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Melting Layer Survey-Final Report

1. INTRODUCTION

The AFGL Melting Layer study was begun in 1979. Original plans called for a

flight program and extensive radar studies. Budget problems and a change in the

AFGL meteorology program led to curtailment of these portions of the program.

This report will therefore concentrate on those portions of the program that were

completed. They include:

(1) A survey of past and present research on the melting layer,

(2) Theoretical and observational studies of the melting of ice crystals

and snowflakes,

(3) The radar "bright band" and its relation to the melting layer.
1

Schaller et alI summarized the work done during the early phases of this study.

Since that time, some additional work has been done as part of the AFGL program,

and much has been done outside of AFGL. Section 4 of this report will review this

work.

No further effort to define boundaries of the melting layer have been made.

Rather, the AFGL study has focused on the melting layer as a transition region with

no fixed limits.

(Received for publication 5 August 1983)

1. Schaller, R.C., Cohen, I.D., Barnes, A.A., and Gibbons. L.C. (1982)A
Survey of Melting Layer Research, AFGL-TR-82-0007, AD A11524. -
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2
Interest in the melting layer has remained high. Stewart, showed how

important the processes in this region can be to precipitation. Cohen 3 found a

considerable amount of aircraft icing near the 00 C isotherm, including a few cases

of icing at temperatures between 00 C and +20 C. Reports by Newman 4 and Lo and

Passarelli 5 have added to their work. Further efforts by Mr. Hugh Sweeney and

Dr. Norihiko Fukuta will be discussed later in this report.

The structure of ice and the melting process have been the subject of several

studies. Fukuta 6 and Rasmussen et al 7 have reported on studies of the melting of

ice crystals. The former developed a theoretical model of snowflake melting, while

the latter the latter conducted wind tunnel tests which showed that a ring of water

will form at the equator of a spherical ice particle.

Radar continues to be used as a tool to examine the melting layer. Bohren and

Battan8 have noted the effect partially melting crystals, and crystals with a 'spongy'
9

outer layer, have on radar reflectivity. Bringi et at explain how dual polarization

can be used to identify precipitation particles. The use of Doppler radar is certain

to add to our knowledge of the melting layer. Metcalf 1 0 discusses polarization

diversity radar; another technique which will help us understand this region.

Thus, although the AFGL study of the melting layer has been completed,

research into this area of the atmosphere is continuing, and will lead to new dis-

coveries which will be of great interest to meteorologists.

2. LITERATURE SURVEY

Schaller et at 1 provided a list of reports on previous melting laver research.

An expanded list is included in Appendix A of this report. The list includes 49 addi-

tional entries on the subjects of scattering, theory and applications of radar, and

laboratory studies of ice, water, and melt ng. Some, such as Battan have been

included to provide additional background material. Others, such as Kinzer and Cobb 1 2
13

and Kinzer, are on laboratory studies which apply to processes which occur in

the melting layer.

Most of the additions to the list represent works published since the previous
6 14

version of the list was compiled. In addition to Fukuta et al, wo)rk by l)onovan
15

and Savage was sponsored by AFGL. Most of the work in recent years has in-
16volved wind tunnel studies such as Rasmussen and Prupoacher or radar observa-

tions using new techniques, such as the dual -polarization studies by Krehbiel and
17 18

kBroch and Kropfli et al. The full updated bibliography is presonted in Aonendix A.

(Due to the large number of references cited above, they will not be listed here.
See References, page 23.
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3. ICE CRYSTAL AND SNOWFLAKE MELTING

Fukuta 6 used the melting chamber shown in Figure 1 to study the melting of

snowflakes and ice crystals. The chamber was mounted on a truck and could be

moved to various locations to enable him to observe snowflakes in different locations.

T- SNOW Vt

ALIGING * STROBOTRON

SNOW MELTING

SLOWER * CHAMBER
RESISTANCE,

VARIA&LE

TOTAL "EIGHT

..--.--- FLUORESCENT
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Figure 1. University of Utah lelting iharnber. This chamber was used to
study the melting of 2700 ice crystals and snowflakes

As a general rule, snowflakes begin to melt from the outside. As they do, the

radius of the flake changes. In addition, a coating of water forms on the outside of

each ice crystal. The exact shape may vary with the type of crystal. While lukuta

et al 6 note that the water may form into an oblate spheroid, lasmussen et al report

that meltwater from larger spherical crystals forms a torus at the equator, of the

crystal. Regardless of the shape, a layer of water on the outside of a snowflake can

affect the type of radar return it will exhibit. The water will also cause other par--

ticles to adhere to the snowflake, thus causing aggregates.
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One surprising thing about the melting of snowflakes was that the ice skeleton

which remains below the liquid coating would often disintegrate in an irregular

pattern. While smaller crystals (up to I millimeter in diameter) could easily be

suspended in the wind tunnel, larger ones often moved in unexpected directions

and generally were lost before they had completed the melting process.
14

Donovan summarized the major findings of the observation program as

follows:

(1) The observed melting time of snowflakes increased with size, but

rather gently. The increase was far slower than that predicted

by current theory.

(2) Snow crystal disruption, in which a crystal melts not into a spherical

water droplet, but into several pieces, was confirmed. This

phenomenon was observed to be a dominant factor in the melting of

snowflakes/crystals, rather than an occasional occurrence, as had

been previously thought.

(3) The vertical stability of a suspended snowflake appeared to be

dependent upon its size and shape. Small crystals, less than I mm

in diameter, were the most stable.

(4) Helicoptering, or the rotation of a crystal around its vertical axis,

was observed in crystals 1-3 mm in diameter.

(5) Crystals 1-3 mm in diameter went into a "death spiral" crashing into

the wall of the chamber during the last portion of their melting process.

(6) Crystals less than I mm in diameter jumped violently at the end Mf

their melting process. This jump was usually upwards or to the side,

but seldom downwards.

(7) Large, flat, symmetrical dendritic crystals (less than 0. 3 mm thick)

fell flat and were very stable in the chamber airstream. They melted.

as the current theory predicted, from the outside inwards. There

was no disruption observed with these crystals.

(8) The snowflake's shape changed gradually while the melting proceeded.

The shape change appeared faster in the subsaturated environment. A

final shape was never observed, however, since crystals frequently

broke into smaller pieces while they were melting.

15Savage noted that individual crystals melt at a rate which varies with thc

crystal size. He also noted that the crystals disintegrate as they melt aind melt

more rapidly as they disintegrate.

10
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Matsuo and Sasyo 1 9 studied the melting of ice and snow pellets. They observed

that the melting of snow in the atmosphere depends on air temperature, relative

humidity, pellet size, and density. They note that snow will melt faster in saturated

air since latent heat of condensation will be released as water condenses on the

particle. In sub-saturated air, however, the pellet will try to sublimate, and thus

try to absorb heat, therefore, cooling the pellet.

4. RADAR OBSERVATIONS OF THE MELTING LAYER

Early observations with vertically scanning radar revealed a ,c, 'ase in echo

intensity in a narrow altitude range near the zero-degree isother melting layer).

This feature has been named the "bright band" by radar meteoro' 'sts. Studies of

the bright band and the area near it have continued through the y Ekpenyong

and Srivastava 2 0 carried out a theoretical study of the radar cha, o" stics of the

melting layer with the following assumptions:

(1) The melting layer is assumed to have a steady thermal structure

with a constant lapse rate which does not vary with time.

(2) A steady supply of snowflakes of prescribed size distribution is

maintained at the 0' C level, that is. at the top of the melting region.

(3) There is no aggregation or breakup of snowflakes in the melting region.

(4) Snowflakes have spherical shapes.

(5) The melted water forms a coat around the snowflake.

(6) Growth by collision and coalescence with cloud drops and by

condensation of water vapor is ignored.

They concluded that the comparison of their theoretical results witl observations

indicated that aggregration and breakup of melting snowflakes is a distinct possibility.

They also conclude that the temperature lapse rate may be larger than assumed

in their model in the lower parts of the melting layer.

Snowflakes and aggregates are known to be non-spherical and these authors

suggest that polarization measurements be made in order to assess the effects of

the non-spherical geometry of the scatterers.

19. Alatsuo, T. , and Sasyo, Y. (19821 Melting of snow pellets in the atmosphere,

Papers in Meteor. and Geophysics, Tokyo, No. 33:55-64.

20. Ekpenvong, B. , and Srivastava. l. (19;0) liadar Characteristics of the 1elting
Laer- A Theoretical Study. University of Chicago Department of Geophysical
Sciences and Illinois Institute of Technology, Department of Electrical
Engineering, Technical Heport No. 16, Lab. for Atm. Probing,
Chicago, Illinois.
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W\exler 21stgge-;tc P the melting layNer into tw~o Zones:

Zone I extends from thle 0' (' isotherm to the peak of the radar

reflectivityv in the bright band.

2) Zone 2 extends from the peak of the radar reflectivity in the

bright band to that point at which the snowflake is comipletely

mielted (that is, raindrmops reach terminal velocitY and iada x

reflectivitY becomies nea r'l constant with height).

l-igtirc 2 shows ain idealized mo1del of the melAting layer based on the six :issuir.ptions

noted. with snow above and vain below% the freezing level. T'he plotted va'lUuS for-

mecan pa rticle tall veloc ity. madamr echo powert, and melting baind thickness arme

app roZinme %'aIlues only . [or1 example, we know that the peak echo po %e m in tlie

conter of the b right baind is normially 12- 15 dB1 g reate r than in Iilie so ,bove, ld

5- 10 dB1 greater than in the rain below Lis schemiatica I lv p resented in I- igur es 2

and 3.

w 2
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----- D PLE ELCT
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Fiue2 daie oelo h etn .0r
'ri idldvdstLmligl e nom

21. Wexler, . gur)5 2. A ealaioed odelpyiafet of t hee M elting I.~

P'roceeding s. Fifth \'keather Hada r Conference, Ame ricain iAieteo mologiozil
Soc. , F t. Nionmiouth, New Jersey,. Sept 1955, pp 329-334.
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and

IKW 12 = 0.930. JK i 2 = 0.18.

Let us assume that the mass of the snowflakes does not change as it melts.

We define

Dm = diameter of equivalent melted water drops,

Do = diameter of snowflakes,

Z 6.
Vol

For lar'ge snow, (which generally occurs at the top of the melting layver) Cunningham 2 2

found that

1) 041)0.782

Now the radar received power (11r is given by

whe re

C = radar constant for individual radars

r = distance between radar and particle.

For a completely melted snowflake,

P1 11water) = Cr- JK 12 DM6

22. Cunningham, It. M~. 11978) Analysis of particle spectral data from optical arrav
(PINS) I-IJ and 2-D sensors. Prep rints, Fourth Symposium on Meteorological
Observations and Instrumentation, American Meteorological Sue.,
Denver, Colorado, 10-14 Apr 1978, pp 345-350.
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and for the unmelted snowflake.

Pr(ice) = 
2 1KI(0.4D 0 0.782)6

Cr 2 IKi(12 DM6

The increase in signal strength due to melting of the snowflake is

rwater) JK2 2 0.93
r(ice) = T = = 5. 17

or 7. 1 dB. This derivation depends on the assumption that the returned radar

signal is a function of the water mass of the snowflake. According to Ekpenyong and
Srivastava 19 when 1/3 of the original volume of ice has melted into this film of

water, the index of refraction will have changed from that for ice to that for water.
If at this point, there is any air inside the circumscribed sphere making the

diameter of the circumscribed sphere greater than Dm and if the radar scattering

process is to any extent a surface phenomenon as opposed to a mass property, then

there could be an increase of P above and beyond that due to the ice/water phaser

change.

If one-third of the mass has melted then (D n  2/3 (DO) 3 and the partially

melted snowflake has a diameter of

D = (2/3)0/3 D = 0.87 Dn o 0

If it is encircled with water, then

P(n) = Cr 2 1K 12 D6

r w n

Cr 2 IKw12 (0.87 D O)6

= Cr-2 Kw 12 [0.87(D m/0.4)
1.28]6

and

P r(n 6)=.42 8 9 1.68
P (water) = 10. 87l(D /0 .4 ) 8  494 X Dm

r

For Dm greater than 0. 25 mm there would be an increase in signal.

15



For 1) = 10 mm to 1. 0 cm diameter snow, the increase would be approximately

0

P n) (0.87 D )6

r _wat o- 2152r D
m

or 33 dli. Since this type of increase is not seen when using 5- and 10-cm wave-

length radars, we must conclude that the return power is a mass and not a surface

phenomenon for these wavelengths.

This means that if the mass of the snow particle does not change as it melts,

the increase in radar received power (P) is due to the change in the complex index

of refraction 1K'2 from ice (0. 18) t water (0. 93). The decrease of echo intensity

below the bright band level is then the result of decreases of particle concentration

caused by increases of fall velocity as the particles melt. The increase in velocity

is about 5 to I (a typical case) and the concentration decreases in the same ratio.

This change alone will account for a 7 dB decrease in echo intensity for the radar

sampled volume at the bottom of the melting layer (Figure 3).

4.2 Generation of the Bright Band

In the basic melting layer model presented above, the bright band radar signal

is generated by ice aggregate particles melting within the layer. The increase in

echo intensity (Zone 1) is caused by the change in value of the complex index of

refraction from that of ice to that of water. The decrease in signal intensity in

Zone 2 is attributed to the increase in fall velocity in the melting layer as the par-

ticles complete melting. Figure 4 shows the fall velocities for snowflakes. The

equations used to construct the figure are included. Not all of the processes in-

volved are completely defined by accepted equations. Many of the parameters of

the melting layer, can be generated mathematically once one knows the particle size

distribution entering the melting layer and the temperature lapse rate within the layer,

but we know this is not a steady-state system and the internal dynamics of the melting

layer must be included. In a melting layer with a steady-state thermal structure,

the melting process described earlier contributes approximately 7 dB of signal

intensity to the radar echo.

Numerous radar studies of the bright band show that at times the signal enhance-

ment exceeds 7 dB, normally 12 to 15 dB. In these cases, other processes must

contribute to signal enhancement. Some possible processes arc discussed below.

16
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Figure 4. Mass Melted vs Fail Velocity,
Note the changes in fall velocity (v), as
melting (y) nears completion

4.3 Processes in Zone 1

Any process which causes a growth in the mass (M) of a particle in Zone 1

would affect Z, the radar reflectivity. since Z is a function of M 2 . Possible pro-

cesses here are aggregation, collision, coalescence, and deposition. Estimates of

the relative magnitude of these effects are dependent on the meteorological condi-

tions existing during the measurement exercise.

Another possible process in Zone 1 is concerned with signal strength variations

due to the shape and orientation of scatterers in the bright band in relation to the

polarization of the incident radiation. In conventional radar systems, the only

component of the received signal that reaches the radar is that which is polarized

in the same plane as the incident wave so thatT (intensity at the same polarization)
xx

is a measure of the echo intensity to be expected in the main channel of the receiver.

17



Spherical particles reflect all of the backscattered radiation with a polarization

parallel to the transmitted polarization'T . Non-spherical particles reflect somexx
portion of the scattered radiation with a polarization orthogonal to that of the trans-

mitted radiation.

A theoretical study by Labrum 2 3 of melting ice particles shows that the increase

in-Txx caused by melting is much greater for clouds of non-spherical ice particles

than for clouds of ice spheres. This is illustrated in Figure 5. The backscatter

intensity of non-spherical particles on melting increases in backscatter intensity

stops and then starts to decrease until it ends when the particles finally become

spherical waterdrops. A radar observation at vertical incidence at the height of

the maximum depolarized backscatter was presented by Krehbiel and Brock. 17

hese measurements indicate that the small particles with fall speeds of 3-4 m sec-

had an orthogonal polarized backscatter that was 22-24 dB below the backscatter

parallel to the transmitted polarization, that is, these particles appear almost

spherical to the radar. Since these particles are primarily wet (partially melted)

snow, the fall speeds are somewhat faster than those often observed with dry snow.

At larger Doppler velocities, however, the orthogonally polarized backscatter was

relatively stronger, being only about 10 dB below the parallel-polarized backscatter.

This means that the larger particles with fall speeds of 4.5-9. 0 m sec appeared

more non-spherical to the radar. These particles, however, were the source of

only a small fraction of the total received power in either polarization at this

height. The use of this type of data to describe fully the evolution of hydrometeor

types, sizes and number concentrations through the melting layer requires a full

set of observations of the type taken at the center of the maximum orthogonal

return, extending from well above to well below the zero degree isotherm. Several

investigators have observed the entire melting layer with dual polarization back-

scatter measurements, (for example, Humphries and Barge 24. These show that

the maximum depolarized backscatter occurs about 100-300 m below the maximum

reflectivity in the bright band. This means the value of the index of refrnction

factor I 12 of the particles falling through the melting layer changes from that of

ice to that of water before the large nonspherical particles begin to collapse. It

also means that the portion of depolarized backscatter radiation coincident in time

and space with the maximum reflectivity in the bright band does not contribute to

this peak bright band return. Recent studies of the melting of large ic, spheres.

by Rasmussen, levizzani and Pruppacher 7 show that when an ice sphere melts,

23. Labrum, N. (1952) The scattering of radio waves by meteorological particles,
J. Appl. P'hys. No. 12:1324.

24. Humphries, . ;. , and Barge, B. L. (1979) l'olarization and dual wave length
radar observations of the bright band. IELE Trans. (Goscient.c Electronics
GE-17(No. 41:190- 195.

18J

.... ... .. . ... ....... .... . - - - _ .. . ... . .. : :' '- " 11 .-.. . -'.. *



the meltwater from the lower half of the particle is advected into a torus near the

equator of the particle. This ring torus of accumulated water changes the overall

shape of the original spherical particle to a distorted oblate spheroid. This change

in shape due to melting agrees well with the change in large particles observed by

the coherent dual polarized radars. The overall shape of small melting ice spheres

remains spherical, which agrees well with the coherent dual polarized radar ob-

servation.

+1o-

A-------------------------------------------

-5OT SPHEROIDS- p- 1

Sp: RATIO OF AXES

to , I , I i 1 I I
.2 .4 .6 .8 1O

S

Figure 5 Changes in Back Scattering From Cloud During
Melting. S = melting ratio. Broken lines represent
variation assuming particle shape remains unchanged.

Full lines assume that the collapse begins when S = 0. 33
(from Labrum 2 3 Figure 4)

Measurements by dual- polarization radar show that the value of the complex
correlation factor p decreases in the melting layer. This factor is a measure of

the degree of common alignment of the particles in the radar beam. This lower

value of p indicates that the particles within the melting layer are more randomly

orientated than those above or below it. Thus, the orientation of the particles do

not contribute to the enhancement of the radar signal from the melting layer.

19
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4.4 heesm in Zoo 2

If the bright band signal decreases more than 6 dB in Zone 2 of this model.

there must be some process leading to this extra decrease. One possibility is a
break-up of water droplets with diameters in excess of 5 mm. a very realistic

possibility. A breakup of 5-mm water droplets into 5 equi-volume droplets would
result in a decrease in intensity of approximately 7 dB. Another possible process

in Zone 2 is concerned with the shedding of meltwater. Since shedding for the
large ice particles does not begin until 20 or 30 percent of the mass has melted.

for the most part, this shedding process occurs in Zone 2 and results in a decrease

in signal intensity.

5. CONCLUSION

The melting layer remains a crucial area within a cloud system. A thorough

study using surface observations, radar observations, and aircraft flights would
be of great benefit to the scientific community.

The AFGL study provided new information on the way in :.'hich ice crystals

melt and the way radar views the melting layer. The literature survey, which is

found in Appendix A of this report will be a valuable starting point for any future
study of the melting layer. Other observations resulting from the program follow.

5.1 Ice Crystal and Snowflake Melting

Snowflake and ice crystal melting were observed and the observations were

compared to theories.

Among the observations were the following:

(I) Snowflakes melt at a rate slower th-n that predicted by theory.

(2) Although snowflakes generally do melt from the outside in, the,%'

may do so in an irregular manner.
(3) The vertical stability of a snowflake depended upon its size and shape.
(4) A crystal will generally not form a single droplet; rather, it will

split into several droplets.

(5) The speed with which a crystal melts will vary with its size. Small

crystals will melt faster, however, all crystals larger than 3 mm
will melt in about the same time.

(6) The rate at which snow pellets melt in the atmosphere is influenced

by air temperature, relative humidity, snow pellet size and density.
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5.2 Radwa Obwrvations

Further examination of radar data concerning the melting layer, and new
information available since 1981 have led to the following update of the findings

reported in Appendix E of Schaller et al.

The increase in the radar signal intensity in the so-called bright band can be
explained by the following processes:

WD The complex index of refraction for ice crystals I Ki 2 = 0. 180
on melting changes to IKw 2 = 0. 930 for water.w

(2) Any process which causes a growth in the mass of particles or
aggregation in the melting zone would increase Z, the radar reflectivity.

(3) The shape and orientation of tile particles in the bright band do not

increase the radar echo intensity in the main channel of the receiver.

The following processes tend to decrease the radar echo intensity in the
brigi t band:

(1) The increase in fall velocity of the melted particles decreases the

number of scatters in the radar beam.
(2) The break-up of water particles with large diameters decreases Z,

the radar reflectivity.
(3) The shedding of meltwater by the large particles decreases Z the

radar reflectivity factor.

The size of the particles in the melting layer in this review are assumed to be
small in size compared to the radar wavelength that is,

V = size parameter

CaD

where

I) = diameter of particle

= wavelength of incident radiation

When V , 0. 13 Hayleigh approximation applies, we assume Rayleigh scatter-
ing. The correctness of this assumption is very evident in calculations with par-

tially melted snow. For a surface rather than a mass relationship, the returned
radar signal was calculated to be much larger than actually observed, while for a
mass relationship theory agrees well with observations.
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Appendix A
Reference List

This reference list adds 50 entries to Appendix A of AFGL-TR-82-0007. For

the reader's convenience, the entire list is included. The list is in alphabetical

order.

The rating system used in the aforementioned report is also used here. The

numbers in parenthesis after each entry indicate the relevance of information as

follows:

1. VERY RELEVANT - Contains much helpful information.

2. SOMEWIAT RELEVANT - Has some valuable information.

3. POSSIBLY RELEVANT - Parts may be useful.

4. NOT VERY RELEVANT - Of limited use; may provide background material.

5. NOT RELEVANT - Not directly applicable.
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