s.
i=1

The central limit theorem and the converging-together lemma ([2], p. 25) imply

that
1 . 1 '
(3.38) n2( § R® - ER®)A L= “’1’"? IN(0,1)
jew 3 37 n
ni
as n + o, Since the r.v.'s X R; are independent,
jew
ni
L
1 . 1
(3.39) n2 (R(n) - a) ==> () pidi/ci)/z N(0,1)
i=1

as n + », Arguing as in Theorem 2.8, we see that (3.39) and (3.37) together
yield (3.33); a similar proof works for (3.34). N
We now turn to the question of determining the c,'s.

A13. piafdf>0 , 1<41<8t .

L
+ 2 .

(3.40). Proposition. Under A13, the minimum of g(c) A °Rs( 2 cidi) over
i=1

-19~
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1
{c:c1>0} is (iz1piiiz)2

and is achieved at

1
c, =g pj.oi/d{2

~i
(3.41) L
| po,/a2
e = o /d .
i=1

81n11ar1y, the minimum of h(c) A URS( 1 c di) over {c : 4 > 0} is

i=
252
( Z pi i ) and is achieved at
~ L n o ek
¢y apioi/d

(3.42) 1
2 pP,0 /c'.‘l/2 .
qmq i

The proof involves a simple application of Lagrange multipliers; see Theorem
3 of Glynn (1983) for a similar argument. We shall now show that stratification

always provides a variance reduction.

P PR B e

(3.43). Proposition. Assume A1 - A6, A8 - A12, and Esk(tk) < ®, Then,
‘é 2
(3.44) (&1 p;0,d; )2 < 0g ES; (1))
L -
(3.45) (Y p ) <o ES, (1) .
i=1
Proof. By Cauchy-Schwartz
(§ pod2) < (] p“)(z ba)
i=1 i=1
(3.46)

2
= (i£1 p; 0y JES, (1) .

-20-
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Using Cauchy~-Schwartz again yields

(3.47) § o? = R’ - { (E{R, s t <t <t}
. Pi% X PiiBife? Biaq S T S B /P
i=1 i=1
> £r2 - ( i B(Rs t, . <1 <tlp)?
e T L PaBR B S T € BVRy
- -a®=a

proving (3.44); (3.45) is proved similarly. 1

~
c

1 specified by (3.41) and (3.42)

Utilization of the constants ¢,,

requires a “"trial run®, in order to obtain estimates for G, 31, and 44 If

one wishes to dispense with a "trial run" and is willing to accept a sub-optimal

choice of the ci's, consider using c¢; = p;. Observe that if c; = Py, then

2(f ) (f 2)(§
c c,q. ) = p,0 p,d
RS {=1 ii =1 i"i {=1 i'i

2
< aR . Esk(tk) :

the inequality derives from (3.46) and (3.47). Hence, the suboptimal choice cy
= p; yields a variance reduction over a nonstratified sampling plan.

One final remark is in order. Suppose that there exists T such that G(t)
=0 for t <T and 1 for t » T. Then, an argument similar to that used in
Lemma 3.13 proves that H, = G a.s., in which case R, = I, a.s. Hence, our
randomized framework yields no new estimators when I = EX(T) for some non-

random T.

2=
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‘:: 4. Poisson Process Randomization
-\‘.
fti In this section, we consider a class of randomized time integral estimators
P8
4
; for which the Hk's previously defined are non-homogeneous Poisson processes.
‘i: Specifically, we shall assume that
N 1
}::. (4.1) Hk(t) 5y Nk(XG(t))
for some ) > 0, where {Nk : k » 1} 1is a sequence of i.i.d. Poisson processes
;i for which EN, (t) = t; of course, the family {Nk : k » 1} is assumed to be
.\.
:Qﬂ independent of {(xk'sk) : k » 1} satisfying A1 - AS. The following proposition
I8
is an immediate consequence of standard properties of the Poisson process.
\'f:‘
o (4.2). Propogition. The sequence {Hk : k » 1}, as defined through (4.1),
§§ satisfies A8 and A9. Furthermore, EH:(-) <o for n » 1,
L
Calculation of the distribution K 1is easy.
1:..
}: (4.3). Proposition. For 0 < s < ¢t,
Cd
~
«* 1
;:: K(s,t) = X G(s) + G(s)G(t) .
Proof. The independent increments property of the Poisson process implies that
o~ for s < t,
- 1
K(s,t) = — E(N(AG(8))N(AG(t))
'.‘ X
N 1
i\; == E(N(AG(8))(N(AG(8)) + N(AG(t)) - N(AG(s)))
?“ A
1 2 1
= — EN“(AG(8)) + — (AG(8) (AG(t) - AG(s))
2 2
A A
\:,
Y _a
K = = G(s) + G(8)G(t). A
- X
Eﬁ Theorems 3.19 and 3.23 require moment hypotheses on the process X, .
- B1. J5 extoear) <= .
j Propositions 3.32 and 4.2 prove that B1 is sufficient to guarantee A6 - A7 and
A10 - A1,
:\4 (4.4). Theorem. Under A1 - A5 and B1,
X
'S -22-




..“.,-
LSRN

Y

A

&

Arayiy S

)

LAY

L
e

B
tala
P Y

.......

2 _ 2 l ® 2
(4.5) O =0 *3 Jo EX (£)G(dt)
-2 2 1 = 2 2
(4.6) op =9 +3 (jo EX (t)G(at) - a®) .

Proof. Note that

o® = B{J] |5 X (s)X (£)G(ds)G(at)} - o

SR R _ 2
!o Jo EX_(8)X (t)G(ds)G(dt) - a

® 0 _* ~
= Jo Jo EX, (8)X, (t)G(ds)G(at) .

Hence, the result follows from Proposition 4.3 and the fact that the
distribution Ky(s,t) = G(min(s,t)) induces a measure on R2 which has support
on the diagonal s = t. I

Theorem 4.4 suggests that the normalized estimator i(t) has better large
sample properties than R(t); consequently, we shall consider only
;(t) for the remainder of this section. We shall now calculate F.
(4.7). Proposition. The distribution F(x) = P{Tk < x} is given by

F(x) = exp(-A(1 - G(x))) .

Proof. Evidently,

(4.8) T, = sup(t

(t) < H (=)}
B By

= inf{t H (t) > Hk(w)}

inf{t N (AG(t)) > Nk(X)}

inf{t

G(t) > Tk(Nk(A))/A}

where Ty (3j) = inf{t : N () 2 j}. Let A(t) = p{t - T, (N (£)) > u}. Then
A(t) solves the renewal equation

(4.9) Alt) = a(t) + [¢ Alt=s)e  ds

where

. N . e s e

T T O R I A

B LI TR Y S
P o

- - ~ -~ - PR
B ST . P . . ST PR
S e e e e T T U NI N

IAEAEI S A b P A P SN LI G p r’._f‘:’

AT TN A A T R A A Lt Y - . - . - .. . .
Ly PR T PRI P Y TV U R L R L K W SN G G T A




Since the renewal function M(t) = ENk(t) = t is known, (4.9) can be solved

explicitly (see (6], p. 294):

0 i t <

(4.10) A(t) =
e_u 3 t>u

Now, (4.8) implies that {rk < x} = {Tk(Nk(A))/X > G(x)} so (4.10) yields

F(x) = p{} - Tk(Nk(x)) > (1 - G(x))

exp(-A(1 - G(x)). I

We shall now assume that:

B2. s(t) = ESk(t) is strictly increasing.
(4.11). Propogition. Under B2,
-1
ES, (1.) = J© {1 = exp(-A(1 - G(s~ (x))))}ax .
k' 'k 0

The proof is immediate from Propositions 3.10 and 4.5.

Theorem 4.4 and Proposition 4.11 can be used to optimize the value of A so
as to minimize the asymptotic variance of R(t). For example, suppose that
G(t) = t/T for t €T and 1 for t > T, and let s(t) = t. Then the goal is

to find A* to minimize (see Theorem 3,23)

(6% + & B)(J3 {1 = exp(-A(1 = x/T))}ax)

where B = J; Eiﬁ(t)G(dt): differentiation leads to a non-linear equation which
A* must solve.
In any case, the inequality exp(-Au) » 1 - Au for Au > 0 leads to the
bound
BS, (1) €A J7 (1 -G(s  oNax .

Hence, Poisson randomization with intensity A is more efficient than ;(n) if

(0% + B/ [T (1 - Gls” (x)ax) € o°s(T) .
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S. Point Mass Randomization

Suppose that {(Xk,sk) : k 2 1} 1is a family of processes satisfying A1 -
AS and
c1. J; Ex:(t)G(dt) <»

Let h be a non-negative function fcr which:

ca. {t : n(t) > 0} = [y,®), [ h(t)G(at) = 1
(] 2 ®
c3. Jo Iiy,m (W/M7(W)G(du) < .

The family {Hk : k » 1} of point mass randomized estimates will be defined

through the rule
min{G(t),G(Y=-)}s ¢t < M

(5.1) H (t) =
Gly=) + 1/h(M ); £ > M

where {Mk : k » 1} is a sequence of i.i.d. r.v.'s, independent of the
(X, ,8y)'s, having common distribution P{M_ € dt} = h(t)G(dt). With the
Hy's defined through (5.1),
R = 15 I10,y) (WX (WG(dn) + X()/h(M) .
(5.2). Proposition. Under C1 - C3, a6 - A11 hold.
Proof. First, observe that Hp(t) = G(t) for t < yY. For t ? Y, C1 proves

that

EH (t) = G(y=) + E{1/h(M ); M < t}

= G(y-) + J; I (w)/h(u) * h(u)G(du)

[y.t]

= G(t)

so that H, satisfies A8. For A6 - A7 and A9 - A11, we apply Proposition
3.32. It is evident that H (®) = G(y-) + 1/h(M) so that it suffices to

prove that E(1/h(Mk))3 < ®, But
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-
o4 -3 -3,
- Eh(M, ) Jo I[Y")(u)h(u) h(u)G(du)
< which is finite by C3. (B
s
-~
[ It should be clear that the moment assumptions C1 and C3 are considerably
)
“: stronger than is necessary to obtain A10 and A11,
‘.Q
‘f: (5.3). Theorem. Under C1 -~ C3,
« G(8)G(t) ; min(s,t) < ¥
{' = - - - bad
= (5.4) K(s,t) G(Y=)(G(8) + G(t) = G(Y=)) + [ T\ 0, ¢)) (W/B(WIG(Gu);
; min(s,t) > ¥y
\.
3]
'\-.
N 2 _ o2
\_ (5.5) Cp 81(xk) + Bz(xk) o
'- (5.6) o2 =8 (X ) + B,(X,)
* R 17k 27k
5
2 -
N (5.7) ES (1, ) = [, s(t)h(t)G(at)
..3
) where
:: _ ™ e
> B,(¥) = | Jo Iio,v) B (0,y) (BIEY(8)¥(£)G(ds)G(at)
% +2 001 (s)1 (£)EY(s)¥(t)G(ds)G(dt)
0o Yo Tro,y) 1y @) s °
':4 - ® 2
~ B, (¥Y) = [, Iiy,e) (EIEYT(E)/h(L)GIAL) .
\Q
-\.", Proof. Relation (5.7) is immediate from the definition of H . For (5.4),
’ observe that if s <y € t,
3 EH, (s)H (t) = G(s) * EH_(t) = G(s)G(t) .
‘.i'. If Y<s<t, then
::‘ Eﬂk(s)ﬂk(t)
, = E{(G(Y-) + X(M ) /h(M)IT g o (M ))H, (£)}
i 2 2
i = G(Y-)EH (t) + E{X (M )/M"(MOT (M)}
N
3
\
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+ :{x(nk)/h(nku[o'.] (nk)}cw-)

- 2
G(Y=)G(t) + Jo I[Y"] (w)EX, (u)/h(u)G(du)
+ G(y=)(G(8) - G(Y=-))

2 and 02 are obtained from Theorems

which is (5.4). The expressions for 9 R

3.16 and 3.23 by appropriately integrating against K(ds,dt) as defined by
(5.4), and by using the fact that the integrands are symmetric in (s,t). i
A certain amount of analytical optimization can be performed in our

current setting. Specifically, one can determine the function h which
minimizes the asymptotic variance of i(t) over all point mass estimators in
which Y = 0. Note that if Y = 0, the asymptotic variance is ;1(h)/t.
where

(5.8) vi(m = {J5 Ex2()/n(£)6(dat)}([7 s(tIn(IG(at)) .

L r Y 1
(5.9). Proposition. v (h) > (Jg(s(t)Ex(£))2G(at1)%. The minimum is
attained by
.2 1é
(5.10) h(t) = c(!xk(t)/s(t)) ,a>0 .
Proof. Observe that

) 1
(Jg (sterex3e))26(ae))?
- 1
= (5 Ex3(t)/ne) + s(eIn(e))26taen?

< J5 exZee)/ncerctae) « 7 s(tineicae)

by the Cauchy-Schwartz inequality. To check that h(t), as defined by
(5.10), attains the minimum, it is only necessary to observe that h(t) is
undefined only on a set of zero measure with respect to s(t)G(dt);
similarly, 1/h(t) is undefined on a set of zero measure with respect to

z;x:(:)c(at). ¥

---------

-------



Hence, 1if }; (!§:(t)/s(t))vbc(dt) < ®, the density ; defined by
(5.11) h(t) = (zii(e)/s(t))"‘t’ /5 (m?:(t)/-(t);"zc(dt) .
minimizes the asymptotic variance of ;(t) over all point mass estimators
with Yy = 0. Strictly speaking, (5.11) may not be in the class of randomized
estimators discussed thus far, since the equality

th/f:(uk)a M €t} = G(t)

may not hold due to the possibility of Eii(t) vanishing on the support of
G. If that occurs, set G(t) = IA(t)G(dt)/JA G(adt), where A =
{t : !&i(t) > 0}. Note that G satisfies A6 and A11 if and only if G does;
furthermore,

E{1/;1(H.k)l M <t} = G(t) .

a =[5 EX _(£)8(ar) .
Thus, ﬁ always gives rise to a randomized estimator if G is allowed to
play the role of G.

One interesting property of the optimal density i is that (5.11) is
independent of G, modulo the normalization constant. Furthermore, although
;(t) can be estimated via a trial run, that may be undesirable. 1In such a
case, it may be reasonable to assume th&t Eii(t) is approximately constant
and s(t) 1linear, leading to the approximately optimal density
e /J; t” 1"2c;(cn:).

Analytical information about the optimal density ; is available also in

the case that Y is positive. The idea is to define the functionals

~ ®
I (h) = g (h) (] th(t)G(at))

[_J
Jy(h) = | h(t)Glat) ,

where Oi(h) is given by formula (5.6). We wish to minimize J,(h) subject

to the constraint J,(h) = 1 over functions h having support [Y,»).

-28-
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Necessary conditions fqr a minimizing ; may be obtained using variational
arguments (see Smith [12]). Formal analysis shows that a minimizing ;1
should be of the form

h(e) = a(EX2(t)/(s(t) + an’
for some constants a and 4, when Y > 0.

Before concluding this section, we offer an extended version of the point
mass estimator studied thus far. For a density h having support [Y,») and
satisfying C3, let {Hik : 4121, k> 1 be a family of i.i.d.r.v.'s for
which P{M, € dt} = h(t)G(4t). Set

min{G(t), G(y=)}; ¢t < L

H, (t) =
(5.12) ik -
G(y=-) + Vh("ik)’ t> Hik
n
and let Hy(t) = 2 Hik‘t)/“' In the presence of C1, A6 - A11 then hold.
i=1 -

~ 2 2
Let 0:(n). Oi(n) be the corresponding values of 0p, O, for the current

randomization scheme.
(5.13). Proposition. Under the assumptions of the above paragraph,

(5.14) o:(n) = o:/n + (n=1)0%/n

(5.15) a:(n) = o:/n + (n=1)0%/n

~

where d:. oi are defined by (5.5) and (5.6).

n
Proof. Let Ry, = J; xk(t)ﬂik(dt) and observe that R, = )3 R\ /n. Then,
i=1

the exchangeability of {Rik : 1> 1} proves that

ER: = ( ? Eaik + ) ER

2
R,. )/n
=1 PP 3 L

2
ER1k/n + (n 1)ER1kR2k/n .




’-_.

)

?: But Ry, has the same distribution as the randomized estimator defined

o~ 2 2

':; through (5.1); hence ER1k = OR' To calculate the expectation of the product
oo
; term, note that )
A
e

et {R R, | X} =E{R_E(R, | X ,H } | X}
e ElRaRa | & wE R | Keeliged 1 %o

*'-l

.\‘.

= E{R. E(R,, | X} | X }

(5.16) L
o - o 2
o E(Ry, | X }elr, | X} =1 ;
the second equality follows from the conditional independence of °(xk'H1k)

h Y
:ﬂ: and o(X_,H, ) given 0(X ) ([6], p. 308); the final equality was actually
.
;gﬁy proven during the argument of Theorem 3.5. Relation (5.16) yields ER1kR2k =
s,

. !I:, which proves (5.14); (5.15) is obtained from (5.14) by substituting X
o

*:; for X. I

2
_:ﬁ‘ The final ingredient in calculating the asymptotic variance of estimators
e

. based on (5.12) is the value of ES, (7, ). But T = max{M, : 1<i<n}, eo
‘b. -
:::.-f:'. that
..:‘- » n
S [ 4 =
N4 P{rk x} (Jol[o,x](t)h(t)c(dt)) :

N thus, if s(t) is strictly increasing,
‘.1.',
wit ES (t.) = Jo(J7 1 (Oh(e)elar))"ax .

. k' 'k 0’0 -1

-

f o It should be clear that point mass randomization is amenable to variance

f reduction via stratification. Observe that if 0 = t; < T < t, < t, Coool

]
:%:: tn = @, then simulating M, from the conditional distribution
S t
\fﬁ~ h(u)I (u)G(du)/J 1 h(u)G(du) and defining H, via the rule (5.1)
t, _..t,) t

i-1774 i-1

A yields a deviate from Q;.
o
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6. Integrals with Random Endpoints

Assume that {(X,,S,) : k > 1} is a family of processes satisfying Al -
A5 and
- _.2
D1. Jo EX_(£)G(dt) <= .
lLet L be a probability distribution function satisfying:
D2. L(0-) = 0, sup{t : L(t) < 1} =T
D3. Jg 6tauw) (u=) < =, where L(t) = 1 - L(t) .
We define {Hk : k » 1} by the rule
L_J -—
jo Ilo't](u)G(du)/L(u-): t <N,
(6.1) H (t) =
o -—
]o I[o'uk](u)G(du)/L(u-)r t >N,
where the sequence {Nk : k » 1} is a family of i.i.d.r.v.'s, independent of
the (X,,S.)'s, such that P{Nk € dt} = L(dt). With the H 's defined
through (6.1),

R = Is I[o'Nk](u)xk(u)/E(u-)G(du) .

(6.2). Proposition. Under D1 - D3, A6 - A11 hold.
Proof. It is evident that

[} [ J -
EH, (t) = |4 [, Io,t] (W (y, @) (8)/L(u")G(quIL(ds)

W .o bund
+ ]o ]0 Ito’sl(u)llolt](s)/L(u-)G(du)L(ds)

o« - —
= Jo Irg,e) (WIL(t)/L(u=)G(du)
+ o Tpo,e) (W) (Tu=) = T(e)) /Llu-)G(du)

= G(t)

the second equality is Fubini's theorem, whereas the third uses the fact that
z(t-) >0 on [0,T]. Hence, Hy satisfies A8. For A6 - A7 and A9 - Al11, we

apply Proposition 3.32 - it will suffice to prove that EH:(') < ®, But
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-}“
s
’:' 3 = t T (g= 3
o B (*) EUO Iio,N (W /&ta )G(du)}
“~ k
-': o o o i
& =Jo J Iolo o Ii0,s) (9y)/L(u -)G(u, )L(ds)
~
'\ W .0 0 ~—
o = - -
- 13J5); Timaxtu,,u,,u,) )131 ZATTIE N
13
’ e -
<7 R 1/D(u, -)G(du,)
g o‘o ,_, i i
3
b
) = (3 vrmsaun? <o L
\‘
(6.3). Theorem. Assume D1 - D3. Then,
b
E; (6.4) K(ds,dt) = L(max(s,t)-)/L{s-)L(t=)G(ds)G(dt)
:2 (6.5) °12a = j‘; a(xk;t)/i.'(t-)e(dt) - o’
o 6 ﬂ2 0 ~ -
” (6.6) op = Jo alX, 1t) /L(t=)G(at)
= (6.7) ES (1) = |7 s(t)L(dt)
4 * k' k 0
where
o a(yst) = 2 JT I, _ (8)EY(s)Y(t)G(ds) + EY2(t)(G(t) - G(t-)) .
X 0 (t,»)
"3 Proof. For 0 <€ s € t,
o
o« — a -—
2 K(s,t) = E{JO I[O'Nk](u)I[o's](u)/L(u-)G(du) * Jo I[o’Nk](v)I[olt](v)/L(v—)G(dv)}
Q ® o o VI (0) o L G fe) 4
:: = JoloJo Tio,x1 W Tto,x1 V(0,81 (W10, (V) /L(u=)L(v-)G(du)G(dv)L(dx)
- o » - - -
K = Jolo I1g,s) WIg, ) (VIL(max(u,v)=)/L(u=)L(v-)G(du)G(dv)
: proving (6.4). For (6.5), we use the symmetry of EX (8)X, (t) in (s,t) to
i
write
.,;. 2 - o -— — -
o ER, = |o)o EX, (8)X, (t)L(max(s,t)-)/L(s-)L(t-)G(ds)G(dt)
9.\
-:.' » o —
_ 2 Jolo I e, m) (8VEX, (8)X, (£)/L(£-)G(ds)G(at)
‘ ‘
2
7
”
$ -32-
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® o 2 -—
*+ Jolo I(e)!8)EX, () /L(t-)G(d8)G(at)

- -—
- ]o a(x_1t)/L(t=)G(dt)

proving (6.5); for (6.6), apply (6.5) to xk. Since L(w) = 1, T < ® 5.4,

k

80
Es, (1) = |7 s(t)F(at) = [ s(e)p{r, € at]

= Jp stointae) . ||

As in Section 5, one can try to analytically optimize the choice of L.
We shall require several additional assumptions.
D4. s(t) <®» for t >0
D5. there exists a non-negative function u(t) such that
a(X_1t)/a(t)G(dt) = 8(dt) (by D4 and A3, s(t) is a finite non-
decreasing function).
The asymptotic variance associated with a(t). for a fixed L, is given by
;2(L)/t where
v, (L) = (/5 a(X, st)/Alt=)6(ae)) (] s(eIn(ae)) .
(6.8). Proposition. Under D1 - DS,
v, @) > (g a&kn)/\:""(t)c(atn’ .
Proof. Observe that

- 1
s a(xkst)/u/" (£)6(at))?
- -— 1 - -~ 1
- (J; (a(xk:t)ﬂ-(t-))é (L(t—)a(xk;t)/u"l (t)G(at))>

< J§ alx se)/E(e-)6(ae) + [ T(e-)alX st)/u(t)Gdt)

by Cauchy-Schwartz. But
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L) P a

oo ® Lit-)a(x_se)/ult)Glat) = [0 1 (x)a(X, ;t)/ult)L(Ax)G(dt)
2 Io X! oo Tie,e !
SO
MO\ ® - o
N =
> Iolo Ii0,x] (t)a(X st)/u(t)G(dt)L(dx)
.f: = ]; 8(x)L(dx)
Q:ﬁ where the second equality is by Fubini, and the final equality uses DS. N
R Assumption D5 requires absolute continuity of s(dt) with respect to
:;j G(dt) on [0,T] and non-negativity of a(xk:t)- The non-negativity of
."’:\ ~ ~

:}‘ a(tht) clearly arises when xk has non-negative correlations in time.
Ay However it also holds under other conditions.

o

~

O s
. § Dé6. {xk(t) : t > 0} is a stationary process.

4
R (6.9). Proposition. Suppose D1 and D6 hold for G(t) = 1 - exp(-At),
.é A > 0. Then a(xktt) is non-negative and decreasing to zero.
LAY
e
:;Q Proof. By stationarity,
4 .
2 a(x, st) = 2 | EX_(0)%X, (s-t)he *%as
' S "

*ﬁ (6.10)
ey - g o “Au, ., _-At

23 21/, EX_(0)X, (u)e ""du ° e .

-.::

N By D1 and Cauchy-Schwartz,

' - - -As, .2 o = 2, -is

- E(A J°|xk(s)|e as)” < [, E’fk"’ e TTds < =
,‘; Hence, Fubini proves that
3
k - * “As, 2 _ (= o s 2 =A(s+t)

0 < E(J X, (8)he ""ds) Jol g EX, (8)X ()17 dsdt
- =2 77 EX_(0)X_ (s-t)Ae *Sds Ae tar

FQ 0t xk xk
-:}:: - [} o ~ -xu
Y A e Jo EX (00X (v)e TTau
jsj from which it follows, using (6.10), that a(xk;t) is non-negative and
o0

“
jﬁ: decreasing to zero. I

3
o

~'
N
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Assume that G(t) = e-xt and that s(t) = st. Proposition 6.9 can be

uged to find a distribution L which is approximately optimal, provided that
ik is reasonably close to stationarity. Substituting the expression for
a(;k't) derived in the proof of Proposition 6.9 into the defining relation
for u(t), one gets

=2\

(23 J§ EX (0)X (t)e ™ au) « e™tat = u(t)s at

At

hence u(t) = Be-2 for some B. The following property holds in our

current setting.

D7. wu(t) is a continuous function which decreases to zero as t + =,
(6.11). Proposition. Under D1 - D5 and D7, L,(t) =1 = (u(t)/u(O)ﬁQ is a
distribution function which minimizes ;z(L).

Proof. The continuity of u implies that L has the required right
continuity, so that L is a distribution function. From Proposition 6.8,

v, (L) > (jo a(xk;t)/u"" (t)G(at))

= (Jg alx, 1) /E,(£)6(dt)) ([ alX, i) (£)/ul£)G(at))

(Jy atx_1t) /L (0)6ae) (Jgly I,y (E)2(% 7€) /a(£)G(AtIL, (au))

)

@ ~ — o
(Jo a(X 1€)AL (£)G(At)) ([ s(uIL (Qu)) = v, (L)

where the second equality is by Fubini, and the third follows from the

defining relation for u. I

As a consequence of Proposition 6.11, we see that L(dt) = Xe-xtdt is
approximately optimal for a simulation problem in which i is approximately
=ity

stationary and G(dt) = )e t.

We now turn to an application of antithetic variance reduction to

integral estimators with random endpoints. Let L x) A inf{u : L(u) > x}

and assume that there exists a sequence of i.i.d.r.v.'s {Uk : k > 1},




.
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independent of {(X,,5.) : k > 1}. set N =L '(U), N, = L7

for k od4; Nk1 = L'1(1 - Uk-1)' Nkz = L"(Uk) for k even. Let

N
ki - .
o X, (8)/L(s=)G(ds)

Ryi =

for i = 1,2; the pairs (Rk1'Rk+1,1) and (RkZ'Rk+1,2) (k odd) are said to

be antithetic. Let Ry(n) = 1 Rk1/n. The following theorem involves a
k—
proof similar to that of Theorem 3.19.

(6.12). Theorem. Assume D1 - D4. If ]: s(t)L(dt) < ®, then
13 Y - a) ==> o2(r,, + » 2
(6.13) t'2 (R (M (£)) = a) ==> 0" (R,, R21)10 s(t)L(dt)/

as t + =, where M,(t) = max{2n : Nyy teoot N2n,1 < t}.

Based on Theorem 6.3, the antithetic estimator R4(M4q(t)) is more

2

_ 2
R -9 (Ryyle

efficient than R(t) 1if 02(R11 + R21)/2 <0
D8. Xk(t) > 0 ~.s.

(6.14). Proposition. Assume D1 - D4 and D8. Then, 02(R11 + R 1) < 2 0:-

Proof. Clearly, it is sufficient to prove that cov(R11,R21) < 0. By D8,

) L (u,)

(u _ _
X, (s)/L(s-)G(ds) = [, ° X,(s)/L(s-)G(ds)

1
R

11 "R = g
has the same sign as

L (1-u,) _ L7 (1-u ) _
Ryy = Ryy = Jo X,(s) /E(s-)G(ds) - |, X,(s) /L(s-)Glds) .

0 € E(Ryq = Ry,)(Ryy = Ryy) = =2 cov(Ry,,Ry,) I
Variance reduction for integrals with random endpoints can also be
accomplished via stratification. Note that if 0 = t5 < t4 <...< t ==, the
simulation of N, from the conditional distribution L(du)/(L(t;=) = L(t;_4-))

(t1_1 < u< ti) and definition of Hi via (6.1) yields a deviate from Q4+
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