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Abstract In this paper the author presents the NSWC i
ocean tide mode! of the semidiurnal principal lunar (M,) tide in
an atlas of ocean tidal charts and maps. The model is the com-
puter result of a unique combination of mathematical and em-
pirical techniques, which was introduced, extensively tested, and
evaluated by Schwiderski (1978a, 1980a, b, 1983e). The com-
puted M, amplitudes and phases are tabulated along with all spe-
cially labeled empirical input data on a 1° x 1° grid system in
42° x 71° overlapping charts covering the whole oceanic globe.
Corresponding global and arctic corange and cotidal maps are
included to provide a quick overview of the major tidal phe-
nomena. Significant qualitative and quantitative features are ex-
plained and discussed for proper application. In particular, the
charted harmonic constants may be used to compute instanta-
neous M, ocean tides with an accuracy of better than 5 cm any
time and anywhere in the open oceans. Limitations of this ac-
curacy in coastal waters and border seas are mentioned.

The following four sections of this paper deal with brief re-
views, detailed evaluations, and simple improvements of general
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and special applications of the NSWC ocean tide model. In spite
of the numerous and diverse applications with potential possi-
bilities of erroneous interpretations, the results are gratifying
without exceptions. For instance, it is concluded that the com-
puted low-degree spherical harmonic coefficients of the M, ocean
tide model agree with recent empirical satellite solutions as
closely as one could wish for within the elaborated nonmodel
error bounds. Detailed computations of all significant tidal en-
ergy terms produced the following noteworthy results: The rate
of supplied tidal energy of 3.50Z10'* Watt matches Cartwright’s
(1977) estimate of 3.5Z210' Watt. The rate of energy loss by bot-
tom friction and displacement over the shelves is 1.50Z10'2 Watt,
which fits into Miller’s (1966) estimated range of (1.4-1.7)Z10"
Watt, with a clear bias toward his preferred lower bound. Per-
haps most remarkably, the computed range (0.41-0.60)Z10*
Watt for the rate of deep bottom friction work done by the un-
resolved fluctuating (internal or baroclinic) currents contains in
its center Munk’s (1966) estimate of 0.5Z10'> Watt and lies safely
below Wunsch's (1975) extreme upper bound of 0.7Z210" Watt,
which both authors derived for the rate of energy needed to sus-
tain the internal tidal circulations. As is coamonly believed, the
results substantiate the fact that the total rate of ocean eddy
dissipation (into heat) by the averaged (surface or barotropic)
currents and their fluctuating comotions is negligible within three
significant figures. Finally, the total tidal energy budget of the
oceans is perfectly balanced in realistic terms. Budget deficits in
carlier tide models were traced to the following tacit assump-
tions: The ocean bottom tide is doing positive work on the oceans
against the ocean tide. In fact, the bottom displacement work
by the ocean tide against the bottom tide is an energy loss at the
rate of 1.64Z10' Watt. The transfer of G. 1. Taylor’s quadratic
bottom friction term from the Irish Sea to the global oceans
without accounting for major differences in area resolution
scales is directly responsible for significant budget deficits in
semiempirical estimates. In contrast, the hydrodynamically more
consistent and realistic linear law of bottom friction encountered
no serious transplantation difficulties.

The NSWC Ocean Tide Model

Schwiderski (1978a, 1980a, b, 1983¢) introduced and extensively
tested a unique combination of mathematical and empirical tech-
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niques to compute harmonic partial tides in the realistic world
oceans in great detail and with a combined tide prediction accu-
racy of better than 10 cm. The novel technique was first applied
to construct the dominant semidiurnal principal lunar (M,) tide
with a prediction accuracy of better than 5 cm any time and any-
where in the open oceans. The M, model and its achieved accuracy
were further evaluated and discussed in subsequent publications
and presentations by the author (Schwiderski 1978b, 1979a, b, c,
1980c, 1981b).

The estimated accuracy of the constructed M, model was based
on the worldwide smooth agreement of the computed tidal con-
stants with empirical tidal data regardless of whether they were
hydrodynamically interpolated or excluded. After the construc-
tion of the first M, tide model, the author received in private com-
munications numerous new or improved empirical ocean tide data
from Gill and Porter (1978, from deep-sea stations in the New
York Bight), Wyrtki (1978, from island stations in the Pacific
Ocean), Zetler (1978, from deep-sea and shore stations in the
southeastern Indian Ocean; see Irish and Snodgrass 1972), and
Cartwright (1979, from 108 deep-sea stations in the North Atlan-
tic, northeastern Pacific, and southeastern Indian Oceans; see
Cartwright et al., 1979). In addition, in early 1979 the author re-
ceived the entire (3,898 stations) worldwide ocean tide data col-
lection of the International Hydrographic Bureau (1978), which
was updated and taped by the Canadian Marine Environmental
Data Service.

With few exceptions of apparently erratic tabulations, the em-
pirical data from all those sources substantiated everywhere the
estimated enormous accuracy of the tide model. For example, the
deep-sea profile measurements of tides in the New York Bight by
Gill and Porter (1980; verified the globally modeled, incredibly
sharp tide decay (Figures 1 and 2) across the continental shelf of
less than 200-km width from a range (= double amplitude) of 4.6
ft at the coast to an almost constant range of 3 ft in the deep ocean
(see Table 4A in Schwiderski, 1980b, and the new, slightly im-
proved Tables 8M or 8N in Appendix A, which include the Gill
and Porter data in interpolated form as indicated by subbrackets).

For the novel hydrodynamical interpolation technique, it was
emphasized in Schwiderski (1978a, 1980b, c) that hydrodynami-
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Figures (1) and (2). Gill and Porter (1980) Measurements of decaying tidal ranges
across continental shelf of New York Bight: (1) Southeast of
Sandy Hook, New Jersey; (2) southeast of Bethany Beach,
Delaware.

M, = Defant shelf model, £, = Gill-Porter Shelf Model, x = Schwiderski

(1978a) Global Model

cally interpolated marginal empirical tide data in isolated grid cells
distort the surrounding computed ocean tide only insignificantly.
This fortunate feature has been established by extensive computer
experiments and is illustrated here by the following interesting ex-
ample. In Table 5B in Schwiderski, 1980b, one finds in the grid
cell M = 236 and N = 52 the obviously somewhat incoherent
phase value 6 = 227°. This near-shore, deep-sea empirical datum
(marked by a subbracket) was taken from publications by Irish et
al. (1971), Nowroozi (1972), and others, and was hydrodynami-
cally interpolated into the tide model. The slightly anomalous da-
tum was well noticed but retained as a possible retardation result
of the nearby San Francisco Bay entrance and the proximity of
the Farallon Islands.

However, in 1979 Cartwright (see revised insert in Cartwright
et al., 1979) communicated to the author the more plausible and
correct phase value 8 = 206°, which he derived from the earlier
original publication by Nowroozi et al. (1969). Evidently the cor-
rect datum fits coherently into Table 5B in Schwiderski, 1980b
(where the erroneous value is interpolated) and into the new tables
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(6M or 6N) in Appendix A, where the correct value is interpolated.
Naturally, it was mentioned in Schwiderski (1978a, 1980b, c) that
the accuracy of the constructed tidal charts depends to some de-
gree on the quality and quantity of the hydrodynamically inter-
polated data. After the arrival of the numerous and improved
empirical data collections mentioned above, the author found it
justified to improve the original M, ocean tide by additional com-
putations with revised empiricai data inputs.

In particular, the new data included slightly enhanced tidal am-
plitudes around the British Isles where earlier computations had
to depend on marginal older data collections (Schwiderski 1978a,
1980b), because the tide tables of the British Admiralty (1977)
listed no harmonic constants for the European waters. The new
tape of tidal constants collected by the International Hydro-
graphic Bureau (1978) filled this undesirable gap. Moreover, most
of the numerous deep-sea tide data compiled by Cartwright (Car-
twright et al., 1979) arcund the British Isles qualified as near-shore
data and could te hydrodynamically interpolated into the new
model (Schwiderski 1978a, 1980b, ¢). Similarly, the deep-sea tide
data determined by the Canadian Hydrographic Service (Car-
twright et al., 1979) for stations south of the Bay of Fundy be-
tween Nova Scotia and Cape Cod could be interpolated as near-
shore data, which led to slightly lower amplitudes.

Finally, it must be mentioned that the phase data in the tide
tables of the British Admiralty (1977) and on the tape of the In
ternational Hydrographic Bureau (1978) differ by as much as 30°
for the northwestern coast of India. Apparently, these unwanted
differences can be traced to different interpretations of the time ?

origin in both listings. After a telephone conversation with Mr.
P. A. Bolduc of the Canadian Marine Environmental Data Ser-
vice, who supervised the taping and revision of the data of the
International Hydrographic Bureau, the data used earlier from the
British Admiralty were slightly revised. Subsequent computations =
indicated that the new phases seem to fit the general tide behavior

in that area (e.g., Laccadiven tide data; Table 2M) somewhat bet- ———
ter. .
Along with the revised empirical input data, the reconstruction * 7
of the M, tide included also a new higher order approximation of - vr

CRLeiuld

M|




224 Ernst W. Schwiderski

Arctic Ocean tides, which is described in Schwiderski (1983e¢). The
novel expansion improved the original M, model near the North
Pole by about 6 cm in amplitudes. This improvement faded quickly
southward and vanished below 17° colatitude.

In the following section, ‘‘Parameters of M, Ocean Tide
Model,” one finds all mode-dependent hydrodynamical input pa-
rameters that specified the reconstructed M, ocean tide. In the
subsequent section, ‘M, Ocean Tide Features,”’ quantitative and
qualitative features of the M, ocean tide are pointed out and dis-
cussed.

A complete listing of all sources of empirical ocean tide data,
which were interpolated into the new, slightly improved M, tidal
charts, is presented in ‘‘Acknowledgments.”’ A complete 1° x 1°
numerical display of the M, model is presented in Appendix A,
where all tidal amplitudes and phases are tabulated gridwise in
maplike charts. Corange and cotidal maps of the M, ocean tide
are plotted in Appendix B.

The present NSWC Ocean Tide Model (Schwiderski, 1981a) now
includes similar charts of the leading semidiurnal (M,, S;, N,, K,),
diurnal (k,, O, P,, Q)), and long-period (Mf, Mm, Ssa) harmonic
partial tides (see Tables 1 and 10). The major relative features of
all eleven constituents will be discussed in Schwiderski, 1983d. The
harmonic constants of all 11 partial tides are listed on the NSWC
Global Ocean Tide (GOTD 1981) Tape (Schwiderski, 1981a),
which is described in Schwiderski and Szeto (1981a).

The wide-ranging subject of applications of ocean tides goes far
beyond the original scope of this paper, which was set by this jour-
nal’s editor on recommendations of his earlier referees who re-
fereed the author’s preceding papers (Schwiderski 1980a, b). As
requested, the original paper presented only the complete results
of the author’s M, ocean tide model, which was fully described,
analyzed, and reviewed in contrast to other well-known tide
models (such as Pekeris and Accad, 1969; Zahel, 1970, 1977; Hen-
dershott, 1972; Marchuk et al., 1973; Marchuk and Kagan, 1977;
Estes, 1977, 1980; Accad and Pekeris, 1978; Parke and Hender-
shott, 1980; and many more) in Schwiderski, 1980a, b, c. Stim-
ulated by some comments of one of the present referees, the author
decided to add four sections on various applications and simple
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Table 1
Leading harmonic equilibrium tides.
Tidal Mode Period Amplitude®

Semidiurnal Species
M,: Principal Lunar 12.421 h 100.000%
S,:  Principal Solar 12.000 h 46.564%
N,: Elliptical Lunar 12.568 h 19.146%
K;: Declination Luni-Solar 11.967 h 12.670%

Diurnal Species

K,: Declination Luni-Solar 23.935h 58.417%
O;: Principal Lunar 25.819h 41.502%
P,: Principal Solar 24.066 h 19.330%
Q,: Elliptical Lunar 26.868 h 7.946%

Long-Period Species
Mf: Fortnightly Lunar 13.661d 17.225%
Mm: Monthly Lunar 27.555d 9.089%,
Ssa: Semiannual Solar 182.621d 8.024%

2 Amplitudes relative to M, equilibrium amplitude (K = 24.2334 cm). All neglected minor
partial tides have amplitudes less than 4% of the M, amplitude K. (See also Table 10.)

improvements of his completed eleven-mode ocean tide model in
general and of his M, model in particular. Though most of these
ongoing applications are still in a premature state of the art, this
reviewing addition was considered necessary because the extraor-
dinary broad range and involved complexity of the investigated
problems naturally carry with them the potential for improper or
erroneous interpretation or use of the assumed tide model.

Parameters of M, Ocean Tide Model

The following M, ocean tide parameters (see also Table 10) are
needed in applications of the harmonic constants tabulated in the
charts of Appendix A or on the NSWC GOTD 1981 Tape
(Schwiderski and Szeto, 1981a).

The astronomical semidiurnal principal lunar (M,) equilibrium
tide  (or tide-generating potential Gn; see Schwiderski 1978a,
1980a) at the geographical point (A, ¢) and instant (Y, D, t) is
determined by

n = Kcos? ¢ cos(at + x + 2\) 1
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226 Ernst W. Schwiderski
where
G = 9.81 m/sec? earth gravity acceleration
A\ = longitude (east in rad)
¢ = latitude (north in rad)
Y (= 1975) = year number
D = day number of year Y(D = 1 for January 1)
t = universal standard time of day D (in sec)
K = 0.242 334 m = M, equilibrium tide amplitude
o = 1.40519Z 107*sec”' = M, tide frequency
x = 2x(h, — s,)/ 180 = M, astronomical argument (in rad)
h, = 279.696 68 + 36 000.768 925 485T+ 3.03 Z 10°* T*
= mean longitude of the sun relative to Greenwich mid-
night of day D (in deg)
s, = 270.434 358 + 481 267.883 141 37T — 0.001 133T? +
1.9Z10°T?
= mean longitude of the moon relative to Greenwich
midnight of day D (in deg)
T = [27 392.500 528 + 1.000 000 035 6D}/36 525
D = D + 365(Y — 1975) + Int [(Y — 1973)/4)

Int|[x] = integral part of x
The corresponding instantaneous ocean partial tide (Schwiderski,
1978a, 1980a) is determined by
¢ = ¢cos(or + x —~ 9), 2)
where the local harmonic constants
£ — A\, ¢) = M, ocean tide amplitude (in m)

and

8 = 8(\,0)= M, ocean tide Greenwich phase (in rad)

must be determined, say, by linear interpolation in the tidal charts
of Appendix A.

A simple second-order approximation in the sense of Love and
Accad and Pekeris (Schwiderski, 1978a, 1980a, c; Accad and Pek-
eris, 1978) yields

- : Kl 13 P
PTG SN
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t€ = 0.612pand {€° ~ — 0.0667¢, 3)

i.e., the corresponding terrestrial tide (¢ and the earth dip ¢
(yielding) under the oceanic tidal load {, respectively. A more
elaborate and probably slightly more accurate earth dip {* may
be computed by using Farrell’s Green function (Farrell, 1972, 4
1973; Pekeris, 1978; Goad, 1980a, b; Schwiderski, 1980a, c). In
linear superposition, one finds the corresponding instantaneous
geocentric surface M, tide:

¢S = ¢+ g€+ ge0, @

A Random-Point Tide (RPTIDE) program is described in Schwid-
erski and Szeto, 1981a, which computes instantaneous oceanic
and/or geocentric partial and/or superposed tides at specified ran-
dom points from the harmonic constants listed on the NSWC
GOTD 1981 Tape (s¢e section ‘“The NSWC Ocean Tide Model’’).
A much more efficient program to compute instantaneous geo-
centric tides at large numbers of equidistant points along satellite
ground tracks ‘‘parallel’’ to a specified standard satellite track is
described in Schwiderski and Szeto, 1981b. A preliminary version
of the Satellite-Track Tide (STT) program has been used by the
Naval Surface Weapons Center and other institutions to compute
instantaneous geocentric tides along SEASAT ground tracks with
the leading seven partial tides (M,, S,, N,, K,) and (K,, O,, P).
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M, Ocean Tide Features

The entire constructed M, ocean tide is displayed gridwise in map- i
like amplitude and phase tables in Appendix A. The 42° x 71°
charts cover the whole globe north of colatitude 169° (Antarctica)
in three zones: a northern zone N from 0° to 71° colatitude, a
middle zone M from 48° to 118° colatitude, and a southern zone

S from 98¢ to 168° colatitude. The overlapping geographical arcas ?
of the tidal charts have been chosen to provide a worldwide cov- i
erage for special applications and to allow the reader to scan the "

large amplitude and phe se charts together in order to evaluate their
quality and visualize the important tidal features. In addition, a
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228 Ernst W. Schwiderski

generally superficial overview of some tidal features can be rec-
ognized by inspecting the plotted corange and cotidal maps pro-
vided in Appendix B for the world oceans and the Arctic Sea.
For an easy evaluation of the tidal charts in Appendix A, all
hydrodynamically interpolated empirical tidal amplitudes and
phases have been marked visibly by subbars for all shore data and
by subbrackets for all near-shore deep-sea input constants. Fur-
thermore, the charts display the approximate locations of distant
offshore deep-sea stations by subtildes under the computed am-

Table 2
North Atlantic Ocean deep-sea empirical and modeled M, Tides.

Long W LatN Empt Modt At Empd Modé A6 IAPSONR  Sources

13°51°  58% 16’ 83 85 +2 168 169 +1 1.1.37 C
24°4)’ 62°50° 90 87 -3 180 182 + 2 1.1.29

28°46°  60°12° 69 70 + 1 183 186 +3 1.1.30 C
29°58° 57°01" 52 52 o 1m 180 +3 1.1.31 C
30°10° 53°39/ 39 34 -5 158 158 0 1.1.32 C
25°06’ 53°3 52 48 -4 145 147 +2 1.1.33 C
20°00’ 53°39/ 69 66 -3 14 143 +2 1.1.34 C
28°11’ 48°45’ 38 M -4 112 111 -1 1.1.38 C
28°09° 45°21' 4] 40 -1 89 87 -2 1.1.39 C
27°57° 41°25' 47 47 0 3 73 0 1.1.40 C
20°0s° 37°09' 66 66 0 63 64 +1 1.1.41 C
14°15’ 36°41° 85 83 -2 68 64 -4 1.1.42 C
75°38’ 32°42' 48 47 -1 35 357 + 1 1.2. 3 C.M
76°28°  30°26’ 4“4 43 +1 358 2 + 4 1.2.11 C P
76°48° 28°27° 41 41 0 2 8 + 6 1.2.15 C
76°47° 28°01° 40 41 + 1 9 8 -1 1.2.14 C
67°32'  28°14° 4 3 -1 35 3 + 4 12. 5 Cz
69°45’ 28°08° 3s k3] 0 1 3 + 2 1.2. 4 Cz
69°40° 27°89’ 4 36 +2 339 3 + 4 1.2. 8 CZ
69°40° 27°58° 35 36 + 1 1 3 + 2 1.2. 7 Cz
69°20° 26°28° 32 k1| -1 3 5 +2 1.2.10 C 2z
69°19° 26°27° 3 3 0 0 s +5 12. 9 Cc.z

¢ = Amplitudes (cm)

& = Greenwich Phases (deg)

IAPSO = Int. Assoc. for the Phys. Sci. of the Oceans
C = Cartwright et al. (1979)

M= Mofjeld (1973)

P = Pearson (197%)

Z = Zetler et al. (1975)
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plitude and phase data. The corresponding empirical data, which
were excluded from hydrodynamical interpolation (Schwiderski, ;
1978a, 19800, ¢), are listed and compared with the modeled data ’
in Tables 2 and 3. Finally, the approximate geographical locations g
of the important amphidromic points of zero amplitudes are
marked by a circled X.

The tidal charts and maps permit the viewer to follow the tidal
‘ waves, that is the high water fronts (crests), in forward (or back-

ward) direction, for instance, on their rotation around the am-
phidromic points. In the tidal phase charts of Appendix A it is
best to start from the prominently visible 0° = 360° or 100° co-
tidal lines. Since the Greenwich phases specify the tir ‘ags (in
degrees: 30° = 1 hour) of the tidal crests relative to crusting
time of the corresponding equilibrium tide along Gre  vich me-

e OB - 2~ w4 Y LI QIR

ridian (moon’s passage over Greenwich meridian; se <cnwider- f
ski, 1978a, 1980b, c), one gathers a vivid imprec | of the '
significant global and local tidal phenomena. !
As was explained by Schwiderski (1978a, 1980b, ¢), ., follow- §
Table 3
Northeast Pacific and southeast Indian Ocean deep-sea empirical and modeled M, Tides.
!
Long Lat  Empt Modt At Empd Modé A% IAPSONR  Sources L.
144°22'W  S6°08'N 97 9 +2 283 284 +1  2L17 C
135°38'W  S3°19°'N 100 102 +2 267 265 -2 116 o H
132°47°W  49°3'N 90 92 +2 282 252 0 2115 C 1
145°00°'W  34°00°'N 27 26 1 266 270 +4 219 C.1 ;
145°00'W  34°00'N 27 2% -1 28 270 +2 - 1
124°26'W  27°45’'N 29 2% -3 128 130 +2 2113 M
129°01'W  24°47°'N 19 19 o 107 107 0 2110 cM
132°01'E  37°01'S 14 14 0 o4 64 0 411 cIs
132°09°E  $0°02'S 12 12 0 65 68 3 412 C IS
132°07"E  60°01'S 18 7 -1 8s +6 413 C s

¢ = Amplitudes (cm)

8 = Greenwich Phases (deg)

IAPSO = Int. Assoc. for the Phys. Sci. of the Oceans

C = Cartwright et al. (1979)

1 = Irish et al. (197}) B
IS= lIrish and Snodgrass (1972)

M= Munk et. al. (1970)
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ing the tidal waves on their periodic rotations, one finds these
waves passing through the specially marked stations in empirically
correct time and with the correct height. In fact, all over the giobe
over 2,000 tidal phases and 2,000 amplitudes are coherently in-
tegrated. This is particularly impressive for the charts of the Pa-
cific Ocean, where the empirical data from so many clustered and
scattered island stations fit smoothly into the surrounding com-
puted tides. From the smoothness features of erratically interpo-
lated tidal data (see ‘“The NSWC Ocean Tide Model’"), one
concludes that this result is not an artifact of the interpolation
applied, but constitutes a vivid manifestation of the excellent com-
patibility of both the empirical and hydrodynamical procedures
combined.

The smooth integration of the empirical tide data into the com-
puted tide model is the basis (Schwiderski, 1978a, b, 1979a, b, c,
1980a, b, ¢, 1981b, 1983b, d) of the estimated 5-cm tide prediction
accuracy that the M, model holds over all open ocean areas. This
uniform accuracy of the constructed M, tide is, of course, fully
validated by all 32 empirical tide data from distant offshore deep-
sea tide gauge stations that could not be hydrodynamically inter-
polated into the model (Schwiderski, 1978a, 1980b, c). These ex-
cluded data are listed and compared with the corresponding
computed data in Tables 2 and 3. The differences (not necessarily
errors) range from 0 to 5 cm in amplitudes and 0° to 6° in phases,
which is well within the accuracy range of the empirical tide data
(see, for instance, final section and Schwiuerski, 1978a, 1980b, ¢,
and 1983b).

Naturally, in coastal waters where the empirical tide data are
marginal in quantity and/or quality. such as at Arctic and Ant-
arctic shores, a somewhat lesser accuracy must be expected. A
similar loss of accuracy must be accepted near rough ocean basin
reliefs such as continental shelves and narrow ocean ridges. In
these shallow waters, tides are often rapidly varying over short
distances and cannot be properly resolved by a 1° x 1° grid sys-
tem. Fortunately, such rapid tidal variations are well known (see,
e.g., Figures 1 and 2) to be confined to small local areas and affect
the open ocean tides insignificantly. For special applications of
the modeled ocean tides, some simple improvements in coastal
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waters as well as in gridwise disconnected border seas are sug-
gested in the final section, in Schwiderski, 1981b, and in Schwid-
erski and Szeto, 1981a. A further discussion of the M, ocean tide
model in relation to the other constructed partial tides of the sem-
idiurnal, diurnal, and long-period species may be found in the fi-
nal synoptic Part XII of this series (Schwiderski, 1983d).

General Applications of the NSWC
Ocean Tide Models

Since the publication of the first computed M, component
(Schwiderski, 1978a), the subsequently constructed eleven-mode
NSWC ocean tide models proved their accuracy and usefulness in
numerous practical and scientific applications and tests around
the world. For example, various empirical tide data from both
coastal and deep-sea stations were identified as inaccurately listed
and/or harmonically analyzed (see, e.g., ‘“The NSWC Ocean Tide
Model,”’ the finai section, and Schwiderski, 1979b and 1983b).
This result suggests the use of mathematically computed tide
models as reference functions to enhance the accuracy of future
harmonic analyses of measured tidal time sequences by the widely
applied Munk and Cartwright (1966) response method. In a sim-
ilar self-improving application, NSWC models are used effectively
to provide accurate open-ocean boundary data for limited-area
tide models where rough water level variations require a refined
resolution. For instance, MacAyeal (1982) failed to bring his de-
tailed tide model of the frozen Ross Sea in agreement with em-
pirical tide data, but he succeeded with the help of the global
NSWC tide models. This is particularly gratifying, since the
NSWC models are admittedly somewhat loosely substantiated near
Antarctica, where only quantitatively and qualitatively marginal
empirical tide data are available.

In marine geodesy, NSWC tide models are used extensively (see,
e.g., Resolutions of the NASA SEASAT ALT/POD Calibration
Workshop, June 11-15, 1979, Austin, Texas; West, 1981) to com-
pute tide corrections for satellite altimeter measurements of the
geoid at sea. In geophysics, the same tide models were used suc-
cessfully by Wahr and Sasao (1981a,b) to verify their theoretically
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predicted resonant coupling between the nutations of the earth
spin axis and the terrestrial and oceanic tides. Similarly, Sasao and
Sato (1981) computed meaningful ocean tide corrections for as-
tronomical time and latitude observations. Utilizing NSWC 4
models, preliminary investigations by Van Ruymbeke et al. (1981)
and others did suggest that the turning ocean tide may provide a
clock and a clue for a better understanding of the triggering mech-
anism of earthquakes. 4
After successful applications to worldwide measurements of
gravity anomalies down to about 1/2 microgal (see, e.g., Goad ¢
1980a, b; Melchior et al. 1980, 1981), the NSWC ocean tide models ]
were chosen by the International Permanent Commission for
Earth Tides (see Resolutions of the Ninth Earth Tide Symposium,
August 17-22, 1981, New York, N.Y.) as a ‘““Working Standard”’ &
for the interpretation of earth tide data, for predictions of earth
tidal displacements and gravity anomalies, and for tidal loading
calculations. This resolution was accepted by all participants, even
though a considerable number of empirical gravity anomalies
could not be verified by the NSWC ocean tide models. While it
was pointed out by the author (Schwiderski, 1981b) that some of
the differences could probably be explained by shortcomings and
simple improvements (see final section) of the ocean tide models,
particularly in coastal areas, it was generally recognized that the
major discrepancies must be attributed to oversimplifications of
the solid earth body and the corresponding earth tide and ocean H
tide loading models. Among the many researchers who expressed
the same view about these or related problems, perhaps the most
prominent statement by Farrell (1979; compare also Farrell et al.,
1982) may be quoted here: ‘“The cause of these anomalies is now
known to be inhomogeneities in the elastic properties of the earth
crust . . . variable surface topography and geological discontin-
uities . . .”” In fact, far beyond such geophysically plausible rea-
sons, recently Melchior and DeBecker (1982) proved that all
significant differences between gravity anomalies measured around
the world by various investigators and those computed from earth
tide models, NSWC ocean tide models, and their loading effects
are exclusively due to the earth tide models used. Since these
models are all based on horizontally homogeneous deformation
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parameters of the solid earth, the sources of the discrepancies are
obvious (see also final section), and they are found to be most
severe in seismically and/or tectonically active areas of the earth.
It is hoped that future accurate gauge measurements of ocean tides
and satellite altimeter measurements of geocentric tides will lead
to useful and long needed laterally variable deformation param-
eters of the solid earth.

Spherical Harmonic Coefficients
of M, Ocean Tides

The secular tidal deceleration of the lunar longitude and its im-
portance in astronomy has been recognized by scientists for al-
most three centuries. However, as reviewed for instance by
Cartwright (1977), the empirical and theoretical estimates di-
verged by more than a factor of 10. With recently improved ob-
servations and better knowledge of ocean tides, the estimates
finally seem to converge within the accuracy limitations of the
contemporary measurements, postulated earth and ocean models,
and numerical computations involved in the estimation process.
Since this certainly somewhat subjective viewpoint is not shared
by all researchers in the field (compare, e.g., Marsh et al., 1982;
Yoder, 1982), the following brief examination of the basic con-
cepts and results may help in clarifying the present situation.

If one assumes a solid earth body and corresponding earth tide
and ocean tide loading models, then it is possible (Lambeck et al.,
1974) to compute the secular deceleration effects of the moving
ocean tidal masses on the orbits of the moon and artificial satel-
lites from an assumed ocean tide model. Vice versa, it is in prin-
ciple possible to derive from observed decelerations of satellite
orbits certain global earth and/or ocean tide parameters. This pos-
sibility is attractive, even though neglected lateral variations of the
solid earth were found (see preceding section) to have a measur-
able effect on nearby gravity meters. In distinct contrast to the
related problem of near-earth gravity anomalies, globally inte-
grated lateral variations of the solid earth probably can be ne-
glected as essentially ineffective on distant satellites. Though the
same arguments should apply also to minor and/or localized in-
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accuracies of ocean tide models, some researchers feel tempted
(see, e.g., Yoder, 1982) to blame any differences between empir-
ical and theoretical results on assumed ocean tide models. In real-
ity, however, both the empirical and theoretical results are limited
by inherent error sources, which have nothing to do with the ac-
curacy of the assumed ocean tide model.

The mathematical linkage between the ocean tide and its de-
celeration effect on an orbiting satellite begins with a Fourier
spherical harmonic expansion of a given harmonic partial ocean
tide ¢ (say, M,; for notations see *‘Parameters of M, Ocean Tide
Model”’) in the form

© n m
F=f\e¢,t)= L L P (sing)
n=om=0 n

[C Xsin(ot + x + eX +m\)] 5

where P™,(x) denotes the associated Legendre polynomials in stan-
dard norm (P°(1)=P,(1)=1). The constant (in time and space)
harmonic amplitudes C+,,, and phases ¢+, must be determined in
the Fourier sense by a least-squares fit to the tidal data { over the
entire globe with {=o0 on land. For the present M, ocean tide
model C. C. Goad (private communication) computed numeri-
cally these constants up to degree n=10. The most important
coefficients are listed in Table 4. The author verified those results
and recomputed these coefficients with a slightly improved tide
model by shifting (see final section and Schwiderski, 1981b) all
hydrodynamically interpolated empirical coastal tide data from the

Table 4
Important spherical harmonic fourier constants of M,
Constant : Co; «m) CI} femy C, ;’, fem/ (‘,‘0 (dex) € )3 fdeg) [3 ); (deg )
Goad .25 2.96 1.0} 118.1 310.6 1248
Author? .16 2.9 1.00 106.2 311.6 125.2

* Improved values (see text)
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tabulated cell centers to the more accurate corresponding land cell
walls. As can be seen in Table 4 only C*_ and €+, display a sig-
nificant improvement. The corrected data locations were expected
to improve these results, because C+_, (=C-_) measures one half
of the small periodic inflow (or outflow) of water over the math-
ematically defined ocean boundaries, which is allowed by the hy-
drodynamical interpolation technique (see Schwiderski, 1980b,c).
Incidentally, this result provides important evidence for the high
precision with which the continuity equation has been solved in
the interior of the oceans.

Regardless of the quality of the assumed ocean tide data ¢, the
serious deficiencies of any truncated expansion (5) has been dis-
cussed extensively in Schwiderski, 1980c. It suffices to fecall here
the following critical features relevant to the application consid-
ered. Due to the strong discontinuities of the expanded function
{(\,9,t) along all land-ocean interfaces, the series (5) is very slowly
converging, and any truncated sum is afflicted with the well-known
Gibbs phenomenon. For the present M, tide model Goad (1980b)
computed the amplitude spectrum up to 180° and confirmed the
unacceptably slow convergence. Since the Fourier representation
(5) of the expanded ocean tide { is unsatisfactory for any com-
putationally useful truncation, Estes (1980) abandoned the Four-
ier expansions for his tide models and replaced them by non-
Fourier type trignometric polynomial fits to { by least-squares over
the oceans only and ignored all land areas. Though this yields sig-
nificantly better fits to the ocean tides, it is obviously not appli-
cable to the present problem of satellite decelerations.

Still more important is the fact that the intensity of the Gibbs
phenomenon increases with the length of the partial sum and in
the numerical case also with the number of grid points used. Con-
sequently, the accuracy of all numerically computed constants
{C,¢) in the Fourier expansion (5) depends in some measure on the
grid system on which the tide data { are defined. Unfortunately,
this holds true also for the low degree constants such as C+,,, which
plays the most important role in the deceleration problem at hand.
To assess the accuracy dependence of the Fourier coefficients on
the number of grid points, Goad and Douglas (1978) computed
from the author’s preliminary M, ocean tide model (1975, unpub-
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lished) C+,, for various mesh sizes, as shown in Table §. Accord-
ingly, varying the mesh size from 1° to 10° results in an erratic
change of C+,, by more than 0.5cm, which has nothing to do with
the quality of the tide model considered.

To derive empirically the low-degree Fourier coefficients of the
M: ocean tide (5) from observed satellite decelerations, the earth
tide effect must be subtracted. This requires accurate knowledge
of the solid earth tide, especially in relation to its tide-generating
equilibrium tide. As was justified above, all investigators assume
a horizontally homogeneous earth and, furthermore, perfectly
elastic body properties. The latter assumption leads to earth tides
that are exactly in phase with the tide-generating equilibrium tides.
Although the ideal earth assumption is probably very close to real-
ity, it is definitely not exactly true. To estimate the effect of an
assumed small earth tide phase lag on the low-degree Fourier coef-
ficients of the ocean tide {, Goad and Douglas (1978) computed
Table 6 for C+,, from GEOS 3 and combined GEOS 3/1967-92A
orbits. As can be seen, a small earth tide phase lag of just one
half degree reduces C+,, by almost 0.5 cm and by almost 1 cm for
a one-degree phase lag.

Tsable §
Mesh size dependence of C3; for preliminary NSWC M, Model (1975).
(Computed by Goad and Douglas, 1978)

Mesh Size 1° 3° 3° 8° 10°

C# (cm) 159 3.65 3.38 KR )| 3.26

Table 6
Dependence of C3; on earth tide phase lags.
(Computed by Goad and Douglas, 1978, from
GEOS 3 and Combined GEOS 3/1967-92A orbits)

Assumed Phase Lag 0.0° 0.5° 1.0°
GEOS 3 orbit: C;(cm) 2.86 2.39 1.95
GEOS 3/1967-92A: C3; (cm) 3.23 2.76 2.32
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Another major uncertainty in the empirical determination of,
say, C+,, for M, follows from the always controversial harmonic
analysis of time sequences with a nonharmonic frequency spec-
trum. Moreover, this error source afflicts the earth and ocean ti-
des and their gravitational consequences. In particular, the beat
effect of the M, group elaborated in the final section generates
alone an amplitude uncertainty of 4.8% in both ocean and earth
M, tides. Assuming an oceanic C+,, of about 3 cm (Table 4), one
has a source for an error of 0.15 cm. Since the M, earth tide has
an amplitude of about E = 15 cm (see Equation 3), the beat effect
translates into a possible empirical error of 0.71 cm (see Table 7).

Considering only the three elaborated processing uncertainties
(each of 0.5 cm and more) in a direct ocean tide solution (Table
5) and in an indirect satellite solution (Tables 6 and 7), the recently
published results displayed for M, in Table 8 must be viewed as
closely (almost fortuitously) converged as could be wished for. In
fact, it is rather gratifying to find the author’s value of 2.95 cm
safely below the satellite average of 3.11 cm. The remaining small
margin allows for a small but definitely nonzero earth tide phase
lag (see Table 6). The same continues to be true, even if one ig-
nores the two lowest satellite solutions to yield the average 3.26
cm,

The table of ocean tide solutions (Table 8) fully confirms the
earlier argument that relatively small or locally confined errors of
ocean tide models are averaged out globally in C*,, and, hence,
are just as ineffective on distant satellites as neglected lateral var-
iations of earth tide models. For example, the results in Table 4
show that the significant relocation of empirical tide data in about
2,000 boundary cells may effect drastically some weighted aver-
ages (C*.,6%,,) and leave others (C+,,,¢*,,) almost unchanged.

Table 7
Beat effects in M, group on earth and ocean tides.
M, Tidal Amplitude Beat Effect
Earth tide: E = 1Scm 0.71 cm

Ocean tide: C; = 3cm 0.15 cm

3
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Table 8
Recent results of M ocean tide coefficients C 5.

C#H™  Mudel Characteristics

Ocean Tide Solutions

3.59 1° Schwiderski (1975; unpublished)
3.3 3° Estes (1977, 1980)

2.98 1° Schwiderski (1978a)

3.38 6° Parke and Hendershott (1980)

Satellite Solution

3.10 Cazenave and Daillet (1977, Starlette)

3.2 Daillet (1978; GEOS 3/Starlette)

2.86 Goad and Douglas (1978; GEOS 3)

23 Goad and Douglas (1978; GEOS 3/1967-92A)

42 Felsentreger et al. (1979, GEOS 3/1967-92A/Starlette)
3150 Cazenave and Daillet (1981; Starlette)

310 Cazenave and Dailiet (1981; GEOS 3/Starlette)

2.50 Marsh et al. (1982; Starlette)

n Average satellite solution

Moreover, the differences in the ocean solutions exhibit precisely
the same spread as the grid-generated erratic variations in Table
S. In this connection it is important to recall the major features
of the four ocean tide models compared in Table 8. The Estes
(1977) and the author’s (1975, preliminary unpublished) ocean tide
models are both hydrodynamical solutions of very similar ocean
tidal equations derived from the Navier-Stokes equations with
turbulent bottom friction and eddy dissipation terms. Both solu-
tions displayed similar significant improvements over earlier
models, but still failed to match empirical tide data over consid-
erable ocean regions. The author’s (1978) model is still a complete
hydrodynamical solution (for evidence see above and next section)
of the same ocean tidal equations, but with more realistic eddy
dissipation and empirically adjusted bottom friction terms. The
agreement with empirical tide data around and in the oceans is
exhaustively complete (see first section) within the empirical ac-
curacy. Without regard to any hydrodynamical equations the
Parke-Hendershott model is strictly a least-squares fit of a linear
superposition of some 24 numerically defined base functions to
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selected empirical tide data in the oceans (see Parke and Hender-
shott, 1980: 383, 384, 388). Attempts to compute the correspond-
ing velocity field via the Laplace tidal equations (which are derived
from the drastically simpler Euler-Lagrange equations) appeared
to run into ‘‘unresolved numerical problems’’ in kinetic energy
calculations (see also next section). Of course, the graphically dis-
played tide model is close to the author’s (1978) model over most
open ocean regions, since both models fit essentially the same em-
pirical open-ocean tide data. Consequently, even though both
models differ considerably in coastal and some other areas, where
the 6° x 6° model naturally fails to resolve virtually all tidal dis-
tortions (such as shown in Figures 1 and 2), one should expect
their corresponding C*,, coefficients to be close together. Yet, as
Table 8 shows, the Parke-Hendershott (see also next section) C+,,
is considerably closer to the author’s (1975) preliminary value.
Clearly, the magnitude of the global C+,, coefficients does not
reflect the point-wise closeness of the corresponding tide models.
This shows once again that the C+,, coefficient is no measure for
the quality of an ocean tide model. In any case, it cannot override
an accuracy estimate concluded from a model’s fit to thousands
of empirical tide data derived from ocean tide gauge records
around the world.

The Energy Budget of Ocean Tides

In order to understand the historical evolution of the solar system
and the physical properties of the earth and oceans, scientists have
long been interested in the fate of the energy that is continuously
supplied to the oceans by the tide-generating forces of the moon
and sun. Clearly, through the relentless turbulent oscillations of
the water masses, the supplied tidal energy is constantly lost by
eddy dissipation into heat and other internal ocean energy, and
by friction and displacement interactions with the solid earth into
mechanical earth energy. But, is all the supplied tidal energy dis-
sipated that way, and in what proportions? Early answers to these
questions depended on insufficiently accurate ocean tide models,
which led to widely diverging estimates and conflicting discrep-
ancies (see, e.g., Cartwright, 1977). Surely, reliable answers to
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these questions require accurate knowledge not only of the tidal
clevations but also of the much more involved velocity fields and
turbulent dissipation and friction parameters. Since the present M,
ocean tide model can be assumed to provide all these necessary
data with realistic accuracy, the following detailed analysis can be
anticipated to shed some light into the situation.

Starting from the continuous ocean tid«i equations derived from
Schwiderski (1978a, 1980a, c), it is easy to derive the correspond-
ing energy equation in the following form:

~ .. b
POHQ-VR = [-pGLb (141 +0ba? cose+oq- f+0GTe (L) +ig?]

+HipH(q?) 4GV (qHE®) (6)

or averaged over one harmonic time period and integrated over
the closed oceans:

RSTE = RBDW + RBFW + ROED = RLTF, (Ta)

oGfl < ctﬁ > da
RSTE = {

where

C.0.

Rate of Supplied Tidal Energy
b b
pCSS<t t >da =-pGSf/<gL >da
c.o.b c.o. ¢ (7b)
RBDW =

Rate of Bottom Displacement Work

obJS /S <q2cono>d¢ = RSBFW + RDBFW
c.0.
RBFVW =

Rate of Bottom Friction Work,

- I <q2cooo>dn
{ so0. (7c’)
RSBFW=
Rate of Shelf Bottom Friction Work

RDBIVe { RBFW - RSBFW (7c")

Rate of Deep Bottom Priction Work
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Difo<.q-f>da = RSTE - RBDW - RBFW d)
ROED=
Rate of Ocean Eddy Dissipation
{pcfkv-qn (N-1%)>dampG/<q(n-c%) >ds = 0 (7€)
¢.o0. c.f.
PFCL=
Power Flux Over Coastline
e {RBDH + RBFW + ROED an

Rate of Lost Tidal Energy
and furthermore:
b 2
2P{/5Bq">da (8a)
KE=
Kinetic Energy
b 1 2
PCSI<C (L+E) + 5 T7> da
PE= (8b)

Potential Energy

1 KE + PE
TE= (8¢)
Tidal Energy

In these equations the following notations are used in addition
to those already introduced in ‘‘Parameters of M, Ocean Tide

Model”’ (compare also Schwiderski, 1978a, 1980a,c):
b
b = bottom friction coefficient
H = ocean depth
R = earth radius
P = density of seawater
e = {4 ¢ = geocentric bottom tide
Ul = 1.3027+0.0333¢ = total tide-generating equilibrium
tide
q = (u,v) = velocity vector corresponding to (A\,¢)
Q. = velocity normal to coastline
f = (M f*) = eddy dissipation vector
A = 1/R(l/cos¢d\,0®) = differential vector
<x> = average over tidal period
da = ocean surface element
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ds = ocean boundary element

.0, = closed ocean t

s.0. = shelf ocean

cl. = coastline L
Using the present M, ocean tide model with all its resolved pa-

rameters and tide data ({;u,v), the global quantities (7a,b,c,d) and
(8a,b,c) were evaluated numerically with the detailed results shown
in Table 9. This table lists also three different Q factors of ocean
tides, which appear useful by their self-explanatory definitions.
Naturally, the numerically computed global ocean tide data in
Table 9 must be viewed as representative values within certain er-
ror bounds. Fortunately, as in the similar global computations of
Fourier coefficients (see preceding section) minor inaccuracies of
the modeled tide data can be assumed as averaged out. On the

preanporpe-em ey T
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Table 9
M, ocean tide energy budget.

Rate of Supplied (+ ) and Lost ( — } Energies

(+) RSTE (10'2 Wan)
(=) RBDW (10'2 Watt)
() RBFW (10'2 Wat1)
(-) ROED (10'2 waty)
(=) RSBFW (10'2 Wart)

(-) RDBFW (10'2 Wat)

PE (10'7 Joule)

KE (10" Joule)

o (TE) / (RLTE)
o (TE) /RBFW
o (TE) /RSBFW)

%
3.50 ¢
.86 3
1.64 i
3.50 i
1.86 ©3.50 = RLTE (-) !
1.86 £

0.00
1.26 ;
1.86 = RBFW (—) ]
0.60 <

Stored Ocean Tide Energies

1.07

2.53 = TE(10'" Joule)
1.46

Q Factors of Ocean Tldes

10.2 = Q (lost work)
19.1 = Q (bottom friction)
28.2 = Q (shelf bottom friction)

b

. R .
o . I SR X Sy e T Loy
+ SONE R A . Sl Y oo




Atlas of Ocean Tidal Charts and Maps 243

other hand, some dependence on the grid size must again (see Ta-
ble 5 and below) be admitted to effect the accuracy of the energy
data. Since the present computations required the tidal velocities
in addition to the well-verified tidal elevations, several numerical
experiments were conducted to test the periodic state of the ve-
locity data reached by the time-stepping integration of the discrete
ocean tidal equati.us (see Schwiderski, 1978a, 1980a,b,c). These
checks were considered necessary, because it is much more diffi-
cult to compute the velocity field than the less variable tidal (pres-
sure) field. For these experiments the computations of the M,
integration were continued from the last final output through 1/4,
1/2, and 1 full M, periods. The recomputed steady state velocity
amplitudes and phases displayed changes of less than 10% over
all open ocean areas. Somewhat larger variations were expected
and found near coastal boundaries. As anticipated from these sat-
isfactory results, the recomputed global energy data in Table 9
remained essentially unchanged. The fact that Equations (7 and
7d) are fulfilled within the numerical accuracy of three figures and
ROED = 0.00 x 10'* Watt (Table 9) is an important manifes-
tation of the precision of the computed tidal elevation and velocity
fields as a solution of the ocean tidal equations with determined
bottom friction and eddy dissipation coefficients.

A glance at Table 9 reveals the surprising result that the rate of
supplied tidal energy (RSTE) equals the rate of lost tidal energy
(RLTE) without any significant gaps, which have puzzled re-
searchers (see, e.g., Cartwright’s 1977 review) since Hendershott
(1972) lumped RSTE and RBDW together as ‘‘total rate of work
done on the oceans.’’ It was tacitly assumed that the rate of bot-
tom displacement work (RBDW) would be positive, i.e., the ocean
bottom would do positive work on the ocean and, hence, add to
the energy input RSTE by the tide-generating gravity forces. How-
ever, as was pointed out by the author at the NASA Workshop
on Ocean Tides from April 12 to 13, 1982, at the University of
Chicago, Illinois, the separate computation of RBDW turned out
a negative value. As is evident from Equation (7b), the ocean tide
does work on the earth and not the other way around. Obviously,
this closes the puzzling major gap of the missing energy sink and
corrects most interpretations of previous estimates.
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The subsequent detailed evaluation of the energy budget must
recognize two additional error sources that may influence some-
what the magnitudes of some individual energy terms. Firstly, the
energy equation (7) is based on the plausible assumption that the
power flux over the coastline of a closed ocean is zero (PFCL =
0, Equation 7¢). Unfortunately, the real ocean basins have no well-
defined boundary walls or coastlines. The gridwise modeled ocean
boundaries follow only approximately the already ambiguous
coastline and exclude various shallow regions with less than 5-m
depth and border seas (see Schwiderski, 1978a, 1980a,b,c). Thus,
Equation (7¢) and similarly the right part of Equation (7a) must
be considered as approximations. Their precise errors can be as-
sessed only by means of future refined coastal tide models. Never-
theless, considering estimates in border seas (see, =.g., Miller, 1966,
and Cartwright et al., 1980) the computed value of RSTE =
3.50Z10"* Watt is probably a close low estimate of the true value.
It agrees perfectly with Cartwright’s (1977) estimate of 3.5-10*
Watt, which he concluded from various theoretical and empirical
evaluations. Obviously, the present result cannot be compared
with the drastically reduced value of 2.22+10'* Watt, which Parke
and Hendershott (1980: 388) computed as the ‘‘rate of lunar work-
ing.”’ It represents the lumped value (RSTE-RBDW) and must be
compared to the corresponding value of 1.86°10' Watt listed in
Table 9. The agreement appears satisfactory within the possible
numerical error resulting from the mesh size differences of both
models (see Table 5 and preceding section).

The other possible error source is a direct consequence of the
linear bottom friction law and the numerical value of its coeffi-
cient b, which is used in the definition of the rate of bottom fric-
tion work (RBFW, Equation 7¢, and also ¢', ¢’’). Although it
was recognized that in some shelf areas with strong tidal currents
the quadratic law of bottom friction would probably be slightly
more appropriate, it was argued (see below and Schwiderski,
1978a, 1980a,b,c) on hydrodynamical grounds that the linear law
of bottom friction should be the most consistent and realistic hy-
pothesis at least for slow tidal currents as in all deep oceans. For
M, the value of the bottom friction coefficient b (= 0.0lm/sec)
was determined by extensive trial-and-error experiments to fit em-
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pirical tide data as closely and uniformly as possible over all ocean
regions. To fit as closely as possible empirical tide data in bound-
ary cells, the novel hydrodynamical interpolation technique al-
lowed the uniform value of b to vary between the controlled limits
0.003 m/sec <b<« 0.03 m/sec. An inspection of these variations
seemed to indicate that the higher deviations slightly dominated
the lower ones. Consequently, the computed value of RBFW =
1.86°10' Watt (and particularly its shelf contribution RSBFW, see
below) is probably a close low estimate of its true value. In any
case, it could only exceed this estimate by as much as RSTE may
exceed its estimate (see above). Incidentally, the determination of
the numerical value of b may be compared to G. 1. Taylor’s (1918;
and Proudman, 1952) fixing of the famous coefficient 0.0026 in
the quadratic law of bottom friction. In the present case, b is de-
termined to fit empirical tide data simultaneously with the inte-
gration of the global ocean tidal equations. The resulting balanced
energy budget (see above) is then only a test for the quality of the
integration. Taylor assumed rough empirical tide and velocity data
for the Irish Sea and fixed the corresponding friction coefficient
to achieve a balanced energy budget. In order to compare the com-
puted rate of bottom friction work (RBFW) with other semiem-
pirical estimates of tidal energy losses over continental shelves, it
was necessary (and hydrodynamically important) to compute also
the rate of shelf bottom friction work (RSBFW) and, simultane-
ously, the rate of deep bottom friction work (RDBFW) by Equa-
tions (7¢’,¢’’). In this computation the shelf regions were defined
by depth data less than 1,000 m. The corresponding area was about
8% of the entire modeled ocean surface, which is 69% of the
global earth area. However, the resulting value of RSBFW =
1.26°10'2 Watt cannot be compared directly with Miller’s (1966)
currently most reliable (see, e.g., Cartwright, 1977) semiempirical
estimate of (1.4 to 1.7)°10'* Watt for the total power flux from
the deep oceans over the shelf edges to the shelf regions. Since this
energy essentially is lost over the shelves by bottom friction and
bottom displacement work, an appropriate proportion of the lat-
ter must be added to RSBFW for just comparison. Taking a sim-
ple shelf/deep-ocean area proportion of 8/92 from RBDW =
1.64:10"* Watt modified by an approximate shelf/deep-ocean tidal
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elevation ratio of 2/1 and adding it to RSBFW, one finds 1.50+10'2
Watt, which falls well between Miller’s estimated limits and is ac-
tually closer to his preferred lower bound.

Cartwright et al. (1980) arrived at a semiempirical estimate of
energy losses around the British Isles, which is somewhat larger
than Miller’s corresponding partial value, but they acknowledge
that this may easily be compensated by Miller’s excessive estimate
of the energy loss over the Bering Sea sheif. Furthermore, as is
pointed out by the same authors, the semiempirical methods lead
to significantly unbalanced energy budgets. Since the contradic-
tory budget terms cannot be accounted for by relatively small en-
ergy losses through bottom displacement work (see above), their
origin must be sought in the semiempirical methods themselves.
Starting from computed gradients of empirical tidal elevations,
needed velocities are computed by locally solving Laplace’s mo-
mentum equations of tidal motions, which are augmented by G.
I. Taylor’s quadratic bottom friction term that may be linearized
under the transplanted conditions (see, e.g., Cartwright et al.,
1980: 104, 106, 109). Subsequently, the resulting velocities are used
to compute the rate of bottom friction work with G. I. Taylor’s
friction term and the corresponding power flux, which usually
turns out significantly larger than the friction work. Since G. 1.
Taylor’s friction term was derived by balancing the tidal energy
budget in the Irish Sea (see above), it is by no means trivial that
it should apply universally, say, to all shelf regions from the deep
oceans to the shores. The contradictory results are compelling evi-
dence to the contrary. In fact, Proudman (1952: 316) quotes in-
vestigations of tides in the Bristol and English channels with
variations of G. I. Taylor’s constant of 0.0026 down to 0.0014
and up to 0.0213. Clearly, variations of this magnitude can change
estimates of power fluxes and rates of bottom friction work con-
siderably. It would be most interesting to see which friction con-
stants in the quadratic and linear bottom friction laws would
balance the energy budget around the British Isles. If the quad-
ratic friction law is applied to the global shelf regions and there
properly linearized (Proudman, 1952: 310) with an average shelf
velocity of 0.1 m/sec and a cos ¢ average of 0.795, then the pres-
ent value of b = 0.01 m/sec requires a 36 times larger G. 1. Taylor
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constant, i.e., 0.094. However, if the quadratic law is linearized
under Irish Sea conditions with an average velocity of 1.14 m/sec
and the same cos ¢ average, then the present b = 0.01 m/sec
requires a G. 1. Taylor constant of 0.0082, which is very well within
the known variation range.

As can be verified in Table 9, of the total energy loss by bottom
friction about two thirds are lost over the shelf areas and only one
third over the deep oceans. Though the latter portion is, as ex-
pected, significantly smaller than the first one, it does not justify
its neglect in the energy budget as is commonly assumed in sem-
iempirical estimates based on G. 1. Taylor’s low quadratic friction
term (see above and below). In view of the more realistic linear
law of bottom friction, this result appears as plausible, because
92% of the ocean bottom is deeper than 1,000 m. One derives
from the quadratic equations of bottom friction work (Equations
7¢, ¢', ¢'"), the work ratio (RSBFW)/RDBFW) = 1/2 and the
shelf/deep-ocean area ratio 8/92, that the average shelf velocity
is about five times larger than the average velocity in the deep
oceans. Again, this ratio appears as realistic and is, of course, in
agreement with the computed velocity field. Moreover, since the
linear law of bottom friction yielded realistic results in its some-
what uncertain shelf domain, the result in the deep ocean should
be even more credible. Because the numerical value of the bottom
friction coefficient b was allowed to vary in shelf grid cells by the
hydrodynamical interpolation technique (Schwiderski, 1978a,
1980a,b,c), its uniform value was determined essentially by the
deep oceans in a rather sensitive manner. In fact, numerous ex-
periments were conducted to suppress bottom friction in the deep
oceans by assuming, for instance, b ~ 1/H, but they all resulted
(with and without hydrodynamical interpolation of empirical tide
data) in significant reductions of the model’s quality.

In order to understand the physical presence of the underesti-
mated rate of bottom friction work in the deep and shelf oceans,
it is necessary to retrace the detailed hydrodynamical derivation
of the continuous and discrete ocean tidal equations (Schwiderski,
1978a, 1980a,b,c). Here, it suffices to recall the relevant major
concepts and notions that were introduced and extensively ana-
lyzed. It was shown that the viscous tidal motion is highly unst-
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able, turbulent, and, hence, nonperiodic, and unlike laminar flows
microscopically unpredictable. For the macroscopical description
of the tidal motions, average velocities were introduced that were
strictly tied to mass fluxes through finite mesh areas during finite
time intervals. These velocities were assumed to behave just like
ordinary (point or particle) velocities of laminar motions with
steady-state amplitudes, frequencies, and phases locked to the pe-
riodic tidal forcing. In the deep oceans the corresponding average
tidal currents are known to be slow and, hence, justify Stokes slow-
motion linearization of the equations of motion, including {(con-
sistently) a linear bottom friction law.

Following Reynolds the differences between the average veloc-
ities and the true tidal (particle) velocities were introduced as ve-
locity fluctuations. Though they are filtered out in the average
velocities, they make their presence felt through additional Rey-
nolds stresses that the tide-generating forces must overcome. The
Boussinesq approximation treats those stresses like laminar vis-
cous stresses, but with a replacement of the molecular viscosity
by two (horizontal and vertical) momentum austausch coefficients
or eddy viscosities. While the horizontal coefficient enters directly
in the lateral dissipation vector f of Equation (6), the vertical eddy
coefficient determines essentially the magnitude of the bottom
friction coefficient b. Consequently, the unpredictable fluctuating
currents manifest themselves as undetermined eddy viscosities and
bottom friction coefficients. Unlike the molecular viscosities, they
are not uniform properties of given fluids but characteristic quan-
tities of the specific turbulent flows and their assumed divisions
into averaged and fluctuating currents. Although they may be
guessed a priori, in general they must be modeled by trial-and-
error experiments simultaneously with the entire average tidal el-
evation and velocity fields to achieve a posteriori verifiable real-
istic features. Obviously, this is the basic technique applied in the
present global tide model and in G. I. Taylor’s empirical balancing
of the tidal energy budget in the Irish Sea.

As was shown before, G. 1. Taylor’s quadratic friction term
allowed no direct transplantation from the Irish Sea to the global
shelf regions without serious numerical shortcomings. With a typ-
ical shelf/deep-ocean velocity ratio of 5/1, the discrepancies are
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five times compounded if the quadratic friction law is directly ap-
plied to the deep oceans. Specifically, a 180 times larger G. 1. Tay-
lor constant of 0.47 is required to achieve the same realistic results
as the present linear friction coefficient b = 0.01 m/sec. At this
point it is interesting to note that the ratio of the required G. I.
Taylor deep-ocean/lIrish-Sea constants is representable in the
form:

0.47/0.0026 = 180 = 0.795(111)*/(9.56) cos 53.3°

where 0.795Z(111 km)® is the average bottom mesh area of the
present 1° x 1° global ocean tide model. Accordingly, (9.56km)*
cos 53.5° can be interpreted as a proper resolution area of the Irish
Sea. This interesting relationship supports the author’s hypothesis
that eddy viscosities and their related bottom friction coefficients
should depend directly on the assumed area resolution scales. As
was mentioned in Schwiderski (1978a, 1980a,b,c), some depen-
dence of these hydrodynamical parameters on resolution scales was
noticed earlier by researchers modeling general ocean currents and
atmospheric circulations.

In contrast to the quadratic bottom friction law, the linear law
can be transplanted directly, say, from the Irish Sea to the global
oceans without encountering major numerical problems. Surely,
the tidal budget in the Irish Sea could have been balanced just as
well with the linear law of bottom friction. A simple recalculation
of G. I. Taylor’s balancing procedure yields then a linear friction
coefficient of b = 0.0032 m/sec, which is easy to reconcile with
the present global (shelf and deep ocean) value of b = 0.01 m/sec.
For instance, the variations of G. I. Taylor’s constant for the Bris-
tol and English channels (see above) can account directly for the
modest 3.1 difference factor. Indeed, the remaining difference may
yield an important key to separate the energy losses by bottom
friction of the averaged tidal currents from those of the fluctuat-
ing currents, both of which must be supplied by the tide-gener-
ating forces. It is the author’s contention (Schwiderski, 1978a,
1980a,b,c) that the coarse 1° x 1° resolution scale of the global
oceans leaves many more fluctuating current modes unresolved
than the finer (see above) scale of the Irish Sea. It is probably
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reasonable to assume that the contribution of the fluctuating cur-
rents to the bottom friction work is negligible in the Irish Sea. If
one assumes further that the linear bottom friction coefficient
computed above for the Irish Sea is directly transferable to the
bottom friction work of the averaged tidal currents in the deep
oceans, then one has a procedure to estimate its magnitude. Using
Equations (7¢c,c’',c¢’'’) with b = 0.0032 m/sec instead of 0.0!
m/sec, which yielded RDBFW = 0.60 Watt (Table 9), then one
finds 0.19+10'2 Watt as a possible high and, trivially, 0.00-10'2 Watt
as a low estimate of the rate of deep bottom friction work done
by the averaged tidal currents. The remainders of the total
RDBFW yield, respectively, 0.41-10'? Watt and 0.60°10'* Watt as
low and high estimates for the rate of deep bottom friction work
done by the fluctuating tidal currents. Even though the heuristi-
cally inferred nontrivial estimates must be considered as somewhat
tentative, it will be shown below that they fit presently known
estimates remarkably well.

To establish a proper basis for comparison of the present esti-
mates with other known results, it is necessary to identify the clas-
sical hydrodynamical notions of averaged and fluctuating tidal
currents with their essentially equivalent concepts of surface (or
barotropic) and internal (or baroclinic) tidal currents, respec-
tively. Clearly, the deterministic and random features (Car-
twright, 1977; Munk et al., 1981) of surface and internal tidal
currents are directly comparable with the predictable and unpre-
dictabie properties of averaged and fluctuating tidal currents in-
ferred above from the strong instability of tidal motions. Strong
internal currents with amplitudes exceeding considerably the am-
plitudes of surface currents have been discovered in the deep
oceans for some time. Theoretically, they have been analyzed by
spectral decompositions starting with wave lengths of 200 km or
150 km (Wunsch, 1975; Munk et al., 1981), which are just about
at the resolution limit (111 km) of the averaged tidal currents of
the present model. It can be assumed that the sustaining rate of
energy, which the internal currents draw from the tide-generating
forces via the averaged currents, is almost completely lost by bot-
tom friction. This assumption is strongly supported by the present
result that the total rate of ocean eddy dissipation (ROED, Table
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9) is zero within three significant figures. Thus, it is remarkable
to find Munk’s (1966; see also Wunsch, 1975, and Cartwright,
1977) famous estimate of 0.5Z10'2 Watt for the rate of energy that
the internal tidal currents receive and lose to sustain their como-
tion falling right into the center of the range (0.41-0.60) x 10
Watt derived above for the rate of deep bottom friction work done
by the fluctuating currents. In fact, even the (trivial) upper limit
is safely below the extreme upper estimate of 0.7Z10'* Watt es-
tablished by Wunsch (1975).

Finally, attention may be drawn to the computed kinetic and
potential energies that are stored in the tidal motions. As was ex-
plained for the global tide data (RSTE-RBDW) above and C*;, in
the preceding section, one finds again the same numerical agree-
ment between the potential energies PE = 1.07°10" Joule and
1.34-10"" Joule computed, respectively, for the present model and
for the Parke-Hendershott (1980) model. Unfortunately, no other
energy data can be compared between the two tide models, be-
cause the Parke-Hendershott (1980: 388) model failed to allow
computations of global data containing tidal velocity components.
The present ocean tide model evolved through extensive computer
experiments to determine physically realistic bottom friction and
eddy dissipation laws in hydrodynamically defined ocean tidal
equations by coherently integrating thousands of empirical tide
data around the world. The complete solution of the final hydro-
dynamical equations of tidal motions yielded simultaneously re-
alistic tidal elevation and velocity fields with a perfectly balanced
energy budget in verifiable terms and with gratifying results in a
broad range of practical and scientific applications.

Simple Model Improvements

In coastal waters some of the shortcomings of the M, ocean tide
model (see preceding sections) can be immediately removed by
preparing more detailed limited-area tide models on a locally re-
fined grid system. Models of this sort have already been con-
structed by various researchers (Defant, 1961; Flather, 1976;
Suendermann, 1977; Liu and Leendertse, 1979; Cartwright et al.,
1980; Davis and Furnes, 1980; Godin, 1980; Pearson et al., 1980;
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Prandle, 1980; Malone and Kuo, 1981; MacAyeal, 1982), espe-
cially for globally excluded or insufficiently resolved border seas.
Where no refined models are available, a simple refinement may
be accomplished by linear or higher-order interpolation of the
listed 1° x 1° data and by using additional empirical data, say,
from the huge collections of the British Admiralty (1977) and the
International Hydrographic Bureau (1978). In such a refining
process the hydrodynamically interpolated empirical tide data that
are listed for the centers of the grid cells should be first returned
as closely as possible to the original tide gauge locations. Specif-
ically in boundary cells the empirical data should be moved from
the cell centers to the centers of the corresponding land-boundary
mesh segments. For small (unresolved) islands or near-shore gauge
stations the tabulated empirical data should be shifted from the
cell centers to the original stations. This relatively simple local
procedure is strongly recommended where ocean tides suffer dras-
tic distortions from rough bottom reliefs (Figures 1 and 2; Table
4). It is particularly significant in local studies of, say, gravity an-
omalies in near-shore areas (see, e.g., the preceding three sections
and Sasao and Sato, 1981).

During the publication period of this paper, W. J. Pierson (see
also Neumann and Pierson, 1966) communicated to the author
that the M, tide possesses in its frequency neighborhood (M,
Group) five minor partial tides of measurable strength, which are
frequency-wise unseparable from M, in most experimental records
of earth and ocean tides and of their gravitational effects. In fact,
as can be seen from the Doodson numbers in Table 10, the side
mode (1) alone contains 3.7% of the M, power and has a beat
period of 18.61 yr relative to M, (the beat period corresponds to
the frequency difference: o - 0,). Similarly, side modes (2) and (3)
have beat periods of 1 yr, and side modes (4) and (5) have beat
periods of 1/2 yr each relative to M,. Together, all five side modes
(1) to (5) contain 4.8% of the M, strength and may not be neg-
ligible in special applications (see, e.g., ‘‘Spherical Harmonic
Coefficients of M, Ocean Tides’’ above).
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Table 10

Leading harmonic equilibrium tides of M, group
(Neumann and Pierson, 1966; Cartwright and Edden, 1973)

Reference Doodson

Symbol Number K (cm) a (10 */sec) x (deg)
M, 255.555 24.2322 1.405189026 2h, — 25,
1 255.545 0.9046 1.405082956 2h, ~ 25, — N, + 180
2 254.556 0.0835 1.40319 7 hy ~ 25, + [y + 180
3 256.554 0.0739 1.407179995 3hy -~ 25, - I,
4 253.755 0.0728 1.401656984 2p, ~ 25, + 180
5 257.555 0.0278 1.409171154 4h, ~ 25,

K = amplitude of equilibrium partial tide.

4
X

frequency of partial tide.
astronomical argument of partial tide.
(ho, 5. Pos Tos Ng) = mean longitudes of: sun, moon, lunar perigee, lunar ascending node

(negative), and solar perigee at Greenwich midnight of day d,
where:
h, = 279.696 68 + 36 000. 768 925 485T + 3.03* 104 T
so = 270.434 358 + 481 267.883 141 37T — 0.001 13312
+ 1.9010°T3
Po = 334.329 653 + 4069.034 032 957 ST — 0.010 325T?
© - 1.2e1075T.

No = — 259.183275 + 1934.142008355T — 0.002078T?2
~2¢10-5T3.

T, = 281.22083 + 1.7191733100T + 0.000453T?
+3010°8T2,
and

T = [27392.500 528 + 1.000 000 035 6D)/36 525.
D =d + 365y — 1975) + Int((y — 1973)/4].

d = day number of year (d = I for January 1).

y 2 1975 = year number.

Int (x] = integral part of x.

For practical applications the combined equilibrium (), earth
(%), and ocean ({) tides of the M, group may be written (see Equa-
tions 1,2,3, and Table 10) in the respective superposed forms:
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5
ﬁ-Kcosz¢cos(ot+2A+x)+ IK coszwos(o t+224X,)
1 1 1 1
€ = 0.6127

5
T = £ cos(ot-6+)) +1§1 E:l °°3(°1t'61+xi)-

where approximately

§= £ K;/K and 61’4 § (1 =1,2,3,4,5) (10)

or in the lumped forms:
n= B(t)Kcosz¢cos [ot+2x+x+x" ()],

~e -
I =o0.612Z,
T - B(t)&cos]ot-6+x+x'(t)].

where £(t) and x ' (t) denote the ‘‘beat factor’ and the ‘*beat shift”’
of the lumped tides. Both 8 and x’ can be derived from the known
equilibrium tide n in the superposed form (9a) (Dietrich, 1963;
Neumann and Pierson, 1966). The somewhat involved functions
contain the beat frequencies mentioned above and, hence, vary
slowly with time. The 4.8% side-mode power translates into a
+4.8% variation of the beat factor and the lumped amplitude.
Obviously, a variation of this magnitude could bring empirical
and theoretical tidal comparisons closer together, provided theo-
retical data are applied in lumped form or, vice versa, beat effects
are removed from empirical data. Fortunately, most ocean tide
gauge records have been analyzed with due regard to beat mod-
ulations.

Due to the involved functions 8(t) and x'(t) the simple super-
posed forms (9) with the approximations (10) may be more con-
venient in practical applications. Indeed, these approximations set
all five ocean tide side modes directly proportional 1o the central
M, ocean tide and require no extra (usually infeasible) amplitude
and phase computations. The satisfactory validity of the approx-
imations (10) were first found (Schwiderski, 1979b) to hold true
even between the major ocean tidal components S, and K, (Dood-
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son numbers 273.555 and 275.555), which have a beat period of
1/2 yr with a beat factor variation of +27.2% (see Table 1). This
may be verified by comparing the computed and empirical am-
plitudes and phases in the data charts of S, and K, (Schwiderski,
1983a,¢).

The rather strong amplitude and phase variations with time of
M, and other tidal constituents and of their corresponding grav-
itational effects have recently been verified experimentally by
Baker and Alcock (1981) with a surprising emphasis. In addition
to the beat effect of unresolved components, other mostly ignored
sources were detected to cause even larger tidal variations. For
example, daily and seasonal atmospheric fluctuations were iden-
tified to boost amplitude and phase variations of S, and K, ocean
tides to an amazing 8% and 5° and even 30% and 15°, respec-
tively. Clearly, distortions and retardations of this magnitude limit
severely the accuracy and reliability of empirical data and must
be considered in future analyses of any observed records of earth
and ocean tides and of their gravitational effects.
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Appendix A

Atlas of 1° x 1° M, Ocean Tide Amplitude and Phase Charts for
42° x 71° Areas
Guide to Tidal Charts

M = m:longitude number
n:colatitude number
A = (m—0.5)°:geographical longitude East

4
!

0, = (n—0.5)°:geographical colatitude
£mn = £(Am,8.):amplitude (in cm)
Omn = O(An,0,):Greenwich phases (in deg.;30° = th)

® = Amphidromic points

Subbars mark empirical input data at shore stations
Subbrackets mark empirical input data at nearshore deep-
sea stations
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~ = Subuldes mark approvimately distant ottshore deep-sea
stanions with excluded erpirical tide data listed i Tables
hl
2and 3

NVore: The udal chares are printed on microtiche, which can be
obtained trom the author. Printouts may be found in Schwidersh
11979¢).
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Figure 3. Amplitudes ¢ of corange lines in centimeters.
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